Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v4.17
  1/*
  2 * soc-ops.c  --  Generic ASoC operations
  3 *
  4 * Copyright 2005 Wolfson Microelectronics PLC.
  5 * Copyright 2005 Openedhand Ltd.
  6 * Copyright (C) 2010 Slimlogic Ltd.
  7 * Copyright (C) 2010 Texas Instruments Inc.
  8 *
  9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
 10 *         with code, comments and ideas from :-
 11 *         Richard Purdie <richard@openedhand.com>
 12 *
 13 *  This program is free software; you can redistribute  it and/or modify it
 14 *  under  the terms of  the GNU General  Public License as published by the
 15 *  Free Software Foundation;  either version 2 of the  License, or (at your
 16 *  option) any later version.
 17 */
 18
 
 19#include <linux/module.h>
 20#include <linux/moduleparam.h>
 21#include <linux/init.h>
 22#include <linux/delay.h>
 23#include <linux/pm.h>
 24#include <linux/bitops.h>
 25#include <linux/ctype.h>
 26#include <linux/slab.h>
 27#include <sound/core.h>
 28#include <sound/jack.h>
 29#include <sound/pcm.h>
 30#include <sound/pcm_params.h>
 31#include <sound/soc.h>
 32#include <sound/soc-dpcm.h>
 33#include <sound/initval.h>
 34
 35/**
 36 * snd_soc_info_enum_double - enumerated double mixer info callback
 37 * @kcontrol: mixer control
 38 * @uinfo: control element information
 39 *
 40 * Callback to provide information about a double enumerated
 41 * mixer control.
 42 *
 43 * Returns 0 for success.
 44 */
 45int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
 46	struct snd_ctl_elem_info *uinfo)
 47{
 48	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
 49
 50	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
 51				 e->items, e->texts);
 52}
 53EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
 54
 55/**
 56 * snd_soc_get_enum_double - enumerated double mixer get callback
 57 * @kcontrol: mixer control
 58 * @ucontrol: control element information
 59 *
 60 * Callback to get the value of a double enumerated mixer.
 61 *
 62 * Returns 0 for success.
 63 */
 64int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
 65	struct snd_ctl_elem_value *ucontrol)
 66{
 67	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 68	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
 69	unsigned int val, item;
 70	unsigned int reg_val;
 71	int ret;
 72
 73	ret = snd_soc_component_read(component, e->reg, &reg_val);
 74	if (ret)
 75		return ret;
 76	val = (reg_val >> e->shift_l) & e->mask;
 77	item = snd_soc_enum_val_to_item(e, val);
 78	ucontrol->value.enumerated.item[0] = item;
 79	if (e->shift_l != e->shift_r) {
 80		val = (reg_val >> e->shift_r) & e->mask;
 81		item = snd_soc_enum_val_to_item(e, val);
 82		ucontrol->value.enumerated.item[1] = item;
 83	}
 84
 85	return 0;
 86}
 87EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
 88
 89/**
 90 * snd_soc_put_enum_double - enumerated double mixer put callback
 91 * @kcontrol: mixer control
 92 * @ucontrol: control element information
 93 *
 94 * Callback to set the value of a double enumerated mixer.
 95 *
 96 * Returns 0 for success.
 97 */
 98int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
 99	struct snd_ctl_elem_value *ucontrol)
100{
101	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
102	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
103	unsigned int *item = ucontrol->value.enumerated.item;
104	unsigned int val;
105	unsigned int mask;
106
107	if (item[0] >= e->items)
108		return -EINVAL;
109	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
110	mask = e->mask << e->shift_l;
111	if (e->shift_l != e->shift_r) {
112		if (item[1] >= e->items)
113			return -EINVAL;
114		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
115		mask |= e->mask << e->shift_r;
116	}
117
118	return snd_soc_component_update_bits(component, e->reg, mask, val);
119}
120EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
121
122/**
123 * snd_soc_read_signed - Read a codec register and interpret as signed value
124 * @component: component
125 * @reg: Register to read
126 * @mask: Mask to use after shifting the register value
127 * @shift: Right shift of register value
128 * @sign_bit: Bit that describes if a number is negative or not.
129 * @signed_val: Pointer to where the read value should be stored
130 *
131 * This functions reads a codec register. The register value is shifted right
132 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
133 * the given registervalue into a signed integer if sign_bit is non-zero.
134 *
135 * Returns 0 on sucess, otherwise an error value
136 */
137static int snd_soc_read_signed(struct snd_soc_component *component,
138	unsigned int reg, unsigned int mask, unsigned int shift,
139	unsigned int sign_bit, int *signed_val)
140{
141	int ret;
142	unsigned int val;
143
144	ret = snd_soc_component_read(component, reg, &val);
145	if (ret < 0)
146		return ret;
147
148	val = (val >> shift) & mask;
149
150	if (!sign_bit) {
151		*signed_val = val;
152		return 0;
153	}
154
155	/* non-negative number */
156	if (!(val & BIT(sign_bit))) {
157		*signed_val = val;
158		return 0;
159	}
160
161	ret = val;
162
163	/*
164	 * The register most probably does not contain a full-sized int.
165	 * Instead we have an arbitrary number of bits in a signed
166	 * representation which has to be translated into a full-sized int.
167	 * This is done by filling up all bits above the sign-bit.
168	 */
169	ret |= ~((int)(BIT(sign_bit) - 1));
170
171	*signed_val = ret;
172
173	return 0;
174}
175
176/**
177 * snd_soc_info_volsw - single mixer info callback
178 * @kcontrol: mixer control
179 * @uinfo: control element information
180 *
181 * Callback to provide information about a single mixer control, or a double
182 * mixer control that spans 2 registers.
183 *
184 * Returns 0 for success.
185 */
186int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
187	struct snd_ctl_elem_info *uinfo)
188{
189	struct soc_mixer_control *mc =
190		(struct soc_mixer_control *)kcontrol->private_value;
191	int platform_max;
192
193	if (!mc->platform_max)
194		mc->platform_max = mc->max;
195	platform_max = mc->platform_max;
196
197	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
198		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
199	else
 
 
 
 
 
 
 
 
 
200		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 
201
202	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
203	uinfo->value.integer.min = 0;
204	uinfo->value.integer.max = platform_max - mc->min;
 
205	return 0;
206}
207EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
208
209/**
210 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
211 * @kcontrol: mixer control
212 * @uinfo: control element information
213 *
214 * Callback to provide information about a single mixer control, or a double
215 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
216 * have a range that represents both positive and negative values either side
217 * of zero but without a sign bit.
 
