Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  linux/mm/swapfile.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 */
   7
 
   8#include <linux/mm.h>
   9#include <linux/sched/mm.h>
  10#include <linux/sched/task.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mman.h>
  13#include <linux/slab.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/swap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/pagemap.h>
  18#include <linux/namei.h>
  19#include <linux/shmem_fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/random.h>
  22#include <linux/writeback.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25#include <linux/init.h>
  26#include <linux/ksm.h>
  27#include <linux/rmap.h>
  28#include <linux/security.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mutex.h>
  31#include <linux/capability.h>
  32#include <linux/syscalls.h>
  33#include <linux/memcontrol.h>
  34#include <linux/poll.h>
  35#include <linux/oom.h>
  36#include <linux/frontswap.h>
  37#include <linux/swapfile.h>
  38#include <linux/export.h>
  39#include <linux/swap_slots.h>
  40#include <linux/sort.h>
 
 
 
 
  41
  42#include <asm/pgtable.h>
  43#include <asm/tlbflush.h>
  44#include <linux/swapops.h>
  45#include <linux/swap_cgroup.h>
 
 
  46
  47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  48				 unsigned char);
  49static void free_swap_count_continuations(struct swap_info_struct *);
  50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
 
 
 
 
 
 
 
 
  51
  52DEFINE_SPINLOCK(swap_lock);
  53static unsigned int nr_swapfiles;
  54atomic_long_t nr_swap_pages;
  55/*
  56 * Some modules use swappable objects and may try to swap them out under
  57 * memory pressure (via the shrinker). Before doing so, they may wish to
  58 * check to see if any swap space is available.
  59 */
  60EXPORT_SYMBOL_GPL(nr_swap_pages);
  61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  62long total_swap_pages;
  63static int least_priority = -1;
 
 
 
 
  64
  65static const char Bad_file[] = "Bad swap file entry ";
  66static const char Unused_file[] = "Unused swap file entry ";
  67static const char Bad_offset[] = "Bad swap offset entry ";
  68static const char Unused_offset[] = "Unused swap offset entry ";
  69
  70/*
  71 * all active swap_info_structs
  72 * protected with swap_lock, and ordered by priority.
  73 */
  74PLIST_HEAD(swap_active_head);
  75
  76/*
  77 * all available (active, not full) swap_info_structs
  78 * protected with swap_avail_lock, ordered by priority.
  79 * This is used by get_swap_page() instead of swap_active_head
  80 * because swap_active_head includes all swap_info_structs,
  81 * but get_swap_page() doesn't need to look at full ones.
  82 * This uses its own lock instead of swap_lock because when a
  83 * swap_info_struct changes between not-full/full, it needs to
  84 * add/remove itself to/from this list, but the swap_info_struct->lock
  85 * is held and the locking order requires swap_lock to be taken
  86 * before any swap_info_struct->lock.
  87 */
  88static struct plist_head *swap_avail_heads;
  89static DEFINE_SPINLOCK(swap_avail_lock);
  90
  91struct swap_info_struct *swap_info[MAX_SWAPFILES];
  92
  93static DEFINE_MUTEX(swapon_mutex);
  94
  95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  96/* Activity counter to indicate that a swapon or swapoff has occurred */
  97static atomic_t proc_poll_event = ATOMIC_INIT(0);
  98
  99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 100
 
 
 
 
 
 
 
 
 101static inline unsigned char swap_count(unsigned char ent)
 102{
 103	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104}
 105
 106/* returns 1 if swap entry is freed */
 107static int
 108__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
 
 
 
 
 109{
 110	swp_entry_t entry = swp_entry(si->type, offset);
 111	struct page *page;
 112	int ret = 0;
 
 
 
 113
 114	page = find_get_page(swap_address_space(entry), swp_offset(entry));
 115	if (!page)
 116		return 0;
 
 
 
 
 117	/*
 118	 * This function is called from scan_swap_map() and it's called
 119	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
 120	 * We have to use trylock for avoiding deadlock. This is a special
 121	 * case and you should use try_to_free_swap() with explicit lock_page()
 122	 * in usual operations.
 123	 */
 124	if (trylock_page(page)) {
 125		ret = try_to_free_swap(page);
 126		unlock_page(page);
 127	}
 128	put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129	return ret;
 130}
 131
 
 
 
 
 
 
 
 
 
 
 
 
 132/*
 133 * swapon tell device that all the old swap contents can be discarded,
 134 * to allow the swap device to optimize its wear-levelling.
 135 */
 136static int discard_swap(struct swap_info_struct *si)
 137{
 138	struct swap_extent *se;
 139	sector_t start_block;
 140	sector_t nr_blocks;
 141	int err = 0;
 142
 143	/* Do not discard the swap header page! */
 144	se = &si->first_swap_extent;
 145	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 146	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 147	if (nr_blocks) {
 148		err = blkdev_issue_discard(si->bdev, start_block,
 149				nr_blocks, GFP_KERNEL, 0);
 150		if (err)
 151			return err;
 152		cond_resched();
 153	}
 154
 155	list_for_each_entry(se, &si->first_swap_extent.list, list) {
 156		start_block = se->start_block << (PAGE_SHIFT - 9);
 157		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 158
 159		err = blkdev_issue_discard(si->bdev, start_block,
 160				nr_blocks, GFP_KERNEL, 0);
 161		if (err)
 162			break;
 163
 164		cond_resched();
 165	}
 166	return err;		/* That will often be -EOPNOTSUPP */
 167}
 168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169/*
 170 * swap allocation tell device that a cluster of swap can now be discarded,
 171 * to allow the swap device to optimize its wear-levelling.
 172 */
 173static void discard_swap_cluster(struct swap_info_struct *si,
 174				 pgoff_t start_page, pgoff_t nr_pages)
 175{
 176	struct swap_extent *se = si->curr_swap_extent;
 177	int found_extent = 0;
 178
 179	while (nr_pages) {
 180		if (se->start_page <= start_page &&
 181		    start_page < se->start_page + se->nr_pages) {
 182			pgoff_t offset = start_page - se->start_page;
 183			sector_t start_block = se->start_block + offset;
 184			sector_t nr_blocks = se->nr_pages - offset;
 185
 186			if (nr_blocks > nr_pages)
 187				nr_blocks = nr_pages;
 188			start_page += nr_blocks;
 189			nr_pages -= nr_blocks;
 190
 191			if (!found_extent++)
 192				si->curr_swap_extent = se;
 193
 194			start_block <<= PAGE_SHIFT - 9;
 195			nr_blocks <<= PAGE_SHIFT - 9;
 196			if (blkdev_issue_discard(si->bdev, start_block,
 197				    nr_blocks, GFP_NOIO, 0))
 198				break;
 199		}
 200
 201		se = list_next_entry(se, list);
 202	}
 203}
 204
 205#ifdef CONFIG_THP_SWAP
 206#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 
 
 207#else
 208#define SWAPFILE_CLUSTER	256
 
 
 
 
 
 
 209#endif
 210#define LATENCY_LIMIT		256
 211
 212static inline void cluster_set_flag(struct swap_cluster_info *info,
 213	unsigned int flag)
 214{
 215	info->flags = flag;
 216}
 217
 218static inline unsigned int cluster_count(struct swap_cluster_info *info)
 219{
 220	return info->data;
 221}
 222
 223static inline void cluster_set_count(struct swap_cluster_info *info,
 224				     unsigned int c)
 225{
 226	info->data = c;
 227}
 228
 229static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 230					 unsigned int c, unsigned int f)
 231{
 232	info->flags = f;
 233	info->data = c;
 234}
 235
 236static inline unsigned int cluster_next(struct swap_cluster_info *info)
 237{
 238	return info->data;
 239}
 240
 241static inline void cluster_set_next(struct swap_cluster_info *info,
 242				    unsigned int n)
 243{
 244	info->data = n;
 245}
 246
 247static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 248					 unsigned int n, unsigned int f)
 249{
 250	info->flags = f;
 251	info->data = n;
 252}
 253
 254static inline bool cluster_is_free(struct swap_cluster_info *info)
 255{
 256	return info->flags & CLUSTER_FLAG_FREE;
 257}
 258
 259static inline bool cluster_is_null(struct swap_cluster_info *info)
 
 260{
 261	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 262}
 263
 264static inline void cluster_set_null(struct swap_cluster_info *info)
 
 265{
 266	info->flags = CLUSTER_FLAG_NEXT_NULL;
 267	info->data = 0;
 268}
 269
 270static inline bool cluster_is_huge(struct swap_cluster_info *info)
 271{
 272	return info->flags & CLUSTER_FLAG_HUGE;
 273}
 274
 275static inline void cluster_clear_huge(struct swap_cluster_info *info)
 276{
 277	info->flags &= ~CLUSTER_FLAG_HUGE;
 278}
 279
 280static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 281						     unsigned long offset)
 282{
 283	struct swap_cluster_info *ci;
 284
 285	ci = si->cluster_info;
 286	if (ci) {
 287		ci += offset / SWAPFILE_CLUSTER;
 288		spin_lock(&ci->lock);
 289	}
 290	return ci;
 291}
 292
 293static inline void unlock_cluster(struct swap_cluster_info *ci)
 294{
 295	if (ci)
 296		spin_unlock(&ci->lock);
 297}
 298
 
 
 
 
 299static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 300	struct swap_info_struct *si,
 301	unsigned long offset)
 302{
 303	struct swap_cluster_info *ci;
 304
 
 305	ci = lock_cluster(si, offset);
 
 306	if (!ci)
 307		spin_lock(&si->lock);
 308
 309	return ci;
 310}
 311
 312static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 313					       struct swap_cluster_info *ci)
 314{
 315	if (ci)
 316		unlock_cluster(ci);
 317	else
 318		spin_unlock(&si->lock);
 319}
 320
 321static inline bool cluster_list_empty(struct swap_cluster_list *list)
 322{
 323	return cluster_is_null(&list->head);
 324}
 325
 326static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 327{
 328	return cluster_next(&list->head);
 329}
 330
 331static void cluster_list_init(struct swap_cluster_list *list)
 332{
 333	cluster_set_null(&list->head);
 334	cluster_set_null(&list->tail);
 335}
 336
 337static void cluster_list_add_tail(struct swap_cluster_list *list,
 338				  struct swap_cluster_info *ci,
 339				  unsigned int idx)
 340{
 341	if (cluster_list_empty(list)) {
 342		cluster_set_next_flag(&list->head, idx, 0);
 343		cluster_set_next_flag(&list->tail, idx, 0);
 344	} else {
 345		struct swap_cluster_info *ci_tail;
 346		unsigned int tail = cluster_next(&list->tail);
 347
 348		/*
 349		 * Nested cluster lock, but both cluster locks are
 350		 * only acquired when we held swap_info_struct->lock
 351		 */
 352		ci_tail = ci + tail;
 353		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 354		cluster_set_next(ci_tail, idx);
 355		spin_unlock(&ci_tail->lock);
 356		cluster_set_next_flag(&list->tail, idx, 0);
 357	}
 358}
 359
 360static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 361					   struct swap_cluster_info *ci)
 362{
 363	unsigned int idx;
 364
 365	idx = cluster_next(&list->head);
 366	if (cluster_next(&list->tail) == idx) {
 367		cluster_set_null(&list->head);
 368		cluster_set_null(&list->tail);
 369	} else
 370		cluster_set_next_flag(&list->head,
 371				      cluster_next(&ci[idx]), 0);
 372
 373	return idx;
 374}
 375
 376/* Add a cluster to discard list and schedule it to do discard */
 377static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 378		unsigned int idx)
 379{
 
 380	/*
 381	 * If scan_swap_map() can't find a free cluster, it will check
 382	 * si->swap_map directly. To make sure the discarding cluster isn't
 383	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 384	 * will be cleared after discard
 385	 */
 386	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 387			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 388
 389	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 390
 
 391	schedule_work(&si->discard_work);
 392}
 393
 394static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 395{
 396	struct swap_cluster_info *ci = si->cluster_info;
 
 397
 398	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 399	cluster_list_add_tail(&si->free_clusters, ci, idx);
 
 
 
 
 400}
 401
 402/*
 403 * Doing discard actually. After a cluster discard is finished, the cluster
 404 * will be added to free cluster list. caller should hold si->lock.
 405*/
 406static void swap_do_scheduled_discard(struct swap_info_struct *si)
 407{
 408	struct swap_cluster_info *info, *ci;
 409	unsigned int idx;
 410
 411	info = si->cluster_info;
 412
 413	while (!cluster_list_empty(&si->discard_clusters)) {
 414		idx = cluster_list_del_first(&si->discard_clusters, info);
 415		spin_unlock(&si->lock);
 416
 417		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 418				SWAPFILE_CLUSTER);
 419
 420		spin_lock(&si->lock);
 421		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 422		__free_cluster(si, idx);
 423		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 424				0, SWAPFILE_CLUSTER);
 425		unlock_cluster(ci);
 426	}
 427}
 428
 429static void swap_discard_work(struct work_struct *work)
 430{
 431	struct swap_info_struct *si;
 432
 433	si = container_of(work, struct swap_info_struct, discard_work);
 434
 435	spin_lock(&si->lock);
 436	swap_do_scheduled_discard(si);
 437	spin_unlock(&si->lock);
 438}
 439
 440static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 441{
 442	struct swap_cluster_info *ci = si->cluster_info;
 443
 444	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 445	cluster_list_del_first(&si->free_clusters, ci);
 446	cluster_set_count_flag(ci + idx, 0, 0);
 447}
 448
 449static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 450{
 451	struct swap_cluster_info *ci = si->cluster_info + idx;
 
 
 
 
 
 452
 453	VM_BUG_ON(cluster_count(ci) != 0);
 454	/*
 455	 * If the swap is discardable, prepare discard the cluster
 456	 * instead of free it immediately. The cluster will be freed
 457	 * after discard.
 458	 */
 459	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 460	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 461		swap_cluster_schedule_discard(si, idx);
 462		return;
 463	}
 464
 465	__free_cluster(si, idx);
 466}
 467
 468/*
 469 * The cluster corresponding to page_nr will be used. The cluster will be
 470 * removed from free cluster list and its usage counter will be increased.
 
 471 */
 472static void inc_cluster_info_page(struct swap_info_struct *p,
 473	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 474{
 475	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 
 476
 477	if (!cluster_info)
 478		return;
 479	if (cluster_is_free(&cluster_info[idx]))
 480		alloc_cluster(p, idx);
 481
 482	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 483	cluster_set_count(&cluster_info[idx],
 484		cluster_count(&cluster_info[idx]) + 1);
 
 
 485}
 486
 487/*
 488 * The cluster corresponding to page_nr decreases one usage. If the usage
 489 * counter becomes 0, which means no page in the cluster is in using, we can
 490 * optionally discard the cluster and add it to free cluster list.
 491 */
 492static void dec_cluster_info_page(struct swap_info_struct *p,
 493	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 494{
 495	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 
 496
 497	if (!cluster_info)
 
 
 
 
 
 
 
 498		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499
 500	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 501	cluster_set_count(&cluster_info[idx],
 502		cluster_count(&cluster_info[idx]) - 1);
 503
 504	if (cluster_count(&cluster_info[idx]) == 0)
 505		free_cluster(p, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506}
 507
 508/*
 509 * It's possible scan_swap_map() uses a free cluster in the middle of free
 510 * cluster list. Avoiding such abuse to avoid list corruption.
 511 */
 512static bool
 513scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 514	unsigned long offset)
 515{
 516	struct percpu_cluster *percpu_cluster;
 517	bool conflict;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518
 519	offset /= SWAPFILE_CLUSTER;
 520	conflict = !cluster_list_empty(&si->free_clusters) &&
 521		offset != cluster_list_first(&si->free_clusters) &&
 522		cluster_is_free(&si->cluster_info[offset]);
 523
 524	if (!conflict)
 
 
 
 
 
 
 
 
 
 525		return false;
 526
 527	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 528	cluster_set_null(&percpu_cluster->index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529	return true;
 530}
 531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532/*
 533 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 534 * might involve allocating a new cluster for current CPU too.
 
 535 */
 536static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 537	unsigned long *offset, unsigned long *scan_base)
 538{
 539	struct percpu_cluster *cluster;
 540	struct swap_cluster_info *ci;
 541	bool found_free;
 542	unsigned long tmp, max;
 543
 544new_cluster:
 
 545	cluster = this_cpu_ptr(si->percpu_cluster);
 546	if (cluster_is_null(&cluster->index)) {
 547		if (!cluster_list_empty(&si->free_clusters)) {
 548			cluster->index = si->free_clusters.head;
 549			cluster->next = cluster_next(&cluster->index) *
 550					SWAPFILE_CLUSTER;
 551		} else if (!cluster_list_empty(&si->discard_clusters)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552			/*
 553			 * we don't have free cluster but have some clusters in
 554			 * discarding, do discard now and reclaim them
 555			 */
 556			swap_do_scheduled_discard(si);
 557			*scan_base = *offset = si->cluster_next;
 558			goto new_cluster;
 559		} else
 560			return false;
 
 
 
 
 
 
 
 
 
 
 
 561	}
 562
 563	found_free = false;
 
 564
 565	/*
 566	 * Other CPUs can use our cluster if they can't find a free cluster,
 567	 * check if there is still free entry in the cluster
 568	 */
 569	tmp = cluster->next;
 570	max = min_t(unsigned long, si->max,
 571		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 572	if (tmp >= max) {
 573		cluster_set_null(&cluster->index);
 574		goto new_cluster;
 575	}
 576	ci = lock_cluster(si, tmp);
 577	while (tmp < max) {
 578		if (!si->swap_map[tmp]) {
 579			found_free = true;
 580			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581		}
 582		tmp++;
 583	}
 584	unlock_cluster(ci);
 585	if (!found_free) {
 586		cluster_set_null(&cluster->index);
 587		goto new_cluster;
 588	}
 589	cluster->next = tmp + 1;
 590	*offset = tmp;
 591	*scan_base = tmp;
 592	return found_free;
 593}
 594
 595static void __del_from_avail_list(struct swap_info_struct *p)
 596{
 597	int nid;
 598
 
 599	for_each_node(nid)
 600		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 601}
 602
 603static void del_from_avail_list(struct swap_info_struct *p)
 604{
 605	spin_lock(&swap_avail_lock);
 606	__del_from_avail_list(p);
 607	spin_unlock(&swap_avail_lock);
 608}
 609
 610static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 611			     unsigned int nr_entries)
 612{
 613	unsigned int end = offset + nr_entries - 1;
 614
 615	if (offset == si->lowest_bit)
 616		si->lowest_bit += nr_entries;
 617	if (end == si->highest_bit)
 618		si->highest_bit -= nr_entries;
 619	si->inuse_pages += nr_entries;
 620	if (si->inuse_pages == si->pages) {
 621		si->lowest_bit = si->max;
 622		si->highest_bit = 0;
 623		del_from_avail_list(si);
 
 
 
 624	}
 625}
 626
 627static void add_to_avail_list(struct swap_info_struct *p)
 628{
 629	int nid;
 630
 631	spin_lock(&swap_avail_lock);
 632	for_each_node(nid) {
 633		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
 634		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 635	}
 636	spin_unlock(&swap_avail_lock);
 637}
 638
 639static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 640			    unsigned int nr_entries)
 641{
 
 642	unsigned long end = offset + nr_entries - 1;
 643	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 
 
 
 
 
 
 
 
 644
 645	if (offset < si->lowest_bit)
 646		si->lowest_bit = offset;
 647	if (end > si->highest_bit) {
 648		bool was_full = !si->highest_bit;
 649
 650		si->highest_bit = end;
 651		if (was_full && (si->flags & SWP_WRITEOK))
 652			add_to_avail_list(si);
 653	}
 654	atomic_long_add(nr_entries, &nr_swap_pages);
 655	si->inuse_pages -= nr_entries;
 656	if (si->flags & SWP_BLKDEV)
 657		swap_slot_free_notify =
 658			si->bdev->bd_disk->fops->swap_slot_free_notify;
 659	else
 660		swap_slot_free_notify = NULL;
 661	while (offset <= end) {
 662		frontswap_invalidate_page(si->type, offset);
 663		if (swap_slot_free_notify)
 664			swap_slot_free_notify(si->bdev, offset);
 665		offset++;
 666	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667}
 668
 669static int scan_swap_map_slots(struct swap_info_struct *si,
 670			       unsigned char usage, int nr,
 671			       swp_entry_t slots[])
 672{
 673	struct swap_cluster_info *ci;
 674	unsigned long offset;
 675	unsigned long scan_base;
 676	unsigned long last_in_cluster = 0;
 677	int latency_ration = LATENCY_LIMIT;
 
 678	int n_ret = 0;
 679
 680	if (nr > SWAP_BATCH)
 681		nr = SWAP_BATCH;
 682
 683	/*
 684	 * We try to cluster swap pages by allocating them sequentially
 685	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 686	 * way, however, we resort to first-free allocation, starting
 687	 * a new cluster.  This prevents us from scattering swap pages
 688	 * all over the entire swap partition, so that we reduce
 689	 * overall disk seek times between swap pages.  -- sct
 690	 * But we do now try to find an empty cluster.  -Andrea
 691	 * And we let swap pages go all over an SSD partition.  Hugh
 692	 */
 693
 694	si->flags += SWP_SCANNING;
 695	scan_base = offset = si->cluster_next;
 
 
 
 
 
 
 
 
 696
 697	/* SSD algorithm */
 698	if (si->cluster_info) {
 699		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 700			goto checks;
 701		else
 702			goto scan;
 703	}
 704
 
 
 
 
 
 
 
 
 
 705	if (unlikely(!si->cluster_nr--)) {
 706		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 707			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 708			goto checks;
 709		}
 710
 711		spin_unlock(&si->lock);
 712
 713		/*
 714		 * If seek is expensive, start searching for new cluster from
 715		 * start of partition, to minimize the span of allocated swap.
 716		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 717		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 718		 */
 719		scan_base = offset = si->lowest_bit;
 720		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 721
 722		/* Locate the first empty (unaligned) cluster */
 723		for (; last_in_cluster <= si->highest_bit; offset++) {
 724			if (si->swap_map[offset])
 725				last_in_cluster = offset + SWAPFILE_CLUSTER;
 726			else if (offset == last_in_cluster) {
 727				spin_lock(&si->lock);
 728				offset -= SWAPFILE_CLUSTER - 1;
 729				si->cluster_next = offset;
 730				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 731				goto checks;
 732			}
 733			if (unlikely(--latency_ration < 0)) {
 734				cond_resched();
 735				latency_ration = LATENCY_LIMIT;
 736			}
 737		}
 738
 739		offset = scan_base;
 740		spin_lock(&si->lock);
 741		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 742	}
 743
 744checks:
 745	if (si->cluster_info) {
 746		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 747		/* take a break if we already got some slots */
 748			if (n_ret)
 749				goto done;
 750			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 751							&scan_base))
 752				goto scan;
 753		}
 754	}
 755	if (!(si->flags & SWP_WRITEOK))
 756		goto no_page;
 757	if (!si->highest_bit)
 758		goto no_page;
 759	if (offset > si->highest_bit)
 760		scan_base = offset = si->lowest_bit;
 761
 762	ci = lock_cluster(si, offset);
 763	/* reuse swap entry of cache-only swap if not busy. */
 764	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 765		int swap_was_freed;
 766		unlock_cluster(ci);
 767		spin_unlock(&si->lock);
 768		swap_was_freed = __try_to_reclaim_swap(si, offset);
 769		spin_lock(&si->lock);
 770		/* entry was freed successfully, try to use this again */
 771		if (swap_was_freed)
 772			goto checks;
 773		goto scan; /* check next one */
 774	}
 775
 776	if (si->swap_map[offset]) {
 777		unlock_cluster(ci);
 778		if (!n_ret)
 779			goto scan;
 780		else
 781			goto done;
 782	}
 783	si->swap_map[offset] = usage;
 784	inc_cluster_info_page(si, si->cluster_info, offset);
 785	unlock_cluster(ci);
 786
 787	swap_range_alloc(si, offset, 1);
 788	si->cluster_next = offset + 1;
 789	slots[n_ret++] = swp_entry(si->type, offset);
 790
 791	/* got enough slots or reach max slots? */
 792	if ((n_ret == nr) || (offset >= si->highest_bit))
 793		goto done;
 794
 795	/* search for next available slot */
 796
 797	/* time to take a break? */
 798	if (unlikely(--latency_ration < 0)) {
 799		if (n_ret)
 800			goto done;
 801		spin_unlock(&si->lock);
 802		cond_resched();
 803		spin_lock(&si->lock);
 804		latency_ration = LATENCY_LIMIT;
 805	}
 806
 807	/* try to get more slots in cluster */
 808	if (si->cluster_info) {
 809		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 810			goto checks;
 811		else
 812			goto done;
 813	}
 814	/* non-ssd case */
 815	++offset;
 816
 817	/* non-ssd case, still more slots in cluster? */
 818	if (si->cluster_nr && !si->swap_map[offset]) {
 819		--si->cluster_nr;
 820		goto checks;
 821	}
 822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823done:
 
 
 824	si->flags -= SWP_SCANNING;
 825	return n_ret;
 826
 827scan:
 
 828	spin_unlock(&si->lock);
 829	while (++offset <= si->highest_bit) {
 830		if (!si->swap_map[offset]) {
 831			spin_lock(&si->lock);
 832			goto checks;
 833		}
 834		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 835			spin_lock(&si->lock);
 836			goto checks;
 837		}
 838		if (unlikely(--latency_ration < 0)) {
 839			cond_resched();
 840			latency_ration = LATENCY_LIMIT;
 
 841		}
 
 
 842	}
 843	offset = si->lowest_bit;
 844	while (offset < scan_base) {
 845		if (!si->swap_map[offset]) {
 846			spin_lock(&si->lock);
 847			goto checks;
 848		}
 849		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 850			spin_lock(&si->lock);
 851			goto checks;
 852		}
 853		if (unlikely(--latency_ration < 0)) {
 854			cond_resched();
 855			latency_ration = LATENCY_LIMIT;
 
 856		}
 
 
 857		offset++;
 858	}
 859	spin_lock(&si->lock);
 860
 861no_page:
 862	si->flags -= SWP_SCANNING;
 863	return n_ret;
 864}
 865
 866#ifdef CONFIG_THP_SWAP
 867static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 868{
 869	unsigned long idx;
 870	struct swap_cluster_info *ci;
 871	unsigned long offset, i;
 872	unsigned char *map;
 873
 874	if (cluster_list_empty(&si->free_clusters))
 875		return 0;
 876
 877	idx = cluster_list_first(&si->free_clusters);
 878	offset = idx * SWAPFILE_CLUSTER;
 879	ci = lock_cluster(si, offset);
 880	alloc_cluster(si, idx);
 881	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
 882
 883	map = si->swap_map + offset;
 884	for (i = 0; i < SWAPFILE_CLUSTER; i++)
 885		map[i] = SWAP_HAS_CACHE;
 886	unlock_cluster(ci);
 887	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
 888	*slot = swp_entry(si->type, offset);
 889
 890	return 1;
 891}
 892
 893static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
 894{
 895	unsigned long offset = idx * SWAPFILE_CLUSTER;
 896	struct swap_cluster_info *ci;
 897
 898	ci = lock_cluster(si, offset);
 899	cluster_set_count_flag(ci, 0, 0);
 900	free_cluster(si, idx);
 901	unlock_cluster(ci);
 902	swap_range_free(si, offset, SWAPFILE_CLUSTER);
 903}
 904#else
 905static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 906{
 907	VM_WARN_ON_ONCE(1);
 908	return 0;
 909}
 910#endif /* CONFIG_THP_SWAP */
 911
 912static unsigned long scan_swap_map(struct swap_info_struct *si,
 913				   unsigned char usage)
 914{
 915	swp_entry_t entry;
 916	int n_ret;
 917
 918	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
 919
 920	if (n_ret)
 921		return swp_offset(entry);
 922	else
 923		return 0;
 924
 925}
 926
 927int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
 928{
 929	unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
 
 930	struct swap_info_struct *si, *next;
 931	long avail_pgs;
 932	int n_ret = 0;
 933	int node;
 934
 935	/* Only single cluster request supported */
 936	WARN_ON_ONCE(n_goal > 1 && cluster);
 937
 938	avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
 939	if (avail_pgs <= 0)
 
 940		goto noswap;
 
 941
 942	if (n_goal > SWAP_BATCH)
 943		n_goal = SWAP_BATCH;
 944
 945	if (n_goal > avail_pgs)
 946		n_goal = avail_pgs;
 947
 948	atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
 949
 950	spin_lock(&swap_avail_lock);
 951
 952start_over:
 953	node = numa_node_id();
 954	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
 955		/* requeue si to after same-priority siblings */
 956		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
 957		spin_unlock(&swap_avail_lock);
 958		spin_lock(&si->lock);
 959		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
 960			spin_lock(&swap_avail_lock);
 961			if (plist_node_empty(&si->avail_lists[node])) {
 962				spin_unlock(&si->lock);
 963				goto nextsi;
 964			}
 965			WARN(!si->highest_bit,
 966			     "swap_info %d in list but !highest_bit\n",
 967			     si->type);
 968			WARN(!(si->flags & SWP_WRITEOK),
 969			     "swap_info %d in list but !SWP_WRITEOK\n",
 970			     si->type);
 971			__del_from_avail_list(si);
 972			spin_unlock(&si->lock);
 973			goto nextsi;
 974		}
 975		if (cluster) {
 976			if (!(si->flags & SWP_FILE))
 977				n_ret = swap_alloc_cluster(si, swp_entries);
 978		} else
 979			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
 980						    n_goal, swp_entries);
 981		spin_unlock(&si->lock);
 982		if (n_ret || cluster)
 983			goto check_out;
 984		pr_debug("scan_swap_map of si %d failed to find offset\n",
 985			si->type);
 986
 987		spin_lock(&swap_avail_lock);
 988nextsi:
 989		/*
 990		 * if we got here, it's likely that si was almost full before,
 991		 * and since scan_swap_map() can drop the si->lock, multiple
 992		 * callers probably all tried to get a page from the same si
 993		 * and it filled up before we could get one; or, the si filled
 994		 * up between us dropping swap_avail_lock and taking si->lock.
 995		 * Since we dropped the swap_avail_lock, the swap_avail_head
 996		 * list may have been modified; so if next is still in the
 997		 * swap_avail_head list then try it, otherwise start over
 998		 * if we have not gotten any slots.
 999		 */
1000		if (plist_node_empty(&next->avail_lists[node]))
1001			goto start_over;
1002	}
1003
1004	spin_unlock(&swap_avail_lock);
1005
1006check_out:
1007	if (n_ret < n_goal)
1008		atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1009				&nr_swap_pages);
1010noswap:
1011	return n_ret;
1012}
1013
1014/* The only caller of this function is now suspend routine */
1015swp_entry_t get_swap_page_of_type(int type)
1016{
1017	struct swap_info_struct *si;
1018	pgoff_t offset;
1019
1020	si = swap_info[type];
1021	spin_lock(&si->lock);
1022	if (si && (si->flags & SWP_WRITEOK)) {
1023		atomic_long_dec(&nr_swap_pages);
1024		/* This is called for allocating swap entry, not cache */
1025		offset = scan_swap_map(si, 1);
1026		if (offset) {
1027			spin_unlock(&si->lock);
1028			return swp_entry(type, offset);
1029		}
1030		atomic_long_inc(&nr_swap_pages);
1031	}
1032	spin_unlock(&si->lock);
1033	return (swp_entry_t) {0};
1034}
1035
1036static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1037{
1038	struct swap_info_struct *p;
1039	unsigned long offset, type;
1040
1041	if (!entry.val)
1042		goto out;
1043	type = swp_type(entry);
1044	if (type >= nr_swapfiles)
1045		goto bad_nofile;
1046	p = swap_info[type];
1047	if (!(p->flags & SWP_USED))
1048		goto bad_device;
1049	offset = swp_offset(entry);
1050	if (offset >= p->max)
1051		goto bad_offset;
1052	return p;
 
