Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
 
   6#include <linux/trace_events.h>
   7#include <linux/ring_buffer.h>
   8#include <linux/trace_clock.h>
   9#include <linux/sched/clock.h>
 
  10#include <linux/trace_seq.h>
  11#include <linux/spinlock.h>
  12#include <linux/irq_work.h>
 
  13#include <linux/uaccess.h>
  14#include <linux/hardirq.h>
  15#include <linux/kthread.h>	/* for self test */
  16#include <linux/module.h>
  17#include <linux/percpu.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/slab.h>
  21#include <linux/init.h>
  22#include <linux/hash.h>
  23#include <linux/list.h>
  24#include <linux/cpu.h>
  25#include <linux/oom.h>
 
  26
 
  27#include <asm/local.h>
  28
 
 
 
 
 
 
 
 
 
 
  29static void update_pages_handler(struct work_struct *work);
  30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31/*
  32 * The ring buffer header is special. We must manually up keep it.
  33 */
  34int ring_buffer_print_entry_header(struct trace_seq *s)
  35{
  36	trace_seq_puts(s, "# compressed entry header\n");
  37	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  38	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  39	trace_seq_puts(s, "\tarray       :   32 bits\n");
  40	trace_seq_putc(s, '\n');
  41	trace_seq_printf(s, "\tpadding     : type == %d\n",
  42			 RINGBUF_TYPE_PADDING);
  43	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  44			 RINGBUF_TYPE_TIME_EXTEND);
  45	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  46			 RINGBUF_TYPE_TIME_STAMP);
  47	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  48			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  49
  50	return !trace_seq_has_overflowed(s);
  51}
  52
  53/*
  54 * The ring buffer is made up of a list of pages. A separate list of pages is
  55 * allocated for each CPU. A writer may only write to a buffer that is
  56 * associated with the CPU it is currently executing on.  A reader may read
  57 * from any per cpu buffer.
  58 *
  59 * The reader is special. For each per cpu buffer, the reader has its own
  60 * reader page. When a reader has read the entire reader page, this reader
  61 * page is swapped with another page in the ring buffer.
  62 *
  63 * Now, as long as the writer is off the reader page, the reader can do what
  64 * ever it wants with that page. The writer will never write to that page
  65 * again (as long as it is out of the ring buffer).
  66 *
  67 * Here's some silly ASCII art.
  68 *
  69 *   +------+
  70 *   |reader|          RING BUFFER
  71 *   |page  |
  72 *   +------+        +---+   +---+   +---+
  73 *                   |   |-->|   |-->|   |
  74 *                   +---+   +---+   +---+
  75 *                     ^               |
  76 *                     |               |
  77 *                     +---------------+
  78 *
  79 *
  80 *   +------+
  81 *   |reader|          RING BUFFER
  82 *   |page  |------------------v
  83 *   +------+        +---+   +---+   +---+
  84 *                   |   |-->|   |-->|   |
  85 *                   +---+   +---+   +---+
  86 *                     ^               |
  87 *                     |               |
  88 *                     +---------------+
  89 *
  90 *
  91 *   +------+
  92 *   |reader|          RING BUFFER
  93 *   |page  |------------------v
  94 *   +------+        +---+   +---+   +---+
  95 *      ^            |   |-->|   |-->|   |
  96 *      |            +---+   +---+   +---+
  97 *      |                              |
  98 *      |                              |
  99 *      +------------------------------+
 100 *
 101 *
 102 *   +------+
 103 *   |buffer|          RING BUFFER
 104 *   |page  |------------------v
 105 *   +------+        +---+   +---+   +---+
 106 *      ^            |   |   |   |-->|   |
 107 *      |   New      +---+   +---+   +---+
 108 *      |  Reader------^               |
 109 *      |   page                       |
 110 *      +------------------------------+
 111 *
 112 *
 113 * After we make this swap, the reader can hand this page off to the splice
 114 * code and be done with it. It can even allocate a new page if it needs to
 115 * and swap that into the ring buffer.
 116 *
 117 * We will be using cmpxchg soon to make all this lockless.
 118 *
 119 */
 120
 121/* Used for individual buffers (after the counter) */
 122#define RB_BUFFER_OFF		(1 << 20)
 123
 124#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 125
 126#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 127#define RB_ALIGNMENT		4U
 128#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 129#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 130
 131#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 132# define RB_FORCE_8BYTE_ALIGNMENT	0
 133# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 134#else
 135# define RB_FORCE_8BYTE_ALIGNMENT	1
 136# define RB_ARCH_ALIGNMENT		8U
 137#endif
 138
 139#define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
 140
 141/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 142#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 143
 144enum {
 145	RB_LEN_TIME_EXTEND = 8,
 146	RB_LEN_TIME_STAMP =  8,
 147};
 148
 149#define skip_time_extend(event) \
 150	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 151
 152#define extended_time(event) \
 153	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 154
 155static inline int rb_null_event(struct ring_buffer_event *event)
 156{
 157	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 158}
 159
 160static void rb_event_set_padding(struct ring_buffer_event *event)
 161{
 162	/* padding has a NULL time_delta */
 163	event->type_len = RINGBUF_TYPE_PADDING;
 164	event->time_delta = 0;
 165}
 166
 167static unsigned
 168rb_event_data_length(struct ring_buffer_event *event)
 169{
 170	unsigned length;
 171
 172	if (event->type_len)
 173		length = event->type_len * RB_ALIGNMENT;
 174	else
 175		length = event->array[0];
 176	return length + RB_EVNT_HDR_SIZE;
 177}
 178
 179/*
 180 * Return the length of the given event. Will return
 181 * the length of the time extend if the event is a
 182 * time extend.
 183 */
 184static inline unsigned
 185rb_event_length(struct ring_buffer_event *event)
 186{
 187	switch (event->type_len) {
 188	case RINGBUF_TYPE_PADDING:
 189		if (rb_null_event(event))
 190			/* undefined */
 191			return -1;
 192		return  event->array[0] + RB_EVNT_HDR_SIZE;
 193
 194	case RINGBUF_TYPE_TIME_EXTEND:
 195		return RB_LEN_TIME_EXTEND;
 196
 197	case RINGBUF_TYPE_TIME_STAMP:
 198		return RB_LEN_TIME_STAMP;
 199
 200	case RINGBUF_TYPE_DATA:
 201		return rb_event_data_length(event);
 202	default:
 203		BUG();
 204	}
 205	/* not hit */
 206	return 0;
 207}
 208
 209/*
 210 * Return total length of time extend and data,
 211 *   or just the event length for all other events.
 212 */
 213static inline unsigned
 214rb_event_ts_length(struct ring_buffer_event *event)
 215{
 216	unsigned len = 0;
 217
 218	if (extended_time(event)) {
 219		/* time extends include the data event after it */
 220		len = RB_LEN_TIME_EXTEND;
 221		event = skip_time_extend(event);
 222	}
 223	return len + rb_event_length(event);
 224}
 225
 226/**
 227 * ring_buffer_event_length - return the length of the event
 228 * @event: the event to get the length of
 229 *
 230 * Returns the size of the data load of a data event.
 231 * If the event is something other than a data event, it
 232 * returns the size of the event itself. With the exception
 233 * of a TIME EXTEND, where it still returns the size of the
 234 * data load of the data event after it.
 235 */
 236unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 237{
 238	unsigned length;
 239
 240	if (extended_time(event))
 241		event = skip_time_extend(event);
 242
 243	length = rb_event_length(event);
 244	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 245		return length;
 246	length -= RB_EVNT_HDR_SIZE;
 247	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 248                length -= sizeof(event->array[0]);
 249	return length;
 250}
 251EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 252
 253/* inline for ring buffer fast paths */
 254static __always_inline void *
 255rb_event_data(struct ring_buffer_event *event)
 256{
 257	if (extended_time(event))
 258		event = skip_time_extend(event);
 259	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 260	/* If length is in len field, then array[0] has the data */
 261	if (event->type_len)
 262		return (void *)&event->array[0];
 263	/* Otherwise length is in array[0] and array[1] has the data */
 264	return (void *)&event->array[1];
 265}
 266
 267/**
 268 * ring_buffer_event_data - return the data of the event
 269 * @event: the event to get the data from
 270 */
 271void *ring_buffer_event_data(struct ring_buffer_event *event)
 272{
 273	return rb_event_data(event);
 274}
 275EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 276
 277#define for_each_buffer_cpu(buffer, cpu)		\
 278	for_each_cpu(cpu, buffer->cpumask)
 279
 
 
 
 280#define TS_SHIFT	27
 281#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 282#define TS_DELTA_TEST	(~TS_MASK)
 283
 284/**
 285 * ring_buffer_event_time_stamp - return the event's extended timestamp
 286 * @event: the event to get the timestamp of
 287 *
 288 * Returns the extended timestamp associated with a data event.
 289 * An extended time_stamp is a 64-bit timestamp represented
 290 * internally in a special way that makes the best use of space
 291 * contained within a ring buffer event.  This function decodes
 292 * it and maps it to a straight u64 value.
 293 */
 294u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
 295{
 296	u64 ts;
 297
 298	ts = event->array[0];
 299	ts <<= TS_SHIFT;
 300	ts += event->time_delta;
 301
 302	return ts;
 303}
 304
 305/* Flag when events were overwritten */
 306#define RB_MISSED_EVENTS	(1 << 31)
 307/* Missed count stored at end */
 308#define RB_MISSED_STORED	(1 << 30)
 309
 310#define RB_MISSED_FLAGS		(RB_MISSED_EVENTS|RB_MISSED_STORED)
 311
 312struct buffer_data_page {
 313	u64		 time_stamp;	/* page time stamp */
 314	local_t		 commit;	/* write committed index */
 315	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 316};
 317
 
 
 
 
 
 318/*
 319 * Note, the buffer_page list must be first. The buffer pages
 320 * are allocated in cache lines, which means that each buffer
 321 * page will be at the beginning of a cache line, and thus
 322 * the least significant bits will be zero. We use this to
 323 * add flags in the list struct pointers, to make the ring buffer
 324 * lockless.
 325 */
 326struct buffer_page {
 327	struct list_head list;		/* list of buffer pages */
 328	local_t		 write;		/* index for next write */
 329	unsigned	 read;		/* index for next read */
 330	local_t		 entries;	/* entries on this page */
 331	unsigned long	 real_end;	/* real end of data */
 
 
 
 332	struct buffer_data_page *page;	/* Actual data page */
 333};
 334
 335/*
 336 * The buffer page counters, write and entries, must be reset
 337 * atomically when crossing page boundaries. To synchronize this
 338 * update, two counters are inserted into the number. One is
 339 * the actual counter for the write position or count on the page.
 340 *
 341 * The other is a counter of updaters. Before an update happens
 342 * the update partition of the counter is incremented. This will
 343 * allow the updater to update the counter atomically.
 344 *
 345 * The counter is 20 bits, and the state data is 12.
 346 */
 347#define RB_WRITE_MASK		0xfffff
 348#define RB_WRITE_INTCNT		(1 << 20)
 349
 350static void rb_init_page(struct buffer_data_page *bpage)
 351{
 352	local_set(&bpage->commit, 0);
 353}
 354
 355/**
 356 * ring_buffer_page_len - the size of data on the page.
 357 * @page: The page to read
 358 *
 359 * Returns the amount of data on the page, including buffer page header.
 360 */
 361size_t ring_buffer_page_len(void *page)
 362{
 363	struct buffer_data_page *bpage = page;
 364
 365	return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
 366		+ BUF_PAGE_HDR_SIZE;
 367}
 368
 369/*
 370 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 371 * this issue out.
 372 */
 373static void free_buffer_page(struct buffer_page *bpage)
 374{
 375	free_page((unsigned long)bpage->page);
 
 
 376	kfree(bpage);
 377}
 378
 379/*
 380 * We need to fit the time_stamp delta into 27 bits.
 381 */
 382static inline int test_time_stamp(u64 delta)
 383{
 384	if (delta & TS_DELTA_TEST)
 385		return 1;
 386	return 0;
 387}
 388
 389#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 390
 391/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 392#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 393
 394int ring_buffer_print_page_header(struct trace_seq *s)
 395{
 396	struct buffer_data_page field;
 397
 398	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 399			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 400			 (unsigned int)sizeof(field.time_stamp),
 401			 (unsigned int)is_signed_type(u64));
 402
 403	trace_seq_printf(s, "\tfield: local_t commit;\t"
 404			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 405			 (unsigned int)offsetof(typeof(field), commit),
 406			 (unsigned int)sizeof(field.commit),
 407			 (unsigned int)is_signed_type(long));
 408
 409	trace_seq_printf(s, "\tfield: int overwrite;\t"
 410			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 411			 (unsigned int)offsetof(typeof(field), commit),
 412			 1,
 413			 (unsigned int)is_signed_type(long));
 414
 415	trace_seq_printf(s, "\tfield: char data;\t"
 416			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 417			 (unsigned int)offsetof(typeof(field), data),
 418			 (unsigned int)BUF_PAGE_SIZE,
 419			 (unsigned int)is_signed_type(char));
 420
 421	return !trace_seq_has_overflowed(s);
 422}
 423
 424struct rb_irq_work {
 425	struct irq_work			work;
 426	wait_queue_head_t		waiters;
 427	wait_queue_head_t		full_waiters;
 
 428	bool				waiters_pending;
 429	bool				full_waiters_pending;
 430	bool				wakeup_full;
 431};
 432
 433/*
 434 * Structure to hold event state and handle nested events.
 435 */
 436struct rb_event_info {
 437	u64			ts;
 438	u64			delta;
 
 
 439	unsigned long		length;
 440	struct buffer_page	*tail_page;
 441	int			add_timestamp;
 442};
 443
 444/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 445 * Used for which event context the event is in.
 446 *  NMI     = 0
 447 *  IRQ     = 1
 448 *  SOFTIRQ = 2
 449 *  NORMAL  = 3
 
 450 *
 451 * See trace_recursive_lock() comment below for more details.
 452 */
 453enum {
 
 454	RB_CTX_NMI,
 455	RB_CTX_IRQ,
 456	RB_CTX_SOFTIRQ,
 457	RB_CTX_NORMAL,
 458	RB_CTX_MAX
 459};
 460
 
 
 
 
 
 
 
 461/*
 462 * head_page == tail_page && head == tail then buffer is empty.
 463 */
 464struct ring_buffer_per_cpu {
 465	int				cpu;
 466	atomic_t			record_disabled;
 467	struct ring_buffer		*buffer;
 
 468	raw_spinlock_t			reader_lock;	/* serialize readers */
 469	arch_spinlock_t			lock;
 470	struct lock_class_key		lock_key;
 471	struct buffer_data_page		*free_page;
 472	unsigned long			nr_pages;
 473	unsigned int			current_context;
 474	struct list_head		*pages;
 
 
 475	struct buffer_page		*head_page;	/* read from head */
 476	struct buffer_page		*tail_page;	/* write to tail */
 477	struct buffer_page		*commit_page;	/* committed pages */
 478	struct buffer_page		*reader_page;
 479	unsigned long			lost_events;
 480	unsigned long			last_overrun;
 481	unsigned long			nest;
 482	local_t				entries_bytes;
 483	local_t				entries;
 484	local_t				overrun;
 485	local_t				commit_overrun;
 486	local_t				dropped_events;
 487	local_t				committing;
 488	local_t				commits;
 
 
 
 
 
 489	unsigned long			read;
 490	unsigned long			read_bytes;
 491	u64				write_stamp;
 
 
 492	u64				read_stamp;
 
 
 
 
 
 
 
 
 
 
 493	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 494	long				nr_pages_to_update;
 495	struct list_head		new_pages; /* new pages to add */
 496	struct work_struct		update_pages_work;
 497	struct completion		update_done;
 498
 499	struct rb_irq_work		irq_work;
 500};
 501
 502struct ring_buffer {
 503	unsigned			flags;
 504	int				cpus;
 505	atomic_t			record_disabled;
 506	atomic_t			resize_disabled;
 507	cpumask_var_t			cpumask;
 508
 509	struct lock_class_key		*reader_lock_key;
 510
 511	struct mutex			mutex;
 512
 513	struct ring_buffer_per_cpu	**buffers;
 514
 515	struct hlist_node		node;
 516	u64				(*clock)(void);
 517
 518	struct rb_irq_work		irq_work;
 519	bool				time_stamp_abs;
 
 
 
 
 
 
 
 
 
 
 520};
 521
 522struct ring_buffer_iter {
 523	struct ring_buffer_per_cpu	*cpu_buffer;
 524	unsigned long			head;
 
 525	struct buffer_page		*head_page;
 526	struct buffer_page		*cache_reader_page;
 527	unsigned long			cache_read;
 
 528	u64				read_stamp;
 
 
 
 
 529};
 530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531/*
 532 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 533 *
 534 * Schedules a delayed work to wake up any task that is blocked on the
 535 * ring buffer waiters queue.
 536 */
 537static void rb_wake_up_waiters(struct irq_work *work)
 538{
 539	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 540
 
 
 
 541	wake_up_all(&rbwork->waiters);
 542	if (rbwork->wakeup_full) {
 
 
 
 
 
 
 543		rbwork->wakeup_full = false;
 
 
 
 
 
 
 544		wake_up_all(&rbwork->full_waiters);
 545	}
 546}
 547
 548/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549 * ring_buffer_wait - wait for input to the ring buffer
 550 * @buffer: buffer to wait on
 551 * @cpu: the cpu buffer to wait on
 552 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 
 
 553 *
 554 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 555 * as data is added to any of the @buffer's cpu buffers. Otherwise
 556 * it will wait for data to be added to a specific cpu buffer.
 557 */
 558int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
 
 559{
 560	struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 561	DEFINE_WAIT(wait);
 562	struct rb_irq_work *work;
 
 563	int ret = 0;
 564
 565	/*
 566	 * Depending on what the caller is waiting for, either any
 567	 * data in any cpu buffer, or a specific buffer, put the
 568	 * caller on the appropriate wait queue.
 569	 */
 570	if (cpu == RING_BUFFER_ALL_CPUS) {
 571		work = &buffer->irq_work;
 572		/* Full only makes sense on per cpu reads */
 573		full = false;
 574	} else {
 575		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 576			return -ENODEV;
 577		cpu_buffer = buffer->buffers[cpu];
 578		work = &cpu_buffer->irq_work;
 579	}
 580
 
 
 
 
 581
 582	while (true) {
 583		if (full)
 584			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 585		else
 586			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 587
 588		/*
 589		 * The events can happen in critical sections where
 590		 * checking a work queue can cause deadlocks.
 591		 * After adding a task to the queue, this flag is set
 592		 * only to notify events to try to wake up the queue
 593		 * using irq_work.
 594		 *
 595		 * We don't clear it even if the buffer is no longer
 596		 * empty. The flag only causes the next event to run
 597		 * irq_work to do the work queue wake up. The worse
 598		 * that can happen if we race with !trace_empty() is that
 599		 * an event will cause an irq_work to try to wake up
 600		 * an empty queue.
 601		 *
 602		 * There's no reason to protect this flag either, as
 603		 * the work queue and irq_work logic will do the necessary
 604		 * synchronization for the wake ups. The only thing
 605		 * that is necessary is that the wake up happens after
 606		 * a task has been queued. It's OK for spurious wake ups.
 607		 */
 608		if (full)
 609			work->full_waiters_pending = true;
 610		else
 611			work->waiters_pending = true;
 612
 613		if (signal_pending(current)) {
 614			ret = -EINTR;
 615			break;
 616		}
 617
 618		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 619			break;
 620
 621		if (cpu != RING_BUFFER_ALL_CPUS &&
 622		    !ring_buffer_empty_cpu(buffer, cpu)) {
 623			unsigned long flags;
 624			bool pagebusy;
 625
 626			if (!full)
 627				break;
 628
 629			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 630			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 631			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 632
 633			if (!pagebusy)
 634				break;
 635		}
 636
 637		schedule();
 638	}
 639
 640	if (full)
 641		finish_wait(&work->full_waiters, &wait);
 642	else
 643		finish_wait(&work->waiters, &wait);
 644
 645	return ret;
 646}
 647
 648/**
 649 * ring_buffer_poll_wait - poll on buffer input
 650 * @buffer: buffer to wait on
 651 * @cpu: the cpu buffer to wait on
 652 * @filp: the file descriptor
 653 * @poll_table: The poll descriptor
 
 654 *
 655 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 656 * as data is added to any of the @buffer's cpu buffers. Otherwise
 657 * it will wait for data to be added to a specific cpu buffer.
 658 *
 659 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
 660 * zero otherwise.
 661 */
 662__poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 663			  struct file *filp, poll_table *poll_table)
 664{
 665	struct ring_buffer_per_cpu *cpu_buffer;
 666	struct rb_irq_work *work;
 667
 668	if (cpu == RING_BUFFER_ALL_CPUS)
 669		work = &buffer->irq_work;
 670	else {
 
 671		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 672			return -EINVAL;
 673
 674		cpu_buffer = buffer->buffers[cpu];
 675		work = &cpu_buffer->irq_work;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676	}
 677
 678	poll_wait(filp, &work->waiters, poll_table);
 679	work->waiters_pending = true;
 
 680	/*
 681	 * There's a tight race between setting the waiters_pending and
 682	 * checking if the ring buffer is empty.  Once the waiters_pending bit
 683	 * is set, the next event will wake the task up, but we can get stuck
 684	 * if there's only a single event in.
 685	 *
 686	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
 687	 * but adding a memory barrier to all events will cause too much of a
 688	 * performance hit in the fast path.  We only need a memory barrier when
 689	 * the buffer goes from empty to having content.  But as this race is
 690	 * extremely small, and it's not a problem if another event comes in, we
 691	 * will fix it later.
 692	 */
 693	smp_mb();
 694
 695	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 696	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 697		return EPOLLIN | EPOLLRDNORM;
 698	return 0;
 699}
 700
 701/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 702#define RB_WARN_ON(b, cond)						\
 703	({								\
 704		int _____ret = unlikely(cond);				\
 705		if (_____ret) {						\
 706			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 707				struct ring_buffer_per_cpu *__b =	\
 708					(void *)b;			\
 709				atomic_inc(&__b->buffer->record_disabled); \
 710			} else						\
 711				atomic_inc(&b->record_disabled);	\
 712			WARN_ON(1);					\
 713		}							\
 714		_____ret;						\
 715	})
 716
 717/* Up this if you want to test the TIME_EXTENTS and normalization */
 718#define DEBUG_SHIFT 0
 719
 720static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 721{
 
 
 
 
 
 
 
 
 722	/* shift to debug/test normalization and TIME_EXTENTS */
 723	return buffer->clock() << DEBUG_SHIFT;
 724}
 725
 726u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 727{
 728	u64 time;
 729
 730	preempt_disable_notrace();
 731	time = rb_time_stamp(buffer);
 732	preempt_enable_no_resched_notrace();
 733
 734	return time;
 735}
 736EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 737
 738void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 739				      int cpu, u64 *ts)
 740{
 741	/* Just stupid testing the normalize function and deltas */
 742	*ts >>= DEBUG_SHIFT;
 743}
 744EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 745
 746/*
 747 * Making the ring buffer lockless makes things tricky.
 748 * Although writes only happen on the CPU that they are on,
 749 * and they only need to worry about interrupts. Reads can
 750 * happen on any CPU.
 751 *
 752 * The reader page is always off the ring buffer, but when the
 753 * reader finishes with a page, it needs to swap its page with
 754 * a new one from the buffer. The reader needs to take from
 755 * the head (writes go to the tail). But if a writer is in overwrite
 756 * mode and wraps, it must push the head page forward.
 757 *
 758 * Here lies the problem.
 759 *
 760 * The reader must be careful to replace only the head page, and
 761 * not another one. As described at the top of the file in the
 762 * ASCII art, the reader sets its old page to point to the next
 763 * page after head. It then sets the page after head to point to
 764 * the old reader page. But if the writer moves the head page
 765 * during this operation, the reader could end up with the tail.
 766 *
 767 * We use cmpxchg to help prevent this race. We also do something
 768 * special with the page before head. We set the LSB to 1.
 769 *
 770 * When the writer must push the page forward, it will clear the
 771 * bit that points to the head page, move the head, and then set
 772 * the bit that points to the new head page.
 773 *
 774 * We also don't want an interrupt coming in and moving the head
 775 * page on another writer. Thus we use the second LSB to catch
 776 * that too. Thus:
 777 *
 778 * head->list->prev->next        bit 1          bit 0
 779 *                              -------        -------
 780 * Normal page                     0              0
 781 * Points to head page             0              1
 782 * New head page                   1              0
 783 *
 784 * Note we can not trust the prev pointer of the head page, because:
 785 *
 786 * +----+       +-----+        +-----+
 787 * |    |------>|  T  |---X--->|  N  |
 788 * |    |<------|     |        |     |
 789 * +----+       +-----+        +-----+
 790 *   ^                           ^ |
 791 *   |          +-----+          | |
 792 *   +----------|  R  |----------+ |
 793 *              |     |<-----------+
 794 *              +-----+
 795 *
 796 * Key:  ---X-->  HEAD flag set in pointer
 797 *         T      Tail page
 798 *         R      Reader page
 799 *         N      Next page
 800 *
 801 * (see __rb_reserve_next() to see where this happens)
 802 *
 803 *  What the above shows is that the reader just swapped out
 804 *  the reader page with a page in the buffer, but before it
 805 *  could make the new header point back to the new page added
 806 *  it was preempted by a writer. The writer moved forward onto
 807 *  the new page added by the reader and is about to move forward
 808 *  again.
 809 *
 810 *  You can see, it is legitimate for the previous pointer of
 811 *  the head (or any page) not to point back to itself. But only
 812 *  temporarially.
 813 */
 814
 815#define RB_PAGE_NORMAL		0UL
 816#define RB_PAGE_HEAD		1UL
 817#define RB_PAGE_UPDATE		2UL
 818
 819
 820#define RB_FLAG_MASK		3UL
 821
 822/* PAGE_MOVED is not part of the mask */
 823#define RB_PAGE_MOVED		4UL
 824
 825/*
 826 * rb_list_head - remove any bit
 827 */
 828static struct list_head *rb_list_head(struct list_head *list)
 829{
 830	unsigned long val = (unsigned long)list;
 831
 832	return (struct list_head *)(val & ~RB_FLAG_MASK);
 833}
 834
 835/*
 836 * rb_is_head_page - test if the given page is the head page
 837 *
 838 * Because the reader may move the head_page pointer, we can
 839 * not trust what the head page is (it may be pointing to
 840 * the reader page). But if the next page is a header page,
 841 * its flags will be non zero.
 842 */
 843static inline int
 844rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 845		struct buffer_page *page, struct list_head *list)
 846{
 847	unsigned long val;
 848
 849	val = (unsigned long)list->next;
 850
 851	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 852		return RB_PAGE_MOVED;
 853
 854	return val & RB_FLAG_MASK;
 855}
 856
 857/*
 858 * rb_is_reader_page
 859 *
 860 * The unique thing about the reader page, is that, if the
 861 * writer is ever on it, the previous pointer never points
 862 * back to the reader page.
 863 */
 864static bool rb_is_reader_page(struct buffer_page *page)
 865{
 866	struct list_head *list = page->list.prev;
 867
 868	return rb_list_head(list->next) != &page->list;
 869}
 870
 871/*
 872 * rb_set_list_to_head - set a list_head to be pointing to head.
 873 */
 874static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 875				struct list_head *list)
 876{
 877	unsigned long *ptr;
 878
 879	ptr = (unsigned long *)&list->next;
 880	*ptr |= RB_PAGE_HEAD;
 881	*ptr &= ~RB_PAGE_UPDATE;
 882}
 883
 884/*
 885 * rb_head_page_activate - sets up head page
 886 */
 887static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 888{
 889	struct buffer_page *head;
 890
 891	head = cpu_buffer->head_page;
 892	if (!head)
 893		return;
 894
 895	/*
 896	 * Set the previous list pointer to have the HEAD flag.
 897	 */
 898	rb_set_list_to_head(cpu_buffer, head->list.prev);
 
 
 
 
 
 899}
 900
 901static void rb_list_head_clear(struct list_head *list)
 902{
 903	unsigned long *ptr = (unsigned long *)&list->next;
 904
 905	*ptr &= ~RB_FLAG_MASK;
 906}
 907
 908/*
 909 * rb_head_page_dactivate - clears head page ptr (for free list)
 910 */
 911static void
 912rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 913{
 914	struct list_head *hd;
 915
 916	/* Go through the whole list and clear any pointers found. */
 917	rb_list_head_clear(cpu_buffer->pages);
 918
 919	list_for_each(hd, cpu_buffer->pages)
 920		rb_list_head_clear(hd);
 921}
 922
 923static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 924			    struct buffer_page *head,
 925			    struct buffer_page *prev,
 926			    int old_flag, int new_flag)
 927{
 928	struct list_head *list;
 929	unsigned long val = (unsigned long)&head->list;
 930	unsigned long ret;
 931
 932	list = &prev->list;
 933
 934	val &= ~RB_FLAG_MASK;
 935
 936	ret = cmpxchg((unsigned long *)&list->next,
 937		      val | old_flag, val | new_flag);
 938
 939	/* check if the reader took the page */
 940	if ((ret & ~RB_FLAG_MASK) != val)
 941		return RB_PAGE_MOVED;
 942
 943	return ret & RB_FLAG_MASK;
 944}
 945
 946static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 947				   struct buffer_page *head,
 948				   struct buffer_page *prev,
 949				   int old_flag)
 950{
 951	return rb_head_page_set(cpu_buffer, head, prev,
 952				old_flag, RB_PAGE_UPDATE);
 953}
 954
 955static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 956				 struct buffer_page *head,
 957				 struct buffer_page *prev,
 958				 int old_flag)
 959{
 960	return rb_head_page_set(cpu_buffer, head, prev,
 961				old_flag, RB_PAGE_HEAD);
 962}
 963
 964static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 965				   struct buffer_page *head,
 966				   struct buffer_page *prev,
 967				   int old_flag)
 968{
 969	return rb_head_page_set(cpu_buffer, head, prev,
 970				old_flag, RB_PAGE_NORMAL);
 971}
 972
 973static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 974			       struct buffer_page **bpage)
 975{
 976	struct list_head *p = rb_list_head((*bpage)->list.next);
 977
 978	*bpage = list_entry(p, struct buffer_page, list);
 979}
 980
 981static struct buffer_page *
 982rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 983{
 984	struct buffer_page *head;
 985	struct buffer_page *page;
 986	struct list_head *list;
 987	int i;
 988
 989	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 990		return NULL;
 991
 992	/* sanity check */
 993	list = cpu_buffer->pages;
 994	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 995		return NULL;
 996
 997	page = head = cpu_buffer->head_page;
 998	/*
 999	 * It is possible that the writer moves the header behind
1000	 * where we started, and we miss in one loop.
1001	 * A second loop should grab the header, but we'll do
1002	 * three loops just because I'm paranoid.
1003	 */
1004	for (i = 0; i < 3; i++) {
1005		do {
1006			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1007				cpu_buffer->head_page = page;
1008				return page;
1009			}
1010			rb_inc_page(cpu_buffer, &page);
1011		} while (page != head);
1012	}
1013
1014	RB_WARN_ON(cpu_buffer, 1);
1015
1016	return NULL;
1017}
1018
1019static int rb_head_page_replace(struct buffer_page *old,
1020				struct buffer_page *new)
1021{
1022	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1023	unsigned long val;
1024	unsigned long ret;
1025
1026	val = *ptr & ~RB_FLAG_MASK;
1027	val |= RB_PAGE_HEAD;
1028
1029	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1030
1031	return ret == val;
1032}
1033
1034/*
1035 * rb_tail_page_update - move the tail page forward
1036 */
1037static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1038			       struct buffer_page *tail_page,
1039			       struct buffer_page *next_page)
1040{
1041	unsigned long old_entries;
1042	unsigned long old_write;
1043
1044	/*
1045	 * The tail page now needs to be moved forward.
1046	 *
1047	 * We need to reset the tail page, but without messing
1048	 * with possible erasing of data brought in by interrupts
1049	 * that have moved the tail page and are currently on it.
1050	 *
1051	 * We add a counter to the write field to denote this.
1052	 */
1053	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1054	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1055
1056	/*
1057	 * Just make sure we have seen our old_write and synchronize
1058	 * with any interrupts that come in.
1059	 */
1060	barrier();
1061
1062	/*
1063	 * If the tail page is still the same as what we think
1064	 * it is, then it is up to us to update the tail
1065	 * pointer.
1066	 */
1067	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1068		/* Zero the write counter */
1069		unsigned long val = old_write & ~RB_WRITE_MASK;
1070		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1071
1072		/*
1073		 * This will only succeed if an interrupt did
1074		 * not come in and change it. In which case, we
1075		 * do not want to modify it.
1076		 *
1077		 * We add (void) to let the compiler know that we do not care
1078		 * about the return value of these functions. We use the
1079		 * cmpxchg to only update if an interrupt did not already
1080		 * do it for us. If the cmpxchg fails, we don't care.
1081		 */
1082		(void)local_cmpxchg(&next_page->write, old_write, val);
1083		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1084
1085		/*
1086		 * No need to worry about races with clearing out the commit.
1087		 * it only can increment when a commit takes place. But that
1088		 * only happens in the outer most nested commit.
1089		 */
1090		local_set(&next_page->page->commit, 0);
1091
1092		/* Again, either we update tail_page or an interrupt does */
1093		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
 
1094	}
1095}
1096
1097static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1098			  struct buffer_page *bpage)
1099{
1100	unsigned long val = (unsigned long)bpage;
1101
1102	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1103		return 1;
1104
1105	return 0;
1106}
1107
1108/**
1109 * rb_check_list - make sure a pointer to a list has the last bits zero
1110 */
1111static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1112			 struct list_head *list)
1113{
1114	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1115		return 1;
1116	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1117		return 1;
1118	return 0;
 
 
 
 
1119}
1120
1121/**
1122 * rb_check_pages - integrity check of buffer pages
1123 * @cpu_buffer: CPU buffer with pages to test
1124 *
1125 * As a safety measure we check to make sure the data pages have not
1126 * been corrupted.
1127 */
1128static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1129{
1130	struct list_head *head = cpu_buffer->pages;
1131	struct buffer_page *bpage, *tmp;
 
 
1132
1133	/* Reset the head page if it exists */
1134	if (cpu_buffer->head_page)
1135		rb_set_head_page(cpu_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136
1137	rb_head_page_deactivate(cpu_buffer);
 
 
 
 
 
 
1138
1139	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1140		return -1;
1141	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1142		return -1;
1143
1144	if (rb_check_list(cpu_buffer, head))
1145		return -1;
 
 
 