218 *
219 * Returns 0 for success.
220 */
221int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
222			  struct snd_ctl_elem_info *uinfo)
223{
224	struct soc_mixer_control *mc =
225		(struct soc_mixer_control *)kcontrol->private_value;
 
226
227	snd_soc_info_volsw(kcontrol, uinfo);
228	/* Max represents the number of levels in an SX control not the
229	 * maximum value, so add the minimum value back on
230	 */
231	uinfo->value.integer.max += mc->min;
 
 
 
 
 
 
 
 
232
233	return 0;
234}
235EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
236
237/**
238 * snd_soc_get_volsw - single mixer get callback
239 * @kcontrol: mixer control
240 * @ucontrol: control element information
241 *
242 * Callback to get the value of a single mixer control, or a double mixer
243 * control that spans 2 registers.
244 *
245 * Returns 0 for success.
246 */
247int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
248	struct snd_ctl_elem_value *ucontrol)
249{
250	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
251	struct soc_mixer_control *mc =
252		(struct soc_mixer_control *)kcontrol->private_value;
253	unsigned int reg = mc->reg;
254	unsigned int reg2 = mc->rreg;
255	unsigned int shift = mc->shift;
256	unsigned int rshift = mc->rshift;
257	int max = mc->max;
258	int min = mc->min;
259	int sign_bit = mc->sign_bit;
260	unsigned int mask = (1 << fls(max)) - 1;
261	unsigned int invert = mc->invert;
262	int val;
263	int ret;
264
265	if (sign_bit)
266		mask = BIT(sign_bit + 1) - 1;
267
268	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
269	if (ret)
270		return ret;
271
272	ucontrol->value.integer.value[0] = val - min;
273	if (invert)
274		ucontrol->value.integer.value[0] =
275			max - ucontrol->value.integer.value[0];
276
277	if (snd_soc_volsw_is_stereo(mc)) {
278		if (reg == reg2)
279			ret = snd_soc_read_signed(component, reg, mask, rshift,
280				sign_bit, &val);
281		else
282			ret = snd_soc_read_signed(component, reg2, mask, shift,
283				sign_bit, &val);
284		if (ret)
285			return ret;
286
287		ucontrol->value.integer.value[1] = val - min;
288		if (invert)
289			ucontrol->value.integer.value[1] =
290				max - ucontrol->value.integer.value[1];
291	}
292
293	return 0;
294}
295EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
296
297/**
298 * snd_soc_put_volsw - single mixer put callback
299 * @kcontrol: mixer control
300 * @ucontrol: control element information
301 *
302 * Callback to set the value of a single mixer control, or a double mixer
303 * control that spans 2 registers.
304 *
305 * Returns 0 for success.
306 */
307int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
308	struct snd_ctl_elem_value *ucontrol)
309{
310	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
311	struct soc_mixer_control *mc =
312		(struct soc_mixer_control *)kcontrol->private_value;
313	unsigned int reg = mc->reg;
314	unsigned int reg2 = mc->rreg;
315	unsigned int shift = mc->shift;
316	unsigned int rshift = mc->rshift;
317	int max = mc->max;
318	int min = mc->min;
319	unsigned int sign_bit = mc->sign_bit;
320	unsigned int mask = (1 << fls(max)) - 1;
321	unsigned int invert = mc->invert;
322	int err;
323	bool type_2r = false;
324	unsigned int val2 = 0;
325	unsigned int val, val_mask;
326
327	if (sign_bit)
328		mask = BIT(sign_bit + 1) - 1;
329
330	val = ((ucontrol->value.integer.value[0] + min) & mask);
 
 
 
 
 
 
 
331	if (invert)
332		val = max - val;
333	val_mask = mask << shift;
334	val = val << shift;
335	if (snd_soc_volsw_is_stereo(mc)) {
336		val2 = ((ucontrol->value.integer.value[1] + min) & mask);
 
 
 
 
 
 
 
337		if (invert)
338			val2 = max - val2;
339		if (reg == reg2) {
340			val_mask |= mask << rshift;
341			val |= val2 << rshift;
342		} else {
343			val2 = val2 << shift;
344			type_2r = true;
345		}
346	}
347	err = snd_soc_component_update_bits(component, reg, val_mask, val);
348	if (err < 0)
349		return err;
 
350
351	if (type_2r)
352		err = snd_soc_component_update_bits(component, reg2, val_mask,
353			val2);
 
 
 
 
 
354
355	return err;
356}
357EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
358
359/**
360 * snd_soc_get_volsw_sx - single mixer get callback
361 * @kcontrol: mixer control
362 * @ucontrol: control element information
363 *
364 * Callback to get the value of a single mixer control, or a double mixer
365 * control that spans 2 registers.
366 *
367 * Returns 0 for success.
368 */
369int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
370		      struct snd_ctl_elem_value *ucontrol)
371{
372	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
373	struct soc_mixer_control *mc =
374	    (struct soc_mixer_control *)kcontrol->private_value;
375	unsigned int reg = mc->reg;
376	unsigned int reg2 = mc->rreg;
377	unsigned int shift = mc->shift;
378	unsigned int rshift = mc->rshift;
379	int max = mc->max;
380	int min = mc->min;
381	unsigned int mask = (1 << (fls(min + max) - 1)) - 1;
382	unsigned int val;
383	int ret;
384
385	ret = snd_soc_component_read(component, reg, &val);
386	if (ret < 0)
387		return ret;
388
 
389	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
390
391	if (snd_soc_volsw_is_stereo(mc)) {
392		ret = snd_soc_component_read(component, reg2, &val);
393		if (ret < 0)
394			return ret;
395
396		val = ((val >> rshift) - min) & mask;
397		ucontrol->value.integer.value[1] = val;
398	}
399
400	return 0;
401}
402EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
403
404/**
405 * snd_soc_put_volsw_sx - double mixer set callback
406 * @kcontrol: mixer control
407 * @ucontrol: control element information
408 *
409 * Callback to set the value of a double mixer control that spans 2 registers.
410 *
411 * Returns 0 for success.
412 */
413int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
414			 struct snd_ctl_elem_value *ucontrol)
415{
416	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
417	struct soc_mixer_control *mc =
418	    (struct soc_mixer_control *)kcontrol->private_value;
419
420	unsigned int reg = mc->reg;
421	unsigned int reg2 = mc->rreg;
422	unsigned int shift = mc->shift;
423	unsigned int rshift = mc->rshift;
424	int max = mc->max;
425	int min = mc->min;
426	unsigned int mask = (1 << (fls(min + max) - 1)) - 1;
427	int err = 0;
428	unsigned int val, val_mask, val2 = 0;
 
429
 
 
 
 
 
 
 
430	val_mask = mask << shift;
431	val = (ucontrol->value.integer.value[0] + min) & mask;
432	val = val << shift;
433
434	err = snd_soc_component_update_bits(component, reg, val_mask, val);
435	if (err < 0)
436		return err;
 
437
438	if (snd_soc_volsw_is_stereo(mc)) {
 
 
 
 
 
 
 
439		val_mask = mask << rshift;
440		val2 = (ucontrol->value.integer.value[1] + min) & mask;
441		val2 = val2 << rshift;
442
443		err = snd_soc_component_update_bits(component, reg2, val_mask,
444			val2);
 
 
 
 
 
445	}
446	return err;
447}
448EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
449
450/**
451 * snd_soc_info_volsw_range - single mixer info callback with range.
452 * @kcontrol: mixer control
453 * @uinfo: control element information
454 *
455 * Callback to provide information, within a range, about a single
456 * mixer control.
457 *
458 * returns 0 for success.
459 */
460int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
461	struct snd_ctl_elem_info *uinfo)
462{
463	struct soc_mixer_control *mc =
464		(struct soc_mixer_control *)kcontrol->private_value;
465	int platform_max;
466	int min = mc->min;
467
468	if (!mc->platform_max)
469		mc->platform_max = mc->max;
470	platform_max = mc->platform_max;
471
472	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
473	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
474	uinfo->value.integer.min = 0;
475	uinfo->value.integer.max = platform_max - min;
476
477	return 0;
478}
479EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
480
481/**
482 * snd_soc_put_volsw_range - single mixer put value callback with range.
483 * @kcontrol: mixer control
484 * @ucontrol: control element information
485 *
486 * Callback to set the value, within a range, for a single mixer control.
487 *
488 * Returns 0 for success.
489 */
490int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
491	struct snd_ctl_elem_value *ucontrol)
492{
493	struct soc_mixer_control *mc =
494		(struct soc_mixer_control *)kcontrol->private_value;
495	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
496	unsigned int reg = mc->reg;
497	unsigned int rreg = mc->rreg;
498	unsigned int shift = mc->shift;
499	int min = mc->min;
500	int max = mc->max;
501	unsigned int mask = (1 << fls(max)) - 1;
502	unsigned int invert = mc->invert;
503	unsigned int val, val_mask;
504	int ret;
 