 
1053
 
 
 
1054bad_offset:
1055	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1056	goto out;
1057bad_device:
1058	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1059	goto out;
1060bad_nofile:
1061	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1062out:
1063	return NULL;
1064}
1065
1066static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1067{
1068	struct swap_info_struct *p;
1069
1070	p = __swap_info_get(entry);
1071	if (!p)
1072		goto out;
1073	if (!p->swap_map[swp_offset(entry)])
1074		goto bad_free;
1075	return p;
1076
1077bad_free:
1078	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1079	goto out;
1080out:
1081	return NULL;
1082}
1083
1084static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1085{
1086	struct swap_info_struct *p;
1087
1088	p = _swap_info_get(entry);
1089	if (p)
1090		spin_lock(&p->lock);
1091	return p;
1092}
1093
1094static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1095					struct swap_info_struct *q)
1096{
1097	struct swap_info_struct *p;
1098
1099	p = _swap_info_get(entry);
1100
1101	if (p != q) {
1102		if (q != NULL)
1103			spin_unlock(&q->lock);
1104		if (p != NULL)
1105			spin_lock(&p->lock);
1106	}
1107	return p;
1108}
1109
1110static unsigned char __swap_entry_free(struct swap_info_struct *p,
1111				       swp_entry_t entry, unsigned char usage)
 
1112{
1113	struct swap_cluster_info *ci;
1114	unsigned long offset = swp_offset(entry);
1115	unsigned char count;
1116	unsigned char has_cache;
1117
1118	ci = lock_cluster_or_swap_info(p, offset);
1119
1120	count = p->swap_map[offset];
1121
1122	has_cache = count & SWAP_HAS_CACHE;
1123	count &= ~SWAP_HAS_CACHE;
1124
1125	if (usage == SWAP_HAS_CACHE) {
1126		VM_BUG_ON(!has_cache);
1127		has_cache = 0;
1128	} else if (count == SWAP_MAP_SHMEM) {
1129		/*
1130		 * Or we could insist on shmem.c using a special
1131		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1132		 */
1133		count = 0;
1134	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1135		if (count == COUNT_CONTINUED) {
1136			if (swap_count_continued(p, offset, count))
1137				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1138			else
1139				count = SWAP_MAP_MAX;
1140		} else
1141			count--;
1142	}
1143
1144	usage = count | has_cache;
1145	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1146
1147	unlock_cluster_or_swap_info(p, ci);
 
1148
1149	return usage;
1150}
1151
1152static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1153{
1154	struct swap_cluster_info *ci;
1155	unsigned long offset = swp_offset(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156	unsigned char count;
 
1157
1158	ci = lock_cluster(p, offset);
1159	count = p->swap_map[offset];
1160	VM_BUG_ON(count != SWAP_HAS_CACHE);
1161	p->swap_map[offset] = 0;
1162	dec_cluster_info_page(p, p->cluster_info, offset);
1163	unlock_cluster(ci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164
1165	mem_cgroup_uncharge_swap(entry, 1);
1166	swap_range_free(p, offset, 1);
 
 
 
 
 
 
 
 
 
1167}
1168
1169/*
1170 * Caller has made sure that the swap device corresponding to entry
1171 * is still around or has not been recycled.
1172 */
1173void swap_free(swp_entry_t entry)
 
1174{
1175	struct swap_info_struct *p;
 
 
 
1176
1177	p = _swap_info_get(entry);
1178	if (p) {
1179		if (!__swap_entry_free(p, entry, 1))
1180			free_swap_slot(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1181	}
 
1182}
1183
1184/*
1185 * Called after dropping swapcache to decrease refcnt to swap entries.
 
1186 */
1187static void swapcache_free(swp_entry_t entry)
1188{
1189	struct swap_info_struct *p;
 
 
1190
1191	p = _swap_info_get(entry);
1192	if (p) {
1193		if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1194			free_swap_slot(entry);
 
 
 
 
 
1195	}
1196}
1197
1198#ifdef CONFIG_THP_SWAP
1199static void swapcache_free_cluster(swp_entry_t entry)
 
 
1200{
1201	unsigned long offset = swp_offset(entry);
1202	unsigned long idx = offset / SWAPFILE_CLUSTER;
1203	struct swap_cluster_info *ci;
1204	struct swap_info_struct *si;
1205	unsigned char *map;
1206	unsigned int i, free_entries = 0;
1207	unsigned char val;
1208
1209	si = _swap_info_get(entry);
1210	if (!si)
1211		return;
1212
1213	ci = lock_cluster(si, offset);
1214	VM_BUG_ON(!cluster_is_huge(ci));
1215	map = si->swap_map + offset;
1216	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1217		val = map[i];
1218		VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1219		if (val == SWAP_HAS_CACHE)
1220			free_entries++;
1221	}
1222	if (!free_entries) {
1223		for (i = 0; i < SWAPFILE_CLUSTER; i++)
1224			map[i] &= ~SWAP_HAS_CACHE;
1225	}
1226	cluster_clear_huge(ci);
1227	unlock_cluster(ci);
1228	if (free_entries == SWAPFILE_CLUSTER) {
1229		spin_lock(&si->lock);
1230		ci = lock_cluster(si, offset);
1231		memset(map, 0, SWAPFILE_CLUSTER);
1232		unlock_cluster(ci);
1233		mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1234		swap_free_cluster(si, idx);
1235		spin_unlock(&si->lock);
1236	} else if (free_entries) {
1237		for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1238			if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1239				free_swap_slot(entry);
 
 
 
 
 
1240		}
1241	}
1242}
1243
1244int split_swap_cluster(swp_entry_t entry)
1245{
1246	struct swap_info_struct *si;
1247	struct swap_cluster_info *ci;
1248	unsigned long offset = swp_offset(entry);
1249
1250	si = _swap_info_get(entry);
1251	if (!si)
1252		return -EBUSY;
1253	ci = lock_cluster(si, offset);
1254	cluster_clear_huge(ci);
1255	unlock_cluster(ci);
1256	return 0;
1257}
1258#else
1259static inline void swapcache_free_cluster(swp_entry_t entry)
1260{
1261}
1262#endif /* CONFIG_THP_SWAP */
1263
1264void put_swap_page(struct page *page, swp_entry_t entry)
1265{
1266	if (!PageTransHuge(page))
1267		swapcache_free(entry);
1268	else
1269		swapcache_free_cluster(entry);
1270}
1271
1272static int swp_entry_cmp(const void *ent1, const void *ent2)
1273{
1274	const swp_entry_t *e1 = ent1, *e2 = ent2;
1275
1276	return (int)swp_type(*e1) - (int)swp_type(*e2);
1277}
1278
1279void swapcache_free_entries(swp_entry_t *entries, int n)
1280{
1281	struct swap_info_struct *p, *prev;
1282	int i;
1283
1284	if (n <= 0)
1285		return;
1286
1287	prev = NULL;
1288	p = NULL;
1289
1290	/*
1291	 * Sort swap entries by swap device, so each lock is only taken once.
1292	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1293	 * so low that it isn't necessary to optimize further.
1294	 */
1295	if (nr_swapfiles > 1)
1296		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1297	for (i = 0; i < n; ++i) {
1298		p = swap_info_get_cont(entries[i], prev);
1299		if (p)
1300			swap_entry_free(p, entries[i]);
1301		prev = p;
1302	}
1303	if (p)
1304		spin_unlock(&p->lock);
1305}
1306
1307/*
1308 * How many references to page are currently swapped out?
1309 * This does not give an exact answer when swap count is continued,
1310 * but does include the high COUNT_CONTINUED flag to allow for that.
1311 */
1312int page_swapcount(struct page *page)
1313{
1314	int count = 0;
1315	struct swap_info_struct *p;
1316	struct swap_cluster_info *ci;
1317	swp_entry_t entry;
1318	unsigned long offset;
1319
1320	entry.val = page_private(page);
1321	p = _swap_info_get(entry);
1322	if (p) {
1323		offset = swp_offset(entry);
1324		ci = lock_cluster_or_swap_info(p, offset);
1325		count = swap_count(p->swap_map[offset]);
1326		unlock_cluster_or_swap_info(p, ci);
1327	}
1328	return count;
1329}
1330
1331int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1332{
 
1333	pgoff_t offset = swp_offset(entry);
1334
1335	return swap_count(si->swap_map[offset]);
1336}
1337
1338static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1339{
1340	int count = 0;
1341	pgoff_t offset = swp_offset(entry);
1342	struct swap_cluster_info *ci;
1343
1344	ci = lock_cluster_or_swap_info(si, offset);
1345	count = swap_count(si->swap_map[offset]);
1346	unlock_cluster_or_swap_info(si, ci);
1347	return count;
1348}
1349
1350/*
1351 * How many references to @entry are currently swapped out?
1352 * This does not give an exact answer when swap count is continued,
1353 * but does include the high COUNT_CONTINUED flag to allow for that.
1354 */
1355int __swp_swapcount(swp_entry_t entry)
1356{
1357	int count = 0;
1358	struct swap_info_struct *si;
 
1359
1360	si = __swap_info_get(entry);
1361	if (si)
1362		count = swap_swapcount(si, entry);
1363	return count;
1364}
1365
1366/*
1367 * How many references to @entry are currently swapped out?
1368 * This considers COUNT_CONTINUED so it returns exact answer.
1369 */
1370int swp_swapcount(swp_entry_t entry)
1371{
1372	int count, tmp_count, n;
1373	struct swap_info_struct *p;
1374	struct swap_cluster_info *ci;
1375	struct page *page;
1376	pgoff_t offset;
1377	unsigned char *map;
1378
1379	p = _swap_info_get(entry);
1380	if (!p)
1381		return 0;
1382
1383	offset = swp_offset(entry);
1384
1385	ci = lock_cluster_or_swap_info(p, offset);
1386
1387	count = swap_count(p->swap_map[offset]);
1388	if (!(count & COUNT_CONTINUED))
1389		goto out;
1390
1391	count &= ~COUNT_CONTINUED;
1392	n = SWAP_MAP_MAX + 1;
1393
1394	page = vmalloc_to_page(p->swap_map + offset);
1395	offset &= ~PAGE_MASK;
1396	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1397
1398	do {
1399		page = list_next_entry(page, lru);
1400		map = kmap_atomic(page);
1401		tmp_count = map[offset];
1402		kunmap_atomic(map);
1403
1404		count += (tmp_count & ~COUNT_CONTINUED) * n;
1405		n *= (SWAP_CONT_MAX + 1);
1406	} while (tmp_count & COUNT_CONTINUED);
1407out:
1408	unlock_cluster_or_swap_info(p, ci);
1409	return count;
1410}
1411
1412#ifdef CONFIG_THP_SWAP
1413static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1414					 swp_entry_t entry)
1415{
1416	struct swap_cluster_info *ci;
1417	unsigned char *map = si->swap_map;
 
1418	unsigned long roffset = swp_offset(entry);
1419	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1420	int i;
1421	bool ret = false;
1422
1423	ci = lock_cluster_or_swap_info(si, offset);
1424	if (!ci || !cluster_is_huge(ci)) {
1425		if (map[roffset] != SWAP_HAS_CACHE)
1426			ret = true;
1427		goto unlock_out;
1428	}
1429	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1430		if (map[offset + i] != SWAP_HAS_CACHE) {
1431			ret = true;
1432			break;
1433		}
1434	}
1435unlock_out:
1436	unlock_cluster_or_swap_info(si, ci);
1437	return ret;
1438}
1439
1440static bool page_swapped(struct page *page)
1441{
1442	swp_entry_t entry;
1443	struct swap_info_struct *si;
1444
1445	if (likely(!PageTransCompound(page)))
1446		return page_swapcount(page) != 0;
1447
1448	page = compound_head(page);
1449	entry.val = page_private(page);
1450	si = _swap_info_get(entry);
1451	if (si)
1452		return swap_page_trans_huge_swapped(si, entry);
1453	return false;
1454}
1455
1456static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1457					 int *total_swapcount)
1458{
1459	int i, map_swapcount, _total_mapcount, _total_swapcount;
1460	unsigned long offset = 0;
1461	struct swap_info_struct *si;
1462	struct swap_cluster_info *ci = NULL;
1463	unsigned char *map = NULL;
1464	int mapcount, swapcount = 0;
1465
1466	/* hugetlbfs shouldn't call it */
1467	VM_BUG_ON_PAGE(PageHuge(page), page);
1468
1469	if (likely(!PageTransCompound(page))) {
1470		mapcount = atomic_read(&page->_mapcount) + 1;
1471		if (total_mapcount)
1472			*total_mapcount = mapcount;
1473		if (PageSwapCache(page))
1474			swapcount = page_swapcount(page);
1475		if (total_swapcount)
1476			*total_swapcount = swapcount;
1477		return mapcount + swapcount;
1478	}
1479
1480	page = compound_head(page);
1481
1482	_total_mapcount = _total_swapcount = map_swapcount = 0;
1483	if (PageSwapCache(page)) {
1484		swp_entry_t entry;
1485
1486		entry.val = page_private(page);
1487		si = _swap_info_get(entry);
1488		if (si) {
1489			map = si->swap_map;
1490			offset = swp_offset(entry);
1491		}
1492	}
1493	if (map)
1494		ci = lock_cluster(si, offset);
1495	for (i = 0; i < HPAGE_PMD_NR; i++) {
1496		mapcount = atomic_read(&page[i]._mapcount) + 1;
1497		_total_mapcount += mapcount;
1498		if (map) {
1499			swapcount = swap_count(map[offset + i]);
1500			_total_swapcount += swapcount;
1501		}
1502		map_swapcount = max(map_swapcount, mapcount + swapcount);
1503	}
1504	unlock_cluster(ci);
1505	if (PageDoubleMap(page)) {
1506		map_swapcount -= 1;
1507		_total_mapcount -= HPAGE_PMD_NR;
1508	}
1509	mapcount = compound_mapcount(page);
1510	map_swapcount += mapcount;
1511	_total_mapcount += mapcount;
1512	if (total_mapcount)
1513		*total_mapcount = _total_mapcount;
1514	if (total_swapcount)
1515		*total_swapcount = _total_swapcount;
1516
1517	return map_swapcount;
1518}
1519#else
1520#define swap_page_trans_huge_swapped(si, entry)	swap_swapcount(si, entry)
1521#define page_swapped(page)			(page_swapcount(page) != 0)
1522
1523static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1524					 int *total_swapcount)
1525{
1526	int mapcount, swapcount = 0;
1527
1528	/* hugetlbfs shouldn't call it */
1529	VM_BUG_ON_PAGE(PageHuge(page), page);
1530
1531	mapcount = page_trans_huge_mapcount(page, total_mapcount);
1532	if (PageSwapCache(page))
1533		swapcount = page_swapcount(page);
1534	if (total_swapcount)
1535		*total_swapcount = swapcount;
1536	return mapcount + swapcount;
1537}
1538#endif
1539
1540/*
1541 * We can write to an anon page without COW if there are no other references
1542 * to it.  And as a side-effect, free up its swap: because the old content
1543 * on disk will never be read, and seeking back there to write new content
1544 * later would only waste time away from clustering.
1545 *
1546 * NOTE: total_map_swapcount should not be relied upon by the caller if
1547 * reuse_swap_page() returns false, but it may be always overwritten
1548 * (see the other implementation for CONFIG_SWAP=n).
1549 */
1550bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1551{
1552	int count, total_mapcount, total_swapcount;
 
1553
1554	VM_BUG_ON_PAGE(!PageLocked(page), page);
1555	if (unlikely(PageKsm(page)))
1556		return false;
1557	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1558					      &total_swapcount);
1559	if (total_map_swapcount)
1560		*total_map_swapcount = total_mapcount + total_swapcount;
1561	if (count == 1 && PageSwapCache(page) &&
1562	    (likely(!PageTransCompound(page)) ||
1563	     /* The remaining swap count will be freed soon */
1564	     total_swapcount == page_swapcount(page))) {
1565		if (!PageWriteback(page)) {
1566			page = compound_head(page);
1567			delete_from_swap_cache(page);
1568			SetPageDirty(page);
1569		} else {
1570			swp_entry_t entry;
1571			struct swap_info_struct *p;
1572
1573			entry.val = page_private(page);
1574			p = swap_info_get(entry);
1575			if (p->flags & SWP_STABLE_WRITES) {
1576				spin_unlock(&p->lock);
1577				return false;
1578			}
1579			spin_unlock(&p->lock);
1580		}
1581	}
1582
1583	return count <= 1;
1584}
1585
1586/*
1587 * If swap is getting full, or if there are no more mappings of this page,
1588 * then try_to_free_swap is called to free its swap space.
1589 */
1590int try_to_free_swap(struct page *page)
1591{
1592	VM_BUG_ON_PAGE(!PageLocked(page), page);
1593
1594	if (!PageSwapCache(page))
1595		return 0;
1596	if (PageWriteback(page))
1597		return 0;
1598	if (page_swapped(page))
1599		return 0;
1600
1601	/*
1602	 * Once hibernation has begun to create its image of memory,
1603	 * there's a danger that one of the calls to try_to_free_swap()
1604	 * - most probably a call from __try_to_reclaim_swap() while
1605	 * hibernation is allocating its own swap pages for the image,
1606	 * but conceivably even a call from memory reclaim - will free
1607	 * the swap from a page which has already been recorded in the
1608	 * image as a clean swapcache page, and then reuse its swap for
1609	 * another page of the image.  On waking from hibernation, the
1610	 * original page might be freed under memory pressure, then
1611	 * later read back in from swap, now with the wrong data.
1612	 *
1613	 * Hibernation suspends storage while it is writing the image
1614	 * to disk so check that here.
1615	 */
1616	if (pm_suspended_storage())
1617		return 0;
1618
1619	page = compound_head(page);
1620	delete_from_swap_cache(page);
1621	SetPageDirty(page);
1622	return 1;
1623}
1624
1625/*
1626 * Free the swap entry like above, but also try to
1627 * free the page cache entry if it is the last user.
 
 
 
 
 
1628 */
1629int free_swap_and_cache(swp_entry_t entry)
1630{
1631	struct swap_info_struct *p;
1632	struct page *page = NULL;
1633	unsigned char count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634
1635	if (non_swap_entry(entry))
1636		return 1;
1637
1638	p = _swap_info_get(entry);
1639	if (p) {
1640		count = __swap_entry_free(p, entry, 1);
1641		if (count == SWAP_HAS_CACHE &&
1642		    !swap_page_trans_huge_swapped(p, entry)) {
1643			page = find_get_page(swap_address_space(entry),
1644					     swp_offset(entry));
1645			if (page && !trylock_page(page)) {
1646				put_page(page);
1647				page = NULL;
1648			}
1649		} else if (!count)
1650			free_swap_slot(entry);
1651	}
1652	if (page) {
1653		/*
1654		 * Not mapped elsewhere, or swap space full? Free it!
1655		 * Also recheck PageSwapCache now page is locked (above).
1656		 */
1657		if (PageSwapCache(page) && !PageWriteback(page) &&
1658		    (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1659		    !swap_page_trans_huge_swapped(p, entry)) {
1660			page = compound_head(page);
1661			delete_from_swap_cache(page);
1662			SetPageDirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663		}
1664		unlock_page(page);
1665		put_page(page);
1666	}
1667	return p != NULL;
 
 
1668}
1669
1670#ifdef CONFIG_HIBERNATION
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671/*
1672 * Find the swap type that corresponds to given device (if any).
1673 *
1674 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1675 * from 0, in which the swap header is expected to be located.
1676 *
1677 * This is needed for the suspend to disk (aka swsusp).
1678 */
1679int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1680{
1681	struct block_device *bdev = NULL;
1682	int type;
1683
1684	if (device)
1685		bdev = bdget(device);
1686
1687	spin_lock(&swap_lock);
1688	for (type = 0; type < nr_swapfiles; type++) {
1689		struct swap_info_struct *sis = swap_info[type];
1690
1691		if (!(sis->flags & SWP_WRITEOK))
1692			continue;
1693
1694		if (!bdev) {
1695			if (bdev_p)
1696				*bdev_p = bdgrab(sis->bdev);
1697
1698			spin_unlock(&swap_lock);
1699			return type;
1700		}
1701		if (bdev == sis->bdev) {
1702			struct swap_extent *se = &sis->first_swap_extent;
1703
1704			if (se->start_block == offset) {
1705				if (bdev_p)
1706					*bdev_p = bdgrab(sis->bdev);
1707
1708				spin_unlock(&swap_lock);
1709				bdput(bdev);
1710				return type;
1711			}
1712		}
1713	}
1714	spin_unlock(&swap_lock);
1715	if (bdev)
1716		bdput(bdev);
 
 
 
 
1717
 
 
 
 
 
 
 
 
 
 
 
1718	return -ENODEV;
1719}
1720
1721/*
1722 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1723 * corresponding to given index in swap_info (swap type).
1724 */
1725sector_t swapdev_block(int type, pgoff_t offset)
1726{
1727	struct block_device *bdev;
 
1728
1729	if ((unsigned int)type >= nr_swapfiles)
1730		return 0;
1731	if (!(swap_info[type]->flags & SWP_WRITEOK))
1732		return 0;
1733	return map_swap_entry(swp_entry(type, offset), &bdev);
 
1734}
1735
1736/*
1737 * Return either the total number of swap pages of given type, or the number
1738 * of free pages of that type (depending on @free)
1739 *
1740 * This is needed for software suspend
1741 */
1742unsigned int count_swap_pages(int type, int free)
1743{
1744	unsigned int n = 0;
1745
1746	spin_lock(&swap_lock);
1747	if ((unsigned int)type < nr_swapfiles) {
1748		struct swap_info_struct *sis = swap_info[type];
1749
1750		spin_lock(&sis->lock);
1751		if (sis->flags & SWP_WRITEOK) {
1752			n = sis->pages;
1753			if (free)
1754				n -= sis->inuse_pages;
1755		}
1756		spin_unlock(&sis->lock);
1757	}
1758	spin_unlock(&swap_lock);
1759	return n;
1760}
1761#endif /* CONFIG_HIBERNATION */
1762
1763static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1764{
1765	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1766}
1767
1768/*
1769 * No need to decide whether this PTE shares the swap entry with others,
1770 * just let do_wp_page work it out if a write is requested later - to
1771 * force COW, vm_page_prot omits write permission from any private vma.
1772 */
1773static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1774		unsigned long addr, swp_entry_t entry, struct page *page)
1775{
1776	struct page *swapcache;
1777	struct mem_cgroup *memcg;
1778	spinlock_t *ptl;
1779	pte_t *pte;
 
1780	int ret = 1;
1781
1782	swapcache = page;
1783	page = ksm_might_need_to_copy(page, vma, addr);
1784	if (unlikely(!page))
1785		return -ENOMEM;
1786
1787	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1788				&memcg, false)) {
1789		ret = -ENOMEM;
1790		goto out_nolock;
1791	}
1792
 
 
 
 
1793	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1794	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1795		mem_cgroup_cancel_charge(page, memcg, false);
1796		ret = 0;
1797		goto out;
1798	}
1799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1801	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1802	get_page(page);
1803	set_pte_at(vma->vm_mm, addr, pte,
1804		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1805	if (page == swapcache) {
1806		page_add_anon_rmap(page, vma, addr, false);
1807		mem_cgroup_commit_charge(page, memcg, true, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808	} else { /* ksm created a completely new copy */
1809		page_add_new_anon_rmap(page, vma, addr, false);
1810		mem_cgroup_commit_charge(page, memcg, false, false);
1811		lru_cache_add_active_or_unevictable(page, vma);
1812	}
 
 
 
 
 
 
 
1813	swap_free(entry);
1814	/*
1815	 * Move the page to the active list so it is not
1816	 * immediately swapped out again after swapon.
1817	 */
1818	activate_page(page);
1819out:
1820	pte_unmap_unlock(pte, ptl);
1821out_nolock:
1822	if (page != swapcache) {
1823		unlock_page(page);
1824		put_page(page);
1825	}
1826	return ret;
1827}
1828
1829static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1830				unsigned long addr, unsigned long end,
1831				swp_entry_t entry, struct page *page)
1832{
1833	pte_t swp_pte = swp_entry_to_pte(entry);
1834	pte_t *pte;
1835	int ret = 0;
1836
1837	/*
1838	 * We don't actually need pte lock while scanning for swp_pte: since
1839	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1840	 * page table while we're scanning; though it could get zapped, and on
1841	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1842	 * of unmatched parts which look like swp_pte, so unuse_pte must
1843	 * recheck under pte lock.  Scanning without pte lock lets it be
1844	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1845	 */
1846	pte = pte_offset_map(pmd, addr);
1847	do {
1848		/*
1849		 * swapoff spends a _lot_ of time in this loop!
1850		 * Test inline before going to call unuse_pte.
1851		 */
1852		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1853			pte_unmap(pte);
1854			ret = unuse_pte(vma, pmd, addr, entry, page);
1855			if (ret)
1856				goto out;
1857			pte = pte_offset_map(pmd, addr);
 
 
1858		}
1859	} while (pte++, addr += PAGE_SIZE, addr != end);
1860	pte_unmap(pte - 1);
1861out:
1862	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1863}
1864
1865static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1866				unsigned long addr, unsigned long end,
1867				swp_entry_t entry, struct page *page)
1868{
1869	pmd_t *pmd;
1870	unsigned long next;
1871	int ret;
1872
1873	pmd = pmd_offset(pud, addr);
1874	do {
1875		cond_resched();
1876		next = pmd_addr_end(addr, end);
1877		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1878			continue;
1879		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1880		if (ret)
1881			return ret;
1882	} while (pmd++, addr = next, addr != end);
1883	return 0;
1884}
1885
1886static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1887				unsigned long addr, unsigned long end,
1888				swp_entry_t entry, struct page *page)
1889{
1890	pud_t *pud;
1891	unsigned long next;
1892	int ret;
1893
1894	pud = pud_offset(p4d, addr);
1895	do {
1896		next = pud_addr_end(addr, end);
1897		if (pud_none_or_clear_bad(pud))
1898			continue;
1899		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1900		if (ret)
1901			return ret;
1902	} while (pud++, addr = next, addr != end);
1903	return 0;
1904}
1905
1906static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1907				unsigned long addr, unsigned long end,
1908				swp_entry_t entry, struct page *page)
1909{
1910	p4d_t *p4d;
1911	unsigned long next;
1912	int ret;
1913
1914	p4d = p4d_offset(pgd, addr);
1915	do {
1916		next = p4d_addr_end(addr, end);
1917		if (p4d_none_or_clear_bad(p4d))
1918			continue;
1919		ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1920		if (ret)
1921			return ret;
1922	} while (p4d++, addr = next, addr != end);
1923	return 0;
1924}
1925
1926static int unuse_vma(struct vm_area_struct *vma,
1927				swp_entry_t entry, struct page *page)
1928{
1929	pgd_t *pgd;
1930	unsigned long addr, end, next;
1931	int ret;
1932
1933	if (page_anon_vma(page)) {
1934		addr = page_address_in_vma(page, vma);
1935		if (addr == -EFAULT)
1936			return 0;
1937		else
1938			end = addr + PAGE_SIZE;
1939	} else {
1940		addr = vma->vm_start;
1941		end = vma->vm_end;
1942	}
1943
1944	pgd = pgd_offset(vma->vm_mm, addr);
1945	do {
1946		next = pgd_addr_end(addr, end);
1947		if (pgd_none_or_clear_bad(pgd))
1948			continue;
1949		ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1950		if (ret)
1951			return ret;
1952	} while (pgd++, addr = next, addr != end);
1953	return 0;
1954}
1955
1956static int unuse_mm(struct mm_struct *mm,
1957				swp_entry_t entry, struct page *page)
1958{
1959	struct vm_area_struct *vma;
1960	int ret = 0;
 
 
 
 
 
 
 
 
 
1961
1962	if (!down_read_trylock(&mm->mmap_sem)) {
1963		/*
1964		 * Activate page so shrink_inactive_list is unlikely to unmap
1965		 * its ptes while lock is dropped, so swapoff can make progress.
1966		 */
1967		activate_page(page);
1968		unlock_page(page);
1969		down_read(&mm->mmap_sem);
1970		lock_page(page);
1971	}
1972	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1973		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1974			break;
1975		cond_resched();
1976	}
1977	up_read(&mm->mmap_sem);
1978	return (ret < 0)? ret: 0;
1979}
1980
1981/*
1982 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1983 * from current position to next entry still in use.
1984 * Recycle to start on reaching the end, returning 0 when empty.
1985 */
1986static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1987					unsigned int prev, bool frontswap)
1988{
1989	unsigned int max = si->max;
1990	unsigned int i = prev;
1991	unsigned char count;
1992
1993	/*
1994	 * No need for swap_lock here: we're just looking
1995	 * for whether an entry is in use, not modifying it; false
1996	 * hits are okay, and sys_swapoff() has already prevented new
1997	 * allocations from this area (while holding swap_lock).
1998	 */
1999	for (;;) {
2000		if (++i >= max) {
2001			if (!prev) {
2002				i = 0;
2003				break;
2004			}
2005			/*
2006			 * No entries in use at top of swap_map,
2007			 * loop back to start and recheck there.
2008			 */
2009			max = prev + 1;
2010			prev = 0;
2011			i = 1;
2012		}
2013		count = READ_ONCE(si->swap_map[i]);
2014		if (count && swap_count(count) != SWAP_MAP_BAD)
2015			if (!frontswap || frontswap_test(si, i))
2016				break;
2017		if ((i % LATENCY_LIMIT) == 0)
2018			cond_resched();
2019	}
 