1146
1147	list_for_each_entry_safe(bpage, tmp, head, list) {
1148		if (RB_WARN_ON(cpu_buffer,
1149			       bpage->list.next->prev != &bpage->list))
1150			return -1;
1151		if (RB_WARN_ON(cpu_buffer,
1152			       bpage->list.prev->next != &bpage->list))
1153			return -1;
1154		if (rb_check_list(cpu_buffer, &bpage->list))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155			return -1;
 
1156	}
 
 
 
1157
1158	rb_head_page_activate(cpu_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159
1160	return 0;
1161}
1162
1163static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164{
 
 
1165	struct buffer_page *bpage, *tmp;
1166	bool user_thread = current->mm != NULL;
1167	gfp_t mflags;
1168	long i;
1169
1170	/*
1171	 * Check if the available memory is there first.
1172	 * Note, si_mem_available() only gives us a rough estimate of available
1173	 * memory. It may not be accurate. But we don't care, we just want
1174	 * to prevent doing any allocation when it is obvious that it is
1175	 * not going to succeed.
1176	 */
1177	i = si_mem_available();
1178	if (i < nr_pages)
1179		return -ENOMEM;
1180
1181	/*
1182	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1183	 * gracefully without invoking oom-killer and the system is not
1184	 * destabilized.
1185	 */
1186	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1187
1188	/*
1189	 * If a user thread allocates too much, and si_mem_available()
1190	 * reports there's enough memory, even though there is not.
1191	 * Make sure the OOM killer kills this thread. This can happen
1192	 * even with RETRY_MAYFAIL because another task may be doing
1193	 * an allocation after this task has taken all memory.
1194	 * This is the task the OOM killer needs to take out during this
1195	 * loop, even if it was triggered by an allocation somewhere else.
1196	 */
1197	if (user_thread)
1198		set_current_oom_origin();
 
 
 
 
1199	for (i = 0; i < nr_pages; i++) {
1200		struct page *page;
1201
1202		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1203				    mflags, cpu_to_node(cpu));
1204		if (!bpage)
1205			goto free_pages;
1206
1207		list_add(&bpage->list, pages);
1208
1209		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1210		if (!page)
1211			goto free_pages;
1212		bpage->page = page_address(page);
1213		rb_init_page(bpage->page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214
1215		if (user_thread && fatal_signal_pending(current))
1216			goto free_pages;
1217	}
1218	if (user_thread)
1219		clear_current_oom_origin();
1220
1221	return 0;
1222
1223free_pages:
1224	list_for_each_entry_safe(bpage, tmp, pages, list) {
1225		list_del_init(&bpage->list);
1226		free_buffer_page(bpage);
1227	}
1228	if (user_thread)
1229		clear_current_oom_origin();
1230
1231	return -ENOMEM;
1232}
1233
1234static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1235			     unsigned long nr_pages)
1236{
1237	LIST_HEAD(pages);
1238
1239	WARN_ON(!nr_pages);
1240
1241	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1242		return -ENOMEM;
1243
1244	/*
1245	 * The ring buffer page list is a circular list that does not
1246	 * start and end with a list head. All page list items point to
1247	 * other pages.
1248	 */
1249	cpu_buffer->pages = pages.next;
1250	list_del(&pages);
1251
1252	cpu_buffer->nr_pages = nr_pages;
1253
1254	rb_check_pages(cpu_buffer);
1255
1256	return 0;
1257}
1258
1259static struct ring_buffer_per_cpu *
1260rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1261{
1262	struct ring_buffer_per_cpu *cpu_buffer;
 
1263	struct buffer_page *bpage;
1264	struct page *page;
1265	int ret;
1266
1267	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1268				  GFP_KERNEL, cpu_to_node(cpu));
1269	if (!cpu_buffer)
1270		return NULL;
1271
1272	cpu_buffer->cpu = cpu;
1273	cpu_buffer->buffer = buffer;
1274	raw_spin_lock_init(&cpu_buffer->reader_lock);
1275	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1276	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1277	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1278	init_completion(&cpu_buffer->update_done);
1279	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1280	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1281	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
 
1282
1283	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1284			    GFP_KERNEL, cpu_to_node(cpu));
1285	if (!bpage)
1286		goto fail_free_buffer;
1287
1288	rb_check_bpage(cpu_buffer, bpage);
1289
1290	cpu_buffer->reader_page = bpage;
1291	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1292	if (!page)
1293		goto fail_free_reader;
1294	bpage->page = page_address(page);
1295	rb_init_page(bpage->page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296
1297	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1298	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1299
1300	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1301	if (ret < 0)
1302		goto fail_free_reader;
1303
1304	cpu_buffer->head_page
1305		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1306	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1307
1308	rb_head_page_activate(cpu_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309
1310	return cpu_buffer;
1311
1312 fail_free_reader:
1313	free_buffer_page(cpu_buffer->reader_page);
1314
1315 fail_free_buffer:
1316	kfree(cpu_buffer);
1317	return NULL;
1318}
1319
1320static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1321{
1322	struct list_head *head = cpu_buffer->pages;
1323	struct buffer_page *bpage, *tmp;
1324
1325	free_buffer_page(cpu_buffer->reader_page);
1326
1327	rb_head_page_deactivate(cpu_buffer);
1328
1329	if (head) {
 
 
1330		list_for_each_entry_safe(bpage, tmp, head, list) {
1331			list_del_init(&bpage->list);
1332			free_buffer_page(bpage);
1333		}
1334		bpage = list_entry(head, struct buffer_page, list);
1335		free_buffer_page(bpage);
1336	}
1337
 
 
1338	kfree(cpu_buffer);
1339}
1340
1341/**
1342 * __ring_buffer_alloc - allocate a new ring_buffer
1343 * @size: the size in bytes per cpu that is needed.
1344 * @flags: attributes to set for the ring buffer.
1345 *
1346 * Currently the only flag that is available is the RB_FL_OVERWRITE
1347 * flag. This flag means that the buffer will overwrite old data
1348 * when the buffer wraps. If this flag is not set, the buffer will
1349 * drop data when the tail hits the head.
1350 */
1351struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1352					struct lock_class_key *key)
1353{
1354	struct ring_buffer *buffer;
1355	long nr_pages;
 
1356	int bsize;
1357	int cpu;
1358	int ret;
1359
1360	/* keep it in its own cache line */
1361	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1362			 GFP_KERNEL);
1363	if (!buffer)
1364		return NULL;
1365
1366	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1367		goto fail_free_buffer;
1368
1369	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
 
 
 
 
 
 
1370	buffer->flags = flags;
1371	buffer->clock = trace_clock_local;
1372	buffer->reader_lock_key = key;
1373
1374	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1375	init_waitqueue_head(&buffer->irq_work.waiters);
1376
1377	/* need at least two pages */
1378	if (nr_pages < 2)
1379		nr_pages = 2;
1380
1381	buffer->cpus = nr_cpu_ids;
1382
1383	bsize = sizeof(void *) * nr_cpu_ids;
1384	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1385				  GFP_KERNEL);
1386	if (!buffer->buffers)
1387		goto fail_free_cpumask;
1388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389	cpu = raw_smp_processor_id();
1390	cpumask_set_cpu(cpu, buffer->cpumask);
1391	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1392	if (!buffer->buffers[cpu])
1393		goto fail_free_buffers;
1394
1395	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1396	if (ret < 0)
1397		goto fail_free_buffers;
1398
1399	mutex_init(&buffer->mutex);
1400
1401	return buffer;
1402
1403 fail_free_buffers:
1404	for_each_buffer_cpu(buffer, cpu) {
1405		if (buffer->buffers[cpu])
1406			rb_free_cpu_buffer(buffer->buffers[cpu]);
1407	}
1408	kfree(buffer->buffers);
1409
1410 fail_free_cpumask:
1411	free_cpumask_var(buffer->cpumask);
1412
1413 fail_free_buffer:
1414	kfree(buffer);
1415	return NULL;
1416}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1417EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1418
1419/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1420 * ring_buffer_free - free a ring buffer.
1421 * @buffer: the buffer to free.
1422 */
1423void
1424ring_buffer_free(struct ring_buffer *buffer)
1425{
1426	int cpu;
1427
1428	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1429
 
 
1430	for_each_buffer_cpu(buffer, cpu)
1431		rb_free_cpu_buffer(buffer->buffers[cpu]);
1432
1433	kfree(buffer->buffers);
1434	free_cpumask_var(buffer->cpumask);
1435
1436	kfree(buffer);
1437}
1438EXPORT_SYMBOL_GPL(ring_buffer_free);
1439
1440void ring_buffer_set_clock(struct ring_buffer *buffer,
1441			   u64 (*clock)(void))
1442{
1443	buffer->clock = clock;
1444}
1445
1446void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1447{
1448	buffer->time_stamp_abs = abs;
1449}
1450
1451bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1452{
1453	return buffer->time_stamp_abs;
1454}
1455
1456static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1457
1458static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1459{
1460	return local_read(&bpage->entries) & RB_WRITE_MASK;
1461}
1462
1463static inline unsigned long rb_page_write(struct buffer_page *bpage)
1464{
1465	return local_read(&bpage->write) & RB_WRITE_MASK;
1466}
1467
1468static int
1469rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1470{
1471	struct list_head *tail_page, *to_remove, *next_page;
1472	struct buffer_page *to_remove_page, *tmp_iter_page;
1473	struct buffer_page *last_page, *first_page;
1474	unsigned long nr_removed;
1475	unsigned long head_bit;
1476	int page_entries;
1477
1478	head_bit = 0;
1479
1480	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1481	atomic_inc(&cpu_buffer->record_disabled);
1482	/*
1483	 * We don't race with the readers since we have acquired the reader
1484	 * lock. We also don't race with writers after disabling recording.
1485	 * This makes it easy to figure out the first and the last page to be
1486	 * removed from the list. We unlink all the pages in between including
1487	 * the first and last pages. This is done in a busy loop so that we
1488	 * lose the least number of traces.
1489	 * The pages are freed after we restart recording and unlock readers.
1490	 */
1491	tail_page = &cpu_buffer->tail_page->list;
1492
1493	/*
1494	 * tail page might be on reader page, we remove the next page
1495	 * from the ring buffer
1496	 */
1497	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1498		tail_page = rb_list_head(tail_page->next);
1499	to_remove = tail_page;
1500
1501	/* start of pages to remove */
1502	first_page = list_entry(rb_list_head(to_remove->next),
1503				struct buffer_page, list);
1504
1505	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1506		to_remove = rb_list_head(to_remove)->next;
1507		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1508	}
 
 
1509
1510	next_page = rb_list_head(to_remove)->next;
1511
1512	/*
1513	 * Now we remove all pages between tail_page and next_page.
1514	 * Make sure that we have head_bit value preserved for the
1515	 * next page
1516	 */
1517	tail_page->next = (struct list_head *)((unsigned long)next_page |
1518						head_bit);
1519	next_page = rb_list_head(next_page);
1520	next_page->prev = tail_page;
1521
1522	/* make sure pages points to a valid page in the ring buffer */
1523	cpu_buffer->pages = next_page;
 
1524
1525	/* update head page */
1526	if (head_bit)
1527		cpu_buffer->head_page = list_entry(next_page,
1528						struct buffer_page, list);
1529
1530	/*
1531	 * change read pointer to make sure any read iterators reset
1532	 * themselves
1533	 */
1534	cpu_buffer->read = 0;
1535
1536	/* pages are removed, resume tracing and then free the pages */
1537	atomic_dec(&cpu_buffer->record_disabled);
1538	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1539
1540	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1541
1542	/* last buffer page to remove */
1543	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1544				list);
1545	tmp_iter_page = first_page;
1546
1547	do {
 
 
1548		to_remove_page = tmp_iter_page;
1549		rb_inc_page(cpu_buffer, &tmp_iter_page);
1550
1551		/* update the counters */
1552		page_entries = rb_page_entries(to_remove_page);
1553		if (page_entries) {
1554			/*
1555			 * If something was added to this page, it was full
1556			 * since it is not the tail page. So we deduct the
1557			 * bytes consumed in ring buffer from here.
1558			 * Increment overrun to account for the lost events.
1559			 */
1560			local_add(page_entries, &cpu_buffer->overrun);
1561			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
 
1562		}
1563
1564		/*
1565		 * We have already removed references to this list item, just
1566		 * free up the buffer_page and its page
1567		 */
1568		free_buffer_page(to_remove_page);
1569		nr_removed--;
1570
1571	} while (to_remove_page != last_page);
1572
1573	RB_WARN_ON(cpu_buffer, nr_removed);
1574
1575	return nr_removed == 0;
1576}
1577
1578static int
1579rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1580{
1581	struct list_head *pages = &cpu_buffer->new_pages;
1582	int retries, success;
 
 
1583
1584	raw_spin_lock_irq(&cpu_buffer->reader_lock);
 
1585	/*
1586	 * We are holding the reader lock, so the reader page won't be swapped
1587	 * in the ring buffer. Now we are racing with the writer trying to
1588	 * move head page and the tail page.
1589	 * We are going to adapt the reader page update process where:
1590	 * 1. We first splice the start and end of list of new pages between
1591	 *    the head page and its previous page.
1592	 * 2. We cmpxchg the prev_page->next to point from head page to the
1593	 *    start of new pages list.
1594	 * 3. Finally, we update the head->prev to the end of new list.
1595	 *
1596	 * We will try this process 10 times, to make sure that we don't keep
1597	 * spinning.
1598	 */
1599	retries = 10;
1600	success = 0;
1601	while (retries--) {
1602		struct list_head *head_page, *prev_page, *r;
1603		struct list_head *last_page, *first_page;
1604		struct list_head *head_page_with_bit;
 
1605
1606		head_page = &rb_set_head_page(cpu_buffer)->list;
1607		if (!head_page)
1608			break;
 
1609		prev_page = head_page->prev;
1610
1611		first_page = pages->next;
1612		last_page  = pages->prev;
1613
1614		head_page_with_bit = (struct list_head *)
1615				     ((unsigned long)head_page | RB_PAGE_HEAD);
1616
1617		last_page->next = head_page_with_bit;
1618		first_page->prev = prev_page;
1619
1620		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1621
1622		if (r == head_page_with_bit) {
1623			/*
1624			 * yay, we replaced the page pointer to our new list,
1625			 * now, we just have to update to head page's prev
1626			 * pointer to point to end of list
1627			 */
1628			head_page->prev = last_page;
1629			success = 1;
 
1630			break;
1631		}
1632	}
1633
1634	if (success)
1635		INIT_LIST_HEAD(pages);
1636	/*
1637	 * If we weren't successful in adding in new pages, warn and stop
1638	 * tracing
1639	 */
1640	RB_WARN_ON(cpu_buffer, !success);
1641	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1642
1643	/* free pages if they weren't inserted */
1644	if (!success) {
1645		struct buffer_page *bpage, *tmp;
1646		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1647					 list) {
1648			list_del_init(&bpage->list);
1649			free_buffer_page(bpage);
1650		}
1651	}
1652	return success;
1653}
1654
1655static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1656{
1657	int success;
1658
1659	if (cpu_buffer->nr_pages_to_update > 0)
1660		success = rb_insert_pages(cpu_buffer);
1661	else
1662		success = rb_remove_pages(cpu_buffer,
1663					-cpu_buffer->nr_pages_to_update);
1664
1665	if (success)
1666		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1667}
1668
1669static void update_pages_handler(struct work_struct *work)
1670{
1671	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1672			struct ring_buffer_per_cpu, update_pages_work);
1673	rb_update_pages(cpu_buffer);
1674	complete(&cpu_buffer->update_done);
1675}
1676
1677/**
1678 * ring_buffer_resize - resize the ring buffer
1679 * @buffer: the buffer to resize.
1680 * @size: the new size.
1681 * @cpu_id: the cpu buffer to resize
1682 *
1683 * Minimum size is 2 * BUF_PAGE_SIZE.
1684 *
1685 * Returns 0 on success and < 0 on failure.
1686 */
1687int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1688			int cpu_id)
1689{
1690	struct ring_buffer_per_cpu *cpu_buffer;
1691	unsigned long nr_pages;
1692	int cpu, err = 0;
1693
1694	/*
1695	 * Always succeed at resizing a non-existent buffer:
1696	 */
1697	if (!buffer)
1698		return size;
1699
1700	/* Make sure the requested buffer exists */
1701	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1702	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1703		return size;
1704
1705	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1706
1707	/* we need a minimum of two pages */
1708	if (nr_pages < 2)
1709		nr_pages = 2;
1710
1711	size = nr_pages * BUF_PAGE_SIZE;
1712
1713	/*
1714	 * Don't succeed if resizing is disabled, as a reader might be
1715	 * manipulating the ring buffer and is expecting a sane state while
1716	 * this is true.
1717	 */
1718	if (atomic_read(&buffer->resize_disabled))
1719		return -EBUSY;
1720
1721	/* prevent another thread from changing buffer sizes */
1722	mutex_lock(&buffer->mutex);
 
1723
1724	if (cpu_id == RING_BUFFER_ALL_CPUS) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1725		/* calculate the pages to update */
1726		for_each_buffer_cpu(buffer, cpu) {
1727			cpu_buffer = buffer->buffers[cpu];
1728
1729			cpu_buffer->nr_pages_to_update = nr_pages -
1730							cpu_buffer->nr_pages;
1731			/*
1732			 * nothing more to do for removing pages or no update
1733			 */
1734			if (cpu_buffer->nr_pages_to_update <= 0)
1735				continue;
1736			/*
1737			 * to add pages, make sure all new pages can be
1738			 * allocated without receiving ENOMEM
1739			 */
1740			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1741			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1742						&cpu_buffer->new_pages, cpu)) {
1743				/* not enough memory for new pages */
1744				err = -ENOMEM;
1745				goto out_err;
1746			}
 
 
1747		}
1748
1749		get_online_cpus();
1750		/*
1751		 * Fire off all the required work handlers
1752		 * We can't schedule on offline CPUs, but it's not necessary
1753		 * since we can change their buffer sizes without any race.
1754		 */
1755		for_each_buffer_cpu(buffer, cpu) {
1756			cpu_buffer = buffer->buffers[cpu];
1757			if (!cpu_buffer->nr_pages_to_update)
1758				continue;
1759
1760			/* Can't run something on an offline CPU. */
1761			if (!cpu_online(cpu)) {
1762				rb_update_pages(cpu_buffer);
1763				cpu_buffer->nr_pages_to_update = 0;
1764			} else {
1765				schedule_work_on(cpu,
1766						&cpu_buffer->update_pages_work);
 
 
 
 
 
 
 
 
1767			}
1768		}
1769
1770		/* wait for all the updates to complete */
1771		for_each_buffer_cpu(buffer, cpu) {
1772			cpu_buffer = buffer->buffers[cpu];
1773			if (!cpu_buffer->nr_pages_to_update)
1774				continue;
1775
1776			if (cpu_online(cpu))
1777				wait_for_completion(&cpu_buffer->update_done);
1778			cpu_buffer->nr_pages_to_update = 0;
1779		}
1780
1781		put_online_cpus();
1782	} else {
1783		/* Make sure this CPU has been intitialized */
1784		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1785			goto out;
1786
1787		cpu_buffer = buffer->buffers[cpu_id];
1788
1789		if (nr_pages == cpu_buffer->nr_pages)
1790			goto out;
1791
 
 
 
 
 
 
 
 
 
 
1792		cpu_buffer->nr_pages_to_update = nr_pages -
1793						cpu_buffer->nr_pages;
1794
1795		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1796		if (cpu_buffer->nr_pages_to_update > 0 &&
1797			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1798					    &cpu_buffer->new_pages, cpu_id)) {
1799			err = -ENOMEM;
1800			goto out_err;
1801		}
1802
1803		get_online_cpus();
1804
1805		/* Can't run something on an offline CPU. */
1806		if (!cpu_online(cpu_id))
1807			rb_update_pages(cpu_buffer);
1808		else {
1809			schedule_work_on(cpu_id,
1810					 &cpu_buffer->update_pages_work);
1811			wait_for_completion(&cpu_buffer->update_done);
 
 
 
 
 
 
 
 
1812		}
1813
1814		cpu_buffer->nr_pages_to_update = 0;
1815		put_online_cpus();
1816	}
1817
1818 out:
1819	/*
1820	 * The ring buffer resize can happen with the ring buffer
1821	 * enabled, so that the update disturbs the tracing as little
1822	 * as possible. But if the buffer is disabled, we do not need
1823	 * to worry about that, and we can take the time to verify
1824	 * that the buffer is not corrupt.
1825	 */
1826	if (atomic_read(&buffer->record_disabled)) {
1827		atomic_inc(&buffer->record_disabled);
1828		/*
1829		 * Even though the buffer was disabled, we must make sure
1830		 * that it is truly disabled before calling rb_check_pages.
1831		 * There could have been a race between checking
1832		 * record_disable and incrementing it.
1833		 */
1834		synchronize_sched();
1835		for_each_buffer_cpu(buffer, cpu) {
1836			cpu_buffer = buffer->buffers[cpu];
1837			rb_check_pages(cpu_buffer);
1838		}
1839		atomic_dec(&buffer->record_disabled);
1840	}
1841
 
1842	mutex_unlock(&buffer->mutex);
1843	return size;
1844
1845 out_err:
1846	for_each_buffer_cpu(buffer, cpu) {
1847		struct buffer_page *bpage, *tmp;
1848
1849		cpu_buffer = buffer->buffers[cpu];
1850		cpu_buffer->nr_pages_to_update = 0;
1851
1852		if (list_empty(&cpu_buffer->new_pages))
1853			continue;
1854
1855		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1856					list) {
1857			list_del_init(&bpage->list);
1858			free_buffer_page(bpage);
1859		}
1860	}
 
 
1861	mutex_unlock(&buffer->mutex);
1862	return err;
1863}
1864EXPORT_SYMBOL_GPL(ring_buffer_resize);
1865
1866void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1867{
1868	mutex_lock(&buffer->mutex);
1869	if (val)
1870		buffer->flags |= RB_FL_OVERWRITE;
1871	else
1872		buffer->flags &= ~RB_FL_OVERWRITE;
1873	mutex_unlock(&buffer->mutex);
1874}
1875EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1876
1877static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1878{
1879	return bpage->page->data + index;
1880}
1881
1882static __always_inline struct ring_buffer_event *
1883rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1884{
1885	return __rb_page_index(cpu_buffer->reader_page,
1886			       cpu_buffer->reader_page->read);
1887}
1888
1889static __always_inline struct ring_buffer_event *
1890rb_iter_head_event(struct ring_buffer_iter *iter)
1891{
1892	return __rb_page_index(iter->head_page, iter->head);
1893}
 
 
1894
1895static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1896{
1897	return local_read(&bpage->page->commit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1898}
1899
1900/* Size is determined by what has been committed */
1901static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1902{
1903	return rb_page_commit(bpage);
1904}
1905
1906static __always_inline unsigned
1907rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1908{
1909	return rb_page_commit(cpu_buffer->commit_page);
1910}
1911
1912static __always_inline unsigned
1913rb_event_index(struct ring_buffer_event *event)
1914{
1915	unsigned long addr = (unsigned long)event;
1916
1917	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
 
 
1918}
1919
1920static void rb_inc_iter(struct ring_buffer_iter *iter)
1921{
1922	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1923
1924	/*
1925	 * The iterator could be on the reader page (it starts there).
1926	 * But the head could have moved, since the reader was
1927	 * found. Check for this case and assign the iterator
1928	 * to the head page instead of next.
1929	 */
1930	if (iter->head_page == cpu_buffer->reader_page)
1931		iter->head_page = rb_set_head_page(cpu_buffer);
1932	else
1933		rb_inc_page(cpu_buffer, &iter->head_page);
1934
1935	iter->read_stamp = iter->head_page->page->time_stamp;
1936	iter->head = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1937}
1938
1939/*
1940 * rb_handle_head_page - writer hit the head page
1941 *
1942 * Returns: +1 to retry page
1943 *           0 to continue
1944 *          -1 on error
1945 */
1946static int
1947rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1948		    struct buffer_page *tail_page,
1949		    struct buffer_page *next_page)
1950{
1951	struct buffer_page *new_head;
1952	int entries;
1953	int type;
1954	int ret;
1955
1956	entries = rb_page_entries(next_page);
1957
1958	/*
1959	 * The hard part is here. We need to move the head
1960	 * forward, and protect against both readers on
1961	 * other CPUs and writers coming in via interrupts.
1962	 */
1963	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1964				       RB_PAGE_HEAD);
1965
1966	/*
1967	 * type can be one of four:
1968	 *  NORMAL - an interrupt already moved it for us
1969	 *  HEAD   - we are the first to get here.
1970	 *  UPDATE - we are the interrupt interrupting
1971	 *           a current move.
1972	 *  MOVED  - a reader on another CPU moved the next
1973	 *           pointer to its reader page. Give up
1974	 *           and try again.
1975	 */
1976
1977	switch (type) {
1978	case RB_PAGE_HEAD:
1979		/*
1980		 * We changed the head to UPDATE, thus
1981		 * it is our responsibility to update
1982		 * the counters.
1983		 */
1984		local_add(entries, &cpu_buffer->overrun);
1985		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
 
1986
 
 
1987		/*
1988		 * The entries will be zeroed out when we move the
1989		 * tail page.
1990		 */
1991
1992		/* still more to do */
1993		break;
1994
1995	case RB_PAGE_UPDATE:
1996		/*
1997		 * This is an interrupt that interrupt the
1998		 * previous update. Still more to do.
1999		 */
2000		break;
2001	case RB_PAGE_NORMAL:
2002		/*
2003		 * An interrupt came in before the update
2004		 * and processed this for us.
2005		 * Nothing left to do.
2006		 */
2007		return 1;
2008	case RB_PAGE_MOVED:
2009		/*
2010		 * The reader is on another CPU and just did
2011		 * a swap with our next_page.
2012		 * Try again.
2013		 */
2014		return 1;
2015	default:
2016		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2017		return -1;
2018	}
2019
2020	/*
2021	 * Now that we are here, the old head pointer is
2022	 * set to UPDATE. This will keep the reader from
2023	 * swapping the head page with the reader page.
2024	 * The reader (on another CPU) will spin till
2025	 * we are finished.
2026	 *
2027	 * We just need to protect against interrupts
2028	 * doing the job. We will set the next pointer
2029	 * to HEAD. After that, we set the old pointer
2030	 * to NORMAL, but only if it was HEAD before.
2031	 * otherwise we are an interrupt, and only
2032	 * want the outer most commit to reset it.
2033	 */
2034	new_head = next_page;
2035	rb_inc_page(cpu_buffer, &new_head);
2036
2037	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2038				    RB_PAGE_NORMAL);
2039
2040	/*
2041	 * Valid returns are:
2042	 *  HEAD   - an interrupt came in and already set it.
2043	 *  NORMAL - One of two things:
2044	 *            1) We really set it.
2045	 *            2) A bunch of interrupts came in and moved
2046	 *               the page forward again.
2047	 */
2048	switch (ret) {
2049	case RB_PAGE_HEAD:
2050	case RB_PAGE_NORMAL:
2051		/* OK */
2052		break;
2053	default:
2054		RB_WARN_ON(cpu_buffer, 1);
2055		return -1;
2056	}
2057
2058	/*
2059	 * It is possible that an interrupt came in,
2060	 * set the head up, then more interrupts came in
2061	 * and moved it again. When we get back here,
2062	 * the page would have been set to NORMAL but we
2063	 * just set it back to HEAD.
2064	 *
2065	 * How do you detect this? Well, if that happened
2066	 * the tail page would have moved.
2067	 */
2068	if (ret == RB_PAGE_NORMAL) {
2069		struct buffer_page *buffer_tail_page;
2070
2071		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2072		/*
2073		 * If the tail had moved passed next, then we need
2074		 * to reset the pointer.
2075		 */
2076		if (buffer_tail_page != tail_page &&
2077		    buffer_tail_page != next_page)
2078			rb_head_page_set_normal(cpu_buffer, new_head,
2079						next_page,
2080						RB_PAGE_HEAD);
2081	}
2082
2083	/*
2084	 * If this was the outer most commit (the one that
2085	 * changed the original pointer from HEAD to UPDATE),
2086	 * then it is up to us to reset it to NORMAL.
2087	 */
2088	if (type == RB_PAGE_HEAD) {
2089		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2090					      tail_page,
2091					      RB_PAGE_UPDATE);
2092		if (RB_WARN_ON(cpu_buffer,
2093			       ret != RB_PAGE_UPDATE))
2094			return -1;
2095	}
2096
2097	return 0;
2098}
2099
2100static inline void
2101rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2102	      unsigned long tail, struct rb_event_info *info)
2103{
 
2104	struct buffer_page *tail_page = info->tail_page;
2105	struct ring_buffer_event *event;
2106	unsigned long length = info->length;
2107
2108	/*
2109	 * Only the event that crossed the page boundary
2110	 * must fill the old tail_page with padding.
2111	 */
2112	if (tail >= BUF_PAGE_SIZE) {
2113		/*
2114		 * If the page was filled, then we still need
2115		 * to update the real_end. Reset it to zero
2116		 * and the reader will ignore it.
2117		 */
2118		if (tail == BUF_PAGE_SIZE)
2119			tail_page->real_end = 0;
2120
2121		local_sub(length, &tail_page->write);
2122		return;
2123	}
2124
2125	event = __rb_page_index(tail_page, tail);
2126
2127	/* account for padding bytes */
2128	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2129
2130	/*
2131	 * Save the original length to the meta data.
2132	 * This will be used by the reader to add lost event
2133	 * counter.
2134	 */
2135	tail_page->real_end = tail;
2136
2137	/*
2138	 * If this event is bigger than the minimum size, then
2139	 * we need to be careful that we don't subtract the
2140	 * write counter enough to allow another writer to slip
2141	 * in on this page.
2142	 * We put in a discarded commit instead, to make sure
2143	 * that this space is not used again.
 