 
 
 
 
 
 
 
505
506	if (invert)
507		val = (max - ucontrol->value.integer.value[0]) & mask;
508	else
509		val = ((ucontrol->value.integer.value[0] + min) & mask);
510	val_mask = mask << shift;
511	val = val << shift;
512
513	ret = snd_soc_component_update_bits(component, reg, val_mask, val);
514	if (ret < 0)
515		return ret;
 
516
517	if (snd_soc_volsw_is_stereo(mc)) {
 
 
 
 
 
 
 
 
518		if (invert)
519			val = (max - ucontrol->value.integer.value[1]) & mask;
520		else
521			val = ((ucontrol->value.integer.value[1] + min) & mask);
522		val_mask = mask << shift;
523		val = val << shift;
524
525		ret = snd_soc_component_update_bits(component, rreg, val_mask,
526			val);
 
 
 
 
527	}
528
529	return ret;
530}
531EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
532
533/**
534 * snd_soc_get_volsw_range - single mixer get callback with range
535 * @kcontrol: mixer control
536 * @ucontrol: control element information
537 *
538 * Callback to get the value, within a range, of a single mixer control.
539 *
540 * Returns 0 for success.
541 */
542int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
543	struct snd_ctl_elem_value *ucontrol)
544{
545	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
546	struct soc_mixer_control *mc =
547		(struct soc_mixer_control *)kcontrol->private_value;
548	unsigned int reg = mc->reg;
549	unsigned int rreg = mc->rreg;
550	unsigned int shift = mc->shift;
551	int min = mc->min;
552	int max = mc->max;
553	unsigned int mask = (1 << fls(max)) - 1;
554	unsigned int invert = mc->invert;
555	unsigned int val;
556	int ret;
557
558	ret = snd_soc_component_read(component, reg, &val);
559	if (ret)
560		return ret;
561
 
562	ucontrol->value.integer.value[0] = (val >> shift) & mask;
563	if (invert)
564		ucontrol->value.integer.value[0] =
565			max - ucontrol->value.integer.value[0];
566	else
567		ucontrol->value.integer.value[0] =
568			ucontrol->value.integer.value[0] - min;
569
570	if (snd_soc_volsw_is_stereo(mc)) {
571		ret = snd_soc_component_read(component, rreg, &val);
572		if (ret)
573			return ret;
574
575		ucontrol->value.integer.value[1] = (val >> shift) & mask;
576		if (invert)
577			ucontrol->value.integer.value[1] =
578				max - ucontrol->value.integer.value[1];
579		else
580			ucontrol->value.integer.value[1] =
581				ucontrol->value.integer.value[1] - min;
582	}
583
584	return 0;
585}
586EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
587
588/**
589 * snd_soc_limit_volume - Set new limit to an existing volume control.
590 *
591 * @card: where to look for the control
592 * @name: Name of the control
593 * @max: new maximum limit
594 *
595 * Return 0 for success, else error.
596 */
597int snd_soc_limit_volume(struct snd_soc_card *card,
598	const char *name, int max)
599{
600	struct snd_card *snd_card = card->snd_card;
601	struct snd_kcontrol *kctl;
602	struct soc_mixer_control *mc;
603	int found = 0;
604	int ret = -EINVAL;
605
606	/* Sanity check for name and max */
607	if (unlikely(!name || max <= 0))
608		return -EINVAL;
609
610	list_for_each_entry(kctl, &snd_card->controls, list) {
611		if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
612			found = 1;
613			break;
614		}
615	}
616	if (found) {
617		mc = (struct soc_mixer_control *)kctl->private_value;
618		if (max <= mc->max) {
619			mc->platform_max = max;
620			ret = 0;
621		}
622	}
623	return ret;
624}
625EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
626
627int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
628		       struct snd_ctl_elem_info *uinfo)
629{
630	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
631	struct soc_bytes *params = (void *)kcontrol->private_value;
632
633	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
634	uinfo->count = params->num_regs * component->val_bytes;
635
636	return 0;
637}
638EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
639
640int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
641		      struct snd_ctl_elem_value *ucontrol)
642{
643	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
644	struct soc_bytes *params = (void *)kcontrol->private_value;
645	int ret;
646
647	if (component->regmap)
648		ret = regmap_raw_read(component->regmap, params->base,
649				      ucontrol->value.bytes.data,
650				      params->num_regs * component->val_bytes);
651	else
652		ret = -EINVAL;
653
654	/* Hide any masked bytes to ensure consistent data reporting */
655	if (ret == 0 && params->mask) {
656		switch (component->val_bytes) {
657		case 1:
658			ucontrol->value.bytes.data[0] &= ~params->mask;
659			break;
660		case 2:
661			((u16 *)(&ucontrol->value.bytes.data))[0]
662				&= cpu_to_be16(~params->mask);
663			break;
664		case 4:
665			((u32 *)(&ucontrol->value.bytes.data))[0]
666				&= cpu_to_be32(~params->mask);
667			break;
668		default:
669			return -EINVAL;
670		}
671	}
672
673	return ret;
674}
675EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
676
677int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
678		      struct snd_ctl_elem_value *ucontrol)
679{
680	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
681	struct soc_bytes *params = (void *)kcontrol->private_value;
682	int ret, len;
683	unsigned int val, mask;
684	void *data;
685
686	if (!component->regmap || !params->num_regs)
687		return -EINVAL;
688
689	len = params->num_regs * component->val_bytes;
690
691	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
 
