Loading...
1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4#include <linux/mm.h>
5#include <linux/sched.h>
6#include <linux/sched/mm.h>
7#include <linux/sched/coredump.h>
8#include <linux/mmu_notifier.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/mm_inline.h>
12#include <linux/kthread.h>
13#include <linux/khugepaged.h>
14#include <linux/freezer.h>
15#include <linux/mman.h>
16#include <linux/hashtable.h>
17#include <linux/userfaultfd_k.h>
18#include <linux/page_idle.h>
19#include <linux/swapops.h>
20#include <linux/shmem_fs.h>
21
22#include <asm/tlb.h>
23#include <asm/pgalloc.h>
24#include "internal.h"
25
26enum scan_result {
27 SCAN_FAIL,
28 SCAN_SUCCEED,
29 SCAN_PMD_NULL,
30 SCAN_EXCEED_NONE_PTE,
31 SCAN_PTE_NON_PRESENT,
32 SCAN_PAGE_RO,
33 SCAN_LACK_REFERENCED_PAGE,
34 SCAN_PAGE_NULL,
35 SCAN_SCAN_ABORT,
36 SCAN_PAGE_COUNT,
37 SCAN_PAGE_LRU,
38 SCAN_PAGE_LOCK,
39 SCAN_PAGE_ANON,
40 SCAN_PAGE_COMPOUND,
41 SCAN_ANY_PROCESS,
42 SCAN_VMA_NULL,
43 SCAN_VMA_CHECK,
44 SCAN_ADDRESS_RANGE,
45 SCAN_SWAP_CACHE_PAGE,
46 SCAN_DEL_PAGE_LRU,
47 SCAN_ALLOC_HUGE_PAGE_FAIL,
48 SCAN_CGROUP_CHARGE_FAIL,
49 SCAN_EXCEED_SWAP_PTE,
50 SCAN_TRUNCATED,
51};
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/huge_memory.h>
55
56/* default scan 8*512 pte (or vmas) every 30 second */
57static unsigned int khugepaged_pages_to_scan __read_mostly;
58static unsigned int khugepaged_pages_collapsed;
59static unsigned int khugepaged_full_scans;
60static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
61/* during fragmentation poll the hugepage allocator once every minute */
62static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
63static unsigned long khugepaged_sleep_expire;
64static DEFINE_SPINLOCK(khugepaged_mm_lock);
65static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
66/*
67 * default collapse hugepages if there is at least one pte mapped like
68 * it would have happened if the vma was large enough during page
69 * fault.
70 */
71static unsigned int khugepaged_max_ptes_none __read_mostly;
72static unsigned int khugepaged_max_ptes_swap __read_mostly;
73
74#define MM_SLOTS_HASH_BITS 10
75static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
76
77static struct kmem_cache *mm_slot_cache __read_mostly;
78
79/**
80 * struct mm_slot - hash lookup from mm to mm_slot
81 * @hash: hash collision list
82 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
83 * @mm: the mm that this information is valid for
84 */
85struct mm_slot {
86 struct hlist_node hash;
87 struct list_head mm_node;
88 struct mm_struct *mm;
89};
90
91/**
92 * struct khugepaged_scan - cursor for scanning
93 * @mm_head: the head of the mm list to scan
94 * @mm_slot: the current mm_slot we are scanning
95 * @address: the next address inside that to be scanned
96 *
97 * There is only the one khugepaged_scan instance of this cursor structure.
98 */
99struct khugepaged_scan {
100 struct list_head mm_head;
101 struct mm_slot *mm_slot;
102 unsigned long address;
103};
104
105static struct khugepaged_scan khugepaged_scan = {
106 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
107};
108
109#ifdef CONFIG_SYSFS
110static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
111 struct kobj_attribute *attr,
112 char *buf)
113{
114 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
115}
116
117static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
118 struct kobj_attribute *attr,
119 const char *buf, size_t count)
120{
121 unsigned long msecs;
122 int err;
123
124 err = kstrtoul(buf, 10, &msecs);
125 if (err || msecs > UINT_MAX)
126 return -EINVAL;
127
128 khugepaged_scan_sleep_millisecs = msecs;
129 khugepaged_sleep_expire = 0;
130 wake_up_interruptible(&khugepaged_wait);
131
132 return count;
133}
134static struct kobj_attribute scan_sleep_millisecs_attr =
135 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
136 scan_sleep_millisecs_store);
137
138static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
139 struct kobj_attribute *attr,
140 char *buf)
141{
142 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
143}
144
145static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
146 struct kobj_attribute *attr,
147 const char *buf, size_t count)
148{
149 unsigned long msecs;
150 int err;
151
152 err = kstrtoul(buf, 10, &msecs);
153 if (err || msecs > UINT_MAX)
154 return -EINVAL;
155
156 khugepaged_alloc_sleep_millisecs = msecs;
157 khugepaged_sleep_expire = 0;
158 wake_up_interruptible(&khugepaged_wait);
159
160 return count;
161}
162static struct kobj_attribute alloc_sleep_millisecs_attr =
163 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
164 alloc_sleep_millisecs_store);
165
166static ssize_t pages_to_scan_show(struct kobject *kobj,
167 struct kobj_attribute *attr,
168 char *buf)
169{
170 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
171}
172static ssize_t pages_to_scan_store(struct kobject *kobj,
173 struct kobj_attribute *attr,
174 const char *buf, size_t count)
175{
176 int err;
177 unsigned long pages;
178
179 err = kstrtoul(buf, 10, &pages);
180 if (err || !pages || pages > UINT_MAX)
181 return -EINVAL;
182
183 khugepaged_pages_to_scan = pages;
184
185 return count;
186}
187static struct kobj_attribute pages_to_scan_attr =
188 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
189 pages_to_scan_store);
190
191static ssize_t pages_collapsed_show(struct kobject *kobj,
192 struct kobj_attribute *attr,
193 char *buf)
194{
195 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
196}
197static struct kobj_attribute pages_collapsed_attr =
198 __ATTR_RO(pages_collapsed);
199
200static ssize_t full_scans_show(struct kobject *kobj,
201 struct kobj_attribute *attr,
202 char *buf)
203{
204 return sprintf(buf, "%u\n", khugepaged_full_scans);
205}
206static struct kobj_attribute full_scans_attr =
207 __ATTR_RO(full_scans);
208
209static ssize_t khugepaged_defrag_show(struct kobject *kobj,
210 struct kobj_attribute *attr, char *buf)
211{
212 return single_hugepage_flag_show(kobj, attr, buf,
213 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
214}
215static ssize_t khugepaged_defrag_store(struct kobject *kobj,
216 struct kobj_attribute *attr,
217 const char *buf, size_t count)
218{
219 return single_hugepage_flag_store(kobj, attr, buf, count,
220 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
221}
222static struct kobj_attribute khugepaged_defrag_attr =
223 __ATTR(defrag, 0644, khugepaged_defrag_show,
224 khugepaged_defrag_store);
225
226/*
227 * max_ptes_none controls if khugepaged should collapse hugepages over
228 * any unmapped ptes in turn potentially increasing the memory
229 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
230 * reduce the available free memory in the system as it
231 * runs. Increasing max_ptes_none will instead potentially reduce the
232 * free memory in the system during the khugepaged scan.
233 */
234static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 char *buf)
237{
238 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
239}
240static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
241 struct kobj_attribute *attr,
242 const char *buf, size_t count)
243{
244 int err;
245 unsigned long max_ptes_none;
246
247 err = kstrtoul(buf, 10, &max_ptes_none);
248 if (err || max_ptes_none > HPAGE_PMD_NR-1)
249 return -EINVAL;
250
251 khugepaged_max_ptes_none = max_ptes_none;
252
253 return count;
254}
255static struct kobj_attribute khugepaged_max_ptes_none_attr =
256 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
257 khugepaged_max_ptes_none_store);
258
259static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
260 struct kobj_attribute *attr,
261 char *buf)
262{
263 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
264}
265
266static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
267 struct kobj_attribute *attr,
268 const char *buf, size_t count)
269{
270 int err;
271 unsigned long max_ptes_swap;
272
273 err = kstrtoul(buf, 10, &max_ptes_swap);
274 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
275 return -EINVAL;
276
277 khugepaged_max_ptes_swap = max_ptes_swap;
278
279 return count;
280}
281
282static struct kobj_attribute khugepaged_max_ptes_swap_attr =
283 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
284 khugepaged_max_ptes_swap_store);
285
286static struct attribute *khugepaged_attr[] = {
287 &khugepaged_defrag_attr.attr,
288 &khugepaged_max_ptes_none_attr.attr,
289 &pages_to_scan_attr.attr,
290 &pages_collapsed_attr.attr,
291 &full_scans_attr.attr,
292 &scan_sleep_millisecs_attr.attr,
293 &alloc_sleep_millisecs_attr.attr,
294 &khugepaged_max_ptes_swap_attr.attr,
295 NULL,
296};
297
298struct attribute_group khugepaged_attr_group = {
299 .attrs = khugepaged_attr,
300 .name = "khugepaged",
301};
302#endif /* CONFIG_SYSFS */
303
304#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
305
306int hugepage_madvise(struct vm_area_struct *vma,
307 unsigned long *vm_flags, int advice)
308{
309 switch (advice) {
310 case MADV_HUGEPAGE:
311#ifdef CONFIG_S390
312 /*
313 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
314 * can't handle this properly after s390_enable_sie, so we simply
315 * ignore the madvise to prevent qemu from causing a SIGSEGV.
316 */
317 if (mm_has_pgste(vma->vm_mm))
318 return 0;
319#endif
320 *vm_flags &= ~VM_NOHUGEPAGE;
321 *vm_flags |= VM_HUGEPAGE;
322 /*
323 * If the vma become good for khugepaged to scan,
324 * register it here without waiting a page fault that
325 * may not happen any time soon.
326 */
327 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
328 khugepaged_enter_vma_merge(vma, *vm_flags))
329 return -ENOMEM;
330 break;
331 case MADV_NOHUGEPAGE:
332 *vm_flags &= ~VM_HUGEPAGE;
333 *vm_flags |= VM_NOHUGEPAGE;
334 /*
335 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
336 * this vma even if we leave the mm registered in khugepaged if
337 * it got registered before VM_NOHUGEPAGE was set.
338 */
339 break;
340 }
341
342 return 0;
343}
344
345int __init khugepaged_init(void)
346{
347 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
348 sizeof(struct mm_slot),
349 __alignof__(struct mm_slot), 0, NULL);
350 if (!mm_slot_cache)
351 return -ENOMEM;
352
353 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
354 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
355 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
356
357 return 0;
358}
359
360void __init khugepaged_destroy(void)
361{
362 kmem_cache_destroy(mm_slot_cache);
363}
364
365static inline struct mm_slot *alloc_mm_slot(void)
366{
367 if (!mm_slot_cache) /* initialization failed */
368 return NULL;
369 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
370}
371
372static inline void free_mm_slot(struct mm_slot *mm_slot)
373{
374 kmem_cache_free(mm_slot_cache, mm_slot);
375}
376
377static struct mm_slot *get_mm_slot(struct mm_struct *mm)
378{
379 struct mm_slot *mm_slot;
380
381 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
382 if (mm == mm_slot->mm)
383 return mm_slot;
384
385 return NULL;
386}
387
388static void insert_to_mm_slots_hash(struct mm_struct *mm,
389 struct mm_slot *mm_slot)
390{
391 mm_slot->mm = mm;
392 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
393}
394
395static inline int khugepaged_test_exit(struct mm_struct *mm)
396{
397 return atomic_read(&mm->mm_users) == 0;
398}
399
400int __khugepaged_enter(struct mm_struct *mm)
401{
402 struct mm_slot *mm_slot;
403 int wakeup;
404
405 mm_slot = alloc_mm_slot();
406 if (!mm_slot)
407 return -ENOMEM;
408
409 /* __khugepaged_exit() must not run from under us */
410 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
411 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
412 free_mm_slot(mm_slot);
413 return 0;
414 }
415
416 spin_lock(&khugepaged_mm_lock);
417 insert_to_mm_slots_hash(mm, mm_slot);
418 /*
419 * Insert just behind the scanning cursor, to let the area settle
420 * down a little.
421 */
422 wakeup = list_empty(&khugepaged_scan.mm_head);
423 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
424 spin_unlock(&khugepaged_mm_lock);
425
426 mmgrab(mm);
427 if (wakeup)
428 wake_up_interruptible(&khugepaged_wait);
429
430 return 0;
431}
432
433int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
434 unsigned long vm_flags)
435{
436 unsigned long hstart, hend;
437 if (!vma->anon_vma)
438 /*
439 * Not yet faulted in so we will register later in the
440 * page fault if needed.
441 */
442 return 0;
443 if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
444 /* khugepaged not yet working on file or special mappings */
445 return 0;
446 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
447 hend = vma->vm_end & HPAGE_PMD_MASK;
448 if (hstart < hend)
449 return khugepaged_enter(vma, vm_flags);
450 return 0;
451}
452
453void __khugepaged_exit(struct mm_struct *mm)
454{
455 struct mm_slot *mm_slot;
456 int free = 0;
457
458 spin_lock(&khugepaged_mm_lock);
459 mm_slot = get_mm_slot(mm);
460 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
461 hash_del(&mm_slot->hash);
462 list_del(&mm_slot->mm_node);
463 free = 1;
464 }
465 spin_unlock(&khugepaged_mm_lock);
466
467 if (free) {
468 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
469 free_mm_slot(mm_slot);
470 mmdrop(mm);
471 } else if (mm_slot) {
472 /*
473 * This is required to serialize against
474 * khugepaged_test_exit() (which is guaranteed to run
475 * under mmap sem read mode). Stop here (after we
476 * return all pagetables will be destroyed) until
477 * khugepaged has finished working on the pagetables
478 * under the mmap_sem.
479 */
480 down_write(&mm->mmap_sem);
481 up_write(&mm->mmap_sem);
482 }
483}
484
485static void release_pte_page(struct page *page)
486{
487 dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
488 unlock_page(page);
489 putback_lru_page(page);
490}
491
492static void release_pte_pages(pte_t *pte, pte_t *_pte)
493{
494 while (--_pte >= pte) {
495 pte_t pteval = *_pte;
496 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
497 release_pte_page(pte_page(pteval));
498 }
499}
500
501static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
502 unsigned long address,
503 pte_t *pte)
504{
505 struct page *page = NULL;
506 pte_t *_pte;
507 int none_or_zero = 0, result = 0, referenced = 0;
508 bool writable = false;
509
510 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
511 _pte++, address += PAGE_SIZE) {
512 pte_t pteval = *_pte;
513 if (pte_none(pteval) || (pte_present(pteval) &&
514 is_zero_pfn(pte_pfn(pteval)))) {
515 if (!userfaultfd_armed(vma) &&
516 ++none_or_zero <= khugepaged_max_ptes_none) {
517 continue;
518 } else {
519 result = SCAN_EXCEED_NONE_PTE;
520 goto out;
521 }
522 }
523 if (!pte_present(pteval)) {
524 result = SCAN_PTE_NON_PRESENT;
525 goto out;
526 }
527 page = vm_normal_page(vma, address, pteval);
528 if (unlikely(!page)) {
529 result = SCAN_PAGE_NULL;
530 goto out;
531 }
532
533 /* TODO: teach khugepaged to collapse THP mapped with pte */
534 if (PageCompound(page)) {
535 result = SCAN_PAGE_COMPOUND;
536 goto out;
537 }
538
539 VM_BUG_ON_PAGE(!PageAnon(page), page);
540
541 /*
542 * We can do it before isolate_lru_page because the
543 * page can't be freed from under us. NOTE: PG_lock
544 * is needed to serialize against split_huge_page
545 * when invoked from the VM.
546 */
547 if (!trylock_page(page)) {
548 result = SCAN_PAGE_LOCK;
549 goto out;
550 }
551
552 /*
553 * cannot use mapcount: can't collapse if there's a gup pin.
554 * The page must only be referenced by the scanned process
555 * and page swap cache.
556 */
557 if (page_count(page) != 1 + PageSwapCache(page)) {
558 unlock_page(page);
559 result = SCAN_PAGE_COUNT;
560 goto out;
561 }
562 if (pte_write(pteval)) {
563 writable = true;
564 } else {
565 if (PageSwapCache(page) &&
566 !reuse_swap_page(page, NULL)) {
567 unlock_page(page);
568 result = SCAN_SWAP_CACHE_PAGE;
569 goto out;
570 }
571 /*
572 * Page is not in the swap cache. It can be collapsed
573 * into a THP.
574 */
575 }
576
577 /*
578 * Isolate the page to avoid collapsing an hugepage
579 * currently in use by the VM.
580 */
581 if (isolate_lru_page(page)) {
582 unlock_page(page);
583 result = SCAN_DEL_PAGE_LRU;
584 goto out;
585 }
586 inc_node_page_state(page,
587 NR_ISOLATED_ANON + page_is_file_cache(page));
588 VM_BUG_ON_PAGE(!PageLocked(page), page);
589 VM_BUG_ON_PAGE(PageLRU(page), page);
590
591 /* There should be enough young pte to collapse the page */
592 if (pte_young(pteval) ||
593 page_is_young(page) || PageReferenced(page) ||
594 mmu_notifier_test_young(vma->vm_mm, address))
595 referenced++;
596 }
597 if (likely(writable)) {
598 if (likely(referenced)) {
599 result = SCAN_SUCCEED;
600 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
601 referenced, writable, result);
602 return 1;
603 }
604 } else {
605 result = SCAN_PAGE_RO;
606 }
607
608out:
609 release_pte_pages(pte, _pte);
610 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
611 referenced, writable, result);
612 return 0;
613}
614
615static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
616 struct vm_area_struct *vma,
617 unsigned long address,
618 spinlock_t *ptl)
619{
620 pte_t *_pte;
621 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
622 _pte++, page++, address += PAGE_SIZE) {
623 pte_t pteval = *_pte;
624 struct page *src_page;
625
626 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
627 clear_user_highpage(page, address);
628 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
629 if (is_zero_pfn(pte_pfn(pteval))) {
630 /*
631 * ptl mostly unnecessary.
632 */
633 spin_lock(ptl);
634 /*
635 * paravirt calls inside pte_clear here are
636 * superfluous.