2144	 *
2145	 * If we are less than the minimum size, we don't need to
2146	 * worry about it.
2147	 */
2148	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2149		/* No room for any events */
2150
2151		/* Mark the rest of the page with padding */
2152		rb_event_set_padding(event);
2153
 
 
 
2154		/* Set the write back to the previous setting */
2155		local_sub(length, &tail_page->write);
2156		return;
2157	}
2158
2159	/* Put in a discarded event */
2160	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2161	event->type_len = RINGBUF_TYPE_PADDING;
2162	/* time delta must be non zero */
2163	event->time_delta = 1;
2164
 
 
 
 
 
 
2165	/* Set write to end of buffer */
2166	length = (tail + length) - BUF_PAGE_SIZE;
2167	local_sub(length, &tail_page->write);
2168}
2169
2170static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2171
2172/*
2173 * This is the slow path, force gcc not to inline it.
2174 */
2175static noinline struct ring_buffer_event *
2176rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2177	     unsigned long tail, struct rb_event_info *info)
2178{
2179	struct buffer_page *tail_page = info->tail_page;
2180	struct buffer_page *commit_page = cpu_buffer->commit_page;
2181	struct ring_buffer *buffer = cpu_buffer->buffer;
2182	struct buffer_page *next_page;
2183	int ret;
2184
2185	next_page = tail_page;
2186
2187	rb_inc_page(cpu_buffer, &next_page);
2188
2189	/*
2190	 * If for some reason, we had an interrupt storm that made
2191	 * it all the way around the buffer, bail, and warn
2192	 * about it.
2193	 */
2194	if (unlikely(next_page == commit_page)) {
2195		local_inc(&cpu_buffer->commit_overrun);
2196		goto out_reset;
2197	}
2198
2199	/*
2200	 * This is where the fun begins!
2201	 *
2202	 * We are fighting against races between a reader that
2203	 * could be on another CPU trying to swap its reader
2204	 * page with the buffer head.
2205	 *
2206	 * We are also fighting against interrupts coming in and
2207	 * moving the head or tail on us as well.
2208	 *
2209	 * If the next page is the head page then we have filled
2210	 * the buffer, unless the commit page is still on the
2211	 * reader page.
2212	 */
2213	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2214
2215		/*
2216		 * If the commit is not on the reader page, then
2217		 * move the header page.
2218		 */
2219		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2220			/*
2221			 * If we are not in overwrite mode,
2222			 * this is easy, just stop here.
2223			 */
2224			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2225				local_inc(&cpu_buffer->dropped_events);
2226				goto out_reset;
2227			}
2228
2229			ret = rb_handle_head_page(cpu_buffer,
2230						  tail_page,
2231						  next_page);
2232			if (ret < 0)
2233				goto out_reset;
2234			if (ret)
2235				goto out_again;
2236		} else {
2237			/*
2238			 * We need to be careful here too. The
2239			 * commit page could still be on the reader
2240			 * page. We could have a small buffer, and
2241			 * have filled up the buffer with events
2242			 * from interrupts and such, and wrapped.
2243			 *
2244			 * Note, if the tail page is also the on the
2245			 * reader_page, we let it move out.
2246			 */
2247			if (unlikely((cpu_buffer->commit_page !=
2248				      cpu_buffer->tail_page) &&
2249				     (cpu_buffer->commit_page ==
2250				      cpu_buffer->reader_page))) {
2251				local_inc(&cpu_buffer->commit_overrun);
2252				goto out_reset;
2253			}
2254		}
2255	}
2256
2257	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2258
2259 out_again:
2260
2261	rb_reset_tail(cpu_buffer, tail, info);
2262
2263	/* Commit what we have for now. */
2264	rb_end_commit(cpu_buffer);
2265	/* rb_end_commit() decs committing */
2266	local_inc(&cpu_buffer->committing);
2267
2268	/* fail and let the caller try again */
2269	return ERR_PTR(-EAGAIN);
2270
2271 out_reset:
2272	/* reset write */
2273	rb_reset_tail(cpu_buffer, tail, info);
2274
2275	return NULL;
2276}
2277
2278/* Slow path, do not inline */
2279static noinline struct ring_buffer_event *
2280rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
 
2281{
2282	if (abs)
2283		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2284	else
2285		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2286
2287	/* Not the first event on the page, or not delta? */
2288	if (abs || rb_event_index(event)) {
2289		event->time_delta = delta & TS_MASK;
2290		event->array[0] = delta >> TS_SHIFT;
2291	} else {
2292		/* nope, just zero it */
2293		event->time_delta = 0;
2294		event->array[0] = 0;
2295	}
2296
2297	return skip_time_extend(event);
2298}
2299
2300static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2301				     struct ring_buffer_event *event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2302
2303/**
2304 * rb_update_event - update event type and data
 
2305 * @event: the event to update
2306 * @type: the type of event
2307 * @length: the size of the event field in the ring buffer
2308 *
2309 * Update the type and data fields of the event. The length
2310 * is the actual size that is written to the ring buffer,
2311 * and with this, we can determine what to place into the
2312 * data field.
2313 */
2314static void
2315rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2316		struct ring_buffer_event *event,
2317		struct rb_event_info *info)
2318{
2319	unsigned length = info->length;
2320	u64 delta = info->delta;
 
2321
2322	/* Only a commit updates the timestamp */
2323	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2324		delta = 0;
2325
2326	/*
2327	 * If we need to add a timestamp, then we
2328	 * add it to the start of the resevered space.
2329	 */
2330	if (unlikely(info->add_timestamp)) {
2331		bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2332
2333		event = rb_add_time_stamp(event, info->delta, abs);
2334		length -= RB_LEN_TIME_EXTEND;
2335		delta = 0;
2336	}
2337
2338	event->time_delta = delta;
2339	length -= RB_EVNT_HDR_SIZE;
2340	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2341		event->type_len = 0;
2342		event->array[0] = length;
2343	} else
2344		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2345}
2346
2347static unsigned rb_calculate_event_length(unsigned length)
2348{
2349	struct ring_buffer_event event; /* Used only for sizeof array */
2350
2351	/* zero length can cause confusions */
2352	if (!length)
2353		length++;
2354
2355	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2356		length += sizeof(event.array[0]);
2357
2358	length += RB_EVNT_HDR_SIZE;
2359	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2360
2361	/*
2362	 * In case the time delta is larger than the 27 bits for it
2363	 * in the header, we need to add a timestamp. If another
2364	 * event comes in when trying to discard this one to increase
2365	 * the length, then the timestamp will be added in the allocated
2366	 * space of this event. If length is bigger than the size needed
2367	 * for the TIME_EXTEND, then padding has to be used. The events
2368	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2369	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2370	 * As length is a multiple of 4, we only need to worry if it
2371	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2372	 */
2373	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2374		length += RB_ALIGNMENT;
2375
2376	return length;
2377}
2378
2379#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2380static inline bool sched_clock_stable(void)
2381{
2382	return true;
2383}
2384#endif
2385
2386static inline int
2387rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2388		  struct ring_buffer_event *event)
2389{
2390	unsigned long new_index, old_index;
2391	struct buffer_page *bpage;
2392	unsigned long index;
2393	unsigned long addr;
2394
2395	new_index = rb_event_index(event);
2396	old_index = new_index + rb_event_ts_length(event);
2397	addr = (unsigned long)event;
2398	addr &= PAGE_MASK;
2399
2400	bpage = READ_ONCE(cpu_buffer->tail_page);
2401
 
 
 
 
2402	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2403		unsigned long write_mask =
2404			local_read(&bpage->write) & ~RB_WRITE_MASK;
2405		unsigned long event_length = rb_event_length(event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2406		/*
2407		 * This is on the tail page. It is possible that
2408		 * a write could come in and move the tail page
2409		 * and write to the next page. That is fine
2410		 * because we just shorten what is on this page.
2411		 */
2412		old_index += write_mask;
2413		new_index += write_mask;
2414		index = local_cmpxchg(&bpage->write, old_index, new_index);
2415		if (index == old_index) {
 
2416			/* update counters */
2417			local_sub(event_length, &cpu_buffer->entries_bytes);
2418			return 1;
2419		}
2420	}
2421
2422	/* could not discard */
2423	return 0;
2424}
2425
2426static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2427{
2428	local_inc(&cpu_buffer->committing);
2429	local_inc(&cpu_buffer->commits);
2430}
2431
2432static __always_inline void
2433rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2434{
2435	unsigned long max_count;
2436
2437	/*
2438	 * We only race with interrupts and NMIs on this CPU.
2439	 * If we own the commit event, then we can commit
2440	 * all others that interrupted us, since the interruptions
2441	 * are in stack format (they finish before they come
2442	 * back to us). This allows us to do a simple loop to
2443	 * assign the commit to the tail.
2444	 */
2445 again:
2446	max_count = cpu_buffer->nr_pages * 100;
2447
2448	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2449		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2450			return;
2451		if (RB_WARN_ON(cpu_buffer,
2452			       rb_is_reader_page(cpu_buffer->tail_page)))
2453			return;
 
 
 
 
2454		local_set(&cpu_buffer->commit_page->page->commit,
2455			  rb_page_write(cpu_buffer->commit_page));
2456		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2457		/* Only update the write stamp if the page has an event */
2458		if (rb_page_write(cpu_buffer->commit_page))
2459			cpu_buffer->write_stamp =
2460				cpu_buffer->commit_page->page->time_stamp;
2461		/* add barrier to keep gcc from optimizing too much */
2462		barrier();
2463	}
2464	while (rb_commit_index(cpu_buffer) !=
2465	       rb_page_write(cpu_buffer->commit_page)) {
2466
 
 
2467		local_set(&cpu_buffer->commit_page->page->commit,
2468			  rb_page_write(cpu_buffer->commit_page));
2469		RB_WARN_ON(cpu_buffer,
2470			   local_read(&cpu_buffer->commit_page->page->commit) &
2471			   ~RB_WRITE_MASK);
2472		barrier();
2473	}
2474
2475	/* again, keep gcc from optimizing */
2476	barrier();
2477
2478	/*
2479	 * If an interrupt came in just after the first while loop
2480	 * and pushed the tail page forward, we will be left with
2481	 * a dangling commit that will never go forward.
2482	 */
2483	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2484		goto again;
2485}
2486
2487static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2488{
2489	unsigned long commits;
2490
2491	if (RB_WARN_ON(cpu_buffer,
2492		       !local_read(&cpu_buffer->committing)))
2493		return;
2494
2495 again:
2496	commits = local_read(&cpu_buffer->commits);
2497	/* synchronize with interrupts */
2498	barrier();
2499	if (local_read(&cpu_buffer->committing) == 1)
2500		rb_set_commit_to_write(cpu_buffer);
2501
2502	local_dec(&cpu_buffer->committing);
2503
2504	/* synchronize with interrupts */
2505	barrier();
2506
2507	/*
2508	 * Need to account for interrupts coming in between the
2509	 * updating of the commit page and the clearing of the
2510	 * committing counter.
2511	 */
2512	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2513	    !local_read(&cpu_buffer->committing)) {
2514		local_inc(&cpu_buffer->committing);
2515		goto again;
2516	}
2517}
2518
2519static inline void rb_event_discard(struct ring_buffer_event *event)
2520{
2521	if (extended_time(event))
2522		event = skip_time_extend(event);
2523
2524	/* array[0] holds the actual length for the discarded event */
2525	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2526	event->type_len = RINGBUF_TYPE_PADDING;
2527	/* time delta must be non zero */
2528	if (!event->time_delta)
2529		event->time_delta = 1;
2530}
2531
2532static __always_inline bool
2533rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2534		   struct ring_buffer_event *event)
2535{
2536	unsigned long addr = (unsigned long)event;
2537	unsigned long index;
2538
2539	index = rb_event_index(event);
2540	addr &= PAGE_MASK;
2541
2542	return cpu_buffer->commit_page->page == (void *)addr &&
2543		rb_commit_index(cpu_buffer) == index;
2544}
2545
2546static __always_inline void
2547rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2548		      struct ring_buffer_event *event)
2549{
2550	u64 delta;
2551
2552	/*
2553	 * The event first in the commit queue updates the
2554	 * time stamp.
2555	 */
2556	if (rb_event_is_commit(cpu_buffer, event)) {
2557		/*
2558		 * A commit event that is first on a page
2559		 * updates the write timestamp with the page stamp
2560		 */
2561		if (!rb_event_index(event))
2562			cpu_buffer->write_stamp =
2563				cpu_buffer->commit_page->page->time_stamp;
2564		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2565			delta = ring_buffer_event_time_stamp(event);
2566			cpu_buffer->write_stamp += delta;
2567		} else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2568			delta = ring_buffer_event_time_stamp(event);
2569			cpu_buffer->write_stamp = delta;
2570		} else
2571			cpu_buffer->write_stamp += event->time_delta;
2572	}
2573}
2574
2575static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2576		      struct ring_buffer_event *event)
2577{
2578	local_inc(&cpu_buffer->entries);
2579	rb_update_write_stamp(cpu_buffer, event);
2580	rb_end_commit(cpu_buffer);
2581}
2582
2583static __always_inline void
2584rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2585{
2586	bool pagebusy;
2587
2588	if (buffer->irq_work.waiters_pending) {
2589		buffer->irq_work.waiters_pending = false;
2590		/* irq_work_queue() supplies it's own memory barriers */
2591		irq_work_queue(&buffer->irq_work.work);
2592	}
2593
2594	if (cpu_buffer->irq_work.waiters_pending) {
2595		cpu_buffer->irq_work.waiters_pending = false;
2596		/* irq_work_queue() supplies it's own memory barriers */
2597		irq_work_queue(&cpu_buffer->irq_work.work);
2598	}
2599
2600	pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 
2601
2602	if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2603		cpu_buffer->irq_work.wakeup_full = true;
2604		cpu_buffer->irq_work.full_waiters_pending = false;
2605		/* irq_work_queue() supplies it's own memory barriers */
2606		irq_work_queue(&cpu_buffer->irq_work.work);
2607	}
 
 
 
 
 
 
 
 
 
2608}
2609
 
 
 
 
 
 
 
2610/*
2611 * The lock and unlock are done within a preempt disable section.
2612 * The current_context per_cpu variable can only be modified
2613 * by the current task between lock and unlock. But it can
2614 * be modified more than once via an interrupt. To pass this
2615 * information from the lock to the unlock without having to
2616 * access the 'in_interrupt()' functions again (which do show
2617 * a bit of overhead in something as critical as function tracing,
2618 * we use a bitmask trick.
2619 *
2620 *  bit 0 =  NMI context
2621 *  bit 1 =  IRQ context
2622 *  bit 2 =  SoftIRQ context
2623 *  bit 3 =  normal context.
2624 *
2625 * This works because this is the order of contexts that can
2626 * preempt other contexts. A SoftIRQ never preempts an IRQ
2627 * context.
2628 *
2629 * When the context is determined, the corresponding bit is
2630 * checked and set (if it was set, then a recursion of that context
2631 * happened).
2632 *
2633 * On unlock, we need to clear this bit. To do so, just subtract
2634 * 1 from the current_context and AND it to itself.
2635 *
2636 * (binary)
2637 *  101 - 1 = 100
2638 *  101 & 100 = 100 (clearing bit zero)
2639 *
2640 *  1010 - 1 = 1001
2641 *  1010 & 1001 = 1000 (clearing bit 1)
2642 *
2643 * The least significant bit can be cleared this way, and it
2644 * just so happens that it is the same bit corresponding to
2645 * the current context.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2646 */
2647
2648static __always_inline int
2649trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2650{
2651	unsigned int val = cpu_buffer->current_context;
2652	unsigned long pc = preempt_count();
2653	int bit;
2654
2655	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2656		bit = RB_CTX_NORMAL;
2657	else
2658		bit = pc & NMI_MASK ? RB_CTX_NMI :
2659			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2660
2661	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2662		return 1;
 
 
 
 
 
 
 
 
 
 
2663
2664	val |= (1 << (bit + cpu_buffer->nest));
2665	cpu_buffer->current_context = val;
2666
2667	return 0;
2668}
2669
2670static __always_inline void
2671trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2672{
2673	cpu_buffer->current_context &=
2674		cpu_buffer->current_context - (1 << cpu_buffer->nest);
2675}
2676
2677/* The recursive locking above uses 4 bits */
2678#define NESTED_BITS 4
2679
2680/**
2681 * ring_buffer_nest_start - Allow to trace while nested
2682 * @buffer: The ring buffer to modify
2683 *
2684 * The ring buffer has a safty mechanism to prevent recursion.
2685 * But there may be a case where a trace needs to be done while
2686 * tracing something else. In this case, calling this function
2687 * will allow this function to nest within a currently active
2688 * ring_buffer_lock_reserve().
2689 *
2690 * Call this function before calling another ring_buffer_lock_reserve() and
2691 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2692 */
2693void ring_buffer_nest_start(struct ring_buffer *buffer)
2694{
2695	struct ring_buffer_per_cpu *cpu_buffer;
2696	int cpu;
2697
2698	/* Enabled by ring_buffer_nest_end() */
2699	preempt_disable_notrace();
2700	cpu = raw_smp_processor_id();
2701	cpu_buffer = buffer->buffers[cpu];
2702	/* This is the shift value for the above recusive locking */
2703	cpu_buffer->nest += NESTED_BITS;
2704}
2705
2706/**
2707 * ring_buffer_nest_end - Allow to trace while nested
2708 * @buffer: The ring buffer to modify
2709 *
2710 * Must be called after ring_buffer_nest_start() and after the
2711 * ring_buffer_unlock_commit().
2712 */
2713void ring_buffer_nest_end(struct ring_buffer *buffer)
2714{
2715	struct ring_buffer_per_cpu *cpu_buffer;
2716	int cpu;
2717
2718	/* disabled by ring_buffer_nest_start() */
2719	cpu = raw_smp_processor_id();
2720	cpu_buffer = buffer->buffers[cpu];
2721	/* This is the shift value for the above recusive locking */
2722	cpu_buffer->nest -= NESTED_BITS;
2723	preempt_enable_notrace();
2724}
2725
2726/**
2727 * ring_buffer_unlock_commit - commit a reserved
2728 * @buffer: The buffer to commit to
2729 * @event: The event pointer to commit.
2730 *
2731 * This commits the data to the ring buffer, and releases any locks held.
2732 *
2733 * Must be paired with ring_buffer_lock_reserve.
2734 */
2735int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2736			      struct ring_buffer_event *event)
2737{
2738	struct ring_buffer_per_cpu *cpu_buffer;
2739	int cpu = raw_smp_processor_id();
2740
2741	cpu_buffer = buffer->buffers[cpu];
2742
2743	rb_commit(cpu_buffer, event);
2744
2745	rb_wakeups(buffer, cpu_buffer);
2746
2747	trace_recursive_unlock(cpu_buffer);
2748
2749	preempt_enable_notrace();
2750
2751	return 0;
2752}
2753EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2754
2755static noinline void
2756rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2757		    struct rb_event_info *info)
 
 
 
2758{
2759	WARN_ONCE(info->delta > (1ULL << 59),
2760		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2761		  (unsigned long long)info->delta,
2762		  (unsigned long long)info->ts,
2763		  (unsigned long long)cpu_buffer->write_stamp,
2764		  sched_clock_stable() ? "" :
2765		  "If you just came from a suspend/resume,\n"
2766		  "please switch to the trace global clock:\n"
2767		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2768		  "or add trace_clock=global to the kernel command line\n");
2769	info->add_timestamp = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2770}
2771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2772static struct ring_buffer_event *
2773__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2774		  struct rb_event_info *info)
2775{
2776	struct ring_buffer_event *event;
2777	struct buffer_page *tail_page;
2778	unsigned long tail, write;
2779
2780	/*
2781	 * If the time delta since the last event is too big to
2782	 * hold in the time field of the event, then we append a
2783	 * TIME EXTEND event ahead of the data event.
2784	 */
2785	if (unlikely(info->add_timestamp))
2786		info->length += RB_LEN_TIME_EXTEND;
2787
2788	/* Don't let the compiler play games with cpu_buffer->tail_page */
2789	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2790	write = local_add_return(info->length, &tail_page->write);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2791
2792	/* set write to only the index of the write */
2793	write &= RB_WRITE_MASK;
 
2794	tail = write - info->length;
2795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2796	/*
2797	 * If this is the first commit on the page, then it has the same
2798	 * timestamp as the page itself.
2799	 */
2800	if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
 
2801		info->delta = 0;
2802
2803	/* See if we shot pass the end of this buffer page */
2804	if (unlikely(write > BUF_PAGE_SIZE))
2805		return rb_move_tail(cpu_buffer, tail, info);
2806
2807	/* We reserved something on the buffer */
2808
2809	event = __rb_page_index(tail_page, tail);
2810	rb_update_event(cpu_buffer, event, info);
2811
2812	local_inc(&tail_page->entries);
2813
2814	/*
2815	 * If this is the first commit on the page, then update
2816	 * its timestamp.
2817	 */
2818	if (!tail)
2819		tail_page->page->time_stamp = info->ts;
2820
2821	/* account for these added bytes */
2822	local_add(info->length, &cpu_buffer->entries_bytes);
2823
2824	return event;
2825}
2826
2827static __always_inline struct ring_buffer_event *
2828rb_reserve_next_event(struct ring_buffer *buffer,
2829		      struct ring_buffer_per_cpu *cpu_buffer,
2830		      unsigned long length)
2831{
2832	struct ring_buffer_event *event;
2833	struct rb_event_info info;
2834	int nr_loops = 0;
2835	u64 diff;
 
 
 
 
 
 
 
 
 
 
 
2836
2837	rb_start_commit(cpu_buffer);
 
2838
2839#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2840	/*
2841	 * Due to the ability to swap a cpu buffer from a buffer
2842	 * it is possible it was swapped before we committed.
2843	 * (committing stops a swap). We check for it here and
2844	 * if it happened, we have to fail the write.
2845	 */
2846	barrier();
2847	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2848		local_dec(&cpu_buffer->committing);
2849		local_dec(&cpu_buffer->commits);
2850		return NULL;
2851	}
2852#endif
2853
2854	info.length = rb_calculate_event_length(length);
 
 
 
 
 
 
 
 
 
 
2855 again:
2856	info.add_timestamp = 0;
2857	info.delta = 0;
2858
2859	/*
2860	 * We allow for interrupts to reenter here and do a trace.
2861	 * If one does, it will cause this original code to loop
2862	 * back here. Even with heavy interrupts happening, this
2863	 * should only happen a few times in a row. If this happens
2864	 * 1000 times in a row, there must be either an interrupt
2865	 * storm or we have something buggy.
2866	 * Bail!
2867	 */
2868	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2869		goto out_fail;
2870
2871	info.ts = rb_time_stamp(cpu_buffer->buffer);
2872	diff = info.ts - cpu_buffer->write_stamp;
2873
2874	/* make sure this diff is calculated here */
2875	barrier();
2876
2877	if (ring_buffer_time_stamp_abs(buffer)) {
2878		info.delta = info.ts;
2879		rb_handle_timestamp(cpu_buffer, &info);
2880	} else /* Did the write stamp get updated already? */
2881		if (likely(info.ts >= cpu_buffer->write_stamp)) {
2882		info.delta = diff;
2883		if (unlikely(test_time_stamp(info.delta)))
2884			rb_handle_timestamp(cpu_buffer, &info);
2885	}
2886
2887	event = __rb_reserve_next(cpu_buffer, &info);
2888
2889	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2890		if (info.add_timestamp)
2891			info.length -= RB_LEN_TIME_EXTEND;
2892		goto again;
2893	}
2894
2895	if (!event)
2896		goto out_fail;
2897
2898	return event;
2899
2900 out_fail:
2901	rb_end_commit(cpu_buffer);
2902	return NULL;
2903}
2904
2905/**
2906 * ring_buffer_lock_reserve - reserve a part of the buffer
2907 * @buffer: the ring buffer to reserve from
2908 * @length: the length of the data to reserve (excluding event header)
2909 *
2910 * Returns a reseverd event on the ring buffer to copy directly to.
2911 * The user of this interface will need to get the body to write into
2912 * and can use the ring_buffer_event_data() interface.
2913 *
2914 * The length is the length of the data needed, not the event length
2915 * which also includes the event header.
2916 *
2917 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2918 * If NULL is returned, then nothing has been allocated or locked.
2919 */
2920struct ring_buffer_event *
2921ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2922{
2923	struct ring_buffer_per_cpu *cpu_buffer;
2924	struct ring_buffer_event *event;
2925	int cpu;
2926
2927	/* If we are tracing schedule, we don't want to recurse */
2928	preempt_disable_notrace();
2929
2930	if (unlikely(atomic_read(&buffer->record_disabled)))
2931		goto out;
2932
2933	cpu = raw_smp_processor_id();
2934
2935	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2936		goto out;
2937
2938	cpu_buffer = buffer->buffers[cpu];
2939
2940	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2941		goto out;
2942
2943	if (unlikely(length > BUF_MAX_DATA_SIZE))
2944		goto out;
2945
2946	if (unlikely(trace_recursive_lock(cpu_buffer)))
2947		goto out;
2948
2949	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2950	if (!event)
2951		goto out_unlock;
2952
2953	return event;
2954
2955 out_unlock:
2956	trace_recursive_unlock(cpu_buffer);
2957 out:
2958	preempt_enable_notrace();
2959	return NULL;
2960}
2961EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2962
2963/*
2964 * Decrement the entries to the page that an event is on.
2965 * The event does not even need to exist, only the pointer
2966 * to the page it is on. This may only be called before the commit
2967 * takes place.
2968 */
2969static inline void
2970rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2971		   struct ring_buffer_event *event)
2972{
2973	unsigned long addr = (unsigned long)event;
2974	struct buffer_page *bpage = cpu_buffer->commit_page;
2975	struct buffer_page *start;
2976
2977	addr &= PAGE_MASK;
2978
2979	/* Do the likely case first */
2980	if (likely(bpage->page == (void *)addr)) {
2981		local_dec(&bpage->entries);
2982		return;
2983	}
2984
2985	/*
2986	 * Because the commit page may be on the reader page we
2987	 * start with the next page and check the end loop there.
2988	 */
2989	rb_inc_page(cpu_buffer, &bpage);
2990	start = bpage;
2991	do {
2992		if (bpage->page == (void *)addr) {
2993			local_dec(&bpage->entries);
2994			return;
2995		}
2996		rb_inc_page(cpu_buffer, &bpage);
2997	} while (bpage != start);
2998
2999	/* commit not part of this buffer?? */
3000	RB_WARN_ON(cpu_buffer, 1);
3001}
3002
3003/**
3004 * ring_buffer_commit_discard - discard an event that has not been committed
3005 * @buffer: the ring buffer
3006 * @event: non committed event to discard
3007 *
3008 * Sometimes an event that is in the ring buffer needs to be ignored.
3009 * This function lets the user discard an event in the ring buffer
3010 * and then that event will not be read later.
3011 *
3012 * This function only works if it is called before the the item has been
3013 * committed. It will try to free the event from the ring buffer
3014 * if another event has not been added behind it.
3015 *
3016 * If another event has been added behind it, it will set the event
3017 * up as discarded, and perform the commit.
3018 *
3019 * If this function is called, do not call ring_buffer_unlock_commit on
3020 * the event.
3021 */
3022void ring_buffer_discard_commit(struct ring_buffer *buffer,
3023				struct ring_buffer_event *event)
3024{
3025	struct ring_buffer_per_cpu *cpu_buffer;
3026	int cpu;
3027
3028	/* The event is discarded regardless */
3029	rb_event_discard(event);
3030
3031	cpu = smp_processor_id();
3032	cpu_buffer = buffer->buffers[cpu];
3033
3034	/*
3035	 * This must only be called if the event has not been
3036	 * committed yet. Thus we can assume that preemption
3037	 * is still disabled.
3038	 */
3039	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3040
3041	rb_decrement_entry(cpu_buffer, event);
3042	if (rb_try_to_discard(cpu_buffer, event))
3043		goto out;
3044
3045	/*
3046	 * The commit is still visible by the reader, so we
3047	 * must still update the timestamp.
3048	 */
3049	rb_update_write_stamp(cpu_buffer, event);
3050 out:
3051	rb_end_commit(cpu_buffer);
3052
3053	trace_recursive_unlock(cpu_buffer);
3054
3055	preempt_enable_notrace();
3056
3057}
3058EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3059
3060/**
3061 * ring_buffer_write - write data to the buffer without reserving
3062 * @buffer: The ring buffer to write to.
3063 * @length: The length of the data being written (excluding the event header)
3064 * @data: The data to write to the buffer.
3065 *
3066 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3067 * one function. If you already have the data to write to the buffer, it
3068 * may be easier to simply call this function.
3069 *
3070 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3071 * and not the length of the event which would hold the header.
3072 */
3073int ring_buffer_write(struct ring_buffer *buffer,
3074		      unsigned long length,
3075		      void *data)
3076{
3077	struct ring_buffer_per_cpu *cpu_buffer;
3078	struct ring_buffer_event *event;
3079	void *body;
3080	int ret = -EBUSY;
3081	int cpu;
3082
3083	preempt_disable_notrace();
3084
3085	if (atomic_read(&buffer->record_disabled))
3086		goto out;
3087
3088	cpu = raw_smp_processor_id();
3089
3090	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3091		goto out;
3092
3093	cpu_buffer = buffer->buffers[cpu];
3094
3095	if (atomic_read(&cpu_buffer->record_disabled))
3096		goto out;
3097
3098	if (length > BUF_MAX_DATA_SIZE)
3099		goto out;
3100
3101	if (unlikely(trace_recursive_lock(cpu_buffer)))
3102		goto out;
3103
3104	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3105	if (!event)
3106		goto out_unlock;
3107
3108	body = rb_event_data(event);
3109
3110	memcpy(body, data, length);
3111
3112	rb_commit(cpu_buffer, event);
3113
3114	rb_wakeups(buffer, cpu_buffer);
3115
3116	ret = 0;
3117
3118 out_unlock:
3119	trace_recursive_unlock(cpu_buffer);
3120
3121 out:
3122	preempt_enable_notrace();
3123
3124	return ret;
3125}
3126EXPORT_SYMBOL_GPL(ring_buffer_write);
3127
3128static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3129{
3130	struct buffer_page *reader = cpu_buffer->reader_page;
3131	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3132	struct buffer_page *commit = cpu_buffer->commit_page;
3133
3134	/* In case of error, head will be NULL */
3135	if (unlikely(!head))
3136		return true;
3137
3138	return reader->read == rb_page_commit(reader) &&
3139		(commit == reader ||
3140		 (commit == head &&
3141		  head->read == rb_page_commit(commit)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3142}
3143
3144/**
3145 * ring_buffer_record_disable - stop all writes into the buffer
3146 * @buffer: The ring buffer to stop writes to.
3147 *
3148 * This prevents all writes to the buffer. Any attempt to write
3149 * to the buffer after this will fail and return NULL.
3150 *
3151 * The caller should call synchronize_sched() after this.
3152 */
3153void ring_buffer_record_disable(struct ring_buffer *buffer)
3154{
3155	atomic_inc(&buffer->record_disabled);
3156}
3157EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3158
3159/**
3160 * ring_buffer_record_enable - enable writes to the buffer
3161 * @buffer: The ring buffer to enable writes
3162 *
3163 * Note, multiple disables will need the same number of enables
3164 * to truly enable the writing (much like preempt_disable).
3165 */
3166void ring_buffer_record_enable(struct ring_buffer *buffer)
3167{
3168	atomic_dec(&buffer->record_disabled);
3169}
3170EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3171
3172/**
3173 * ring_buffer_record_off - stop all writes into the buffer
3174 * @buffer: The ring buffer to stop writes to.
3175 *
3176 * This prevents all writes to the buffer. Any attempt to write
3177 * to the buffer after this will fail and return NULL.
3178 *
3179 * This is different than ring_buffer_record_disable() as
3180 * it works like an on/off switch, where as the disable() version
3181 * must be paired with a enable().
3182 */
3183void ring_buffer_record_off(struct ring_buffer *buffer)
3184{
3185	unsigned int rd;
3186	unsigned int new_rd;
3187
 
3188	do {
3189		rd = atomic_read(&buffer->record_disabled);
3190		new_rd = rd | RB_BUFFER_OFF;
3191	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3192}
3193EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3194
3195/**
3196 * ring_buffer_record_on - restart writes into the buffer
3197 * @buffer: The ring buffer to start writes to.
3198 *
3199 * This enables all writes to the buffer that was disabled by
3200 * ring_buffer_record_off().
3201 *
3202 * This is different than ring_buffer_record_enable() as
3203 * it works like an on/off switch, where as the enable() version
3204 * must be paired with a disable().
3205 */
3206void ring_buffer_record_on(struct ring_buffer *buffer)
3207{
3208	unsigned int rd;
3209	unsigned int new_rd;
3210
 
3211	do {
3212		rd = atomic_read(&buffer->record_disabled);
3213		new_rd = rd & ~RB_BUFFER_OFF;
3214	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3215}
3216EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3217
3218/**
3219 * ring_buffer_record_is_on - return true if the ring buffer can write
3220 * @buffer: The ring buffer to see if write is enabled
3221 *
3222 * Returns true if the ring buffer is in a state that it accepts writes.
3223 */
3224int ring_buffer_record_is_on(struct ring_buffer *buffer)
3225{
3226	return !atomic_read(&buffer->record_disabled);
3227}
3228
3229/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3230 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3231 * @buffer: The ring buffer to stop writes to.
3232 * @cpu: The CPU buffer to stop
3233 *
3234 * This prevents all writes to the buffer. Any attempt to write
3235 * to the buffer after this will fail and return NULL.
3236 *
3237 * The caller should call synchronize_sched() after this.
3238 */
3239void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3240{
3241	struct ring_buffer_per_cpu *cpu_buffer;
3242
3243	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244		return;
3245
3246	cpu_buffer = buffer->buffers[cpu];
3247	atomic_inc(&cpu_buffer->record_disabled);
3248}
3249EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3250
3251/**
3252 * ring_buffer_record_enable_cpu - enable writes to the buffer
3253 * @buffer: The ring buffer to enable writes
3254 * @cpu: The CPU to enable.
3255 *
3256 * Note, multiple disables will need the same number of enables
3257 * to truly enable the writing (much like preempt_disable).
3258 */
3259void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3260{
3261	struct ring_buffer_per_cpu *cpu_buffer;
3262
3263	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3264		return;
3265
3266	cpu_buffer = buffer->buffers[cpu];
3267	atomic_dec(&cpu_buffer->record_disabled);
3268}
3269EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3270
3271/*
3272 * The total entries in the ring buffer is the running counter
3273 * of entries entered into the ring buffer, minus the sum of
3274 * the entries read from the ring buffer and the number of
3275 * entries that were overwritten.
3276 */
3277static inline unsigned long
3278rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3279{
3280	return local_read(&cpu_buffer->entries) -
3281		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3282}
3283
3284/**
3285 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3286 * @buffer: The ring buffer
3287 * @cpu: The per CPU buffer to read from.
3288 */
3289u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3290{
3291	unsigned long flags;
3292	struct ring_buffer_per_cpu *cpu_buffer;
3293	struct buffer_page *bpage;
3294	u64 ret = 0;
3295
3296	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3297		return 0;
3298
3299	cpu_buffer = buffer->buffers[cpu];
3300	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3301	/*
3302	 * if the tail is on reader_page, oldest time stamp is on the reader
3303	 * page
3304	 */
3305	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3306		bpage = cpu_buffer->reader_page;
3307	else
3308		bpage = rb_set_head_page(cpu_buffer);
3309	if (bpage)
3310		ret = bpage->page->time_stamp;
3311	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3312
3313	return ret;
3314}
3315EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3316
3317/**
3318 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3319 * @buffer: The ring buffer
3320 * @cpu: The per CPU buffer to read from.
3321 */
3322unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3323{
3324	struct ring_buffer_per_cpu *cpu_buffer;
3325	unsigned long ret;
3326
3327	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3328		return 0;
3329
3330	cpu_buffer = buffer->buffers[cpu];
3331	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3332
3333	return ret;
3334}
3335EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3336
3337/**
3338 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3339 * @buffer: The ring buffer
3340 * @cpu: The per CPU buffer to get the entries from.
3341 */
3342unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3343{
3344	struct ring_buffer_per_cpu *cpu_buffer;
3345
3346	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3347		return 0;
3348
3349	cpu_buffer = buffer->buffers[cpu];
3350
3351	return rb_num_of_entries(cpu_buffer);
3352}
3353EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3354
3355/**
3356 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3357 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3358 * @buffer: The ring buffer
3359 * @cpu: The per CPU buffer to get the number of overruns from
3360 */
3361unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3362{
3363	struct ring_buffer_per_cpu *cpu_buffer;
3364	unsigned long ret;
3365
3366	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3367		return 0;
3368
3369	cpu_buffer = buffer->buffers[cpu];
3370	ret = local_read(&cpu_buffer->overrun);
3371
3372	return ret;
3373}
3374EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3375
3376/**
3377 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3378 * commits failing due to the buffer wrapping around while there are uncommitted
3379 * events, such as during an interrupt storm.
3380 * @buffer: The ring buffer
3381 * @cpu: The per CPU buffer to get the number of overruns from
3382 */
3383unsigned long
3384ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3385{
3386	struct ring_buffer_per_cpu *cpu_buffer;
3387	unsigned long ret;
3388
3389	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3390		return 0;
3391
3392	cpu_buffer = buffer->buffers[cpu];
3393	ret = local_read(&cpu_buffer->commit_overrun);
3394
3395	return ret;
3396}
3397EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3398
3399/**
3400 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3401 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3402 * @buffer: The ring buffer
3403 * @cpu: The per CPU buffer to get the number of overruns from
3404 */
3405unsigned long
3406ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3407{
3408	struct ring_buffer_per_cpu *cpu_buffer;
3409	unsigned long ret;
3410
3411	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3412		return 0;
3413
3414	cpu_buffer = buffer->buffers[cpu];
3415	ret = local_read(&cpu_buffer->dropped_events);
3416
3417	return ret;
3418}
3419EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3420
3421/**
3422 * ring_buffer_read_events_cpu - get the number of events successfully read
3423 * @buffer: The ring buffer
3424 * @cpu: The per CPU buffer to get the number of events read
3425 */
3426unsigned long
3427ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3428{
3429	struct ring_buffer_per_cpu *cpu_buffer;
3430
3431	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3432		return 0;
3433
3434	cpu_buffer = buffer->buffers[cpu];
3435	return cpu_buffer->read;
3436}
3437EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3438
3439/**
3440 * ring_buffer_entries - get the number of entries in a buffer
3441 * @buffer: The ring buffer
3442 *
3443 * Returns the total number of entries in the ring buffer
3444 * (all CPU entries)
3445 */
3446unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3447{
3448	struct ring_buffer_per_cpu *cpu_buffer;
3449	unsigned long entries = 0;
3450	int cpu;
3451
3452	/* if you care about this being correct, lock the buffer */
3453	for_each_buffer_cpu(buffer, cpu) {
3454		cpu_buffer = buffer->buffers[cpu];
3455		entries += rb_num_of_entries(cpu_buffer);
3456	}
3457
3458	return entries;
3459}
3460EXPORT_SYMBOL_GPL(ring_buffer_entries);
3461
3462/**
3463 * ring_buffer_overruns - get the number of overruns in buffer
3464 * @buffer: The ring buffer
3465 *
3466 * Returns the total number of overruns in the ring buffer
3467 * (all CPU entries)
3468 */
3469unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3470{
3471	struct ring_buffer_per_cpu *cpu_buffer;
3472	unsigned long overruns = 0;
3473	int cpu;
3474
3475	/* if you care about this being correct, lock the buffer */
3476	for_each_buffer_cpu(buffer, cpu) {
3477		cpu_buffer = buffer->buffers[cpu];
3478		overruns += local_read(&cpu_buffer->overrun);
3479	}
3480
3481	return overruns;
3482}
3483EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3484
3485static void rb_iter_reset(struct ring_buffer_iter *iter)
3486{
3487	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3488
3489	/* Iterator usage is expected to have record disabled */
3490	iter->head_page = cpu_buffer->reader_page;
3491	iter->head = cpu_buffer->reader_page->read;
 