692	if (!data)
693		return -ENOMEM;
694
695	/*
696	 * If we've got a mask then we need to preserve the register
697	 * bits.  We shouldn't modify the incoming data so take a
698	 * copy.
699	 */
700	if (params->mask) {
701		ret = regmap_read(component->regmap, params->base, &val);
702		if (ret != 0)
703			goto out;
704
705		val &= params->mask;
706
707		switch (component->val_bytes) {
708		case 1:
709			((u8 *)data)[0] &= ~params->mask;
710			((u8 *)data)[0] |= val;
711			break;
712		case 2:
713			mask = ~params->mask;
714			ret = regmap_parse_val(component->regmap,
715							&mask, &mask);
716			if (ret != 0)
717				goto out;
718
719			((u16 *)data)[0] &= mask;
720
721			ret = regmap_parse_val(component->regmap,
722							&val, &val);
723			if (ret != 0)
724				goto out;
725
726			((u16 *)data)[0] |= val;
727			break;
728		case 4:
729			mask = ~params->mask;
730			ret = regmap_parse_val(component->regmap,
731							&mask, &mask);
732			if (ret != 0)
733				goto out;
734
735			((u32 *)data)[0] &= mask;
736
737			ret = regmap_parse_val(component->regmap,
738							&val, &val);
739			if (ret != 0)
740				goto out;
741
742			((u32 *)data)[0] |= val;
743			break;
744		default:
745			ret = -EINVAL;
746			goto out;
747		}
748	}
749
750	ret = regmap_raw_write(component->regmap, params->base,
751			       data, len);
752
753out:
754	kfree(data);
755
756	return ret;
757}
758EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
759
760int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
761			struct snd_ctl_elem_info *ucontrol)
762{
763	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
764
765	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
766	ucontrol->count = params->max;
767
768	return 0;
769}
770EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
771
772int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
773				unsigned int size, unsigned int __user *tlv)
774{
775	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
776	unsigned int count = size < params->max ? size : params->max;
777	int ret = -ENXIO;
778
779	switch (op_flag) {
780	case SNDRV_CTL_TLV_OP_READ:
781		if (params->get)
782			ret = params->get(kcontrol, tlv, count);
783		break;
784	case SNDRV_CTL_TLV_OP_WRITE:
785		if (params->put)
786			ret = params->put(kcontrol, tlv, count);
787		break;
788	}
789	return ret;
790}
791EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
792
793/**
794 * snd_soc_info_xr_sx - signed multi register info callback
795 * @kcontrol: mreg control
796 * @uinfo: control element information
797 *
798 * Callback to provide information of a control that can
799 * span multiple codec registers which together
800 * forms a single signed value in a MSB/LSB manner.
801 *
802 * Returns 0 for success.
803 */
804int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
805	struct snd_ctl_elem_info *uinfo)
806{
807	struct soc_mreg_control *mc =
808		(struct soc_mreg_control *)kcontrol->private_value;
809	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
810	uinfo->count = 1;
811	uinfo->value.integer.min = mc->min;
812	uinfo->value.integer.max = mc->max;
813
814	return 0;
815}
816EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
817
818/**
819 * snd_soc_get_xr_sx - signed multi register get callback
820 * @kcontrol: mreg control
821 * @ucontrol: control element information
822 *
823 * Callback to get the value of a control that can span
824 * multiple codec registers which together forms a single
825 * signed value in a MSB/LSB manner. The control supports
826 * specifying total no of bits used to allow for bitfields
827 * across the multiple codec registers.
828 *
829 * Returns 0 for success.
830 */
831int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
832	struct snd_ctl_elem_value *ucontrol)
833{
834	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
835	struct soc_mreg_control *mc =
836		(struct soc_mreg_control *)kcontrol->private_value;
837	unsigned int regbase = mc->regbase;
838	unsigned int regcount = mc->regcount;
839	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
840	unsigned int regwmask = (1<<regwshift)-1;
841	unsigned int invert = mc->invert;
842	unsigned long mask = (1UL<<mc->nbits)-1;
843	long min = mc->min;
844	long max = mc->max;
845	long val = 0;
846	unsigned int regval;
847	unsigned int i;
848	int ret;
849
850	for (i = 0; i < regcount; i++) {
851		ret = snd_soc_component_read(component, regbase+i, &regval);
852		if (ret)
853			return ret;
854		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
855	}
856	val &= mask;
857	if (min < 0 && val > max)
858		val |= ~mask;
859	if (invert)
860		val = max - val;
861	ucontrol->value.integer.value[0] = val;
862
863	return 0;
864}
865EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
866
867/**
868 * snd_soc_put_xr_sx - signed multi register get callback
869 * @kcontrol: mreg control
870 * @ucontrol: control element information
871 *
872 * Callback to set the value of a control that can span
873 * multiple codec registers which together forms a single
874 * signed value in a MSB/LSB manner. The control supports
875 * specifying total no of bits used to allow for bitfields
876 * across the multiple codec registers.
877 *
878 * Returns 0 for success.
879 */
880int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
881	struct snd_ctl_elem_value *ucontrol)
882{
883	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
884	struct soc_mreg_control *mc =
885		(struct soc_mreg_control *)kcontrol->private_value;
886	unsigned int regbase = mc->regbase;
887	unsigned int regcount = mc->regcount;
888	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
889	unsigned int regwmask = (1<<regwshift)-1;
890	unsigned int invert = mc->invert;
891	unsigned long mask = (1UL<<mc->nbits)-1;
892	long max = mc->max;
893	long val = ucontrol->value.integer.value[0];
894	unsigned int i, regval, regmask;
895	int err;
896
 
 
897	if (invert)
898		val = max - val;
899	val &= mask;
900	for (i = 0; i < regcount; i++) {
901		regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
902		regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
903		err = snd_soc_component_update_bits(component, regbase+i,
904				regmask, regval);
905		if (err < 0)
906			return err;
 
 
907	}
908
909	return 0;
910}
911EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
912
913/**
914 * snd_soc_get_strobe - strobe get callback
915 * @kcontrol: mixer control
916 * @ucontrol: control element information
917 *
918 * Callback get the value of a strobe mixer control.
919 *
920 * Returns 0 for success.
921 */
922int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
923	struct snd_ctl_elem_value *ucontrol)
924{
925	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
926	struct soc_mixer_control *mc =
927		(struct soc_mixer_control *)kcontrol->private_value;
928	unsigned int reg = mc->reg;
929	unsigned int shift = mc->shift;
930	unsigned int mask = 1 << shift;
931	unsigned int invert = mc->invert != 0;
932	unsigned int val;
933	int ret;
934
935	ret = snd_soc_component_read(component, reg, &val);
936	if (ret)
937		return ret;
938
 
939	val &= mask;
940
941	if (shift != 0 && val != 0)
942		val = val >> shift;
943	ucontrol->value.enumerated.item[0] = val ^ invert;
944
945	return 0;
946}
947EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
948
949/**
950 * snd_soc_put_strobe - strobe put callback
951 * @kcontrol: mixer control
952 * @ucontrol: control element information
953 *
954 * Callback strobe a register bit to high then low (or the inverse)
955 * in one pass of a single mixer enum control.
956 *
957 * Returns 1 for success.
958 */
959int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
960	struct snd_ctl_elem_value *ucontrol)
961{
962	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
963	struct soc_mixer_control *mc =
964		(struct soc_mixer_control *)kcontrol->private_value;
965	unsigned int reg = mc->reg;
966	unsigned int shift = mc->shift;
967	unsigned int mask = 1 << shift;
968	unsigned int invert = mc->invert != 0;
969	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
970	unsigned int val1 = (strobe ^ invert) ? mask : 0;
971	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
972	int err;
973
974	err = snd_soc_component_update_bits(component, reg, mask, val1);
975	if (err < 0)
976		return err;
977
978	return snd_soc_component_update_bits(component, reg, mask, val2);
979}
980EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// soc-ops.c  --  Generic ASoC operations
   4//
   5// Copyright 2005 Wolfson Microelectronics PLC.
   6// Copyright 2005 Openedhand Ltd.
   7// Copyright (C) 2010 Slimlogic Ltd.
   8// Copyright (C) 2010 Texas Instruments Inc.
   9//
  10// Author: Liam Girdwood <lrg@slimlogic.co.uk>
  11//         with code, comments and ideas from :-
  12//         Richard Purdie <richard@openedhand.com>
 
 
 
 
 
  13
  14#include <linux/cleanup.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/init.h>
 
  18#include <linux/pm.h>
  19#include <linux/bitops.h>
  20#include <linux/ctype.h>
  21#include <linux/slab.h>
  22#include <sound/core.h>
  23#include <sound/jack.h>
  24#include <sound/pcm.h>
  25#include <sound/pcm_params.h>
  26#include <sound/soc.h>
  27#include <sound/soc-dpcm.h>
  28#include <sound/initval.h>
  29
  30/**
  31 * snd_soc_info_enum_double - enumerated double mixer info callback
  32 * @kcontrol: mixer control
  33 * @uinfo: control element information
  34 *
  35 * Callback to provide information about a double enumerated
  36 * mixer control.
  37 *
  38 * Returns 0 for success.
  39 */
  40int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
  41	struct snd_ctl_elem_info *uinfo)
  42{
  43	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  44
  45	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
  46				 e->items, e->texts);
  47}
  48EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
  49
  50/**
  51 * snd_soc_get_enum_double - enumerated double mixer get callback
  52 * @kcontrol: mixer control
  53 * @ucontrol: control element information
  54 *
  55 * Callback to get the value of a double enumerated mixer.
  56 *
  57 * Returns 0 for success.
  58 */
  59int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
  60	struct snd_ctl_elem_value *ucontrol)
  61{
  62	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
  63	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  64	unsigned int val, item;
  65	unsigned int reg_val;
 