 
 
 
2020	return i;
2021}
2022
2023/*
2024 * We completely avoid races by reading each swap page in advance,
2025 * and then search for the process using it.  All the necessary
2026 * page table adjustments can then be made atomically.
2027 *
2028 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2029 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2030 */
2031int try_to_unuse(unsigned int type, bool frontswap,
2032		 unsigned long pages_to_unuse)
2033{
 
 
 
 
2034	struct swap_info_struct *si = swap_info[type];
2035	struct mm_struct *start_mm;
2036	volatile unsigned char *swap_map; /* swap_map is accessed without
2037					   * locking. Mark it as volatile
2038					   * to prevent compiler doing
2039					   * something odd.
2040					   */
2041	unsigned char swcount;
2042	struct page *page;
2043	swp_entry_t entry;
2044	unsigned int i = 0;
2045	int retval = 0;
2046
2047	/*
2048	 * When searching mms for an entry, a good strategy is to
2049	 * start at the first mm we freed the previous entry from
2050	 * (though actually we don't notice whether we or coincidence
2051	 * freed the entry).  Initialize this start_mm with a hold.
2052	 *
2053	 * A simpler strategy would be to start at the last mm we
2054	 * freed the previous entry from; but that would take less
2055	 * advantage of mmlist ordering, which clusters forked mms
2056	 * together, child after parent.  If we race with dup_mmap(), we
2057	 * prefer to resolve parent before child, lest we miss entries
2058	 * duplicated after we scanned child: using last mm would invert
2059	 * that.
2060	 */
2061	start_mm = &init_mm;
2062	mmget(&init_mm);
2063
2064	/*
2065	 * Keep on scanning until all entries have gone.  Usually,
2066	 * one pass through swap_map is enough, but not necessarily:
2067	 * there are races when an instance of an entry might be missed.
2068	 */
2069	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2070		if (signal_pending(current)) {
2071			retval = -EINTR;
2072			break;
2073		}
2074
2075		/*
2076		 * Get a page for the entry, using the existing swap
2077		 * cache page if there is one.  Otherwise, get a clean
2078		 * page and read the swap into it.
2079		 */
2080		swap_map = &si->swap_map[i];
2081		entry = swp_entry(type, i);
2082		page = read_swap_cache_async(entry,
2083					GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2084		if (!page) {
2085			/*
2086			 * Either swap_duplicate() failed because entry
2087			 * has been freed independently, and will not be
2088			 * reused since sys_swapoff() already disabled
2089			 * allocation from here, or alloc_page() failed.
2090			 */
2091			swcount = *swap_map;
2092			/*
2093			 * We don't hold lock here, so the swap entry could be
2094			 * SWAP_MAP_BAD (when the cluster is discarding).
2095			 * Instead of fail out, We can just skip the swap
2096			 * entry because swapoff will wait for discarding
2097			 * finish anyway.
2098			 */
2099			if (!swcount || swcount == SWAP_MAP_BAD)
2100				continue;
2101			retval = -ENOMEM;
2102			break;
2103		}
2104
2105		/*
2106		 * Don't hold on to start_mm if it looks like exiting.
2107		 */
2108		if (atomic_read(&start_mm->mm_users) == 1) {
2109			mmput(start_mm);
2110			start_mm = &init_mm;
2111			mmget(&init_mm);
2112		}
2113
2114		/*
2115		 * Wait for and lock page.  When do_swap_page races with
2116		 * try_to_unuse, do_swap_page can handle the fault much
2117		 * faster than try_to_unuse can locate the entry.  This
2118		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2119		 * defer to do_swap_page in such a case - in some tests,
2120		 * do_swap_page and try_to_unuse repeatedly compete.
2121		 */
2122		wait_on_page_locked(page);
2123		wait_on_page_writeback(page);
2124		lock_page(page);
2125		wait_on_page_writeback(page);
2126
2127		/*
2128		 * Remove all references to entry.
2129		 */
2130		swcount = *swap_map;
2131		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2132			retval = shmem_unuse(entry, page);
2133			/* page has already been unlocked and released */
2134			if (retval < 0)
2135				break;
2136			continue;
2137		}
2138		if (swap_count(swcount) && start_mm != &init_mm)
2139			retval = unuse_mm(start_mm, entry, page);
2140
2141		if (swap_count(*swap_map)) {
2142			int set_start_mm = (*swap_map >= swcount);
2143			struct list_head *p = &start_mm->mmlist;
2144			struct mm_struct *new_start_mm = start_mm;
2145			struct mm_struct *prev_mm = start_mm;
2146			struct mm_struct *mm;
2147
2148			mmget(new_start_mm);
2149			mmget(prev_mm);
2150			spin_lock(&mmlist_lock);
2151			while (swap_count(*swap_map) && !retval &&
2152					(p = p->next) != &start_mm->mmlist) {
2153				mm = list_entry(p, struct mm_struct, mmlist);
2154				if (!mmget_not_zero(mm))
2155					continue;
2156				spin_unlock(&mmlist_lock);
2157				mmput(prev_mm);
2158				prev_mm = mm;
2159
2160				cond_resched();
2161
2162				swcount = *swap_map;
2163				if (!swap_count(swcount)) /* any usage ? */
2164					;
2165				else if (mm == &init_mm)
2166					set_start_mm = 1;
2167				else
2168					retval = unuse_mm(mm, entry, page);
2169
2170				if (set_start_mm && *swap_map < swcount) {
2171					mmput(new_start_mm);
2172					mmget(mm);
2173					new_start_mm = mm;
2174					set_start_mm = 0;
2175				}
2176				spin_lock(&mmlist_lock);
2177			}
2178			spin_unlock(&mmlist_lock);
2179			mmput(prev_mm);
2180			mmput(start_mm);
2181			start_mm = new_start_mm;
2182		}
2183		if (retval) {
2184			unlock_page(page);
2185			put_page(page);
2186			break;
2187		}
2188
2189		/*
2190		 * If a reference remains (rare), we would like to leave
2191		 * the page in the swap cache; but try_to_unmap could
2192		 * then re-duplicate the entry once we drop page lock,
2193		 * so we might loop indefinitely; also, that page could
2194		 * not be swapped out to other storage meanwhile.  So:
2195		 * delete from cache even if there's another reference,
2196		 * after ensuring that the data has been saved to disk -
2197		 * since if the reference remains (rarer), it will be
2198		 * read from disk into another page.  Splitting into two
2199		 * pages would be incorrect if swap supported "shared
2200		 * private" pages, but they are handled by tmpfs files.
2201		 *
2202		 * Given how unuse_vma() targets one particular offset
2203		 * in an anon_vma, once the anon_vma has been determined,
2204		 * this splitting happens to be just what is needed to
2205		 * handle where KSM pages have been swapped out: re-reading
2206		 * is unnecessarily slow, but we can fix that later on.
2207		 */
2208		if (swap_count(*swap_map) &&
2209		     PageDirty(page) && PageSwapCache(page)) {
2210			struct writeback_control wbc = {
2211				.sync_mode = WB_SYNC_NONE,
2212			};
2213
2214			swap_writepage(compound_head(page), &wbc);
2215			lock_page(page);
2216			wait_on_page_writeback(page);
2217		}
2218
2219		/*
2220		 * It is conceivable that a racing task removed this page from
2221		 * swap cache just before we acquired the page lock at the top,
2222		 * or while we dropped it in unuse_mm().  The page might even
2223		 * be back in swap cache on another swap area: that we must not
2224		 * delete, since it may not have been written out to swap yet.
2225		 */
2226		if (PageSwapCache(page) &&
2227		    likely(page_private(page) == entry.val) &&
2228		    !page_swapped(page))
2229			delete_from_swap_cache(compound_head(page));
2230
2231		/*
2232		 * So we could skip searching mms once swap count went
2233		 * to 1, we did not mark any present ptes as dirty: must
2234		 * mark page dirty so shrink_page_list will preserve it.
2235		 */
2236		SetPageDirty(page);
2237		unlock_page(page);
2238		put_page(page);
2239
2240		/*
2241		 * Make sure that we aren't completely killing
2242		 * interactive performance.
2243		 */
2244		cond_resched();
2245		if (frontswap && pages_to_unuse > 0) {
2246			if (!--pages_to_unuse)
2247				break;
2248		}
 
 
2249	}
2250
2251	mmput(start_mm);
2252	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2253}
2254
2255/*
2256 * After a successful try_to_unuse, if no swap is now in use, we know
2257 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2258 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2259 * added to the mmlist just after page_duplicate - before would be racy.
2260 */
2261static void drain_mmlist(void)
2262{
2263	struct list_head *p, *next;
2264	unsigned int type;
2265
2266	for (type = 0; type < nr_swapfiles; type++)
2267		if (swap_info[type]->inuse_pages)
2268			return;
2269	spin_lock(&mmlist_lock);
2270	list_for_each_safe(p, next, &init_mm.mmlist)
2271		list_del_init(p);
2272	spin_unlock(&mmlist_lock);
2273}
2274
2275/*
2276 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2277 * corresponds to page offset for the specified swap entry.
2278 * Note that the type of this function is sector_t, but it returns page offset
2279 * into the bdev, not sector offset.
2280 */
2281static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2282{
2283	struct swap_info_struct *sis;
2284	struct swap_extent *start_se;
2285	struct swap_extent *se;
2286	pgoff_t offset;
2287
2288	sis = swap_info[swp_type(entry)];
2289	*bdev = sis->bdev;
2290
2291	offset = swp_offset(entry);
2292	start_se = sis->curr_swap_extent;
2293	se = start_se;
2294
2295	for ( ; ; ) {
2296		if (se->start_page <= offset &&
2297				offset < (se->start_page + se->nr_pages)) {
2298			return se->start_block + (offset - se->start_page);
2299		}
2300		se = list_next_entry(se, list);
2301		sis->curr_swap_extent = se;
2302		BUG_ON(se == start_se);		/* It *must* be present */
2303	}
2304}
2305
2306/*
2307 * Returns the page offset into bdev for the specified page's swap entry.
2308 */
2309sector_t map_swap_page(struct page *page, struct block_device **bdev)
2310{
2311	swp_entry_t entry;
2312	entry.val = page_private(page);
2313	return map_swap_entry(entry, bdev);
2314}
2315
2316/*
2317 * Free all of a swapdev's extent information
2318 */
2319static void destroy_swap_extents(struct swap_info_struct *sis)
2320{
2321	while (!list_empty(&sis->first_swap_extent.list)) {
2322		struct swap_extent *se;
 
2323
2324		se = list_first_entry(&sis->first_swap_extent.list,
2325				struct swap_extent, list);
2326		list_del(&se->list);
2327		kfree(se);
2328	}
2329
2330	if (sis->flags & SWP_FILE) {
2331		struct file *swap_file = sis->swap_file;
2332		struct address_space *mapping = swap_file->f_mapping;
2333
2334		sis->flags &= ~SWP_FILE;
2335		mapping->a_ops->swap_deactivate(swap_file);
 
2336	}
2337}
2338
2339/*
2340 * Add a block range (and the corresponding page range) into this swapdev's
2341 * extent list.  The extent list is kept sorted in page order.
2342 *
2343 * This function rather assumes that it is called in ascending page order.
2344 */
2345int
2346add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2347		unsigned long nr_pages, sector_t start_block)
2348{
 
2349	struct swap_extent *se;
2350	struct swap_extent *new_se;
2351	struct list_head *lh;
2352
2353	if (start_page == 0) {
2354		se = &sis->first_swap_extent;
2355		sis->curr_swap_extent = se;
2356		se->start_page = 0;
2357		se->nr_pages = nr_pages;
2358		se->start_block = start_block;
2359		return 1;
2360	} else {
2361		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
2362		se = list_entry(lh, struct swap_extent, list);
 
2363		BUG_ON(se->start_page + se->nr_pages != start_page);
2364		if (se->start_block + se->nr_pages == start_block) {
2365			/* Merge it */
2366			se->nr_pages += nr_pages;
2367			return 0;
2368		}
2369	}
2370
2371	/*
2372	 * No merge.  Insert a new extent, preserving ordering.
2373	 */
2374	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2375	if (new_se == NULL)
2376		return -ENOMEM;
2377	new_se->start_page = start_page;
2378	new_se->nr_pages = nr_pages;
2379	new_se->start_block = start_block;
2380
2381	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
 
2382	return 1;
2383}
 
2384
2385/*
2386 * A `swap extent' is a simple thing which maps a contiguous range of pages
2387 * onto a contiguous range of disk blocks.  An ordered list of swap extents
2388 * is built at swapon time and is then used at swap_writepage/swap_readpage
2389 * time for locating where on disk a page belongs.
2390 *
2391 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2392 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2393 * swap files identically.
2394 *
2395 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2396 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2397 * swapfiles are handled *identically* after swapon time.
2398 *
2399 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2400 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2401 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2402 * requirements, they are simply tossed out - we will never use those blocks
2403 * for swapping.
2404 *
2405 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2406 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2407 * which will scribble on the fs.
2408 *
2409 * The amount of disk space which a single swap extent represents varies.
2410 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2411 * extents in the list.  To avoid much list walking, we cache the previous
2412 * search location in `curr_swap_extent', and start new searches from there.
2413 * This is extremely effective.  The average number of iterations in
2414 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2415 */
2416static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2417{
2418	struct file *swap_file = sis->swap_file;
2419	struct address_space *mapping = swap_file->f_mapping;
2420	struct inode *inode = mapping->host;
2421	int ret;
2422
2423	if (S_ISBLK(inode->i_mode)) {
2424		ret = add_swap_extent(sis, 0, sis->max, 0);
2425		*span = sis->pages;
2426		return ret;
2427	}
2428
2429	if (mapping->a_ops->swap_activate) {
2430		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2431		if (!ret) {
2432			sis->flags |= SWP_FILE;
2433			ret = add_swap_extent(sis, 0, sis->max, 0);
2434			*span = sis->pages;
 
 
 
2435		}
2436		return ret;
2437	}
2438
2439	return generic_swapfile_activate(sis, swap_file, span);
2440}
2441
2442static int swap_node(struct swap_info_struct *p)
2443{
2444	struct block_device *bdev;
2445
2446	if (p->bdev)
2447		bdev = p->bdev;
2448	else
2449		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2450
2451	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2452}
2453
2454static void _enable_swap_info(struct swap_info_struct *p, int prio,
2455				unsigned char *swap_map,
2456				struct swap_cluster_info *cluster_info)
 
2457{
2458	int i;
2459
2460	if (prio >= 0)
2461		p->prio = prio;
2462	else
2463		p->prio = --least_priority;
2464	/*
2465	 * the plist prio is negated because plist ordering is
2466	 * low-to-high, while swap ordering is high-to-low
2467	 */
2468	p->list.prio = -p->prio;
2469	for_each_node(i) {
2470		if (p->prio >= 0)
2471			p->avail_lists[i].prio = -p->prio;
2472		else {
2473			if (swap_node(p) == i)
2474				p->avail_lists[i].prio = 1;
2475			else
2476				p->avail_lists[i].prio = -p->prio;
2477		}
2478	}
2479	p->swap_map = swap_map;
2480	p->cluster_info = cluster_info;
2481	p->flags |= SWP_WRITEOK;
2482	atomic_long_add(p->pages, &nr_swap_pages);
2483	total_swap_pages += p->pages;
 
 
 
 
 
2484
2485	assert_spin_locked(&swap_lock);
2486	/*
2487	 * both lists are plists, and thus priority ordered.
2488	 * swap_active_head needs to be priority ordered for swapoff(),
2489	 * which on removal of any swap_info_struct with an auto-assigned
2490	 * (i.e. negative) priority increments the auto-assigned priority
2491	 * of any lower-priority swap_info_structs.
2492	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2493	 * which allocates swap pages from the highest available priority
2494	 * swap_info_struct.
2495	 */
2496	plist_add(&p->list, &swap_active_head);
2497	add_to_avail_list(p);
 
 
 
2498}
2499
2500static void enable_swap_info(struct swap_info_struct *p, int prio,
2501				unsigned char *swap_map,
2502				struct swap_cluster_info *cluster_info,
2503				unsigned long *frontswap_map)
2504{
2505	frontswap_init(p->type, frontswap_map);
2506	spin_lock(&swap_lock);
2507	spin_lock(&p->lock);
2508	 _enable_swap_info(p, prio, swap_map, cluster_info);
2509	spin_unlock(&p->lock);
 
 
 
 
 
 
 
 
 
2510	spin_unlock(&swap_lock);
2511}
2512
2513static void reinsert_swap_info(struct swap_info_struct *p)
2514{
2515	spin_lock(&swap_lock);
2516	spin_lock(&p->lock);
2517	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2518	spin_unlock(&p->lock);
 
2519	spin_unlock(&swap_lock);
2520}
2521
 
 
 
 
 
2522bool has_usable_swap(void)
2523{
2524	bool ret = true;
2525
2526	spin_lock(&swap_lock);
2527	if (plist_head_empty(&swap_active_head))
2528		ret = false;
2529	spin_unlock(&swap_lock);
2530	return ret;
2531}
2532
2533SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2534{
2535	struct swap_info_struct *p = NULL;
2536	unsigned char *swap_map;
 
2537	struct swap_cluster_info *cluster_info;
2538	unsigned long *frontswap_map;
2539	struct file *swap_file, *victim;
2540	struct address_space *mapping;
2541	struct inode *inode;
2542	struct filename *pathname;
2543	int err, found = 0;
2544	unsigned int old_block_size;
2545
2546	if (!capable(CAP_SYS_ADMIN))
2547		return -EPERM;
2548
2549	BUG_ON(!current->mm);
2550
2551	pathname = getname(specialfile);
2552	if (IS_ERR(pathname))
2553		return PTR_ERR(pathname);
2554
2555	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2556	err = PTR_ERR(victim);
2557	if (IS_ERR(victim))
2558		goto out;
2559
2560	mapping = victim->f_mapping;
2561	spin_lock(&swap_lock);
2562	plist_for_each_entry(p, &swap_active_head, list) {
2563		if (p->flags & SWP_WRITEOK) {
2564			if (p->swap_file->f_mapping == mapping) {
2565				found = 1;
2566				break;
2567			}
2568		}
2569	}
2570	if (!found) {
2571		err = -EINVAL;
2572		spin_unlock(&swap_lock);
2573		goto out_dput;
2574	}
2575	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2576		vm_unacct_memory(p->pages);
2577	else {
2578		err = -ENOMEM;
2579		spin_unlock(&swap_lock);
2580		goto out_dput;
2581	}
2582	del_from_avail_list(p);
2583	spin_lock(&p->lock);
 
2584	if (p->prio < 0) {
2585		struct swap_info_struct *si = p;
2586		int nid;
2587
2588		plist_for_each_entry_continue(si, &swap_active_head, list) {
2589			si->prio++;
2590			si->list.prio--;
2591			for_each_node(nid) {
2592				if (si->avail_lists[nid].prio != 1)
2593					si->avail_lists[nid].prio--;
2594			}
2595		}
2596		least_priority++;
2597	}
2598	plist_del(&p->list, &swap_active_head);
2599	atomic_long_sub(p->pages, &nr_swap_pages);
2600	total_swap_pages -= p->pages;
2601	p->flags &= ~SWP_WRITEOK;
2602	spin_unlock(&p->lock);
2603	spin_unlock(&swap_lock);
2604
2605	disable_swap_slots_cache_lock();
2606
2607	set_current_oom_origin();
2608	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2609	clear_current_oom_origin();
2610
2611	if (err) {
2612		/* re-insert swap space back into swap_list */
2613		reinsert_swap_info(p);
2614		reenable_swap_slots_cache_unlock();
2615		goto out_dput;
2616	}
2617
2618	reenable_swap_slots_cache_unlock();
2619
 
 
 
 
 
 
 
 
 
 
 
 
2620	flush_work(&p->discard_work);
 
2621
2622	destroy_swap_extents(p);
2623	if (p->flags & SWP_CONTINUED)
2624		free_swap_count_continuations(p);
2625
2626	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2627		atomic_dec(&nr_rotate_swap);
2628
2629	mutex_lock(&swapon_mutex);
2630	spin_lock(&swap_lock);
2631	spin_lock(&p->lock);
2632	drain_mmlist();
2633
2634	/* wait for anyone still in scan_swap_map */
2635	p->highest_bit = 0;		/* cuts scans short */
2636	while (p->flags >= SWP_SCANNING) {
2637		spin_unlock(&p->lock);
2638		spin_unlock(&swap_lock);
2639		schedule_timeout_uninterruptible(1);
2640		spin_lock(&swap_lock);
2641		spin_lock(&p->lock);
2642	}
2643
2644	swap_file = p->swap_file;
2645	old_block_size = p->old_block_size;
2646	p->swap_file = NULL;
2647	p->max = 0;
2648	swap_map = p->swap_map;
2649	p->swap_map = NULL;
 
 
2650	cluster_info = p->cluster_info;
2651	p->cluster_info = NULL;
2652	frontswap_map = frontswap_map_get(p);
2653	spin_unlock(&p->lock);
2654	spin_unlock(&swap_lock);
2655	frontswap_invalidate_area(p->type);
2656	frontswap_map_set(p, NULL);
2657	mutex_unlock(&swapon_mutex);
2658	free_percpu(p->percpu_cluster);
2659	p->percpu_cluster = NULL;
 
 
2660	vfree(swap_map);
 
2661	kvfree(cluster_info);
2662	kvfree(frontswap_map);
2663	/* Destroy swap account information */
2664	swap_cgroup_swapoff(p->type);
2665	exit_swap_address_space(p->type);
2666
2667	inode = mapping->host;
2668	if (S_ISBLK(inode->i_mode)) {
2669		struct block_device *bdev = I_BDEV(inode);
2670		set_blocksize(bdev, old_block_size);
2671		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2672	} else {
2673		inode_lock(inode);
2674		inode->i_flags &= ~S_SWAPFILE;
2675		inode_unlock(inode);
2676	}
2677	filp_close(swap_file, NULL);
2678
2679	/*
2680	 * Clear the SWP_USED flag after all resources are freed so that swapon
2681	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2682	 * not hold p->lock after we cleared its SWP_WRITEOK.
2683	 */
2684	spin_lock(&swap_lock);
2685	p->flags = 0;
2686	spin_unlock(&swap_lock);
2687
2688	err = 0;
2689	atomic_inc(&proc_poll_event);
2690	wake_up_interruptible(&proc_poll_wait);
2691
2692out_dput:
2693	filp_close(victim, NULL);
2694out:
2695	putname(pathname);
2696	return err;
2697}
2698
2699#ifdef CONFIG_PROC_FS
2700static __poll_t swaps_poll(struct file *file, poll_table *wait)
2701{
2702	struct seq_file *seq = file->private_data;
2703
2704	poll_wait(file, &proc_poll_wait, wait);
2705
2706	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2707		seq->poll_event = atomic_read(&proc_poll_event);
2708		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2709	}
2710
2711	return EPOLLIN | EPOLLRDNORM;
2712}
2713
2714/* iterator */
2715static void *swap_start(struct seq_file *swap, loff_t *pos)
2716{
2717	struct swap_info_struct *si;
2718	int type;
2719	loff_t l = *pos;
2720
2721	mutex_lock(&swapon_mutex);
2722
2723	if (!l)
2724		return SEQ_START_TOKEN;
2725
2726	for (type = 0; type < nr_swapfiles; type++) {
2727		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2728		si = swap_info[type];
2729		if (!(si->flags & SWP_USED) || !si->swap_map)
2730			continue;
2731		if (!--l)
2732			return si;
2733	}
2734
2735	return NULL;
2736}
2737
2738static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2739{
2740	struct swap_info_struct *si = v;
2741	int type;
2742
2743	if (v == SEQ_START_TOKEN)
2744		type = 0;
2745	else
2746		type = si->type + 1;
2747
2748	for (; type < nr_swapfiles; type++) {
2749		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2750		si = swap_info[type];
2751		if (!(si->flags & SWP_USED) || !si->swap_map)
2752			continue;
2753		++*pos;
2754		return si;
2755	}
2756
2757	return NULL;
2758}
2759
2760static void swap_stop(struct seq_file *swap, void *v)
2761{
2762	mutex_unlock(&swapon_mutex);
2763}
2764
2765static int swap_show(struct seq_file *swap, void *v)
2766{
2767	struct swap_info_struct *si = v;
2768	struct file *file;
2769	int len;
 
2770
2771	if (si == SEQ_START_TOKEN) {
2772		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2773		return 0;
2774	}
2775
 
 
 
2776	file = si->swap_file;
2777	len = seq_file_path(swap, file, " \t\n\\");
2778	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2779			len < 40 ? 40 - len : 1, " ",
2780			S_ISBLK(file_inode(file)->i_mode) ?
2781				"partition" : "file\t",
2782			si->pages << (PAGE_SHIFT - 10),
2783			si->inuse_pages << (PAGE_SHIFT - 10),
2784			si->prio);
2785	return 0;
2786}
2787
2788static const struct seq_operations swaps_op = {
2789	.start =	swap_start,
2790	.next =		swap_next,
2791	.stop =		swap_stop,
2792	.show =		swap_show
2793};
2794
2795static int swaps_open(struct inode *inode, struct file *file)
2796{
2797	struct seq_file *seq;
2798	int ret;
2799
2800	ret = seq_open(file, &swaps_op);
2801	if (ret)
2802		return ret;
2803
2804	seq = file->private_data;
2805	seq->poll_event = atomic_read(&proc_poll_event);
2806	return 0;
2807}
2808
2809static const struct file_operations proc_swaps_operations = {
2810	.open		= swaps_open,
2811	.read		= seq_read,
2812	.llseek		= seq_lseek,
2813	.release	= seq_release,
2814	.poll		= swaps_poll,
 
2815};
2816
2817static int __init procswaps_init(void)
2818{
2819	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2820	return 0;
2821}
2822__initcall(procswaps_init);
2823#endif /* CONFIG_PROC_FS */
2824
2825#ifdef MAX_SWAPFILES_CHECK
2826static int __init max_swapfiles_check(void)
2827{
2828	MAX_SWAPFILES_CHECK();
2829	return 0;
2830}
2831late_initcall(max_swapfiles_check);
2832#endif
2833
2834static struct swap_info_struct *alloc_swap_info(void)
2835{
2836	struct swap_info_struct *p;
 
2837	unsigned int type;
2838	int i;
2839
2840	p = kzalloc(sizeof(*p), GFP_KERNEL);
2841	if (!p)
2842		return ERR_PTR(-ENOMEM);
2843
 
 
 
 
 
 
2844	spin_lock(&swap_lock);
2845	for (type = 0; type < nr_swapfiles; type++) {
2846		if (!(swap_info[type]->flags & SWP_USED))
2847			break;
2848	}
2849	if (type >= MAX_SWAPFILES) {
2850		spin_unlock(&swap_lock);
2851		kfree(p);
 
2852		return ERR_PTR(-EPERM);
2853	}
2854	if (type >= nr_swapfiles) {
2855		p->type = type;
2856		swap_info[type] = p;
2857		/*
2858		 * Write swap_info[type] before nr_swapfiles, in case a
2859		 * racing procfs swap_start() or swap_next() is reading them.
2860		 * (We never shrink nr_swapfiles, we never free this entry.)
2861		 */
2862		smp_wmb();
2863		nr_swapfiles++;
2864	} else {
2865		kfree(p);
2866		p = swap_info[type];
2867		/*
2868		 * Do not memset this entry: a racing procfs swap_next()
2869		 * would be relying on p->type to remain valid.
2870		 */
2871	}
2872	INIT_LIST_HEAD(&p->first_swap_extent.list);
2873	plist_node_init(&p->list, 0);
2874	for_each_node(i)
2875		plist_node_init(&p->avail_lists[i], 0);
2876	p->flags = SWP_USED;
2877	spin_unlock(&swap_lock);
 
 
 
 
2878	spin_lock_init(&p->lock);
2879	spin_lock_init(&p->cont_lock);
 