3492
3493	iter->cache_reader_page = iter->head_page;
3494	iter->cache_read = cpu_buffer->read;
 
3495
3496	if (iter->head)
3497		iter->read_stamp = cpu_buffer->read_stamp;
3498	else
 
3499		iter->read_stamp = iter->head_page->page->time_stamp;
 
 
3500}
3501
3502/**
3503 * ring_buffer_iter_reset - reset an iterator
3504 * @iter: The iterator to reset
3505 *
3506 * Resets the iterator, so that it will start from the beginning
3507 * again.
3508 */
3509void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3510{
3511	struct ring_buffer_per_cpu *cpu_buffer;
3512	unsigned long flags;
3513
3514	if (!iter)
3515		return;
3516
3517	cpu_buffer = iter->cpu_buffer;
3518
3519	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3520	rb_iter_reset(iter);
3521	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3522}
3523EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3524
3525/**
3526 * ring_buffer_iter_empty - check if an iterator has no more to read
3527 * @iter: The iterator to check
3528 */
3529int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3530{
3531	struct ring_buffer_per_cpu *cpu_buffer;
3532	struct buffer_page *reader;
3533	struct buffer_page *head_page;
3534	struct buffer_page *commit_page;
 
3535	unsigned commit;
 
 
3536
3537	cpu_buffer = iter->cpu_buffer;
3538
3539	/* Remember, trace recording is off when iterator is in use */
3540	reader = cpu_buffer->reader_page;
3541	head_page = cpu_buffer->head_page;
3542	commit_page = cpu_buffer->commit_page;
 
 
 
 
 
 
 
 
3543	commit = rb_page_commit(commit_page);
 
 
3544
3545	return ((iter->head_page == commit_page && iter->head == commit) ||
 
 
 
 
 
 
 
 
 
 
3546		(iter->head_page == reader && commit_page == head_page &&
3547		 head_page->read == commit &&
3548		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3549}
3550EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3551
3552static void
3553rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3554		     struct ring_buffer_event *event)
3555{
3556	u64 delta;
3557
3558	switch (event->type_len) {
3559	case RINGBUF_TYPE_PADDING:
3560		return;
3561
3562	case RINGBUF_TYPE_TIME_EXTEND:
3563		delta = ring_buffer_event_time_stamp(event);
3564		cpu_buffer->read_stamp += delta;
3565		return;
3566
3567	case RINGBUF_TYPE_TIME_STAMP:
3568		delta = ring_buffer_event_time_stamp(event);
 
3569		cpu_buffer->read_stamp = delta;
3570		return;
3571
3572	case RINGBUF_TYPE_DATA:
3573		cpu_buffer->read_stamp += event->time_delta;
3574		return;
3575
3576	default:
3577		BUG();
3578	}
3579	return;
3580}
3581
3582static void
3583rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3584			  struct ring_buffer_event *event)
3585{
3586	u64 delta;
3587
3588	switch (event->type_len) {
3589	case RINGBUF_TYPE_PADDING:
3590		return;
3591
3592	case RINGBUF_TYPE_TIME_EXTEND:
3593		delta = ring_buffer_event_time_stamp(event);
3594		iter->read_stamp += delta;
3595		return;
3596
3597	case RINGBUF_TYPE_TIME_STAMP:
3598		delta = ring_buffer_event_time_stamp(event);
 
3599		iter->read_stamp = delta;
3600		return;
3601
3602	case RINGBUF_TYPE_DATA:
3603		iter->read_stamp += event->time_delta;
3604		return;
3605
3606	default:
3607		BUG();
3608	}
3609	return;
3610}
3611
3612static struct buffer_page *
3613rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3614{
3615	struct buffer_page *reader = NULL;
 
3616	unsigned long overwrite;
3617	unsigned long flags;
3618	int nr_loops = 0;
3619	int ret;
3620
3621	local_irq_save(flags);
3622	arch_spin_lock(&cpu_buffer->lock);
3623
3624 again:
3625	/*
3626	 * This should normally only loop twice. But because the
3627	 * start of the reader inserts an empty page, it causes
3628	 * a case where we will loop three times. There should be no
3629	 * reason to loop four times (that I know of).
3630	 */
3631	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3632		reader = NULL;
3633		goto out;
3634	}
3635
3636	reader = cpu_buffer->reader_page;
3637
3638	/* If there's more to read, return this page */
3639	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3640		goto out;
3641
3642	/* Never should we have an index greater than the size */
3643	if (RB_WARN_ON(cpu_buffer,
3644		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3645		goto out;
3646
3647	/* check if we caught up to the tail */
3648	reader = NULL;
3649	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3650		goto out;
3651
3652	/* Don't bother swapping if the ring buffer is empty */
3653	if (rb_num_of_entries(cpu_buffer) == 0)
3654		goto out;
3655
3656	/*
3657	 * Reset the reader page to size zero.
3658	 */
3659	local_set(&cpu_buffer->reader_page->write, 0);
3660	local_set(&cpu_buffer->reader_page->entries, 0);
3661	local_set(&cpu_buffer->reader_page->page->commit, 0);
3662	cpu_buffer->reader_page->real_end = 0;
3663
3664 spin:
3665	/*
3666	 * Splice the empty reader page into the list around the head.
3667	 */
3668	reader = rb_set_head_page(cpu_buffer);
3669	if (!reader)
3670		goto out;
3671	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3672	cpu_buffer->reader_page->list.prev = reader->list.prev;
3673
3674	/*
3675	 * cpu_buffer->pages just needs to point to the buffer, it
3676	 *  has no specific buffer page to point to. Lets move it out
3677	 *  of our way so we don't accidentally swap it.
3678	 */
3679	cpu_buffer->pages = reader->list.prev;
3680
3681	/* The reader page will be pointing to the new head */
3682	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3683
3684	/*
3685	 * We want to make sure we read the overruns after we set up our
3686	 * pointers to the next object. The writer side does a
3687	 * cmpxchg to cross pages which acts as the mb on the writer
3688	 * side. Note, the reader will constantly fail the swap
3689	 * while the writer is updating the pointers, so this
3690	 * guarantees that the overwrite recorded here is the one we
3691	 * want to compare with the last_overrun.
3692	 */
3693	smp_mb();
3694	overwrite = local_read(&(cpu_buffer->overrun));
3695
3696	/*
3697	 * Here's the tricky part.
3698	 *
3699	 * We need to move the pointer past the header page.
3700	 * But we can only do that if a writer is not currently
3701	 * moving it. The page before the header page has the
3702	 * flag bit '1' set if it is pointing to the page we want.
3703	 * but if the writer is in the process of moving it
3704	 * than it will be '2' or already moved '0'.
3705	 */
3706
3707	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3708
3709	/*
3710	 * If we did not convert it, then we must try again.
3711	 */
3712	if (!ret)
3713		goto spin;
3714
 
 
 
3715	/*
3716	 * Yeah! We succeeded in replacing the page.
3717	 *
3718	 * Now make the new head point back to the reader page.
3719	 */
3720	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3721	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
 
 
 
3722
3723	/* Finally update the reader page to the new head */
3724	cpu_buffer->reader_page = reader;
3725	cpu_buffer->reader_page->read = 0;
3726
3727	if (overwrite != cpu_buffer->last_overrun) {
3728		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3729		cpu_buffer->last_overrun = overwrite;
3730	}
3731
3732	goto again;
3733
3734 out:
3735	/* Update the read_stamp on the first event */
3736	if (reader && reader->read == 0)
3737		cpu_buffer->read_stamp = reader->page->time_stamp;
3738
3739	arch_spin_unlock(&cpu_buffer->lock);
3740	local_irq_restore(flags);
3741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3742	return reader;
3743}
3744
3745static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3746{
3747	struct ring_buffer_event *event;
3748	struct buffer_page *reader;
3749	unsigned length;
3750
3751	reader = rb_get_reader_page(cpu_buffer);
3752
3753	/* This function should not be called when buffer is empty */
3754	if (RB_WARN_ON(cpu_buffer, !reader))
3755		return;
3756
3757	event = rb_reader_event(cpu_buffer);
3758
3759	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3760		cpu_buffer->read++;
3761
3762	rb_update_read_stamp(cpu_buffer, event);
3763
3764	length = rb_event_length(event);
3765	cpu_buffer->reader_page->read += length;
 
3766}
3767
3768static void rb_advance_iter(struct ring_buffer_iter *iter)
3769{
3770	struct ring_buffer_per_cpu *cpu_buffer;
3771	struct ring_buffer_event *event;
3772	unsigned length;
3773
3774	cpu_buffer = iter->cpu_buffer;
3775
 
 
 
 
 
 
 
 
 
3776	/*
3777	 * Check if we are at the end of the buffer.
3778	 */
3779	if (iter->head >= rb_page_size(iter->head_page)) {
3780		/* discarded commits can make the page empty */
3781		if (iter->head_page == cpu_buffer->commit_page)
3782			return;
3783		rb_inc_iter(iter);
3784		return;
3785	}
3786
3787	event = rb_iter_head_event(iter);
3788
3789	length = rb_event_length(event);
3790
3791	/*
3792	 * This should not be called to advance the header if we are
3793	 * at the tail of the buffer.
3794	 */
3795	if (RB_WARN_ON(cpu_buffer,
3796		       (iter->head_page == cpu_buffer->commit_page) &&
3797		       (iter->head + length > rb_commit_index(cpu_buffer))))
3798		return;
3799
3800	rb_update_iter_read_stamp(iter, event);
3801
3802	iter->head += length;
3803
3804	/* check for end of page padding */
3805	if ((iter->head >= rb_page_size(iter->head_page)) &&
3806	    (iter->head_page != cpu_buffer->commit_page))
3807		rb_inc_iter(iter);
3808}
3809
3810static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3811{
3812	return cpu_buffer->lost_events;
3813}
3814
3815static struct ring_buffer_event *
3816rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3817	       unsigned long *lost_events)
3818{
3819	struct ring_buffer_event *event;
3820	struct buffer_page *reader;
3821	int nr_loops = 0;
3822
3823	if (ts)
3824		*ts = 0;
3825 again:
3826	/*
3827	 * We repeat when a time extend is encountered.
3828	 * Since the time extend is always attached to a data event,
3829	 * we should never loop more than once.
3830	 * (We never hit the following condition more than twice).
3831	 */
3832	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3833		return NULL;
3834
3835	reader = rb_get_reader_page(cpu_buffer);
3836	if (!reader)
3837		return NULL;
3838
3839	event = rb_reader_event(cpu_buffer);
3840
3841	switch (event->type_len) {
3842	case RINGBUF_TYPE_PADDING:
3843		if (rb_null_event(event))
3844			RB_WARN_ON(cpu_buffer, 1);
3845		/*
3846		 * Because the writer could be discarding every
3847		 * event it creates (which would probably be bad)
3848		 * if we were to go back to "again" then we may never
3849		 * catch up, and will trigger the warn on, or lock
3850		 * the box. Return the padding, and we will release
3851		 * the current locks, and try again.
3852		 */
3853		return event;
3854
3855	case RINGBUF_TYPE_TIME_EXTEND:
3856		/* Internal data, OK to advance */
3857		rb_advance_reader(cpu_buffer);
3858		goto again;
3859
3860	case RINGBUF_TYPE_TIME_STAMP:
3861		if (ts) {
3862			*ts = ring_buffer_event_time_stamp(event);
 
3863			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3864							 cpu_buffer->cpu, ts);
3865		}
3866		/* Internal data, OK to advance */
3867		rb_advance_reader(cpu_buffer);
3868		goto again;
3869
3870	case RINGBUF_TYPE_DATA:
3871		if (ts && !(*ts)) {
3872			*ts = cpu_buffer->read_stamp + event->time_delta;
3873			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3874							 cpu_buffer->cpu, ts);
3875		}
3876		if (lost_events)
3877			*lost_events = rb_lost_events(cpu_buffer);
3878		return event;
3879
3880	default:
3881		BUG();
3882	}
3883
3884	return NULL;
3885}
3886EXPORT_SYMBOL_GPL(ring_buffer_peek);
3887
3888static struct ring_buffer_event *
3889rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3890{
3891	struct ring_buffer *buffer;
3892	struct ring_buffer_per_cpu *cpu_buffer;
3893	struct ring_buffer_event *event;
3894	int nr_loops = 0;
3895
3896	if (ts)
3897		*ts = 0;
3898
3899	cpu_buffer = iter->cpu_buffer;
3900	buffer = cpu_buffer->buffer;
3901
3902	/*
3903	 * Check if someone performed a consuming read to
3904	 * the buffer. A consuming read invalidates the iterator
3905	 * and we need to reset the iterator in this case.
3906	 */
3907	if (unlikely(iter->cache_read != cpu_buffer->read ||
3908		     iter->cache_reader_page != cpu_buffer->reader_page))
 
3909		rb_iter_reset(iter);
3910
3911 again:
3912	if (ring_buffer_iter_empty(iter))
3913		return NULL;
3914
3915	/*
3916	 * We repeat when a time extend is encountered or we hit
3917	 * the end of the page. Since the time extend is always attached
3918	 * to a data event, we should never loop more than three times.
3919	 * Once for going to next page, once on time extend, and
3920	 * finally once to get the event.
3921	 * (We never hit the following condition more than thrice).
3922	 */
3923	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3924		return NULL;
3925
3926	if (rb_per_cpu_empty(cpu_buffer))
3927		return NULL;
3928
3929	if (iter->head >= rb_page_size(iter->head_page)) {
3930		rb_inc_iter(iter);
3931		goto again;
3932	}
3933
3934	event = rb_iter_head_event(iter);
 
 
3935
3936	switch (event->type_len) {
3937	case RINGBUF_TYPE_PADDING:
3938		if (rb_null_event(event)) {
3939			rb_inc_iter(iter);
3940			goto again;
3941		}
3942		rb_advance_iter(iter);
3943		return event;
3944
3945	case RINGBUF_TYPE_TIME_EXTEND:
3946		/* Internal data, OK to advance */
3947		rb_advance_iter(iter);
3948		goto again;
3949
3950	case RINGBUF_TYPE_TIME_STAMP:
3951		if (ts) {
3952			*ts = ring_buffer_event_time_stamp(event);
 
3953			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3954							 cpu_buffer->cpu, ts);
3955		}
3956		/* Internal data, OK to advance */
3957		rb_advance_iter(iter);
3958		goto again;
3959
3960	case RINGBUF_TYPE_DATA:
3961		if (ts && !(*ts)) {
3962			*ts = iter->read_stamp + event->time_delta;
3963			ring_buffer_normalize_time_stamp(buffer,
3964							 cpu_buffer->cpu, ts);
3965		}
3966		return event;
3967
3968	default:
3969		BUG();
3970	}
3971
3972	return NULL;
3973}
3974EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3975
3976static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3977{
3978	if (likely(!in_nmi())) {
3979		raw_spin_lock(&cpu_buffer->reader_lock);
3980		return true;
3981	}
3982
3983	/*
3984	 * If an NMI die dumps out the content of the ring buffer
3985	 * trylock must be used to prevent a deadlock if the NMI
3986	 * preempted a task that holds the ring buffer locks. If
3987	 * we get the lock then all is fine, if not, then continue
3988	 * to do the read, but this can corrupt the ring buffer,
3989	 * so it must be permanently disabled from future writes.
3990	 * Reading from NMI is a oneshot deal.
3991	 */
3992	if (raw_spin_trylock(&cpu_buffer->reader_lock))
3993		return true;
3994
3995	/* Continue without locking, but disable the ring buffer */
3996	atomic_inc(&cpu_buffer->record_disabled);
3997	return false;
3998}
3999
4000static inline void
4001rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4002{
4003	if (likely(locked))
4004		raw_spin_unlock(&cpu_buffer->reader_lock);
4005	return;
4006}
4007
4008/**
4009 * ring_buffer_peek - peek at the next event to be read
4010 * @buffer: The ring buffer to read
4011 * @cpu: The cpu to peak at
4012 * @ts: The timestamp counter of this event.
4013 * @lost_events: a variable to store if events were lost (may be NULL)
4014 *
4015 * This will return the event that will be read next, but does
4016 * not consume the data.
4017 */
4018struct ring_buffer_event *
4019ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4020		 unsigned long *lost_events)
4021{
4022	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4023	struct ring_buffer_event *event;
4024	unsigned long flags;
4025	bool dolock;
4026
4027	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4028		return NULL;
4029
4030 again:
4031	local_irq_save(flags);
4032	dolock = rb_reader_lock(cpu_buffer);
4033	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4034	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4035		rb_advance_reader(cpu_buffer);
4036	rb_reader_unlock(cpu_buffer, dolock);
4037	local_irq_restore(flags);
4038
4039	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4040		goto again;
4041
4042	return event;
4043}
4044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4045/**
4046 * ring_buffer_iter_peek - peek at the next event to be read
4047 * @iter: The ring buffer iterator
4048 * @ts: The timestamp counter of this event.
4049 *
4050 * This will return the event that will be read next, but does
4051 * not increment the iterator.
4052 */
4053struct ring_buffer_event *
4054ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4055{
4056	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4057	struct ring_buffer_event *event;
4058	unsigned long flags;
4059
4060 again:
4061	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4062	event = rb_iter_peek(iter, ts);
4063	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4064
4065	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4066		goto again;
4067
4068	return event;
4069}
4070
4071/**
4072 * ring_buffer_consume - return an event and consume it
4073 * @buffer: The ring buffer to get the next event from
4074 * @cpu: the cpu to read the buffer from
4075 * @ts: a variable to store the timestamp (may be NULL)
4076 * @lost_events: a variable to store if events were lost (may be NULL)
4077 *
4078 * Returns the next event in the ring buffer, and that event is consumed.
4079 * Meaning, that sequential reads will keep returning a different event,
4080 * and eventually empty the ring buffer if the producer is slower.
4081 */
4082struct ring_buffer_event *
4083ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4084		    unsigned long *lost_events)
4085{
4086	struct ring_buffer_per_cpu *cpu_buffer;
4087	struct ring_buffer_event *event = NULL;
4088	unsigned long flags;
4089	bool dolock;
4090
4091 again:
4092	/* might be called in atomic */
4093	preempt_disable();
4094
4095	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4096		goto out;
4097
4098	cpu_buffer = buffer->buffers[cpu];
4099	local_irq_save(flags);
4100	dolock = rb_reader_lock(cpu_buffer);
4101
4102	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4103	if (event) {
4104		cpu_buffer->lost_events = 0;
4105		rb_advance_reader(cpu_buffer);
4106	}
4107
4108	rb_reader_unlock(cpu_buffer, dolock);
4109	local_irq_restore(flags);
4110
4111 out:
4112	preempt_enable();
4113
4114	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4115		goto again;
4116
4117	return event;
4118}
4119EXPORT_SYMBOL_GPL(ring_buffer_consume);
4120
4121/**
4122 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4123 * @buffer: The ring buffer to read from
4124 * @cpu: The cpu buffer to iterate over
 
4125 *
4126 * This performs the initial preparations necessary to iterate
4127 * through the buffer.  Memory is allocated, buffer recording
4128 * is disabled, and the iterator pointer is returned to the caller.
4129 *
4130 * Disabling buffer recordng prevents the reading from being
4131 * corrupted. This is not a consuming read, so a producer is not
4132 * expected.
4133 *
4134 * After a sequence of ring_buffer_read_prepare calls, the user is
4135 * expected to make at least one call to ring_buffer_read_prepare_sync.
4136 * Afterwards, ring_buffer_read_start is invoked to get things going
4137 * for real.
4138 *
4139 * This overall must be paired with ring_buffer_read_finish.
4140 */
4141struct ring_buffer_iter *
4142ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4143{
4144	struct ring_buffer_per_cpu *cpu_buffer;
4145	struct ring_buffer_iter *iter;
4146
4147	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4148		return NULL;
4149
4150	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4151	if (!iter)
4152		return NULL;
4153
 
 
 
 
 
 
 
 
4154	cpu_buffer = buffer->buffers[cpu];
4155
4156	iter->cpu_buffer = cpu_buffer;
4157
4158	atomic_inc(&buffer->resize_disabled);
4159	atomic_inc(&cpu_buffer->record_disabled);
4160
4161	return iter;
4162}
4163EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4164
4165/**
4166 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4167 *
4168 * All previously invoked ring_buffer_read_prepare calls to prepare
4169 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4170 * calls on those iterators are allowed.
4171 */
4172void
4173ring_buffer_read_prepare_sync(void)
4174{
4175	synchronize_sched();
4176}
4177EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4178
4179/**
4180 * ring_buffer_read_start - start a non consuming read of the buffer
4181 * @iter: The iterator returned by ring_buffer_read_prepare
4182 *
4183 * This finalizes the startup of an iteration through the buffer.
4184 * The iterator comes from a call to ring_buffer_read_prepare and
4185 * an intervening ring_buffer_read_prepare_sync must have been
4186 * performed.
4187 *
4188 * Must be paired with ring_buffer_read_finish.
4189 */
4190void
4191ring_buffer_read_start(struct ring_buffer_iter *iter)
4192{
4193	struct ring_buffer_per_cpu *cpu_buffer;
4194	unsigned long flags;
4195
4196	if (!iter)
4197		return;
4198
4199	cpu_buffer = iter->cpu_buffer;
4200
4201	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4202	arch_spin_lock(&cpu_buffer->lock);
4203	rb_iter_reset(iter);
4204	arch_spin_unlock(&cpu_buffer->lock);
4205	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4206}
4207EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4208
4209/**
4210 * ring_buffer_read_finish - finish reading the iterator of the buffer
4211 * @iter: The iterator retrieved by ring_buffer_start
4212 *
4213 * This re-enables the recording to the buffer, and frees the
4214 * iterator.
4215 */
4216void
4217ring_buffer_read_finish(struct ring_buffer_iter *iter)
4218{
4219	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4220	unsigned long flags;
4221
4222	/*
4223	 * Ring buffer is disabled from recording, here's a good place
4224	 * to check the integrity of the ring buffer.
4225	 * Must prevent readers from trying to read, as the check
4226	 * clears the HEAD page and readers require it.
4227	 */
4228	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4229	rb_check_pages(cpu_buffer);
4230	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4231
4232	atomic_dec(&cpu_buffer->record_disabled);
4233	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4234	kfree(iter);
4235}
4236EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4237
4238/**
4239 * ring_buffer_read - read the next item in the ring buffer by the iterator
4240 * @iter: The ring buffer iterator
4241 * @ts: The time stamp of the event read.
4242 *
4243 * This reads the next event in the ring buffer and increments the iterator.
 
4244 */
4245struct ring_buffer_event *
4246ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4247{
4248	struct ring_buffer_event *event;
4249	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4250	unsigned long flags;
4251
4252	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4253 again:
4254	event = rb_iter_peek(iter, ts);
4255	if (!event)
4256		goto out;
4257
4258	if (event->type_len == RINGBUF_TYPE_PADDING)
4259		goto again;
4260
4261	rb_advance_iter(iter);
4262 out:
4263	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4264
4265	return event;
4266}
4267EXPORT_SYMBOL_GPL(ring_buffer_read);
4268
4269/**
4270 * ring_buffer_size - return the size of the ring buffer (in bytes)
4271 * @buffer: The ring buffer.
 
4272 */
4273unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4274{
4275	/*
4276	 * Earlier, this method returned
4277	 *	BUF_PAGE_SIZE * buffer->nr_pages
4278	 * Since the nr_pages field is now removed, we have converted this to
4279	 * return the per cpu buffer value.
4280	 */
4281	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4282		return 0;
4283
4284	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4285}
4286EXPORT_SYMBOL_GPL(ring_buffer_size);
4287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4288static void
4289rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4290{
 
 
4291	rb_head_page_deactivate(cpu_buffer);
4292
4293	cpu_buffer->head_page
4294		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4295	local_set(&cpu_buffer->head_page->write, 0);
4296	local_set(&cpu_buffer->head_page->entries, 0);
4297	local_set(&cpu_buffer->head_page->page->commit, 0);
4298
4299	cpu_buffer->head_page->read = 0;
4300
4301	cpu_buffer->tail_page = cpu_buffer->head_page;
4302	cpu_buffer->commit_page = cpu_buffer->head_page;
4303
4304	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4305	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4306	local_set(&cpu_buffer->reader_page->write, 0);
4307	local_set(&cpu_buffer->reader_page->entries, 0);
4308	local_set(&cpu_buffer->reader_page->page->commit, 0);
4309	cpu_buffer->reader_page->read = 0;
4310
4311	local_set(&cpu_buffer->entries_bytes, 0);
4312	local_set(&cpu_buffer->overrun, 0);
4313	local_set(&cpu_buffer->commit_overrun, 0);
4314	local_set(&cpu_buffer->dropped_events, 0);
4315	local_set(&cpu_buffer->entries, 0);
4316	local_set(&cpu_buffer->committing, 0);
4317	local_set(&cpu_buffer->commits, 0);
 
 
 
 
 
4318	cpu_buffer->read = 0;
4319	cpu_buffer->read_bytes = 0;
4320
4321	cpu_buffer->write_stamp = 0;
4322	cpu_buffer->read_stamp = 0;
 
 
4323
4324	cpu_buffer->lost_events = 0;
4325	cpu_buffer->last_overrun = 0;
4326
4327	rb_head_page_activate(cpu_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4328}
4329
4330/**
4331 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4332 * @buffer: The ring buffer to reset a per cpu buffer of
4333 * @cpu: The CPU buffer to be reset
4334 */
4335void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4336{
4337	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4338	unsigned long flags;
4339
4340	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4341		return;
4342
4343	atomic_inc(&buffer->resize_disabled);
 
 
 
4344	atomic_inc(&cpu_buffer->record_disabled);
4345
4346	/* Make sure all commits have finished */
4347	synchronize_sched();
4348
4349	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4350
4351	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4352		goto out;
4353
4354	arch_spin_lock(&cpu_buffer->lock);
 
 
 
4355
4356	rb_reset_cpu(cpu_buffer);
 
 
4357
4358	arch_spin_unlock(&cpu_buffer->lock);
 
4359
4360 out:
4361	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 
 
 
 
 
 
 
4362
4363	atomic_dec(&cpu_buffer->record_disabled);
4364	atomic_dec(&buffer->resize_disabled);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365}
4366EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4367
4368/**
4369 * ring_buffer_reset - reset a ring buffer
4370 * @buffer: The ring buffer to reset all cpu buffers
4371 */
4372void ring_buffer_reset(struct ring_buffer *buffer)
4373{
 
4374	int cpu;
4375
4376	for_each_buffer_cpu(buffer, cpu)
4377		ring_buffer_reset_cpu(buffer, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4378}
4379EXPORT_SYMBOL_GPL(ring_buffer_reset);
4380
4381/**
4382 * rind_buffer_empty - is the ring buffer empty?
4383 * @buffer: The ring buffer to test
4384 */
4385bool ring_buffer_empty(struct ring_buffer *buffer)
4386{
4387	struct ring_buffer_per_cpu *cpu_buffer;
4388	unsigned long flags;
4389	bool dolock;
 
4390	int cpu;
4391	int ret;
4392
4393	/* yes this is racy, but if you don't like the race, lock the buffer */
4394	for_each_buffer_cpu(buffer, cpu) {
4395		cpu_buffer = buffer->buffers[cpu];
4396		local_irq_save(flags);
4397		dolock = rb_reader_lock(cpu_buffer);
4398		ret = rb_per_cpu_empty(cpu_buffer);
4399		rb_reader_unlock(cpu_buffer, dolock);
4400		local_irq_restore(flags);
4401
4402		if (!ret)
4403			return false;
4404	}
4405
4406	return true;
4407}
4408EXPORT_SYMBOL_GPL(ring_buffer_empty);
4409
4410/**
4411 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4412 * @buffer: The ring buffer
4413 * @cpu: The CPU buffer to test
4414 */
4415bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4416{
4417	struct ring_buffer_per_cpu *cpu_buffer;
4418	unsigned long flags;
4419	bool dolock;
4420	int ret;
4421
4422	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4423		return true;
4424
4425	cpu_buffer = buffer->buffers[cpu];
4426	local_irq_save(flags);
4427	dolock = rb_reader_lock(cpu_buffer);
4428	ret = rb_per_cpu_empty(cpu_buffer);
4429	rb_reader_unlock(cpu_buffer, dolock);
4430	local_irq_restore(flags);
4431
4432	return ret;
4433}
4434EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4435
4436#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4437/**
4438 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4439 * @buffer_a: One buffer to swap with
4440 * @buffer_b: The other buffer to swap with
 
4441 *
4442 * This function is useful for tracers that want to take a "snapshot"
4443 * of a CPU buffer and has another back up buffer lying around.
4444 * it is expected that the tracer handles the cpu buffer not being
4445 * used at the moment.
4446 */
4447int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4448			 struct ring_buffer *buffer_b, int cpu)
4449{
4450	struct ring_buffer_per_cpu *cpu_buffer_a;
4451	struct ring_buffer_per_cpu *cpu_buffer_b;
4452	int ret = -EINVAL;
4453
4454	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4455	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4456		goto out;
4457
4458	cpu_buffer_a = buffer_a->buffers[cpu];
4459	cpu_buffer_b = buffer_b->buffers[cpu];
4460
 
 
 
 
 
 
4461	/* At least make sure the two buffers are somewhat the same */
4462	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4463		goto out;
4464
 
 
 
4465	ret = -EAGAIN;
4466
4467	if (atomic_read(&buffer_a->record_disabled))
4468		goto out;
4469
4470	if (atomic_read(&buffer_b->record_disabled))
4471		goto out;
4472
4473	if (atomic_read(&cpu_buffer_a->record_disabled))
4474		goto out;
4475
4476	if (atomic_read(&cpu_buffer_b->record_disabled))
4477		goto out;
4478
4479	/*
4480	 * We can't do a synchronize_sched here because this
4481	 * function can be called in atomic context.
4482	 * Normally this will be called from the same CPU as cpu.
4483	 * If not it's up to the caller to protect this.
4484	 */
4485	atomic_inc(&cpu_buffer_a->record_disabled);
4486	atomic_inc(&cpu_buffer_b->record_disabled);
4487
4488	ret = -EBUSY;
4489	if (local_read(&cpu_buffer_a->committing))
4490		goto out_dec;
4491	if (local_read(&cpu_buffer_b->committing))
4492		goto out_dec;
4493
 
 
 
 
 
 
 
 
 
4494	buffer_a->buffers[cpu] = cpu_buffer_b;
4495	buffer_b->buffers[cpu] = cpu_buffer_a;
4496
4497	cpu_buffer_b->buffer = buffer_a;
4498	cpu_buffer_a->buffer = buffer_b;
4499
4500	ret = 0;
4501
4502out_dec:
4503	atomic_dec(&cpu_buffer_a->record_disabled);
4504	atomic_dec(&cpu_buffer_b->record_disabled);
4505out:
4506	return ret;
4507}
4508EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4509#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4510
4511/**
4512 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4513 * @buffer: the buffer to allocate for.
4514 * @cpu: the cpu buffer to allocate.
4515 *
4516 * This function is used in conjunction with ring_buffer_read_page.
4517 * When reading a full page from the ring buffer, these functions
4518 * can be used to speed up the process. The calling function should
4519 * allocate a few pages first with this function. Then when it
4520 * needs to get pages from the ring buffer, it passes the result
4521 * of this function into ring_buffer_read_page, which will swap
4522 * the page that was allocated, with the read page of the buffer.
4523 *
4524 * Returns:
4525 *  The page allocated, or ERR_PTR
4526 */
4527void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
 
4528{
4529	struct ring_buffer_per_cpu *cpu_buffer;
4530	struct buffer_data_page *bpage = NULL;
4531	unsigned long flags;
4532	struct page *page;
4533
4534	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4535		return ERR_PTR(-ENODEV);
4536
 
 
 
 
 
4537	cpu_buffer = buffer->buffers[cpu];
4538	local_irq_save(flags);
4539	arch_spin_lock(&cpu_buffer->lock);
4540
4541	if (cpu_buffer->free_page) {
4542		bpage = cpu_buffer->free_page;
4543		cpu_buffer->free_page = NULL;
4544	}
4545
4546	arch_spin_unlock(&cpu_buffer->lock);
4547	local_irq_restore(flags);
4548
4549	if (bpage)
4550		goto out;
4551
4552	page = alloc_pages_node(cpu_to_node(cpu),
4553				GFP_KERNEL | __GFP_NORETRY, 0);
4554	if (!page)
 
 
4555		return ERR_PTR(-ENOMEM);
 
4556
4557	bpage = page_address(page);
4558
4559 out:
4560	rb_init_page(bpage);
4561
4562	return bpage;
4563}
4564EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4565
4566/**
4567 * ring_buffer_free_read_page - free an allocated read page
4568 * @buffer: the buffer the page was allocate for
4569 * @cpu: the cpu buffer the page came from
4570 * @data: the page to free
4571 *
4572 * Free a page allocated from ring_buffer_alloc_read_page.
4573 */
4574void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
 
4575{
4576	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4577	struct buffer_data_page *bpage = data;
4578	struct page *page = virt_to_page(bpage);
4579	unsigned long flags;
4580
4581	/* If the page is still in use someplace else, we can't reuse it */
4582	if (page_ref_count(page) > 1)
 
 
 
 
 
 
 
 
 
4583		goto out;
4584
4585	local_irq_save(flags);
4586	arch_spin_lock(&cpu_buffer->lock);
4587
4588	if (!cpu_buffer->free_page) {
4589		cpu_buffer->free_page = bpage;
4590		bpage = NULL;
4591	}
4592
4593	arch_spin_unlock(&cpu_buffer->lock);
4594	local_irq_restore(flags);
4595
4596 out:
4597	free_page((unsigned long)bpage);
 
4598}
4599EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4600
4601/**
4602 * ring_buffer_read_page - extract a page from the ring buffer
4603 * @buffer: buffer to extract from
4604 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4605 * @len: amount to extract
4606 * @cpu: the cpu of the buffer to extract
4607 * @full: should the extraction only happen when the page is full.
4608 *
4609 * This function will pull out a page from the ring buffer and consume it.
4610 * @data_page must be the address of the variable that was returned
4611 * from ring_buffer_alloc_read_page. This is because the page might be used
4612 * to swap with a page in the ring buffer.
4613 *
4614 * for example:
4615 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4616 *	if (IS_ERR(rpage))
4617 *		return PTR_ERR(rpage);
4618 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4619 *	if (ret >= 0)
4620 *		process_page(rpage, ret);
 