637 */
638 pte_clear(vma->vm_mm, address, _pte);
639 spin_unlock(ptl);
640 }
641 } else {
642 src_page = pte_page(pteval);
643 copy_user_highpage(page, src_page, address, vma);
644 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
645 release_pte_page(src_page);
646 /*
647 * ptl mostly unnecessary, but preempt has to
648 * be disabled to update the per-cpu stats
649 * inside page_remove_rmap().
650 */
651 spin_lock(ptl);
652 /*
653 * paravirt calls inside pte_clear here are
654 * superfluous.
655 */
656 pte_clear(vma->vm_mm, address, _pte);
657 page_remove_rmap(src_page, false);
658 spin_unlock(ptl);
659 free_page_and_swap_cache(src_page);
660 }
661 }
662}
663
664static void khugepaged_alloc_sleep(void)
665{
666 DEFINE_WAIT(wait);
667
668 add_wait_queue(&khugepaged_wait, &wait);
669 freezable_schedule_timeout_interruptible(
670 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
671 remove_wait_queue(&khugepaged_wait, &wait);
672}
673
674static int khugepaged_node_load[MAX_NUMNODES];
675
676static bool khugepaged_scan_abort(int nid)
677{
678 int i;
679
680 /*
681 * If node_reclaim_mode is disabled, then no extra effort is made to
682 * allocate memory locally.
683 */
684 if (!node_reclaim_mode)
685 return false;
686
687 /* If there is a count for this node already, it must be acceptable */
688 if (khugepaged_node_load[nid])
689 return false;
690
691 for (i = 0; i < MAX_NUMNODES; i++) {
692 if (!khugepaged_node_load[i])
693 continue;
694 if (node_distance(nid, i) > RECLAIM_DISTANCE)
695 return true;
696 }
697 return false;
698}
699
700/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
701static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
702{
703 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
704}
705
706#ifdef CONFIG_NUMA
707static int khugepaged_find_target_node(void)
708{
709 static int last_khugepaged_target_node = NUMA_NO_NODE;
710 int nid, target_node = 0, max_value = 0;
711
712 /* find first node with max normal pages hit */
713 for (nid = 0; nid < MAX_NUMNODES; nid++)
714 if (khugepaged_node_load[nid] > max_value) {
715 max_value = khugepaged_node_load[nid];
716 target_node = nid;
717 }
718
719 /* do some balance if several nodes have the same hit record */
720 if (target_node <= last_khugepaged_target_node)
721 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
722 nid++)
723 if (max_value == khugepaged_node_load[nid]) {
724 target_node = nid;
725 break;
726 }
727
728 last_khugepaged_target_node = target_node;
729 return target_node;
730}
731
732static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
733{
734 if (IS_ERR(*hpage)) {
735 if (!*wait)
736 return false;
737
738 *wait = false;
739 *hpage = NULL;
740 khugepaged_alloc_sleep();
741 } else if (*hpage) {
742 put_page(*hpage);
743 *hpage = NULL;
744 }
745
746 return true;
747}
748
749static struct page *
750khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
751{
752 VM_BUG_ON_PAGE(*hpage, *hpage);
753
754 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
755 if (unlikely(!*hpage)) {
756 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
757 *hpage = ERR_PTR(-ENOMEM);
758 return NULL;
759 }
760
761 prep_transhuge_page(*hpage);
762 count_vm_event(THP_COLLAPSE_ALLOC);
763 return *hpage;
764}
765#else
766static int khugepaged_find_target_node(void)
767{
768 return 0;
769}
770
771static inline struct page *alloc_khugepaged_hugepage(void)
772{
773 struct page *page;
774
775 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
776 HPAGE_PMD_ORDER);
777 if (page)
778 prep_transhuge_page(page);
779 return page;
780}
781
782static struct page *khugepaged_alloc_hugepage(bool *wait)
783{
784 struct page *hpage;
785
786 do {
787 hpage = alloc_khugepaged_hugepage();
788 if (!hpage) {
789 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
790 if (!*wait)
791 return NULL;
792
793 *wait = false;
794 khugepaged_alloc_sleep();
795 } else
796 count_vm_event(THP_COLLAPSE_ALLOC);
797 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
798
799 return hpage;
800}
801
802static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
803{
804 if (!*hpage)
805 *hpage = khugepaged_alloc_hugepage(wait);
806
807 if (unlikely(!*hpage))
808 return false;
809
810 return true;
811}
812
813static struct page *
814khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
815{
816 VM_BUG_ON(!*hpage);
817
818 return *hpage;
819}
820#endif
821
822static bool hugepage_vma_check(struct vm_area_struct *vma)
823{
824 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
825 (vma->vm_flags & VM_NOHUGEPAGE) ||
826 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
827 return false;
828 if (shmem_file(vma->vm_file)) {
829 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
830 return false;
831 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
832 HPAGE_PMD_NR);
833 }
834 if (!vma->anon_vma || vma->vm_ops)
835 return false;
836 if (is_vma_temporary_stack(vma))
837 return false;
838 return !(vma->vm_flags & VM_NO_KHUGEPAGED);
839}
840
841/*
842 * If mmap_sem temporarily dropped, revalidate vma
843 * before taking mmap_sem.
844 * Return 0 if succeeds, otherwise return none-zero
845 * value (scan code).
846 */
847
848static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
849 struct vm_area_struct **vmap)
850{
851 struct vm_area_struct *vma;
852 unsigned long hstart, hend;
853
854 if (unlikely(khugepaged_test_exit(mm)))
855 return SCAN_ANY_PROCESS;
856
857 *vmap = vma = find_vma(mm, address);
858 if (!vma)
859 return SCAN_VMA_NULL;
860
861 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
862 hend = vma->vm_end & HPAGE_PMD_MASK;
863 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
864 return SCAN_ADDRESS_RANGE;
865 if (!hugepage_vma_check(vma))
866 return SCAN_VMA_CHECK;
867 return 0;
868}
869
870/*
871 * Bring missing pages in from swap, to complete THP collapse.
872 * Only done if khugepaged_scan_pmd believes it is worthwhile.
873 *
874 * Called and returns without pte mapped or spinlocks held,
875 * but with mmap_sem held to protect against vma changes.
876 */
877
878static bool __collapse_huge_page_swapin(struct mm_struct *mm,
879 struct vm_area_struct *vma,
880 unsigned long address, pmd_t *pmd,
881 int referenced)
882{
883 int swapped_in = 0, ret = 0;
884 struct vm_fault vmf = {
885 .vma = vma,
886 .address = address,
887 .flags = FAULT_FLAG_ALLOW_RETRY,
888 .pmd = pmd,
889 .pgoff = linear_page_index(vma, address),
890 };
891
892 /* we only decide to swapin, if there is enough young ptes */
893 if (referenced < HPAGE_PMD_NR/2) {
894 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
895 return false;
896 }
897 vmf.pte = pte_offset_map(pmd, address);
898 for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
899 vmf.pte++, vmf.address += PAGE_SIZE) {
900 vmf.orig_pte = *vmf.pte;
901 if (!is_swap_pte(vmf.orig_pte))
902 continue;
903 swapped_in++;
904 ret = do_swap_page(&vmf);
905
906 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
907 if (ret & VM_FAULT_RETRY) {
908 down_read(&mm->mmap_sem);
909 if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
910 /* vma is no longer available, don't continue to swapin */
911 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
912 return false;
913 }
914 /* check if the pmd is still valid */
915 if (mm_find_pmd(mm, address) != pmd) {
916 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
917 return false;
918 }
919 }
920 if (ret & VM_FAULT_ERROR) {
921 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
922 return false;
923 }
924 /* pte is unmapped now, we need to map it */
925 vmf.pte = pte_offset_map(pmd, vmf.address);
926 }
927 vmf.pte--;
928 pte_unmap(vmf.pte);
929 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
930 return true;
931}
932
933static void collapse_huge_page(struct mm_struct *mm,
934 unsigned long address,
935 struct page **hpage,
936 int node, int referenced)
937{
938 pmd_t *pmd, _pmd;
939 pte_t *pte;
940 pgtable_t pgtable;
941 struct page *new_page;
942 spinlock_t *pmd_ptl, *pte_ptl;
943 int isolated = 0, result = 0;
944 struct mem_cgroup *memcg;
945 struct vm_area_struct *vma;
946 unsigned long mmun_start; /* For mmu_notifiers */
947 unsigned long mmun_end; /* For mmu_notifiers */
948 gfp_t gfp;
949
950 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
951
952 /* Only allocate from the target node */
953 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
954
955 /*
956 * Before allocating the hugepage, release the mmap_sem read lock.
957 * The allocation can take potentially a long time if it involves
958 * sync compaction, and we do not need to hold the mmap_sem during
959 * that. We will recheck the vma after taking it again in write mode.
960 */
961 up_read(&mm->mmap_sem);
962 new_page = khugepaged_alloc_page(hpage, gfp, node);
963 if (!new_page) {
964 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
965 goto out_nolock;
966 }
967
968 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
969 result = SCAN_CGROUP_CHARGE_FAIL;
970 goto out_nolock;
971 }
972
973 down_read(&mm->mmap_sem);
974 result = hugepage_vma_revalidate(mm, address, &vma);
975 if (result) {
976 mem_cgroup_cancel_charge(new_page, memcg, true);
977 up_read(&mm->mmap_sem);
978 goto out_nolock;
979 }
980
981 pmd = mm_find_pmd(mm, address);
982 if (!pmd) {
983 result = SCAN_PMD_NULL;
984 mem_cgroup_cancel_charge(new_page, memcg, true);
985 up_read(&mm->mmap_sem);
986 goto out_nolock;
987 }
988
989 /*
990 * __collapse_huge_page_swapin always returns with mmap_sem locked.
991 * If it fails, we release mmap_sem and jump out_nolock.
992 * Continuing to collapse causes inconsistency.
993 */
994 if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
995 mem_cgroup_cancel_charge(new_page, memcg, true);
996 up_read(&mm->mmap_sem);
997 goto out_nolock;
998 }
999
1000 up_read(&mm->mmap_sem);
1001 /*
1002 * Prevent all access to pagetables with the exception of
1003 * gup_fast later handled by the ptep_clear_flush and the VM
1004 * handled by the anon_vma lock + PG_lock.
1005 */
1006 down_write(&mm->mmap_sem);
1007 result = hugepage_vma_revalidate(mm, address, &vma);
1008 if (result)
1009 goto out;
1010 /* check if the pmd is still valid */
1011 if (mm_find_pmd(mm, address) != pmd)
1012 goto out;
1013
1014 anon_vma_lock_write(vma->anon_vma);
1015
1016 pte = pte_offset_map(pmd, address);
1017 pte_ptl = pte_lockptr(mm, pmd);
1018
1019 mmun_start = address;
1020 mmun_end = address + HPAGE_PMD_SIZE;
1021 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1022 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1023 /*
1024 * After this gup_fast can't run anymore. This also removes
1025 * any huge TLB entry from the CPU so we won't allow
1026 * huge and small TLB entries for the same virtual address
1027 * to avoid the risk of CPU bugs in that area.
1028 */
1029 _pmd = pmdp_collapse_flush(vma, address, pmd);
1030 spin_unlock(pmd_ptl);
1031 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1032
1033 spin_lock(pte_ptl);
1034 isolated = __collapse_huge_page_isolate(vma, address, pte);
1035 spin_unlock(pte_ptl);
1036
1037 if (unlikely(!isolated)) {
1038 pte_unmap(pte);
1039 spin_lock(pmd_ptl);
1040 BUG_ON(!pmd_none(*pmd));
1041 /*
1042 * We can only use set_pmd_at when establishing
1043 * hugepmds and never for establishing regular pmds that
1044 * points to regular pagetables. Use pmd_populate for that
1045 */
1046 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1047 spin_unlock(pmd_ptl);
1048 anon_vma_unlock_write(vma->anon_vma);
1049 result = SCAN_FAIL;
1050 goto out;
1051 }
1052
1053 /*
1054 * All pages are isolated and locked so anon_vma rmap
1055 * can't run anymore.
1056 */
1057 anon_vma_unlock_write(vma->anon_vma);
1058
1059 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1060 pte_unmap(pte);
1061 __SetPageUptodate(new_page);
1062 pgtable = pmd_pgtable(_pmd);
1063
1064 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1065 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1066
1067 /*
1068 * spin_lock() below is not the equivalent of smp_wmb(), so
1069 * this is needed to avoid the copy_huge_page writes to become
1070 * visible after the set_pmd_at() write.
1071 */
1072 smp_wmb();
1073
1074 spin_lock(pmd_ptl);
1075 BUG_ON(!pmd_none(*pmd));
1076 page_add_new_anon_rmap(new_page, vma, address, true);
1077 mem_cgroup_commit_charge(new_page, memcg, false, true);
1078 lru_cache_add_active_or_unevictable(new_page, vma);
1079 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1080 set_pmd_at(mm, address, pmd, _pmd);
1081 update_mmu_cache_pmd(vma, address, pmd);
1082 spin_unlock(pmd_ptl);
1083
1084 *hpage = NULL;
1085
1086 khugepaged_pages_collapsed++;
1087 result = SCAN_SUCCEED;
1088out_up_write:
1089 up_write(&mm->mmap_sem);
1090out_nolock:
1091 trace_mm_collapse_huge_page(mm, isolated, result);
1092 return;
1093out:
1094 mem_cgroup_cancel_charge(new_page, memcg, true);
1095 goto out_up_write;
1096}
1097
1098static int khugepaged_scan_pmd(struct mm_struct *mm,
1099 struct vm_area_struct *vma,
1100 unsigned long address,
1101 struct page **hpage)
1102{
1103 pmd_t *pmd;
1104 pte_t *pte, *_pte;
1105 int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1106 struct page *page = NULL;
1107 unsigned long _address;
1108 spinlock_t *ptl;
1109 int node = NUMA_NO_NODE, unmapped = 0;
1110 bool writable = false;
1111
1112 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1113
1114 pmd = mm_find_pmd(mm, address);
1115 if (!pmd) {
1116 result = SCAN_PMD_NULL;
1117 goto out;
1118 }
1119
1120 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1121 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1122 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1123 _pte++, _address += PAGE_SIZE) {
1124 pte_t pteval = *_pte;
1125 if (is_swap_pte(pteval)) {
1126 if (++unmapped <= khugepaged_max_ptes_swap) {
1127 continue;
1128 } else {
1129 result = SCAN_EXCEED_SWAP_PTE;
1130 goto out_unmap;
1131 }
1132 }
1133 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1134 if (!userfaultfd_armed(vma) &&
1135 ++none_or_zero <= khugepaged_max_ptes_none) {
1136 continue;
1137 } else {
1138 result = SCAN_EXCEED_NONE_PTE;
1139 goto out_unmap;
1140 }
1141 }
1142 if (!pte_present(pteval)) {
1143 result = SCAN_PTE_NON_PRESENT;
1144 goto out_unmap;
1145 }
1146 if (pte_write(pteval))
1147 writable = true;
1148
1149 page = vm_normal_page(vma, _address, pteval);
1150 if (unlikely(!page)) {
1151 result = SCAN_PAGE_NULL;
1152 goto out_unmap;
1153 }
1154
1155 /* TODO: teach khugepaged to collapse THP mapped with pte */
1156 if (PageCompound(page)) {
1157 result = SCAN_PAGE_COMPOUND;
1158 goto out_unmap;
1159 }
1160
1161 /*
1162 * Record which node the original page is from and save this
1163 * information to khugepaged_node_load[].
1164 * Khupaged will allocate hugepage from the node has the max
1165 * hit record.
1166 */
1167 node = page_to_nid(page);
1168 if (khugepaged_scan_abort(node)) {
1169 result = SCAN_SCAN_ABORT;
1170 goto out_unmap;
1171 }
1172 khugepaged_node_load[node]++;
1173 if (!PageLRU(page)) {
1174 result = SCAN_PAGE_LRU;
1175 goto out_unmap;
1176 }
1177 if (PageLocked(page)) {
1178 result = SCAN_PAGE_LOCK;
1179 goto out_unmap;
1180 }
1181 if (!PageAnon(page)) {
1182 result = SCAN_PAGE_ANON;
1183 goto out_unmap;
1184 }
1185
1186 /*
1187 * cannot use mapcount: can't collapse if there's a gup pin.
1188 * The page must only be referenced by the scanned process
1189 * and page swap cache.
1190 */
1191 if (page_count(page) != 1 + PageSwapCache(page)) {
1192 result = SCAN_PAGE_COUNT;
1193 goto out_unmap;
1194 }
1195 if (pte_young(pteval) ||
1196 page_is_young(page) || PageReferenced(page) ||
1197 mmu_notifier_test_young(vma->vm_mm, address))
1198 referenced++;
1199 }
1200 if (writable) {
1201 if (referenced) {
1202 result = SCAN_SUCCEED;
1203 ret = 1;
1204 } else {
1205 result = SCAN_LACK_REFERENCED_PAGE;
1206 }
1207 } else {
1208 result = SCAN_PAGE_RO;
1209 }
1210out_unmap:
1211 pte_unmap_unlock(pte, ptl);
1212 if (ret) {
1213 node = khugepaged_find_target_node();
1214 /* collapse_huge_page will return with the mmap_sem released */
1215 collapse_huge_page(mm, address, hpage, node, referenced);
1216 }
1217out:
1218 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1219 none_or_zero, result, unmapped);
1220 return ret;
1221}
1222
1223static void collect_mm_slot(struct mm_slot *mm_slot)
1224{
1225 struct mm_struct *mm = mm_slot->mm;
1226
1227 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1228
1229 if (khugepaged_test_exit(mm)) {
1230 /* free mm_slot */
1231 hash_del(&mm_slot->hash);
1232 list_del(&mm_slot->mm_node);
1233
1234 /*
1235 * Not strictly needed because the mm exited already.
1236 *
1237 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1238 */
1239
1240 /* khugepaged_mm_lock actually not necessary for the below */
1241 free_mm_slot(mm_slot);
1242 mmdrop(mm);
1243 }
1244}
1245
1246#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1247static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1248{
1249 struct vm_area_struct *vma;
1250 unsigned long addr;
1251 pmd_t *pmd, _pmd;
1252
1253 i_mmap_lock_write(mapping);
1254 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1255 /* probably overkill */
1256 if (vma->anon_vma)
1257 continue;
1258 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1259 if (addr & ~HPAGE_PMD_MASK)
1260 continue;
1261 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1262 continue;
1263 pmd = mm_find_pmd(vma->vm_mm, addr);
1264 if (!pmd)
1265 continue;
1266 /*
1267 * We need exclusive mmap_sem to retract page table.