  66
  67	reg_val = snd_soc_component_read(component, e->reg);
 
 
  68	val = (reg_val >> e->shift_l) & e->mask;
  69	item = snd_soc_enum_val_to_item(e, val);
  70	ucontrol->value.enumerated.item[0] = item;
  71	if (e->shift_l != e->shift_r) {
  72		val = (reg_val >> e->shift_r) & e->mask;
  73		item = snd_soc_enum_val_to_item(e, val);
  74		ucontrol->value.enumerated.item[1] = item;
  75	}
  76
  77	return 0;
  78}
  79EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
  80
  81/**
  82 * snd_soc_put_enum_double - enumerated double mixer put callback
  83 * @kcontrol: mixer control
  84 * @ucontrol: control element information
  85 *
  86 * Callback to set the value of a double enumerated mixer.
  87 *
  88 * Returns 0 for success.
  89 */
  90int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
  91	struct snd_ctl_elem_value *ucontrol)
  92{
  93	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
  94	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  95	unsigned int *item = ucontrol->value.enumerated.item;
  96	unsigned int val;
  97	unsigned int mask;
  98
  99	if (item[0] >= e->items)
 100		return -EINVAL;
 101	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
 102	mask = e->mask << e->shift_l;
 103	if (e->shift_l != e->shift_r) {
 104		if (item[1] >= e->items)
 105			return -EINVAL;
 106		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
 107		mask |= e->mask << e->shift_r;
 108	}
 109
 110	return snd_soc_component_update_bits(component, e->reg, mask, val);
 111}
 112EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
 113
 114/**
 115 * snd_soc_read_signed - Read a codec register and interpret as signed value
 116 * @component: component
 117 * @reg: Register to read
 118 * @mask: Mask to use after shifting the register value
 119 * @shift: Right shift of register value
 120 * @sign_bit: Bit that describes if a number is negative or not.
 121 * @signed_val: Pointer to where the read value should be stored
 122 *
 123 * This functions reads a codec register. The register value is shifted right
 124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
 125 * the given registervalue into a signed integer if sign_bit is non-zero.
 126 *
 127 * Returns 0 on sucess, otherwise an error value
 128 */
 129static int snd_soc_read_signed(struct snd_soc_component *component,
 130	unsigned int reg, unsigned int mask, unsigned int shift,
 131	unsigned int sign_bit, int *signed_val)
 132{
 133	int ret;
 134	unsigned int val;
 135
 136	val = snd_soc_component_read(component, reg);
 
 
 
 137	val = (val >> shift) & mask;
 138
 139	if (!sign_bit) {
 140		*signed_val = val;
 141		return 0;
 142	}
 143
 144	/* non-negative number */
 145	if (!(val & BIT(sign_bit))) {
 146		*signed_val = val;
 147		return 0;
 148	}
 149
 150	ret = val;
 151
 152	/*
 153	 * The register most probably does not contain a full-sized int.
 154	 * Instead we have an arbitrary number of bits in a signed
 155	 * representation which has to be translated into a full-sized int.
 156	 * This is done by filling up all bits above the sign-bit.
 157	 */
 158	ret |= ~((int)(BIT(sign_bit) - 1));
 159
 160	*signed_val = ret;
 161
 162	return 0;
 163}
 164
 165/**
 166 * snd_soc_info_volsw - single mixer info callback
 167 * @kcontrol: mixer control
 168 * @uinfo: control element information
 169 *
 170 * Callback to provide information about a single mixer control, or a double
 171 * mixer control that spans 2 registers.
 172 *
 173 * Returns 0 for success.
 174 */
 175int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
 176	struct snd_ctl_elem_info *uinfo)
 177{
 178	struct soc_mixer_control *mc =
 179		(struct soc_mixer_control *)kcontrol->private_value;
 180	const char *vol_string = NULL;
 181	int max;
 
 
 