4621 *
4622 * When @full is set, the function will not return true unless
4623 * the writer is off the reader page.
4624 *
4625 * Note: it is up to the calling functions to handle sleeps and wakeups.
4626 *  The ring buffer can be used anywhere in the kernel and can not
4627 *  blindly call wake_up. The layer that uses the ring buffer must be
4628 *  responsible for that.
4629 *
4630 * Returns:
4631 *  >=0 if data has been transferred, returns the offset of consumed data.
4632 *  <0 if no data has been transferred.
4633 */
4634int ring_buffer_read_page(struct ring_buffer *buffer,
4635			  void **data_page, size_t len, int cpu, int full)
 
4636{
4637	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4638	struct ring_buffer_event *event;
4639	struct buffer_data_page *bpage;
4640	struct buffer_page *reader;
4641	unsigned long missed_events;
4642	unsigned long flags;
4643	unsigned int commit;
4644	unsigned int read;
4645	u64 save_timestamp;
4646	int ret = -1;
4647
4648	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4649		goto out;
4650
4651	/*
4652	 * If len is not big enough to hold the page header, then
4653	 * we can not copy anything.
4654	 */
4655	if (len <= BUF_PAGE_HDR_SIZE)
4656		goto out;
4657
4658	len -= BUF_PAGE_HDR_SIZE;
4659
4660	if (!data_page)
 
 
4661		goto out;
4662
4663	bpage = *data_page;
4664	if (!bpage)
4665		goto out;
4666
4667	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4668
4669	reader = rb_get_reader_page(cpu_buffer);
4670	if (!reader)
4671		goto out_unlock;
4672
4673	event = rb_reader_event(cpu_buffer);
4674
4675	read = reader->read;
4676	commit = rb_page_commit(reader);
4677
4678	/* Check if any events were dropped */
4679	missed_events = cpu_buffer->lost_events;
4680
4681	/*
4682	 * If this page has been partially read or
4683	 * if len is not big enough to read the rest of the page or
4684	 * a writer is still on the page, then
4685	 * we must copy the data from the page to the buffer.
4686	 * Otherwise, we can simply swap the page with the one passed in.
4687	 */
4688	if (read || (len < (commit - read)) ||
4689	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
 
4690		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4691		unsigned int rpos = read;
4692		unsigned int pos = 0;
4693		unsigned int size;
4694
4695		if (full)
 
 
 
 
 
 
 
 
4696			goto out_unlock;
4697
4698		if (len > (commit - read))
4699			len = (commit - read);
4700
4701		/* Always keep the time extend and data together */
4702		size = rb_event_ts_length(event);
4703
4704		if (len < size)
4705			goto out_unlock;
4706
4707		/* save the current timestamp, since the user will need it */
4708		save_timestamp = cpu_buffer->read_stamp;
4709
4710		/* Need to copy one event at a time */
4711		do {
4712			/* We need the size of one event, because
4713			 * rb_advance_reader only advances by one event,
4714			 * whereas rb_event_ts_length may include the size of
4715			 * one or two events.
4716			 * We have already ensured there's enough space if this
4717			 * is a time extend. */
4718			size = rb_event_length(event);
4719			memcpy(bpage->data + pos, rpage->data + rpos, size);
4720
4721			len -= size;
4722
4723			rb_advance_reader(cpu_buffer);
4724			rpos = reader->read;
4725			pos += size;
4726
4727			if (rpos >= commit)
4728				break;
4729
4730			event = rb_reader_event(cpu_buffer);
4731			/* Always keep the time extend and data together */
4732			size = rb_event_ts_length(event);
4733		} while (len >= size);
4734
4735		/* update bpage */
4736		local_set(&bpage->commit, pos);
4737		bpage->time_stamp = save_timestamp;
4738
4739		/* we copied everything to the beginning */
4740		read = 0;
4741	} else {
4742		/* update the entry counter */
4743		cpu_buffer->read += rb_page_entries(reader);
4744		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4745
4746		/* swap the pages */
4747		rb_init_page(bpage);
4748		bpage = reader->page;
4749		reader->page = *data_page;
4750		local_set(&reader->write, 0);
4751		local_set(&reader->entries, 0);
4752		reader->read = 0;
4753		*data_page = bpage;
4754
4755		/*
4756		 * Use the real_end for the data size,
4757		 * This gives us a chance to store the lost events
4758		 * on the page.
4759		 */
4760		if (reader->real_end)
4761			local_set(&bpage->commit, reader->real_end);
4762	}
4763	ret = read;
4764
4765	cpu_buffer->lost_events = 0;
4766
4767	commit = local_read(&bpage->commit);
4768	/*
4769	 * Set a flag in the commit field if we lost events
4770	 */
4771	if (missed_events) {
4772		/* If there is room at the end of the page to save the
4773		 * missed events, then record it there.
4774		 */
4775		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4776			memcpy(&bpage->data[commit], &missed_events,
4777			       sizeof(missed_events));
4778			local_add(RB_MISSED_STORED, &bpage->commit);
4779			commit += sizeof(missed_events);
4780		}
4781		local_add(RB_MISSED_EVENTS, &bpage->commit);
4782	}
4783
4784	/*
4785	 * This page may be off to user land. Zero it out here.
4786	 */
4787	if (commit < BUF_PAGE_SIZE)
4788		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4789
4790 out_unlock:
4791	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4792
4793 out:
4794	return ret;
4795}
4796EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4798/*
4799 * We only allocate new buffers, never free them if the CPU goes down.
4800 * If we were to free the buffer, then the user would lose any trace that was in
4801 * the buffer.
4802 */
4803int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4804{
4805	struct ring_buffer *buffer;
4806	long nr_pages_same;
4807	int cpu_i;
4808	unsigned long nr_pages;
4809
4810	buffer = container_of(node, struct ring_buffer, node);
4811	if (cpumask_test_cpu(cpu, buffer->cpumask))
4812		return 0;
4813
4814	nr_pages = 0;
4815	nr_pages_same = 1;
4816	/* check if all cpu sizes are same */
4817	for_each_buffer_cpu(buffer, cpu_i) {
4818		/* fill in the size from first enabled cpu */
4819		if (nr_pages == 0)
4820			nr_pages = buffer->buffers[cpu_i]->nr_pages;
4821		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4822			nr_pages_same = 0;
4823			break;
4824		}
4825	}
4826	/* allocate minimum pages, user can later expand it */
4827	if (!nr_pages_same)
4828		nr_pages = 2;
4829	buffer->buffers[cpu] =
4830		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4831	if (!buffer->buffers[cpu]) {
4832		WARN(1, "failed to allocate ring buffer on CPU %u\n",
4833		     cpu);
4834		return -ENOMEM;
4835	}
4836	smp_wmb();
4837	cpumask_set_cpu(cpu, buffer->cpumask);
4838	return 0;
4839}
4840
4841#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4842/*
4843 * This is a basic integrity check of the ring buffer.
4844 * Late in the boot cycle this test will run when configured in.
4845 * It will kick off a thread per CPU that will go into a loop
4846 * writing to the per cpu ring buffer various sizes of data.
4847 * Some of the data will be large items, some small.
4848 *
4849 * Another thread is created that goes into a spin, sending out
4850 * IPIs to the other CPUs to also write into the ring buffer.
4851 * this is to test the nesting ability of the buffer.
4852 *
4853 * Basic stats are recorded and reported. If something in the
4854 * ring buffer should happen that's not expected, a big warning
4855 * is displayed and all ring buffers are disabled.
4856 */
4857static struct task_struct *rb_threads[NR_CPUS] __initdata;
4858
4859struct rb_test_data {
4860	struct ring_buffer	*buffer;
4861	unsigned long		events;
4862	unsigned long		bytes_written;
4863	unsigned long		bytes_alloc;
4864	unsigned long		bytes_dropped;
4865	unsigned long		events_nested;
4866	unsigned long		bytes_written_nested;
4867	unsigned long		bytes_alloc_nested;
4868	unsigned long		bytes_dropped_nested;
4869	int			min_size_nested;
4870	int			max_size_nested;
4871	int			max_size;
4872	int			min_size;
4873	int			cpu;
4874	int			cnt;
4875};
4876
4877static struct rb_test_data rb_data[NR_CPUS] __initdata;
4878
4879/* 1 meg per cpu */
4880#define RB_TEST_BUFFER_SIZE	1048576
4881
4882static char rb_string[] __initdata =
4883	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4884	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4885	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4886
4887static bool rb_test_started __initdata;
4888
4889struct rb_item {
4890	int size;
4891	char str[];
4892};
4893
4894static __init int rb_write_something(struct rb_test_data *data, bool nested)
4895{
4896	struct ring_buffer_event *event;
4897	struct rb_item *item;
4898	bool started;
4899	int event_len;
4900	int size;
4901	int len;
4902	int cnt;
4903
4904	/* Have nested writes different that what is written */
4905	cnt = data->cnt + (nested ? 27 : 0);
4906
4907	/* Multiply cnt by ~e, to make some unique increment */
4908	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4909
4910	len = size + sizeof(struct rb_item);
4911
4912	started = rb_test_started;
4913	/* read rb_test_started before checking buffer enabled */
4914	smp_rmb();
4915
4916	event = ring_buffer_lock_reserve(data->buffer, len);
4917	if (!event) {
4918		/* Ignore dropped events before test starts. */
4919		if (started) {
4920			if (nested)
4921				data->bytes_dropped += len;
4922			else
4923				data->bytes_dropped_nested += len;
4924		}
4925		return len;
4926	}
4927
4928	event_len = ring_buffer_event_length(event);
4929
4930	if (RB_WARN_ON(data->buffer, event_len < len))
4931		goto out;
4932
4933	item = ring_buffer_event_data(event);
4934	item->size = size;
4935	memcpy(item->str, rb_string, size);
4936
4937	if (nested) {
4938		data->bytes_alloc_nested += event_len;
4939		data->bytes_written_nested += len;
4940		data->events_nested++;
4941		if (!data->min_size_nested || len < data->min_size_nested)
4942			data->min_size_nested = len;
4943		if (len > data->max_size_nested)
4944			data->max_size_nested = len;
4945	} else {
4946		data->bytes_alloc += event_len;
4947		data->bytes_written += len;
4948		data->events++;
4949		if (!data->min_size || len < data->min_size)
4950			data->max_size = len;
4951		if (len > data->max_size)
4952			data->max_size = len;
4953	}
4954
4955 out:
4956	ring_buffer_unlock_commit(data->buffer, event);
4957
4958	return 0;
4959}
4960
4961static __init int rb_test(void *arg)
4962{
4963	struct rb_test_data *data = arg;
4964
4965	while (!kthread_should_stop()) {
4966		rb_write_something(data, false);
4967		data->cnt++;
4968
4969		set_current_state(TASK_INTERRUPTIBLE);
4970		/* Now sleep between a min of 100-300us and a max of 1ms */
4971		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4972	}
4973
4974	return 0;
4975}
4976
4977static __init void rb_ipi(void *ignore)
4978{
4979	struct rb_test_data *data;
4980	int cpu = smp_processor_id();
4981
4982	data = &rb_data[cpu];
4983	rb_write_something(data, true);
4984}
4985
4986static __init int rb_hammer_test(void *arg)
4987{
4988	while (!kthread_should_stop()) {
4989
4990		/* Send an IPI to all cpus to write data! */
4991		smp_call_function(rb_ipi, NULL, 1);
4992		/* No sleep, but for non preempt, let others run */
4993		schedule();
4994	}
4995
4996	return 0;
4997}
4998
4999static __init int test_ringbuffer(void)
5000{
5001	struct task_struct *rb_hammer;
5002	struct ring_buffer *buffer;
5003	int cpu;
5004	int ret = 0;
5005
 
 
 
 
 
5006	pr_info("Running ring buffer tests...\n");
5007
5008	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5009	if (WARN_ON(!buffer))
5010		return 0;
5011
5012	/* Disable buffer so that threads can't write to it yet */
5013	ring_buffer_record_off(buffer);
5014
5015	for_each_online_cpu(cpu) {
5016		rb_data[cpu].buffer = buffer;
5017		rb_data[cpu].cpu = cpu;
5018		rb_data[cpu].cnt = cpu;
5019		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5020						 "rbtester/%d", cpu);
5021		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5022			pr_cont("FAILED\n");
5023			ret = PTR_ERR(rb_threads[cpu]);
5024			goto out_free;
5025		}
5026
5027		kthread_bind(rb_threads[cpu], cpu);
5028 		wake_up_process(rb_threads[cpu]);
5029	}
5030
5031	/* Now create the rb hammer! */
5032	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5033	if (WARN_ON(IS_ERR(rb_hammer))) {
5034		pr_cont("FAILED\n");
5035		ret = PTR_ERR(rb_hammer);
5036		goto out_free;
5037	}
5038
5039	ring_buffer_record_on(buffer);
5040	/*
5041	 * Show buffer is enabled before setting rb_test_started.
5042	 * Yes there's a small race window where events could be
5043	 * dropped and the thread wont catch it. But when a ring
5044	 * buffer gets enabled, there will always be some kind of
5045	 * delay before other CPUs see it. Thus, we don't care about
5046	 * those dropped events. We care about events dropped after
5047	 * the threads see that the buffer is active.
5048	 */
5049	smp_wmb();
5050	rb_test_started = true;
5051
5052	set_current_state(TASK_INTERRUPTIBLE);
5053	/* Just run for 10 seconds */;
5054	schedule_timeout(10 * HZ);
5055
5056	kthread_stop(rb_hammer);
5057
5058 out_free:
5059	for_each_online_cpu(cpu) {
5060		if (!rb_threads[cpu])
5061			break;
5062		kthread_stop(rb_threads[cpu]);
5063	}
5064	if (ret) {
5065		ring_buffer_free(buffer);
5066		return ret;
5067	}
5068
5069	/* Report! */
5070	pr_info("finished\n");
5071	for_each_online_cpu(cpu) {
5072		struct ring_buffer_event *event;
5073		struct rb_test_data *data = &rb_data[cpu];
5074		struct rb_item *item;
5075		unsigned long total_events;
5076		unsigned long total_dropped;
5077		unsigned long total_written;
5078		unsigned long total_alloc;
5079		unsigned long total_read = 0;
5080		unsigned long total_size = 0;
5081		unsigned long total_len = 0;
5082		unsigned long total_lost = 0;
5083		unsigned long lost;
5084		int big_event_size;
5085		int small_event_size;
5086
5087		ret = -1;
5088
5089		total_events = data->events + data->events_nested;
5090		total_written = data->bytes_written + data->bytes_written_nested;
5091		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5092		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5093
5094		big_event_size = data->max_size + data->max_size_nested;
5095		small_event_size = data->min_size + data->min_size_nested;
5096
5097		pr_info("CPU %d:\n", cpu);
5098		pr_info("              events:    %ld\n", total_events);
5099		pr_info("       dropped bytes:    %ld\n", total_dropped);
5100		pr_info("       alloced bytes:    %ld\n", total_alloc);
5101		pr_info("       written bytes:    %ld\n", total_written);
5102		pr_info("       biggest event:    %d\n", big_event_size);
5103		pr_info("      smallest event:    %d\n", small_event_size);
5104
5105		if (RB_WARN_ON(buffer, total_dropped))
5106			break;
5107
5108		ret = 0;
5109
5110		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5111			total_lost += lost;
5112			item = ring_buffer_event_data(event);
5113			total_len += ring_buffer_event_length(event);
5114			total_size += item->size + sizeof(struct rb_item);
5115			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5116				pr_info("FAILED!\n");
5117				pr_info("buffer had: %.*s\n", item->size, item->str);
5118				pr_info("expected:   %.*s\n", item->size, rb_string);
5119				RB_WARN_ON(buffer, 1);
5120				ret = -1;
5121				break;
5122			}
5123			total_read++;
5124		}
5125		if (ret)
5126			break;
5127
5128		ret = -1;
5129
5130		pr_info("         read events:   %ld\n", total_read);
5131		pr_info("         lost events:   %ld\n", total_lost);
5132		pr_info("        total events:   %ld\n", total_lost + total_read);
5133		pr_info("  recorded len bytes:   %ld\n", total_len);
5134		pr_info(" recorded size bytes:   %ld\n", total_size);
5135		if (total_lost)
5136			pr_info(" With dropped events, record len and size may not match\n"
5137				" alloced and written from above\n");
5138		if (!total_lost) {
5139			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5140				       total_size != total_written))
5141				break;
5142		}
5143		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5144			break;
5145
5146		ret = 0;
5147	}
5148	if (!ret)
5149		pr_info("Ring buffer PASSED!\n");
5150
5151	ring_buffer_free(buffer);
5152	return 0;
5153}
5154
5155late_initcall(test_ringbuffer);
5156#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_recursion.h>
   8#include <linux/trace_events.h>
   9#include <linux/ring_buffer.h>
  10#include <linux/trace_clock.h>
  11#include <linux/sched/clock.h>
  12#include <linux/cacheflush.h>
  13#include <linux/trace_seq.h>
  14#include <linux/spinlock.h>
  15#include <linux/irq_work.h>
  16#include <linux/security.h>
  17#include <linux/uaccess.h>
  18#include <linux/hardirq.h>
  19#include <linux/kthread.h>	/* for self test */
  20#include <linux/module.h>
  21#include <linux/percpu.h>
  22#include <linux/mutex.h>
  23#include <linux/delay.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/hash.h>
  27#include <linux/list.h>
  28#include <linux/cpu.h>
  29#include <linux/oom.h>
  30#include <linux/mm.h>
  31
  32#include <asm/local64.h>
  33#include <asm/local.h>
  34
  35#include "trace.h"
  36
  37/*
  38 * The "absolute" timestamp in the buffer is only 59 bits.
  39 * If a clock has the 5 MSBs set, it needs to be saved and
  40 * reinserted.
  41 */
  42#define TS_MSB		(0xf8ULL << 56)
  43#define ABS_TS_MASK	(~TS_MSB)
  44
  45static void update_pages_handler(struct work_struct *work);
  46
  47#define RING_BUFFER_META_MAGIC	0xBADFEED
  48
  49struct ring_buffer_meta {
  50	int		magic;
  51	int		struct_size;
  52	unsigned long	text_addr;
  53	unsigned long	data_addr;
  54	unsigned long	first_buffer;
  55	unsigned long	head_buffer;
  56	unsigned long	commit_buffer;
  57	__u32		subbuf_size;
  58	__u32		nr_subbufs;
  59	int		buffers[];
  60};
  61
  62/*
  63 * The ring buffer header is special. We must manually up keep it.
  64 */
  65int ring_buffer_print_entry_header(struct trace_seq *s)
  66{
  67	trace_seq_puts(s, "# compressed entry header\n");
  68	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  69	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  70	trace_seq_puts(s, "\tarray       :   32 bits\n");
  71	trace_seq_putc(s, '\n');
  72	trace_seq_printf(s, "\tpadding     : type == %d\n",
  73			 RINGBUF_TYPE_PADDING);
  74	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  75			 RINGBUF_TYPE_TIME_EXTEND);
  76	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  77			 RINGBUF_TYPE_TIME_STAMP);
  78	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  79			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  80
  81	return !trace_seq_has_overflowed(s);
  82}
  83
  84/*
  85 * The ring buffer is made up of a list of pages. A separate list of pages is
  86 * allocated for each CPU. A writer may only write to a buffer that is
  87 * associated with the CPU it is currently executing on.  A reader may read
  88 * from any per cpu buffer.
  89 *
  90 * The reader is special. For each per cpu buffer, the reader has its own
  91 * reader page. When a reader has read the entire reader page, this reader
  92 * page is swapped with another page in the ring buffer.
  93 *
  94 * Now, as long as the writer is off the reader page, the reader can do what
  95 * ever it wants with that page. The writer will never write to that page
  96 * again (as long as it is out of the ring buffer).
  97 *
  98 * Here's some silly ASCII art.
  99 *
 100 *   +------+
 101 *   |reader|          RING BUFFER
 102 *   |page  |
 103 *   +------+        +---+   +---+   +---+
 104 *                   |   |-->|   |-->|   |
 105 *                   +---+   +---+   +---+
 106 *                     ^               |
 107 *                     |               |
 108 *                     +---------------+
 109 *
 110 *
 111 *   +------+
 112 *   |reader|          RING BUFFER
 113 *   |page  |------------------v
 114 *   +------+        +---+   +---+   +---+
 115 *                   |   |-->|   |-->|   |
 116 *                   +---+   +---+   +---+
 117 *                     ^               |
 118 *                     |               |
 119 *                     +---------------+
 120 *
 121 *
 122 *   +------+
 123 *   |reader|          RING BUFFER
 124 *   |page  |------------------v
 125 *   +------+        +---+   +---+   +---+
 126 *      ^            |   |-->|   |-->|   |
 127 *      |            +---+   +---+   +---+
 128 *      |                              |
 129 *      |                              |
 130 *      +------------------------------+
 131 *
 132 *
 133 *   +------+
 134 *   |buffer|          RING BUFFER
 135 *   |page  |------------------v
 136 *   +------+        +---+   +---+   +---+
 137 *      ^            |   |   |   |-->|   |
 138 *      |   New      +---+   +---+   +---+
 139 *      |  Reader------^               |
 140 *      |   page                       |
 141 *      +------------------------------+
 142 *
 143 *
 144 * After we make this swap, the reader can hand this page off to the splice
 145 * code and be done with it. It can even allocate a new page if it needs to
 146 * and swap that into the ring buffer.
 147 *
 148 * We will be using cmpxchg soon to make all this lockless.
 149 *
 150 */
 151
 152/* Used for individual buffers (after the counter) */
 153#define RB_BUFFER_OFF		(1 << 20)
 154
 155#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 156
 157#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 158#define RB_ALIGNMENT		4U
 159#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 160#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 161
 162#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 163# define RB_FORCE_8BYTE_ALIGNMENT	0
 164# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 165#else
 166# define RB_FORCE_8BYTE_ALIGNMENT	1
 167# define RB_ARCH_ALIGNMENT		8U
 168#endif
 169
 170#define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
 171
 172/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 173#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 174
 175enum {
 176	RB_LEN_TIME_EXTEND = 8,
 177	RB_LEN_TIME_STAMP =  8,
 178};
 179
 180#define skip_time_extend(event) \
 181	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 182
 183#define extended_time(event) \
 184	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 185
 186static inline bool rb_null_event(struct ring_buffer_event *event)
 187{
 188	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 189}
 190
 191static void rb_event_set_padding(struct ring_buffer_event *event)
 192{
 193	/* padding has a NULL time_delta */
 194	event->type_len = RINGBUF_TYPE_PADDING;
 195	event->time_delta = 0;
 196}
 197
 198static unsigned
 199rb_event_data_length(struct ring_buffer_event *event)
 200{
 201	unsigned length;
 202
 203	if (event->type_len)
 204		length = event->type_len * RB_ALIGNMENT;
 205	else
 206		length = event->array[0];
 207	return length + RB_EVNT_HDR_SIZE;
 208}
 209
 210/*
 211 * Return the length of the given event. Will return
 212 * the length of the time extend if the event is a
 213 * time extend.
 214 */
 215static inline unsigned
 216rb_event_length(struct ring_buffer_event *event)
 217{
 218	switch (event->type_len) {
 219	case RINGBUF_TYPE_PADDING:
 220		if (rb_null_event(event))
 221			/* undefined */
 222			return -1;
 223		return  event->array[0] + RB_EVNT_HDR_SIZE;
 224
 225	case RINGBUF_TYPE_TIME_EXTEND:
 226		return RB_LEN_TIME_EXTEND;
 227
 228	case RINGBUF_TYPE_TIME_STAMP:
 229		return RB_LEN_TIME_STAMP;
 230
 231	case RINGBUF_TYPE_DATA:
 232		return rb_event_data_length(event);
 233	default:
 234		WARN_ON_ONCE(1);
 235	}
 236	/* not hit */
 237	return 0;
 238}
 239
 240/*
 241 * Return total length of time extend and data,
 242 *   or just the event length for all other events.
 243 */
 244static inline unsigned
 245rb_event_ts_length(struct ring_buffer_event *event)
 246{
 247	unsigned len = 0;
 248
 249	if (extended_time(event)) {
 250		/* time extends include the data event after it */
 251		len = RB_LEN_TIME_EXTEND;
 252		event = skip_time_extend(event);
 253	}
 254	return len + rb_event_length(event);
 255}
 256
 257/**
 258 * ring_buffer_event_length - return the length of the event
 259 * @event: the event to get the length of
 260 *
 261 * Returns the size of the data load of a data event.
 262 * If the event is something other than a data event, it
 263 * returns the size of the event itself. With the exception
 264 * of a TIME EXTEND, where it still returns the size of the
 265 * data load of the data event after it.
 266 */
 267unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 268{
 269	unsigned length;
 270
 271	if (extended_time(event))
 272		event = skip_time_extend(event);
 273
 274	length = rb_event_length(event);
 275	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 276		return length;
 277	length -= RB_EVNT_HDR_SIZE;
 278	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 279                length -= sizeof(event->array[0]);
 280	return length;
 281}
 282EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 283
 284/* inline for ring buffer fast paths */
 285static __always_inline void *
 286rb_event_data(struct ring_buffer_event *event)
 287{
 288	if (extended_time(event))
 289		event = skip_time_extend(event);
 290	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 291	/* If length is in len field, then array[0] has the data */
 292	if (event->type_len)
 293		return (void *)&event->array[0];
 294	/* Otherwise length is in array[0] and array[1] has the data */
 295	return (void *)&event->array[1];
 296}
 297
 298/**
 299 * ring_buffer_event_data - return the data of the event
 300 * @event: the event to get the data from
 301 */
 302void *ring_buffer_event_data(struct ring_buffer_event *event)
 303{
 304	return rb_event_data(event);
 305}
 306EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 307
 308#define for_each_buffer_cpu(buffer, cpu)		\
 309	for_each_cpu(cpu, buffer->cpumask)
 310
 311#define for_each_online_buffer_cpu(buffer, cpu)		\
 312	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
 313
 314#define TS_SHIFT	27
 315#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 316#define TS_DELTA_TEST	(~TS_MASK)
 317
 318static u64 rb_event_time_stamp(struct ring_buffer_event *event)
 
 
 
 
 
 
 
 
 
 
 319{
 320	u64 ts;
 321
 322	ts = event->array[0];
 323	ts <<= TS_SHIFT;
 324	ts += event->time_delta;
 325
 326	return ts;
 327}
 328
 329/* Flag when events were overwritten */
 330#define RB_MISSED_EVENTS	(1 << 31)
 331/* Missed count stored at end */
 332#define RB_MISSED_STORED	(1 << 30)
 333
 334#define RB_MISSED_MASK		(3 << 30)
 335
 336struct buffer_data_page {
 337	u64		 time_stamp;	/* page time stamp */
 338	local_t		 commit;	/* write committed index */
 339	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 340};
 341
 342struct buffer_data_read_page {
 343	unsigned		order;	/* order of the page */
 344	struct buffer_data_page	*data;	/* actual data, stored in this page */
 345};
 346
 347/*
 348 * Note, the buffer_page list must be first. The buffer pages
 349 * are allocated in cache lines, which means that each buffer
 350 * page will be at the beginning of a cache line, and thus
 351 * the least significant bits will be zero. We use this to
 352 * add flags in the list struct pointers, to make the ring buffer
 353 * lockless.
 354 */
 355struct buffer_page {
 356	struct list_head list;		/* list of buffer pages */
 357	local_t		 write;		/* index for next write */
 358	unsigned	 read;		/* index for next read */
 359	local_t		 entries;	/* entries on this page */
 360	unsigned long	 real_end;	/* real end of data */
 361	unsigned	 order;		/* order of the page */
 362	u32		 id:30;		/* ID for external mapping */
 363	u32		 range:1;	/* Mapped via a range */
 364	struct buffer_data_page *page;	/* Actual data page */
 365};
 366
 367/*
 368 * The buffer page counters, write and entries, must be reset
 369 * atomically when crossing page boundaries. To synchronize this
 370 * update, two counters are inserted into the number. One is
 371 * the actual counter for the write position or count on the page.
 372 *
 373 * The other is a counter of updaters. Before an update happens
 374 * the update partition of the counter is incremented. This will
 375 * allow the updater to update the counter atomically.
 376 *
 377 * The counter is 20 bits, and the state data is 12.
 378 */
 379#define RB_WRITE_MASK		0xfffff
 380#define RB_WRITE_INTCNT		(1 << 20)
 381
 382static void rb_init_page(struct buffer_data_page *bpage)
 383{
 384	local_set(&bpage->commit, 0);
 385}
 386
 387static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
 
 
 
 
 
 
 388{
 389	return local_read(&bpage->page->commit);
 
 
 
 390}
 391
 
 
 
 
 392static void free_buffer_page(struct buffer_page *bpage)
 393{
 394	/* Range pages are not to be freed */
 395	if (!bpage->range)
 396		free_pages((unsigned long)bpage->page, bpage->order);
 397	kfree(bpage);
 398}
 399
 400/*
 401 * We need to fit the time_stamp delta into 27 bits.
 402 */
 403static inline bool test_time_stamp(u64 delta)
 
 
 
 
 
 
 
 
 
 
 