1268 * If trylock fails we would end up with pte-mapped THP after
1269 * re-fault. Not ideal, but it's more important to not disturb
1270 * the system too much.
1271 */
1272 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1273 spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1274 /* assume page table is clear */
1275 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1276 spin_unlock(ptl);
1277 up_write(&vma->vm_mm->mmap_sem);
1278 mm_dec_nr_ptes(vma->vm_mm);
1279 pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1280 }
1281 }
1282 i_mmap_unlock_write(mapping);
1283}
1284
1285/**
1286 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1287 *
1288 * Basic scheme is simple, details are more complex:
1289 * - allocate and freeze a new huge page;
1290 * - scan over radix tree replacing old pages the new one
1291 * + swap in pages if necessary;
1292 * + fill in gaps;
1293 * + keep old pages around in case if rollback is required;
1294 * - if replacing succeed:
1295 * + copy data over;
1296 * + free old pages;
1297 * + unfreeze huge page;
1298 * - if replacing failed;
1299 * + put all pages back and unfreeze them;
1300 * + restore gaps in the radix-tree;
1301 * + free huge page;
1302 */
1303static void collapse_shmem(struct mm_struct *mm,
1304 struct address_space *mapping, pgoff_t start,
1305 struct page **hpage, int node)
1306{
1307 gfp_t gfp;
1308 struct page *page, *new_page, *tmp;
1309 struct mem_cgroup *memcg;
1310 pgoff_t index, end = start + HPAGE_PMD_NR;
1311 LIST_HEAD(pagelist);
1312 struct radix_tree_iter iter;
1313 void **slot;
1314 int nr_none = 0, result = SCAN_SUCCEED;
1315
1316 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1317
1318 /* Only allocate from the target node */
1319 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1320
1321 new_page = khugepaged_alloc_page(hpage, gfp, node);
1322 if (!new_page) {
1323 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1324 goto out;
1325 }
1326
1327 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1328 result = SCAN_CGROUP_CHARGE_FAIL;
1329 goto out;
1330 }
1331
1332 new_page->index = start;
1333 new_page->mapping = mapping;
1334 __SetPageSwapBacked(new_page);
1335 __SetPageLocked(new_page);
1336 BUG_ON(!page_ref_freeze(new_page, 1));
1337
1338
1339 /*
1340 * At this point the new_page is 'frozen' (page_count() is zero), locked
1341 * and not up-to-date. It's safe to insert it into radix tree, because
1342 * nobody would be able to map it or use it in other way until we
1343 * unfreeze it.
1344 */
1345
1346 index = start;
1347 xa_lock_irq(&mapping->i_pages);
1348 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1349 int n = min(iter.index, end) - index;
1350
1351 /*
1352 * Handle holes in the radix tree: charge it from shmem and
1353 * insert relevant subpage of new_page into the radix-tree.
1354 */
1355 if (n && !shmem_charge(mapping->host, n)) {
1356 result = SCAN_FAIL;
1357 break;
1358 }
1359 nr_none += n;
1360 for (; index < min(iter.index, end); index++) {
1361 radix_tree_insert(&mapping->i_pages, index,
1362 new_page + (index % HPAGE_PMD_NR));
1363 }
1364
1365 /* We are done. */
1366 if (index >= end)
1367 break;
1368
1369 page = radix_tree_deref_slot_protected(slot,
1370 &mapping->i_pages.xa_lock);
1371 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1372 xa_unlock_irq(&mapping->i_pages);
1373 /* swap in or instantiate fallocated page */
1374 if (shmem_getpage(mapping->host, index, &page,
1375 SGP_NOHUGE)) {
1376 result = SCAN_FAIL;
1377 goto tree_unlocked;
1378 }
1379 xa_lock_irq(&mapping->i_pages);
1380 } else if (trylock_page(page)) {
1381 get_page(page);
1382 } else {
1383 result = SCAN_PAGE_LOCK;
1384 break;
1385 }
1386
1387 /*
1388 * The page must be locked, so we can drop the i_pages lock
1389 * without racing with truncate.
1390 */
1391 VM_BUG_ON_PAGE(!PageLocked(page), page);
1392 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1393 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1394
1395 if (page_mapping(page) != mapping) {
1396 result = SCAN_TRUNCATED;
1397 goto out_unlock;
1398 }
1399 xa_unlock_irq(&mapping->i_pages);
1400
1401 if (isolate_lru_page(page)) {
1402 result = SCAN_DEL_PAGE_LRU;
1403 goto out_isolate_failed;
1404 }
1405
1406 if (page_mapped(page))
1407 unmap_mapping_pages(mapping, index, 1, false);
1408
1409 xa_lock_irq(&mapping->i_pages);
1410
1411 slot = radix_tree_lookup_slot(&mapping->i_pages, index);
1412 VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1413 &mapping->i_pages.xa_lock), page);
1414 VM_BUG_ON_PAGE(page_mapped(page), page);
1415
1416 /*
1417 * The page is expected to have page_count() == 3:
1418 * - we hold a pin on it;
1419 * - one reference from radix tree;
1420 * - one from isolate_lru_page;
1421 */
1422 if (!page_ref_freeze(page, 3)) {
1423 result = SCAN_PAGE_COUNT;
1424 goto out_lru;
1425 }
1426
1427 /*
1428 * Add the page to the list to be able to undo the collapse if
1429 * something go wrong.
1430 */
1431 list_add_tail(&page->lru, &pagelist);
1432
1433 /* Finally, replace with the new page. */
1434 radix_tree_replace_slot(&mapping->i_pages, slot,
1435 new_page + (index % HPAGE_PMD_NR));
1436
1437 slot = radix_tree_iter_resume(slot, &iter);
1438 index++;
1439 continue;
1440out_lru:
1441 xa_unlock_irq(&mapping->i_pages);
1442 putback_lru_page(page);
1443out_isolate_failed:
1444 unlock_page(page);
1445 put_page(page);
1446 goto tree_unlocked;
1447out_unlock:
1448 unlock_page(page);
1449 put_page(page);
1450 break;
1451 }
1452
1453 /*
1454 * Handle hole in radix tree at the end of the range.
1455 * This code only triggers if there's nothing in radix tree
1456 * beyond 'end'.
1457 */
1458 if (result == SCAN_SUCCEED && index < end) {
1459 int n = end - index;
1460
1461 if (!shmem_charge(mapping->host, n)) {
1462 result = SCAN_FAIL;
1463 goto tree_locked;
1464 }
1465
1466 for (; index < end; index++) {
1467 radix_tree_insert(&mapping->i_pages, index,
1468 new_page + (index % HPAGE_PMD_NR));
1469 }
1470 nr_none += n;
1471 }
1472
1473tree_locked:
1474 xa_unlock_irq(&mapping->i_pages);
1475tree_unlocked:
1476
1477 if (result == SCAN_SUCCEED) {
1478 unsigned long flags;
1479 struct zone *zone = page_zone(new_page);
1480
1481 /*
1482 * Replacing old pages with new one has succeed, now we need to
1483 * copy the content and free old pages.
1484 */
1485 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1486 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1487 page);
1488 list_del(&page->lru);
1489 unlock_page(page);
1490 page_ref_unfreeze(page, 1);
1491 page->mapping = NULL;
1492 ClearPageActive(page);
1493 ClearPageUnevictable(page);
1494 put_page(page);
1495 }
1496
1497 local_irq_save(flags);
1498 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1499 if (nr_none) {
1500 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1501 __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1502 }
1503 local_irq_restore(flags);
1504
1505 /*
1506 * Remove pte page tables, so we can re-faulti
1507 * the page as huge.
1508 */
1509 retract_page_tables(mapping, start);
1510
1511 /* Everything is ready, let's unfreeze the new_page */
1512 set_page_dirty(new_page);
1513 SetPageUptodate(new_page);
1514 page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1515 mem_cgroup_commit_charge(new_page, memcg, false, true);
1516 lru_cache_add_anon(new_page);
1517 unlock_page(new_page);
1518
1519 *hpage = NULL;
1520 } else {
1521 /* Something went wrong: rollback changes to the radix-tree */
1522 shmem_uncharge(mapping->host, nr_none);
1523 xa_lock_irq(&mapping->i_pages);
1524 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1525 if (iter.index >= end)
1526 break;
1527 page = list_first_entry_or_null(&pagelist,
1528 struct page, lru);
1529 if (!page || iter.index < page->index) {
1530 if (!nr_none)
1531 break;
1532 nr_none--;
1533 /* Put holes back where they were */
1534 radix_tree_delete(&mapping->i_pages, iter.index);
1535 continue;
1536 }
1537
1538 VM_BUG_ON_PAGE(page->index != iter.index, page);
1539
1540 /* Unfreeze the page. */
1541 list_del(&page->lru);
1542 page_ref_unfreeze(page, 2);
1543 radix_tree_replace_slot(&mapping->i_pages, slot, page);
1544 slot = radix_tree_iter_resume(slot, &iter);
1545 xa_unlock_irq(&mapping->i_pages);
1546 putback_lru_page(page);
1547 unlock_page(page);
1548 xa_lock_irq(&mapping->i_pages);
1549 }
1550 VM_BUG_ON(nr_none);
1551 xa_unlock_irq(&mapping->i_pages);
1552
1553 /* Unfreeze new_page, caller would take care about freeing it */
1554 page_ref_unfreeze(new_page, 1);
1555 mem_cgroup_cancel_charge(new_page, memcg, true);
1556 unlock_page(new_page);
1557 new_page->mapping = NULL;
1558 }
1559out:
1560 VM_BUG_ON(!list_empty(&pagelist));
1561 /* TODO: tracepoints */
1562}
1563
1564static void khugepaged_scan_shmem(struct mm_struct *mm,
1565 struct address_space *mapping,
1566 pgoff_t start, struct page **hpage)
1567{
1568 struct page *page = NULL;
1569 struct radix_tree_iter iter;
1570 void **slot;
1571 int present, swap;
1572 int node = NUMA_NO_NODE;
1573 int result = SCAN_SUCCEED;
1574
1575 present = 0;
1576 swap = 0;
1577 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1578 rcu_read_lock();
1579 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1580 if (iter.index >= start + HPAGE_PMD_NR)
1581 break;
1582
1583 page = radix_tree_deref_slot(slot);
1584 if (radix_tree_deref_retry(page)) {
1585 slot = radix_tree_iter_retry(&iter);
1586 continue;
1587 }
1588
1589 if (radix_tree_exception(page)) {
1590 if (++swap > khugepaged_max_ptes_swap) {
1591 result = SCAN_EXCEED_SWAP_PTE;
1592 break;
1593 }
1594 continue;
1595 }
1596
1597 if (PageTransCompound(page)) {
1598 result = SCAN_PAGE_COMPOUND;
1599 break;
1600 }
1601
1602 node = page_to_nid(page);
1603 if (khugepaged_scan_abort(node)) {
1604 result = SCAN_SCAN_ABORT;
1605 break;
1606 }
1607 khugepaged_node_load[node]++;
1608
1609 if (!PageLRU(page)) {
1610 result = SCAN_PAGE_LRU;
1611 break;
1612 }
1613
1614 if (page_count(page) != 1 + page_mapcount(page)) {
1615 result = SCAN_PAGE_COUNT;
1616 break;
1617 }
1618
1619 /*
1620 * We probably should check if the page is referenced here, but
1621 * nobody would transfer pte_young() to PageReferenced() for us.
1622 * And rmap walk here is just too costly...
1623 */
1624
1625 present++;
1626
1627 if (need_resched()) {
1628 slot = radix_tree_iter_resume(slot, &iter);
1629 cond_resched_rcu();
1630 }
1631 }
1632 rcu_read_unlock();
1633
1634 if (result == SCAN_SUCCEED) {
1635 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1636 result = SCAN_EXCEED_NONE_PTE;
1637 } else {
1638 node = khugepaged_find_target_node();
1639 collapse_shmem(mm, mapping, start, hpage, node);
1640 }
1641 }
1642
1643 /* TODO: tracepoints */
1644}
1645#else
1646static void khugepaged_scan_shmem(struct mm_struct *mm,
1647 struct address_space *mapping,
1648 pgoff_t start, struct page **hpage)
1649{
1650 BUILD_BUG();
1651}
1652#endif
1653
1654static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1655 struct page **hpage)
1656 __releases(&khugepaged_mm_lock)
1657 __acquires(&khugepaged_mm_lock)
1658{
1659 struct mm_slot *mm_slot;
1660 struct mm_struct *mm;
1661 struct vm_area_struct *vma;
1662 int progress = 0;
1663
1664 VM_BUG_ON(!pages);
1665 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1666
1667 if (khugepaged_scan.mm_slot)
1668 mm_slot = khugepaged_scan.mm_slot;
1669 else {
1670 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1671 struct mm_slot, mm_node);
1672 khugepaged_scan.address = 0;
1673 khugepaged_scan.mm_slot = mm_slot;
1674 }
1675 spin_unlock(&khugepaged_mm_lock);
1676
1677 mm = mm_slot->mm;
1678 /*
1679 * Don't wait for semaphore (to avoid long wait times). Just move to
1680 * the next mm on the list.
1681 */
1682 vma = NULL;
1683 if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1684 goto breakouterloop_mmap_sem;
1685 if (likely(!khugepaged_test_exit(mm)))
1686 vma = find_vma(mm, khugepaged_scan.address);
1687
1688 progress++;
1689 for (; vma; vma = vma->vm_next) {
1690 unsigned long hstart, hend;
1691
1692 cond_resched();
1693 if (unlikely(khugepaged_test_exit(mm))) {
1694 progress++;
1695 break;
1696 }
1697 if (!hugepage_vma_check(vma)) {
1698skip:
1699 progress++;
1700 continue;
1701 }
1702 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1703 hend = vma->vm_end & HPAGE_PMD_MASK;
1704 if (hstart >= hend)
1705 goto skip;
1706 if (khugepaged_scan.address > hend)
1707 goto skip;
1708 if (khugepaged_scan.address < hstart)
1709 khugepaged_scan.address = hstart;
1710 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1711
1712 while (khugepaged_scan.address < hend) {
1713 int ret;
1714 cond_resched();
1715 if (unlikely(khugepaged_test_exit(mm)))
1716 goto breakouterloop;
1717
1718 VM_BUG_ON(khugepaged_scan.address < hstart ||
1719 khugepaged_scan.address + HPAGE_PMD_SIZE >
1720 hend);
1721 if (shmem_file(vma->vm_file)) {
1722 struct file *file;
1723 pgoff_t pgoff = linear_page_index(vma,
1724 khugepaged_scan.address);
1725 if (!shmem_huge_enabled(vma))
1726 goto skip;
1727 file = get_file(vma->vm_file);
1728 up_read(&mm->mmap_sem);
1729 ret = 1;
1730 khugepaged_scan_shmem(mm, file->f_mapping,
1731 pgoff, hpage);
1732 fput(file);
1733 } else {
1734 ret = khugepaged_scan_pmd(mm, vma,
1735 khugepaged_scan.address,
1736 hpage);
1737 }
1738 /* move to next address */
1739 khugepaged_scan.address += HPAGE_PMD_SIZE;
1740 progress += HPAGE_PMD_NR;
1741 if (ret)
1742 /* we released mmap_sem so break loop */
1743 goto breakouterloop_mmap_sem;
1744 if (progress >= pages)
1745 goto breakouterloop;
1746 }
1747 }
1748breakouterloop:
1749 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1750breakouterloop_mmap_sem:
1751
1752 spin_lock(&khugepaged_mm_lock);
1753 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1754 /*
1755 * Release the current mm_slot if this mm is about to die, or
1756 * if we scanned all vmas of this mm.
1757 */
1758 if (khugepaged_test_exit(mm) || !vma) {
1759 /*
1760 * Make sure that if mm_users is reaching zero while
1761 * khugepaged runs here, khugepaged_exit will find
1762 * mm_slot not pointing to the exiting mm.
1763 */
1764 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1765 khugepaged_scan.mm_slot = list_entry(
1766 mm_slot->mm_node.next,
1767 struct mm_slot, mm_node);
1768 khugepaged_scan.address = 0;
1769 } else {
1770 khugepaged_scan.mm_slot = NULL;
1771 khugepaged_full_scans++;
1772 }
1773
1774 collect_mm_slot(mm_slot);
1775 }
1776
1777 return progress;
1778}
1779
1780static int khugepaged_has_work(void)
1781{
1782 return !list_empty(&khugepaged_scan.mm_head) &&
1783 khugepaged_enabled();
1784}
1785
1786static int khugepaged_wait_event(void)
1787{
1788 return !list_empty(&khugepaged_scan.mm_head) ||
1789 kthread_should_stop();
1790}
1791
1792static void khugepaged_do_scan(void)
1793{
1794 struct page *hpage = NULL;
1795 unsigned int progress = 0, pass_through_head = 0;
1796 unsigned int pages = khugepaged_pages_to_scan;
1797 bool wait = true;
1798
1799 barrier(); /* write khugepaged_pages_to_scan to local stack */
1800
1801 while (progress < pages) {
1802 if (!khugepaged_prealloc_page(&hpage, &wait))
1803 break;
1804
1805 cond_resched();
1806
1807 if (unlikely(kthread_should_stop() || try_to_freeze()))
1808 break;
1809
1810 spin_lock(&khugepaged_mm_lock);
1811 if (!khugepaged_scan.mm_slot)
1812 pass_through_head++;
1813 if (khugepaged_has_work() &&
1814 pass_through_head < 2)
1815 progress += khugepaged_scan_mm_slot(pages - progress,
1816 &hpage);
1817 else
1818 progress = pages;
1819 spin_unlock(&khugepaged_mm_lock);
1820 }
1821
1822 if (!IS_ERR_OR_NULL(hpage))
1823 put_page(hpage);
1824}
1825
1826static bool khugepaged_should_wakeup(void)
1827{
1828 return kthread_should_stop() ||
1829 time_after_eq(jiffies, khugepaged_sleep_expire);
1830}
1831
1832static void khugepaged_wait_work(void)
1833{
1834 if (khugepaged_has_work()) {
1835 const unsigned long scan_sleep_jiffies =
1836 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1837
1838 if (!scan_sleep_jiffies)
1839 return;
1840
1841 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1842 wait_event_freezable_timeout(khugepaged_wait,
1843 khugepaged_should_wakeup(),
1844 scan_sleep_jiffies);
1845 return;
1846 }
1847
1848 if (khugepaged_enabled())
1849 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1850}
1851
1852static int khugepaged(void *none)
1853{
1854 struct mm_slot *mm_slot;
1855
1856 set_freezable();
1857 set_user_nice(current, MAX_NICE);
1858
1859 while (!kthread_should_stop()) {
1860 khugepaged_do_scan();
1861 khugepaged_wait_work();
1862 }
1863
1864 spin_lock(&khugepaged_mm_lock);
1865 mm_slot = khugepaged_scan.mm_slot;
1866 khugepaged_scan.mm_slot = NULL;
1867 if (mm_slot)
1868 collect_mm_slot(mm_slot);
1869 spin_unlock(&khugepaged_mm_lock);
1870 return 0;
1871}
1872
1873static void set_recommended_min_free_kbytes(void)
1874{
1875 struct zone *zone;
1876 int nr_zones = 0;
1877 unsigned long recommended_min;
1878
1879 for_each_populated_zone(zone) {
1880 /*
1881 * We don't need to worry about fragmentation of
1882 * ZONE_MOVABLE since it only has movable pages.