2880
2881	return p;
2882}
2883
2884static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2885{
2886	int error;
2887
2888	if (S_ISBLK(inode->i_mode)) {
2889		p->bdev = bdgrab(I_BDEV(inode));
2890		error = blkdev_get(p->bdev,
2891				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2892		if (error < 0) {
2893			p->bdev = NULL;
2894			return error;
2895		}
2896		p->old_block_size = block_size(p->bdev);
2897		error = set_blocksize(p->bdev, PAGE_SIZE);
2898		if (error < 0)
2899			return error;
2900		p->flags |= SWP_BLKDEV;
2901	} else if (S_ISREG(inode->i_mode)) {
2902		p->bdev = inode->i_sb->s_bdev;
2903		inode_lock(inode);
2904		if (IS_SWAPFILE(inode))
2905			return -EBUSY;
2906	} else
2907		return -EINVAL;
2908
2909	return 0;
2910}
2911
2912static unsigned long read_swap_header(struct swap_info_struct *p,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2913					union swap_header *swap_header,
2914					struct inode *inode)
2915{
2916	int i;
2917	unsigned long maxpages;
2918	unsigned long swapfilepages;
2919	unsigned long last_page;
2920
2921	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2922		pr_err("Unable to find swap-space signature\n");
2923		return 0;
2924	}
2925
2926	/* swap partition endianess hack... */
2927	if (swab32(swap_header->info.version) == 1) {
2928		swab32s(&swap_header->info.version);
2929		swab32s(&swap_header->info.last_page);
2930		swab32s(&swap_header->info.nr_badpages);
2931		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2932			return 0;
2933		for (i = 0; i < swap_header->info.nr_badpages; i++)
2934			swab32s(&swap_header->info.badpages[i]);
2935	}
2936	/* Check the swap header's sub-version */
2937	if (swap_header->info.version != 1) {
2938		pr_warn("Unable to handle swap header version %d\n",
2939			swap_header->info.version);
2940		return 0;
2941	}
2942
2943	p->lowest_bit  = 1;
2944	p->cluster_next = 1;
2945	p->cluster_nr = 0;
2946
2947	/*
2948	 * Find out how many pages are allowed for a single swap
2949	 * device. There are two limiting factors: 1) the number
2950	 * of bits for the swap offset in the swp_entry_t type, and
2951	 * 2) the number of bits in the swap pte as defined by the
2952	 * different architectures. In order to find the
2953	 * largest possible bit mask, a swap entry with swap type 0
2954	 * and swap offset ~0UL is created, encoded to a swap pte,
2955	 * decoded to a swp_entry_t again, and finally the swap
2956	 * offset is extracted. This will mask all the bits from
2957	 * the initial ~0UL mask that can't be encoded in either
2958	 * the swp_entry_t or the architecture definition of a
2959	 * swap pte.
2960	 */
2961	maxpages = swp_offset(pte_to_swp_entry(
2962			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2963	last_page = swap_header->info.last_page;
2964	if (!last_page) {
2965		pr_warn("Empty swap-file\n");
2966		return 0;
2967	}
2968	if (last_page > maxpages) {
2969		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2970			maxpages << (PAGE_SHIFT - 10),
2971			last_page << (PAGE_SHIFT - 10));
2972	}
2973	if (maxpages > last_page) {
2974		maxpages = last_page + 1;
2975		/* p->max is an unsigned int: don't overflow it */
2976		if ((unsigned int)maxpages == 0)
2977			maxpages = UINT_MAX;
2978	}
2979	p->highest_bit = maxpages - 1;
2980
2981	if (!maxpages)
2982		return 0;
2983	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2984	if (swapfilepages && maxpages > swapfilepages) {
2985		pr_warn("Swap area shorter than signature indicates\n");
2986		return 0;
2987	}
2988	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2989		return 0;
2990	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2991		return 0;
2992
2993	return maxpages;
2994}
2995
2996#define SWAP_CLUSTER_INFO_COLS						\
2997	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2998#define SWAP_CLUSTER_SPACE_COLS						\
2999	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3000#define SWAP_CLUSTER_COLS						\
3001	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3002
3003static int setup_swap_map_and_extents(struct swap_info_struct *p,
3004					union swap_header *swap_header,
3005					unsigned char *swap_map,
3006					struct swap_cluster_info *cluster_info,
3007					unsigned long maxpages,
3008					sector_t *span)
3009{
3010	unsigned int j, k;
3011	unsigned int nr_good_pages;
 
3012	int nr_extents;
3013	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3014	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3015	unsigned long i, idx;
3016
3017	nr_good_pages = maxpages - 1;	/* omit header page */
3018
3019	cluster_list_init(&p->free_clusters);
3020	cluster_list_init(&p->discard_clusters);
3021
3022	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3023		unsigned int page_nr = swap_header->info.badpages[i];
3024		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3025			return -EINVAL;
3026		if (page_nr < maxpages) {
3027			swap_map[page_nr] = SWAP_MAP_BAD;
3028			nr_good_pages--;
3029			/*
3030			 * Haven't marked the cluster free yet, no list
3031			 * operation involved
3032			 */
3033			inc_cluster_info_page(p, cluster_info, page_nr);
3034		}
3035	}
3036
3037	/* Haven't marked the cluster free yet, no list operation involved */
3038	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3039		inc_cluster_info_page(p, cluster_info, i);
3040
3041	if (nr_good_pages) {
3042		swap_map[0] = SWAP_MAP_BAD;
3043		/*
3044		 * Not mark the cluster free yet, no list
3045		 * operation involved
3046		 */
3047		inc_cluster_info_page(p, cluster_info, 0);
3048		p->max = maxpages;
3049		p->pages = nr_good_pages;
3050		nr_extents = setup_swap_extents(p, span);
3051		if (nr_extents < 0)
3052			return nr_extents;
3053		nr_good_pages = p->pages;
3054	}
3055	if (!nr_good_pages) {
3056		pr_warn("Empty swap-file\n");
3057		return -EINVAL;
3058	}
3059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3060	if (!cluster_info)
3061		return nr_extents;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3062
 
 
 
 
 
 
 
 
 
3063
3064	/*
3065	 * Reduce false cache line sharing between cluster_info and
3066	 * sharing same address space.
3067	 */
3068	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3069		j = (k + col) % SWAP_CLUSTER_COLS;
3070		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
 
3071			idx = i * SWAP_CLUSTER_COLS + j;
 
3072			if (idx >= nr_clusters)
3073				continue;
3074			if (cluster_count(&cluster_info[idx]))
 
 
3075				continue;
3076			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3077			cluster_list_add_tail(&p->free_clusters, cluster_info,
3078					      idx);
3079		}
3080	}
3081	return nr_extents;
3082}
3083
3084/*
3085 * Helper to sys_swapon determining if a given swap
3086 * backing device queue supports DISCARD operations.
3087 */
3088static bool swap_discardable(struct swap_info_struct *si)
3089{
3090	struct request_queue *q = bdev_get_queue(si->bdev);
3091
3092	if (!q || !blk_queue_discard(q))
3093		return false;
3094
3095	return true;
 
 
 
3096}
3097
3098SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3099{
3100	struct swap_info_struct *p;
3101	struct filename *name;
3102	struct file *swap_file = NULL;
3103	struct address_space *mapping;
 
3104	int prio;
3105	int error;
3106	union swap_header *swap_header;
3107	int nr_extents;
3108	sector_t span;
3109	unsigned long maxpages;
3110	unsigned char *swap_map = NULL;
 
3111	struct swap_cluster_info *cluster_info = NULL;
3112	unsigned long *frontswap_map = NULL;
3113	struct page *page = NULL;
3114	struct inode *inode = NULL;
3115	bool inced_nr_rotate_swap = false;
3116
3117	if (swap_flags & ~SWAP_FLAGS_VALID)
3118		return -EINVAL;
3119
3120	if (!capable(CAP_SYS_ADMIN))
3121		return -EPERM;
3122
3123	if (!swap_avail_heads)
3124		return -ENOMEM;
3125
3126	p = alloc_swap_info();
3127	if (IS_ERR(p))
3128		return PTR_ERR(p);
3129
3130	INIT_WORK(&p->discard_work, swap_discard_work);
 
3131
3132	name = getname(specialfile);
3133	if (IS_ERR(name)) {
3134		error = PTR_ERR(name);
3135		name = NULL;
3136		goto bad_swap;
3137	}
3138	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3139	if (IS_ERR(swap_file)) {
3140		error = PTR_ERR(swap_file);
3141		swap_file = NULL;
3142		goto bad_swap;
3143	}
3144
3145	p->swap_file = swap_file;
3146	mapping = swap_file->f_mapping;
 
3147	inode = mapping->host;
3148
3149	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3150	error = claim_swapfile(p, inode);
3151	if (unlikely(error))
3152		goto bad_swap;
3153
 
 
 
 
 
 
 
 
 
 
3154	/*
3155	 * Read the swap header.
3156	 */
3157	if (!mapping->a_ops->readpage) {
3158		error = -EINVAL;
3159		goto bad_swap;
3160	}
3161	page = read_mapping_page(mapping, 0, swap_file);
3162	if (IS_ERR(page)) {
3163		error = PTR_ERR(page);
3164		goto bad_swap;
3165	}
3166	swap_header = kmap(page);
3167
3168	maxpages = read_swap_header(p, swap_header, inode);
3169	if (unlikely(!maxpages)) {
3170		error = -EINVAL;
3171		goto bad_swap;
3172	}
3173
3174	/* OK, set up the swap map and apply the bad block list */
3175	swap_map = vzalloc(maxpages);
3176	if (!swap_map) {
3177		error = -ENOMEM;
3178		goto bad_swap;
3179	}
3180
3181	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3182		p->flags |= SWP_STABLE_WRITES;
 
3183
3184	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3185		p->flags |= SWP_SYNCHRONOUS_IO;
 
 
 
 
3186
3187	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3188		int cpu;
3189		unsigned long ci, nr_cluster;
 
 
 
 
 
 
 
3190
3191		p->flags |= SWP_SOLIDSTATE;
3192		/*
3193		 * select a random position to start with to help wear leveling
3194		 * SSD
3195		 */
3196		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3197		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3198
3199		cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3200					GFP_KERNEL);
3201		if (!cluster_info) {
3202			error = -ENOMEM;
3203			goto bad_swap;
3204		}
3205
3206		for (ci = 0; ci < nr_cluster; ci++)
3207			spin_lock_init(&((cluster_info + ci)->lock));
3208
3209		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3210		if (!p->percpu_cluster) {
3211			error = -ENOMEM;
3212			goto bad_swap;
3213		}
3214		for_each_possible_cpu(cpu) {
3215			struct percpu_cluster *cluster;
3216			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3217			cluster_set_null(&cluster->index);
3218		}
3219	} else {
3220		atomic_inc(&nr_rotate_swap);
3221		inced_nr_rotate_swap = true;
3222	}
3223
3224	error = swap_cgroup_swapon(p->type, maxpages);
3225	if (error)
3226		goto bad_swap;
3227
3228	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3229		cluster_info, maxpages, &span);
3230	if (unlikely(nr_extents < 0)) {
3231		error = nr_extents;
3232		goto bad_swap;
3233	}
3234	/* frontswap enabled? set up bit-per-page map for frontswap */
3235	if (IS_ENABLED(CONFIG_FRONTSWAP))
3236		frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3237					 GFP_KERNEL);
3238
3239	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3240		/*
3241		 * When discard is enabled for swap with no particular
3242		 * policy flagged, we set all swap discard flags here in
3243		 * order to sustain backward compatibility with older
3244		 * swapon(8) releases.
3245		 */
3246		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3247			     SWP_PAGE_DISCARD);
3248
3249		/*
3250		 * By flagging sys_swapon, a sysadmin can tell us to
3251		 * either do single-time area discards only, or to just
3252		 * perform discards for released swap page-clusters.
3253		 * Now it's time to adjust the p->flags accordingly.
3254		 */
3255		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3256			p->flags &= ~SWP_PAGE_DISCARD;
3257		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3258			p->flags &= ~SWP_AREA_DISCARD;
3259
3260		/* issue a swapon-time discard if it's still required */
3261		if (p->flags & SWP_AREA_DISCARD) {
3262			int err = discard_swap(p);
3263			if (unlikely(err))
3264				pr_err("swapon: discard_swap(%p): %d\n",
3265					p, err);
3266		}
3267	}
3268
3269	error = init_swap_address_space(p->type, maxpages);
3270	if (error)
3271		goto bad_swap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3272
3273	mutex_lock(&swapon_mutex);
3274	prio = -1;
3275	if (swap_flags & SWAP_FLAG_PREFER)
3276		prio =
3277		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3278	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3279
3280	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3281		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3282		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3283		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3284		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3285		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3286		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3287		(frontswap_map) ? "FS" : "");
3288
3289	mutex_unlock(&swapon_mutex);
3290	atomic_inc(&proc_poll_event);
3291	wake_up_interruptible(&proc_poll_wait);
3292
3293	if (S_ISREG(inode->i_mode))
3294		inode->i_flags |= S_SWAPFILE;
3295	error = 0;
3296	goto out;
 
 
 
 
 
 
3297bad_swap:
3298	free_percpu(p->percpu_cluster);
3299	p->percpu_cluster = NULL;
3300	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3301		set_blocksize(p->bdev, p->old_block_size);
3302		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3303	}
3304	destroy_swap_extents(p);
3305	swap_cgroup_swapoff(p->type);
3306	spin_lock(&swap_lock);
3307	p->swap_file = NULL;
3308	p->flags = 0;
3309	spin_unlock(&swap_lock);
3310	vfree(swap_map);
 
3311	kvfree(cluster_info);
3312	kvfree(frontswap_map);
3313	if (inced_nr_rotate_swap)
3314		atomic_dec(&nr_rotate_swap);
3315	if (swap_file) {
3316		if (inode && S_ISREG(inode->i_mode)) {
3317			inode_unlock(inode);
3318			inode = NULL;
3319		}
3320		filp_close(swap_file, NULL);
3321	}
3322out:
3323	if (page && !IS_ERR(page)) {
3324		kunmap(page);
3325		put_page(page);
3326	}
3327	if (name)
3328		putname(name);
3329	if (inode && S_ISREG(inode->i_mode))
3330		inode_unlock(inode);
3331	if (!error)
3332		enable_swap_slots_cache();
3333	return error;
3334}
3335
3336void si_swapinfo(struct sysinfo *val)
3337{
3338	unsigned int type;
3339	unsigned long nr_to_be_unused = 0;
3340
3341	spin_lock(&swap_lock);
3342	for (type = 0; type < nr_swapfiles; type++) {
3343		struct swap_info_struct *si = swap_info[type];
3344
3345		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3346			nr_to_be_unused += si->inuse_pages;
3347	}
3348	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3349	val->totalswap = total_swap_pages + nr_to_be_unused;
3350	spin_unlock(&swap_lock);
3351}
3352
3353/*
3354 * Verify that a swap entry is valid and increment its swap map count.
3355 *
3356 * Returns error code in following case.
3357 * - success -> 0
3358 * - swp_entry is invalid -> EINVAL
3359 * - swp_entry is migration entry -> EINVAL
3360 * - swap-cache reference is requested but there is already one. -> EEXIST
3361 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3362 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3363 */
3364static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3365{
3366	struct swap_info_struct *p;
3367	struct swap_cluster_info *ci;
3368	unsigned long offset, type;
3369	unsigned char count;
3370	unsigned char has_cache;
3371	int err = -EINVAL;
3372
3373	if (non_swap_entry(entry))
3374		goto out;
3375
3376	type = swp_type(entry);
3377	if (type >= nr_swapfiles)
3378		goto bad_file;
3379	p = swap_info[type];
3380	offset = swp_offset(entry);
3381	if (unlikely(offset >= p->max))
3382		goto out;
3383
3384	ci = lock_cluster_or_swap_info(p, offset);
3385
3386	count = p->swap_map[offset];
3387
3388	/*
3389	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3390	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3391	 */
3392	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3393		err = -ENOENT;
3394		goto unlock_out;
3395	}
3396
3397	has_cache = count & SWAP_HAS_CACHE;
3398	count &= ~SWAP_HAS_CACHE;
3399	err = 0;
 
 
3400
3401	if (usage == SWAP_HAS_CACHE) {
 
 
 
 
 
 
 
3402
3403		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3404		if (!has_cache && count)
3405			has_cache = SWAP_HAS_CACHE;
3406		else if (has_cache)		/* someone else added cache */
3407			err = -EEXIST;
3408		else				/* no users remaining */
3409			err = -ENOENT;
 
 
 
 
 
 
3410
3411	} else if (count || has_cache) {
 
 
3412
3413		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
 
 
 
 
 
 
 
3414			count += usage;
3415		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3416			err = -EINVAL;
3417		else if (swap_count_continued(p, offset, count))
3418			count = COUNT_CONTINUED;
3419		else
 
 
 
 
3420			err = -ENOMEM;
3421	} else
3422		err = -ENOENT;			/* unused swap entry */
3423
3424	p->swap_map[offset] = count | has_cache;
 
3425
3426unlock_out:
3427	unlock_cluster_or_swap_info(p, ci);
3428out:
3429	return err;
3430
3431bad_file:
3432	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3433	goto out;
3434}
3435
3436/*
3437 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3438 * (in which case its reference count is never incremented).
3439 */
3440void swap_shmem_alloc(swp_entry_t entry)
3441{
3442	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3443}
3444
3445/*
3446 * Increase reference count of swap entry by 1.
3447 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3448 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3449 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3450 * might occur if a page table entry has got corrupted.
3451 */
3452int swap_duplicate(swp_entry_t entry)
3453{
3454	int err = 0;
3455
3456	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3457		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3458	return err;
3459}
3460
3461/*
3462 * @entry: swap entry for which we allocate swap cache.
3463 *
3464 * Called when allocating swap cache for existing swap entry,
3465 * This can return error codes. Returns 0 at success.
3466 * -EBUSY means there is a swap cache.
3467 * Note: return code is different from swap_duplicate().
3468 */
3469int swapcache_prepare(swp_entry_t entry)
3470{
3471	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3472}
3473
3474struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3475{
3476	return swap_info[swp_type(entry)];
 
 
3477}
3478
3479struct swap_info_struct *page_swap_info(struct page *page)
3480{
3481	swp_entry_t entry = { .val = page_private(page) };
3482	return swp_swap_info(entry);
3483}
3484
3485/*
3486 * out-of-line __page_file_ methods to avoid include hell.
3487 */
3488struct address_space *__page_file_mapping(struct page *page)
3489{
3490	return page_swap_info(page)->swap_file->f_mapping;
3491}
3492EXPORT_SYMBOL_GPL(__page_file_mapping);
3493
3494pgoff_t __page_file_index(struct page *page)
3495{
3496	swp_entry_t swap = { .val = page_private(page) };
3497	return swp_offset(swap);
3498}
3499EXPORT_SYMBOL_GPL(__page_file_index);
3500
3501/*
3502 * add_swap_count_continuation - called when a swap count is duplicated
3503 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3504 * page of the original vmalloc'ed swap_map, to hold the continuation count
3505 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3506 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3507 *
3508 * These continuation pages are seldom referenced: the common paths all work
3509 * on the original swap_map, only referring to a continuation page when the
3510 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3511 *
3512 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3513 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3514 * can be called after dropping locks.
3515 */
3516int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3517{
3518	struct swap_info_struct *si;
3519	struct swap_cluster_info *ci;
3520	struct page *head;
3521	struct page *page;
3522	struct page *list_page;
3523	pgoff_t offset;
3524	unsigned char count;
 
3525
3526	/*
3527	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3528	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3529	 */
3530	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3531
3532	si = swap_info_get(entry);
3533	if (!si) {
3534		/*
3535		 * An acceptable race has occurred since the failing
3536		 * __swap_duplicate(): the swap entry has been freed,
3537		 * perhaps even the whole swap_map cleared for swapoff.
3538		 */
3539		goto outer;
3540	}
 
3541
3542	offset = swp_offset(entry);
3543
3544	ci = lock_cluster(si, offset);
3545
3546	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3547
3548	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3549		/*
3550		 * The higher the swap count, the more likely it is that tasks
3551		 * will race to add swap count continuation: we need to avoid
3552		 * over-provisioning.
3553		 */
3554		goto out;
3555	}
3556
3557	if (!page) {
3558		unlock_cluster(ci);
3559		spin_unlock(&si->lock);
3560		return -ENOMEM;
3561	}
3562
3563	/*
3564	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3565	 * no architecture is using highmem pages for kernel page tables: so it
3566	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3567	 */
3568	head = vmalloc_to_page(si->swap_map + offset);
3569	offset &= ~PAGE_MASK;
3570
3571	spin_lock(&si->cont_lock);
3572	/*
3573	 * Page allocation does not initialize the page's lru field,
3574	 * but it does always reset its private field.
3575	 */
3576	if (!page_private(head)) {
3577		BUG_ON(count & COUNT_CONTINUED);
3578		INIT_LIST_HEAD(&head->lru);
3579		set_page_private(head, SWP_CONTINUED);
3580		si->flags |= SWP_CONTINUED;
3581	}
3582
3583	list_for_each_entry(list_page, &head->lru, lru) {
3584		unsigned char *map;
3585
3586		/*
3587		 * If the previous map said no continuation, but we've found
3588		 * a continuation page, free our allocation and use this one.
3589		 */
3590		if (!(count & COUNT_CONTINUED))
3591			goto out_unlock_cont;
3592
3593		map = kmap_atomic(list_page) + offset;
3594		count = *map;
3595		kunmap_atomic(map);
3596
3597		/*
3598		 * If this continuation count now has some space in it,
3599		 * free our allocation and use this one.
3600		 */
3601		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3602			goto out_unlock_cont;
3603	}
3604
3605	list_add_tail(&page->lru, &head->lru);
3606	page = NULL;			/* now it's attached, don't free it */
3607out_unlock_cont:
3608	spin_unlock(&si->cont_lock);
3609out:
3610	unlock_cluster(ci);
3611	spin_unlock(&si->lock);
 
3612outer:
3613	if (page)
3614		__free_page(page);
3615	return 0;
3616}
3617
3618/*
3619 * swap_count_continued - when the original swap_map count is incremented
3620 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3621 * into, carry if so, or else fail until a new continuation page is allocated;
3622 * when the original swap_map count is decremented from 0 with continuation,
3623 * borrow from the continuation and report whether it still holds more.
3624 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3625 * lock.
3626 */
3627static bool swap_count_continued(struct swap_info_struct *si,
3628				 pgoff_t offset, unsigned char count)
3629{
3630	struct page *head;
3631	struct page *page;
3632	unsigned char *map;
3633	bool ret;
3634
3635	head = vmalloc_to_page(si->swap_map + offset);
3636	if (page_private(head) != SWP_CONTINUED) {
3637		BUG_ON(count & COUNT_CONTINUED);
3638		return false;		/* need to add count continuation */
3639	}
3640
3641	spin_lock(&si->cont_lock);
3642	offset &= ~PAGE_MASK;
3643	page = list_entry(head->lru.next, struct page, lru);
3644	map = kmap_atomic(page) + offset;
3645
3646	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3647		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3648
3649	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3650		/*
3651		 * Think of how you add 1 to 999
3652		 */
3653		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3654			kunmap_atomic(map);
3655			page = list_entry(page->lru.next, struct page, lru);
3656			BUG_ON(page == head);
3657			map = kmap_atomic(page) + offset;
3658		}
3659		if (*map == SWAP_CONT_MAX) {
3660			kunmap_atomic(map);
3661			page = list_entry(page->lru.next, struct page, lru);
3662			if (page == head) {
3663				ret = false;	/* add count continuation */
3664				goto out;
3665			}
3666			map = kmap_atomic(page) + offset;
3667init_map:		*map = 0;		/* we didn't zero the page */
3668		}
3669		*map += 1;
3670		kunmap_atomic(map);
3671		page = list_entry(page->lru.prev, struct page, lru);
3672		while (page != head) {
3673			map = kmap_atomic(page) + offset;
3674			*map = COUNT_CONTINUED;
3675			kunmap_atomic(map);
3676			page = list_entry(page->lru.prev, struct page, lru);
3677		}
3678		ret = true;			/* incremented */
3679
3680	} else {				/* decrementing */
3681		/*
3682		 * Think of how you subtract 1 from 1000
3683		 */
3684		BUG_ON(count != COUNT_CONTINUED);
3685		while (*map == COUNT_CONTINUED) {
3686			kunmap_atomic(map);
3687			page = list_entry(page->lru.next, struct page, lru);
3688			BUG_ON(page == head);
3689			map = kmap_atomic(page) + offset;
3690		}
3691		BUG_ON(*map == 0);
3692		*map -= 1;
3693		if (*map == 0)
3694			count = 0;
3695		kunmap_atomic(map);
3696		page = list_entry(page->lru.prev, struct page, lru);
3697		while (page != head) {
3698			map = kmap_atomic(page) + offset;
3699			*map = SWAP_CONT_MAX | count;
3700			count = COUNT_CONTINUED;
3701			kunmap_atomic(map);
3702			page = list_entry(page->lru.prev, struct page, lru);
3703		}
3704		ret = count == COUNT_CONTINUED;
3705	}
3706out:
3707	spin_unlock(&si->cont_lock);
3708	return ret;
3709}
3710
3711/*
3712 * free_swap_count_continuations - swapoff free all the continuation pages
3713 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3714 */
3715static void free_swap_count_continuations(struct swap_info_struct *si)
3716{
3717	pgoff_t offset;
3718
3719	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3720		struct page *head;
3721		head = vmalloc_to_page(si->swap_map + offset);
3722		if (page_private(head)) {
3723			struct page *page, *next;
3724
3725			list_for_each_entry_safe(page, next, &head->lru, lru) {
3726				list_del(&page->lru);
3727				__free_page(page);
3728			}
3729		}
3730	}
3731}
3732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3733static int __init swapfile_init(void)
3734{
3735	int nid;
3736
3737	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3738					 GFP_KERNEL);
3739	if (!swap_avail_heads) {
3740		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3741		return -ENOMEM;
3742	}
3743
3744	for_each_node(nid)
3745		plist_head_init(&swap_avail_heads[nid]);
 
 
 
 
 
 
 
3746
3747	return 0;
3748}
3749subsys_initcall(swapfile_init);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
   9#include <linux/blkdev.h>
  10#include <linux/mm.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/task.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mman.h>
  15#include <linux/slab.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/swap.h>
  18#include <linux/vmalloc.h>
  19#include <linux/pagemap.h>
  20#include <linux/namei.h>
  21#include <linux/shmem_fs.h>
  22#include <linux/blk-cgroup.h>
  23#include <linux/random.h>
  24#include <linux/writeback.h>
  25#include <linux/proc_fs.h>
  26#include <linux/seq_file.h>
  27#include <linux/init.h>
  28#include <linux/ksm.h>
  29#include <linux/rmap.h>
  30#include <linux/security.h>
  31#include <linux/backing-dev.h>
  32#include <linux/mutex.h>
  33#include <linux/capability.h>
  34#include <linux/syscalls.h>
  35#include <linux/memcontrol.h>
  36#include <linux/poll.h>
  37#include <linux/oom.h>
 
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
  42#include <linux/completion.h>
  43#include <linux/suspend.h>
  44#include <linux/zswap.h>
  45#include <linux/plist.h>
  46
 