 
 404{
 405	return !!(delta & TS_DELTA_TEST);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406}
 407
 408struct rb_irq_work {
 409	struct irq_work			work;
 410	wait_queue_head_t		waiters;
 411	wait_queue_head_t		full_waiters;
 412	atomic_t			seq;
 413	bool				waiters_pending;
 414	bool				full_waiters_pending;
 415	bool				wakeup_full;
 416};
 417
 418/*
 419 * Structure to hold event state and handle nested events.
 420 */
 421struct rb_event_info {
 422	u64			ts;
 423	u64			delta;
 424	u64			before;
 425	u64			after;
 426	unsigned long		length;
 427	struct buffer_page	*tail_page;
 428	int			add_timestamp;
 429};
 430
 431/*
 432 * Used for the add_timestamp
 433 *  NONE
 434 *  EXTEND - wants a time extend
 435 *  ABSOLUTE - the buffer requests all events to have absolute time stamps
 436 *  FORCE - force a full time stamp.
 437 */
 438enum {
 439	RB_ADD_STAMP_NONE		= 0,
 440	RB_ADD_STAMP_EXTEND		= BIT(1),
 441	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
 442	RB_ADD_STAMP_FORCE		= BIT(3)
 443};
 444/*
 445 * Used for which event context the event is in.
 446 *  TRANSITION = 0
 447 *  NMI     = 1
 448 *  IRQ     = 2
 449 *  SOFTIRQ = 3
 450 *  NORMAL  = 4
 451 *
 452 * See trace_recursive_lock() comment below for more details.
 453 */
 454enum {
 455	RB_CTX_TRANSITION,
 456	RB_CTX_NMI,
 457	RB_CTX_IRQ,
 458	RB_CTX_SOFTIRQ,
 459	RB_CTX_NORMAL,
 460	RB_CTX_MAX
 461};
 462
 463struct rb_time_struct {
 464	local64_t	time;
 465};
 466typedef struct rb_time_struct rb_time_t;
 467
 468#define MAX_NEST	5
 469
 470/*
 471 * head_page == tail_page && head == tail then buffer is empty.
 472 */
 473struct ring_buffer_per_cpu {
 474	int				cpu;
 475	atomic_t			record_disabled;
 476	atomic_t			resize_disabled;
 477	struct trace_buffer	*buffer;
 478	raw_spinlock_t			reader_lock;	/* serialize readers */
 479	arch_spinlock_t			lock;
 480	struct lock_class_key		lock_key;
 481	struct buffer_data_page		*free_page;
 482	unsigned long			nr_pages;
 483	unsigned int			current_context;
 484	struct list_head		*pages;
 485	/* pages generation counter, incremented when the list changes */
 486	unsigned long			cnt;
 487	struct buffer_page		*head_page;	/* read from head */
 488	struct buffer_page		*tail_page;	/* write to tail */
 489	struct buffer_page		*commit_page;	/* committed pages */
 490	struct buffer_page		*reader_page;
 491	unsigned long			lost_events;
 492	unsigned long			last_overrun;
 493	unsigned long			nest;
 494	local_t				entries_bytes;
 495	local_t				entries;
 496	local_t				overrun;
 497	local_t				commit_overrun;
 498	local_t				dropped_events;
 499	local_t				committing;
 500	local_t				commits;
 501	local_t				pages_touched;
 502	local_t				pages_lost;
 503	local_t				pages_read;
 504	long				last_pages_touch;
 505	size_t				shortest_full;
 506	unsigned long			read;
 507	unsigned long			read_bytes;
 508	rb_time_t			write_stamp;
 509	rb_time_t			before_stamp;
 510	u64				event_stamp[MAX_NEST];
 511	u64				read_stamp;
 512	/* pages removed since last reset */
 513	unsigned long			pages_removed;
 514
 515	unsigned int			mapped;
 516	unsigned int			user_mapped;	/* user space mapping */
 517	struct mutex			mapping_lock;
 518	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
 519	struct trace_buffer_meta	*meta_page;
 520	struct ring_buffer_meta		*ring_meta;
 521
 522	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 523	long				nr_pages_to_update;
 524	struct list_head		new_pages; /* new pages to add */
 525	struct work_struct		update_pages_work;
 526	struct completion		update_done;
 527
 528	struct rb_irq_work		irq_work;
 529};
 530
 531struct trace_buffer {
 532	unsigned			flags;
 533	int				cpus;
 534	atomic_t			record_disabled;
 535	atomic_t			resizing;
 536	cpumask_var_t			cpumask;
 537
 538	struct lock_class_key		*reader_lock_key;
 539
 540	struct mutex			mutex;
 541
 542	struct ring_buffer_per_cpu	**buffers;
 543
 544	struct hlist_node		node;
 545	u64				(*clock)(void);
 546
 547	struct rb_irq_work		irq_work;
 548	bool				time_stamp_abs;
 549
 550	unsigned long			range_addr_start;
 551	unsigned long			range_addr_end;
 552
 553	long				last_text_delta;
 554	long				last_data_delta;
 555
 556	unsigned int			subbuf_size;
 557	unsigned int			subbuf_order;
 558	unsigned int			max_data_size;
 559};
 560
 561struct ring_buffer_iter {
 562	struct ring_buffer_per_cpu	*cpu_buffer;
 563	unsigned long			head;
 564	unsigned long			next_event;
 565	struct buffer_page		*head_page;
 566	struct buffer_page		*cache_reader_page;
 567	unsigned long			cache_read;
 568	unsigned long			cache_pages_removed;
 569	u64				read_stamp;
 570	u64				page_stamp;
 571	struct ring_buffer_event	*event;
 572	size_t				event_size;
 573	int				missed_events;
 574};
 575
 576int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
 577{
 578	struct buffer_data_page field;
 579
 580	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 581			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 582			 (unsigned int)sizeof(field.time_stamp),
 583			 (unsigned int)is_signed_type(u64));
 584
 585	trace_seq_printf(s, "\tfield: local_t commit;\t"
 586			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 587			 (unsigned int)offsetof(typeof(field), commit),
 588			 (unsigned int)sizeof(field.commit),
 589			 (unsigned int)is_signed_type(long));
 590
 591	trace_seq_printf(s, "\tfield: int overwrite;\t"
 592			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 593			 (unsigned int)offsetof(typeof(field), commit),
 594			 1,
 595			 (unsigned int)is_signed_type(long));
 596
 597	trace_seq_printf(s, "\tfield: char data;\t"
 598			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 599			 (unsigned int)offsetof(typeof(field), data),
 600			 (unsigned int)buffer->subbuf_size,
 601			 (unsigned int)is_signed_type(char));
 602
 603	return !trace_seq_has_overflowed(s);
 604}
 605
 606static inline void rb_time_read(rb_time_t *t, u64 *ret)
 607{
 608	*ret = local64_read(&t->time);
 609}
 610static void rb_time_set(rb_time_t *t, u64 val)
 611{
 612	local64_set(&t->time, val);
 613}
 614
 615/*
 616 * Enable this to make sure that the event passed to
 617 * ring_buffer_event_time_stamp() is not committed and also
 618 * is on the buffer that it passed in.
 619 */
 620//#define RB_VERIFY_EVENT
 621#ifdef RB_VERIFY_EVENT
 622static struct list_head *rb_list_head(struct list_head *list);
 623static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
 624			 void *event)
 625{
 626	struct buffer_page *page = cpu_buffer->commit_page;
 627	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
 628	struct list_head *next;
 629	long commit, write;
 630	unsigned long addr = (unsigned long)event;
 631	bool done = false;
 632	int stop = 0;
 633
 634	/* Make sure the event exists and is not committed yet */
 635	do {
 636		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
 637			done = true;
 638		commit = local_read(&page->page->commit);
 639		write = local_read(&page->write);
 640		if (addr >= (unsigned long)&page->page->data[commit] &&
 641		    addr < (unsigned long)&page->page->data[write])
 642			return;
 643
 644		next = rb_list_head(page->list.next);
 645		page = list_entry(next, struct buffer_page, list);
 646	} while (!done);
 647	WARN_ON_ONCE(1);
 648}
 649#else
 650static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
 651			 void *event)
 652{
 653}
 654#endif
 655
 656/*
 657 * The absolute time stamp drops the 5 MSBs and some clocks may
 658 * require them. The rb_fix_abs_ts() will take a previous full
 659 * time stamp, and add the 5 MSB of that time stamp on to the
 660 * saved absolute time stamp. Then they are compared in case of
 661 * the unlikely event that the latest time stamp incremented
 662 * the 5 MSB.
 663 */
 664static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
 665{
 666	if (save_ts & TS_MSB) {
 667		abs |= save_ts & TS_MSB;
 668		/* Check for overflow */
 669		if (unlikely(abs < save_ts))
 670			abs += 1ULL << 59;
 671	}
 672	return abs;
 673}
 674
 675static inline u64 rb_time_stamp(struct trace_buffer *buffer);
 676
 677/**
 678 * ring_buffer_event_time_stamp - return the event's current time stamp
 679 * @buffer: The buffer that the event is on
 680 * @event: the event to get the time stamp of
 681 *
 682 * Note, this must be called after @event is reserved, and before it is
 683 * committed to the ring buffer. And must be called from the same
 684 * context where the event was reserved (normal, softirq, irq, etc).
 685 *
 686 * Returns the time stamp associated with the current event.
 687 * If the event has an extended time stamp, then that is used as
 688 * the time stamp to return.
 689 * In the highly unlikely case that the event was nested more than
 690 * the max nesting, then the write_stamp of the buffer is returned,
 691 * otherwise  current time is returned, but that really neither of
 692 * the last two cases should ever happen.
 693 */
 694u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
 695				 struct ring_buffer_event *event)
 696{
 697	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
 698	unsigned int nest;
 699	u64 ts;
 700
 701	/* If the event includes an absolute time, then just use that */
 702	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
 703		ts = rb_event_time_stamp(event);
 704		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
 705	}
 706
 707	nest = local_read(&cpu_buffer->committing);
 708	verify_event(cpu_buffer, event);
 709	if (WARN_ON_ONCE(!nest))
 710		goto fail;
 711
 712	/* Read the current saved nesting level time stamp */
 713	if (likely(--nest < MAX_NEST))
 714		return cpu_buffer->event_stamp[nest];
 715
 716	/* Shouldn't happen, warn if it does */
 717	WARN_ONCE(1, "nest (%d) greater than max", nest);
 718
 719 fail:
 720	rb_time_read(&cpu_buffer->write_stamp, &ts);
 721
 722	return ts;
 723}
 724
 725/**
 726 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
 727 * @buffer: The ring_buffer to get the number of pages from
 728 * @cpu: The cpu of the ring_buffer to get the number of pages from
 729 *
 730 * Returns the number of pages that have content in the ring buffer.
 731 */
 732size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
 733{
 734	size_t read;
 735	size_t lost;
 736	size_t cnt;
 737
 738	read = local_read(&buffer->buffers[cpu]->pages_read);
 739	lost = local_read(&buffer->buffers[cpu]->pages_lost);
 740	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 741
 742	if (WARN_ON_ONCE(cnt < lost))
 743		return 0;
 744
 745	cnt -= lost;
 746
 747	/* The reader can read an empty page, but not more than that */
 748	if (cnt < read) {
 749		WARN_ON_ONCE(read > cnt + 1);
 750		return 0;
 751	}
 752
 753	return cnt - read;
 754}
 755
 756static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
 757{
 758	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
 759	size_t nr_pages;
 760	size_t dirty;
 761
 762	nr_pages = cpu_buffer->nr_pages;
 763	if (!nr_pages || !full)
 764		return true;
 765
 766	/*
 767	 * Add one as dirty will never equal nr_pages, as the sub-buffer
 768	 * that the writer is on is not counted as dirty.
 769	 * This is needed if "buffer_percent" is set to 100.
 770	 */
 771	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
 772
 773	return (dirty * 100) >= (full * nr_pages);
 774}
 775
 776/*
 777 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 778 *
 779 * Schedules a delayed work to wake up any task that is blocked on the
 780 * ring buffer waiters queue.
 781 */
 782static void rb_wake_up_waiters(struct irq_work *work)
 783{
 784	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 785
 786	/* For waiters waiting for the first wake up */
 787	(void)atomic_fetch_inc_release(&rbwork->seq);
 788
 789	wake_up_all(&rbwork->waiters);
 790	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
 791		/* Only cpu_buffer sets the above flags */
 792		struct ring_buffer_per_cpu *cpu_buffer =
 793			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
 794
 795		/* Called from interrupt context */
 796		raw_spin_lock(&cpu_buffer->reader_lock);
 797		rbwork->wakeup_full = false;
 798		rbwork->full_waiters_pending = false;
 799
 800		/* Waking up all waiters, they will reset the shortest full */
 801		cpu_buffer->shortest_full = 0;
 802		raw_spin_unlock(&cpu_buffer->reader_lock);
 803
 804		wake_up_all(&rbwork->full_waiters);
 805	}
 806}
 807
 808/**
 809 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
 810 * @buffer: The ring buffer to wake waiters on
 811 * @cpu: The CPU buffer to wake waiters on
 812 *
 813 * In the case of a file that represents a ring buffer is closing,
 814 * it is prudent to wake up any waiters that are on this.
 815 */
 816void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
 817{
 818	struct ring_buffer_per_cpu *cpu_buffer;
 819	struct rb_irq_work *rbwork;
 820
 821	if (!buffer)
 822		return;
 823
 824	if (cpu == RING_BUFFER_ALL_CPUS) {
 825
 826		/* Wake up individual ones too. One level recursion */
 827		for_each_buffer_cpu(buffer, cpu)
 828			ring_buffer_wake_waiters(buffer, cpu);
 829
 830		rbwork = &buffer->irq_work;
 831	} else {
 832		if (WARN_ON_ONCE(!buffer->buffers))
 833			return;
 834		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
 835			return;
 836
 837		cpu_buffer = buffer->buffers[cpu];
 838		/* The CPU buffer may not have been initialized yet */
 839		if (!cpu_buffer)
 840			return;
 841		rbwork = &cpu_buffer->irq_work;
 842	}
 843
 844	/* This can be called in any context */
 845	irq_work_queue(&rbwork->work);
 846}
 847
 848static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
 849{
 850	struct ring_buffer_per_cpu *cpu_buffer;
 851	bool ret = false;
 852
 853	/* Reads of all CPUs always waits for any data */
 854	if (cpu == RING_BUFFER_ALL_CPUS)
 855		return !ring_buffer_empty(buffer);
 856
 857	cpu_buffer = buffer->buffers[cpu];
 858
 859	if (!ring_buffer_empty_cpu(buffer, cpu)) {
 860		unsigned long flags;
 861		bool pagebusy;
 862
 863		if (!full)
 864			return true;
 865
 866		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 867		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 868		ret = !pagebusy && full_hit(buffer, cpu, full);
 869
 870		if (!ret && (!cpu_buffer->shortest_full ||
 871			     cpu_buffer->shortest_full > full)) {
 872		    cpu_buffer->shortest_full = full;
 873		}
 874		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 875	}
 876	return ret;
 877}
 878
 879static inline bool
 880rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
 881	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
 882{
 883	if (rb_watermark_hit(buffer, cpu, full))
 884		return true;
 885
 886	if (cond(data))
 887		return true;
 888
 889	/*
 890	 * The events can happen in critical sections where
 891	 * checking a work queue can cause deadlocks.
 892	 * After adding a task to the queue, this flag is set
 893	 * only to notify events to try to wake up the queue
 894	 * using irq_work.
 895	 *
 896	 * We don't clear it even if the buffer is no longer
 897	 * empty. The flag only causes the next event to run
 898	 * irq_work to do the work queue wake up. The worse
 899	 * that can happen if we race with !trace_empty() is that
 900	 * an event will cause an irq_work to try to wake up
 901	 * an empty queue.
 902	 *
 903	 * There's no reason to protect this flag either, as
 904	 * the work queue and irq_work logic will do the necessary
 905	 * synchronization for the wake ups. The only thing
 906	 * that is necessary is that the wake up happens after
 907	 * a task has been queued. It's OK for spurious wake ups.
 908	 */
 909	if (full)
 910		rbwork->full_waiters_pending = true;
 911	else
 912		rbwork->waiters_pending = true;
 913
 914	return false;
 915}
 916
 917struct rb_wait_data {
 918	struct rb_irq_work		*irq_work;
 919	int				seq;
 920};
 921
 922/*
 923 * The default wait condition for ring_buffer_wait() is to just to exit the
 924 * wait loop the first time it is woken up.
 925 */
 926static bool rb_wait_once(void *data)
 927{
 928	struct rb_wait_data *rdata = data;
 929	struct rb_irq_work *rbwork = rdata->irq_work;
 930
 931	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
 932}
 933
 934/**
 935 * ring_buffer_wait - wait for input to the ring buffer
 936 * @buffer: buffer to wait on
 937 * @cpu: the cpu buffer to wait on
 938 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
 939 * @cond: condition function to break out of wait (NULL to run once)
 940 * @data: the data to pass to @cond.
 941 *
 942 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 943 * as data is added to any of the @buffer's cpu buffers. Otherwise
 944 * it will wait for data to be added to a specific cpu buffer.
 945 */
 946int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
 947		     ring_buffer_cond_fn cond, void *data)
 948{
 949	struct ring_buffer_per_cpu *cpu_buffer;
 950	struct wait_queue_head *waitq;
 951	struct rb_irq_work *rbwork;
 952	struct rb_wait_data rdata;
 953	int ret = 0;
 954
 955	/*
 956	 * Depending on what the caller is waiting for, either any
 957	 * data in any cpu buffer, or a specific buffer, put the
 958	 * caller on the appropriate wait queue.
 959	 */
 960	if (cpu == RING_BUFFER_ALL_CPUS) {
 961		rbwork = &buffer->irq_work;
 962		/* Full only makes sense on per cpu reads */
 963		full = 0;
 964	} else {
 965		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 966			return -ENODEV;
 967		cpu_buffer = buffer->buffers[cpu];
 968		rbwork = &cpu_buffer->irq_work;
 969	}
 970
 971	if (full)
 972		waitq = &rbwork->full_waiters;
 973	else
 974		waitq = &rbwork->waiters;
 975
 976	/* Set up to exit loop as soon as it is woken */
 977	if (!cond) {
 978		cond = rb_wait_once;
 979		rdata.irq_work = rbwork;
 980		rdata.seq = atomic_read_acquire(&rbwork->seq);
 981		data = &rdata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982	}
 983
 984	ret = wait_event_interruptible((*waitq),
 985				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
 
 
 986
 987	return ret;
 988}
 989
 990/**
 991 * ring_buffer_poll_wait - poll on buffer input
 992 * @buffer: buffer to wait on
 993 * @cpu: the cpu buffer to wait on
 994 * @filp: the file descriptor
 995 * @poll_table: The poll descriptor
 996 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
 997 *
 998 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 999 * as data is added to any of the @buffer's cpu buffers. Otherwise
1000 * it will wait for data to be added to a specific cpu buffer.
1001 *
1002 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1003 * zero otherwise.
1004 */
1005__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1006			  struct file *filp, poll_table *poll_table, int full)
1007{
1008	struct ring_buffer_per_cpu *cpu_buffer;
1009	struct rb_irq_work *rbwork;
1010
1011	if (cpu == RING_BUFFER_ALL_CPUS) {
1012		rbwork = &buffer->irq_work;
1013		full = 0;
1014	} else {
1015		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1016			return EPOLLERR;
1017
1018		cpu_buffer = buffer->buffers[cpu];
1019		rbwork = &cpu_buffer->irq_work;
1020	}
1021
1022	if (full) {
1023		poll_wait(filp, &rbwork->full_waiters, poll_table);
1024
1025		if (rb_watermark_hit(buffer, cpu, full))
1026			return EPOLLIN | EPOLLRDNORM;
1027		/*
1028		 * Only allow full_waiters_pending update to be seen after
1029		 * the shortest_full is set (in rb_watermark_hit). If the
1030		 * writer sees the full_waiters_pending flag set, it will
1031		 * compare the amount in the ring buffer to shortest_full.
1032		 * If the amount in the ring buffer is greater than the
1033		 * shortest_full percent, it will call the irq_work handler
1034		 * to wake up this list. The irq_handler will reset shortest_full
1035		 * back to zero. That's done under the reader_lock, but
1036		 * the below smp_mb() makes sure that the update to
1037		 * full_waiters_pending doesn't leak up into the above.
1038		 */
1039		smp_mb();
1040		rbwork->full_waiters_pending = true;
1041		return 0;
1042	}
1043
1044	poll_wait(filp, &rbwork->waiters, poll_table);
1045	rbwork->waiters_pending = true;
1046
1047	/*
1048	 * There's a tight race between setting the waiters_pending and
1049	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1050	 * is set, the next event will wake the task up, but we can get stuck
1051	 * if there's only a single event in.
1052	 *
1053	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1054	 * but adding a memory barrier to all events will cause too much of a
1055	 * performance hit in the fast path.  We only need a memory barrier when
1056	 * the buffer goes from empty to having content.  But as this race is
1057	 * extremely small, and it's not a problem if another event comes in, we
1058	 * will fix it later.
1059	 */
1060	smp_mb();
1061
1062	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1063	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1064		return EPOLLIN | EPOLLRDNORM;
1065	return 0;
1066}
1067
1068/* buffer may be either ring_buffer or ring_buffer_per_cpu */
1069#define RB_WARN_ON(b, cond)						\
1070	({								\
1071		int _____ret = unlikely(cond);				\
1072		if (_____ret) {						\
1073			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1074				struct ring_buffer_per_cpu *__b =	\
1075					(void *)b;			\
1076				atomic_inc(&__b->buffer->record_disabled); \
1077			} else						\
1078				atomic_inc(&b->record_disabled);	\
1079			WARN_ON(1);					\
1080		}							\
1081		_____ret;						\
1082	})
1083
1084/* Up this if you want to test the TIME_EXTENTS and normalization */
1085#define DEBUG_SHIFT 0
1086
1087static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1088{
1089	u64 ts;
1090
1091	/* Skip retpolines :-( */
1092	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1093		ts = trace_clock_local();
1094	else
1095		ts = buffer->clock();
1096
1097	/* shift to debug/test normalization and TIME_EXTENTS */
1098	return ts << DEBUG_SHIFT;
1099}
1100
1101u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1102{
1103	u64 time;
1104
1105	preempt_disable_notrace();
1106	time = rb_time_stamp(buffer);
1107	preempt_enable_notrace();
1108
1109	return time;
1110}
1111EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1112
1113void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1114				      int cpu, u64 *ts)
1115{
1116	/* Just stupid testing the normalize function and deltas */
1117	*ts >>= DEBUG_SHIFT;
1118}
1119EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1120
1121/*
1122 * Making the ring buffer lockless makes things tricky.
1123 * Although writes only happen on the CPU that they are on,
1124 * and they only need to worry about interrupts. Reads can
1125 * happen on any CPU.
1126 *
1127 * The reader page is always off the ring buffer, but when the
1128 * reader finishes with a page, it needs to swap its page with
1129 * a new one from the buffer. The reader needs to take from
1130 * the head (writes go to the tail). But if a writer is in overwrite
1131 * mode and wraps, it must push the head page forward.
1132 *
1133 * Here lies the problem.
1134 *
1135 * The reader must be careful to replace only the head page, and
1136 * not another one. As described at the top of the file in the
1137 * ASCII art, the reader sets its old page to point to the next
1138 * page after head. It then sets the page after head to point to
1139 * the old reader page. But if the writer moves the head page
1140 * during this operation, the reader could end up with the tail.
1141 *
1142 * We use cmpxchg to help prevent this race. We also do something
1143 * special with the page before head. We set the LSB to 1.
1144 *
1145 * When the writer must push the page forward, it will clear the
1146 * bit that points to the head page, move the head, and then set
1147 * the bit that points to the new head page.
1148 *
1149 * We also don't want an interrupt coming in and moving the head
1150 * page on another writer. Thus we use the second LSB to catch
1151 * that too. Thus:
1152 *
1153 * head->list->prev->next        bit 1          bit 0
1154 *                              -------        -------
1155 * Normal page                     0              0
1156 * Points to head page             0              1
1157 * New head page                   1              0
1158 *
1159 * Note we can not trust the prev pointer of the head page, because:
1160 *
1161 * +----+       +-----+        +-----+
1162 * |    |------>|  T  |---X--->|  N  |
1163 * |    |<------|     |        |     |
1164 * +----+       +-----+        +-----+
1165 *   ^                           ^ |
1166 *   |          +-----+          | |
1167 *   +----------|  R  |----------+ |
1168 *              |     |<-----------+
1169 *              +-----+
1170 *
1171 * Key:  ---X-->  HEAD flag set in pointer
1172 *         T      Tail page
1173 *         R      Reader page
1174 *         N      Next page
1175 *
1176 * (see __rb_reserve_next() to see where this happens)
1177 *
1178 *  What the above shows is that the reader just swapped out
1179 *  the reader page with a page in the buffer, but before it
1180 *  could make the new header point back to the new page added
1181 *  it was preempted by a writer. The writer moved forward onto
1182 *  the new page added by the reader and is about to move forward
1183 *  again.
1184 *
1185 *  You can see, it is legitimate for the previous pointer of
1186 *  the head (or any page) not to point back to itself. But only
1187 *  temporarily.
1188 */
1189
1190#define RB_PAGE_NORMAL		0UL
1191#define RB_PAGE_HEAD		1UL
1192#define RB_PAGE_UPDATE		2UL
1193
1194
1195#define RB_FLAG_MASK		3UL
1196
1197/* PAGE_MOVED is not part of the mask */
1198#define RB_PAGE_MOVED		4UL
1199
1200/*
1201 * rb_list_head - remove any bit
1202 */
1203static struct list_head *rb_list_head(struct list_head *list)
1204{
1205	unsigned long val = (unsigned long)list;
1206
1207	return (struct list_head *)(val & ~RB_FLAG_MASK);
1208}
1209
1210/*
1211 * rb_is_head_page - test if the given page is the head page
1212 *
1213 * Because the reader may move the head_page pointer, we can
1214 * not trust what the head page is (it may be pointing to
1215 * the reader page). But if the next page is a header page,
1216 * its flags will be non zero.
1217 */
1218static inline int
1219rb_is_head_page(struct buffer_page *page, struct list_head *list)
 
1220{
1221	unsigned long val;
1222
1223	val = (unsigned long)list->next;
1224
1225	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1226		return RB_PAGE_MOVED;
1227
1228	return val & RB_FLAG_MASK;
1229}
1230
1231/*
1232 * rb_is_reader_page
1233 *
1234 * The unique thing about the reader page, is that, if the
1235 * writer is ever on it, the previous pointer never points
1236 * back to the reader page.
1237 */
1238static bool rb_is_reader_page(struct buffer_page *page)
1239{
1240	struct list_head *list = page->list.prev;
1241
1242	return rb_list_head(list->next) != &page->list;
1243}
1244
1245/*
1246 * rb_set_list_to_head - set a list_head to be pointing to head.
1247 */
1248static void rb_set_list_to_head(struct list_head *list)
 
1249{
1250	unsigned long *ptr;
1251
1252	ptr = (unsigned long *)&list->next;
1253	*ptr |= RB_PAGE_HEAD;
1254	*ptr &= ~RB_PAGE_UPDATE;
1255}
1256
1257/*
1258 * rb_head_page_activate - sets up head page
1259 */
1260static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1261{
1262	struct buffer_page *head;
1263
1264	head = cpu_buffer->head_page;
1265	if (!head)
1266		return;
1267
1268	/*
1269	 * Set the previous list pointer to have the HEAD flag.
1270	 */
1271	rb_set_list_to_head(head->list.prev);
1272
1273	if (cpu_buffer->ring_meta) {
1274		struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1275		meta->head_buffer = (unsigned long)head->page;
1276	}
1277}
1278
1279static void rb_list_head_clear(struct list_head *list)
1280{
1281	unsigned long *ptr = (unsigned long *)&list->next;
1282
1283	*ptr &= ~RB_FLAG_MASK;
1284}
1285
1286/*
1287 * rb_head_page_deactivate - clears head page ptr (for free list)
1288 */
1289static void
1290rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1291{
1292	struct list_head *hd;
1293
1294	/* Go through the whole list and clear any pointers found. */
1295	rb_list_head_clear(cpu_buffer->pages);
1296
1297	list_for_each(hd, cpu_buffer->pages)
1298		rb_list_head_clear(hd);
1299}
1300
1301static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1302			    struct buffer_page *head,
1303			    struct buffer_page *prev,
1304			    int old_flag, int new_flag)
1305{
1306	struct list_head *list;
1307	unsigned long val = (unsigned long)&head->list;
1308	unsigned long ret;
1309
1310	list = &prev->list;
1311
1312	val &= ~RB_FLAG_MASK;
1313
1314	ret = cmpxchg((unsigned long *)&list->next,
1315		      val | old_flag, val | new_flag);
1316
1317	/* check if the reader took the page */
1318	if ((ret & ~RB_FLAG_MASK) != val)
1319		return RB_PAGE_MOVED;
1320
1321	return ret & RB_FLAG_MASK;
1322}
1323
1324static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1325				   struct buffer_page *head,
1326				   struct buffer_page *prev,
1327				   int old_flag)
1328{
1329	return rb_head_page_set(cpu_buffer, head, prev,
1330				old_flag, RB_PAGE_UPDATE);
1331}
1332
1333static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1334				 struct buffer_page *head,
1335				 struct buffer_page *prev,
1336				 int old_flag)
1337{
1338	return rb_head_page_set(cpu_buffer, head, prev,
1339				old_flag, RB_PAGE_HEAD);
1340}
1341
1342static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1343				   struct buffer_page *head,
1344				   struct buffer_page *prev,
1345				   int old_flag)
1346{
1347	return rb_head_page_set(cpu_buffer, head, prev,
1348				old_flag, RB_PAGE_NORMAL);
1349}
1350
1351static inline void rb_inc_page(struct buffer_page **bpage)
 
1352{
1353	struct list_head *p = rb_list_head((*bpage)->list.next);
1354
1355	*bpage = list_entry(p, struct buffer_page, list);
1356}
1357
1358static struct buffer_page *
1359rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1360{
1361	struct buffer_page *head;
1362	struct buffer_page *page;
1363	struct list_head *list;
1364	int i;
1365
1366	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1367		return NULL;
1368
1369	/* sanity check */
1370	list = cpu_buffer->pages;
1371	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1372		return NULL;
1373
1374	page = head = cpu_buffer->head_page;
1375	/*
1376	 * It is possible that the writer moves the header behind
1377	 * where we started, and we miss in one loop.
1378	 * A second loop should grab the header, but we'll do
1379	 * three loops just because I'm paranoid.
1380	 */
1381	for (i = 0; i < 3; i++) {
1382		do {
1383			if (rb_is_head_page(page, page->list.prev)) {
1384				cpu_buffer->head_page = page;
1385				return page;
1386			}
1387			rb_inc_page(&page);
1388		} while (page != head);
1389	}
1390
1391	RB_WARN_ON(cpu_buffer, 1);
1392
1393	return NULL;
1394}
1395
1396static bool rb_head_page_replace(struct buffer_page *old,
1397				struct buffer_page *new)
1398{
1399	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1400	unsigned long val;
 
1401
1402	val = *ptr & ~RB_FLAG_MASK;
1403	val |= RB_PAGE_HEAD;
1404
1405	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
 
 
1406}
1407
1408/*
1409 * rb_tail_page_update - move the tail page forward
1410 */
1411static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1412			       struct buffer_page *tail_page,
1413			       struct buffer_page *next_page)
1414{
1415	unsigned long old_entries;
1416	unsigned long old_write;
1417
1418	/*
1419	 * The tail page now needs to be moved forward.
1420	 *
1421	 * We need to reset the tail page, but without messing
1422	 * with possible erasing of data brought in by interrupts
1423	 * that have moved the tail page and are currently on it.
1424	 *
1425	 * We add a counter to the write field to denote this.
1426	 */
1427	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1428	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1429
1430	/*
1431	 * Just make sure we have seen our old_write and synchronize
1432	 * with any interrupts that come in.
1433	 */
1434	barrier();
1435
1436	/*
1437	 * If the tail page is still the same as what we think
1438	 * it is, then it is up to us to update the tail
1439	 * pointer.
1440	 */
1441	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1442		/* Zero the write counter */
1443		unsigned long val = old_write & ~RB_WRITE_MASK;
1444		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1445
1446		/*
1447		 * This will only succeed if an interrupt did
1448		 * not come in and change it. In which case, we
1449		 * do not want to modify it.
1450		 *
1451		 * We add (void) to let the compiler know that we do not care
1452		 * about the return value of these functions. We use the
1453		 * cmpxchg to only update if an interrupt did not already
1454		 * do it for us. If the cmpxchg fails, we don't care.
1455		 */
1456		(void)local_cmpxchg(&next_page->write, old_write, val);
1457		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1458
1459		/*
1460		 * No need to worry about races with clearing out the commit.
1461		 * it only can increment when a commit takes place. But that
1462		 * only happens in the outer most nested commit.
1463		 */
1464		local_set(&next_page->page->commit, 0);
1465
1466		/* Either we update tail_page or an interrupt does */
1467		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1468			local_inc(&cpu_buffer->pages_touched);
1469	}
1470}
1471
1472static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1473			  struct buffer_page *bpage)
1474{
1475	unsigned long val = (unsigned long)bpage;
1476
1477	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
 
 
 
1478}
1479
1480static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1481			   struct list_head *list)
 
 
 
1482{
1483	if (RB_WARN_ON(cpu_buffer,
1484		       rb_list_head(rb_list_head(list->next)->prev) != list))
1485		return false;
1486
1487	if (RB_WARN_ON(cpu_buffer,
1488		       rb_list_head(rb_list_head(list->prev)->next) != list))
1489		return false;
1490
1491	return true;
1492}
1493
1494/**
1495 * rb_check_pages - integrity check of buffer pages
1496 * @cpu_buffer: CPU buffer with pages to test
1497 *
1498 * As a safety measure we check to make sure the data pages have not
1499 * been corrupted.
1500 */
1501static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1502{
1503	struct list_head *head, *tmp;
1504	unsigned long buffer_cnt;
1505	unsigned long flags;
1506	int nr_loops = 0;
1507
1508	/*
1509	 * Walk the linked list underpinning the ring buffer and validate all
1510	 * its next and prev links.
1511	 *
1512	 * The check acquires the reader_lock to avoid concurrent processing
1513	 * with code that could be modifying the list. However, the lock cannot
1514	 * be held for the entire duration of the walk, as this would make the
1515	 * time when interrupts are disabled non-deterministic, dependent on the
1516	 * ring buffer size. Therefore, the code releases and re-acquires the
1517	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1518	 * is then used to detect if the list was modified while the lock was
1519	 * not held, in which case the check needs to be restarted.
1520	 *
1521	 * The code attempts to perform the check at most three times before
1522	 * giving up. This is acceptable because this is only a self-validation
1523	 * to detect problems early on. In practice, the list modification
1524	 * operations are fairly spaced, and so this check typically succeeds at
1525	 * most on the second try.
1526	 */
1527again:
1528	if (++nr_loops > 3)
1529		return;
1530
1531	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1532	head = rb_list_head(cpu_buffer->pages);
1533	if (!rb_check_links(cpu_buffer, head))
1534		goto out_locked;
1535	buffer_cnt = cpu_buffer->cnt;
1536	tmp = head;
1537	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1538
1539	while (true) {
1540		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 
 