1883 */
1884 if (zone_idx(zone) > gfp_zone(GFP_USER))
1885 continue;
1886
1887 nr_zones++;
1888 }
1889
1890 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1891 recommended_min = pageblock_nr_pages * nr_zones * 2;
1892
1893 /*
1894 * Make sure that on average at least two pageblocks are almost free
1895 * of another type, one for a migratetype to fall back to and a
1896 * second to avoid subsequent fallbacks of other types There are 3
1897 * MIGRATE_TYPES we care about.
1898 */
1899 recommended_min += pageblock_nr_pages * nr_zones *
1900 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1901
1902 /* don't ever allow to reserve more than 5% of the lowmem */
1903 recommended_min = min(recommended_min,
1904 (unsigned long) nr_free_buffer_pages() / 20);
1905 recommended_min <<= (PAGE_SHIFT-10);
1906
1907 if (recommended_min > min_free_kbytes) {
1908 if (user_min_free_kbytes >= 0)
1909 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1910 min_free_kbytes, recommended_min);
1911
1912 min_free_kbytes = recommended_min;
1913 }
1914 setup_per_zone_wmarks();
1915}
1916
1917int start_stop_khugepaged(void)
1918{
1919 static struct task_struct *khugepaged_thread __read_mostly;
1920 static DEFINE_MUTEX(khugepaged_mutex);
1921 int err = 0;
1922
1923 mutex_lock(&khugepaged_mutex);
1924 if (khugepaged_enabled()) {
1925 if (!khugepaged_thread)
1926 khugepaged_thread = kthread_run(khugepaged, NULL,
1927 "khugepaged");
1928 if (IS_ERR(khugepaged_thread)) {
1929 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1930 err = PTR_ERR(khugepaged_thread);
1931 khugepaged_thread = NULL;
1932 goto fail;
1933 }
1934
1935 if (!list_empty(&khugepaged_scan.mm_head))
1936 wake_up_interruptible(&khugepaged_wait);
1937
1938 set_recommended_min_free_kbytes();
1939 } else if (khugepaged_thread) {
1940 kthread_stop(khugepaged_thread);
1941 khugepaged_thread = NULL;
1942 }
1943fail:
1944 mutex_unlock(&khugepaged_mutex);
1945 return err;
1946}
1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4#include <linux/mm.h>
5#include <linux/sched.h>
6#include <linux/sched/mm.h>
7#include <linux/mmu_notifier.h>
8#include <linux/rmap.h>
9#include <linux/swap.h>
10#include <linux/mm_inline.h>
11#include <linux/kthread.h>
12#include <linux/khugepaged.h>
13#include <linux/freezer.h>
14#include <linux/mman.h>
15#include <linux/hashtable.h>
16#include <linux/userfaultfd_k.h>
17#include <linux/page_idle.h>
18#include <linux/page_table_check.h>
19#include <linux/rcupdate_wait.h>
20#include <linux/swapops.h>
21#include <linux/shmem_fs.h>
22#include <linux/dax.h>
23#include <linux/ksm.h>
24
25#include <asm/tlb.h>
26#include <asm/pgalloc.h>
27#include "internal.h"
28#include "mm_slot.h"
29
30enum scan_result {
31 SCAN_FAIL,
32 SCAN_SUCCEED,
33 SCAN_PMD_NULL,
34 SCAN_PMD_NONE,
35 SCAN_PMD_MAPPED,
36 SCAN_EXCEED_NONE_PTE,
37 SCAN_EXCEED_SWAP_PTE,
38 SCAN_EXCEED_SHARED_PTE,
39 SCAN_PTE_NON_PRESENT,
40 SCAN_PTE_UFFD_WP,
41 SCAN_PTE_MAPPED_HUGEPAGE,
42 SCAN_PAGE_RO,
43 SCAN_LACK_REFERENCED_PAGE,
44 SCAN_PAGE_NULL,
45 SCAN_SCAN_ABORT,
46 SCAN_PAGE_COUNT,
47 SCAN_PAGE_LRU,
48 SCAN_PAGE_LOCK,
49 SCAN_PAGE_ANON,
50 SCAN_PAGE_COMPOUND,
51 SCAN_ANY_PROCESS,
52 SCAN_VMA_NULL,
53 SCAN_VMA_CHECK,
54 SCAN_ADDRESS_RANGE,
55 SCAN_DEL_PAGE_LRU,
56 SCAN_ALLOC_HUGE_PAGE_FAIL,
57 SCAN_CGROUP_CHARGE_FAIL,
58 SCAN_TRUNCATED,
59 SCAN_PAGE_HAS_PRIVATE,
60 SCAN_STORE_FAILED,
61 SCAN_COPY_MC,
62 SCAN_PAGE_FILLED,
63};
64
65#define CREATE_TRACE_POINTS
66#include <trace/events/huge_memory.h>
67
68static struct task_struct *khugepaged_thread __read_mostly;
69static DEFINE_MUTEX(khugepaged_mutex);
70
71/* default scan 8*512 pte (or vmas) every 30 second */
72static unsigned int khugepaged_pages_to_scan __read_mostly;
73static unsigned int khugepaged_pages_collapsed;
74static unsigned int khugepaged_full_scans;
75static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
76/* during fragmentation poll the hugepage allocator once every minute */
77static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
78static unsigned long khugepaged_sleep_expire;
79static DEFINE_SPINLOCK(khugepaged_mm_lock);
80static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
81/*
82 * default collapse hugepages if there is at least one pte mapped like
83 * it would have happened if the vma was large enough during page
84 * fault.
85 *
86 * Note that these are only respected if collapse was initiated by khugepaged.
87 */
88unsigned int khugepaged_max_ptes_none __read_mostly;
89static unsigned int khugepaged_max_ptes_swap __read_mostly;
90static unsigned int khugepaged_max_ptes_shared __read_mostly;
91
92#define MM_SLOTS_HASH_BITS 10
93static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
94
95static struct kmem_cache *mm_slot_cache __ro_after_init;
96
97struct collapse_control {
98 bool is_khugepaged;
99
100 /* Num pages scanned per node */
101 u32 node_load[MAX_NUMNODES];
102
103 /* nodemask for allocation fallback */
104 nodemask_t alloc_nmask;
105};
106
107/**
108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
109 * @slot: hash lookup from mm to mm_slot
110 */
111struct khugepaged_mm_slot {
112 struct mm_slot slot;
113};
114
115/**
116 * struct khugepaged_scan - cursor for scanning
117 * @mm_head: the head of the mm list to scan
118 * @mm_slot: the current mm_slot we are scanning
119 * @address: the next address inside that to be scanned
120 *
121 * There is only the one khugepaged_scan instance of this cursor structure.
122 */
123struct khugepaged_scan {
124 struct list_head mm_head;
125 struct khugepaged_mm_slot *mm_slot;
126 unsigned long address;
127};
128
129static struct khugepaged_scan khugepaged_scan = {
130 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
131};
132
133#ifdef CONFIG_SYSFS
134static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
135 struct kobj_attribute *attr,
136 char *buf)
137{
138 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
139}
140
141static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
142 struct kobj_attribute *attr,
143 const char *buf, size_t count)
144{
145 unsigned int msecs;
146 int err;
147
148 err = kstrtouint(buf, 10, &msecs);
149 if (err)
150 return -EINVAL;
151
152 khugepaged_scan_sleep_millisecs = msecs;
153 khugepaged_sleep_expire = 0;
154 wake_up_interruptible(&khugepaged_wait);
155
156 return count;
157}
158static struct kobj_attribute scan_sleep_millisecs_attr =
159 __ATTR_RW(scan_sleep_millisecs);
160
161static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
162 struct kobj_attribute *attr,
163 char *buf)
164{
165 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
166}
167
168static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
169 struct kobj_attribute *attr,
170 const char *buf, size_t count)
171{
172 unsigned int msecs;
173 int err;
174
175 err = kstrtouint(buf, 10, &msecs);
176 if (err)
177 return -EINVAL;
178
179 khugepaged_alloc_sleep_millisecs = msecs;
180 khugepaged_sleep_expire = 0;
181 wake_up_interruptible(&khugepaged_wait);
182
183 return count;
184}
185static struct kobj_attribute alloc_sleep_millisecs_attr =
186 __ATTR_RW(alloc_sleep_millisecs);
187
188static ssize_t pages_to_scan_show(struct kobject *kobj,
189 struct kobj_attribute *attr,
190 char *buf)
191{
192 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
193}
194static ssize_t pages_to_scan_store(struct kobject *kobj,
195 struct kobj_attribute *attr,
196 const char *buf, size_t count)
197{
198 unsigned int pages;
199 int err;
200
201 err = kstrtouint(buf, 10, &pages);
202 if (err || !pages)
203 return -EINVAL;
204
205 khugepaged_pages_to_scan = pages;
206
207 return count;
208}
209static struct kobj_attribute pages_to_scan_attr =
210 __ATTR_RW(pages_to_scan);
211
212static ssize_t pages_collapsed_show(struct kobject *kobj,
213 struct kobj_attribute *attr,
214 char *buf)
215{
216 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
217}
218static struct kobj_attribute pages_collapsed_attr =
219 __ATTR_RO(pages_collapsed);
220
221static ssize_t full_scans_show(struct kobject *kobj,
222 struct kobj_attribute *attr,
223 char *buf)
224{
225 return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
226}
227static struct kobj_attribute full_scans_attr =
228 __ATTR_RO(full_scans);
229
230static ssize_t defrag_show(struct kobject *kobj,
231 struct kobj_attribute *attr, char *buf)
232{
233 return single_hugepage_flag_show(kobj, attr, buf,
234 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
235}
236static ssize_t defrag_store(struct kobject *kobj,
237 struct kobj_attribute *attr,
238 const char *buf, size_t count)
239{
240 return single_hugepage_flag_store(kobj, attr, buf, count,
241 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
242}
243static struct kobj_attribute khugepaged_defrag_attr =
244 __ATTR_RW(defrag);
245
246/*
247 * max_ptes_none controls if khugepaged should collapse hugepages over
248 * any unmapped ptes in turn potentially increasing the memory
249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
250 * reduce the available free memory in the system as it
251 * runs. Increasing max_ptes_none will instead potentially reduce the
252 * free memory in the system during the khugepaged scan.
253 */
254static ssize_t max_ptes_none_show(struct kobject *kobj,
255 struct kobj_attribute *attr,
256 char *buf)
257{
258 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
259}
260static ssize_t max_ptes_none_store(struct kobject *kobj,
261 struct kobj_attribute *attr,
262 const char *buf, size_t count)
263{
264 int err;
265 unsigned long max_ptes_none;
266
267 err = kstrtoul(buf, 10, &max_ptes_none);
268 if (err || max_ptes_none > HPAGE_PMD_NR - 1)
269 return -EINVAL;
270
271 khugepaged_max_ptes_none = max_ptes_none;
272
273 return count;
274}
275static struct kobj_attribute khugepaged_max_ptes_none_attr =
276 __ATTR_RW(max_ptes_none);
277
278static ssize_t max_ptes_swap_show(struct kobject *kobj,
279 struct kobj_attribute *attr,
280 char *buf)
281{
282 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
283}
284
285static ssize_t max_ptes_swap_store(struct kobject *kobj,
286 struct kobj_attribute *attr,
287 const char *buf, size_t count)
288{
289 int err;
290 unsigned long max_ptes_swap;
291
292 err = kstrtoul(buf, 10, &max_ptes_swap);
293 if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
294 return -EINVAL;
295
296 khugepaged_max_ptes_swap = max_ptes_swap;
297
298 return count;
299}
300
301static struct kobj_attribute khugepaged_max_ptes_swap_attr =
302 __ATTR_RW(max_ptes_swap);
303
304static ssize_t max_ptes_shared_show(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 char *buf)
307{
308 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
309}
310
311static ssize_t max_ptes_shared_store(struct kobject *kobj,
312 struct kobj_attribute *attr,
313 const char *buf, size_t count)
314{
315 int err;
316 unsigned long max_ptes_shared;
317
318 err = kstrtoul(buf, 10, &max_ptes_shared);
319 if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
320 return -EINVAL;
321
322 khugepaged_max_ptes_shared = max_ptes_shared;
323
324 return count;
325}
326
327static struct kobj_attribute khugepaged_max_ptes_shared_attr =
328 __ATTR_RW(max_ptes_shared);
329
330static struct attribute *khugepaged_attr[] = {
331 &khugepaged_defrag_attr.attr,
332 &khugepaged_max_ptes_none_attr.attr,
333 &khugepaged_max_ptes_swap_attr.attr,
334 &khugepaged_max_ptes_shared_attr.attr,
335 &pages_to_scan_attr.attr,
336 &pages_collapsed_attr.attr,
337 &full_scans_attr.attr,
338 &scan_sleep_millisecs_attr.attr,
339 &alloc_sleep_millisecs_attr.attr,
340 NULL,
341};
342
343struct attribute_group khugepaged_attr_group = {
344 .attrs = khugepaged_attr,
345 .name = "khugepaged",
346};
347#endif /* CONFIG_SYSFS */
348
349int hugepage_madvise(struct vm_area_struct *vma,
350 unsigned long *vm_flags, int advice)
351{
352 switch (advice) {
353 case MADV_HUGEPAGE:
354#ifdef CONFIG_S390
355 /*
356 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
357 * can't handle this properly after s390_enable_sie, so we simply
358 * ignore the madvise to prevent qemu from causing a SIGSEGV.
359 */
360 if (mm_has_pgste(vma->vm_mm))
361 return 0;
362#endif
363 *vm_flags &= ~VM_NOHUGEPAGE;
364 *vm_flags |= VM_HUGEPAGE;
365 /*
366 * If the vma become good for khugepaged to scan,
367 * register it here without waiting a page fault that
368 * may not happen any time soon.
369 */
370 khugepaged_enter_vma(vma, *vm_flags);
371 break;
372 case MADV_NOHUGEPAGE:
373 *vm_flags &= ~VM_HUGEPAGE;
374 *vm_flags |= VM_NOHUGEPAGE;
375 /*
376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 * this vma even if we leave the mm registered in khugepaged if
378 * it got registered before VM_NOHUGEPAGE was set.
379 */
380 break;
381 }
382
383 return 0;
384}
385
386int __init khugepaged_init(void)
387{
388 mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0);
389 if (!mm_slot_cache)
390 return -ENOMEM;
391
392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
396
397 return 0;
398}
399
400void __init khugepaged_destroy(void)
401{
402 kmem_cache_destroy(mm_slot_cache);
403}
404
405static inline int hpage_collapse_test_exit(struct mm_struct *mm)
406{
407 return atomic_read(&mm->mm_users) == 0;
408}
409
410static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
411{
412 return hpage_collapse_test_exit(mm) ||
413 test_bit(MMF_DISABLE_THP, &mm->flags);
414}
415
416static bool hugepage_pmd_enabled(void)
417{
418 /*
419 * We cover the anon, shmem and the file-backed case here; file-backed
420 * hugepages, when configured in, are determined by the global control.
421 * Anon pmd-sized hugepages are determined by the pmd-size control.
422 * Shmem pmd-sized hugepages are also determined by its pmd-size control,
423 * except when the global shmem_huge is set to SHMEM_HUGE_DENY.
424 */
425 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
426 hugepage_global_enabled())
427 return true;
428 if (test_bit(PMD_ORDER, &huge_anon_orders_always))
429 return true;
430 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise))
431 return true;
432 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) &&
433 hugepage_global_enabled())
434 return true;
435 if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled())
436 return true;
437 return false;
438}
439
440void __khugepaged_enter(struct mm_struct *mm)
441{
442 struct khugepaged_mm_slot *mm_slot;
443 struct mm_slot *slot;
444 int wakeup;
445
446 /* __khugepaged_exit() must not run from under us */
447 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
448 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
449 return;
450
451 mm_slot = mm_slot_alloc(mm_slot_cache);
452 if (!mm_slot)
453 return;
454
455 slot = &mm_slot->slot;
456
457 spin_lock(&khugepaged_mm_lock);
458 mm_slot_insert(mm_slots_hash, mm, slot);
459 /*
460 * Insert just behind the scanning cursor, to let the area settle
461 * down a little.