 182
 183	max = uinfo->value.integer.max = mc->max - mc->min;
 184	if (mc->platform_max && mc->platform_max < max)
 185		max = mc->platform_max;
 186
 187	if (max == 1) {
 188		/* Even two value controls ending in Volume should always be integer */
 189		vol_string = strstr(kcontrol->id.name, " Volume");
 190		if (vol_string && !strcmp(vol_string, " Volume"))
 191			uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 192		else
 193			uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
 194	} else {
 195		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 196	}
 197
 198	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
 199	uinfo->value.integer.min = 0;
 200	uinfo->value.integer.max = max;
 201
 202	return 0;
 203}
 204EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
 205
 206/**
 207 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
 208 * @kcontrol: mixer control
 209 * @uinfo: control element information
 210 *
 211 * Callback to provide information about a single mixer control, or a double
 212 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
 213 * have a range that represents both positive and negative values either side
 214 * of zero but without a sign bit. min is the minimum register value, max is
 215 * the number of steps.
 216 *
 217 * Returns 0 for success.
 218 */
 219int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
 220			  struct snd_ctl_elem_info *uinfo)
 221{
 222	struct soc_mixer_control *mc =
 223		(struct soc_mixer_control *)kcontrol->private_value;
 224	int max;
 225
 226	if (mc->platform_max)
 227		max = mc->platform_max;
 228	else
 229		max = mc->max;
 230
 231	if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
 232		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
 233	else
 234		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 235
 236	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
 237	uinfo->value.integer.min = 0;
 238	uinfo->value.integer.max = max;
 239
 240	return 0;
 241}
 242EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
 243
 244/**
 245 * snd_soc_get_volsw - single mixer get callback
 246 * @kcontrol: mixer control
 247 * @ucontrol: control element information
 248 *
 249 * Callback to get the value of a single mixer control, or a double mixer
 250 * control that spans 2 registers.
 251 *
 252 * Returns 0 for success.
 253 */
 254int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
 255	struct snd_ctl_elem_value *ucontrol)
 256{
 257	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 258	struct soc_mixer_control *mc =
 259		(struct soc_mixer_control *)kcontrol->private_value;
 260	unsigned int reg = mc->reg;
 261	unsigned int reg2 = mc->rreg;
 262	unsigned int shift = mc->shift;
 263	unsigned int rshift = mc->rshift;
 264	int max = mc->max;
 265	int min = mc->min;
 266	int sign_bit = mc->sign_bit;
 267	unsigned int mask = (1ULL << fls(max)) - 1;
 268	unsigned int invert = mc->invert;
 269	int val;
 270	int ret;
 271
 272	if (sign_bit)
 273		mask = BIT(sign_bit + 1) - 1;
 274
 275	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
 276	if (ret)
 277		return ret;
 278
 279	ucontrol->value.integer.value[0] = val - min;
 280	if (invert)
 281		ucontrol->value.integer.value[0] =
 282			max - ucontrol->value.integer.value[0];
 283
 284	if (snd_soc_volsw_is_stereo(mc)) {
 285		if (reg == reg2)
 286			ret = snd_soc_read_signed(component, reg, mask, rshift,
 287				sign_bit, &val);
 288		else
 289			ret = snd_soc_read_signed(component, reg2, mask, shift,
 290				sign_bit, &val);
 291		if (ret)
 292			return ret;
 293
 294		ucontrol->value.integer.value[1] = val - min;
 295		if (invert)
 296			ucontrol->value.integer.value[1] =
 297				max - ucontrol->value.integer.value[1];
 298	}
 299
 300	return 0;
 301}
 302EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
 303
 304/**
 305 * snd_soc_put_volsw - single mixer put callback
 306 * @kcontrol: mixer control
 307 * @ucontrol: control element information
 308 *
 309 * Callback to set the value of a single mixer control, or a double mixer
 310 * control that spans 2 registers.
 311 *
 312 * Returns 0 for success.
 313 */
 314int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
 315	struct snd_ctl_elem_value *ucontrol)
 316{
 317	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 318	struct soc_mixer_control *mc =
 319		(struct soc_mixer_control *)kcontrol->private_value;
 320	unsigned int reg = mc->reg;
 321	unsigned int reg2 = mc->rreg;
 322	unsigned int shift = mc->shift;
 323	unsigned int rshift = mc->rshift;
 324	int max = mc->max;
 325	int min = mc->min;
 326	unsigned int sign_bit = mc->sign_bit;
 327	unsigned int mask = (1 << fls(max)) - 1;
 328	unsigned int invert = mc->invert;
 329	int err, ret;
 330	bool type_2r = false;
 331	unsigned int val2 = 0;
 332	unsigned int val, val_mask;
 333
 334	if (sign_bit)
 335		mask = BIT(sign_bit + 1) - 1;
 336
 337	if (ucontrol->value.integer.value[0] < 0)
 338		return -EINVAL;
 339	val = ucontrol->value.integer.value[0];
 340	if (mc->platform_max && ((int)val + min) > mc->platform_max)
 341		return -EINVAL;
 342	if (val > max - min)
 343		return -EINVAL;
 344	val = (val + min) & mask;
 345	if (invert)
 346		val = max - val;
 347	val_mask = mask << shift;
 348	val = val << shift;
 349	if (snd_soc_volsw_is_stereo(mc)) {
 350		if (ucontrol->value.integer.value[1] < 0)
 351			return -EINVAL;
 352		val2 = ucontrol->value.integer.value[1];
 353		if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
 354			return -EINVAL;
 355		if (val2 > max - min)
 356			return -EINVAL;
 357		val2 = (val2 + min) & mask;
 358		if (invert)
 359			val2 = max - val2;
 360		if (reg == reg2) {
 361			val_mask |= mask << rshift;
 362			val |= val2 << rshift;
 363		} else {
 364			val2 = val2 << shift;
 365			type_2r = true;
 366		}
 367	}
 368	err = snd_soc_component_update_bits(component, reg, val_mask, val);
 369	if (err < 0)
 370		return err;
 371	ret = err;
 372
 373	if (type_2r) {
 374		err = snd_soc_component_update_bits(component, reg2, val_mask,
 375						    val2);
 376		/* Don't discard any error code or drop change flag */
 377		if (ret == 0 || err < 0) {
 378			ret = err;
 379		}
 380	}
 381
 382	return ret;
 383}
 384EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
 385
 386/**
 387 * snd_soc_get_volsw_sx - single mixer get callback
 388 * @kcontrol: mixer control
 389 * @ucontrol: control element information
 390 *
 391 * Callback to get the value of a single mixer control, or a double mixer
 392 * control that spans 2 registers.
 393 *
 394 * Returns 0 for success.
 395 */
 396int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
 397		      struct snd_ctl_elem_value *ucontrol)
 398{
 399	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 400	struct soc_mixer_control *mc =
 401	    (struct soc_mixer_control *)kcontrol->private_value;
 402	unsigned int reg = mc->reg;
 403	unsigned int reg2 = mc->rreg;
 404	unsigned int shift = mc->shift;
 405	unsigned int rshift = mc->rshift;
 406	int max = mc->max;
 407	int min = mc->min;
 408	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
 409	unsigned int val;
 
 
 
 
 
 410
 411	val = snd_soc_component_read(component, reg);
 412	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
 413
 414	if (snd_soc_volsw_is_stereo(mc)) {
 415		val = snd_soc_component_read(component, reg2);
 
 
 
 416		val = ((val >> rshift) - min) & mask;
 417		ucontrol->value.integer.value[1] = val;
 418	}
 419
 420	return 0;
 421}
 422EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
 423
 424/**
 425 * snd_soc_put_volsw_sx - double mixer set callback
 426 * @kcontrol: mixer control
 427 * @ucontrol: control element information
 428 *
 429 * Callback to set the value of a double mixer control that spans 2 registers.
 430 *
 431 * Returns 0 for success.
 432 */
 433int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
 434			 struct snd_ctl_elem_value *ucontrol)
 435{
 436	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 437	struct soc_mixer_control *mc =
 438	    (struct soc_mixer_control *)kcontrol->private_value;
 439
 440	unsigned int reg = mc->reg;
 441	unsigned int reg2 = mc->rreg;
 442	unsigned int shift = mc->shift;
 443	unsigned int rshift = mc->rshift;
 444	int max = mc->max;
 445	int min = mc->min;
 446	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
 447	int err = 0;
 448	int ret;
 449	unsigned int val, val_mask;
 450
 451	if (ucontrol->value.integer.value[0] < 0)
 452		return -EINVAL;
 453	val = ucontrol->value.integer.value[0];
 454	if (mc->platform_max && val > mc->platform_max)
 455		return -EINVAL;
 456	if (val > max)
 457		return -EINVAL;
 458	val_mask = mask << shift;
 459	val = (val + min) & mask;
 460	val = val << shift;
 461
 462	err = snd_soc_component_update_bits(component, reg, val_mask, val);
 463	if (err < 0)
 464		return err;
 465	ret = err;
 466
 467	if (snd_soc_volsw_is_stereo(mc)) {
 468		unsigned int val2 = ucontrol->value.integer.value[1];
 469
 470		if (mc->platform_max && val2 > mc->platform_max)
 471			return -EINVAL;
 472		if (val2 > max)
 473			return -EINVAL;
 474
 475		val_mask = mask << rshift;
 476		val2 = (val2 + min) & mask;
 477		val2 = val2 << rshift;
 478
 479		err = snd_soc_component_update_bits(component, reg2, val_mask,
 480			val2);
 481
 482		/* Don't discard any error code or drop change flag */
 483		if (ret == 0 || err < 0) {
 484			ret = err;
 485		}
 486	}
 487	return ret;
 488}
 489EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
 490
 491/**
 492 * snd_soc_info_volsw_range - single mixer info callback with range.
 493 * @kcontrol: mixer control
 494 * @uinfo: control element information
 495 *
 496 * Callback to provide information, within a range, about a single
 497 * mixer control.
 498 *
 499 * returns 0 for success.
 500 */
 501int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
 502	struct snd_ctl_elem_info *uinfo)
 503{
 504	struct soc_mixer_control *mc =
 505		(struct soc_mixer_control *)kcontrol->private_value;
 506	int platform_max;
 507	int min = mc->min;
 508
 509	if (!mc->platform_max)
 510		mc->platform_max = mc->max;
 511	platform_max = mc->platform_max;
 512
 513	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 514	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
 515	uinfo->value.integer.min = 0;
 516	uinfo->value.integer.max = platform_max - min;
 517
 518	return 0;
 519}
 520EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
 521
 522/**
 523 * snd_soc_put_volsw_range - single mixer put value callback with range.
 524 * @kcontrol: mixer control
 525 * @ucontrol: control element information
 526 *
 527 * Callback to set the value, within a range, for a single mixer control.
 528 *
 529 * Returns 0 for success.
 530 */
 531int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
 532	struct snd_ctl_elem_value *ucontrol)
 533{
 534	struct soc_mixer_control *mc =
 535		(struct soc_mixer_control *)kcontrol->private_value;
 536	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 537	unsigned int reg = mc->reg;
 538	unsigned int rreg = mc->rreg;
 539	unsigned int shift = mc->shift;
 540	int min = mc->min;
 541	int max = mc->max;
 542	unsigned int mask = (1 << fls(max)) - 1;
 543	unsigned int invert = mc->invert;
 544	unsigned int val, val_mask;
 545	int err, ret, tmp;
 546
 547	tmp = ucontrol->value.integer.value[0];
 548	if (tmp < 0)
 549		return -EINVAL;
 550	if (mc->platform_max && tmp > mc->platform_max)
 551		return -EINVAL;
 552	if (tmp > mc->max - mc->min)
 553		return -EINVAL;
 554
 555	if (invert)
 556		val = (max - ucontrol->value.integer.value[0]) & mask;
 557	else
 558		val = ((ucontrol->value.integer.value[0] + min) & mask);
 559	val_mask = mask << shift;
 560	val = val << shift;
 561
 562	err = snd_soc_component_update_bits(component, reg, val_mask, val);
 563	if (err < 0)
 564		return err;
 565	ret = err;
 566
 567	if (snd_soc_volsw_is_stereo(mc)) {
 568		tmp = ucontrol->value.integer.value[1];
 569		if (tmp < 0)
 570			return -EINVAL;
 571		if (mc->platform_max && tmp > mc->platform_max)
 572			return -EINVAL;
 573		if (tmp > mc->max - mc->min)
 574			return -EINVAL;
 575
 576		if (invert)
 577			val = (max - ucontrol->value.integer.value[1]) & mask;
 578		else
 579			val = ((ucontrol->value.integer.value[1] + min) & mask);
 580		val_mask = mask << shift;
 581		val = val << shift;
 582
 583		err = snd_soc_component_update_bits(component, rreg, val_mask,
 584			val);
 585		/* Don't discard any error code or drop change flag */
 586		if (ret == 0 || err < 0) {
 587			ret = err;
 588		}
 589	}
 590
 591	return ret;
 592}
 593EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
 594
 595/**
 596 * snd_soc_get_volsw_range - single mixer get callback with range
 597 * @kcontrol: mixer control
 598 * @ucontrol: control element information
 599 *
 600 * Callback to get the value, within a range, of a single mixer control.
 601 *
 602 * Returns 0 for success.
 603 */
 604int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
 605	struct snd_ctl_elem_value *ucontrol)
 606{
 607	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 608	struct soc_mixer_control *mc =
 609		(struct soc_mixer_control *)kcontrol->private_value;
 610	unsigned int reg = mc->reg;
 611	unsigned int rreg = mc->rreg;
 612	unsigned int shift = mc->shift;
 613	int min = mc->min;
 614	int max = mc->max;
 615	unsigned int mask = (1 << fls(max)) - 1;
 616	unsigned int invert = mc->invert;
 617	unsigned int val;
 