1541
1542		if (buffer_cnt != cpu_buffer->cnt) {
1543			/* The list was updated, try again. */
1544			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1545			goto again;
1546		}
1547
1548		tmp = rb_list_head(tmp->next);
1549		if (tmp == head)
1550			/* The iteration circled back, all is done. */
1551			goto out_locked;
1552
1553		if (!rb_check_links(cpu_buffer, tmp))
1554			goto out_locked;
1555
1556		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1557	}
1558
1559out_locked:
1560	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1561}
1562
1563/*
1564 * Take an address, add the meta data size as well as the array of
1565 * array subbuffer indexes, then align it to a subbuffer size.
1566 *
1567 * This is used to help find the next per cpu subbuffer within a mapped range.
1568 */
1569static unsigned long
1570rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1571{
1572	addr += sizeof(struct ring_buffer_meta) +
1573		sizeof(int) * nr_subbufs;
1574	return ALIGN(addr, subbuf_size);
1575}
1576
1577/*
1578 * Return the ring_buffer_meta for a given @cpu.
1579 */
1580static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1581{
1582	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1583	unsigned long ptr = buffer->range_addr_start;
1584	struct ring_buffer_meta *meta;
1585	int nr_subbufs;
1586
1587	if (!ptr)
1588		return NULL;
1589
1590	/* When nr_pages passed in is zero, the first meta has already been initialized */
1591	if (!nr_pages) {
1592		meta = (struct ring_buffer_meta *)ptr;
1593		nr_subbufs = meta->nr_subbufs;
1594	} else {
1595		meta = NULL;
1596		/* Include the reader page */
1597		nr_subbufs = nr_pages + 1;
1598	}
1599
1600	/*
1601	 * The first chunk may not be subbuffer aligned, where as
1602	 * the rest of the chunks are.
1603	 */
1604	if (cpu) {
1605		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1606		ptr += subbuf_size * nr_subbufs;
1607
1608		/* We can use multiplication to find chunks greater than 1 */
1609		if (cpu > 1) {
1610			unsigned long size;
1611			unsigned long p;
1612
1613			/* Save the beginning of this CPU chunk */
1614			p = ptr;
1615			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1616			ptr += subbuf_size * nr_subbufs;
1617
1618			/* Now all chunks after this are the same size */
1619			size = ptr - p;
1620			ptr += size * (cpu - 2);
1621		}
1622	}
1623	return (void *)ptr;
1624}
1625
1626/* Return the start of subbufs given the meta pointer */
1627static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1628{
1629	int subbuf_size = meta->subbuf_size;
1630	unsigned long ptr;
1631
1632	ptr = (unsigned long)meta;
1633	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1634
1635	return (void *)ptr;
1636}
1637
1638/*
1639 * Return a specific sub-buffer for a given @cpu defined by @idx.
1640 */
1641static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1642{
1643	struct ring_buffer_meta *meta;
1644	unsigned long ptr;
1645	int subbuf_size;
1646
1647	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1648	if (!meta)
1649		return NULL;
1650
1651	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1652		return NULL;
1653
1654	subbuf_size = meta->subbuf_size;
1655
1656	/* Map this buffer to the order that's in meta->buffers[] */
1657	idx = meta->buffers[idx];
1658
1659	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1660
1661	ptr += subbuf_size * idx;
1662	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1663		return NULL;
1664
1665	return (void *)ptr;
1666}
1667
1668/*
1669 * See if the existing memory contains valid ring buffer data.
1670 * As the previous kernel must be the same as this kernel, all
1671 * the calculations (size of buffers and number of buffers)
1672 * must be the same.
1673 */
1674static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1675			  struct trace_buffer *buffer, int nr_pages,
1676			  unsigned long *subbuf_mask)
1677{
1678	int subbuf_size = PAGE_SIZE;
1679	struct buffer_data_page *subbuf;
1680	unsigned long buffers_start;
1681	unsigned long buffers_end;
1682	int i;
1683
1684	if (!subbuf_mask)
1685		return false;
1686
1687	/* Check the meta magic and meta struct size */
1688	if (meta->magic != RING_BUFFER_META_MAGIC ||
1689	    meta->struct_size != sizeof(*meta)) {
1690		pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1691		return false;
1692	}
1693
1694	/* The subbuffer's size and number of subbuffers must match */
1695	if (meta->subbuf_size != subbuf_size ||
1696	    meta->nr_subbufs != nr_pages + 1) {
1697		pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1698		return false;
1699	}
1700
1701	buffers_start = meta->first_buffer;
1702	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1703
1704	/* Is the head and commit buffers within the range of buffers? */
1705	if (meta->head_buffer < buffers_start ||
1706	    meta->head_buffer >= buffers_end) {
1707		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1708		return false;
1709	}
1710
1711	if (meta->commit_buffer < buffers_start ||
1712	    meta->commit_buffer >= buffers_end) {
1713		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1714		return false;
1715	}
1716
1717	subbuf = rb_subbufs_from_meta(meta);
1718
1719	bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1720
1721	/* Is the meta buffers and the subbufs themselves have correct data? */
1722	for (i = 0; i < meta->nr_subbufs; i++) {
1723		if (meta->buffers[i] < 0 ||
1724		    meta->buffers[i] >= meta->nr_subbufs) {
1725			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1726			return false;
1727		}
1728
1729		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1730			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1731			return false;
1732		}
1733
1734		if (test_bit(meta->buffers[i], subbuf_mask)) {
1735			pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1736			return false;
1737		}
1738
1739		set_bit(meta->buffers[i], subbuf_mask);
1740		subbuf = (void *)subbuf + subbuf_size;
1741	}
1742
1743	return true;
1744}
1745
1746static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1747
1748static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1749			       unsigned long long *timestamp, u64 *delta_ptr)
1750{
1751	struct ring_buffer_event *event;
1752	u64 ts, delta;
1753	int events = 0;
1754	int e;
1755
1756	*delta_ptr = 0;
1757	*timestamp = 0;
1758
1759	ts = dpage->time_stamp;
1760
1761	for (e = 0; e < tail; e += rb_event_length(event)) {
1762
1763		event = (struct ring_buffer_event *)(dpage->data + e);
1764
1765		switch (event->type_len) {
1766
1767		case RINGBUF_TYPE_TIME_EXTEND:
1768			delta = rb_event_time_stamp(event);
1769			ts += delta;
1770			break;
1771
1772		case RINGBUF_TYPE_TIME_STAMP:
1773			delta = rb_event_time_stamp(event);
1774			delta = rb_fix_abs_ts(delta, ts);
1775			if (delta < ts) {
1776				*delta_ptr = delta;
1777				*timestamp = ts;
1778				return -1;
1779			}
1780			ts = delta;
1781			break;
1782
1783		case RINGBUF_TYPE_PADDING:
1784			if (event->time_delta == 1)
1785				break;
1786			fallthrough;
1787		case RINGBUF_TYPE_DATA:
1788			events++;
1789			ts += event->time_delta;
1790			break;
1791
1792		default:
1793			return -1;
1794		}
1795	}
1796	*timestamp = ts;
1797	return events;
1798}
1799
1800static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1801{
1802	unsigned long long ts;
1803	u64 delta;
1804	int tail;
1805
1806	tail = local_read(&dpage->commit);
1807	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1808}
1809
1810/* If the meta data has been validated, now validate the events */
1811static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1812{
1813	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1814	struct buffer_page *head_page;
1815	unsigned long entry_bytes = 0;
1816	unsigned long entries = 0;
1817	int ret;
1818	int i;
1819
1820	if (!meta || !meta->head_buffer)
1821		return;
1822
1823	/* Do the reader page first */
1824	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1825	if (ret < 0) {
1826		pr_info("Ring buffer reader page is invalid\n");
1827		goto invalid;
1828	}
1829	entries += ret;
1830	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1831	local_set(&cpu_buffer->reader_page->entries, ret);
1832
1833	head_page = cpu_buffer->head_page;
1834
1835	/* If both the head and commit are on the reader_page then we are done. */
1836	if (head_page == cpu_buffer->reader_page &&
1837	    head_page == cpu_buffer->commit_page)
1838		goto done;
1839
1840	/* Iterate until finding the commit page */
1841	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1842
1843		/* Reader page has already been done */
1844		if (head_page == cpu_buffer->reader_page)
1845			continue;
1846
1847		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1848		if (ret < 0) {
1849			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1850				cpu_buffer->cpu);
1851			goto invalid;
1852		}
1853
1854		/* If the buffer has content, update pages_touched */
1855		if (ret)
1856			local_inc(&cpu_buffer->pages_touched);
1857
1858		entries += ret;
1859		entry_bytes += local_read(&head_page->page->commit);
1860		local_set(&cpu_buffer->head_page->entries, ret);
1861
1862		if (head_page == cpu_buffer->commit_page)
1863			break;
1864	}
1865
1866	if (head_page != cpu_buffer->commit_page) {
1867		pr_info("Ring buffer meta [%d] commit page not found\n",
1868			cpu_buffer->cpu);
1869		goto invalid;
1870	}
1871 done:
1872	local_set(&cpu_buffer->entries, entries);
1873	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1874
1875	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1876	return;
1877
1878 invalid:
1879	/* The content of the buffers are invalid, reset the meta data */
1880	meta->head_buffer = 0;
1881	meta->commit_buffer = 0;
1882
1883	/* Reset the reader page */
1884	local_set(&cpu_buffer->reader_page->entries, 0);
1885	local_set(&cpu_buffer->reader_page->page->commit, 0);
1886
1887	/* Reset all the subbuffers */
1888	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1889		local_set(&head_page->entries, 0);
1890		local_set(&head_page->page->commit, 0);
1891	}
1892}
1893
1894/* Used to calculate data delta */
1895static char rb_data_ptr[] = "";
1896
1897#define THIS_TEXT_PTR		((unsigned long)rb_meta_init_text_addr)
1898#define THIS_DATA_PTR		((unsigned long)rb_data_ptr)
1899
1900static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1901{
1902	meta->text_addr = THIS_TEXT_PTR;
1903	meta->data_addr = THIS_DATA_PTR;
1904}
1905
1906static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1907{
1908	struct ring_buffer_meta *meta;
1909	unsigned long *subbuf_mask;
1910	unsigned long delta;
1911	void *subbuf;
1912	int cpu;
1913	int i;
1914
1915	/* Create a mask to test the subbuf array */
1916	subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
1917	/* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
1918
1919	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1920		void *next_meta;
1921
1922		meta = rb_range_meta(buffer, nr_pages, cpu);
1923
1924		if (rb_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
1925			/* Make the mappings match the current address */
1926			subbuf = rb_subbufs_from_meta(meta);
1927			delta = (unsigned long)subbuf - meta->first_buffer;
1928			meta->first_buffer += delta;
1929			meta->head_buffer += delta;
1930			meta->commit_buffer += delta;
1931			buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1932			buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1933			continue;
1934		}
1935
1936		if (cpu < nr_cpu_ids - 1)
1937			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1938		else
1939			next_meta = (void *)buffer->range_addr_end;
1940
1941		memset(meta, 0, next_meta - (void *)meta);
1942
1943		meta->magic = RING_BUFFER_META_MAGIC;
1944		meta->struct_size = sizeof(*meta);
1945
1946		meta->nr_subbufs = nr_pages + 1;
1947		meta->subbuf_size = PAGE_SIZE;
1948
1949		subbuf = rb_subbufs_from_meta(meta);
1950
1951		meta->first_buffer = (unsigned long)subbuf;
1952		rb_meta_init_text_addr(meta);
1953
1954		/*
1955		 * The buffers[] array holds the order of the sub-buffers
1956		 * that are after the meta data. The sub-buffers may
1957		 * be swapped out when read and inserted into a different
1958		 * location of the ring buffer. Although their addresses
1959		 * remain the same, the buffers[] array contains the
1960		 * index into the sub-buffers holding their actual order.
1961		 */
1962		for (i = 0; i < meta->nr_subbufs; i++) {
1963			meta->buffers[i] = i;
1964			rb_init_page(subbuf);
1965			subbuf += meta->subbuf_size;
1966		}
1967	}
1968	bitmap_free(subbuf_mask);
1969}
1970
1971static void *rbm_start(struct seq_file *m, loff_t *pos)
1972{
1973	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1974	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1975	unsigned long val;
1976
1977	if (!meta)
1978		return NULL;
1979
1980	if (*pos > meta->nr_subbufs)
1981		return NULL;
1982
1983	val = *pos;
1984	val++;
1985
1986	return (void *)val;
1987}
1988
1989static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1990{
1991	(*pos)++;
1992
1993	return rbm_start(m, pos);
1994}
1995
1996static int rbm_show(struct seq_file *m, void *v)
1997{
1998	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1999	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2000	unsigned long val = (unsigned long)v;
2001
2002	if (val == 1) {
2003		seq_printf(m, "head_buffer:   %d\n",
2004			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2005		seq_printf(m, "commit_buffer: %d\n",
2006			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2007		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
2008		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
2009		return 0;
2010	}
2011
2012	val -= 2;
2013	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
2014
2015	return 0;
2016}
2017
2018static void rbm_stop(struct seq_file *m, void *p)
2019{
2020}
2021
2022static const struct seq_operations rb_meta_seq_ops = {
2023	.start		= rbm_start,
2024	.next		= rbm_next,
2025	.show		= rbm_show,
2026	.stop		= rbm_stop,
2027};
2028
2029int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2030{
2031	struct seq_file *m;
2032	int ret;
2033
2034	ret = seq_open(file, &rb_meta_seq_ops);
2035	if (ret)
2036		return ret;
2037
2038	m = file->private_data;
2039	m->private = buffer->buffers[cpu];
2040
2041	return 0;
2042}
2043
2044/* Map the buffer_pages to the previous head and commit pages */
2045static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2046				  struct buffer_page *bpage)
2047{
2048	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2049
2050	if (meta->head_buffer == (unsigned long)bpage->page)
2051		cpu_buffer->head_page = bpage;
2052
2053	if (meta->commit_buffer == (unsigned long)bpage->page) {
2054		cpu_buffer->commit_page = bpage;
2055		cpu_buffer->tail_page = bpage;
2056	}
2057}
2058
2059static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2060		long nr_pages, struct list_head *pages)
2061{
2062	struct trace_buffer *buffer = cpu_buffer->buffer;
2063	struct ring_buffer_meta *meta = NULL;
2064	struct buffer_page *bpage, *tmp;
2065	bool user_thread = current->mm != NULL;
2066	gfp_t mflags;
2067	long i;
2068
2069	/*
2070	 * Check if the available memory is there first.
2071	 * Note, si_mem_available() only gives us a rough estimate of available
2072	 * memory. It may not be accurate. But we don't care, we just want
2073	 * to prevent doing any allocation when it is obvious that it is
2074	 * not going to succeed.
2075	 */
2076	i = si_mem_available();
2077	if (i < nr_pages)
2078		return -ENOMEM;
2079
2080	/*
2081	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2082	 * gracefully without invoking oom-killer and the system is not
2083	 * destabilized.
2084	 */
2085	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2086
2087	/*
2088	 * If a user thread allocates too much, and si_mem_available()
2089	 * reports there's enough memory, even though there is not.
2090	 * Make sure the OOM killer kills this thread. This can happen
2091	 * even with RETRY_MAYFAIL because another task may be doing
2092	 * an allocation after this task has taken all memory.
2093	 * This is the task the OOM killer needs to take out during this
2094	 * loop, even if it was triggered by an allocation somewhere else.
2095	 */
2096	if (user_thread)
2097		set_current_oom_origin();
2098
2099	if (buffer->range_addr_start)
2100		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2101
2102	for (i = 0; i < nr_pages; i++) {
2103		struct page *page;
2104
2105		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2106				    mflags, cpu_to_node(cpu_buffer->cpu));
2107		if (!bpage)
2108			goto free_pages;
2109
2110		rb_check_bpage(cpu_buffer, bpage);
2111
2112		/*
2113		 * Append the pages as for mapped buffers we want to keep
2114		 * the order
2115		 */
2116		list_add_tail(&bpage->list, pages);
2117
2118		if (meta) {
2119			/* A range was given. Use that for the buffer page */
2120			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2121			if (!bpage->page)
2122				goto free_pages;
2123			/* If this is valid from a previous boot */
2124			if (meta->head_buffer)
2125				rb_meta_buffer_update(cpu_buffer, bpage);
2126			bpage->range = 1;
2127			bpage->id = i + 1;
2128		} else {
2129			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2130						mflags | __GFP_COMP | __GFP_ZERO,
2131						cpu_buffer->buffer->subbuf_order);
2132			if (!page)
2133				goto free_pages;
2134			bpage->page = page_address(page);
2135			rb_init_page(bpage->page);
2136		}
2137		bpage->order = cpu_buffer->buffer->subbuf_order;
2138
2139		if (user_thread && fatal_signal_pending(current))
2140			goto free_pages;
2141	}
2142	if (user_thread)
2143		clear_current_oom_origin();
2144
2145	return 0;
2146
2147free_pages:
2148	list_for_each_entry_safe(bpage, tmp, pages, list) {
2149		list_del_init(&bpage->list);
2150		free_buffer_page(bpage);
2151	}
2152	if (user_thread)
2153		clear_current_oom_origin();
2154
2155	return -ENOMEM;
2156}
2157
2158static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2159			     unsigned long nr_pages)
2160{
2161	LIST_HEAD(pages);
2162
2163	WARN_ON(!nr_pages);
2164
2165	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2166		return -ENOMEM;
2167
2168	/*
2169	 * The ring buffer page list is a circular list that does not
2170	 * start and end with a list head. All page list items point to
2171	 * other pages.
2172	 */
2173	cpu_buffer->pages = pages.next;
2174	list_del(&pages);
2175
2176	cpu_buffer->nr_pages = nr_pages;
2177
2178	rb_check_pages(cpu_buffer);
2179
2180	return 0;
2181}
2182
2183static struct ring_buffer_per_cpu *
2184rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2185{
2186	struct ring_buffer_per_cpu *cpu_buffer;
2187	struct ring_buffer_meta *meta;
2188	struct buffer_page *bpage;
2189	struct page *page;
2190	int ret;
2191
2192	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2193				  GFP_KERNEL, cpu_to_node(cpu));
2194	if (!cpu_buffer)
2195		return NULL;
2196
2197	cpu_buffer->cpu = cpu;
2198	cpu_buffer->buffer = buffer;
2199	raw_spin_lock_init(&cpu_buffer->reader_lock);
2200	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2201	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2202	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2203	init_completion(&cpu_buffer->update_done);
2204	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2205	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2206	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2207	mutex_init(&cpu_buffer->mapping_lock);
2208
2209	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2210			    GFP_KERNEL, cpu_to_node(cpu));
2211	if (!bpage)
2212		goto fail_free_buffer;
2213
2214	rb_check_bpage(cpu_buffer, bpage);
2215
2216	cpu_buffer->reader_page = bpage;
2217
2218	if (buffer->range_addr_start) {
2219		/*
2220		 * Range mapped buffers have the same restrictions as memory
2221		 * mapped ones do.
2222		 */
2223		cpu_buffer->mapped = 1;
2224		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2225		bpage->page = rb_range_buffer(cpu_buffer, 0);
2226		if (!bpage->page)
2227			goto fail_free_reader;
2228		if (cpu_buffer->ring_meta->head_buffer)
2229			rb_meta_buffer_update(cpu_buffer, bpage);
2230		bpage->range = 1;
2231	} else {
2232		page = alloc_pages_node(cpu_to_node(cpu),
2233					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2234					cpu_buffer->buffer->subbuf_order);
2235		if (!page)
2236			goto fail_free_reader;
2237		bpage->page = page_address(page);
2238		rb_init_page(bpage->page);
2239	}
2240
2241	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2242	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2243
2244	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2245	if (ret < 0)
2246		goto fail_free_reader;
2247
2248	rb_meta_validate_events(cpu_buffer);
 
 
2249
2250	/* If the boot meta was valid then this has already been updated */
2251	meta = cpu_buffer->ring_meta;
2252	if (!meta || !meta->head_buffer ||
2253	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2254		if (meta && meta->head_buffer &&
2255		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2256			pr_warn("Ring buffer meta buffers not all mapped\n");
2257			if (!cpu_buffer->head_page)
2258				pr_warn("   Missing head_page\n");
2259			if (!cpu_buffer->commit_page)
2260				pr_warn("   Missing commit_page\n");
2261			if (!cpu_buffer->tail_page)
2262				pr_warn("   Missing tail_page\n");
2263		}
2264
2265		cpu_buffer->head_page
2266			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2267		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2268
2269		rb_head_page_activate(cpu_buffer);
2270
2271		if (cpu_buffer->ring_meta)
2272			meta->commit_buffer = meta->head_buffer;
2273	} else {
2274		/* The valid meta buffer still needs to activate the head page */
2275		rb_head_page_activate(cpu_buffer);
2276	}
2277
2278	return cpu_buffer;
2279
2280 fail_free_reader:
2281	free_buffer_page(cpu_buffer->reader_page);
2282
2283 fail_free_buffer:
2284	kfree(cpu_buffer);
2285	return NULL;
2286}
2287
2288static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2289{
2290	struct list_head *head = cpu_buffer->pages;
2291	struct buffer_page *bpage, *tmp;
2292
2293	irq_work_sync(&cpu_buffer->irq_work.work);
2294
2295	free_buffer_page(cpu_buffer->reader_page);
2296
2297	if (head) {
2298		rb_head_page_deactivate(cpu_buffer);
2299
2300		list_for_each_entry_safe(bpage, tmp, head, list) {
2301			list_del_init(&bpage->list);
2302			free_buffer_page(bpage);
2303		}
2304		bpage = list_entry(head, struct buffer_page, list);
2305		free_buffer_page(bpage);
2306	}
2307
2308	free_page((unsigned long)cpu_buffer->free_page);
2309
2310	kfree(cpu_buffer);
2311}
2312
2313static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2314					 int order, unsigned long start,
2315					 unsigned long end,
2316					 struct lock_class_key *key)
 
 
 
 
 
 
 
 
2317{
2318	struct trace_buffer *buffer;
2319	long nr_pages;
2320	int subbuf_size;
2321	int bsize;
2322	int cpu;
2323	int ret;
2324
2325	/* keep it in its own cache line */
2326	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2327			 GFP_KERNEL);
2328	if (!buffer)
2329		return NULL;
2330
2331	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2332		goto fail_free_buffer;
2333
2334	buffer->subbuf_order = order;
2335	subbuf_size = (PAGE_SIZE << order);
2336	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2337
2338	/* Max payload is buffer page size - header (8bytes) */
2339	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2340
2341	buffer->flags = flags;
2342	buffer->clock = trace_clock_local;
2343	buffer->reader_lock_key = key;
2344
2345	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2346	init_waitqueue_head(&buffer->irq_work.waiters);
2347
 
 
 
 
2348	buffer->cpus = nr_cpu_ids;
2349
2350	bsize = sizeof(void *) * nr_cpu_ids;
2351	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2352				  GFP_KERNEL);
2353	if (!buffer->buffers)
2354		goto fail_free_cpumask;
2355
2356	/* If start/end are specified, then that overrides size */
2357	if (start && end) {
2358		unsigned long ptr;
2359		int n;
2360
2361		size = end - start;
2362		size = size / nr_cpu_ids;
2363
2364		/*
2365		 * The number of sub-buffers (nr_pages) is determined by the
2366		 * total size allocated minus the meta data size.
2367		 * Then that is divided by the number of per CPU buffers
2368		 * needed, plus account for the integer array index that
2369		 * will be appended to the meta data.
2370		 */
2371		nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2372			(subbuf_size + sizeof(int));
2373		/* Need at least two pages plus the reader page */
2374		if (nr_pages < 3)
2375			goto fail_free_buffers;
2376
2377 again:
2378		/* Make sure that the size fits aligned */
2379		for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2380			ptr += sizeof(struct ring_buffer_meta) +
2381				sizeof(int) * nr_pages;
2382			ptr = ALIGN(ptr, subbuf_size);
2383			ptr += subbuf_size * nr_pages;
2384		}
2385		if (ptr > end) {
2386			if (nr_pages <= 3)
2387				goto fail_free_buffers;
2388			nr_pages--;
2389			goto again;
2390		}
2391
2392		/* nr_pages should not count the reader page */
2393		nr_pages--;
2394		buffer->range_addr_start = start;
2395		buffer->range_addr_end = end;
2396
2397		rb_range_meta_init(buffer, nr_pages);
2398	} else {
2399
2400		/* need at least two pages */
2401		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2402		if (nr_pages < 2)
2403			nr_pages = 2;
2404	}
2405
2406	cpu = raw_smp_processor_id();
2407	cpumask_set_cpu(cpu, buffer->cpumask);
2408	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2409	if (!buffer->buffers[cpu])
2410		goto fail_free_buffers;
2411
2412	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2413	if (ret < 0)
2414		goto fail_free_buffers;
2415
2416	mutex_init(&buffer->mutex);
2417
2418	return buffer;
2419
2420 fail_free_buffers:
2421	for_each_buffer_cpu(buffer, cpu) {
2422		if (buffer->buffers[cpu])
2423			rb_free_cpu_buffer(buffer->buffers[cpu]);
2424	}
2425	kfree(buffer->buffers);
2426
2427 fail_free_cpumask:
2428	free_cpumask_var(buffer->cpumask);
2429
2430 fail_free_buffer:
2431	kfree(buffer);
2432	return NULL;
2433}
2434
2435/**
2436 * __ring_buffer_alloc - allocate a new ring_buffer
2437 * @size: the size in bytes per cpu that is needed.
2438 * @flags: attributes to set for the ring buffer.
2439 * @key: ring buffer reader_lock_key.
2440 *
2441 * Currently the only flag that is available is the RB_FL_OVERWRITE
2442 * flag. This flag means that the buffer will overwrite old data
2443 * when the buffer wraps. If this flag is not set, the buffer will
2444 * drop data when the tail hits the head.
2445 */
2446struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2447					struct lock_class_key *key)
2448{
2449	/* Default buffer page size - one system page */
2450	return alloc_buffer(size, flags, 0, 0, 0,key);
2451
2452}
2453EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2454
2455/**
2456 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2457 * @size: the size in bytes per cpu that is needed.
2458 * @flags: attributes to set for the ring buffer.
2459 * @order: sub-buffer order
2460 * @start: start of allocated range
2461 * @range_size: size of allocated range
2462 * @key: ring buffer reader_lock_key.
2463 *
2464 * Currently the only flag that is available is the RB_FL_OVERWRITE
2465 * flag. This flag means that the buffer will overwrite old data
2466 * when the buffer wraps. If this flag is not set, the buffer will
2467 * drop data when the tail hits the head.
2468 */
2469struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2470					       int order, unsigned long start,
2471					       unsigned long range_size,
2472					       struct lock_class_key *key)
2473{
2474	return alloc_buffer(size, flags, order, start, start + range_size, key);
2475}
2476
2477/**
2478 * ring_buffer_last_boot_delta - return the delta offset from last boot
2479 * @buffer: The buffer to return the delta from
2480 * @text: Return text delta
2481 * @data: Return data delta
2482 *
2483 * Returns: The true if the delta is non zero
2484 */
2485bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2486				 long *data)
2487{
2488	if (!buffer)
2489		return false;
2490
2491	if (!buffer->last_text_delta)
2492		return false;
2493
2494	*text = buffer->last_text_delta;
2495	*data = buffer->last_data_delta;
2496
2497	return true;
2498}
2499
2500/**
2501 * ring_buffer_free - free a ring buffer.
2502 * @buffer: the buffer to free.
2503 */
2504void
2505ring_buffer_free(struct trace_buffer *buffer)
2506{
2507	int cpu;
2508
2509	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2510
2511	irq_work_sync(&buffer->irq_work.work);
2512
2513	for_each_buffer_cpu(buffer, cpu)
2514		rb_free_cpu_buffer(buffer->buffers[cpu]);
2515
2516	kfree(buffer->buffers);
2517	free_cpumask_var(buffer->cpumask);
2518
2519	kfree(buffer);
2520}
2521EXPORT_SYMBOL_GPL(ring_buffer_free);
2522
2523void ring_buffer_set_clock(struct trace_buffer *buffer,
2524			   u64 (*clock)(void))
2525{
2526	buffer->clock = clock;
2527}
2528
2529void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2530{
2531	buffer->time_stamp_abs = abs;
2532}
2533
2534bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2535{
2536	return buffer->time_stamp_abs;
2537}
2538
 
 
2539static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2540{
2541	return local_read(&bpage->entries) & RB_WRITE_MASK;
2542}
2543
2544static inline unsigned long rb_page_write(struct buffer_page *bpage)
2545{
2546	return local_read(&bpage->write) & RB_WRITE_MASK;
2547}
2548
2549static bool
2550rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2551{
2552	struct list_head *tail_page, *to_remove, *next_page;
2553	struct buffer_page *to_remove_page, *tmp_iter_page;
2554	struct buffer_page *last_page, *first_page;
2555	unsigned long nr_removed;
2556	unsigned long head_bit;
2557	int page_entries;
2558
2559	head_bit = 0;
2560
2561	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2562	atomic_inc(&cpu_buffer->record_disabled);
2563	/*
2564	 * We don't race with the readers since we have acquired the reader
2565	 * lock. We also don't race with writers after disabling recording.
2566	 * This makes it easy to figure out the first and the last page to be
2567	 * removed from the list. We unlink all the pages in between including
2568	 * the first and last pages. This is done in a busy loop so that we
2569	 * lose the least number of traces.
2570	 * The pages are freed after we restart recording and unlock readers.
2571	 */
2572	tail_page = &cpu_buffer->tail_page->list;
2573
2574	/*
2575	 * tail page might be on reader page, we remove the next page
2576	 * from the ring buffer
2577	 */
2578	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2579		tail_page = rb_list_head(tail_page->next);
2580	to_remove = tail_page;
2581
2582	/* start of pages to remove */
2583	first_page = list_entry(rb_list_head(to_remove->next),
2584				struct buffer_page, list);
2585
2586	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2587		to_remove = rb_list_head(to_remove)->next;
2588		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2589	}
2590	/* Read iterators need to reset themselves when some pages removed */
2591	cpu_buffer->pages_removed += nr_removed;
2592
2593	next_page = rb_list_head(to_remove)->next;
2594
2595	/*
2596	 * Now we remove all pages between tail_page and next_page.
2597	 * Make sure that we have head_bit value preserved for the
2598	 * next page
2599	 */
2600	tail_page->next = (struct list_head *)((unsigned long)next_page |
2601						head_bit);
2602	next_page = rb_list_head(next_page);
2603	next_page->prev = tail_page;
2604
2605	/* make sure pages points to a valid page in the ring buffer */
2606	cpu_buffer->pages = next_page;
2607	cpu_buffer->cnt++;
2608
2609	/* update head page */
2610	if (head_bit)
2611		cpu_buffer->head_page = list_entry(next_page,
2612						struct buffer_page, list);
2613
 
 
 
 
 
 
2614	/* pages are removed, resume tracing and then free the pages */
2615	atomic_dec(&cpu_buffer->record_disabled);
2616	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2617
2618	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2619
2620	/* last buffer page to remove */
2621	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2622				list);
2623	tmp_iter_page = first_page;
2624
2625	do {
2626		cond_resched();
2627
2628		to_remove_page = tmp_iter_page;
2629		rb_inc_page(&tmp_iter_page);
2630
2631		/* update the counters */
2632		page_entries = rb_page_entries(to_remove_page);
2633		if (page_entries) {
2634			/*
2635			 * If something was added to this page, it was full
2636			 * since it is not the tail page. So we deduct the
2637			 * bytes consumed in ring buffer from here.
2638			 * Increment overrun to account for the lost events.
2639			 */
2640			local_add(page_entries, &cpu_buffer->overrun);
2641			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2642			local_inc(&cpu_buffer->pages_lost);
2643		}
2644
2645		/*
2646		 * We have already removed references to this list item, just
2647		 * free up the buffer_page and its page
2648		 */
2649		free_buffer_page(to_remove_page);
2650		nr_removed--;
2651
2652	} while (to_remove_page != last_page);
2653
2654	RB_WARN_ON(cpu_buffer, nr_removed);
2655
2656	return nr_removed == 0;
2657}
2658
2659static bool
2660rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2661{
2662	struct list_head *pages = &cpu_buffer->new_pages;
2663	unsigned long flags;
2664	bool success;
2665	int retries;
2666
2667	/* Can be called at early boot up, where interrupts must not been enabled */
2668	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2669	/*
2670	 * We are holding the reader lock, so the reader page won't be swapped
2671	 * in the ring buffer. Now we are racing with the writer trying to
2672	 * move head page and the tail page.
2673	 * We are going to adapt the reader page update process where:
2674	 * 1. We first splice the start and end of list of new pages between
2675	 *    the head page and its previous page.
2676	 * 2. We cmpxchg the prev_page->next to point from head page to the
2677	 *    start of new pages list.
2678	 * 3. Finally, we update the head->prev to the end of new list.
2679	 *
2680	 * We will try this process 10 times, to make sure that we don't keep
2681	 * spinning.
2682	 */
2683	retries = 10;
2684	success = false;
2685	while (retries--) {
2686		struct list_head *head_page, *prev_page;
2687		struct list_head *last_page, *first_page;
2688		struct list_head *head_page_with_bit;
2689		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2690
2691		if (!hpage)
 
2692			break;
2693		head_page = &hpage->list;
2694		prev_page = head_page->prev;
2695
2696		first_page = pages->next;
2697		last_page  = pages->prev;
2698
2699		head_page_with_bit = (struct list_head *)
2700				     ((unsigned long)head_page | RB_PAGE_HEAD);
2701
2702		last_page->next = head_page_with_bit;
2703		first_page->prev = prev_page;
2704
2705		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2706		if (try_cmpxchg(&prev_page->next,
2707				&head_page_with_bit, first_page)) {
2708			/*
2709			 * yay, we replaced the page pointer to our new list,
2710			 * now, we just have to update to head page's prev
2711			 * pointer to point to end of list
2712			 */
2713			head_page->prev = last_page;
2714			cpu_buffer->cnt++;
2715			success = true;
2716			break;
2717		}
2718	}
2719
2720	if (success)
2721		INIT_LIST_HEAD(pages);
2722	/*
2723	 * If we weren't successful in adding in new pages, warn and stop
2724	 * tracing
2725	 */
2726	RB_WARN_ON(cpu_buffer, !success);
2727	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2728
2729	/* free pages if they weren't inserted */
2730	if (!success) {
2731		struct buffer_page *bpage, *tmp;
2732		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2733					 list) {
2734			list_del_init(&bpage->list);
2735			free_buffer_page(bpage);
2736		}
2737	}
2738	return success;
2739}
2740
2741static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2742{
2743	bool success;
2744
2745	if (cpu_buffer->nr_pages_to_update > 0)
2746		success = rb_insert_pages(cpu_buffer);
2747	else
2748		success = rb_remove_pages(cpu_buffer,
2749					-cpu_buffer->nr_pages_to_update);
2750
2751	if (success)
2752		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2753}
2754
2755static void update_pages_handler(struct work_struct *work)
2756{
2757	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2758			struct ring_buffer_per_cpu, update_pages_work);
2759	rb_update_pages(cpu_buffer);
2760	complete(&cpu_buffer->update_done);
2761}
2762
2763/**
2764 * ring_buffer_resize - resize the ring buffer
2765 * @buffer: the buffer to resize.
2766 * @size: the new size.
2767 * @cpu_id: the cpu buffer to resize
2768 *
2769 * Minimum size is 2 * buffer->subbuf_size.
2770 *
2771 * Returns 0 on success and < 0 on failure.
2772 */
2773int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2774			int cpu_id)
2775{
2776	struct ring_buffer_per_cpu *cpu_buffer;
2777	unsigned long nr_pages;
2778	int cpu, err;
2779
2780	/*
2781	 * Always succeed at resizing a non-existent buffer:
2782	 */
2783	if (!buffer)
2784		return 0;
2785
2786	/* Make sure the requested buffer exists */
2787	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2788	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2789		return 0;
2790
2791	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2792
2793	/* we need a minimum of two pages */
2794	if (nr_pages < 2)
2795		nr_pages = 2;
2796
 
 
 
 
 
 
 
 
 
 
2797	/* prevent another thread from changing buffer sizes */
2798	mutex_lock(&buffer->mutex);
2799	atomic_inc(&buffer->resizing);
2800
2801	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2802		/*
2803		 * Don't succeed if resizing is disabled, as a reader might be
2804		 * manipulating the ring buffer and is expecting a sane state while
2805		 * this is true.
2806		 */
2807		for_each_buffer_cpu(buffer, cpu) {
2808			cpu_buffer = buffer->buffers[cpu];
2809			if (atomic_read(&cpu_buffer->resize_disabled)) {
2810				err = -EBUSY;
2811				goto out_err_unlock;
2812			}
2813		}
2814
2815		/* calculate the pages to update */
2816		for_each_buffer_cpu(buffer, cpu) {
2817			cpu_buffer = buffer->buffers[cpu];
2818
2819			cpu_buffer->nr_pages_to_update = nr_pages -
2820							cpu_buffer->nr_pages;
2821			/*
2822			 * nothing more to do for removing pages or no update
2823			 */
2824			if (cpu_buffer->nr_pages_to_update <= 0)
2825				continue;
2826			/*
2827			 * to add pages, make sure all new pages can be
2828			 * allocated without receiving ENOMEM
2829			 */
2830			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2831			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2832						&cpu_buffer->new_pages)) {
2833				/* not enough memory for new pages */
2834				err = -ENOMEM;
2835				goto out_err;
2836			}
2837
2838			cond_resched();
2839		}
2840
2841		cpus_read_lock();
2842		/*
2843		 * Fire off all the required work handlers
2844		 * We can't schedule on offline CPUs, but it's not necessary
2845		 * since we can change their buffer sizes without any race.
2846		 */
2847		for_each_buffer_cpu(buffer, cpu) {
2848			cpu_buffer = buffer->buffers[cpu];
2849			if (!cpu_buffer->nr_pages_to_update)
2850				continue;
2851
2852			/* Can't run something on an offline CPU. */
2853			if (!cpu_online(cpu)) {
2854				rb_update_pages(cpu_buffer);
2855				cpu_buffer->nr_pages_to_update = 0;
2856			} else {
2857				/* Run directly if possible. */
2858				migrate_disable();
2859				if (cpu != smp_processor_id()) {
2860					migrate_enable();
2861					schedule_work_on(cpu,
2862							 &cpu_buffer->update_pages_work);
2863				} else {
2864					update_pages_handler(&cpu_buffer->update_pages_work);
2865					migrate_enable();
2866				}
2867			}
2868		}
2869
2870		/* wait for all the updates to complete */
2871		for_each_buffer_cpu(buffer, cpu) {
2872			cpu_buffer = buffer->buffers[cpu];
2873			if (!cpu_buffer->nr_pages_to_update)
2874				continue;
2875
2876			if (cpu_online(cpu))
2877				wait_for_completion(&cpu_buffer->update_done);
2878			cpu_buffer->nr_pages_to_update = 0;
2879		}
2880
2881		cpus_read_unlock();
2882	} else {
 
 
 