462 */
463 wakeup = list_empty(&khugepaged_scan.mm_head);
464 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
465 spin_unlock(&khugepaged_mm_lock);
466
467 mmgrab(mm);
468 if (wakeup)
469 wake_up_interruptible(&khugepaged_wait);
470}
471
472void khugepaged_enter_vma(struct vm_area_struct *vma,
473 unsigned long vm_flags)
474{
475 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
476 hugepage_pmd_enabled()) {
477 if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS,
478 PMD_ORDER))
479 __khugepaged_enter(vma->vm_mm);
480 }
481}
482
483void __khugepaged_exit(struct mm_struct *mm)
484{
485 struct khugepaged_mm_slot *mm_slot;
486 struct mm_slot *slot;
487 int free = 0;
488
489 spin_lock(&khugepaged_mm_lock);
490 slot = mm_slot_lookup(mm_slots_hash, mm);
491 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
492 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
493 hash_del(&slot->hash);
494 list_del(&slot->mm_node);
495 free = 1;
496 }
497 spin_unlock(&khugepaged_mm_lock);
498
499 if (free) {
500 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
501 mm_slot_free(mm_slot_cache, mm_slot);
502 mmdrop(mm);
503 } else if (mm_slot) {
504 /*
505 * This is required to serialize against
506 * hpage_collapse_test_exit() (which is guaranteed to run
507 * under mmap sem read mode). Stop here (after we return all
508 * pagetables will be destroyed) until khugepaged has finished
509 * working on the pagetables under the mmap_lock.
510 */
511 mmap_write_lock(mm);
512 mmap_write_unlock(mm);
513 }
514}
515
516static void release_pte_folio(struct folio *folio)
517{
518 node_stat_mod_folio(folio,
519 NR_ISOLATED_ANON + folio_is_file_lru(folio),
520 -folio_nr_pages(folio));
521 folio_unlock(folio);
522 folio_putback_lru(folio);
523}
524
525static void release_pte_pages(pte_t *pte, pte_t *_pte,
526 struct list_head *compound_pagelist)
527{
528 struct folio *folio, *tmp;
529
530 while (--_pte >= pte) {
531 pte_t pteval = ptep_get(_pte);
532 unsigned long pfn;
533
534 if (pte_none(pteval))
535 continue;
536 pfn = pte_pfn(pteval);
537 if (is_zero_pfn(pfn))
538 continue;
539 folio = pfn_folio(pfn);
540 if (folio_test_large(folio))
541 continue;
542 release_pte_folio(folio);
543 }
544
545 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
546 list_del(&folio->lru);
547 release_pte_folio(folio);
548 }
549}
550
551static bool is_refcount_suitable(struct folio *folio)
552{
553 int expected_refcount = folio_mapcount(folio);
554
555 if (!folio_test_anon(folio) || folio_test_swapcache(folio))
556 expected_refcount += folio_nr_pages(folio);
557
558 if (folio_test_private(folio))
559 expected_refcount++;
560
561 return folio_ref_count(folio) == expected_refcount;
562}
563
564static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
565 unsigned long address,
566 pte_t *pte,
567 struct collapse_control *cc,
568 struct list_head *compound_pagelist)
569{
570 struct page *page = NULL;
571 struct folio *folio = NULL;
572 pte_t *_pte;
573 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
574 bool writable = false;
575
576 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
577 _pte++, address += PAGE_SIZE) {
578 pte_t pteval = ptep_get(_pte);
579 if (pte_none(pteval) || (pte_present(pteval) &&
580 is_zero_pfn(pte_pfn(pteval)))) {
581 ++none_or_zero;
582 if (!userfaultfd_armed(vma) &&
583 (!cc->is_khugepaged ||
584 none_or_zero <= khugepaged_max_ptes_none)) {
585 continue;
586 } else {
587 result = SCAN_EXCEED_NONE_PTE;
588 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
589 goto out;
590 }
591 }
592 if (!pte_present(pteval)) {
593 result = SCAN_PTE_NON_PRESENT;
594 goto out;
595 }
596 if (pte_uffd_wp(pteval)) {
597 result = SCAN_PTE_UFFD_WP;
598 goto out;
599 }
600 page = vm_normal_page(vma, address, pteval);
601 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
602 result = SCAN_PAGE_NULL;
603 goto out;
604 }
605
606 folio = page_folio(page);
607 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
608
609 /* See hpage_collapse_scan_pmd(). */
610 if (folio_likely_mapped_shared(folio)) {
611 ++shared;
612 if (cc->is_khugepaged &&
613 shared > khugepaged_max_ptes_shared) {
614 result = SCAN_EXCEED_SHARED_PTE;
615 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
616 goto out;
617 }
618 }
619
620 if (folio_test_large(folio)) {
621 struct folio *f;
622
623 /*
624 * Check if we have dealt with the compound page
625 * already
626 */
627 list_for_each_entry(f, compound_pagelist, lru) {
628 if (folio == f)
629 goto next;
630 }
631 }
632
633 /*
634 * We can do it before folio_isolate_lru because the
635 * folio can't be freed from under us. NOTE: PG_lock
636 * is needed to serialize against split_huge_page
637 * when invoked from the VM.
638 */
639 if (!folio_trylock(folio)) {
640 result = SCAN_PAGE_LOCK;
641 goto out;
642 }
643
644 /*
645 * Check if the page has any GUP (or other external) pins.
646 *
647 * The page table that maps the page has been already unlinked
648 * from the page table tree and this process cannot get
649 * an additional pin on the page.
650 *
651 * New pins can come later if the page is shared across fork,
652 * but not from this process. The other process cannot write to
653 * the page, only trigger CoW.
654 */
655 if (!is_refcount_suitable(folio)) {
656 folio_unlock(folio);
657 result = SCAN_PAGE_COUNT;
658 goto out;
659 }
660
661 /*
662 * Isolate the page to avoid collapsing an hugepage
663 * currently in use by the VM.
664 */
665 if (!folio_isolate_lru(folio)) {
666 folio_unlock(folio);
667 result = SCAN_DEL_PAGE_LRU;
668 goto out;
669 }
670 node_stat_mod_folio(folio,
671 NR_ISOLATED_ANON + folio_is_file_lru(folio),
672 folio_nr_pages(folio));
673 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
674 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
675
676 if (folio_test_large(folio))
677 list_add_tail(&folio->lru, compound_pagelist);
678next:
679 /*
680 * If collapse was initiated by khugepaged, check that there is
681 * enough young pte to justify collapsing the page
682 */
683 if (cc->is_khugepaged &&
684 (pte_young(pteval) || folio_test_young(folio) ||
685 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
686 address)))
687 referenced++;
688
689 if (pte_write(pteval))
690 writable = true;
691 }
692
693 if (unlikely(!writable)) {
694 result = SCAN_PAGE_RO;
695 } else if (unlikely(cc->is_khugepaged && !referenced)) {
696 result = SCAN_LACK_REFERENCED_PAGE;
697 } else {
698 result = SCAN_SUCCEED;
699 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
700 referenced, writable, result);
701 return result;
702 }
703out:
704 release_pte_pages(pte, _pte, compound_pagelist);
705 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
706 referenced, writable, result);
707 return result;
708}
709
710static void __collapse_huge_page_copy_succeeded(pte_t *pte,
711 struct vm_area_struct *vma,
712 unsigned long address,
713 spinlock_t *ptl,
714 struct list_head *compound_pagelist)
715{
716 struct folio *src, *tmp;
717 pte_t *_pte;
718 pte_t pteval;
719
720 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
721 _pte++, address += PAGE_SIZE) {
722 pteval = ptep_get(_pte);
723 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
724 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
725 if (is_zero_pfn(pte_pfn(pteval))) {
726 /*
727 * ptl mostly unnecessary.
728 */
729 spin_lock(ptl);
730 ptep_clear(vma->vm_mm, address, _pte);
731 spin_unlock(ptl);
732 ksm_might_unmap_zero_page(vma->vm_mm, pteval);
733 }
734 } else {
735 struct page *src_page = pte_page(pteval);
736
737 src = page_folio(src_page);
738 if (!folio_test_large(src))
739 release_pte_folio(src);
740 /*
741 * ptl mostly unnecessary, but preempt has to
742 * be disabled to update the per-cpu stats
743 * inside folio_remove_rmap_pte().
744 */
745 spin_lock(ptl);
746 ptep_clear(vma->vm_mm, address, _pte);
747 folio_remove_rmap_pte(src, src_page, vma);
748 spin_unlock(ptl);
749 free_page_and_swap_cache(src_page);
750 }
751 }
752
753 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
754 list_del(&src->lru);
755 node_stat_sub_folio(src, NR_ISOLATED_ANON +
756 folio_is_file_lru(src));
757 folio_unlock(src);
758 free_swap_cache(src);
759 folio_putback_lru(src);
760 }
761}
762
763static void __collapse_huge_page_copy_failed(pte_t *pte,
764 pmd_t *pmd,
765 pmd_t orig_pmd,
766 struct vm_area_struct *vma,
767 struct list_head *compound_pagelist)
768{
769 spinlock_t *pmd_ptl;
770
771 /*
772 * Re-establish the PMD to point to the original page table
773 * entry. Restoring PMD needs to be done prior to releasing
774 * pages. Since pages are still isolated and locked here,
775 * acquiring anon_vma_lock_write is unnecessary.
776 */
777 pmd_ptl = pmd_lock(vma->vm_mm, pmd);
778 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
779 spin_unlock(pmd_ptl);
780 /*
781 * Release both raw and compound pages isolated
782 * in __collapse_huge_page_isolate.
783 */
784 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
785}
786
787/*
788 * __collapse_huge_page_copy - attempts to copy memory contents from raw
789 * pages to a hugepage. Cleans up the raw pages if copying succeeds;
790 * otherwise restores the original page table and releases isolated raw pages.
791 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
792 *
793 * @pte: starting of the PTEs to copy from
794 * @folio: the new hugepage to copy contents to
795 * @pmd: pointer to the new hugepage's PMD
796 * @orig_pmd: the original raw pages' PMD
797 * @vma: the original raw pages' virtual memory area
798 * @address: starting address to copy
799 * @ptl: lock on raw pages' PTEs
800 * @compound_pagelist: list that stores compound pages
801 */
802static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
803 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
804 unsigned long address, spinlock_t *ptl,
805 struct list_head *compound_pagelist)
806{
807 unsigned int i;
808 int result = SCAN_SUCCEED;
809
810 /*
811 * Copying pages' contents is subject to memory poison at any iteration.
812 */
813 for (i = 0; i < HPAGE_PMD_NR; i++) {
814 pte_t pteval = ptep_get(pte + i);
815 struct page *page = folio_page(folio, i);
816 unsigned long src_addr = address + i * PAGE_SIZE;
817 struct page *src_page;
818
819 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
820 clear_user_highpage(page, src_addr);
821 continue;
822 }
823 src_page = pte_page(pteval);
824 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
825 result = SCAN_COPY_MC;
826 break;
827 }
828 }
829
830 if (likely(result == SCAN_SUCCEED))
831 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
832 compound_pagelist);
833 else
834 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
835 compound_pagelist);
836
837 return result;
838}
839
840static void khugepaged_alloc_sleep(void)
841{
842 DEFINE_WAIT(wait);
843
844 add_wait_queue(&khugepaged_wait, &wait);
845 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
846 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
847 remove_wait_queue(&khugepaged_wait, &wait);
848}
849
850struct collapse_control khugepaged_collapse_control = {
851 .is_khugepaged = true,
852};
853
854static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
855{
856 int i;
857
858 /*
859 * If node_reclaim_mode is disabled, then no extra effort is made to
860 * allocate memory locally.
861 */
862 if (!node_reclaim_enabled())
863 return false;
864
865 /* If there is a count for this node already, it must be acceptable */
866 if (cc->node_load[nid])
867 return false;
868
869 for (i = 0; i < MAX_NUMNODES; i++) {
870 if (!cc->node_load[i])
871 continue;
872 if (node_distance(nid, i) > node_reclaim_distance)
873 return true;
874 }
875 return false;
876}
877
878#define khugepaged_defrag() \
879 (transparent_hugepage_flags & \
880 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
881
882/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
883static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
884{
885 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
886}
887
888#ifdef CONFIG_NUMA
889static int hpage_collapse_find_target_node(struct collapse_control *cc)
890{
891 int nid, target_node = 0, max_value = 0;
892
893 /* find first node with max normal pages hit */
894 for (nid = 0; nid < MAX_NUMNODES; nid++)
895 if (cc->node_load[nid] > max_value) {
896 max_value = cc->node_load[nid];
897 target_node = nid;
898 }
899
900 for_each_online_node(nid) {
901 if (max_value == cc->node_load[nid])
902 node_set(nid, cc->alloc_nmask);
903 }
904
905 return target_node;
906}
907#else
908static int hpage_collapse_find_target_node(struct collapse_control *cc)
909{
910 return 0;
911}
912#endif
913
914/*
915 * If mmap_lock temporarily dropped, revalidate vma
916 * before taking mmap_lock.
917 * Returns enum scan_result value.
918 */
919
920static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
921 bool expect_anon,
922 struct vm_area_struct **vmap,
923 struct collapse_control *cc)
924{
925 struct vm_area_struct *vma;
926 unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0;
927
928 if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
929 return SCAN_ANY_PROCESS;
930
931 *vmap = vma = find_vma(mm, address);
932 if (!vma)
933 return SCAN_VMA_NULL;
934
935 if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
936 return SCAN_ADDRESS_RANGE;
937 if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER))
938 return SCAN_VMA_CHECK;
939 /*
940 * Anon VMA expected, the address may be unmapped then
941 * remapped to file after khugepaged reaquired the mmap_lock.
942 *
943 * thp_vma_allowable_order may return true for qualified file
944 * vmas.
945 */
946 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
947 return SCAN_PAGE_ANON;
948 return SCAN_SUCCEED;
949}
950
951static int find_pmd_or_thp_or_none(struct mm_struct *mm,
952 unsigned long address,
953 pmd_t **pmd)
954{
955 pmd_t pmde;
956
957 *pmd = mm_find_pmd(mm, address);
958 if (!*pmd)
959 return SCAN_PMD_NULL;
960
961 pmde = pmdp_get_lockless(*pmd);
962 if (pmd_none(pmde))
963 return SCAN_PMD_NONE;
964 if (!pmd_present(pmde))
965 return SCAN_PMD_NULL;
966 if (pmd_trans_huge(pmde))
967 return SCAN_PMD_MAPPED;
968 if (pmd_devmap(pmde))
969 return SCAN_PMD_NULL;
970 if (pmd_bad(pmde))
971 return SCAN_PMD_NULL;
972 return SCAN_SUCCEED;
973}
974
975static int check_pmd_still_valid(struct mm_struct *mm,
976 unsigned long address,
977 pmd_t *pmd)
978{
979 pmd_t *new_pmd;
980 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
981
982 if (result != SCAN_SUCCEED)
983 return result;
984 if (new_pmd != pmd)
985 return SCAN_FAIL;
986 return SCAN_SUCCEED;
987}
988
989/*
990 * Bring missing pages in from swap, to complete THP collapse.
991 * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
992 *
993 * Called and returns without pte mapped or spinlocks held.
994 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
995 */
996static int __collapse_huge_page_swapin(struct mm_struct *mm,
997 struct vm_area_struct *vma,
998 unsigned long haddr, pmd_t *pmd,
999 int referenced)
1000{
1001 int swapped_in = 0;
1002 vm_fault_t ret = 0;
1003 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1004 int result;
1005 pte_t *pte = NULL;
1006 spinlock_t *ptl;
1007
1008 for (address = haddr; address < end; address += PAGE_SIZE) {
1009 struct vm_fault vmf = {
1010 .vma = vma,
1011 .address = address,
1012 .pgoff = linear_page_index(vma, address),
1013 .flags = FAULT_FLAG_ALLOW_RETRY,
1014 .pmd = pmd,
1015 };
1016
1017 if (!pte++) {
1018 /*
1019 * Here the ptl is only used to check pte_same() in
1020 * do_swap_page(), so readonly version is enough.
1021 */
1022 pte = pte_offset_map_ro_nolock(mm, pmd, address, &ptl);
1023 if (!pte) {
1024 mmap_read_unlock(mm);
1025 result = SCAN_PMD_NULL;
1026 goto out;
1027 }
1028 }
1029
1030 vmf.orig_pte = ptep_get_lockless(pte);
1031 if (!is_swap_pte(vmf.orig_pte))
1032 continue;
1033
1034 vmf.pte = pte;
1035 vmf.ptl = ptl;
1036 ret = do_swap_page(&vmf);
1037 /* Which unmaps pte (after perhaps re-checking the entry) */
1038 pte = NULL;
1039
1040 /*
1041 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1042 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1043 * we do not retry here and swap entry will remain in pagetable
1044 * resulting in later failure.
1045 */
1046 if (ret & VM_FAULT_RETRY) {
1047 /* Likely, but not guaranteed, that page lock failed */
1048 result = SCAN_PAGE_LOCK;
1049 goto out;
1050 }
1051 if (ret & VM_FAULT_ERROR) {
1052 mmap_read_unlock(mm);
1053 result = SCAN_FAIL;
1054 goto out;
1055 }
1056 swapped_in++;
1057 }
1058
1059 if (pte)
1060 pte_unmap(pte);
1061
1062 /* Drain LRU cache to remove extra pin on the swapped in pages */
1063 if (swapped_in)
1064 lru_add_drain();
1065
1066 result = SCAN_SUCCEED;
1067out:
1068 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1069 return result;
1070}
1071
1072static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1073 struct collapse_control *cc)
1074{
1075 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1076 GFP_TRANSHUGE);
1077 int node = hpage_collapse_find_target_node(cc);
1078 struct folio *folio;
1079
1080 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1081 if (!folio) {
1082 *foliop = NULL;
1083 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1084 return SCAN_ALLOC_HUGE_PAGE_FAIL;
1085 }
1086
1087 count_vm_event(THP_COLLAPSE_ALLOC);
1088 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1089 folio_put(folio);
1090 *foliop = NULL;
1091 return SCAN_CGROUP_CHARGE_FAIL;
1092 }
1093
1094 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1095
1096 *foliop = folio;
1097 return SCAN_SUCCEED;
1098}
1099
1100static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1101 int referenced, int unmapped,
1102 struct collapse_control *cc)
1103{
1104 LIST_HEAD(compound_pagelist);
1105 pmd_t *pmd, _pmd;
1106 pte_t *pte;
1107 pgtable_t pgtable;
1108 struct folio *folio;
1109 spinlock_t *pmd_ptl, *pte_ptl;
1110 int result = SCAN_FAIL;
1111 struct vm_area_struct *vma;
1112 struct mmu_notifier_range range;
1113
1114 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1115
1116 /*
1117 * Before allocating the hugepage, release the mmap_lock read lock.