  47#include <asm/tlbflush.h>
  48#include <linux/swapops.h>
  49#include <linux/swap_cgroup.h>
  50#include "internal.h"
  51#include "swap.h"
  52
  53static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  54				 unsigned char);
  55static void free_swap_count_continuations(struct swap_info_struct *);
  56static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
  57				  unsigned int nr_pages);
  58static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
  59			     unsigned int nr_entries);
  60static bool folio_swapcache_freeable(struct folio *folio);
  61static struct swap_cluster_info *lock_cluster_or_swap_info(
  62		struct swap_info_struct *si, unsigned long offset);
  63static void unlock_cluster_or_swap_info(struct swap_info_struct *si,
  64					struct swap_cluster_info *ci);
  65
  66static DEFINE_SPINLOCK(swap_lock);
  67static unsigned int nr_swapfiles;
  68atomic_long_t nr_swap_pages;
  69/*
  70 * Some modules use swappable objects and may try to swap them out under
  71 * memory pressure (via the shrinker). Before doing so, they may wish to
  72 * check to see if any swap space is available.
  73 */
  74EXPORT_SYMBOL_GPL(nr_swap_pages);
  75/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  76long total_swap_pages;
  77static int least_priority = -1;
  78unsigned long swapfile_maximum_size;
  79#ifdef CONFIG_MIGRATION
  80bool swap_migration_ad_supported;
  81#endif	/* CONFIG_MIGRATION */
  82
  83static const char Bad_file[] = "Bad swap file entry ";
  84static const char Unused_file[] = "Unused swap file entry ";
  85static const char Bad_offset[] = "Bad swap offset entry ";
  86static const char Unused_offset[] = "Unused swap offset entry ";
  87
  88/*
  89 * all active swap_info_structs
  90 * protected with swap_lock, and ordered by priority.
  91 */
  92static PLIST_HEAD(swap_active_head);
  93
  94/*
  95 * all available (active, not full) swap_info_structs
  96 * protected with swap_avail_lock, ordered by priority.
  97 * This is used by folio_alloc_swap() instead of swap_active_head
  98 * because swap_active_head includes all swap_info_structs,
  99 * but folio_alloc_swap() doesn't need to look at full ones.
 100 * This uses its own lock instead of swap_lock because when a
 101 * swap_info_struct changes between not-full/full, it needs to
 102 * add/remove itself to/from this list, but the swap_info_struct->lock
 103 * is held and the locking order requires swap_lock to be taken
 104 * before any swap_info_struct->lock.
 105 */
 106static struct plist_head *swap_avail_heads;
 107static DEFINE_SPINLOCK(swap_avail_lock);
 108
 109static struct swap_info_struct *swap_info[MAX_SWAPFILES];
 110
 111static DEFINE_MUTEX(swapon_mutex);
 112
 113static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
 114/* Activity counter to indicate that a swapon or swapoff has occurred */
 115static atomic_t proc_poll_event = ATOMIC_INIT(0);
 116
 117atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 118
 119static struct swap_info_struct *swap_type_to_swap_info(int type)
 120{
 121	if (type >= MAX_SWAPFILES)
 122		return NULL;
 123
 124	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
 125}
 126
 127static inline unsigned char swap_count(unsigned char ent)
 128{
 129	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 130}
 131
 132/* Reclaim the swap entry anyway if possible */
 133#define TTRS_ANYWAY		0x1
 134/*
 135 * Reclaim the swap entry if there are no more mappings of the
 136 * corresponding page
 137 */
 138#define TTRS_UNMAPPED		0x2
 139/* Reclaim the swap entry if swap is getting full */
 140#define TTRS_FULL		0x4
 141/* Reclaim directly, bypass the slot cache and don't touch device lock */
 142#define TTRS_DIRECT		0x8
 143
 144static bool swap_is_has_cache(struct swap_info_struct *si,
 145			      unsigned long offset, int nr_pages)
 146{
 147	unsigned char *map = si->swap_map + offset;
 148	unsigned char *map_end = map + nr_pages;
 149
 150	do {
 151		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
 152		if (*map != SWAP_HAS_CACHE)
 153			return false;
 154	} while (++map < map_end);
 155
 156	return true;
 157}
 158
 159static bool swap_is_last_map(struct swap_info_struct *si,
 160		unsigned long offset, int nr_pages, bool *has_cache)
 161{
 162	unsigned char *map = si->swap_map + offset;
 163	unsigned char *map_end = map + nr_pages;
 164	unsigned char count = *map;
 165
 166	if (swap_count(count) != 1)
 167		return false;
 168
 169	while (++map < map_end) {
 170		if (*map != count)
 171			return false;
 172	}
 173
 174	*has_cache = !!(count & SWAP_HAS_CACHE);
 175	return true;
 176}
 177
 178/*
 179 * returns number of pages in the folio that backs the swap entry. If positive,
 180 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
 181 * folio was associated with the swap entry.
 182 */
 183static int __try_to_reclaim_swap(struct swap_info_struct *si,
 184				 unsigned long offset, unsigned long flags)
 185{
 186	swp_entry_t entry = swp_entry(si->type, offset);
 187	struct address_space *address_space = swap_address_space(entry);
 188	struct swap_cluster_info *ci;
 189	struct folio *folio;
 190	int ret, nr_pages;
 191	bool need_reclaim;
 192
 193	folio = filemap_get_folio(address_space, swap_cache_index(entry));
 194	if (IS_ERR(folio))
 195		return 0;
 196
 197	nr_pages = folio_nr_pages(folio);
 198	ret = -nr_pages;
 199
 200	/*
 201	 * When this function is called from scan_swap_map_slots() and it's
 202	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
 203	 * here. We have to use trylock for avoiding deadlock. This is a special
 204	 * case and you should use folio_free_swap() with explicit folio_lock()
 205	 * in usual operations.
 206	 */
 207	if (!folio_trylock(folio))
 208		goto out;
 209
 210	/* offset could point to the middle of a large folio */
 211	entry = folio->swap;
 212	offset = swp_offset(entry);
 213
 214	need_reclaim = ((flags & TTRS_ANYWAY) ||
 215			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
 216			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
 217	if (!need_reclaim || !folio_swapcache_freeable(folio))
 218		goto out_unlock;
 219
 220	/*
 221	 * It's safe to delete the folio from swap cache only if the folio's
 222	 * swap_map is HAS_CACHE only, which means the slots have no page table
 223	 * reference or pending writeback, and can't be allocated to others.
 224	 */
 225	ci = lock_cluster_or_swap_info(si, offset);
 226	need_reclaim = swap_is_has_cache(si, offset, nr_pages);
 227	unlock_cluster_or_swap_info(si, ci);
 228	if (!need_reclaim)
 229		goto out_unlock;
 230
 231	if (!(flags & TTRS_DIRECT)) {
 232		/* Free through slot cache */
 233		delete_from_swap_cache(folio);
 234		folio_set_dirty(folio);
 235		ret = nr_pages;
 236		goto out_unlock;
 237	}
 238
 239	xa_lock_irq(&address_space->i_pages);
 240	__delete_from_swap_cache(folio, entry, NULL);
 241	xa_unlock_irq(&address_space->i_pages);
 242	folio_ref_sub(folio, nr_pages);
 243	folio_set_dirty(folio);
 244
 245	spin_lock(&si->lock);
 246	/* Only sinple page folio can be backed by zswap */
 247	if (nr_pages == 1)
 248		zswap_invalidate(entry);
 249	swap_entry_range_free(si, entry, nr_pages);
 250	spin_unlock(&si->lock);
 251	ret = nr_pages;
 252out_unlock:
 253	folio_unlock(folio);
 254out:
 255	folio_put(folio);
 256	return ret;
 257}
 258
 259static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 260{
 261	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 262	return rb_entry(rb, struct swap_extent, rb_node);
 263}
 264
 265static inline struct swap_extent *next_se(struct swap_extent *se)
 266{
 267	struct rb_node *rb = rb_next(&se->rb_node);
 268	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 269}
 270
 271/*
 272 * swapon tell device that all the old swap contents can be discarded,
 273 * to allow the swap device to optimize its wear-levelling.
 274 */
 275static int discard_swap(struct swap_info_struct *si)
 276{
 277	struct swap_extent *se;
 278	sector_t start_block;
 279	sector_t nr_blocks;
 280	int err = 0;
 281
 282	/* Do not discard the swap header page! */
 283	se = first_se(si);
 284	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 285	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 286	if (nr_blocks) {
 287		err = blkdev_issue_discard(si->bdev, start_block,
 288				nr_blocks, GFP_KERNEL);
 289		if (err)
 290			return err;
 291		cond_resched();
 292	}
 293
 294	for (se = next_se(se); se; se = next_se(se)) {
 295		start_block = se->start_block << (PAGE_SHIFT - 9);
 296		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 297
 298		err = blkdev_issue_discard(si->bdev, start_block,
 299				nr_blocks, GFP_KERNEL);
 300		if (err)
 301			break;
 302
 303		cond_resched();
 304	}
 305	return err;		/* That will often be -EOPNOTSUPP */
 306}
 307
 308static struct swap_extent *
 309offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 310{
 311	struct swap_extent *se;
 312	struct rb_node *rb;
 313
 314	rb = sis->swap_extent_root.rb_node;
 315	while (rb) {
 316		se = rb_entry(rb, struct swap_extent, rb_node);
 317		if (offset < se->start_page)
 318			rb = rb->rb_left;
 319		else if (offset >= se->start_page + se->nr_pages)
 320			rb = rb->rb_right;
 321		else
 322			return se;
 323	}
 324	/* It *must* be present */
 325	BUG();
 326}
 327
 328sector_t swap_folio_sector(struct folio *folio)
 329{
 330	struct swap_info_struct *sis = swp_swap_info(folio->swap);
 331	struct swap_extent *se;
 332	sector_t sector;
 333	pgoff_t offset;
 334
 335	offset = swp_offset(folio->swap);
 336	se = offset_to_swap_extent(sis, offset);
 337	sector = se->start_block + (offset - se->start_page);
 338	return sector << (PAGE_SHIFT - 9);
 339}
 340
 341/*
 342 * swap allocation tell device that a cluster of swap can now be discarded,
 343 * to allow the swap device to optimize its wear-levelling.
 344 */
 345static void discard_swap_cluster(struct swap_info_struct *si,
 346				 pgoff_t start_page, pgoff_t nr_pages)
 347{
 348	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 
 349
 350	while (nr_pages) {
 351		pgoff_t offset = start_page - se->start_page;
 352		sector_t start_block = se->start_block + offset;
 353		sector_t nr_blocks = se->nr_pages - offset;
 354
 355		if (nr_blocks > nr_pages)
 356			nr_blocks = nr_pages;
 357		start_page += nr_blocks;
 358		nr_pages -= nr_blocks;
 359
 360		start_block <<= PAGE_SHIFT - 9;
 361		nr_blocks <<= PAGE_SHIFT - 9;
 362		if (blkdev_issue_discard(si->bdev, start_block,
 363					nr_blocks, GFP_NOIO))
 364			break;
 
 
 
 
 
 
 365
 366		se = next_se(se);
 367	}
 368}
 369
 370#ifdef CONFIG_THP_SWAP
 371#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 372
 373#define swap_entry_order(order)	(order)
 374#else
 375#define SWAPFILE_CLUSTER	256
 376
 377/*
 378 * Define swap_entry_order() as constant to let compiler to optimize
 379 * out some code if !CONFIG_THP_SWAP
 380 */
 381#define swap_entry_order(order)	0
 382#endif
 383#define LATENCY_LIMIT		256
 384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385static inline bool cluster_is_free(struct swap_cluster_info *info)
 386{
 387	return info->flags & CLUSTER_FLAG_FREE;
 388}
 389
 390static inline unsigned int cluster_index(struct swap_info_struct *si,
 391					 struct swap_cluster_info *ci)
 392{
 393	return ci - si->cluster_info;
 394}
 395
 396static inline unsigned int cluster_offset(struct swap_info_struct *si,
 397					  struct swap_cluster_info *ci)
 398{
 399	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
 
 
 
 
 
 
 
 
 
 
 
 400}
 401
 402static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 403						     unsigned long offset)
 404{
 405	struct swap_cluster_info *ci;
 406
 407	ci = si->cluster_info;
 408	if (ci) {
 409		ci += offset / SWAPFILE_CLUSTER;
 410		spin_lock(&ci->lock);
 411	}
 412	return ci;
 413}
 414
 415static inline void unlock_cluster(struct swap_cluster_info *ci)
 416{
 417	if (ci)
 418		spin_unlock(&ci->lock);
 419}
 420
 421/*
 422 * Determine the locking method in use for this device.  Return
 423 * swap_cluster_info if SSD-style cluster-based locking is in place.
 424 */
 425static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 426		struct swap_info_struct *si, unsigned long offset)
 
 427{
 428	struct swap_cluster_info *ci;
 429
 430	/* Try to use fine-grained SSD-style locking if available: */
 431	ci = lock_cluster(si, offset);
 432	/* Otherwise, fall back to traditional, coarse locking: */
 433	if (!ci)
 434		spin_lock(&si->lock);
 435
 436	return ci;
 437}
 438
 439static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 440					       struct swap_cluster_info *ci)
 441{
 442	if (ci)
 443		unlock_cluster(ci);
 444	else
 445		spin_unlock(&si->lock);
 446}
 447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448/* Add a cluster to discard list and schedule it to do discard */
 449static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 450		struct swap_cluster_info *ci)
 451{
 452	unsigned int idx = cluster_index(si, ci);
 453	/*
 454	 * If scan_swap_map_slots() can't find a free cluster, it will check
 455	 * si->swap_map directly. To make sure the discarding cluster isn't
 456	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
 457	 * It will be cleared after discard
 458	 */
 459	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 460			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 461
 462	VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
 463	list_move_tail(&ci->list, &si->discard_clusters);
 464	ci->flags = 0;
 465	schedule_work(&si->discard_work);
 466}
 467
 468static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
 469{
 470	lockdep_assert_held(&si->lock);
 471	lockdep_assert_held(&ci->lock);
 472
 473	if (ci->flags)
 474		list_move_tail(&ci->list, &si->free_clusters);
 475	else
 476		list_add_tail(&ci->list, &si->free_clusters);
 477	ci->flags = CLUSTER_FLAG_FREE;
 478	ci->order = 0;
 479}
 480
 481/*
 482 * Doing discard actually. After a cluster discard is finished, the cluster
 483 * will be added to free cluster list. caller should hold si->lock.
 484*/
 485static void swap_do_scheduled_discard(struct swap_info_struct *si)
 486{
 487	struct swap_cluster_info *ci;
 488	unsigned int idx;
 489
 490	while (!list_empty(&si->discard_clusters)) {
 491		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
 492		list_del(&ci->list);
 493		idx = cluster_index(si, ci);
 494		spin_unlock(&si->lock);
 495
 496		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 497				SWAPFILE_CLUSTER);
 498
 499		spin_lock(&si->lock);
 500		spin_lock(&ci->lock);
 501		__free_cluster(si, ci);
 502		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 503				0, SWAPFILE_CLUSTER);
 504		spin_unlock(&ci->lock);
 505	}
 506}
 507
 508static void swap_discard_work(struct work_struct *work)
 509{
 510	struct swap_info_struct *si;
 511
 512	si = container_of(work, struct swap_info_struct, discard_work);
 513
 514	spin_lock(&si->lock);
 515	swap_do_scheduled_discard(si);
 516	spin_unlock(&si->lock);
 517}
 518
 519static void swap_users_ref_free(struct percpu_ref *ref)
 520{
 521	struct swap_info_struct *si;
 522
 523	si = container_of(ref, struct swap_info_struct, users);
 524	complete(&si->comp);
 
 525}
 526
 527static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
 528{
 529	VM_BUG_ON(ci->count != 0);
 530	lockdep_assert_held(&si->lock);
 531	lockdep_assert_held(&ci->lock);
 532
 533	if (ci->flags & CLUSTER_FLAG_FRAG)
 534		si->frag_cluster_nr[ci->order]--;
 535
 
 536	/*
 537	 * If the swap is discardable, prepare discard the cluster
 538	 * instead of free it immediately. The cluster will be freed
 539	 * after discard.
 540	 */
 541	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 542	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 543		swap_cluster_schedule_discard(si, ci);
 544		return;
 545	}
 546
 547	__free_cluster(si, ci);
 548}
 549
 550/*
 551 * The cluster corresponding to page_nr will be used. The cluster will not be
 552 * added to free cluster list and its usage counter will be increased by 1.
 553 * Only used for initialization.
 554 */
 555static void inc_cluster_info_page(struct swap_info_struct *si,
 556	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 557{
 558	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 559	struct swap_cluster_info *ci;
 560
 561	if (!cluster_info)
 562		return;
 
 
 563
 564	ci = cluster_info + idx;
 565	ci->count++;
 566
 567	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
 568	VM_BUG_ON(ci->flags);
 569}
 570
 571/*
 572 * The cluster ci decreases @nr_pages usage. If the usage counter becomes 0,
 573 * which means no page in the cluster is in use, we can optionally discard
 574 * the cluster and add it to free cluster list.
 575 */
 576static void dec_cluster_info_page(struct swap_info_struct *si,
 577				  struct swap_cluster_info *ci, int nr_pages)
 578{
 579	if (!si->cluster_info)
 580		return;
 581
 582	VM_BUG_ON(ci->count < nr_pages);
 583	VM_BUG_ON(cluster_is_free(ci));
 584	lockdep_assert_held(&si->lock);
 585	lockdep_assert_held(&ci->lock);
 586	ci->count -= nr_pages;
 587
 588	if (!ci->count) {
 589		free_cluster(si, ci);
 590		return;
 591	}
 592
 593	if (!(ci->flags & CLUSTER_FLAG_NONFULL)) {
 594		VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
 595		if (ci->flags & CLUSTER_FLAG_FRAG)
 596			si->frag_cluster_nr[ci->order]--;
 597		list_move_tail(&ci->list, &si->nonfull_clusters[ci->order]);
 598		ci->flags = CLUSTER_FLAG_NONFULL;
 599	}
 600}
 601
 602static bool cluster_reclaim_range(struct swap_info_struct *si,
 603				  struct swap_cluster_info *ci,
 604				  unsigned long start, unsigned long end)
 605{
 606	unsigned char *map = si->swap_map;
 607	unsigned long offset;
 608
 609	spin_unlock(&ci->lock);
 610	spin_unlock(&si->lock);
 
 611
 612	for (offset = start; offset < end; offset++) {
 613		switch (READ_ONCE(map[offset])) {
 614		case 0:
 615			continue;
 616		case SWAP_HAS_CACHE:
 617			if (__try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT) > 0)
 618				continue;
 619			goto out;
 620		default:
 621			goto out;
 622		}
 623	}
 624out:
 625	spin_lock(&si->lock);
 626	spin_lock(&ci->lock);
 627
 628	/*
 629	 * Recheck the range no matter reclaim succeeded or not, the slot
 630	 * could have been be freed while we are not holding the lock.
 631	 */
 632	for (offset = start; offset < end; offset++)
 633		if (READ_ONCE(map[offset]))
 634			return false;
 635
 636	return true;
 637}
 638
 639static bool cluster_scan_range(struct swap_info_struct *si,
 640			       struct swap_cluster_info *ci,
 641			       unsigned long start, unsigned int nr_pages)
 
 
 
 
 642{
 643	unsigned long offset, end = start + nr_pages;
 644	unsigned char *map = si->swap_map;
 645	bool need_reclaim = false;
 646
 647	for (offset = start; offset < end; offset++) {
 648		switch (READ_ONCE(map[offset])) {
 649		case 0:
 650			continue;
 651		case SWAP_HAS_CACHE:
 652			if (!vm_swap_full())
 653				return false;
 654			need_reclaim = true;
 655			continue;
 656		default:
 657			return false;
 658		}
 659	}
 660
 661	if (need_reclaim)
 662		return cluster_reclaim_range(si, ci, start, end);
 
 
 663
 664	return true;
 665}
 666
 667static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
 668				unsigned int start, unsigned char usage,
 669				unsigned int order)
 670{
 671	unsigned int nr_pages = 1 << order;
 672
 673	if (!(si->flags & SWP_WRITEOK))
 674		return false;
 675
 676	if (cluster_is_free(ci)) {
 677		if (nr_pages < SWAPFILE_CLUSTER) {
 678			list_move_tail(&ci->list, &si->nonfull_clusters[order]);
 679			ci->flags = CLUSTER_FLAG_NONFULL;
 680		}
 681		ci->order = order;
 682	}
 683
 684	memset(si->swap_map + start, usage, nr_pages);
 685	swap_range_alloc(si, start, nr_pages);
 686	ci->count += nr_pages;
 687
 688	if (ci->count == SWAPFILE_CLUSTER) {
 689		VM_BUG_ON(!(ci->flags &
 690			  (CLUSTER_FLAG_FREE | CLUSTER_FLAG_NONFULL | CLUSTER_FLAG_FRAG)));
 691		if (ci->flags & CLUSTER_FLAG_FRAG)
 692			si->frag_cluster_nr[ci->order]--;
 693		list_move_tail(&ci->list, &si->full_clusters);
 694		ci->flags = CLUSTER_FLAG_FULL;
 695	}
 696
 697	return true;
 698}
 699
 700static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, unsigned long offset,
 701					    unsigned int *foundp, unsigned int order,
 702					    unsigned char usage)
 703{
 704	unsigned long start = offset & ~(SWAPFILE_CLUSTER - 1);
 705	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
 706	unsigned int nr_pages = 1 << order;
 707	struct swap_cluster_info *ci;
 708
 709	if (end < nr_pages)
 710		return SWAP_NEXT_INVALID;
 711	end -= nr_pages;
 712
 713	ci = lock_cluster(si, offset);
 714	if (ci->count + nr_pages > SWAPFILE_CLUSTER) {
 715		offset = SWAP_NEXT_INVALID;
 716		goto done;
 717	}
 718
 719	while (offset <= end) {
 720		if (cluster_scan_range(si, ci, offset, nr_pages)) {
 721			if (!cluster_alloc_range(si, ci, offset, usage, order)) {
 722				offset = SWAP_NEXT_INVALID;
 723				goto done;
 724			}
 725			*foundp = offset;
 726			if (ci->count == SWAPFILE_CLUSTER) {
 727				offset = SWAP_NEXT_INVALID;
 728				goto done;
 729			}
 730			offset += nr_pages;
 731			break;
 732		}
 733		offset += nr_pages;
 734	}
 735	if (offset > end)
 736		offset = SWAP_NEXT_INVALID;
 737done:
 738	unlock_cluster(ci);
 739	return offset;
 740}
 741
 742/* Return true if reclaimed a whole cluster */
 743static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
 744{
 745	long to_scan = 1;
 746	unsigned long offset, end;
 747	struct swap_cluster_info *ci;
 748	unsigned char *map = si->swap_map;
 749	int nr_reclaim;
 750
 751	if (force)
 752		to_scan = si->inuse_pages / SWAPFILE_CLUSTER;
 753
 754	while (!list_empty(&si->full_clusters)) {
 755		ci = list_first_entry(&si->full_clusters, struct swap_cluster_info, list);
 756		list_move_tail(&ci->list, &si->full_clusters);
 757		offset = cluster_offset(si, ci);
 758		end = min(si->max, offset + SWAPFILE_CLUSTER);
 759		to_scan--;
 760
 761		spin_unlock(&si->lock);
 762		while (offset < end) {
 763			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
 764				nr_reclaim = __try_to_reclaim_swap(si, offset,
 765								   TTRS_ANYWAY | TTRS_DIRECT);
 766				if (nr_reclaim) {
 767					offset += abs(nr_reclaim);
 768					continue;
 769				}
 770			}
 771			offset++;
 772		}
 773		spin_lock(&si->lock);
 774
 775		if (to_scan <= 0)
 776			break;
 777	}
 778}
 779
 780static void swap_reclaim_work(struct work_struct *work)
 781{
 782	struct swap_info_struct *si;
 783
 784	si = container_of(work, struct swap_info_struct, reclaim_work);
 785
 786	spin_lock(&si->lock);
 787	swap_reclaim_full_clusters(si, true);
 788	spin_unlock(&si->lock);
 789}
 790
 791/*
 792 * Try to get swap entries with specified order from current cpu's swap entry
 793 * pool (a cluster). This might involve allocating a new cluster for current CPU
 794 * too.
 795 */
 796static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
 797					      unsigned char usage)
 798{
 799	struct percpu_cluster *cluster;
 800	struct swap_cluster_info *ci;
 801	unsigned int offset, found = 0;
 
 802
 803new_cluster:
 804	lockdep_assert_held(&si->lock);
 805	cluster = this_cpu_ptr(si->percpu_cluster);
 806	offset = cluster->next[order];
 807	if (offset) {
 808		offset = alloc_swap_scan_cluster(si, offset, &found, order, usage);
 809		if (found)
 810			goto done;
 811	}
 812
 813	if (!list_empty(&si->free_clusters)) {
 814		ci = list_first_entry(&si->free_clusters, struct swap_cluster_info, list);
 815		offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), &found, order, usage);
 816		/*
 817		 * Either we didn't touch the cluster due to swapoff,
 818		 * or the allocation must success.
 819		 */
 820		VM_BUG_ON((si->flags & SWP_WRITEOK) && !found);
 821		goto done;
 822	}
 823
 824	/* Try reclaim from full clusters if free clusters list is drained */
 825	if (vm_swap_full())
 826		swap_reclaim_full_clusters(si, false);
 827
 828	if (order < PMD_ORDER) {
 829		unsigned int frags = 0;
 830
 831		while (!list_empty(&si->nonfull_clusters[order])) {
 832			ci = list_first_entry(&si->nonfull_clusters[order],
 833					      struct swap_cluster_info, list);
 834			list_move_tail(&ci->list, &si->frag_clusters[order]);
 835			ci->flags = CLUSTER_FLAG_FRAG;
 836			si->frag_cluster_nr[order]++;
 837			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
 838							 &found, order, usage);
 839			frags++;
 840			if (found)
 841				break;
 842		}
 843
 844		if (!found) {
 845			/*
 846			 * Nonfull clusters are moved to frag tail if we reached
 847			 * here, count them too, don't over scan the frag list.
 848			 */
 849			while (frags < si->frag_cluster_nr[order]) {
 850				ci = list_first_entry(&si->frag_clusters[order],
 851						      struct swap_cluster_info, list);
 852				/*
 853				 * Rotate the frag list to iterate, they were all failing
 854				 * high order allocation or moved here due to per-CPU usage,
 855				 * this help keeping usable cluster ahead.
 856				 */
 857				list_move_tail(&ci->list, &si->frag_clusters[order]);
 858				offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
 859								 &found, order, usage);
 860				frags++;
 861				if (found)
 862					break;
 863			}
 864		}
 865	}
 866
 867	if (found)
 868		goto done;
 869
 870	if (!list_empty(&si->discard_clusters)) {
 871		/*
 872		 * we don't have free cluster but have some clusters in
 873		 * discarding, do discard now and reclaim them, then
 874		 * reread cluster_next_cpu since we dropped si->lock
 875		 */
 876		swap_do_scheduled_discard(si);
 
 
 877		goto new_cluster;
 878	}
 879
 880	if (order)
 881		goto done;
 882
 883	/* Order 0 stealing from higher order */
 884	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
 885		/*
 886		 * Clusters here have at least one usable slots and can't fail order 0
 887		 * allocation, but reclaim may drop si->lock and race with another user.
 888		 */
 889		while (!list_empty(&si->frag_clusters[o])) {
 890			ci = list_first_entry(&si->frag_clusters[o],
 891					      struct swap_cluster_info, list);
 892			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
 893							 &found, 0, usage);
 894			if (found)
 895				goto done;
 896		}
 897
 898		while (!list_empty(&si->nonfull_clusters[o])) {
 899			ci = list_first_entry(&si->nonfull_clusters[o],
 900					      struct swap_cluster_info, list);
 901			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
 902							 &found, 0, usage);
 903			if (found)
 904				goto done;
 905		}
 
 
 
 
 
 
 906	}
 907
 908done:
 909	cluster->next[order] = offset;
 910	return found;
 911}
 912
 913static void __del_from_avail_list(struct swap_info_struct *si)
 914{
 915	int nid;
 916
 917	assert_spin_locked(&si->lock);
 918	for_each_node(nid)
 919		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
 920}
 921
 922static void del_from_avail_list(struct swap_info_struct *si)
 923{
 924	spin_lock(&swap_avail_lock);
 925	__del_from_avail_list(si);
 926	spin_unlock(&swap_avail_lock);
 927}
 928
 929static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 930			     unsigned int nr_entries)
 931{
 932	unsigned int end = offset + nr_entries - 1;
 933
 934	if (offset == si->lowest_bit)
 935		si->lowest_bit += nr_entries;
 936	if (end == si->highest_bit)
 937		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
 938	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
 939	if (si->inuse_pages == si->pages) {
 940		si->lowest_bit = si->max;
 941		si->highest_bit = 0;
 942		del_from_avail_list(si);
 943
 944		if (si->cluster_info && vm_swap_full())
 945			schedule_work(&si->reclaim_work);
 946	}
 947}
 948
 949static void add_to_avail_list(struct swap_info_struct *si)
 950{
 951	int nid;
 952
 953	spin_lock(&swap_avail_lock);
 954	for_each_node(nid)
 955		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
 
 
 956	spin_unlock(&swap_avail_lock);
 957}
 958
 959static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 960			    unsigned int nr_entries)
 961{
 962	unsigned long begin = offset;
 963	unsigned long end = offset + nr_entries - 1;
 964	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 965	unsigned int i;
 966
 967	/*
 968	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
 969	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
 970	 */
 971	for (i = 0; i < nr_entries; i++)
 972		clear_bit(offset + i, si->zeromap);
 973
 974	if (offset < si->lowest_bit)
 975		si->lowest_bit = offset;
 976	if (end > si->highest_bit) {
 977		bool was_full = !si->highest_bit;
 978
 979		WRITE_ONCE(si->highest_bit, end);
 980		if (was_full && (si->flags & SWP_WRITEOK))
 981			add_to_avail_list(si);
 982	}
 
 
 983	if (si->flags & SWP_BLKDEV)
 984		swap_slot_free_notify =
 985			si->bdev->bd_disk->fops->swap_slot_free_notify;
 986	else
 987		swap_slot_free_notify = NULL;
 988	while (offset <= end) {
 989		arch_swap_invalidate_page(si->type, offset);
 990		if (swap_slot_free_notify)
 991			swap_slot_free_notify(si->bdev, offset);
 992		offset++;
 993	}
 994	clear_shadow_from_swap_cache(si->type, begin, end);
 995
 996	/*
 997	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
 998	 * only after the above cleanups are done.
 999	 */
1000	smp_wmb();
1001	atomic_long_add(nr_entries, &nr_swap_pages);
1002	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
1003}
1004
1005static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
1006{
1007	unsigned long prev;
1008
1009	if (!(si->flags & SWP_SOLIDSTATE)) {
1010		si->cluster_next = next;
1011		return;
1012	}
1013
1014	prev = this_cpu_read(*si->cluster_next_cpu);
1015	/*
1016	 * Cross the swap address space size aligned trunk, choose
1017	 * another trunk randomly to avoid lock contention on swap
1018	 * address space if possible.
1019	 */
1020	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
1021	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
1022		/* No free swap slots available */
1023		if (si->highest_bit <= si->lowest_bit)
1024			return;
1025		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
1026		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
1027		next = max_t(unsigned int, next, si->lowest_bit);
1028	}
1029	this_cpu_write(*si->cluster_next_cpu, next);
1030}
1031
1032static bool swap_offset_available_and_locked(struct swap_info_struct *si,
1033					     unsigned long offset)
1034{
1035	if (data_race(!si->swap_map[offset])) {
1036		spin_lock(&si->lock);
1037		return true;
1038	}
1039
1040	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1041		spin_lock(&si->lock);
1042		return true;
1043	}
1044
1045	return false;
1046}
1047
1048static int cluster_alloc_swap(struct swap_info_struct *si,
1049			     unsigned char usage, int nr,
1050			     swp_entry_t slots[], int order)
1051{
1052	int n_ret = 0;
1053
1054	VM_BUG_ON(!si->cluster_info);
1055
1056	si->flags += SWP_SCANNING;
1057
1058	while (n_ret < nr) {
1059		unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
1060
1061		if (!offset)
1062			break;
1063		slots[n_ret++] = swp_entry(si->type, offset);
1064	}
1065
1066	si->flags -= SWP_SCANNING;
1067
1068	return n_ret;
1069}
1070
1071static int scan_swap_map_slots(struct swap_info_struct *si,
1072			       unsigned char usage, int nr,
1073			       swp_entry_t slots[], int order)
1074{
 
1075	unsigned long offset;
1076	unsigned long scan_base;
1077	unsigned long last_in_cluster = 0;
1078	int latency_ration = LATENCY_LIMIT;
1079	unsigned int nr_pages = 1 << order;
1080	int n_ret = 0;
1081	bool scanned_many = false;
 
 
1082
1083	/*
1084	 * We try to cluster swap pages by allocating them sequentially
1085	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
1086	 * way, however, we resort to first-free allocation, starting
1087	 * a new cluster.  This prevents us from scattering swap pages
1088	 * all over the entire swap partition, so that we reduce
1089	 * overall disk seek times between swap pages.  -- sct
1090	 * But we do now try to find an empty cluster.  -Andrea
1091	 * And we let swap pages go all over an SSD partition.  Hugh
1092	 */
1093
1094	if (order > 0) {
1095		/*
1096		 * Should not even be attempting large allocations when huge
1097		 * page swap is disabled.  Warn and fail the allocation.
1098		 */
1099		if (!IS_ENABLED(CONFIG_THP_SWAP) ||
1100		    nr_pages > SWAPFILE_CLUSTER) {
1101			VM_WARN_ON_ONCE(1);
1102			return 0;
1103		}
1104
1105		/*
1106		 * Swapfile is not block device or not using clusters so unable
1107		 * to allocate large entries.
1108		 */
1109		if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
1110			return 0;
1111	}
1112
1113	if (si->cluster_info)
1114		return cluster_alloc_swap(si, usage, nr, slots, order);
1115
1116	si->flags += SWP_SCANNING;
1117
1118	/* For HDD, sequential access is more important. */
1119	scan_base = si->cluster_next;
1120	offset = scan_base;
1121
1122	if (unlikely(!si->cluster_nr--)) {
1123		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
1124			si->cluster_nr = SWAPFILE_CLUSTER - 1;
1125			goto checks;
1126		}
1127
1128		spin_unlock(&si->lock);
1129
1130		/*
1131		 * If seek is expensive, start searching for new cluster from
1132		 * start of partition, to minimize the span of allocated swap.
 