 
 
 
 
 618
 619	val = snd_soc_component_read(component, reg);
 620	ucontrol->value.integer.value[0] = (val >> shift) & mask;
 621	if (invert)
 622		ucontrol->value.integer.value[0] =
 623			max - ucontrol->value.integer.value[0];
 624	else
 625		ucontrol->value.integer.value[0] =
 626			ucontrol->value.integer.value[0] - min;
 627
 628	if (snd_soc_volsw_is_stereo(mc)) {
 629		val = snd_soc_component_read(component, rreg);
 
 
 
 630		ucontrol->value.integer.value[1] = (val >> shift) & mask;
 631		if (invert)
 632			ucontrol->value.integer.value[1] =
 633				max - ucontrol->value.integer.value[1];
 634		else
 635			ucontrol->value.integer.value[1] =
 636				ucontrol->value.integer.value[1] - min;
 637	}
 638
 639	return 0;
 640}
 641EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
 642
 643/**
 644 * snd_soc_limit_volume - Set new limit to an existing volume control.
 645 *
 646 * @card: where to look for the control
 647 * @name: Name of the control
 648 * @max: new maximum limit
 649 *
 650 * Return 0 for success, else error.
 651 */
 652int snd_soc_limit_volume(struct snd_soc_card *card,
 653	const char *name, int max)
 654{
 
 655	struct snd_kcontrol *kctl;
 
 
 656	int ret = -EINVAL;
 657
 658	/* Sanity check for name and max */
 659	if (unlikely(!name || max <= 0))
 660		return -EINVAL;
 661
 662	kctl = snd_soc_card_get_kcontrol(card, name);
 663	if (kctl) {
 664		struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
 665		if (max <= mc->max - mc->min) {
 
 
 
 
 
 666			mc->platform_max = max;
 667			ret = 0;
 668		}
 669	}
 670	return ret;
 671}
 672EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
 673
 674int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
 675		       struct snd_ctl_elem_info *uinfo)
 676{
 677	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 678	struct soc_bytes *params = (void *)kcontrol->private_value;
 679
 680	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
 681	uinfo->count = params->num_regs * component->val_bytes;
 682
 683	return 0;
 684}
 685EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
 686
 687int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
 688		      struct snd_ctl_elem_value *ucontrol)
 689{
 690	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 691	struct soc_bytes *params = (void *)kcontrol->private_value;
 692	int ret;
 693
 694	if (component->regmap)
 695		ret = regmap_raw_read(component->regmap, params->base,
 696				      ucontrol->value.bytes.data,
 697				      params->num_regs * component->val_bytes);
 698	else
 699		ret = -EINVAL;
 700
 701	/* Hide any masked bytes to ensure consistent data reporting */
 702	if (ret == 0 && params->mask) {
 703		switch (component->val_bytes) {
 704		case 1:
 705			ucontrol->value.bytes.data[0] &= ~params->mask;
 706			break;
 707		case 2:
 708			((u16 *)(&ucontrol->value.bytes.data))[0]
 709				&= cpu_to_be16(~params->mask);
 710			break;
 711		case 4:
 712			((u32 *)(&ucontrol->value.bytes.data))[0]
 713				&= cpu_to_be32(~params->mask);
 714			break;
 715		default:
 716			return -EINVAL;
 717		}
 718	}
 719
 720	return ret;
 721}
 722EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
 723
 724int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
 725		      struct snd_ctl_elem_value *ucontrol)
 726{
 727	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 728	struct soc_bytes *params = (void *)kcontrol->private_value;
 729	int ret, len;
 730	unsigned int val, mask;
 
 731
 732	if (!component->regmap || !params->num_regs)
 733		return -EINVAL;
 734
 735	len = params->num_regs * component->val_bytes;
 736
 737	void *data __free(kfree) = kmemdup(ucontrol->value.bytes.data, len,
 738					   GFP_KERNEL | GFP_DMA);
 739	if (!data)
 740		return -ENOMEM;
 741
 742	/*
 743	 * If we've got a mask then we need to preserve the register
 744	 * bits.  We shouldn't modify the incoming data so take a
 745	 * copy.
 746	 */
 747	if (params->mask) {
 748		ret = regmap_read(component->regmap, params->base, &val);
 749		if (ret != 0)
 750			return ret;
 751
 752		val &= params->mask;
 753
 754		switch (component->val_bytes) {
 755		case 1:
 756			((u8 *)data)[0] &= ~params->mask;
 757			((u8 *)data)[0] |= val;
 758			break;
 759		case 2:
 760			mask = ~params->mask;
 761			ret = regmap_parse_val(component->regmap,
 762							&mask, &mask);
 763			if (ret != 0)
 764				return ret;
 765
 766			((u16 *)data)[0] &= mask;
 767
 768			ret = regmap_parse_val(component->regmap,
 769							&val, &val);
 770			if (ret != 0)
 771				return ret;
 772
 773			((u16 *)data)[0] |= val;
 774			break;
 775		case 4:
 776			mask = ~params->mask;
 777			ret = regmap_parse_val(component->regmap,
 778							&mask, &mask);
 779			if (ret != 0)
 780				return ret;
 781
 782			((u32 *)data)[0] &= mask;
 783
 784			ret = regmap_parse_val(component->regmap,
 785							&val, &val);
 786			if (ret != 0)
 787				return ret;
 788
 789			((u32 *)data)[0] |= val;
 790			break;
 791		default:
 792			return -EINVAL;
 