1118 * The allocation can take potentially a long time if it involves
1119 * sync compaction, and we do not need to hold the mmap_lock during
1120 * that. We will recheck the vma after taking it again in write mode.
1121 */
1122 mmap_read_unlock(mm);
1123
1124 result = alloc_charge_folio(&folio, mm, cc);
1125 if (result != SCAN_SUCCEED)
1126 goto out_nolock;
1127
1128 mmap_read_lock(mm);
1129 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1130 if (result != SCAN_SUCCEED) {
1131 mmap_read_unlock(mm);
1132 goto out_nolock;
1133 }
1134
1135 result = find_pmd_or_thp_or_none(mm, address, &pmd);
1136 if (result != SCAN_SUCCEED) {
1137 mmap_read_unlock(mm);
1138 goto out_nolock;
1139 }
1140
1141 if (unmapped) {
1142 /*
1143 * __collapse_huge_page_swapin will return with mmap_lock
1144 * released when it fails. So we jump out_nolock directly in
1145 * that case. Continuing to collapse causes inconsistency.
1146 */
1147 result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1148 referenced);
1149 if (result != SCAN_SUCCEED)
1150 goto out_nolock;
1151 }
1152
1153 mmap_read_unlock(mm);
1154 /*
1155 * Prevent all access to pagetables with the exception of
1156 * gup_fast later handled by the ptep_clear_flush and the VM
1157 * handled by the anon_vma lock + PG_lock.
1158 *
1159 * UFFDIO_MOVE is prevented to race as well thanks to the
1160 * mmap_lock.
1161 */
1162 mmap_write_lock(mm);
1163 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1164 if (result != SCAN_SUCCEED)
1165 goto out_up_write;
1166 /* check if the pmd is still valid */
1167 result = check_pmd_still_valid(mm, address, pmd);
1168 if (result != SCAN_SUCCEED)
1169 goto out_up_write;
1170
1171 vma_start_write(vma);
1172 anon_vma_lock_write(vma->anon_vma);
1173
1174 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1175 address + HPAGE_PMD_SIZE);
1176 mmu_notifier_invalidate_range_start(&range);
1177
1178 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1179 /*
1180 * This removes any huge TLB entry from the CPU so we won't allow
1181 * huge and small TLB entries for the same virtual address to
1182 * avoid the risk of CPU bugs in that area.
1183 *
1184 * Parallel GUP-fast is fine since GUP-fast will back off when
1185 * it detects PMD is changed.
1186 */
1187 _pmd = pmdp_collapse_flush(vma, address, pmd);
1188 spin_unlock(pmd_ptl);
1189 mmu_notifier_invalidate_range_end(&range);
1190 tlb_remove_table_sync_one();
1191
1192 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1193 if (pte) {
1194 result = __collapse_huge_page_isolate(vma, address, pte, cc,
1195 &compound_pagelist);
1196 spin_unlock(pte_ptl);
1197 } else {
1198 result = SCAN_PMD_NULL;
1199 }
1200
1201 if (unlikely(result != SCAN_SUCCEED)) {
1202 if (pte)
1203 pte_unmap(pte);
1204 spin_lock(pmd_ptl);
1205 BUG_ON(!pmd_none(*pmd));
1206 /*
1207 * We can only use set_pmd_at when establishing
1208 * hugepmds and never for establishing regular pmds that
1209 * points to regular pagetables. Use pmd_populate for that
1210 */
1211 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1212 spin_unlock(pmd_ptl);
1213 anon_vma_unlock_write(vma->anon_vma);
1214 goto out_up_write;
1215 }
1216
1217 /*
1218 * All pages are isolated and locked so anon_vma rmap
1219 * can't run anymore.
1220 */
1221 anon_vma_unlock_write(vma->anon_vma);
1222
1223 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1224 vma, address, pte_ptl,
1225 &compound_pagelist);
1226 pte_unmap(pte);
1227 if (unlikely(result != SCAN_SUCCEED))
1228 goto out_up_write;
1229
1230 /*
1231 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1232 * copy_huge_page writes become visible before the set_pmd_at()
1233 * write.
1234 */
1235 __folio_mark_uptodate(folio);
1236 pgtable = pmd_pgtable(_pmd);
1237
1238 _pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot);
1239 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1240
1241 spin_lock(pmd_ptl);
1242 BUG_ON(!pmd_none(*pmd));
1243 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
1244 folio_add_lru_vma(folio, vma);
1245 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1246 set_pmd_at(mm, address, pmd, _pmd);
1247 update_mmu_cache_pmd(vma, address, pmd);
1248 deferred_split_folio(folio, false);
1249 spin_unlock(pmd_ptl);
1250
1251 folio = NULL;
1252
1253 result = SCAN_SUCCEED;
1254out_up_write:
1255 mmap_write_unlock(mm);
1256out_nolock:
1257 if (folio)
1258 folio_put(folio);
1259 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1260 return result;
1261}
1262
1263static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1264 struct vm_area_struct *vma,
1265 unsigned long address, bool *mmap_locked,
1266 struct collapse_control *cc)
1267{
1268 pmd_t *pmd;
1269 pte_t *pte, *_pte;
1270 int result = SCAN_FAIL, referenced = 0;
1271 int none_or_zero = 0, shared = 0;
1272 struct page *page = NULL;
1273 struct folio *folio = NULL;
1274 unsigned long _address;
1275 spinlock_t *ptl;
1276 int node = NUMA_NO_NODE, unmapped = 0;
1277 bool writable = false;
1278
1279 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1280
1281 result = find_pmd_or_thp_or_none(mm, address, &pmd);
1282 if (result != SCAN_SUCCEED)
1283 goto out;
1284
1285 memset(cc->node_load, 0, sizeof(cc->node_load));
1286 nodes_clear(cc->alloc_nmask);
1287 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1288 if (!pte) {
1289 result = SCAN_PMD_NULL;
1290 goto out;
1291 }
1292
1293 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1294 _pte++, _address += PAGE_SIZE) {
1295 pte_t pteval = ptep_get(_pte);
1296 if (is_swap_pte(pteval)) {
1297 ++unmapped;
1298 if (!cc->is_khugepaged ||
1299 unmapped <= khugepaged_max_ptes_swap) {
1300 /*
1301 * Always be strict with uffd-wp
1302 * enabled swap entries. Please see
1303 * comment below for pte_uffd_wp().
1304 */
1305 if (pte_swp_uffd_wp_any(pteval)) {
1306 result = SCAN_PTE_UFFD_WP;
1307 goto out_unmap;
1308 }
1309 continue;
1310 } else {
1311 result = SCAN_EXCEED_SWAP_PTE;
1312 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1313 goto out_unmap;
1314 }
1315 }
1316 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1317 ++none_or_zero;
1318 if (!userfaultfd_armed(vma) &&
1319 (!cc->is_khugepaged ||
1320 none_or_zero <= khugepaged_max_ptes_none)) {
1321 continue;
1322 } else {
1323 result = SCAN_EXCEED_NONE_PTE;
1324 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1325 goto out_unmap;
1326 }
1327 }
1328 if (pte_uffd_wp(pteval)) {
1329 /*
1330 * Don't collapse the page if any of the small
1331 * PTEs are armed with uffd write protection.
1332 * Here we can also mark the new huge pmd as
1333 * write protected if any of the small ones is
1334 * marked but that could bring unknown
1335 * userfault messages that falls outside of
1336 * the registered range. So, just be simple.
1337 */
1338 result = SCAN_PTE_UFFD_WP;
1339 goto out_unmap;
1340 }
1341 if (pte_write(pteval))
1342 writable = true;
1343
1344 page = vm_normal_page(vma, _address, pteval);
1345 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1346 result = SCAN_PAGE_NULL;
1347 goto out_unmap;
1348 }
1349 folio = page_folio(page);
1350
1351 if (!folio_test_anon(folio)) {
1352 result = SCAN_PAGE_ANON;
1353 goto out_unmap;
1354 }
1355
1356 /*
1357 * We treat a single page as shared if any part of the THP
1358 * is shared. "False negatives" from
1359 * folio_likely_mapped_shared() are not expected to matter
1360 * much in practice.
1361 */
1362 if (folio_likely_mapped_shared(folio)) {
1363 ++shared;
1364 if (cc->is_khugepaged &&
1365 shared > khugepaged_max_ptes_shared) {
1366 result = SCAN_EXCEED_SHARED_PTE;
1367 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1368 goto out_unmap;
1369 }
1370 }
1371
1372 /*
1373 * Record which node the original page is from and save this
1374 * information to cc->node_load[].
1375 * Khugepaged will allocate hugepage from the node has the max
1376 * hit record.
1377 */
1378 node = folio_nid(folio);
1379 if (hpage_collapse_scan_abort(node, cc)) {
1380 result = SCAN_SCAN_ABORT;
1381 goto out_unmap;
1382 }
1383 cc->node_load[node]++;
1384 if (!folio_test_lru(folio)) {
1385 result = SCAN_PAGE_LRU;
1386 goto out_unmap;
1387 }
1388 if (folio_test_locked(folio)) {
1389 result = SCAN_PAGE_LOCK;
1390 goto out_unmap;
1391 }
1392
1393 /*
1394 * Check if the page has any GUP (or other external) pins.
1395 *
1396 * Here the check may be racy:
1397 * it may see folio_mapcount() > folio_ref_count().
1398 * But such case is ephemeral we could always retry collapse
1399 * later. However it may report false positive if the page
1400 * has excessive GUP pins (i.e. 512). Anyway the same check
1401 * will be done again later the risk seems low.
1402 */
1403 if (!is_refcount_suitable(folio)) {
1404 result = SCAN_PAGE_COUNT;
1405 goto out_unmap;
1406 }
1407
1408 /*
1409 * If collapse was initiated by khugepaged, check that there is
1410 * enough young pte to justify collapsing the page
1411 */
1412 if (cc->is_khugepaged &&
1413 (pte_young(pteval) || folio_test_young(folio) ||
1414 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
1415 address)))
1416 referenced++;
1417 }
1418 if (!writable) {
1419 result = SCAN_PAGE_RO;
1420 } else if (cc->is_khugepaged &&
1421 (!referenced ||
1422 (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1423 result = SCAN_LACK_REFERENCED_PAGE;
1424 } else {
1425 result = SCAN_SUCCEED;
1426 }
1427out_unmap:
1428 pte_unmap_unlock(pte, ptl);
1429 if (result == SCAN_SUCCEED) {
1430 result = collapse_huge_page(mm, address, referenced,
1431 unmapped, cc);
1432 /* collapse_huge_page will return with the mmap_lock released */
1433 *mmap_locked = false;
1434 }
1435out:
1436 trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced,
1437 none_or_zero, result, unmapped);
1438 return result;
1439}
1440
1441static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1442{
1443 struct mm_slot *slot = &mm_slot->slot;
1444 struct mm_struct *mm = slot->mm;
1445
1446 lockdep_assert_held(&khugepaged_mm_lock);
1447
1448 if (hpage_collapse_test_exit(mm)) {
1449 /* free mm_slot */
1450 hash_del(&slot->hash);
1451 list_del(&slot->mm_node);
1452
1453 /*
1454 * Not strictly needed because the mm exited already.
1455 *
1456 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1457 */
1458
1459 /* khugepaged_mm_lock actually not necessary for the below */
1460 mm_slot_free(mm_slot_cache, mm_slot);
1461 mmdrop(mm);
1462 }
1463}
1464
1465#ifdef CONFIG_SHMEM
1466/* hpage must be locked, and mmap_lock must be held */
1467static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1468 pmd_t *pmdp, struct page *hpage)
1469{
1470 struct vm_fault vmf = {
1471 .vma = vma,
1472 .address = addr,
1473 .flags = 0,
1474 .pmd = pmdp,
1475 };
1476
1477 VM_BUG_ON(!PageTransHuge(hpage));
1478 mmap_assert_locked(vma->vm_mm);
1479
1480 if (do_set_pmd(&vmf, hpage))
1481 return SCAN_FAIL;
1482
1483 get_page(hpage);
1484 return SCAN_SUCCEED;
1485}
1486
1487/**
1488 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1489 * address haddr.
1490 *
1491 * @mm: process address space where collapse happens
1492 * @addr: THP collapse address
1493 * @install_pmd: If a huge PMD should be installed
1494 *
1495 * This function checks whether all the PTEs in the PMD are pointing to the
1496 * right THP. If so, retract the page table so the THP can refault in with
1497 * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1498 */
1499int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1500 bool install_pmd)
1501{
1502 struct mmu_notifier_range range;
1503 bool notified = false;
1504 unsigned long haddr = addr & HPAGE_PMD_MASK;
1505 struct vm_area_struct *vma = vma_lookup(mm, haddr);
1506 struct folio *folio;
1507 pte_t *start_pte, *pte;
1508 pmd_t *pmd, pgt_pmd;
1509 spinlock_t *pml = NULL, *ptl;
1510 int nr_ptes = 0, result = SCAN_FAIL;
1511 int i;
1512
1513 mmap_assert_locked(mm);
1514
1515 /* First check VMA found, in case page tables are being torn down */
1516 if (!vma || !vma->vm_file ||
1517 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1518 return SCAN_VMA_CHECK;
1519
1520 /* Fast check before locking page if already PMD-mapped */
1521 result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1522 if (result == SCAN_PMD_MAPPED)
1523 return result;
1524
1525 /*
1526 * If we are here, we've succeeded in replacing all the native pages
1527 * in the page cache with a single hugepage. If a mm were to fault-in
1528 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1529 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1530 * analogously elide sysfs THP settings here.
1531 */
1532 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
1533 return SCAN_VMA_CHECK;
1534
1535 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1536 if (userfaultfd_wp(vma))
1537 return SCAN_PTE_UFFD_WP;
1538
1539 folio = filemap_lock_folio(vma->vm_file->f_mapping,
1540 linear_page_index(vma, haddr));
1541 if (IS_ERR(folio))
1542 return SCAN_PAGE_NULL;
1543
1544 if (folio_order(folio) != HPAGE_PMD_ORDER) {
1545 result = SCAN_PAGE_COMPOUND;
1546 goto drop_folio;
1547 }
1548
1549 result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1550 switch (result) {
1551 case SCAN_SUCCEED:
1552 break;
1553 case SCAN_PMD_NONE:
1554 /*
1555 * All pte entries have been removed and pmd cleared.
1556 * Skip all the pte checks and just update the pmd mapping.
1557 */
1558 goto maybe_install_pmd;
1559 default:
1560 goto drop_folio;
1561 }
1562
1563 result = SCAN_FAIL;
1564 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1565 if (!start_pte) /* mmap_lock + page lock should prevent this */
1566 goto drop_folio;
1567
1568 /* step 1: check all mapped PTEs are to the right huge page */
1569 for (i = 0, addr = haddr, pte = start_pte;
1570 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1571 struct page *page;
1572 pte_t ptent = ptep_get(pte);
1573
1574 /* empty pte, skip */
1575 if (pte_none(ptent))
1576 continue;
1577
1578 /* page swapped out, abort */
1579 if (!pte_present(ptent)) {
1580 result = SCAN_PTE_NON_PRESENT;
1581 goto abort;
1582 }
1583
1584 page = vm_normal_page(vma, addr, ptent);
1585 if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1586 page = NULL;
1587 /*
1588 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1589 * page table, but the new page will not be a subpage of hpage.
1590 */
1591 if (folio_page(folio, i) != page)
1592 goto abort;
1593 }
1594
1595 pte_unmap_unlock(start_pte, ptl);
1596 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1597 haddr, haddr + HPAGE_PMD_SIZE);
1598 mmu_notifier_invalidate_range_start(&range);
1599 notified = true;
1600
1601 /*
1602 * pmd_lock covers a wider range than ptl, and (if split from mm's
1603 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1604 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1605 * inserts a valid as-if-COWed PTE without even looking up page cache.
1606 * So page lock of folio does not protect from it, so we must not drop
1607 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1608 */
1609 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1610 pml = pmd_lock(mm, pmd);
1611
1612 start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl);
1613 if (!start_pte) /* mmap_lock + page lock should prevent this */
1614 goto abort;
1615 if (!pml)
1616 spin_lock(ptl);
1617 else if (ptl != pml)
1618 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1619
1620 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd))))
1621 goto abort;
1622
1623 /* step 2: clear page table and adjust rmap */
1624 for (i = 0, addr = haddr, pte = start_pte;
1625 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1626 struct page *page;
1627 pte_t ptent = ptep_get(pte);
1628
1629 if (pte_none(ptent))
1630 continue;
1631 /*
1632 * We dropped ptl after the first scan, to do the mmu_notifier:
1633 * page lock stops more PTEs of the folio being faulted in, but
1634 * does not stop write faults COWing anon copies from existing
1635 * PTEs; and does not stop those being swapped out or migrated.
1636 */
1637 if (!pte_present(ptent)) {
1638 result = SCAN_PTE_NON_PRESENT;
1639 goto abort;
1640 }
1641 page = vm_normal_page(vma, addr, ptent);
1642 if (folio_page(folio, i) != page)
1643 goto abort;
1644
1645 /*
1646 * Must clear entry, or a racing truncate may re-remove it.
1647 * TLB flush can be left until pmdp_collapse_flush() does it.
1648 * PTE dirty? Shmem page is already dirty; file is read-only.