 
1133		 */
1134		scan_base = offset = si->lowest_bit;
1135		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
1136
1137		/* Locate the first empty (unaligned) cluster */
1138		for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
1139			if (si->swap_map[offset])
1140				last_in_cluster = offset + SWAPFILE_CLUSTER;
1141			else if (offset == last_in_cluster) {
1142				spin_lock(&si->lock);
1143				offset -= SWAPFILE_CLUSTER - 1;
1144				si->cluster_next = offset;
1145				si->cluster_nr = SWAPFILE_CLUSTER - 1;
1146				goto checks;
1147			}
1148			if (unlikely(--latency_ration < 0)) {
1149				cond_resched();
1150				latency_ration = LATENCY_LIMIT;
1151			}
1152		}
1153
1154		offset = scan_base;
1155		spin_lock(&si->lock);
1156		si->cluster_nr = SWAPFILE_CLUSTER - 1;
1157	}
1158
1159checks:
 
 
 
 
 
 
 
 
 
 
1160	if (!(si->flags & SWP_WRITEOK))
1161		goto no_page;
1162	if (!si->highest_bit)
1163		goto no_page;
1164	if (offset > si->highest_bit)
1165		scan_base = offset = si->lowest_bit;
1166
 
1167	/* reuse swap entry of cache-only swap if not busy. */
1168	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
1169		int swap_was_freed;
 
1170		spin_unlock(&si->lock);
1171		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT);
1172		spin_lock(&si->lock);
1173		/* entry was freed successfully, try to use this again */
1174		if (swap_was_freed > 0)
1175			goto checks;
1176		goto scan; /* check next one */
1177	}
1178
1179	if (si->swap_map[offset]) {
 
1180		if (!n_ret)
1181			goto scan;
1182		else
1183			goto done;
1184	}
1185	memset(si->swap_map + offset, usage, nr_pages);
 
 
1186
1187	swap_range_alloc(si, offset, nr_pages);
 
1188	slots[n_ret++] = swp_entry(si->type, offset);
1189
1190	/* got enough slots or reach max slots? */
1191	if ((n_ret == nr) || (offset >= si->highest_bit))
1192		goto done;
1193
1194	/* search for next available slot */
1195
1196	/* time to take a break? */
1197	if (unlikely(--latency_ration < 0)) {
1198		if (n_ret)
1199			goto done;
1200		spin_unlock(&si->lock);
1201		cond_resched();
1202		spin_lock(&si->lock);
1203		latency_ration = LATENCY_LIMIT;
1204	}
1205
1206	if (si->cluster_nr && !si->swap_map[++offset]) {
1207		/* non-ssd case, still more slots in cluster? */
 
 
 
 
 
 
 
 
 
 
1208		--si->cluster_nr;
1209		goto checks;
1210	}
1211
1212	/*
1213	 * Even if there's no free clusters available (fragmented),
1214	 * try to scan a little more quickly with lock held unless we
1215	 * have scanned too many slots already.
1216	 */
1217	if (!scanned_many) {
1218		unsigned long scan_limit;
1219
1220		if (offset < scan_base)
1221			scan_limit = scan_base;
1222		else
1223			scan_limit = si->highest_bit;
1224		for (; offset <= scan_limit && --latency_ration > 0;
1225		     offset++) {
1226			if (!si->swap_map[offset])
1227				goto checks;
1228		}
1229	}
1230
1231done:
1232	if (order == 0)
1233		set_cluster_next(si, offset + 1);
1234	si->flags -= SWP_SCANNING;
1235	return n_ret;
1236
1237scan:
1238	VM_WARN_ON(order > 0);
1239	spin_unlock(&si->lock);
1240	while (++offset <= READ_ONCE(si->highest_bit)) {
 
 
 
 
 
 
 
 
1241		if (unlikely(--latency_ration < 0)) {
1242			cond_resched();
1243			latency_ration = LATENCY_LIMIT;
1244			scanned_many = true;
1245		}
1246		if (swap_offset_available_and_locked(si, offset))
1247			goto checks;
1248	}
1249	offset = si->lowest_bit;
1250	while (offset < scan_base) {
 
 
 
 
 
 
 
 
1251		if (unlikely(--latency_ration < 0)) {
1252			cond_resched();
1253			latency_ration = LATENCY_LIMIT;
1254			scanned_many = true;
1255		}
1256		if (swap_offset_available_and_locked(si, offset))
1257			goto checks;
1258		offset++;
1259	}
1260	spin_lock(&si->lock);
1261
1262no_page:
1263	si->flags -= SWP_SCANNING;
1264	return n_ret;
1265}
1266
1267int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1268{
1269	int order = swap_entry_order(entry_order);
1270	unsigned long size = 1 << order;
1271	struct swap_info_struct *si, *next;
1272	long avail_pgs;
1273	int n_ret = 0;
1274	int node;
1275
1276	spin_lock(&swap_avail_lock);
 
1277
1278	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1279	if (avail_pgs <= 0) {
1280		spin_unlock(&swap_avail_lock);
1281		goto noswap;
1282	}
1283
1284	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
 
 
 
 
 
 
1285
1286	atomic_long_sub(n_goal * size, &nr_swap_pages);
1287
1288start_over:
1289	node = numa_node_id();
1290	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1291		/* requeue si to after same-priority siblings */
1292		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1293		spin_unlock(&swap_avail_lock);
1294		spin_lock(&si->lock);
1295		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1296			spin_lock(&swap_avail_lock);
1297			if (plist_node_empty(&si->avail_lists[node])) {
1298				spin_unlock(&si->lock);
1299				goto nextsi;
1300			}
1301			WARN(!si->highest_bit,
1302			     "swap_info %d in list but !highest_bit\n",
1303			     si->type);
1304			WARN(!(si->flags & SWP_WRITEOK),
1305			     "swap_info %d in list but !SWP_WRITEOK\n",
1306			     si->type);
1307			__del_from_avail_list(si);
1308			spin_unlock(&si->lock);
1309			goto nextsi;
1310		}
1311		n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1312					    n_goal, swp_entries, order);
 
 
 
 
1313		spin_unlock(&si->lock);
1314		if (n_ret || size > 1)
1315			goto check_out;
1316		cond_resched();
 
1317
1318		spin_lock(&swap_avail_lock);
1319nextsi:
1320		/*
1321		 * if we got here, it's likely that si was almost full before,
1322		 * and since scan_swap_map_slots() can drop the si->lock,
1323		 * multiple callers probably all tried to get a page from the
1324		 * same si and it filled up before we could get one; or, the si
1325		 * filled up between us dropping swap_avail_lock and taking
1326		 * si->lock. Since we dropped the swap_avail_lock, the
1327		 * swap_avail_head list may have been modified; so if next is
1328		 * still in the swap_avail_head list then try it, otherwise
1329		 * start over if we have not gotten any slots.
1330		 */
1331		if (plist_node_empty(&next->avail_lists[node]))
1332			goto start_over;
1333	}
1334
1335	spin_unlock(&swap_avail_lock);
1336
1337check_out:
1338	if (n_ret < n_goal)
1339		atomic_long_add((long)(n_goal - n_ret) * size,
1340				&nr_swap_pages);
1341noswap:
1342	return n_ret;
1343}
1344
1345static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
 
1346{
1347	struct swap_info_struct *si;
1348	unsigned long offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349
1350	if (!entry.val)
1351		goto out;
1352	si = swp_swap_info(entry);
1353	if (!si)
1354		goto bad_nofile;
1355	if (data_race(!(si->flags & SWP_USED)))
 
1356		goto bad_device;
1357	offset = swp_offset(entry);
1358	if (offset >= si->max)
1359		goto bad_offset;
1360	if (data_race(!si->swap_map[swp_offset(entry)]))
1361		goto bad_free;
1362	return si;
1363
1364bad_free:
1365	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1366	goto out;
1367bad_offset:
1368	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1369	goto out;
1370bad_device:
1371	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1372	goto out;
1373bad_nofile:
1374	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375out:
1376	return NULL;
1377}
1378
 
 
 
 
 
 
 
 
 
 
1379static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1380					struct swap_info_struct *q)
1381{
1382	struct swap_info_struct *p;
1383
1384	p = _swap_info_get(entry);
1385
1386	if (p != q) {
1387		if (q != NULL)
1388			spin_unlock(&q->lock);
1389		if (p != NULL)
1390			spin_lock(&p->lock);
1391	}
1392	return p;
1393}
1394
1395static unsigned char __swap_entry_free_locked(struct swap_info_struct *si,
1396					      unsigned long offset,
1397					      unsigned char usage)
1398{
 
 
1399	unsigned char count;
1400	unsigned char has_cache;
1401
1402	count = si->swap_map[offset];
 
 
1403
1404	has_cache = count & SWAP_HAS_CACHE;
1405	count &= ~SWAP_HAS_CACHE;
1406
1407	if (usage == SWAP_HAS_CACHE) {
1408		VM_BUG_ON(!has_cache);
1409		has_cache = 0;
1410	} else if (count == SWAP_MAP_SHMEM) {
1411		/*
1412		 * Or we could insist on shmem.c using a special
1413		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1414		 */
1415		count = 0;
1416	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1417		if (count == COUNT_CONTINUED) {
1418			if (swap_count_continued(si, offset, count))
1419				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1420			else
1421				count = SWAP_MAP_MAX;
1422		} else
1423			count--;
1424	}
1425
1426	usage = count | has_cache;
1427	if (usage)
1428		WRITE_ONCE(si->swap_map[offset], usage);
1429	else
1430		WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE);
1431
1432	return usage;
1433}
1434
1435/*
1436 * When we get a swap entry, if there aren't some other ways to
1437 * prevent swapoff, such as the folio in swap cache is locked, RCU
1438 * reader side is locked, etc., the swap entry may become invalid
1439 * because of swapoff.  Then, we need to enclose all swap related
1440 * functions with get_swap_device() and put_swap_device(), unless the
1441 * swap functions call get/put_swap_device() by themselves.
1442 *
1443 * RCU reader side lock (including any spinlock) is sufficient to
1444 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1445 * before freeing data structures.
1446 *
1447 * Check whether swap entry is valid in the swap device.  If so,
1448 * return pointer to swap_info_struct, and keep the swap entry valid
1449 * via preventing the swap device from being swapoff, until
1450 * put_swap_device() is called.  Otherwise return NULL.
1451 *
1452 * Notice that swapoff or swapoff+swapon can still happen before the
1453 * percpu_ref_tryget_live() in get_swap_device() or after the
1454 * percpu_ref_put() in put_swap_device() if there isn't any other way
1455 * to prevent swapoff.  The caller must be prepared for that.  For
1456 * example, the following situation is possible.
1457 *
1458 *   CPU1				CPU2
1459 *   do_swap_page()
1460 *     ...				swapoff+swapon
1461 *     __read_swap_cache_async()
1462 *       swapcache_prepare()
1463 *         __swap_duplicate()
1464 *           // check swap_map
1465 *     // verify PTE not changed
1466 *
1467 * In __swap_duplicate(), the swap_map need to be checked before
1468 * changing partly because the specified swap entry may be for another
1469 * swap device which has been swapoff.  And in do_swap_page(), after
1470 * the page is read from the swap device, the PTE is verified not
1471 * changed with the page table locked to check whether the swap device
1472 * has been swapoff or swapoff+swapon.
1473 */
1474struct swap_info_struct *get_swap_device(swp_entry_t entry)
1475{
1476	struct swap_info_struct *si;
1477	unsigned long offset;
1478
1479	if (!entry.val)
1480		goto out;
1481	si = swp_swap_info(entry);
1482	if (!si)
1483		goto bad_nofile;
1484	if (!percpu_ref_tryget_live(&si->users))
1485		goto out;
1486	/*
1487	 * Guarantee the si->users are checked before accessing other
1488	 * fields of swap_info_struct.
1489	 *
1490	 * Paired with the spin_unlock() after setup_swap_info() in
1491	 * enable_swap_info().
1492	 */
1493	smp_rmb();
1494	offset = swp_offset(entry);
1495	if (offset >= si->max)
1496		goto put_out;
1497
1498	return si;
1499bad_nofile:
1500	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1501out:
1502	return NULL;
1503put_out:
1504	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1505	percpu_ref_put(&si->users);
1506	return NULL;
1507}
1508
1509static unsigned char __swap_entry_free(struct swap_info_struct *si,
1510				       swp_entry_t entry)
1511{
1512	struct swap_cluster_info *ci;
1513	unsigned long offset = swp_offset(entry);
1514	unsigned char usage;
1515
1516	ci = lock_cluster_or_swap_info(si, offset);
1517	usage = __swap_entry_free_locked(si, offset, 1);
1518	unlock_cluster_or_swap_info(si, ci);
1519	if (!usage)
1520		free_swap_slot(entry);
1521
1522	return usage;
1523}
1524
1525static bool __swap_entries_free(struct swap_info_struct *si,
1526		swp_entry_t entry, int nr)
1527{
1528	unsigned long offset = swp_offset(entry);
1529	unsigned int type = swp_type(entry);
1530	struct swap_cluster_info *ci;
1531	bool has_cache = false;
1532	unsigned char count;
1533	int i;
1534
1535	if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1)
1536		goto fallback;
1537	/* cross into another cluster */
1538	if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER)
1539		goto fallback;
1540
1541	ci = lock_cluster_or_swap_info(si, offset);
1542	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1543		unlock_cluster_or_swap_info(si, ci);
1544		goto fallback;
1545	}
1546	for (i = 0; i < nr; i++)
1547		WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1548	unlock_cluster_or_swap_info(si, ci);
1549
1550	if (!has_cache) {
1551		for (i = 0; i < nr; i++)
1552			zswap_invalidate(swp_entry(si->type, offset + i));
1553		spin_lock(&si->lock);
1554		swap_entry_range_free(si, entry, nr);
1555		spin_unlock(&si->lock);
1556	}
1557	return has_cache;
1558
1559fallback:
1560	for (i = 0; i < nr; i++) {
1561		if (data_race(si->swap_map[offset + i])) {
1562			count = __swap_entry_free(si, swp_entry(type, offset + i));
1563			if (count == SWAP_HAS_CACHE)
1564				has_cache = true;
1565		} else {
1566			WARN_ON_ONCE(1);
1567		}
1568	}
1569	return has_cache;
1570}
1571
1572/*
1573 * Drop the last HAS_CACHE flag of swap entries, caller have to
1574 * ensure all entries belong to the same cgroup.
1575 */
1576static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
1577				  unsigned int nr_pages)
1578{
1579	unsigned long offset = swp_offset(entry);
1580	unsigned char *map = si->swap_map + offset;
1581	unsigned char *map_end = map + nr_pages;
1582	struct swap_cluster_info *ci;
1583
1584	ci = lock_cluster(si, offset);
1585	do {
1586		VM_BUG_ON(*map != SWAP_HAS_CACHE);
1587		*map = 0;
1588	} while (++map < map_end);
1589	dec_cluster_info_page(si, ci, nr_pages);
1590	unlock_cluster(ci);
1591
1592	mem_cgroup_uncharge_swap(entry, nr_pages);
1593	swap_range_free(si, offset, nr_pages);
1594}
1595
1596static void cluster_swap_free_nr(struct swap_info_struct *si,
1597		unsigned long offset, int nr_pages,
1598		unsigned char usage)
1599{
1600	struct swap_cluster_info *ci;
1601	DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 };
1602	int i, nr;
1603
1604	ci = lock_cluster_or_swap_info(si, offset);
1605	while (nr_pages) {
1606		nr = min(BITS_PER_LONG, nr_pages);
1607		for (i = 0; i < nr; i++) {
1608			if (!__swap_entry_free_locked(si, offset + i, usage))
1609				bitmap_set(to_free, i, 1);
1610		}
1611		if (!bitmap_empty(to_free, BITS_PER_LONG)) {
1612			unlock_cluster_or_swap_info(si, ci);
1613			for_each_set_bit(i, to_free, BITS_PER_LONG)
1614				free_swap_slot(swp_entry(si->type, offset + i));
1615			if (nr == nr_pages)
1616				return;
1617			bitmap_clear(to_free, 0, BITS_PER_LONG);
1618			ci = lock_cluster_or_swap_info(si, offset);
1619		}
1620		offset += nr;
1621		nr_pages -= nr;
1622	}
1623	unlock_cluster_or_swap_info(si, ci);
1624}
1625
1626/*
1627 * Caller has made sure that the swap device corresponding to entry
1628 * is still around or has not been recycled.
1629 */
1630void swap_free_nr(swp_entry_t entry, int nr_pages)
1631{
1632	int nr;
1633	struct swap_info_struct *sis;
1634	unsigned long offset = swp_offset(entry);
1635
1636	sis = _swap_info_get(entry);
1637	if (!sis)
1638		return;
1639
1640	while (nr_pages) {
1641		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1642		cluster_swap_free_nr(sis, offset, nr, 1);
1643		offset += nr;
1644		nr_pages -= nr;
1645	}
1646}
1647
1648/*
1649 * Called after dropping swapcache to decrease refcnt to swap entries.
1650 */
1651void put_swap_folio(struct folio *folio, swp_entry_t entry)
1652{
1653	unsigned long offset = swp_offset(entry);
 
1654	struct swap_cluster_info *ci;
1655	struct swap_info_struct *si;
1656	int size = 1 << swap_entry_order(folio_order(folio));
 
 
1657
1658	si = _swap_info_get(entry);
1659	if (!si)
1660		return;
1661
1662	ci = lock_cluster_or_swap_info(si, offset);
1663	if (size > 1 && swap_is_has_cache(si, offset, size)) {
1664		unlock_cluster_or_swap_info(si, ci);
 
 
 
 
 
 
 
 
 
 
 
 
 
1665		spin_lock(&si->lock);
1666		swap_entry_range_free(si, entry, size);
 
 
 
 
1667		spin_unlock(&si->lock);
1668		return;
1669	}
1670	for (int i = 0; i < size; i++, entry.val++) {
1671		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1672			unlock_cluster_or_swap_info(si, ci);
1673			free_swap_slot(entry);
1674			if (i == size - 1)
1675				return;
1676			lock_cluster_or_swap_info(si, offset);
1677		}
1678	}
1679	unlock_cluster_or_swap_info(si, ci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1680}
1681
1682static int swp_entry_cmp(const void *ent1, const void *ent2)
1683{
1684	const swp_entry_t *e1 = ent1, *e2 = ent2;
1685
1686	return (int)swp_type(*e1) - (int)swp_type(*e2);
1687}
1688
1689void swapcache_free_entries(swp_entry_t *entries, int n)
1690{
1691	struct swap_info_struct *p, *prev;
1692	int i;
1693
1694	if (n <= 0)
1695		return;
1696
1697	prev = NULL;
1698	p = NULL;
1699
1700	/*
1701	 * Sort swap entries by swap device, so each lock is only taken once.
1702	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1703	 * so low that it isn't necessary to optimize further.
1704	 */
1705	if (nr_swapfiles > 1)
1706		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1707	for (i = 0; i < n; ++i) {
1708		p = swap_info_get_cont(entries[i], prev);
1709		if (p)
1710			swap_entry_range_free(p, entries[i], 1);
1711		prev = p;
1712	}
1713	if (p)
1714		spin_unlock(&p->lock);
1715}
1716
1717int __swap_count(swp_entry_t entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718{
1719	struct swap_info_struct *si = swp_swap_info(entry);
1720	pgoff_t offset = swp_offset(entry);
1721
1722	return swap_count(si->swap_map[offset]);
1723}
1724
 
 
 
 
 
 
 
 
 
 
 
 
1725/*
1726 * How many references to @entry are currently swapped out?
1727 * This does not give an exact answer when swap count is continued,
1728 * but does include the high COUNT_CONTINUED flag to allow for that.
1729 */
1730int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1731{
1732	pgoff_t offset = swp_offset(entry);
1733	struct swap_cluster_info *ci;
1734	int count;
1735
1736	ci = lock_cluster_or_swap_info(si, offset);
1737	count = swap_count(si->swap_map[offset]);
1738	unlock_cluster_or_swap_info(si, ci);
1739	return count;
1740}
1741
1742/*
1743 * How many references to @entry are currently swapped out?
1744 * This considers COUNT_CONTINUED so it returns exact answer.
1745 */
1746int swp_swapcount(swp_entry_t entry)
1747{
1748	int count, tmp_count, n;
1749	struct swap_info_struct *si;
1750	struct swap_cluster_info *ci;
1751	struct page *page;
1752	pgoff_t offset;
1753	unsigned char *map;
1754
1755	si = _swap_info_get(entry);
1756	if (!si)
1757		return 0;
1758
1759	offset = swp_offset(entry);
1760
1761	ci = lock_cluster_or_swap_info(si, offset);
1762
1763	count = swap_count(si->swap_map[offset]);
1764	if (!(count & COUNT_CONTINUED))
1765		goto out;
1766
1767	count &= ~COUNT_CONTINUED;
1768	n = SWAP_MAP_MAX + 1;
1769
1770	page = vmalloc_to_page(si->swap_map + offset);
1771	offset &= ~PAGE_MASK;
1772	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1773
1774	do {
1775		page = list_next_entry(page, lru);
1776		map = kmap_local_page(page);
1777		tmp_count = map[offset];
1778		kunmap_local(map);
1779
1780		count += (tmp_count & ~COUNT_CONTINUED) * n;
1781		n *= (SWAP_CONT_MAX + 1);
1782	} while (tmp_count & COUNT_CONTINUED);
1783out:
1784	unlock_cluster_or_swap_info(si, ci);
1785	return count;
1786}
1787
 
1788static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1789					 swp_entry_t entry, int order)
1790{
1791	struct swap_cluster_info *ci;
1792	unsigned char *map = si->swap_map;
1793	unsigned int nr_pages = 1 << order;
1794	unsigned long roffset = swp_offset(entry);
1795	unsigned long offset = round_down(roffset, nr_pages);
1796	int i;
1797	bool ret = false;
1798
1799	ci = lock_cluster_or_swap_info(si, offset);
1800	if (!ci || nr_pages == 1) {
1801		if (swap_count(map[roffset]))
1802			ret = true;
1803		goto unlock_out;
1804	}
1805	for (i = 0; i < nr_pages; i++) {
1806		if (swap_count(map[offset + i])) {
1807			ret = true;
1808			break;
1809		}
1810	}
1811unlock_out:
1812	unlock_cluster_or_swap_info(si, ci);
1813	return ret;
1814}
1815
1816static bool folio_swapped(struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1817{
1818	swp_entry_t entry = folio->swap;
1819	struct swap_info_struct *si = _swap_info_get(entry);
1820
1821	if (!si)
 
1822		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823
1824	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1825		return swap_swapcount(si, entry) != 0;
 
 
 
 
 
 
 
1826
1827	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1828}
1829
1830static bool folio_swapcache_freeable(struct folio *folio)
 
 
 
 
1831{
1832	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1833
1834	if (!folio_test_swapcache(folio))
1835		return false;
1836	if (folio_test_writeback(folio))
1837		return false;
 
 
1838
1839	/*
1840	 * Once hibernation has begun to create its image of memory,
1841	 * there's a danger that one of the calls to folio_free_swap()
1842	 * - most probably a call from __try_to_reclaim_swap() while
1843	 * hibernation is allocating its own swap pages for the image,
1844	 * but conceivably even a call from memory reclaim - will free
1845	 * the swap from a folio which has already been recorded in the
1846	 * image as a clean swapcache folio, and then reuse its swap for
1847	 * another page of the image.  On waking from hibernation, the
1848	 * original folio might be freed under memory pressure, then
1849	 * later read back in from swap, now with the wrong data.
1850	 *
1851	 * Hibernation suspends storage while it is writing the image
1852	 * to disk so check that here.
1853	 */
1854	if (pm_suspended_storage())
1855		return false;
1856
1857	return true;
 
 
 
1858}
1859
1860/**
1861 * folio_free_swap() - Free the swap space used for this folio.
1862 * @folio: The folio to remove.
1863 *
1864 * If swap is getting full, or if there are no more mappings of this folio,
1865 * then call folio_free_swap to free its swap space.
1866 *
1867 * Return: true if we were able to release the swap space.
1868 */
1869bool folio_free_swap(struct folio *folio)
1870{
1871	if (!folio_swapcache_freeable(folio))
1872		return false;
1873	if (folio_swapped(folio))
1874		return false;
1875
1876	delete_from_swap_cache(folio);
1877	folio_set_dirty(folio);
1878	return true;
1879}
1880
1881/**
1882 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1883 *                            reclaim their cache if no more references remain.
1884 * @entry: First entry of range.
1885 * @nr: Number of entries in range.
1886 *
1887 * For each swap entry in the contiguous range, release a reference. If any swap
1888 * entries become free, try to reclaim their underlying folios, if present. The
1889 * offset range is defined by [entry.offset, entry.offset + nr).
1890 */
1891void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1892{
1893	const unsigned long start_offset = swp_offset(entry);
1894	const unsigned long end_offset = start_offset + nr;
1895	struct swap_info_struct *si;
1896	bool any_only_cache = false;
1897	unsigned long offset;
1898
1899	if (non_swap_entry(entry))
1900		return;
1901
1902	si = get_swap_device(entry);
1903	if (!si)
1904		return;
1905
1906	if (WARN_ON(end_offset > si->max))
1907		goto out;
1908
1909	/*
1910	 * First free all entries in the range.
1911	 */
1912	any_only_cache = __swap_entries_free(si, entry, nr);
1913
1914	/*
1915	 * Short-circuit the below loop if none of the entries had their
1916	 * reference drop to zero.
1917	 */
1918	if (!any_only_cache)
1919		goto out;
1920
1921	/*
1922	 * Now go back over the range trying to reclaim the swap cache. This is
1923	 * more efficient for large folios because we will only try to reclaim
1924	 * the swap once per folio in the common case. If we do
1925	 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1926	 * latter will get a reference and lock the folio for every individual
1927	 * page but will only succeed once the swap slot for every subpage is
1928	 * zero.
1929	 */
1930	for (offset = start_offset; offset < end_offset; offset += nr) {
1931		nr = 1;
1932		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1933			/*
1934			 * Folios are always naturally aligned in swap so
1935			 * advance forward to the next boundary. Zero means no
1936			 * folio was found for the swap entry, so advance by 1
1937			 * in this case. Negative value means folio was found
1938			 * but could not be reclaimed. Here we can still advance
1939			 * to the next boundary.
1940			 */
1941			nr = __try_to_reclaim_swap(si, offset,
1942						   TTRS_UNMAPPED | TTRS_FULL);
1943			if (nr == 0)
1944				nr = 1;
1945			else if (nr < 0)
1946				nr = -nr;
1947			nr = ALIGN(offset + 1, nr) - offset;
1948		}
 
 
1949	}
1950
1951out:
1952	put_swap_device(si);
1953}
1954
1955#ifdef CONFIG_HIBERNATION
1956
1957swp_entry_t get_swap_page_of_type(int type)
1958{
1959	struct swap_info_struct *si = swap_type_to_swap_info(type);
1960	swp_entry_t entry = {0};
1961
1962	if (!si)
1963		goto fail;
1964
1965	/* This is called for allocating swap entry, not cache */
1966	spin_lock(&si->lock);
1967	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1968		atomic_long_dec(&nr_swap_pages);
1969	spin_unlock(&si->lock);
1970fail:
1971	return entry;
1972}
1973
1974/*
1975 * Find the swap type that corresponds to given device (if any).
1976 *
1977 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1978 * from 0, in which the swap header is expected to be located.
1979 *
1980 * This is needed for the suspend to disk (aka swsusp).
1981 */
1982int swap_type_of(dev_t device, sector_t offset)
1983{
 
1984	int type;
1985
1986	if (!device)
1987		return -1;
1988
1989	spin_lock(&swap_lock);
1990	for (type = 0; type < nr_swapfiles; type++) {
1991		struct swap_info_struct *sis = swap_info[type];
1992
1993		if (!(sis->flags & SWP_WRITEOK))
1994			continue;
1995
1996		if (device == sis->bdev->bd_dev) {
1997			struct swap_extent *se = first_se(sis);
 
 
 
 
 
 
 
1998
1999			if (se->start_block == offset) {
 
 
 
2000				spin_unlock(&swap_lock);
 
2001				return type;
2002			}
2003		}
2004	}
2005	spin_unlock(&swap_lock);
2006	return -ENODEV;
2007}
2008
2009int find_first_swap(dev_t *device)
2010{
2011	int type;
2012
2013	spin_lock(&swap_lock);
2014	for (type = 0; type < nr_swapfiles; type++) {
2015		struct swap_info_struct *sis = swap_info[type];
2016
2017		if (!(sis->flags & SWP_WRITEOK))
2018			continue;
2019		*device = sis->bdev->bd_dev;
2020		spin_unlock(&swap_lock);
2021		return type;
2022	}
2023	spin_unlock(&swap_lock);
2024	return -ENODEV;
2025}
2026
2027/*
2028 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
2029 * corresponding to given index in swap_info (swap type).
2030 */
2031sector_t swapdev_block(int type, pgoff_t offset)
2032{
2033	struct swap_info_struct *si = swap_type_to_swap_info(type);
2034	struct swap_extent *se;
2035
2036	if (!si || !(si->flags & SWP_WRITEOK))
 
 
2037		return 0;
2038	se = offset_to_swap_extent(si, offset);
2039	return se->start_block + (offset - se->start_page);
2040}
2041
2042/*
2043 * Return either the total number of swap pages of given type, or the number
2044 * of free pages of that type (depending on @free)
2045 *
2046 * This is needed for software suspend
2047 */
2048unsigned int count_swap_pages(int type, int free)
2049{
2050	unsigned int n = 0;
2051
2052	spin_lock(&swap_lock);
2053	if ((unsigned int)type < nr_swapfiles) {
2054		struct swap_info_struct *sis = swap_info[type];
2055
2056		spin_lock(&sis->lock);
2057		if (sis->flags & SWP_WRITEOK) {
2058			n = sis->pages;
2059			if (free)
2060				n -= sis->inuse_pages;
2061		}
2062		spin_unlock(&sis->lock);
2063	}
2064	spin_unlock(&swap_lock);
2065	return n;
2066}
2067#endif /* CONFIG_HIBERNATION */
2068
2069static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
2070{
2071	return pte_same(pte_swp_clear_flags(pte), swp_pte);
2072}
2073
2074/*
2075 * No need to decide whether this PTE shares the swap entry with others,
2076 * just let do_wp_page work it out if a write is requested later - to
2077 * force COW, vm_page_prot omits write permission from any private vma.
2078 */
2079static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
2080		unsigned long addr, swp_entry_t entry, struct folio *folio)
2081{
2082	struct page *page;
2083	struct folio *swapcache;
2084	spinlock_t *ptl;
2085	pte_t *pte, new_pte, old_pte;
2086	bool hwpoisoned = false;
2087	int ret = 1;
2088
2089	swapcache = folio;
2090	folio = ksm_might_need_to_copy(folio, vma, addr);
2091	if (unlikely(!folio))
2092		return -ENOMEM;
2093	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2094		hwpoisoned = true;
2095		folio = swapcache;
 