 793		}
 794	}
 795
 796	return regmap_raw_write(component->regmap, params->base, data, len);
 
 
 
 
 
 
 797}
 798EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
 799
 800int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
 801			struct snd_ctl_elem_info *ucontrol)
 802{
 803	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
 804
 805	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
 806	ucontrol->count = params->max;
 807
 808	return 0;
 809}
 810EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
 811
 812int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
 813				unsigned int size, unsigned int __user *tlv)
 814{
 815	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
 816	unsigned int count = size < params->max ? size : params->max;
 817	int ret = -ENXIO;
 818
 819	switch (op_flag) {
 820	case SNDRV_CTL_TLV_OP_READ:
 821		if (params->get)
 822			ret = params->get(kcontrol, tlv, count);
 823		break;
 824	case SNDRV_CTL_TLV_OP_WRITE:
 825		if (params->put)
 826			ret = params->put(kcontrol, tlv, count);
 827		break;
 828	}
 829	return ret;
 830}
 831EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
 832
 833/**
 834 * snd_soc_info_xr_sx - signed multi register info callback
 835 * @kcontrol: mreg control
 836 * @uinfo: control element information
 837 *
 838 * Callback to provide information of a control that can
 839 * span multiple codec registers which together
 840 * forms a single signed value in a MSB/LSB manner.
 841 *
 842 * Returns 0 for success.
 843 */
 844int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
 845	struct snd_ctl_elem_info *uinfo)
 846{
 847	struct soc_mreg_control *mc =
 848		(struct soc_mreg_control *)kcontrol->private_value;
 849	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 850	uinfo->count = 1;
 851	uinfo->value.integer.min = mc->min;
 852	uinfo->value.integer.max = mc->max;
 853
 854	return 0;
 855}
 856EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
 857
 858/**
 859 * snd_soc_get_xr_sx - signed multi register get callback
 860 * @kcontrol: mreg control
 861 * @ucontrol: control element information
 862 *
 863 * Callback to get the value of a control that can span
 864 * multiple codec registers which together forms a single
 865 * signed value in a MSB/LSB manner. The control supports
 866 * specifying total no of bits used to allow for bitfields
 867 * across the multiple codec registers.
 868 *
 869 * Returns 0 for success.
 870 */
 871int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
 872	struct snd_ctl_elem_value *ucontrol)
 873{
 874	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 875	struct soc_mreg_control *mc =
 876		(struct soc_mreg_control *)kcontrol->private_value;
 877	unsigned int regbase = mc->regbase;
 878	unsigned int regcount = mc->regcount;
 879	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
 880	unsigned int regwmask = (1UL<<regwshift)-1;
 881	unsigned int invert = mc->invert;
 882	unsigned long mask = (1UL<<mc->nbits)-1;
 883	long min = mc->min;
 884	long max = mc->max;
 885	long val = 0;
 
 886	unsigned int i;
 
 887
 888	for (i = 0; i < regcount; i++) {
 889		unsigned int regval = snd_soc_component_read(component, regbase+i);
 
 
 890		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
 891	}
 892	val &= mask;
 893	if (min < 0 && val > max)
 894		val |= ~mask;
 895	if (invert)
 896		val = max - val;
 897	ucontrol->value.integer.value[0] = val;
 898
 899	return 0;
 900}
 901EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
 902
 903/**
 904 * snd_soc_put_xr_sx - signed multi register get callback
 905 * @kcontrol: mreg control
 906 * @ucontrol: control element information
 907 *
 908 * Callback to set the value of a control that can span
 909 * multiple codec registers which together forms a single
 910 * signed value in a MSB/LSB manner. The control supports
 911 * specifying total no of bits used to allow for bitfields
 912 * across the multiple codec registers.
 913 *
 914 * Returns 0 for success.
 915 */
 916int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
 917	struct snd_ctl_elem_value *ucontrol)
 918{
 919	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 920	struct soc_mreg_control *mc =
 921		(struct soc_mreg_control *)kcontrol->private_value;
 922	unsigned int regbase = mc->regbase;
 923	unsigned int regcount = mc->regcount;
 924	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
 925	unsigned int regwmask = (1UL<<regwshift)-1;
 926	unsigned int invert = mc->invert;
 927	unsigned long mask = (1UL<<mc->nbits)-1;
 928	long max = mc->max;
 929	long val = ucontrol->value.integer.value[0];
 930	int ret = 0;
 931	unsigned int i;
 932
 933	if (val < mc->min || val > mc->max)
 934		return -EINVAL;
 935	if (invert)
 936		val = max - val;
 937	val &= mask;
 938	for (i = 0; i < regcount; i++) {
 939		unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
 940		unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
 941		int err = snd_soc_component_update_bits(component, regbase+i,
 942							regmask, regval);
 943		if (err < 0)
 944			return err;
 945		if (err > 0)
 946			ret = err;
 947	}
 948
 949	return ret;
 950}
 951EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
 952
 953/**
 954 * snd_soc_get_strobe - strobe get callback
 955 * @kcontrol: mixer control
 956 * @ucontrol: control element information
 957 *
 958 * Callback get the value of a strobe mixer control.
 959 *
 960 * Returns 0 for success.
 961 */
 962int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
 963	struct snd_ctl_elem_value *ucontrol)
 964{
 965	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 966	struct soc_mixer_control *mc =
 967		(struct soc_mixer_control *)kcontrol->private_value;
 968	unsigned int reg = mc->reg;
 969	unsigned int shift = mc->shift;
 970	unsigned int mask = 1 << shift;
 971	unsigned int invert = mc->invert != 0;
 972	unsigned int val;
 
 
 
 
 
 973
 974	val = snd_soc_component_read(component, reg);
 975	val &= mask;
 976
 977	if (shift != 0 && val != 0)
 978		val = val >> shift;
 979	ucontrol->value.enumerated.item[0] = val ^ invert;
 980
 981	return 0;
 982}
 983EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
 984
 985/**
 986 * snd_soc_put_strobe - strobe put callback
 987 * @kcontrol: mixer control
 988 * @ucontrol: control element information
 989 *
 990 * Callback strobe a register bit to high then low (or the inverse)
 991 * in one pass of a single mixer enum control.
 992 *
 993 * Returns 1 for success.
 994 */
 995int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
 996	struct snd_ctl_elem_value *ucontrol)
 997{
 998	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 999	struct soc_mixer_control *mc =
1000		(struct soc_mixer_control *)kcontrol->private_value;
1001	unsigned int reg = mc->reg;
1002	unsigned int shift = mc->shift;
1003	unsigned int mask = 1 << shift;
1004	unsigned int invert = mc->invert != 0;
1005	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
1006	unsigned int val1 = (strobe ^ invert) ? mask : 0;
1007	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
1008	int err;
1009
1010	err = snd_soc_component_update_bits(component, reg, mask, val1);
1011	if (err < 0)
1012		return err;
1013
1014	return snd_soc_component_update_bits(component, reg, mask, val2);
1015}
1016EXPORT_SYMBOL_GPL(snd_soc_put_strobe);