1649 */
1650 ptep_clear(mm, addr, pte);
1651 folio_remove_rmap_pte(folio, page, vma);
1652 nr_ptes++;
1653 }
1654
1655 if (!pml)
1656 spin_unlock(ptl);
1657
1658 /* step 3: set proper refcount and mm_counters. */
1659 if (nr_ptes) {
1660 folio_ref_sub(folio, nr_ptes);
1661 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1662 }
1663
1664 /* step 4: remove empty page table */
1665 if (!pml) {
1666 pml = pmd_lock(mm, pmd);
1667 if (ptl != pml) {
1668 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1669 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) {
1670 flush_tlb_mm(mm);
1671 goto unlock;
1672 }
1673 }
1674 }
1675 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1676 pmdp_get_lockless_sync();
1677 pte_unmap_unlock(start_pte, ptl);
1678 if (ptl != pml)
1679 spin_unlock(pml);
1680
1681 mmu_notifier_invalidate_range_end(&range);
1682
1683 mm_dec_nr_ptes(mm);
1684 page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1685 pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1686
1687maybe_install_pmd:
1688 /* step 5: install pmd entry */
1689 result = install_pmd
1690 ? set_huge_pmd(vma, haddr, pmd, &folio->page)
1691 : SCAN_SUCCEED;
1692 goto drop_folio;
1693abort:
1694 if (nr_ptes) {
1695 flush_tlb_mm(mm);
1696 folio_ref_sub(folio, nr_ptes);
1697 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1698 }
1699unlock:
1700 if (start_pte)
1701 pte_unmap_unlock(start_pte, ptl);
1702 if (pml && pml != ptl)
1703 spin_unlock(pml);
1704 if (notified)
1705 mmu_notifier_invalidate_range_end(&range);
1706drop_folio:
1707 folio_unlock(folio);
1708 folio_put(folio);
1709 return result;
1710}
1711
1712static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1713{
1714 struct vm_area_struct *vma;
1715
1716 i_mmap_lock_read(mapping);
1717 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1718 struct mmu_notifier_range range;
1719 struct mm_struct *mm;
1720 unsigned long addr;
1721 pmd_t *pmd, pgt_pmd;
1722 spinlock_t *pml;
1723 spinlock_t *ptl;
1724 bool skipped_uffd = false;
1725
1726 /*
1727 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1728 * got written to. These VMAs are likely not worth removing
1729 * page tables from, as PMD-mapping is likely to be split later.
1730 */
1731 if (READ_ONCE(vma->anon_vma))
1732 continue;
1733
1734 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1735 if (addr & ~HPAGE_PMD_MASK ||
1736 vma->vm_end < addr + HPAGE_PMD_SIZE)
1737 continue;
1738
1739 mm = vma->vm_mm;
1740 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1741 continue;
1742
1743 if (hpage_collapse_test_exit(mm))
1744 continue;
1745 /*
1746 * When a vma is registered with uffd-wp, we cannot recycle
1747 * the page table because there may be pte markers installed.
1748 * Other vmas can still have the same file mapped hugely, but
1749 * skip this one: it will always be mapped in small page size
1750 * for uffd-wp registered ranges.
1751 */
1752 if (userfaultfd_wp(vma))
1753 continue;
1754
1755 /* PTEs were notified when unmapped; but now for the PMD? */
1756 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1757 addr, addr + HPAGE_PMD_SIZE);
1758 mmu_notifier_invalidate_range_start(&range);
1759
1760 pml = pmd_lock(mm, pmd);
1761 ptl = pte_lockptr(mm, pmd);
1762 if (ptl != pml)
1763 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1764
1765 /*
1766 * Huge page lock is still held, so normally the page table
1767 * must remain empty; and we have already skipped anon_vma
1768 * and userfaultfd_wp() vmas. But since the mmap_lock is not
1769 * held, it is still possible for a racing userfaultfd_ioctl()
1770 * to have inserted ptes or markers. Now that we hold ptlock,
1771 * repeating the anon_vma check protects from one category,
1772 * and repeating the userfaultfd_wp() check from another.
1773 */
1774 if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
1775 skipped_uffd = true;
1776 } else {
1777 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1778 pmdp_get_lockless_sync();
1779 }
1780
1781 if (ptl != pml)
1782 spin_unlock(ptl);
1783 spin_unlock(pml);
1784
1785 mmu_notifier_invalidate_range_end(&range);
1786
1787 if (!skipped_uffd) {
1788 mm_dec_nr_ptes(mm);
1789 page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1790 pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1791 }
1792 }
1793 i_mmap_unlock_read(mapping);
1794}
1795
1796/**
1797 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1798 *
1799 * @mm: process address space where collapse happens
1800 * @addr: virtual collapse start address
1801 * @file: file that collapse on
1802 * @start: collapse start address
1803 * @cc: collapse context and scratchpad
1804 *
1805 * Basic scheme is simple, details are more complex:
1806 * - allocate and lock a new huge page;
1807 * - scan page cache, locking old pages
1808 * + swap/gup in pages if necessary;
1809 * - copy data to new page
1810 * - handle shmem holes
1811 * + re-validate that holes weren't filled by someone else
1812 * + check for userfaultfd
1813 * - finalize updates to the page cache;
1814 * - if replacing succeeds:
1815 * + unlock huge page;
1816 * + free old pages;
1817 * - if replacing failed;
1818 * + unlock old pages
1819 * + unlock and free huge page;
1820 */
1821static int collapse_file(struct mm_struct *mm, unsigned long addr,
1822 struct file *file, pgoff_t start,
1823 struct collapse_control *cc)
1824{
1825 struct address_space *mapping = file->f_mapping;
1826 struct page *dst;
1827 struct folio *folio, *tmp, *new_folio;
1828 pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1829 LIST_HEAD(pagelist);
1830 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1831 int nr_none = 0, result = SCAN_SUCCEED;
1832 bool is_shmem = shmem_file(file);
1833
1834 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1835 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1836
1837 result = alloc_charge_folio(&new_folio, mm, cc);
1838 if (result != SCAN_SUCCEED)
1839 goto out;
1840
1841 mapping_set_update(&xas, mapping);
1842
1843 __folio_set_locked(new_folio);
1844 if (is_shmem)
1845 __folio_set_swapbacked(new_folio);
1846 new_folio->index = start;
1847 new_folio->mapping = mapping;
1848
1849 /*
1850 * Ensure we have slots for all the pages in the range. This is
1851 * almost certainly a no-op because most of the pages must be present
1852 */
1853 do {
1854 xas_lock_irq(&xas);
1855 xas_create_range(&xas);
1856 if (!xas_error(&xas))
1857 break;
1858 xas_unlock_irq(&xas);
1859 if (!xas_nomem(&xas, GFP_KERNEL)) {
1860 result = SCAN_FAIL;
1861 goto rollback;
1862 }
1863 } while (1);
1864
1865 for (index = start; index < end;) {
1866 xas_set(&xas, index);
1867 folio = xas_load(&xas);
1868
1869 VM_BUG_ON(index != xas.xa_index);
1870 if (is_shmem) {
1871 if (!folio) {
1872 /*
1873 * Stop if extent has been truncated or
1874 * hole-punched, and is now completely
1875 * empty.
1876 */
1877 if (index == start) {
1878 if (!xas_next_entry(&xas, end - 1)) {
1879 result = SCAN_TRUNCATED;
1880 goto xa_locked;
1881 }
1882 }
1883 nr_none++;
1884 index++;
1885 continue;
1886 }
1887
1888 if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1889 xas_unlock_irq(&xas);
1890 /* swap in or instantiate fallocated page */
1891 if (shmem_get_folio(mapping->host, index, 0,
1892 &folio, SGP_NOALLOC)) {
1893 result = SCAN_FAIL;
1894 goto xa_unlocked;
1895 }
1896 /* drain lru cache to help folio_isolate_lru() */
1897 lru_add_drain();
1898 } else if (folio_trylock(folio)) {
1899 folio_get(folio);
1900 xas_unlock_irq(&xas);
1901 } else {
1902 result = SCAN_PAGE_LOCK;
1903 goto xa_locked;
1904 }
1905 } else { /* !is_shmem */
1906 if (!folio || xa_is_value(folio)) {
1907 xas_unlock_irq(&xas);
1908 page_cache_sync_readahead(mapping, &file->f_ra,
1909 file, index,
1910 end - index);
1911 /* drain lru cache to help folio_isolate_lru() */
1912 lru_add_drain();
1913 folio = filemap_lock_folio(mapping, index);
1914 if (IS_ERR(folio)) {
1915 result = SCAN_FAIL;
1916 goto xa_unlocked;
1917 }
1918 } else if (folio_test_dirty(folio)) {
1919 /*
1920 * khugepaged only works on read-only fd,
1921 * so this page is dirty because it hasn't
1922 * been flushed since first write. There
1923 * won't be new dirty pages.
1924 *
1925 * Trigger async flush here and hope the
1926 * writeback is done when khugepaged
1927 * revisits this page.
1928 *
1929 * This is a one-off situation. We are not
1930 * forcing writeback in loop.
1931 */
1932 xas_unlock_irq(&xas);
1933 filemap_flush(mapping);
1934 result = SCAN_FAIL;
1935 goto xa_unlocked;
1936 } else if (folio_test_writeback(folio)) {
1937 xas_unlock_irq(&xas);
1938 result = SCAN_FAIL;
1939 goto xa_unlocked;
1940 } else if (folio_trylock(folio)) {
1941 folio_get(folio);
1942 xas_unlock_irq(&xas);
1943 } else {
1944 result = SCAN_PAGE_LOCK;
1945 goto xa_locked;
1946 }
1947 }
1948
1949 /*
1950 * The folio must be locked, so we can drop the i_pages lock
1951 * without racing with truncate.
1952 */
1953 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1954
1955 /* make sure the folio is up to date */
1956 if (unlikely(!folio_test_uptodate(folio))) {
1957 result = SCAN_FAIL;
1958 goto out_unlock;
1959 }
1960
1961 /*
1962 * If file was truncated then extended, or hole-punched, before
1963 * we locked the first folio, then a THP might be there already.
1964 * This will be discovered on the first iteration.
1965 */
1966 if (folio_order(folio) == HPAGE_PMD_ORDER &&
1967 folio->index == start) {
1968 /* Maybe PMD-mapped */
1969 result = SCAN_PTE_MAPPED_HUGEPAGE;
1970 goto out_unlock;
1971 }
1972
1973 if (folio_mapping(folio) != mapping) {
1974 result = SCAN_TRUNCATED;
1975 goto out_unlock;
1976 }
1977
1978 if (!is_shmem && (folio_test_dirty(folio) ||
1979 folio_test_writeback(folio))) {
1980 /*
1981 * khugepaged only works on read-only fd, so this
1982 * folio is dirty because it hasn't been flushed
1983 * since first write.
1984 */
1985 result = SCAN_FAIL;
1986 goto out_unlock;
1987 }
1988
1989 if (!folio_isolate_lru(folio)) {
1990 result = SCAN_DEL_PAGE_LRU;
1991 goto out_unlock;
1992 }
1993
1994 if (!filemap_release_folio(folio, GFP_KERNEL)) {
1995 result = SCAN_PAGE_HAS_PRIVATE;
1996 folio_putback_lru(folio);
1997 goto out_unlock;
1998 }
1999
2000 if (folio_mapped(folio))
2001 try_to_unmap(folio,
2002 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
2003
2004 xas_lock_irq(&xas);
2005
2006 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
2007
2008 /*
2009 * We control 2 + nr_pages references to the folio:
2010 * - we hold a pin on it;
2011 * - nr_pages reference from page cache;
2012 * - one from lru_isolate_folio;
2013 * If those are the only references, then any new usage
2014 * of the folio will have to fetch it from the page
2015 * cache. That requires locking the folio to handle
2016 * truncate, so any new usage will be blocked until we
2017 * unlock folio after collapse/during rollback.
2018 */
2019 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) {
2020 result = SCAN_PAGE_COUNT;
2021 xas_unlock_irq(&xas);
2022 folio_putback_lru(folio);
2023 goto out_unlock;
2024 }
2025
2026 /*
2027 * Accumulate the folios that are being collapsed.
2028 */
2029 list_add_tail(&folio->lru, &pagelist);
2030 index += folio_nr_pages(folio);
2031 continue;
2032out_unlock:
2033 folio_unlock(folio);
2034 folio_put(folio);
2035 goto xa_unlocked;
2036 }
2037
2038 if (!is_shmem) {
2039 filemap_nr_thps_inc(mapping);
2040 /*
2041 * Paired with the fence in do_dentry_open() -> get_write_access()
2042 * to ensure i_writecount is up to date and the update to nr_thps
2043 * is visible. Ensures the page cache will be truncated if the
2044 * file is opened writable.
2045 */
2046 smp_mb();
2047 if (inode_is_open_for_write(mapping->host)) {
2048 result = SCAN_FAIL;
2049 filemap_nr_thps_dec(mapping);
2050 }
2051 }
2052
2053xa_locked:
2054 xas_unlock_irq(&xas);
2055xa_unlocked:
2056
2057 /*
2058 * If collapse is successful, flush must be done now before copying.
2059 * If collapse is unsuccessful, does flush actually need to be done?
2060 * Do it anyway, to clear the state.
2061 */
2062 try_to_unmap_flush();
2063
2064 if (result == SCAN_SUCCEED && nr_none &&
2065 !shmem_charge(mapping->host, nr_none))
2066 result = SCAN_FAIL;
2067 if (result != SCAN_SUCCEED) {
2068 nr_none = 0;
2069 goto rollback;
2070 }
2071
2072 /*
2073 * The old folios are locked, so they won't change anymore.
2074 */
2075 index = start;
2076 dst = folio_page(new_folio, 0);
2077 list_for_each_entry(folio, &pagelist, lru) {
2078 int i, nr_pages = folio_nr_pages(folio);
2079
2080 while (index < folio->index) {
2081 clear_highpage(dst);
2082 index++;
2083 dst++;
2084 }
2085
2086 for (i = 0; i < nr_pages; i++) {
2087 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) {
2088 result = SCAN_COPY_MC;
2089 goto rollback;
2090 }
2091 index++;
2092 dst++;
2093 }
2094 }
2095 while (index < end) {
2096 clear_highpage(dst);
2097 index++;
2098 dst++;
2099 }
2100
2101 if (nr_none) {
2102 struct vm_area_struct *vma;
2103 int nr_none_check = 0;
2104
2105 i_mmap_lock_read(mapping);
2106 xas_lock_irq(&xas);
2107
2108 xas_set(&xas, start);
2109 for (index = start; index < end; index++) {
2110 if (!xas_next(&xas)) {
2111 xas_store(&xas, XA_RETRY_ENTRY);
2112 if (xas_error(&xas)) {
2113 result = SCAN_STORE_FAILED;
2114 goto immap_locked;
2115 }
2116 nr_none_check++;
2117 }
2118 }
2119
2120 if (nr_none != nr_none_check) {
2121 result = SCAN_PAGE_FILLED;
2122 goto immap_locked;
2123 }
2124
2125 /*
2126 * If userspace observed a missing page in a VMA with
2127 * a MODE_MISSING userfaultfd, then it might expect a
2128 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2129 * roll back to avoid suppressing such an event. Since
2130 * wp/minor userfaultfds don't give userspace any
2131 * guarantees that the kernel doesn't fill a missing
2132 * page with a zero page, so they don't matter here.
2133 *
2134 * Any userfaultfds registered after this point will
2135 * not be able to observe any missing pages due to the
2136 * previously inserted retry entries.
2137 */
2138 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2139 if (userfaultfd_missing(vma)) {
2140 result = SCAN_EXCEED_NONE_PTE;
2141 goto immap_locked;
2142 }
2143 }
2144
2145immap_locked:
2146 i_mmap_unlock_read(mapping);
2147 if (result != SCAN_SUCCEED) {
2148 xas_set(&xas, start);
2149 for (index = start; index < end; index++) {
2150 if (xas_next(&xas) == XA_RETRY_ENTRY)
2151 xas_store(&xas, NULL);
2152 }
2153
2154 xas_unlock_irq(&xas);
2155 goto rollback;
2156 }
2157 } else {
2158 xas_lock_irq(&xas);
2159 }
2160
2161 if (is_shmem)
2162 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2163 else
2164 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2165
2166 if (nr_none) {
2167 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2168 /* nr_none is always 0 for non-shmem. */
2169 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2170 }
2171
2172 /*
2173 * Mark new_folio as uptodate before inserting it into the
2174 * page cache so that it isn't mistaken for an fallocated but
2175 * unwritten page.
2176 */
2177 folio_mark_uptodate(new_folio);
2178 folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2179
2180 if (is_shmem)
2181 folio_mark_dirty(new_folio);
2182 folio_add_lru(new_folio);
2183
2184 /* Join all the small entries into a single multi-index entry. */
2185 xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2186 xas_store(&xas, new_folio);
2187 WARN_ON_ONCE(xas_error(&xas));
2188 xas_unlock_irq(&xas);
2189
2190 /*
2191 * Remove pte page tables, so we can re-fault the page as huge.
2192 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2193 */
2194 retract_page_tables(mapping, start);
2195 if (cc && !cc->is_khugepaged)
2196 result = SCAN_PTE_MAPPED_HUGEPAGE;
2197 folio_unlock(new_folio);
2198
2199 /*
2200 * The collapse has succeeded, so free the old folios.
2201 */
2202 list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2203 list_del(&folio->lru);
2204 folio->mapping = NULL;
2205 folio_clear_active(folio);
2206 folio_clear_unevictable(folio);
2207 folio_unlock(folio);
2208 folio_put_refs(folio, 2 + folio_nr_pages(folio));
2209 }
2210
2211 goto out;
2212
2213rollback:
2214 /* Something went wrong: roll back page cache changes */
2215 if (nr_none) {
2216 xas_lock_irq(&xas);
2217 mapping->nrpages -= nr_none;
2218 xas_unlock_irq(&xas);
2219 shmem_uncharge(mapping->host, nr_none);
2220 }
2221
2222 list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2223 list_del(&folio->lru);
2224 folio_unlock(folio);
2225 folio_putback_lru(folio);
2226 folio_put(folio);
2227 }
2228 /*
2229 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2230 * file only. This undo is not needed unless failure is
2231 * due to SCAN_COPY_MC.
2232 */
2233 if (!is_shmem && result == SCAN_COPY_MC) {
2234 filemap_nr_thps_dec(mapping);
2235 /*
2236 * Paired with the fence in do_dentry_open() -> get_write_access()
2237 * to ensure the update to nr_thps is visible.