 
2096	}
2097
2098	page = folio_file_page(folio, swp_offset(entry));
2099	if (PageHWPoison(page))
2100		hwpoisoned = true;
2101
2102	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2103	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2104						swp_entry_to_pte(entry)))) {
2105		ret = 0;
2106		goto out;
2107	}
2108
2109	old_pte = ptep_get(pte);
2110
2111	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2112		swp_entry_t swp_entry;
2113
2114		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2115		if (hwpoisoned) {
2116			swp_entry = make_hwpoison_entry(page);
2117		} else {
2118			swp_entry = make_poisoned_swp_entry();
2119		}
2120		new_pte = swp_entry_to_pte(swp_entry);
2121		ret = 0;
2122		goto setpte;
2123	}
2124
2125	/*
2126	 * Some architectures may have to restore extra metadata to the page
2127	 * when reading from swap. This metadata may be indexed by swap entry
2128	 * so this must be called before swap_free().
2129	 */
2130	arch_swap_restore(folio_swap(entry, folio), folio);
2131
2132	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2133	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2134	folio_get(folio);
2135	if (folio == swapcache) {
2136		rmap_t rmap_flags = RMAP_NONE;
2137
2138		/*
2139		 * See do_swap_page(): writeback would be problematic.
2140		 * However, we do a folio_wait_writeback() just before this
2141		 * call and have the folio locked.
2142		 */
2143		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2144		if (pte_swp_exclusive(old_pte))
2145			rmap_flags |= RMAP_EXCLUSIVE;
2146		/*
2147		 * We currently only expect small !anon folios, which are either
2148		 * fully exclusive or fully shared. If we ever get large folios
2149		 * here, we have to be careful.
2150		 */
2151		if (!folio_test_anon(folio)) {
2152			VM_WARN_ON_ONCE(folio_test_large(folio));
2153			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2154			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2155		} else {
2156			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2157		}
2158	} else { /* ksm created a completely new copy */
2159		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2160		folio_add_lru_vma(folio, vma);
 
2161	}
2162	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2163	if (pte_swp_soft_dirty(old_pte))
2164		new_pte = pte_mksoft_dirty(new_pte);
2165	if (pte_swp_uffd_wp(old_pte))
2166		new_pte = pte_mkuffd_wp(new_pte);
2167setpte:
2168	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2169	swap_free(entry);
 
 
 
 
 
2170out:
2171	if (pte)
2172		pte_unmap_unlock(pte, ptl);
2173	if (folio != swapcache) {
2174		folio_unlock(folio);
2175		folio_put(folio);
2176	}
2177	return ret;
2178}
2179
2180static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2181			unsigned long addr, unsigned long end,
2182			unsigned int type)
2183{
2184	pte_t *pte = NULL;
2185	struct swap_info_struct *si;
 
2186
2187	si = swap_info[type];
 
 
 
 
 
 
 
 
 
2188	do {
2189		struct folio *folio;
2190		unsigned long offset;
2191		unsigned char swp_count;
2192		swp_entry_t entry;
2193		int ret;
2194		pte_t ptent;
2195
2196		if (!pte++) {
 
2197			pte = pte_offset_map(pmd, addr);
2198			if (!pte)
2199				break;
2200		}
2201
2202		ptent = ptep_get_lockless(pte);
2203
2204		if (!is_swap_pte(ptent))
2205			continue;
2206
2207		entry = pte_to_swp_entry(ptent);
2208		if (swp_type(entry) != type)
2209			continue;
2210
2211		offset = swp_offset(entry);
2212		pte_unmap(pte);
2213		pte = NULL;
2214
2215		folio = swap_cache_get_folio(entry, vma, addr);
2216		if (!folio) {
2217			struct vm_fault vmf = {
2218				.vma = vma,
2219				.address = addr,
2220				.real_address = addr,
2221				.pmd = pmd,
2222			};
2223
2224			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2225						&vmf);
2226		}
2227		if (!folio) {
2228			swp_count = READ_ONCE(si->swap_map[offset]);
2229			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2230				continue;
2231			return -ENOMEM;
2232		}
2233
2234		folio_lock(folio);
2235		folio_wait_writeback(folio);
2236		ret = unuse_pte(vma, pmd, addr, entry, folio);
2237		if (ret < 0) {
2238			folio_unlock(folio);
2239			folio_put(folio);
2240			return ret;
2241		}
2242
2243		folio_free_swap(folio);
2244		folio_unlock(folio);
2245		folio_put(folio);
2246	} while (addr += PAGE_SIZE, addr != end);
2247
2248	if (pte)
2249		pte_unmap(pte);
2250	return 0;
2251}
2252
2253static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2254				unsigned long addr, unsigned long end,
2255				unsigned int type)
2256{
2257	pmd_t *pmd;
2258	unsigned long next;
2259	int ret;
2260
2261	pmd = pmd_offset(pud, addr);
2262	do {
2263		cond_resched();
2264		next = pmd_addr_end(addr, end);
2265		ret = unuse_pte_range(vma, pmd, addr, next, type);
 
 
2266		if (ret)
2267			return ret;
2268	} while (pmd++, addr = next, addr != end);
2269	return 0;
2270}
2271
2272static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2273				unsigned long addr, unsigned long end,
2274				unsigned int type)
2275{
2276	pud_t *pud;
2277	unsigned long next;
2278	int ret;
2279
2280	pud = pud_offset(p4d, addr);
2281	do {
2282		next = pud_addr_end(addr, end);
2283		if (pud_none_or_clear_bad(pud))
2284			continue;
2285		ret = unuse_pmd_range(vma, pud, addr, next, type);
2286		if (ret)
2287			return ret;
2288	} while (pud++, addr = next, addr != end);
2289	return 0;
2290}
2291
2292static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2293				unsigned long addr, unsigned long end,
2294				unsigned int type)
2295{
2296	p4d_t *p4d;
2297	unsigned long next;
2298	int ret;
2299
2300	p4d = p4d_offset(pgd, addr);
2301	do {
2302		next = p4d_addr_end(addr, end);
2303		if (p4d_none_or_clear_bad(p4d))
2304			continue;
2305		ret = unuse_pud_range(vma, p4d, addr, next, type);
2306		if (ret)
2307			return ret;
2308	} while (p4d++, addr = next, addr != end);
2309	return 0;
2310}
2311
2312static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
 
2313{
2314	pgd_t *pgd;
2315	unsigned long addr, end, next;
2316	int ret;
2317
2318	addr = vma->vm_start;
2319	end = vma->vm_end;
 
 
 
 
 
 
 
 
2320
2321	pgd = pgd_offset(vma->vm_mm, addr);
2322	do {
2323		next = pgd_addr_end(addr, end);
2324		if (pgd_none_or_clear_bad(pgd))
2325			continue;
2326		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2327		if (ret)
2328			return ret;
2329	} while (pgd++, addr = next, addr != end);
2330	return 0;
2331}
2332
2333static int unuse_mm(struct mm_struct *mm, unsigned int type)
 
2334{
2335	struct vm_area_struct *vma;
2336	int ret = 0;
2337	VMA_ITERATOR(vmi, mm, 0);
2338
2339	mmap_read_lock(mm);
2340	for_each_vma(vmi, vma) {
2341		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2342			ret = unuse_vma(vma, type);
2343			if (ret)
2344				break;
2345		}
2346
 
 
 
 
 
 
 
 
 
 
 
 
 
2347		cond_resched();
2348	}
2349	mmap_read_unlock(mm);
2350	return ret;
2351}
2352
2353/*
2354 * Scan swap_map from current position to next entry still in use.
2355 * Return 0 if there are no inuse entries after prev till end of
2356 * the map.
2357 */
2358static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2359					unsigned int prev)
2360{
2361	unsigned int i;
 
2362	unsigned char count;
2363
2364	/*
2365	 * No need for swap_lock here: we're just looking
2366	 * for whether an entry is in use, not modifying it; false
2367	 * hits are okay, and sys_swapoff() has already prevented new
2368	 * allocations from this area (while holding swap_lock).
2369	 */
2370	for (i = prev + 1; i < si->max; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
2371		count = READ_ONCE(si->swap_map[i]);
2372		if (count && swap_count(count) != SWAP_MAP_BAD)
2373			break;
 
2374		if ((i % LATENCY_LIMIT) == 0)
2375			cond_resched();
2376	}
2377
2378	if (i == si->max)
2379		i = 0;
2380
2381	return i;
2382}
2383
2384static int try_to_unuse(unsigned int type)
 
 
 
 
 
 
 
 
 
2385{
2386	struct mm_struct *prev_mm;
2387	struct mm_struct *mm;
2388	struct list_head *p;
2389	int retval = 0;
2390	struct swap_info_struct *si = swap_info[type];
2391	struct folio *folio;
 
 
 
 
 
 
 
2392	swp_entry_t entry;
2393	unsigned int i;
 
2394
2395	if (!READ_ONCE(si->inuse_pages))
2396		goto success;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397
2398retry:
2399	retval = shmem_unuse(type);
2400	if (retval)
2401		return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2402
2403	prev_mm = &init_mm;
2404	mmget(prev_mm);
 
 
 
 
 
 
2405
2406	spin_lock(&mmlist_lock);
2407	p = &init_mm.mmlist;
2408	while (READ_ONCE(si->inuse_pages) &&
2409	       !signal_pending(current) &&
2410	       (p = p->next) != &init_mm.mmlist) {
 
 
 
 
 
 
 
2411
2412		mm = list_entry(p, struct mm_struct, mmlist);
2413		if (!mmget_not_zero(mm))
 
 
 
 
 
 
 
2414			continue;
2415		spin_unlock(&mmlist_lock);
2416		mmput(prev_mm);
2417		prev_mm = mm;
2418		retval = unuse_mm(mm, type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2419		if (retval) {
2420			mmput(prev_mm);
2421			return retval;
 
2422		}
2423
2424		/*
2425		 * Make sure that we aren't completely killing
2426		 * interactive performance.
2427		 */
2428		cond_resched();
2429		spin_lock(&mmlist_lock);
2430	}
2431	spin_unlock(&mmlist_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432
2433	mmput(prev_mm);
 
 
 
2434
2435	i = 0;
2436	while (READ_ONCE(si->inuse_pages) &&
2437	       !signal_pending(current) &&
2438	       (i = find_next_to_unuse(si, i)) != 0) {
 
 
 
 
 
 
 
2439
2440		entry = swp_entry(type, i);
2441		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2442		if (IS_ERR(folio))
2443			continue;
 
 
 
 
2444
2445		/*
2446		 * It is conceivable that a racing task removed this folio from
2447		 * swap cache just before we acquired the page lock. The folio
2448		 * might even be back in swap cache on another swap area. But
2449		 * that is okay, folio_free_swap() only removes stale folios.
2450		 */
2451		folio_lock(folio);
2452		folio_wait_writeback(folio);
2453		folio_free_swap(folio);
2454		folio_unlock(folio);
2455		folio_put(folio);
2456	}
2457
2458	/*
2459	 * Lets check again to see if there are still swap entries in the map.
2460	 * If yes, we would need to do retry the unuse logic again.
2461	 * Under global memory pressure, swap entries can be reinserted back
2462	 * into process space after the mmlist loop above passes over them.
2463	 *
2464	 * Limit the number of retries? No: when mmget_not_zero()
2465	 * above fails, that mm is likely to be freeing swap from
2466	 * exit_mmap(), which proceeds at its own independent pace;
2467	 * and even shmem_writepage() could have been preempted after
2468	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2469	 * and robust (though cpu-intensive) just to keep retrying.
2470	 */
2471	if (READ_ONCE(si->inuse_pages)) {
2472		if (!signal_pending(current))
2473			goto retry;
2474		return -EINTR;
2475	}
2476
2477success:
2478	/*
2479	 * Make sure that further cleanups after try_to_unuse() returns happen
2480	 * after swap_range_free() reduces si->inuse_pages to 0.
2481	 */
2482	smp_mb();
2483	return 0;
2484}
2485
2486/*
2487 * After a successful try_to_unuse, if no swap is now in use, we know
2488 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2489 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2490 * added to the mmlist just after page_duplicate - before would be racy.
2491 */
2492static void drain_mmlist(void)
2493{
2494	struct list_head *p, *next;
2495	unsigned int type;
2496
2497	for (type = 0; type < nr_swapfiles; type++)
2498		if (swap_info[type]->inuse_pages)
2499			return;
2500	spin_lock(&mmlist_lock);
2501	list_for_each_safe(p, next, &init_mm.mmlist)
2502		list_del_init(p);
2503	spin_unlock(&mmlist_lock);
2504}
2505
2506/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2507 * Free all of a swapdev's extent information
2508 */
2509static void destroy_swap_extents(struct swap_info_struct *sis)
2510{
2511	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2512		struct rb_node *rb = sis->swap_extent_root.rb_node;
2513		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2514
2515		rb_erase(rb, &sis->swap_extent_root);
 
 
2516		kfree(se);
2517	}
2518
2519	if (sis->flags & SWP_ACTIVATED) {
2520		struct file *swap_file = sis->swap_file;
2521		struct address_space *mapping = swap_file->f_mapping;
2522
2523		sis->flags &= ~SWP_ACTIVATED;
2524		if (mapping->a_ops->swap_deactivate)
2525			mapping->a_ops->swap_deactivate(swap_file);
2526	}
2527}
2528
2529/*
2530 * Add a block range (and the corresponding page range) into this swapdev's
2531 * extent tree.
2532 *
2533 * This function rather assumes that it is called in ascending page order.
2534 */
2535int
2536add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2537		unsigned long nr_pages, sector_t start_block)
2538{
2539	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2540	struct swap_extent *se;
2541	struct swap_extent *new_se;
 
2542
2543	/*
2544	 * place the new node at the right most since the
2545	 * function is called in ascending page order.
2546	 */
2547	while (*link) {
2548		parent = *link;
2549		link = &parent->rb_right;
2550	}
2551
2552	if (parent) {
2553		se = rb_entry(parent, struct swap_extent, rb_node);
2554		BUG_ON(se->start_page + se->nr_pages != start_page);
2555		if (se->start_block + se->nr_pages == start_block) {
2556			/* Merge it */
2557			se->nr_pages += nr_pages;
2558			return 0;
2559		}
2560	}
2561
2562	/* No merge, insert a new extent. */
 
 
2563	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2564	if (new_se == NULL)
2565		return -ENOMEM;
2566	new_se->start_page = start_page;
2567	new_se->nr_pages = nr_pages;
2568	new_se->start_block = start_block;
2569
2570	rb_link_node(&new_se->rb_node, parent, link);
2571	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2572	return 1;
2573}
2574EXPORT_SYMBOL_GPL(add_swap_extent);
2575
2576/*
2577 * A `swap extent' is a simple thing which maps a contiguous range of pages
2578 * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2579 * built at swapon time and is then used at swap_writepage/swap_read_folio
2580 * time for locating where on disk a page belongs.
2581 *
2582 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2583 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2584 * swap files identically.
2585 *
2586 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2587 * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2588 * swapfiles are handled *identically* after swapon time.
2589 *
2590 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2591 * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2592 * blocks are found which do not fall within the PAGE_SIZE alignment
2593 * requirements, they are simply tossed out - we will never use those blocks
2594 * for swapping.
2595 *
2596 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2597 * prevents users from writing to the swap device, which will corrupt memory.
 
2598 *
2599 * The amount of disk space which a single swap extent represents varies.
2600 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2601 * extents in the rbtree. - akpm.
 
 
 
2602 */
2603static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2604{
2605	struct file *swap_file = sis->swap_file;
2606	struct address_space *mapping = swap_file->f_mapping;
2607	struct inode *inode = mapping->host;
2608	int ret;
2609
2610	if (S_ISBLK(inode->i_mode)) {
2611		ret = add_swap_extent(sis, 0, sis->max, 0);
2612		*span = sis->pages;
2613		return ret;
2614	}
2615
2616	if (mapping->a_ops->swap_activate) {
2617		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2618		if (ret < 0)
2619			return ret;
2620		sis->flags |= SWP_ACTIVATED;
2621		if ((sis->flags & SWP_FS_OPS) &&
2622		    sio_pool_init() != 0) {
2623			destroy_swap_extents(sis);
2624			return -ENOMEM;
2625		}
2626		return ret;
2627	}
2628
2629	return generic_swapfile_activate(sis, swap_file, span);
2630}
2631
2632static int swap_node(struct swap_info_struct *si)
2633{
2634	struct block_device *bdev;
2635
2636	if (si->bdev)
2637		bdev = si->bdev;
2638	else
2639		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2640
2641	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2642}
2643
2644static void setup_swap_info(struct swap_info_struct *si, int prio,
2645			    unsigned char *swap_map,
2646			    struct swap_cluster_info *cluster_info,
2647			    unsigned long *zeromap)
2648{
2649	int i;
2650
2651	if (prio >= 0)
2652		si->prio = prio;
2653	else
2654		si->prio = --least_priority;
2655	/*
2656	 * the plist prio is negated because plist ordering is
2657	 * low-to-high, while swap ordering is high-to-low
2658	 */
2659	si->list.prio = -si->prio;
2660	for_each_node(i) {
2661		if (si->prio >= 0)
2662			si->avail_lists[i].prio = -si->prio;
2663		else {
2664			if (swap_node(si) == i)
2665				si->avail_lists[i].prio = 1;
2666			else
2667				si->avail_lists[i].prio = -si->prio;
2668		}
2669	}
2670	si->swap_map = swap_map;
2671	si->cluster_info = cluster_info;
2672	si->zeromap = zeromap;
2673}
2674
2675static void _enable_swap_info(struct swap_info_struct *si)
2676{
2677	si->flags |= SWP_WRITEOK;
2678	atomic_long_add(si->pages, &nr_swap_pages);
2679	total_swap_pages += si->pages;
2680
2681	assert_spin_locked(&swap_lock);
2682	/*
2683	 * both lists are plists, and thus priority ordered.
2684	 * swap_active_head needs to be priority ordered for swapoff(),
2685	 * which on removal of any swap_info_struct with an auto-assigned
2686	 * (i.e. negative) priority increments the auto-assigned priority
2687	 * of any lower-priority swap_info_structs.
2688	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2689	 * which allocates swap pages from the highest available priority
2690	 * swap_info_struct.
2691	 */
2692	plist_add(&si->list, &swap_active_head);
2693
2694	/* add to available list iff swap device is not full */
2695	if (si->highest_bit)
2696		add_to_avail_list(si);
2697}
2698
2699static void enable_swap_info(struct swap_info_struct *si, int prio,
2700				unsigned char *swap_map,
2701				struct swap_cluster_info *cluster_info,
2702				unsigned long *zeromap)
2703{
 
2704	spin_lock(&swap_lock);
2705	spin_lock(&si->lock);
2706	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2707	spin_unlock(&si->lock);
2708	spin_unlock(&swap_lock);
2709	/*
2710	 * Finished initializing swap device, now it's safe to reference it.
2711	 */
2712	percpu_ref_resurrect(&si->users);
2713	spin_lock(&swap_lock);
2714	spin_lock(&si->lock);
2715	_enable_swap_info(si);
2716	spin_unlock(&si->lock);
2717	spin_unlock(&swap_lock);
2718}
2719
2720static void reinsert_swap_info(struct swap_info_struct *si)
2721{
2722	spin_lock(&swap_lock);
2723	spin_lock(&si->lock);
2724	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2725	_enable_swap_info(si);
2726	spin_unlock(&si->lock);
2727	spin_unlock(&swap_lock);
2728}
2729
2730static bool __has_usable_swap(void)
2731{
2732	return !plist_head_empty(&swap_active_head);
2733}
2734
2735bool has_usable_swap(void)
2736{
2737	bool ret;
2738
2739	spin_lock(&swap_lock);
2740	ret = __has_usable_swap();
 
2741	spin_unlock(&swap_lock);
2742	return ret;
2743}
2744
2745SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2746{
2747	struct swap_info_struct *p = NULL;
2748	unsigned char *swap_map;
2749	unsigned long *zeromap;
2750	struct swap_cluster_info *cluster_info;
 
2751	struct file *swap_file, *victim;
2752	struct address_space *mapping;
2753	struct inode *inode;
2754	struct filename *pathname;
2755	int err, found = 0;
 
2756
2757	if (!capable(CAP_SYS_ADMIN))
2758		return -EPERM;
2759
2760	BUG_ON(!current->mm);
2761
2762	pathname = getname(specialfile);
2763	if (IS_ERR(pathname))
2764		return PTR_ERR(pathname);
2765
2766	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2767	err = PTR_ERR(victim);
2768	if (IS_ERR(victim))
2769		goto out;
2770
2771	mapping = victim->f_mapping;
2772	spin_lock(&swap_lock);
2773	plist_for_each_entry(p, &swap_active_head, list) {
2774		if (p->flags & SWP_WRITEOK) {
2775			if (p->swap_file->f_mapping == mapping) {
2776				found = 1;
2777				break;
2778			}
2779		}
2780	}
2781	if (!found) {
2782		err = -EINVAL;
2783		spin_unlock(&swap_lock);
2784		goto out_dput;
2785	}
2786	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2787		vm_unacct_memory(p->pages);
2788	else {
2789		err = -ENOMEM;
2790		spin_unlock(&swap_lock);
2791		goto out_dput;
2792	}
 
2793	spin_lock(&p->lock);
2794	del_from_avail_list(p);
2795	if (p->prio < 0) {
2796		struct swap_info_struct *si = p;
2797		int nid;
2798
2799		plist_for_each_entry_continue(si, &swap_active_head, list) {
2800			si->prio++;
2801			si->list.prio--;
2802			for_each_node(nid) {
2803				if (si->avail_lists[nid].prio != 1)
2804					si->avail_lists[nid].prio--;
2805			}
2806		}
2807		least_priority++;
2808	}
2809	plist_del(&p->list, &swap_active_head);
2810	atomic_long_sub(p->pages, &nr_swap_pages);
2811	total_swap_pages -= p->pages;
2812	p->flags &= ~SWP_WRITEOK;
2813	spin_unlock(&p->lock);
2814	spin_unlock(&swap_lock);
2815
2816	disable_swap_slots_cache_lock();
2817
2818	set_current_oom_origin();
2819	err = try_to_unuse(p->type);
2820	clear_current_oom_origin();
2821
2822	if (err) {
2823		/* re-insert swap space back into swap_list */
2824		reinsert_swap_info(p);
2825		reenable_swap_slots_cache_unlock();
2826		goto out_dput;
2827	}
2828
2829	reenable_swap_slots_cache_unlock();
2830
2831	/*
2832	 * Wait for swap operations protected by get/put_swap_device()
2833	 * to complete.  Because of synchronize_rcu() here, all swap
2834	 * operations protected by RCU reader side lock (including any
2835	 * spinlock) will be waited too.  This makes it easy to
2836	 * prevent folio_test_swapcache() and the following swap cache
2837	 * operations from racing with swapoff.
2838	 */
2839	percpu_ref_kill(&p->users);
2840	synchronize_rcu();
2841	wait_for_completion(&p->comp);
2842
2843	flush_work(&p->discard_work);
2844	flush_work(&p->reclaim_work);
2845
2846	destroy_swap_extents(p);
2847	if (p->flags & SWP_CONTINUED)
2848		free_swap_count_continuations(p);
2849
2850	if (!p->bdev || !bdev_nonrot(p->bdev))
2851		atomic_dec(&nr_rotate_swap);
2852
2853	mutex_lock(&swapon_mutex);
2854	spin_lock(&swap_lock);
2855	spin_lock(&p->lock);
2856	drain_mmlist();
2857
2858	/* wait for anyone still in scan_swap_map_slots */
2859	p->highest_bit = 0;		/* cuts scans short */
2860	while (p->flags >= SWP_SCANNING) {
2861		spin_unlock(&p->lock);
2862		spin_unlock(&swap_lock);
2863		schedule_timeout_uninterruptible(1);
2864		spin_lock(&swap_lock);
2865		spin_lock(&p->lock);
2866	}
2867
2868	swap_file = p->swap_file;
 
2869	p->swap_file = NULL;
2870	p->max = 0;
2871	swap_map = p->swap_map;
2872	p->swap_map = NULL;
2873	zeromap = p->zeromap;
2874	p->zeromap = NULL;
2875	cluster_info = p->cluster_info;
2876	p->cluster_info = NULL;
 
2877	spin_unlock(&p->lock);
2878	spin_unlock(&swap_lock);
2879	arch_swap_invalidate_area(p->type);
2880	zswap_swapoff(p->type);
2881	mutex_unlock(&swapon_mutex);
2882	free_percpu(p->percpu_cluster);
2883	p->percpu_cluster = NULL;
2884	free_percpu(p->cluster_next_cpu);
2885	p->cluster_next_cpu = NULL;
2886	vfree(swap_map);
2887	kvfree(zeromap);
2888	kvfree(cluster_info);
 
2889	/* Destroy swap account information */
2890	swap_cgroup_swapoff(p->type);
2891	exit_swap_address_space(p->type);
2892
2893	inode = mapping->host;
2894
2895	inode_lock(inode);
2896	inode->i_flags &= ~S_SWAPFILE;
2897	inode_unlock(inode);
 
 
 
 
 
2898	filp_close(swap_file, NULL);
2899
2900	/*
2901	 * Clear the SWP_USED flag after all resources are freed so that swapon
2902	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2903	 * not hold p->lock after we cleared its SWP_WRITEOK.
2904	 */
2905	spin_lock(&swap_lock);
2906	p->flags = 0;
2907	spin_unlock(&swap_lock);
2908
2909	err = 0;
2910	atomic_inc(&proc_poll_event);
2911	wake_up_interruptible(&proc_poll_wait);
2912
2913out_dput:
2914	filp_close(victim, NULL);
2915out:
2916	putname(pathname);
2917	return err;
2918}
2919
2920#ifdef CONFIG_PROC_FS
2921static __poll_t swaps_poll(struct file *file, poll_table *wait)
2922{
2923	struct seq_file *seq = file->private_data;
2924
2925	poll_wait(file, &proc_poll_wait, wait);
2926
2927	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2928		seq->poll_event = atomic_read(&proc_poll_event);
2929		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2930	}
2931
2932	return EPOLLIN | EPOLLRDNORM;
2933}
2934
2935/* iterator */
2936static void *swap_start(struct seq_file *swap, loff_t *pos)
2937{
2938	struct swap_info_struct *si;
2939	int type;
2940	loff_t l = *pos;
2941
2942	mutex_lock(&swapon_mutex);
2943
2944	if (!l)
2945		return SEQ_START_TOKEN;
2946
2947	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
 
 
2948		if (!(si->flags & SWP_USED) || !si->swap_map)
2949			continue;
2950		if (!--l)
2951			return si;
2952	}
2953
2954	return NULL;
2955}
2956
2957static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2958{
2959	struct swap_info_struct *si = v;
2960	int type;
2961
2962	if (v == SEQ_START_TOKEN)
2963		type = 0;
2964	else
2965		type = si->type + 1;
2966
2967	++(*pos);
2968	for (; (si = swap_type_to_swap_info(type)); type++) {
 
2969		if (!(si->flags & SWP_USED) || !si->swap_map)
2970			continue;
 
2971		return si;
2972	}
2973
2974	return NULL;
2975}
2976
2977static void swap_stop(struct seq_file *swap, void *v)
2978{
2979	mutex_unlock(&swapon_mutex);
2980}
2981
2982static int swap_show(struct seq_file *swap, void *v)
2983{
2984	struct swap_info_struct *si = v;
2985	struct file *file;
2986	int len;
2987	unsigned long bytes, inuse;
2988
2989	if (si == SEQ_START_TOKEN) {
2990		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2991		return 0;
2992	}
2993
2994	bytes = K(si->pages);
2995	inuse = K(READ_ONCE(si->inuse_pages));
2996
2997	file = si->swap_file;
2998	len = seq_file_path(swap, file, " \t\n\\");
2999	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
3000			len < 40 ? 40 - len : 1, " ",
3001			S_ISBLK(file_inode(file)->i_mode) ?
3002				"partition" : "file\t",
3003			bytes, bytes < 10000000 ? "\t" : "",
3004			inuse, inuse < 10000000 ? "\t" : "",
3005			si->prio);
3006	return 0;
3007}
3008
3009static const struct seq_operations swaps_op = {
3010	.start =	swap_start,
3011	.next =		swap_next,
3012	.stop =		swap_stop,
3013	.show =		swap_show
3014};
3015
3016static int swaps_open(struct inode *inode, struct file *file)
3017{
3018	struct seq_file *seq;
3019	int ret;
3020
3021	ret = seq_open(file, &swaps_op);
3022	if (ret)
3023		return ret;
3024
3025	seq = file->private_data;
3026	seq->poll_event = atomic_read(&proc_poll_event);
3027	return 0;
3028}
3029
3030static const struct proc_ops swaps_proc_ops = {
3031	.proc_flags	= PROC_ENTRY_PERMANENT,
3032	.proc_open	= swaps_open,
3033	.proc_read	= seq_read,
3034	.proc_lseek	= seq_lseek,
3035	.proc_release	= seq_release,
3036	.proc_poll	= swaps_poll,
3037};
3038
3039static int __init procswaps_init(void)
3040{
3041	proc_create("swaps", 0, NULL, &swaps_proc_ops);
3042	return 0;
3043}
3044__initcall(procswaps_init);
3045#endif /* CONFIG_PROC_FS */
3046
3047#ifdef MAX_SWAPFILES_CHECK
3048static int __init max_swapfiles_check(void)
3049{
3050	MAX_SWAPFILES_CHECK();
3051	return 0;
3052}
3053late_initcall(max_swapfiles_check);
3054#endif
3055
3056static struct swap_info_struct *alloc_swap_info(void)
3057{
3058	struct swap_info_struct *p;
3059	struct swap_info_struct *defer = NULL;
3060	unsigned int type;
3061	int i;
3062
3063	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
3064	if (!p)
3065		return ERR_PTR(-ENOMEM);
3066
3067	if (percpu_ref_init(&p->users, swap_users_ref_free,
3068			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
3069		kvfree(p);
3070		return ERR_PTR(-ENOMEM);
3071	}
3072
3073	spin_lock(&swap_lock);
3074	for (type = 0; type < nr_swapfiles; type++) {
3075		if (!(swap_info[type]->flags & SWP_USED))
3076			break;
3077	}
3078	if (type >= MAX_SWAPFILES) {
3079		spin_unlock(&swap_lock);
3080		percpu_ref_exit(&p->users);
3081		kvfree(p);
3082		return ERR_PTR(-EPERM);
3083	}
3084	if (type >= nr_swapfiles) {
3085		p->type = type;
 
3086		/*
3087		 * Publish the swap_info_struct after initializing it.
3088		 * Note that kvzalloc() above zeroes all its fields.
 