2238 */
2239 smp_mb();
2240 }
2241
2242 new_folio->mapping = NULL;
2243
2244 folio_unlock(new_folio);
2245 folio_put(new_folio);
2246out:
2247 VM_BUG_ON(!list_empty(&pagelist));
2248 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result);
2249 return result;
2250}
2251
2252static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2253 struct file *file, pgoff_t start,
2254 struct collapse_control *cc)
2255{
2256 struct folio *folio = NULL;
2257 struct address_space *mapping = file->f_mapping;
2258 XA_STATE(xas, &mapping->i_pages, start);
2259 int present, swap;
2260 int node = NUMA_NO_NODE;
2261 int result = SCAN_SUCCEED;
2262
2263 present = 0;
2264 swap = 0;
2265 memset(cc->node_load, 0, sizeof(cc->node_load));
2266 nodes_clear(cc->alloc_nmask);
2267 rcu_read_lock();
2268 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2269 if (xas_retry(&xas, folio))
2270 continue;
2271
2272 if (xa_is_value(folio)) {
2273 swap += 1 << xas_get_order(&xas);
2274 if (cc->is_khugepaged &&
2275 swap > khugepaged_max_ptes_swap) {
2276 result = SCAN_EXCEED_SWAP_PTE;
2277 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2278 break;
2279 }
2280 continue;
2281 }
2282
2283 if (folio_order(folio) == HPAGE_PMD_ORDER &&
2284 folio->index == start) {
2285 /* Maybe PMD-mapped */
2286 result = SCAN_PTE_MAPPED_HUGEPAGE;
2287 /*
2288 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2289 * by the caller won't touch the page cache, and so
2290 * it's safe to skip LRU and refcount checks before
2291 * returning.
2292 */
2293 break;
2294 }
2295
2296 node = folio_nid(folio);
2297 if (hpage_collapse_scan_abort(node, cc)) {
2298 result = SCAN_SCAN_ABORT;
2299 break;
2300 }
2301 cc->node_load[node]++;
2302
2303 if (!folio_test_lru(folio)) {
2304 result = SCAN_PAGE_LRU;
2305 break;
2306 }
2307
2308 if (!is_refcount_suitable(folio)) {
2309 result = SCAN_PAGE_COUNT;
2310 break;
2311 }
2312
2313 /*
2314 * We probably should check if the folio is referenced
2315 * here, but nobody would transfer pte_young() to
2316 * folio_test_referenced() for us. And rmap walk here
2317 * is just too costly...
2318 */
2319
2320 present += folio_nr_pages(folio);
2321
2322 if (need_resched()) {
2323 xas_pause(&xas);
2324 cond_resched_rcu();
2325 }
2326 }
2327 rcu_read_unlock();
2328
2329 if (result == SCAN_SUCCEED) {
2330 if (cc->is_khugepaged &&
2331 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2332 result = SCAN_EXCEED_NONE_PTE;
2333 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2334 } else {
2335 result = collapse_file(mm, addr, file, start, cc);
2336 }
2337 }
2338
2339 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2340 return result;
2341}
2342#else
2343static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2344 struct file *file, pgoff_t start,
2345 struct collapse_control *cc)
2346{
2347 BUILD_BUG();
2348}
2349#endif
2350
2351static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2352 struct collapse_control *cc)
2353 __releases(&khugepaged_mm_lock)
2354 __acquires(&khugepaged_mm_lock)
2355{
2356 struct vma_iterator vmi;
2357 struct khugepaged_mm_slot *mm_slot;
2358 struct mm_slot *slot;
2359 struct mm_struct *mm;
2360 struct vm_area_struct *vma;
2361 int progress = 0;
2362
2363 VM_BUG_ON(!pages);
2364 lockdep_assert_held(&khugepaged_mm_lock);
2365 *result = SCAN_FAIL;
2366
2367 if (khugepaged_scan.mm_slot) {
2368 mm_slot = khugepaged_scan.mm_slot;
2369 slot = &mm_slot->slot;
2370 } else {
2371 slot = list_entry(khugepaged_scan.mm_head.next,
2372 struct mm_slot, mm_node);
2373 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2374 khugepaged_scan.address = 0;
2375 khugepaged_scan.mm_slot = mm_slot;
2376 }
2377 spin_unlock(&khugepaged_mm_lock);
2378
2379 mm = slot->mm;
2380 /*
2381 * Don't wait for semaphore (to avoid long wait times). Just move to
2382 * the next mm on the list.
2383 */
2384 vma = NULL;
2385 if (unlikely(!mmap_read_trylock(mm)))
2386 goto breakouterloop_mmap_lock;
2387
2388 progress++;
2389 if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2390 goto breakouterloop;
2391
2392 vma_iter_init(&vmi, mm, khugepaged_scan.address);
2393 for_each_vma(vmi, vma) {
2394 unsigned long hstart, hend;
2395
2396 cond_resched();
2397 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2398 progress++;
2399 break;
2400 }
2401 if (!thp_vma_allowable_order(vma, vma->vm_flags,
2402 TVA_ENFORCE_SYSFS, PMD_ORDER)) {
2403skip:
2404 progress++;
2405 continue;
2406 }
2407 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2408 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2409 if (khugepaged_scan.address > hend)
2410 goto skip;
2411 if (khugepaged_scan.address < hstart)
2412 khugepaged_scan.address = hstart;
2413 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2414
2415 while (khugepaged_scan.address < hend) {
2416 bool mmap_locked = true;
2417
2418 cond_resched();
2419 if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2420 goto breakouterloop;
2421
2422 VM_BUG_ON(khugepaged_scan.address < hstart ||
2423 khugepaged_scan.address + HPAGE_PMD_SIZE >
2424 hend);
2425 if (IS_ENABLED(CONFIG_SHMEM) && !vma_is_anonymous(vma)) {
2426 struct file *file = get_file(vma->vm_file);
2427 pgoff_t pgoff = linear_page_index(vma,
2428 khugepaged_scan.address);
2429
2430 mmap_read_unlock(mm);
2431 mmap_locked = false;
2432 *result = hpage_collapse_scan_file(mm,
2433 khugepaged_scan.address, file, pgoff, cc);
2434 fput(file);
2435 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2436 mmap_read_lock(mm);
2437 if (hpage_collapse_test_exit_or_disable(mm))
2438 goto breakouterloop;
2439 *result = collapse_pte_mapped_thp(mm,
2440 khugepaged_scan.address, false);
2441 if (*result == SCAN_PMD_MAPPED)
2442 *result = SCAN_SUCCEED;
2443 mmap_read_unlock(mm);
2444 }
2445 } else {
2446 *result = hpage_collapse_scan_pmd(mm, vma,
2447 khugepaged_scan.address, &mmap_locked, cc);
2448 }
2449
2450 if (*result == SCAN_SUCCEED)
2451 ++khugepaged_pages_collapsed;
2452
2453 /* move to next address */
2454 khugepaged_scan.address += HPAGE_PMD_SIZE;
2455 progress += HPAGE_PMD_NR;
2456 if (!mmap_locked)
2457 /*
2458 * We released mmap_lock so break loop. Note
2459 * that we drop mmap_lock before all hugepage
2460 * allocations, so if allocation fails, we are
2461 * guaranteed to break here and report the
2462 * correct result back to caller.
2463 */
2464 goto breakouterloop_mmap_lock;
2465 if (progress >= pages)
2466 goto breakouterloop;
2467 }
2468 }
2469breakouterloop:
2470 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2471breakouterloop_mmap_lock:
2472
2473 spin_lock(&khugepaged_mm_lock);
2474 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2475 /*
2476 * Release the current mm_slot if this mm is about to die, or
2477 * if we scanned all vmas of this mm.
2478 */
2479 if (hpage_collapse_test_exit(mm) || !vma) {
2480 /*
2481 * Make sure that if mm_users is reaching zero while
2482 * khugepaged runs here, khugepaged_exit will find
2483 * mm_slot not pointing to the exiting mm.
2484 */
2485 if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2486 slot = list_entry(slot->mm_node.next,
2487 struct mm_slot, mm_node);
2488 khugepaged_scan.mm_slot =
2489 mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2490 khugepaged_scan.address = 0;
2491 } else {
2492 khugepaged_scan.mm_slot = NULL;
2493 khugepaged_full_scans++;
2494 }
2495
2496 collect_mm_slot(mm_slot);
2497 }
2498
2499 return progress;
2500}
2501
2502static int khugepaged_has_work(void)
2503{
2504 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled();
2505}
2506
2507static int khugepaged_wait_event(void)
2508{
2509 return !list_empty(&khugepaged_scan.mm_head) ||
2510 kthread_should_stop();
2511}
2512
2513static void khugepaged_do_scan(struct collapse_control *cc)
2514{
2515 unsigned int progress = 0, pass_through_head = 0;
2516 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2517 bool wait = true;
2518 int result = SCAN_SUCCEED;
2519
2520 lru_add_drain_all();
2521
2522 while (true) {
2523 cond_resched();
2524
2525 if (unlikely(kthread_should_stop()))
2526 break;
2527
2528 spin_lock(&khugepaged_mm_lock);
2529 if (!khugepaged_scan.mm_slot)
2530 pass_through_head++;
2531 if (khugepaged_has_work() &&
2532 pass_through_head < 2)
2533 progress += khugepaged_scan_mm_slot(pages - progress,
2534 &result, cc);
2535 else
2536 progress = pages;
2537 spin_unlock(&khugepaged_mm_lock);
2538
2539 if (progress >= pages)
2540 break;
2541
2542 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2543 /*
2544 * If fail to allocate the first time, try to sleep for
2545 * a while. When hit again, cancel the scan.
2546 */
2547 if (!wait)
2548 break;
2549 wait = false;
2550 khugepaged_alloc_sleep();
2551 }
2552 }
2553}
2554
2555static bool khugepaged_should_wakeup(void)
2556{
2557 return kthread_should_stop() ||
2558 time_after_eq(jiffies, khugepaged_sleep_expire);
2559}
2560
2561static void khugepaged_wait_work(void)
2562{
2563 if (khugepaged_has_work()) {
2564 const unsigned long scan_sleep_jiffies =
2565 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2566
2567 if (!scan_sleep_jiffies)
2568 return;
2569
2570 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2571 wait_event_freezable_timeout(khugepaged_wait,
2572 khugepaged_should_wakeup(),
2573 scan_sleep_jiffies);
2574 return;
2575 }
2576
2577 if (hugepage_pmd_enabled())
2578 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2579}
2580
2581static int khugepaged(void *none)
2582{
2583 struct khugepaged_mm_slot *mm_slot;
2584
2585 set_freezable();
2586 set_user_nice(current, MAX_NICE);
2587
2588 while (!kthread_should_stop()) {
2589 khugepaged_do_scan(&khugepaged_collapse_control);
2590 khugepaged_wait_work();
2591 }
2592
2593 spin_lock(&khugepaged_mm_lock);
2594 mm_slot = khugepaged_scan.mm_slot;
2595 khugepaged_scan.mm_slot = NULL;
2596 if (mm_slot)
2597 collect_mm_slot(mm_slot);
2598 spin_unlock(&khugepaged_mm_lock);
2599 return 0;
2600}
2601
2602static void set_recommended_min_free_kbytes(void)
2603{
2604 struct zone *zone;
2605 int nr_zones = 0;
2606 unsigned long recommended_min;
2607
2608 if (!hugepage_pmd_enabled()) {
2609 calculate_min_free_kbytes();
2610 goto update_wmarks;
2611 }
2612
2613 for_each_populated_zone(zone) {
2614 /*
2615 * We don't need to worry about fragmentation of
2616 * ZONE_MOVABLE since it only has movable pages.
2617 */
2618 if (zone_idx(zone) > gfp_zone(GFP_USER))
2619 continue;
2620
2621 nr_zones++;
2622 }
2623
2624 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2625 recommended_min = pageblock_nr_pages * nr_zones * 2;
2626
2627 /*
2628 * Make sure that on average at least two pageblocks are almost free
2629 * of another type, one for a migratetype to fall back to and a
2630 * second to avoid subsequent fallbacks of other types There are 3
2631 * MIGRATE_TYPES we care about.
2632 */
2633 recommended_min += pageblock_nr_pages * nr_zones *
2634 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2635
2636 /* don't ever allow to reserve more than 5% of the lowmem */
2637 recommended_min = min(recommended_min,
2638 (unsigned long) nr_free_buffer_pages() / 20);
2639 recommended_min <<= (PAGE_SHIFT-10);
2640
2641 if (recommended_min > min_free_kbytes) {
2642 if (user_min_free_kbytes >= 0)
2643 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2644 min_free_kbytes, recommended_min);
2645
2646 min_free_kbytes = recommended_min;
2647 }
2648
2649update_wmarks:
2650 setup_per_zone_wmarks();
2651}
2652
2653int start_stop_khugepaged(void)
2654{
2655 int err = 0;
2656
2657 mutex_lock(&khugepaged_mutex);
2658 if (hugepage_pmd_enabled()) {
2659 if (!khugepaged_thread)
2660 khugepaged_thread = kthread_run(khugepaged, NULL,
2661 "khugepaged");
2662 if (IS_ERR(khugepaged_thread)) {
2663 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2664 err = PTR_ERR(khugepaged_thread);
2665 khugepaged_thread = NULL;
2666 goto fail;
2667 }
2668
2669 if (!list_empty(&khugepaged_scan.mm_head))
2670 wake_up_interruptible(&khugepaged_wait);
2671 } else if (khugepaged_thread) {
2672 kthread_stop(khugepaged_thread);
2673 khugepaged_thread = NULL;
2674 }
2675 set_recommended_min_free_kbytes();
2676fail:
2677 mutex_unlock(&khugepaged_mutex);
2678 return err;
2679}
2680
2681void khugepaged_min_free_kbytes_update(void)
2682{
2683 mutex_lock(&khugepaged_mutex);
2684 if (hugepage_pmd_enabled() && khugepaged_thread)
2685 set_recommended_min_free_kbytes();
2686 mutex_unlock(&khugepaged_mutex);
2687}
2688
2689bool current_is_khugepaged(void)
2690{
2691 return kthread_func(current) == khugepaged;
2692}
2693
2694static int madvise_collapse_errno(enum scan_result r)
2695{
2696 /*
2697 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2698 * actionable feedback to caller, so they may take an appropriate
2699 * fallback measure depending on the nature of the failure.
2700 */
2701 switch (r) {
2702 case SCAN_ALLOC_HUGE_PAGE_FAIL:
2703 return -ENOMEM;
2704 case SCAN_CGROUP_CHARGE_FAIL:
2705 case SCAN_EXCEED_NONE_PTE:
2706 return -EBUSY;
2707 /* Resource temporary unavailable - trying again might succeed */
2708 case SCAN_PAGE_COUNT:
2709 case SCAN_PAGE_LOCK:
2710 case SCAN_PAGE_LRU:
2711 case SCAN_DEL_PAGE_LRU:
2712 case SCAN_PAGE_FILLED:
2713 return -EAGAIN;
2714 /*
2715 * Other: Trying again likely not to succeed / error intrinsic to
2716 * specified memory range. khugepaged likely won't be able to collapse
2717 * either.
2718 */
2719 default:
2720 return -EINVAL;
2721 }
2722}
2723
2724int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2725 unsigned long start, unsigned long end)
2726{
2727 struct collapse_control *cc;
2728 struct mm_struct *mm = vma->vm_mm;
2729 unsigned long hstart, hend, addr;
2730 int thps = 0, last_fail = SCAN_FAIL;
2731 bool mmap_locked = true;
2732
2733 BUG_ON(vma->vm_start > start);
2734 BUG_ON(vma->vm_end < end);
2735
2736 *prev = vma;
2737
2738 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
2739 return -EINVAL;
2740
2741 cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2742 if (!cc)
2743 return -ENOMEM;
2744 cc->is_khugepaged = false;
2745
2746 mmgrab(mm);
2747 lru_add_drain_all();
2748
2749 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2750 hend = end & HPAGE_PMD_MASK;
2751
2752 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2753 int result = SCAN_FAIL;
2754
2755 if (!mmap_locked) {
2756 cond_resched();
2757 mmap_read_lock(mm);
2758 mmap_locked = true;
2759 result = hugepage_vma_revalidate(mm, addr, false, &vma,
2760 cc);
2761 if (result != SCAN_SUCCEED) {
2762 last_fail = result;
2763 goto out_nolock;
2764 }
2765
2766 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2767 }
2768 mmap_assert_locked(mm);
2769 memset(cc->node_load, 0, sizeof(cc->node_load));
2770 nodes_clear(cc->alloc_nmask);
2771 if (IS_ENABLED(CONFIG_SHMEM) && !vma_is_anonymous(vma)) {
2772 struct file *file = get_file(vma->vm_file);
2773 pgoff_t pgoff = linear_page_index(vma, addr);
2774
2775 mmap_read_unlock(mm);
2776 mmap_locked = false;
2777 result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2778 cc);
2779 fput(file);
2780 } else {
2781 result = hpage_collapse_scan_pmd(mm, vma, addr,
2782 &mmap_locked, cc);
2783 }
2784 if (!mmap_locked)
2785 *prev = NULL; /* Tell caller we dropped mmap_lock */
2786
2787handle_result:
2788 switch (result) {
2789 case SCAN_SUCCEED:
2790 case SCAN_PMD_MAPPED:
2791 ++thps;
2792 break;
2793 case SCAN_PTE_MAPPED_HUGEPAGE:
2794 BUG_ON(mmap_locked);
2795 BUG_ON(*prev);
2796 mmap_read_lock(mm);
2797 result = collapse_pte_mapped_thp(mm, addr, true);
2798 mmap_read_unlock(mm);
2799 goto handle_result;
2800 /* Whitelisted set of results where continuing OK */
2801 case SCAN_PMD_NULL:
2802 case SCAN_PTE_NON_PRESENT:
2803 case SCAN_PTE_UFFD_WP:
2804 case SCAN_PAGE_RO:
2805 case SCAN_LACK_REFERENCED_PAGE:
2806 case SCAN_PAGE_NULL:
2807 case SCAN_PAGE_COUNT:
2808 case SCAN_PAGE_LOCK:
2809 case SCAN_PAGE_COMPOUND:
2810 case SCAN_PAGE_LRU:
2811 case SCAN_DEL_PAGE_LRU:
2812 last_fail = result;
2813 break;
2814 default:
2815 last_fail = result;
2816 /* Other error, exit */
2817 goto out_maybelock;
2818 }
2819 }
2820
2821out_maybelock:
2822 /* Caller expects us to hold mmap_lock on return */
2823 if (!mmap_locked)
2824 mmap_read_lock(mm);
2825out_nolock:
2826 mmap_assert_locked(mm);
2827 mmdrop(mm);
2828 kfree(cc);
2829
2830 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2831 : madvise_collapse_errno(last_fail);
2832}