3089		 */
3090		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3091		nr_swapfiles++;
3092	} else {
3093		defer = p;
3094		p = swap_info[type];
3095		/*
3096		 * Do not memset this entry: a racing procfs swap_next()
3097		 * would be relying on p->type to remain valid.
3098		 */
3099	}
3100	p->swap_extent_root = RB_ROOT;
3101	plist_node_init(&p->list, 0);
3102	for_each_node(i)
3103		plist_node_init(&p->avail_lists[i], 0);
3104	p->flags = SWP_USED;
3105	spin_unlock(&swap_lock);
3106	if (defer) {
3107		percpu_ref_exit(&defer->users);
3108		kvfree(defer);
3109	}
3110	spin_lock_init(&p->lock);
3111	spin_lock_init(&p->cont_lock);
3112	init_completion(&p->comp);
3113
3114	return p;
3115}
3116
3117static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3118{
 
 
3119	if (S_ISBLK(inode->i_mode)) {
3120		si->bdev = I_BDEV(inode);
3121		/*
3122		 * Zoned block devices contain zones that have a sequential
3123		 * write only restriction.  Hence zoned block devices are not
3124		 * suitable for swapping.  Disallow them here.
3125		 */
3126		if (bdev_is_zoned(si->bdev))
3127			return -EINVAL;
3128		si->flags |= SWP_BLKDEV;
 
 
 
3129	} else if (S_ISREG(inode->i_mode)) {
3130		si->bdev = inode->i_sb->s_bdev;
3131	}
 
 
 
 
3132
3133	return 0;
3134}
3135
3136
3137/*
3138 * Find out how many pages are allowed for a single swap device. There
3139 * are two limiting factors:
3140 * 1) the number of bits for the swap offset in the swp_entry_t type, and
3141 * 2) the number of bits in the swap pte, as defined by the different
3142 * architectures.
3143 *
3144 * In order to find the largest possible bit mask, a swap entry with
3145 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3146 * decoded to a swp_entry_t again, and finally the swap offset is
3147 * extracted.
3148 *
3149 * This will mask all the bits from the initial ~0UL mask that can't
3150 * be encoded in either the swp_entry_t or the architecture definition
3151 * of a swap pte.
3152 */
3153unsigned long generic_max_swapfile_size(void)
3154{
3155	return swp_offset(pte_to_swp_entry(
3156			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3157}
3158
3159/* Can be overridden by an architecture for additional checks. */
3160__weak unsigned long arch_max_swapfile_size(void)
3161{
3162	return generic_max_swapfile_size();
3163}
3164
3165static unsigned long read_swap_header(struct swap_info_struct *si,
3166					union swap_header *swap_header,
3167					struct inode *inode)
3168{
3169	int i;
3170	unsigned long maxpages;
3171	unsigned long swapfilepages;
3172	unsigned long last_page;
3173
3174	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3175		pr_err("Unable to find swap-space signature\n");
3176		return 0;
3177	}
3178
3179	/* swap partition endianness hack... */
3180	if (swab32(swap_header->info.version) == 1) {
3181		swab32s(&swap_header->info.version);
3182		swab32s(&swap_header->info.last_page);
3183		swab32s(&swap_header->info.nr_badpages);
3184		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3185			return 0;
3186		for (i = 0; i < swap_header->info.nr_badpages; i++)
3187			swab32s(&swap_header->info.badpages[i]);
3188	}
3189	/* Check the swap header's sub-version */
3190	if (swap_header->info.version != 1) {
3191		pr_warn("Unable to handle swap header version %d\n",
3192			swap_header->info.version);
3193		return 0;
3194	}
3195
3196	si->lowest_bit  = 1;
3197	si->cluster_next = 1;
3198	si->cluster_nr = 0;
3199
3200	maxpages = swapfile_maximum_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3201	last_page = swap_header->info.last_page;
3202	if (!last_page) {
3203		pr_warn("Empty swap-file\n");
3204		return 0;
3205	}
3206	if (last_page > maxpages) {
3207		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3208			K(maxpages), K(last_page));
 
3209	}
3210	if (maxpages > last_page) {
3211		maxpages = last_page + 1;
3212		/* p->max is an unsigned int: don't overflow it */
3213		if ((unsigned int)maxpages == 0)
3214			maxpages = UINT_MAX;
3215	}
3216	si->highest_bit = maxpages - 1;
3217
3218	if (!maxpages)
3219		return 0;
3220	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3221	if (swapfilepages && maxpages > swapfilepages) {
3222		pr_warn("Swap area shorter than signature indicates\n");
3223		return 0;
3224	}
3225	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3226		return 0;
3227	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3228		return 0;
3229
3230	return maxpages;
3231}
3232
3233#define SWAP_CLUSTER_INFO_COLS						\
3234	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3235#define SWAP_CLUSTER_SPACE_COLS						\
3236	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3237#define SWAP_CLUSTER_COLS						\
3238	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3239
3240static int setup_swap_map_and_extents(struct swap_info_struct *si,
3241					union swap_header *swap_header,
3242					unsigned char *swap_map,
 
3243					unsigned long maxpages,
3244					sector_t *span)
3245{
 
3246	unsigned int nr_good_pages;
3247	unsigned long i;
3248	int nr_extents;
 
 
 
3249
3250	nr_good_pages = maxpages - 1;	/* omit header page */
3251
 
 
 
3252	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3253		unsigned int page_nr = swap_header->info.badpages[i];
3254		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3255			return -EINVAL;
3256		if (page_nr < maxpages) {
3257			swap_map[page_nr] = SWAP_MAP_BAD;
3258			nr_good_pages--;
 
 
 
 
 
3259		}
3260	}
3261
 
 
 
 
3262	if (nr_good_pages) {
3263		swap_map[0] = SWAP_MAP_BAD;
3264		si->max = maxpages;
3265		si->pages = nr_good_pages;
3266		nr_extents = setup_swap_extents(si, span);
 
 
 
 
 
3267		if (nr_extents < 0)
3268			return nr_extents;
3269		nr_good_pages = si->pages;
3270	}
3271	if (!nr_good_pages) {
3272		pr_warn("Empty swap-file\n");
3273		return -EINVAL;
3274	}
3275
3276	return nr_extents;
3277}
3278
3279static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3280						union swap_header *swap_header,
3281						unsigned long maxpages)
3282{
3283	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3284	unsigned long col = si->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3285	struct swap_cluster_info *cluster_info;
3286	unsigned long i, j, k, idx;
3287	int cpu, err = -ENOMEM;
3288
3289	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3290	if (!cluster_info)
3291		goto err;
3292
3293	for (i = 0; i < nr_clusters; i++)
3294		spin_lock_init(&cluster_info[i].lock);
3295
3296	si->cluster_next_cpu = alloc_percpu(unsigned int);
3297	if (!si->cluster_next_cpu)
3298		goto err_free;
3299
3300	/* Random start position to help with wear leveling */
3301	for_each_possible_cpu(cpu)
3302		per_cpu(*si->cluster_next_cpu, cpu) =
3303		get_random_u32_inclusive(1, si->highest_bit);
3304
3305	si->percpu_cluster = alloc_percpu(struct percpu_cluster);
3306	if (!si->percpu_cluster)
3307		goto err_free;
3308
3309	for_each_possible_cpu(cpu) {
3310		struct percpu_cluster *cluster;
3311
3312		cluster = per_cpu_ptr(si->percpu_cluster, cpu);
3313		for (i = 0; i < SWAP_NR_ORDERS; i++)
3314			cluster->next[i] = SWAP_NEXT_INVALID;
3315	}
3316
3317	/*
3318	 * Mark unusable pages as unavailable. The clusters aren't
3319	 * marked free yet, so no list operations are involved yet.
3320	 *
3321	 * See setup_swap_map_and_extents(): header page, bad pages,
3322	 * and the EOF part of the last cluster.
3323	 */
3324	inc_cluster_info_page(si, cluster_info, 0);
3325	for (i = 0; i < swap_header->info.nr_badpages; i++)
3326		inc_cluster_info_page(si, cluster_info,
3327				      swap_header->info.badpages[i]);
3328	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3329		inc_cluster_info_page(si, cluster_info, i);
3330
3331	INIT_LIST_HEAD(&si->free_clusters);
3332	INIT_LIST_HEAD(&si->full_clusters);
3333	INIT_LIST_HEAD(&si->discard_clusters);
3334
3335	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3336		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3337		INIT_LIST_HEAD(&si->frag_clusters[i]);
3338		si->frag_cluster_nr[i] = 0;
3339	}
3340
3341	/*
3342	 * Reduce false cache line sharing between cluster_info and
3343	 * sharing same address space.
3344	 */
3345	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3346		j = (k + col) % SWAP_CLUSTER_COLS;
3347		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3348			struct swap_cluster_info *ci;
3349			idx = i * SWAP_CLUSTER_COLS + j;
3350			ci = cluster_info + idx;
3351			if (idx >= nr_clusters)
3352				continue;
3353			if (ci->count) {
3354				ci->flags = CLUSTER_FLAG_NONFULL;
3355				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3356				continue;
3357			}
3358			ci->flags = CLUSTER_FLAG_FREE;
3359			list_add_tail(&ci->list, &si->free_clusters);
3360		}
3361	}
 
 
 
 
 
 
 
 
 
 
3362
3363	return cluster_info;
 
3364
3365err_free:
3366	kvfree(cluster_info);
3367err:
3368	return ERR_PTR(err);
3369}
3370
3371SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3372{
3373	struct swap_info_struct *si;
3374	struct filename *name;
3375	struct file *swap_file = NULL;
3376	struct address_space *mapping;
3377	struct dentry *dentry;
3378	int prio;
3379	int error;
3380	union swap_header *swap_header;
3381	int nr_extents;
3382	sector_t span;
3383	unsigned long maxpages;
3384	unsigned char *swap_map = NULL;
3385	unsigned long *zeromap = NULL;
3386	struct swap_cluster_info *cluster_info = NULL;
3387	struct folio *folio = NULL;
 
3388	struct inode *inode = NULL;
3389	bool inced_nr_rotate_swap = false;
3390
3391	if (swap_flags & ~SWAP_FLAGS_VALID)
3392		return -EINVAL;
3393
3394	if (!capable(CAP_SYS_ADMIN))
3395		return -EPERM;
3396
3397	if (!swap_avail_heads)
3398		return -ENOMEM;
3399
3400	si = alloc_swap_info();
3401	if (IS_ERR(si))
3402		return PTR_ERR(si);
3403
3404	INIT_WORK(&si->discard_work, swap_discard_work);
3405	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3406
3407	name = getname(specialfile);
3408	if (IS_ERR(name)) {
3409		error = PTR_ERR(name);
3410		name = NULL;
3411		goto bad_swap;
3412	}
3413	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3414	if (IS_ERR(swap_file)) {
3415		error = PTR_ERR(swap_file);
3416		swap_file = NULL;
3417		goto bad_swap;
3418	}
3419
3420	si->swap_file = swap_file;
3421	mapping = swap_file->f_mapping;
3422	dentry = swap_file->f_path.dentry;
3423	inode = mapping->host;
3424
3425	error = claim_swapfile(si, inode);
 
3426	if (unlikely(error))
3427		goto bad_swap;
3428
3429	inode_lock(inode);
3430	if (d_unlinked(dentry) || cant_mount(dentry)) {
3431		error = -ENOENT;
3432		goto bad_swap_unlock_inode;
3433	}
3434	if (IS_SWAPFILE(inode)) {
3435		error = -EBUSY;
3436		goto bad_swap_unlock_inode;
3437	}
3438
3439	/*
3440	 * Read the swap header.
3441	 */
3442	if (!mapping->a_ops->read_folio) {
3443		error = -EINVAL;
3444		goto bad_swap_unlock_inode;
3445	}
3446	folio = read_mapping_folio(mapping, 0, swap_file);
3447	if (IS_ERR(folio)) {
3448		error = PTR_ERR(folio);
3449		goto bad_swap_unlock_inode;
3450	}
3451	swap_header = kmap_local_folio(folio, 0);
3452
3453	maxpages = read_swap_header(si, swap_header, inode);
3454	if (unlikely(!maxpages)) {
3455		error = -EINVAL;
3456		goto bad_swap_unlock_inode;
3457	}
3458
3459	/* OK, set up the swap map and apply the bad block list */
3460	swap_map = vzalloc(maxpages);
3461	if (!swap_map) {
3462		error = -ENOMEM;
3463		goto bad_swap_unlock_inode;
3464	}
3465
3466	error = swap_cgroup_swapon(si->type, maxpages);
3467	if (error)
3468		goto bad_swap_unlock_inode;
3469
3470	nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3471						maxpages, &span);
3472	if (unlikely(nr_extents < 0)) {
3473		error = nr_extents;
3474		goto bad_swap_unlock_inode;
3475	}
3476
3477	/*
3478	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3479	 * be above MAX_PAGE_ORDER incase of a large swap file.
3480	 */
3481	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3482				    GFP_KERNEL | __GFP_ZERO);
3483	if (!zeromap) {
3484		error = -ENOMEM;
3485		goto bad_swap_unlock_inode;
3486	}
3487
3488	if (si->bdev && bdev_stable_writes(si->bdev))
3489		si->flags |= SWP_STABLE_WRITES;
 
 
 
 
 
3490
3491	if (si->bdev && bdev_synchronous(si->bdev))
3492		si->flags |= SWP_SYNCHRONOUS_IO;
 
 
 
 
3493
3494	if (si->bdev && bdev_nonrot(si->bdev)) {
3495		si->flags |= SWP_SOLIDSTATE;
3496
3497		cluster_info = setup_clusters(si, swap_header, maxpages);
3498		if (IS_ERR(cluster_info)) {
3499			error = PTR_ERR(cluster_info);
3500			cluster_info = NULL;
3501			goto bad_swap_unlock_inode;
 
 
 
 
3502		}
3503	} else {
3504		atomic_inc(&nr_rotate_swap);
3505		inced_nr_rotate_swap = true;
3506	}
3507
3508	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3509	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3510		/*
3511		 * When discard is enabled for swap with no particular
3512		 * policy flagged, we set all swap discard flags here in
3513		 * order to sustain backward compatibility with older
3514		 * swapon(8) releases.
3515		 */
3516		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3517			     SWP_PAGE_DISCARD);
3518
3519		/*
3520		 * By flagging sys_swapon, a sysadmin can tell us to
3521		 * either do single-time area discards only, or to just
3522		 * perform discards for released swap page-clusters.
3523		 * Now it's time to adjust the p->flags accordingly.
3524		 */
3525		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3526			si->flags &= ~SWP_PAGE_DISCARD;
3527		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3528			si->flags &= ~SWP_AREA_DISCARD;
3529
3530		/* issue a swapon-time discard if it's still required */
3531		if (si->flags & SWP_AREA_DISCARD) {
3532			int err = discard_swap(si);
3533			if (unlikely(err))
3534				pr_err("swapon: discard_swap(%p): %d\n",
3535					si, err);
3536		}
3537	}
3538
3539	error = init_swap_address_space(si->type, maxpages);
3540	if (error)
3541		goto bad_swap_unlock_inode;
3542
3543	error = zswap_swapon(si->type, maxpages);
3544	if (error)
3545		goto free_swap_address_space;
3546
3547	/*
3548	 * Flush any pending IO and dirty mappings before we start using this
3549	 * swap device.
3550	 */
3551	inode->i_flags |= S_SWAPFILE;
3552	error = inode_drain_writes(inode);
3553	if (error) {
3554		inode->i_flags &= ~S_SWAPFILE;
3555		goto free_swap_zswap;
3556	}
3557
3558	mutex_lock(&swapon_mutex);
3559	prio = -1;
3560	if (swap_flags & SWAP_FLAG_PREFER)
3561		prio =
3562		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3563	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3564
3565	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3566		K(si->pages), name->name, si->prio, nr_extents,
3567		K((unsigned long long)span),
3568		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3569		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3570		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3571		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
 
3572
3573	mutex_unlock(&swapon_mutex);
3574	atomic_inc(&proc_poll_event);
3575	wake_up_interruptible(&proc_poll_wait);
3576
 
 
3577	error = 0;
3578	goto out;
3579free_swap_zswap:
3580	zswap_swapoff(si->type);
3581free_swap_address_space:
3582	exit_swap_address_space(si->type);
3583bad_swap_unlock_inode:
3584	inode_unlock(inode);
3585bad_swap:
3586	free_percpu(si->percpu_cluster);
3587	si->percpu_cluster = NULL;
3588	free_percpu(si->cluster_next_cpu);
3589	si->cluster_next_cpu = NULL;
3590	inode = NULL;
3591	destroy_swap_extents(si);
3592	swap_cgroup_swapoff(si->type);
 
3593	spin_lock(&swap_lock);
3594	si->swap_file = NULL;
3595	si->flags = 0;
3596	spin_unlock(&swap_lock);
3597	vfree(swap_map);
3598	kvfree(zeromap);
3599	kvfree(cluster_info);
 
3600	if (inced_nr_rotate_swap)
3601		atomic_dec(&nr_rotate_swap);
3602	if (swap_file)
 
 
 
 
3603		filp_close(swap_file, NULL);
 
3604out:
3605	if (!IS_ERR_OR_NULL(folio))
3606		folio_release_kmap(folio, swap_header);
 
 
3607	if (name)
3608		putname(name);
3609	if (inode)
3610		inode_unlock(inode);
3611	if (!error)
3612		enable_swap_slots_cache();
3613	return error;
3614}
3615
3616void si_swapinfo(struct sysinfo *val)
3617{
3618	unsigned int type;
3619	unsigned long nr_to_be_unused = 0;
3620
3621	spin_lock(&swap_lock);
3622	for (type = 0; type < nr_swapfiles; type++) {
3623		struct swap_info_struct *si = swap_info[type];
3624
3625		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3626			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3627	}
3628	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3629	val->totalswap = total_swap_pages + nr_to_be_unused;
3630	spin_unlock(&swap_lock);
3631}
3632
3633/*
3634 * Verify that nr swap entries are valid and increment their swap map counts.
3635 *
3636 * Returns error code in following case.
3637 * - success -> 0
3638 * - swp_entry is invalid -> EINVAL
3639 * - swp_entry is migration entry -> EINVAL
3640 * - swap-cache reference is requested but there is already one. -> EEXIST
3641 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3642 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3643 */
3644static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3645{
3646	struct swap_info_struct *si;
3647	struct swap_cluster_info *ci;
3648	unsigned long offset;
3649	unsigned char count;
3650	unsigned char has_cache;
3651	int err, i;
3652
3653	si = swp_swap_info(entry);
 
3654
 
 
 
 
3655	offset = swp_offset(entry);
3656	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3657	VM_WARN_ON(usage == 1 && nr > 1);
3658	ci = lock_cluster_or_swap_info(si, offset);
 
 
 
 
 
 
 
 
 
 
 
 
3659
 
 
3660	err = 0;
3661	for (i = 0; i < nr; i++) {
3662		count = si->swap_map[offset + i];
3663
3664		/*
3665		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3666		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3667		 */
3668		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3669			err = -ENOENT;
3670			goto unlock_out;
3671		}
3672
3673		has_cache = count & SWAP_HAS_CACHE;
3674		count &= ~SWAP_HAS_CACHE;
3675
3676		if (!count && !has_cache) {
 
 
3677			err = -ENOENT;
3678		} else if (usage == SWAP_HAS_CACHE) {
3679			if (has_cache)
3680				err = -EEXIST;
3681		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3682			err = -EINVAL;
3683		}
3684
3685		if (err)
3686			goto unlock_out;
3687	}
3688
3689	for (i = 0; i < nr; i++) {
3690		count = si->swap_map[offset + i];
3691		has_cache = count & SWAP_HAS_CACHE;
3692		count &= ~SWAP_HAS_CACHE;
3693
3694		if (usage == SWAP_HAS_CACHE)
3695			has_cache = SWAP_HAS_CACHE;
3696		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3697			count += usage;
3698		else if (swap_count_continued(si, offset + i, count))
 
 
3699			count = COUNT_CONTINUED;
3700		else {
3701			/*
3702			 * Don't need to rollback changes, because if
3703			 * usage == 1, there must be nr == 1.
3704			 */
3705			err = -ENOMEM;
3706			goto unlock_out;
3707		}
3708
3709		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3710	}
3711
3712unlock_out:
3713	unlock_cluster_or_swap_info(si, ci);
 
3714	return err;
 
 
 
 
3715}
3716
3717/*
3718 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3719 * (in which case its reference count is never incremented).
3720 */
3721void swap_shmem_alloc(swp_entry_t entry, int nr)
3722{
3723	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3724}
3725
3726/*
3727 * Increase reference count of swap entry by 1.
3728 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3729 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3730 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3731 * might occur if a page table entry has got corrupted.
3732 */
3733int swap_duplicate(swp_entry_t entry)
3734{
3735	int err = 0;
3736
3737	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3738		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3739	return err;
3740}
3741
3742/*
3743 * @entry: first swap entry from which we allocate nr swap cache.
3744 *
3745 * Called when allocating swap cache for existing swap entries,
3746 * This can return error codes. Returns 0 at success.
3747 * -EEXIST means there is a swap cache.
3748 * Note: return code is different from swap_duplicate().
3749 */
3750int swapcache_prepare(swp_entry_t entry, int nr)
3751{
3752	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3753}
3754
3755void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3756{
3757	unsigned long offset = swp_offset(entry);
3758
3759	cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3760}
3761
3762struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3763{
3764	return swap_type_to_swap_info(swp_type(entry));
 
3765}
3766
3767/*
3768 * out-of-line methods to avoid include hell.
3769 */
3770struct address_space *swapcache_mapping(struct folio *folio)
3771{
3772	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3773}
3774EXPORT_SYMBOL_GPL(swapcache_mapping);
3775
3776pgoff_t __folio_swap_cache_index(struct folio *folio)
3777{
3778	return swap_cache_index(folio->swap);
 
3779}
3780EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3781
3782/*
3783 * add_swap_count_continuation - called when a swap count is duplicated
3784 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3785 * page of the original vmalloc'ed swap_map, to hold the continuation count
3786 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3787 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3788 *
3789 * These continuation pages are seldom referenced: the common paths all work
3790 * on the original swap_map, only referring to a continuation page when the
3791 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3792 *
3793 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3794 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3795 * can be called after dropping locks.
3796 */
3797int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3798{
3799	struct swap_info_struct *si;
3800	struct swap_cluster_info *ci;
3801	struct page *head;
3802	struct page *page;
3803	struct page *list_page;
3804	pgoff_t offset;
3805	unsigned char count;
3806	int ret = 0;
3807
3808	/*
3809	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3810	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3811	 */
3812	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3813
3814	si = get_swap_device(entry);
3815	if (!si) {
3816		/*
3817		 * An acceptable race has occurred since the failing
3818		 * __swap_duplicate(): the swap device may be swapoff
 
3819		 */
3820		goto outer;
3821	}
3822	spin_lock(&si->lock);
3823
3824	offset = swp_offset(entry);
3825
3826	ci = lock_cluster(si, offset);
3827
3828	count = swap_count(si->swap_map[offset]);
3829
3830	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3831		/*
3832		 * The higher the swap count, the more likely it is that tasks
3833		 * will race to add swap count continuation: we need to avoid
3834		 * over-provisioning.
3835		 */
3836		goto out;
3837	}
3838
3839	if (!page) {
3840		ret = -ENOMEM;
3841		goto out;
 
3842	}
3843
 
 
 
 
 
3844	head = vmalloc_to_page(si->swap_map + offset);
3845	offset &= ~PAGE_MASK;
3846
3847	spin_lock(&si->cont_lock);
3848	/*
3849	 * Page allocation does not initialize the page's lru field,
3850	 * but it does always reset its private field.
3851	 */
3852	if (!page_private(head)) {
3853		BUG_ON(count & COUNT_CONTINUED);
3854		INIT_LIST_HEAD(&head->lru);
3855		set_page_private(head, SWP_CONTINUED);
3856		si->flags |= SWP_CONTINUED;
3857	}
3858
3859	list_for_each_entry(list_page, &head->lru, lru) {
3860		unsigned char *map;
3861
3862		/*
3863		 * If the previous map said no continuation, but we've found
3864		 * a continuation page, free our allocation and use this one.
3865		 */
3866		if (!(count & COUNT_CONTINUED))
3867			goto out_unlock_cont;
3868
3869		map = kmap_local_page(list_page) + offset;
3870		count = *map;
3871		kunmap_local(map);
3872
3873		/*
3874		 * If this continuation count now has some space in it,
3875		 * free our allocation and use this one.
3876		 */
3877		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3878			goto out_unlock_cont;
3879	}
3880
3881	list_add_tail(&page->lru, &head->lru);
3882	page = NULL;			/* now it's attached, don't free it */
3883out_unlock_cont:
3884	spin_unlock(&si->cont_lock);
3885out:
3886	unlock_cluster(ci);
3887	spin_unlock(&si->lock);
3888	put_swap_device(si);
3889outer:
3890	if (page)
3891		__free_page(page);
3892	return ret;
3893}
3894
3895/*
3896 * swap_count_continued - when the original swap_map count is incremented
3897 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3898 * into, carry if so, or else fail until a new continuation page is allocated;
3899 * when the original swap_map count is decremented from 0 with continuation,
3900 * borrow from the continuation and report whether it still holds more.
3901 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3902 * lock.
3903 */
3904static bool swap_count_continued(struct swap_info_struct *si,
3905				 pgoff_t offset, unsigned char count)
3906{
3907	struct page *head;
3908	struct page *page;
3909	unsigned char *map;
3910	bool ret;
3911
3912	head = vmalloc_to_page(si->swap_map + offset);
3913	if (page_private(head) != SWP_CONTINUED) {
3914		BUG_ON(count & COUNT_CONTINUED);
3915		return false;		/* need to add count continuation */
3916	}
3917
3918	spin_lock(&si->cont_lock);
3919	offset &= ~PAGE_MASK;
3920	page = list_next_entry(head, lru);
3921	map = kmap_local_page(page) + offset;
3922
3923	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3924		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3925
3926	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3927		/*
3928		 * Think of how you add 1 to 999
3929		 */
3930		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3931			kunmap_local(map);
3932			page = list_next_entry(page, lru);
3933			BUG_ON(page == head);
3934			map = kmap_local_page(page) + offset;
3935		}
3936		if (*map == SWAP_CONT_MAX) {
3937			kunmap_local(map);
3938			page = list_next_entry(page, lru);
3939			if (page == head) {
3940				ret = false;	/* add count continuation */
3941				goto out;
3942			}
3943			map = kmap_local_page(page) + offset;
3944init_map:		*map = 0;		/* we didn't zero the page */
3945		}
3946		*map += 1;
3947		kunmap_local(map);
3948		while ((page = list_prev_entry(page, lru)) != head) {
3949			map = kmap_local_page(page) + offset;
 
3950			*map = COUNT_CONTINUED;
3951			kunmap_local(map);
 
3952		}
3953		ret = true;			/* incremented */
3954
3955	} else {				/* decrementing */
3956		/*
3957		 * Think of how you subtract 1 from 1000
3958		 */
3959		BUG_ON(count != COUNT_CONTINUED);
3960		while (*map == COUNT_CONTINUED) {
3961			kunmap_local(map);
3962			page = list_next_entry(page, lru);
3963			BUG_ON(page == head);
3964			map = kmap_local_page(page) + offset;
3965		}
3966		BUG_ON(*map == 0);
3967		*map -= 1;
3968		if (*map == 0)
3969			count = 0;
3970		kunmap_local(map);
3971		while ((page = list_prev_entry(page, lru)) != head) {
3972			map = kmap_local_page(page) + offset;
 
3973			*map = SWAP_CONT_MAX | count;
3974			count = COUNT_CONTINUED;
3975			kunmap_local(map);
 
3976		}
3977		ret = count == COUNT_CONTINUED;
3978	}
3979out:
3980	spin_unlock(&si->cont_lock);
3981	return ret;
3982}
3983
3984/*
3985 * free_swap_count_continuations - swapoff free all the continuation pages
3986 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3987 */
3988static void free_swap_count_continuations(struct swap_info_struct *si)
3989{
3990	pgoff_t offset;
3991
3992	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3993		struct page *head;
3994		head = vmalloc_to_page(si->swap_map + offset);
3995		if (page_private(head)) {
3996			struct page *page, *next;
3997
3998			list_for_each_entry_safe(page, next, &head->lru, lru) {
3999				list_del(&page->lru);
4000				__free_page(page);
4001			}
4002		}
4003	}
4004}
4005
4006#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
4007void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
4008{
4009	struct swap_info_struct *si, *next;
4010	int nid = folio_nid(folio);
4011
4012	if (!(gfp & __GFP_IO))
4013		return;
4014
4015	if (!__has_usable_swap())
4016		return;
4017
4018	if (!blk_cgroup_congested())
4019		return;
4020
4021	/*
4022	 * We've already scheduled a throttle, avoid taking the global swap
4023	 * lock.
4024	 */
4025	if (current->throttle_disk)
4026		return;
4027
4028	spin_lock(&swap_avail_lock);
4029	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
4030				  avail_lists[nid]) {
4031		if (si->bdev) {
4032			blkcg_schedule_throttle(si->bdev->bd_disk, true);
4033			break;
4034		}
4035	}
4036	spin_unlock(&swap_avail_lock);
4037}
4038#endif
4039
4040static int __init swapfile_init(void)
4041{
4042	int nid;
4043
4044	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
4045					 GFP_KERNEL);
4046	if (!swap_avail_heads) {
4047		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
4048		return -ENOMEM;
4049	}
4050
4051	for_each_node(nid)
4052		plist_head_init(&swap_avail_heads[nid]);
4053
4054	swapfile_maximum_size = arch_max_swapfile_size();
4055
4056#ifdef CONFIG_MIGRATION
4057	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
4058		swap_migration_ad_supported = true;
4059#endif	/* CONFIG_MIGRATION */
4060
4061	return 0;
4062}
4063subsys_initcall(swapfile_init);