 
2883		cpu_buffer = buffer->buffers[cpu_id];
2884
2885		if (nr_pages == cpu_buffer->nr_pages)
2886			goto out;
2887
2888		/*
2889		 * Don't succeed if resizing is disabled, as a reader might be
2890		 * manipulating the ring buffer and is expecting a sane state while
2891		 * this is true.
2892		 */
2893		if (atomic_read(&cpu_buffer->resize_disabled)) {
2894			err = -EBUSY;
2895			goto out_err_unlock;
2896		}
2897
2898		cpu_buffer->nr_pages_to_update = nr_pages -
2899						cpu_buffer->nr_pages;
2900
2901		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2902		if (cpu_buffer->nr_pages_to_update > 0 &&
2903			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2904					    &cpu_buffer->new_pages)) {
2905			err = -ENOMEM;
2906			goto out_err;
2907		}
2908
2909		cpus_read_lock();
2910
2911		/* Can't run something on an offline CPU. */
2912		if (!cpu_online(cpu_id))
2913			rb_update_pages(cpu_buffer);
2914		else {
2915			/* Run directly if possible. */
2916			migrate_disable();
2917			if (cpu_id == smp_processor_id()) {
2918				rb_update_pages(cpu_buffer);
2919				migrate_enable();
2920			} else {
2921				migrate_enable();
2922				schedule_work_on(cpu_id,
2923						 &cpu_buffer->update_pages_work);
2924				wait_for_completion(&cpu_buffer->update_done);
2925			}
2926		}
2927
2928		cpu_buffer->nr_pages_to_update = 0;
2929		cpus_read_unlock();
2930	}
2931
2932 out:
2933	/*
2934	 * The ring buffer resize can happen with the ring buffer
2935	 * enabled, so that the update disturbs the tracing as little
2936	 * as possible. But if the buffer is disabled, we do not need
2937	 * to worry about that, and we can take the time to verify
2938	 * that the buffer is not corrupt.
2939	 */
2940	if (atomic_read(&buffer->record_disabled)) {
2941		atomic_inc(&buffer->record_disabled);
2942		/*
2943		 * Even though the buffer was disabled, we must make sure
2944		 * that it is truly disabled before calling rb_check_pages.
2945		 * There could have been a race between checking
2946		 * record_disable and incrementing it.
2947		 */
2948		synchronize_rcu();
2949		for_each_buffer_cpu(buffer, cpu) {
2950			cpu_buffer = buffer->buffers[cpu];
2951			rb_check_pages(cpu_buffer);
2952		}
2953		atomic_dec(&buffer->record_disabled);
2954	}
2955
2956	atomic_dec(&buffer->resizing);
2957	mutex_unlock(&buffer->mutex);
2958	return 0;
2959
2960 out_err:
2961	for_each_buffer_cpu(buffer, cpu) {
2962		struct buffer_page *bpage, *tmp;
2963
2964		cpu_buffer = buffer->buffers[cpu];
2965		cpu_buffer->nr_pages_to_update = 0;
2966
2967		if (list_empty(&cpu_buffer->new_pages))
2968			continue;
2969
2970		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2971					list) {
2972			list_del_init(&bpage->list);
2973			free_buffer_page(bpage);
2974		}
2975	}
2976 out_err_unlock:
2977	atomic_dec(&buffer->resizing);
2978	mutex_unlock(&buffer->mutex);
2979	return err;
2980}
2981EXPORT_SYMBOL_GPL(ring_buffer_resize);
2982
2983void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2984{
2985	mutex_lock(&buffer->mutex);
2986	if (val)
2987		buffer->flags |= RB_FL_OVERWRITE;
2988	else
2989		buffer->flags &= ~RB_FL_OVERWRITE;
2990	mutex_unlock(&buffer->mutex);
2991}
2992EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2993
2994static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2995{
2996	return bpage->page->data + index;
2997}
2998
2999static __always_inline struct ring_buffer_event *
3000rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3001{
3002	return __rb_page_index(cpu_buffer->reader_page,
3003			       cpu_buffer->reader_page->read);
3004}
3005
3006static struct ring_buffer_event *
3007rb_iter_head_event(struct ring_buffer_iter *iter)
3008{
3009	struct ring_buffer_event *event;
3010	struct buffer_page *iter_head_page = iter->head_page;
3011	unsigned long commit;
3012	unsigned length;
3013
3014	if (iter->head != iter->next_event)
3015		return iter->event;
3016
3017	/*
3018	 * When the writer goes across pages, it issues a cmpxchg which
3019	 * is a mb(), which will synchronize with the rmb here.
3020	 * (see rb_tail_page_update() and __rb_reserve_next())
3021	 */
3022	commit = rb_page_commit(iter_head_page);
3023	smp_rmb();
3024
3025	/* An event needs to be at least 8 bytes in size */
3026	if (iter->head > commit - 8)
3027		goto reset;
3028
3029	event = __rb_page_index(iter_head_page, iter->head);
3030	length = rb_event_length(event);
3031
3032	/*
3033	 * READ_ONCE() doesn't work on functions and we don't want the
3034	 * compiler doing any crazy optimizations with length.
3035	 */
3036	barrier();
3037
3038	if ((iter->head + length) > commit || length > iter->event_size)
3039		/* Writer corrupted the read? */
3040		goto reset;
3041
3042	memcpy(iter->event, event, length);
3043	/*
3044	 * If the page stamp is still the same after this rmb() then the
3045	 * event was safely copied without the writer entering the page.
3046	 */
3047	smp_rmb();
3048
3049	/* Make sure the page didn't change since we read this */
3050	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3051	    commit > rb_page_commit(iter_head_page))
3052		goto reset;
3053
3054	iter->next_event = iter->head + length;
3055	return iter->event;
3056 reset:
3057	/* Reset to the beginning */
3058	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3059	iter->head = 0;
3060	iter->next_event = 0;
3061	iter->missed_events = 1;
3062	return NULL;
3063}
3064
3065/* Size is determined by what has been committed */
3066static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3067{
3068	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3069}
3070
3071static __always_inline unsigned
3072rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3073{
3074	return rb_page_commit(cpu_buffer->commit_page);
3075}
3076
3077static __always_inline unsigned
3078rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3079{
3080	unsigned long addr = (unsigned long)event;
3081
3082	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3083
3084	return addr - BUF_PAGE_HDR_SIZE;
3085}
3086
3087static void rb_inc_iter(struct ring_buffer_iter *iter)
3088{
3089	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3090
3091	/*
3092	 * The iterator could be on the reader page (it starts there).
3093	 * But the head could have moved, since the reader was
3094	 * found. Check for this case and assign the iterator
3095	 * to the head page instead of next.
3096	 */
3097	if (iter->head_page == cpu_buffer->reader_page)
3098		iter->head_page = rb_set_head_page(cpu_buffer);
3099	else
3100		rb_inc_page(&iter->head_page);
3101
3102	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3103	iter->head = 0;
3104	iter->next_event = 0;
3105}
3106
3107/* Return the index into the sub-buffers for a given sub-buffer */
3108static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3109{
3110	void *subbuf_array;
3111
3112	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3113	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3114	return (subbuf - subbuf_array) / meta->subbuf_size;
3115}
3116
3117static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3118				struct buffer_page *next_page)
3119{
3120	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3121	unsigned long old_head = (unsigned long)next_page->page;
3122	unsigned long new_head;
3123
3124	rb_inc_page(&next_page);
3125	new_head = (unsigned long)next_page->page;
3126
3127	/*
3128	 * Only move it forward once, if something else came in and
3129	 * moved it forward, then we don't want to touch it.
3130	 */
3131	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3132}
3133
3134static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3135				  struct buffer_page *reader)
3136{
3137	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3138	void *old_reader = cpu_buffer->reader_page->page;
3139	void *new_reader = reader->page;
3140	int id;
3141
3142	id = reader->id;
3143	cpu_buffer->reader_page->id = id;
3144	reader->id = 0;
3145
3146	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3147	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3148
3149	/* The head pointer is the one after the reader */
3150	rb_update_meta_head(cpu_buffer, reader);
3151}
3152
3153/*
3154 * rb_handle_head_page - writer hit the head page
3155 *
3156 * Returns: +1 to retry page
3157 *           0 to continue
3158 *          -1 on error
3159 */
3160static int
3161rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3162		    struct buffer_page *tail_page,
3163		    struct buffer_page *next_page)
3164{
3165	struct buffer_page *new_head;
3166	int entries;
3167	int type;
3168	int ret;
3169
3170	entries = rb_page_entries(next_page);
3171
3172	/*
3173	 * The hard part is here. We need to move the head
3174	 * forward, and protect against both readers on
3175	 * other CPUs and writers coming in via interrupts.
3176	 */
3177	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3178				       RB_PAGE_HEAD);
3179
3180	/*
3181	 * type can be one of four:
3182	 *  NORMAL - an interrupt already moved it for us
3183	 *  HEAD   - we are the first to get here.
3184	 *  UPDATE - we are the interrupt interrupting
3185	 *           a current move.
3186	 *  MOVED  - a reader on another CPU moved the next
3187	 *           pointer to its reader page. Give up
3188	 *           and try again.
3189	 */
3190
3191	switch (type) {
3192	case RB_PAGE_HEAD:
3193		/*
3194		 * We changed the head to UPDATE, thus
3195		 * it is our responsibility to update
3196		 * the counters.
3197		 */
3198		local_add(entries, &cpu_buffer->overrun);
3199		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3200		local_inc(&cpu_buffer->pages_lost);
3201
3202		if (cpu_buffer->ring_meta)
3203			rb_update_meta_head(cpu_buffer, next_page);
3204		/*
3205		 * The entries will be zeroed out when we move the
3206		 * tail page.
3207		 */
3208
3209		/* still more to do */
3210		break;
3211
3212	case RB_PAGE_UPDATE:
3213		/*
3214		 * This is an interrupt that interrupt the
3215		 * previous update. Still more to do.
3216		 */
3217		break;
3218	case RB_PAGE_NORMAL:
3219		/*
3220		 * An interrupt came in before the update
3221		 * and processed this for us.
3222		 * Nothing left to do.
3223		 */
3224		return 1;
3225	case RB_PAGE_MOVED:
3226		/*
3227		 * The reader is on another CPU and just did
3228		 * a swap with our next_page.
3229		 * Try again.
3230		 */
3231		return 1;
3232	default:
3233		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3234		return -1;
3235	}
3236
3237	/*
3238	 * Now that we are here, the old head pointer is
3239	 * set to UPDATE. This will keep the reader from
3240	 * swapping the head page with the reader page.
3241	 * The reader (on another CPU) will spin till
3242	 * we are finished.
3243	 *
3244	 * We just need to protect against interrupts
3245	 * doing the job. We will set the next pointer
3246	 * to HEAD. After that, we set the old pointer
3247	 * to NORMAL, but only if it was HEAD before.
3248	 * otherwise we are an interrupt, and only
3249	 * want the outer most commit to reset it.
3250	 */
3251	new_head = next_page;
3252	rb_inc_page(&new_head);
3253
3254	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3255				    RB_PAGE_NORMAL);
3256
3257	/*
3258	 * Valid returns are:
3259	 *  HEAD   - an interrupt came in and already set it.
3260	 *  NORMAL - One of two things:
3261	 *            1) We really set it.
3262	 *            2) A bunch of interrupts came in and moved
3263	 *               the page forward again.
3264	 */
3265	switch (ret) {
3266	case RB_PAGE_HEAD:
3267	case RB_PAGE_NORMAL:
3268		/* OK */
3269		break;
3270	default:
3271		RB_WARN_ON(cpu_buffer, 1);
3272		return -1;
3273	}
3274
3275	/*
3276	 * It is possible that an interrupt came in,
3277	 * set the head up, then more interrupts came in
3278	 * and moved it again. When we get back here,
3279	 * the page would have been set to NORMAL but we
3280	 * just set it back to HEAD.
3281	 *
3282	 * How do you detect this? Well, if that happened
3283	 * the tail page would have moved.
3284	 */
3285	if (ret == RB_PAGE_NORMAL) {
3286		struct buffer_page *buffer_tail_page;
3287
3288		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3289		/*
3290		 * If the tail had moved passed next, then we need
3291		 * to reset the pointer.
3292		 */
3293		if (buffer_tail_page != tail_page &&
3294		    buffer_tail_page != next_page)
3295			rb_head_page_set_normal(cpu_buffer, new_head,
3296						next_page,
3297						RB_PAGE_HEAD);
3298	}
3299
3300	/*
3301	 * If this was the outer most commit (the one that
3302	 * changed the original pointer from HEAD to UPDATE),
3303	 * then it is up to us to reset it to NORMAL.
3304	 */
3305	if (type == RB_PAGE_HEAD) {
3306		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3307					      tail_page,
3308					      RB_PAGE_UPDATE);
3309		if (RB_WARN_ON(cpu_buffer,
3310			       ret != RB_PAGE_UPDATE))
3311			return -1;
3312	}
3313
3314	return 0;
3315}
3316
3317static inline void
3318rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3319	      unsigned long tail, struct rb_event_info *info)
3320{
3321	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3322	struct buffer_page *tail_page = info->tail_page;
3323	struct ring_buffer_event *event;
3324	unsigned long length = info->length;
3325
3326	/*
3327	 * Only the event that crossed the page boundary
3328	 * must fill the old tail_page with padding.
3329	 */
3330	if (tail >= bsize) {
3331		/*
3332		 * If the page was filled, then we still need
3333		 * to update the real_end. Reset it to zero
3334		 * and the reader will ignore it.
3335		 */
3336		if (tail == bsize)
3337			tail_page->real_end = 0;
3338
3339		local_sub(length, &tail_page->write);
3340		return;
3341	}
3342
3343	event = __rb_page_index(tail_page, tail);
3344
 
 
 
3345	/*
3346	 * Save the original length to the meta data.
3347	 * This will be used by the reader to add lost event
3348	 * counter.
3349	 */
3350	tail_page->real_end = tail;
3351
3352	/*
3353	 * If this event is bigger than the minimum size, then
3354	 * we need to be careful that we don't subtract the
3355	 * write counter enough to allow another writer to slip
3356	 * in on this page.
3357	 * We put in a discarded commit instead, to make sure
3358	 * that this space is not used again, and this space will
3359	 * not be accounted into 'entries_bytes'.
3360	 *
3361	 * If we are less than the minimum size, we don't need to
3362	 * worry about it.
3363	 */
3364	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3365		/* No room for any events */
3366
3367		/* Mark the rest of the page with padding */
3368		rb_event_set_padding(event);
3369
3370		/* Make sure the padding is visible before the write update */
3371		smp_wmb();
3372
3373		/* Set the write back to the previous setting */
3374		local_sub(length, &tail_page->write);
3375		return;
3376	}
3377
3378	/* Put in a discarded event */
3379	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3380	event->type_len = RINGBUF_TYPE_PADDING;
3381	/* time delta must be non zero */
3382	event->time_delta = 1;
3383
3384	/* account for padding bytes */
3385	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3386
3387	/* Make sure the padding is visible before the tail_page->write update */
3388	smp_wmb();
3389
3390	/* Set write to end of buffer */
3391	length = (tail + length) - bsize;
3392	local_sub(length, &tail_page->write);
3393}
3394
3395static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3396
3397/*
3398 * This is the slow path, force gcc not to inline it.
3399 */
3400static noinline struct ring_buffer_event *
3401rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3402	     unsigned long tail, struct rb_event_info *info)
3403{
3404	struct buffer_page *tail_page = info->tail_page;
3405	struct buffer_page *commit_page = cpu_buffer->commit_page;
3406	struct trace_buffer *buffer = cpu_buffer->buffer;
3407	struct buffer_page *next_page;
3408	int ret;
3409
3410	next_page = tail_page;
3411
3412	rb_inc_page(&next_page);
3413
3414	/*
3415	 * If for some reason, we had an interrupt storm that made
3416	 * it all the way around the buffer, bail, and warn
3417	 * about it.
3418	 */
3419	if (unlikely(next_page == commit_page)) {
3420		local_inc(&cpu_buffer->commit_overrun);
3421		goto out_reset;
3422	}
3423
3424	/*
3425	 * This is where the fun begins!
3426	 *
3427	 * We are fighting against races between a reader that
3428	 * could be on another CPU trying to swap its reader
3429	 * page with the buffer head.
3430	 *
3431	 * We are also fighting against interrupts coming in and
3432	 * moving the head or tail on us as well.
3433	 *
3434	 * If the next page is the head page then we have filled
3435	 * the buffer, unless the commit page is still on the
3436	 * reader page.
3437	 */
3438	if (rb_is_head_page(next_page, &tail_page->list)) {
3439
3440		/*
3441		 * If the commit is not on the reader page, then
3442		 * move the header page.
3443		 */
3444		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3445			/*
3446			 * If we are not in overwrite mode,
3447			 * this is easy, just stop here.
3448			 */
3449			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3450				local_inc(&cpu_buffer->dropped_events);
3451				goto out_reset;
3452			}
3453
3454			ret = rb_handle_head_page(cpu_buffer,
3455						  tail_page,
3456						  next_page);
3457			if (ret < 0)
3458				goto out_reset;
3459			if (ret)
3460				goto out_again;
3461		} else {
3462			/*
3463			 * We need to be careful here too. The
3464			 * commit page could still be on the reader
3465			 * page. We could have a small buffer, and
3466			 * have filled up the buffer with events
3467			 * from interrupts and such, and wrapped.
3468			 *
3469			 * Note, if the tail page is also on the
3470			 * reader_page, we let it move out.
3471			 */
3472			if (unlikely((cpu_buffer->commit_page !=
3473				      cpu_buffer->tail_page) &&
3474				     (cpu_buffer->commit_page ==
3475				      cpu_buffer->reader_page))) {
3476				local_inc(&cpu_buffer->commit_overrun);
3477				goto out_reset;
3478			}
3479		}
3480	}
3481
3482	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3483
3484 out_again:
3485
3486	rb_reset_tail(cpu_buffer, tail, info);
3487
3488	/* Commit what we have for now. */
3489	rb_end_commit(cpu_buffer);
3490	/* rb_end_commit() decs committing */
3491	local_inc(&cpu_buffer->committing);
3492
3493	/* fail and let the caller try again */
3494	return ERR_PTR(-EAGAIN);
3495
3496 out_reset:
3497	/* reset write */
3498	rb_reset_tail(cpu_buffer, tail, info);
3499
3500	return NULL;
3501}
3502
3503/* Slow path */
3504static struct ring_buffer_event *
3505rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3506		  struct ring_buffer_event *event, u64 delta, bool abs)
3507{
3508	if (abs)
3509		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3510	else
3511		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3512
3513	/* Not the first event on the page, or not delta? */
3514	if (abs || rb_event_index(cpu_buffer, event)) {
3515		event->time_delta = delta & TS_MASK;
3516		event->array[0] = delta >> TS_SHIFT;
3517	} else {
3518		/* nope, just zero it */
3519		event->time_delta = 0;
3520		event->array[0] = 0;
3521	}
3522
3523	return skip_time_extend(event);
3524}
3525
3526#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3527static inline bool sched_clock_stable(void)
3528{
3529	return true;
3530}
3531#endif
3532
3533static void
3534rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3535		   struct rb_event_info *info)
3536{
3537	u64 write_stamp;
3538
3539	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3540		  (unsigned long long)info->delta,
3541		  (unsigned long long)info->ts,
3542		  (unsigned long long)info->before,
3543		  (unsigned long long)info->after,
3544		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3545		  sched_clock_stable() ? "" :
3546		  "If you just came from a suspend/resume,\n"
3547		  "please switch to the trace global clock:\n"
3548		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3549		  "or add trace_clock=global to the kernel command line\n");
3550}
3551
3552static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3553				      struct ring_buffer_event **event,
3554				      struct rb_event_info *info,
3555				      u64 *delta,
3556				      unsigned int *length)
3557{
3558	bool abs = info->add_timestamp &
3559		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3560
3561	if (unlikely(info->delta > (1ULL << 59))) {
3562		/*
3563		 * Some timers can use more than 59 bits, and when a timestamp
3564		 * is added to the buffer, it will lose those bits.
3565		 */
3566		if (abs && (info->ts & TS_MSB)) {
3567			info->delta &= ABS_TS_MASK;
3568
3569		/* did the clock go backwards */
3570		} else if (info->before == info->after && info->before > info->ts) {
3571			/* not interrupted */
3572			static int once;
3573
3574			/*
3575			 * This is possible with a recalibrating of the TSC.
3576			 * Do not produce a call stack, but just report it.
3577			 */
3578			if (!once) {
3579				once++;
3580				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3581					info->before, info->ts);
3582			}
3583		} else
3584			rb_check_timestamp(cpu_buffer, info);
3585		if (!abs)
3586			info->delta = 0;
3587	}
3588	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3589	*length -= RB_LEN_TIME_EXTEND;
3590	*delta = 0;
3591}
3592
3593/**
3594 * rb_update_event - update event type and data
3595 * @cpu_buffer: The per cpu buffer of the @event
3596 * @event: the event to update
3597 * @info: The info to update the @event with (contains length and delta)
 
3598 *
3599 * Update the type and data fields of the @event. The length
3600 * is the actual size that is written to the ring buffer,
3601 * and with this, we can determine what to place into the
3602 * data field.
3603 */
3604static void
3605rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3606		struct ring_buffer_event *event,
3607		struct rb_event_info *info)
3608{
3609	unsigned length = info->length;
3610	u64 delta = info->delta;
3611	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3612
3613	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3614		cpu_buffer->event_stamp[nest] = info->ts;
 
3615
3616	/*
3617	 * If we need to add a timestamp, then we
3618	 * add it to the start of the reserved space.
3619	 */
3620	if (unlikely(info->add_timestamp))
3621		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
 
 
 
 
 
3622
3623	event->time_delta = delta;
3624	length -= RB_EVNT_HDR_SIZE;
3625	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3626		event->type_len = 0;
3627		event->array[0] = length;
3628	} else
3629		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3630}
3631
3632static unsigned rb_calculate_event_length(unsigned length)
3633{
3634	struct ring_buffer_event event; /* Used only for sizeof array */
3635
3636	/* zero length can cause confusions */
3637	if (!length)
3638		length++;
3639
3640	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3641		length += sizeof(event.array[0]);
3642
3643	length += RB_EVNT_HDR_SIZE;
3644	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3645
3646	/*
3647	 * In case the time delta is larger than the 27 bits for it
3648	 * in the header, we need to add a timestamp. If another
3649	 * event comes in when trying to discard this one to increase
3650	 * the length, then the timestamp will be added in the allocated
3651	 * space of this event. If length is bigger than the size needed
3652	 * for the TIME_EXTEND, then padding has to be used. The events
3653	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3654	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3655	 * As length is a multiple of 4, we only need to worry if it
3656	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3657	 */
3658	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3659		length += RB_ALIGNMENT;
3660
3661	return length;
3662}
3663
3664static inline bool
 
 
 
 
 
 
 
3665rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3666		  struct ring_buffer_event *event)
3667{
3668	unsigned long new_index, old_index;
3669	struct buffer_page *bpage;
 
3670	unsigned long addr;
3671
3672	new_index = rb_event_index(cpu_buffer, event);
3673	old_index = new_index + rb_event_ts_length(event);
3674	addr = (unsigned long)event;
3675	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3676
3677	bpage = READ_ONCE(cpu_buffer->tail_page);
3678
3679	/*
3680	 * Make sure the tail_page is still the same and
3681	 * the next write location is the end of this event
3682	 */
3683	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3684		unsigned long write_mask =
3685			local_read(&bpage->write) & ~RB_WRITE_MASK;
3686		unsigned long event_length = rb_event_length(event);
3687
3688		/*
3689		 * For the before_stamp to be different than the write_stamp
3690		 * to make sure that the next event adds an absolute
3691		 * value and does not rely on the saved write stamp, which
3692		 * is now going to be bogus.
3693		 *
3694		 * By setting the before_stamp to zero, the next event
3695		 * is not going to use the write_stamp and will instead
3696		 * create an absolute timestamp. This means there's no
3697		 * reason to update the wirte_stamp!
3698		 */
3699		rb_time_set(&cpu_buffer->before_stamp, 0);
3700
3701		/*
3702		 * If an event were to come in now, it would see that the
3703		 * write_stamp and the before_stamp are different, and assume
3704		 * that this event just added itself before updating
3705		 * the write stamp. The interrupting event will fix the
3706		 * write stamp for us, and use an absolute timestamp.
3707		 */
3708
3709		/*
3710		 * This is on the tail page. It is possible that
3711		 * a write could come in and move the tail page
3712		 * and write to the next page. That is fine
3713		 * because we just shorten what is on this page.
3714		 */
3715		old_index += write_mask;
3716		new_index += write_mask;
3717
3718		/* caution: old_index gets updated on cmpxchg failure */
3719		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3720			/* update counters */
3721			local_sub(event_length, &cpu_buffer->entries_bytes);
3722			return true;
3723		}
3724	}
3725
3726	/* could not discard */
3727	return false;
3728}
3729
3730static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3731{
3732	local_inc(&cpu_buffer->committing);
3733	local_inc(&cpu_buffer->commits);
3734}
3735
3736static __always_inline void
3737rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3738{
3739	unsigned long max_count;
3740
3741	/*
3742	 * We only race with interrupts and NMIs on this CPU.
3743	 * If we own the commit event, then we can commit
3744	 * all others that interrupted us, since the interruptions
3745	 * are in stack format (they finish before they come
3746	 * back to us). This allows us to do a simple loop to
3747	 * assign the commit to the tail.
3748	 */
3749 again:
3750	max_count = cpu_buffer->nr_pages * 100;
3751
3752	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3753		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3754			return;
3755		if (RB_WARN_ON(cpu_buffer,
3756			       rb_is_reader_page(cpu_buffer->tail_page)))
3757			return;
3758		/*
3759		 * No need for a memory barrier here, as the update
3760		 * of the tail_page did it for this page.
3761		 */
3762		local_set(&cpu_buffer->commit_page->page->commit,
3763			  rb_page_write(cpu_buffer->commit_page));
3764		rb_inc_page(&cpu_buffer->commit_page);
3765		if (cpu_buffer->ring_meta) {
3766			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3767			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3768		}
3769		/* add barrier to keep gcc from optimizing too much */
3770		barrier();
3771	}
3772	while (rb_commit_index(cpu_buffer) !=
3773	       rb_page_write(cpu_buffer->commit_page)) {
3774
3775		/* Make sure the readers see the content of what is committed. */
3776		smp_wmb();
3777		local_set(&cpu_buffer->commit_page->page->commit,
3778			  rb_page_write(cpu_buffer->commit_page));
3779		RB_WARN_ON(cpu_buffer,
3780			   local_read(&cpu_buffer->commit_page->page->commit) &
3781			   ~RB_WRITE_MASK);
3782		barrier();
3783	}
3784
3785	/* again, keep gcc from optimizing */
3786	barrier();
3787
3788	/*
3789	 * If an interrupt came in just after the first while loop
3790	 * and pushed the tail page forward, we will be left with
3791	 * a dangling commit that will never go forward.
3792	 */
3793	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3794		goto again;
3795}
3796
3797static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3798{
3799	unsigned long commits;
3800
3801	if (RB_WARN_ON(cpu_buffer,
3802		       !local_read(&cpu_buffer->committing)))
3803		return;
3804
3805 again:
3806	commits = local_read(&cpu_buffer->commits);
3807	/* synchronize with interrupts */
3808	barrier();
3809	if (local_read(&cpu_buffer->committing) == 1)
3810		rb_set_commit_to_write(cpu_buffer);
3811
3812	local_dec(&cpu_buffer->committing);
3813
3814	/* synchronize with interrupts */
3815	barrier();
3816
3817	/*
3818	 * Need to account for interrupts coming in between the
3819	 * updating of the commit page and the clearing of the
3820	 * committing counter.
3821	 */
3822	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3823	    !local_read(&cpu_buffer->committing)) {
3824		local_inc(&cpu_buffer->committing);
3825		goto again;
3826	}
3827}
3828
3829static inline void rb_event_discard(struct ring_buffer_event *event)
3830{
3831	if (extended_time(event))
3832		event = skip_time_extend(event);
3833
3834	/* array[0] holds the actual length for the discarded event */
3835	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3836	event->type_len = RINGBUF_TYPE_PADDING;
3837	/* time delta must be non zero */
3838	if (!event->time_delta)
3839		event->time_delta = 1;
3840}
3841
3842static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3843{
3844	local_inc(&cpu_buffer->entries);
 
3845	rb_end_commit(cpu_buffer);
3846}
3847
3848static __always_inline void
3849rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3850{
 
 
3851	if (buffer->irq_work.waiters_pending) {
3852		buffer->irq_work.waiters_pending = false;
3853		/* irq_work_queue() supplies it's own memory barriers */
3854		irq_work_queue(&buffer->irq_work.work);
3855	}
3856
3857	if (cpu_buffer->irq_work.waiters_pending) {
3858		cpu_buffer->irq_work.waiters_pending = false;
3859		/* irq_work_queue() supplies it's own memory barriers */
3860		irq_work_queue(&cpu_buffer->irq_work.work);
3861	}
3862
3863	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3864		return;
3865
3866	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3867		return;
3868
3869	if (!cpu_buffer->irq_work.full_waiters_pending)
3870		return;
3871
3872	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3873
3874	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3875		return;
3876
3877	cpu_buffer->irq_work.wakeup_full = true;
3878	cpu_buffer->irq_work.full_waiters_pending = false;
3879	/* irq_work_queue() supplies it's own memory barriers */
3880	irq_work_queue(&cpu_buffer->irq_work.work);
3881}
3882
3883#ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3884# define do_ring_buffer_record_recursion()	\
3885	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3886#else
3887# define do_ring_buffer_record_recursion() do { } while (0)
3888#endif
3889
3890/*
3891 * The lock and unlock are done within a preempt disable section.
3892 * The current_context per_cpu variable can only be modified
3893 * by the current task between lock and unlock. But it can
3894 * be modified more than once via an interrupt. To pass this
3895 * information from the lock to the unlock without having to
3896 * access the 'in_interrupt()' functions again (which do show
3897 * a bit of overhead in something as critical as function tracing,
3898 * we use a bitmask trick.
3899 *
3900 *  bit 1 =  NMI context
3901 *  bit 2 =  IRQ context
3902 *  bit 3 =  SoftIRQ context
3903 *  bit 4 =  normal context.
3904 *
3905 * This works because this is the order of contexts that can
3906 * preempt other contexts. A SoftIRQ never preempts an IRQ
3907 * context.
3908 *
3909 * When the context is determined, the corresponding bit is
3910 * checked and set (if it was set, then a recursion of that context
3911 * happened).
3912 *
3913 * On unlock, we need to clear this bit. To do so, just subtract
3914 * 1 from the current_context and AND it to itself.
3915 *
3916 * (binary)
3917 *  101 - 1 = 100
3918 *  101 & 100 = 100 (clearing bit zero)
3919 *
3920 *  1010 - 1 = 1001
3921 *  1010 & 1001 = 1000 (clearing bit 1)
3922 *
3923 * The least significant bit can be cleared this way, and it
3924 * just so happens that it is the same bit corresponding to
3925 * the current context.
3926 *
3927 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3928 * is set when a recursion is detected at the current context, and if
3929 * the TRANSITION bit is already set, it will fail the recursion.
3930 * This is needed because there's a lag between the changing of
3931 * interrupt context and updating the preempt count. In this case,
3932 * a false positive will be found. To handle this, one extra recursion
3933 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3934 * bit is already set, then it is considered a recursion and the function
3935 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3936 *
3937 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3938 * to be cleared. Even if it wasn't the context that set it. That is,
3939 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3940 * is called before preempt_count() is updated, since the check will
3941 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3942 * NMI then comes in, it will set the NMI bit, but when the NMI code
3943 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3944 * and leave the NMI bit set. But this is fine, because the interrupt
3945 * code that set the TRANSITION bit will then clear the NMI bit when it
3946 * calls trace_recursive_unlock(). If another NMI comes in, it will
3947 * set the TRANSITION bit and continue.
3948 *
3949 * Note: The TRANSITION bit only handles a single transition between context.
3950 */
3951
3952static __always_inline bool
3953trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3954{
3955	unsigned int val = cpu_buffer->current_context;
3956	int bit = interrupt_context_level();
 
3957
3958	bit = RB_CTX_NORMAL - bit;
 
 
 
 
3959
3960	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3961		/*
3962		 * It is possible that this was called by transitioning
3963		 * between interrupt context, and preempt_count() has not
3964		 * been updated yet. In this case, use the TRANSITION bit.
3965		 */
3966		bit = RB_CTX_TRANSITION;
3967		if (val & (1 << (bit + cpu_buffer->nest))) {
3968			do_ring_buffer_record_recursion();
3969			return true;
3970		}
3971	}
3972
3973	val |= (1 << (bit + cpu_buffer->nest));
3974	cpu_buffer->current_context = val;
3975
3976	return false;
3977}
3978
3979static __always_inline void
3980trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3981{
3982	cpu_buffer->current_context &=
3983		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3984}
3985
3986/* The recursive locking above uses 5 bits */
3987#define NESTED_BITS 5
3988
3989/**
3990 * ring_buffer_nest_start - Allow to trace while nested
3991 * @buffer: The ring buffer to modify
3992 *
3993 * The ring buffer has a safety mechanism to prevent recursion.
3994 * But there may be a case where a trace needs to be done while
3995 * tracing something else. In this case, calling this function
3996 * will allow this function to nest within a currently active
3997 * ring_buffer_lock_reserve().
3998 *
3999 * Call this function before calling another ring_buffer_lock_reserve() and
4000 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4001 */
4002void ring_buffer_nest_start(struct trace_buffer *buffer)
4003{
4004	struct ring_buffer_per_cpu *cpu_buffer;
4005	int cpu;
4006
4007	/* Enabled by ring_buffer_nest_end() */
4008	preempt_disable_notrace();
4009	cpu = raw_smp_processor_id();
4010	cpu_buffer = buffer->buffers[cpu];
4011	/* This is the shift value for the above recursive locking */
4012	cpu_buffer->nest += NESTED_BITS;
4013}
4014
4015/**
4016 * ring_buffer_nest_end - Allow to trace while nested
4017 * @buffer: The ring buffer to modify
4018 *
4019 * Must be called after ring_buffer_nest_start() and after the
4020 * ring_buffer_unlock_commit().
4021 */
4022void ring_buffer_nest_end(struct trace_buffer *buffer)
4023{
4024	struct ring_buffer_per_cpu *cpu_buffer;
4025	int cpu;
4026
4027	/* disabled by ring_buffer_nest_start() */
4028	cpu = raw_smp_processor_id();
4029	cpu_buffer = buffer->buffers[cpu];
4030	/* This is the shift value for the above recursive locking */
4031	cpu_buffer->nest -= NESTED_BITS;
4032	preempt_enable_notrace();
4033}
4034
4035/**
4036 * ring_buffer_unlock_commit - commit a reserved
4037 * @buffer: The buffer to commit to
 
4038 *
4039 * This commits the data to the ring buffer, and releases any locks held.
4040 *
4041 * Must be paired with ring_buffer_lock_reserve.
4042 */
4043int ring_buffer_unlock_commit(struct trace_buffer *buffer)
 
4044{
4045	struct ring_buffer_per_cpu *cpu_buffer;
4046	int cpu = raw_smp_processor_id();
4047
4048	cpu_buffer = buffer->buffers[cpu];
4049
4050	rb_commit(cpu_buffer);
4051
4052	rb_wakeups(buffer, cpu_buffer);
4053
4054	trace_recursive_unlock(cpu_buffer);
4055
4056	preempt_enable_notrace();
4057
4058	return 0;
4059}
4060EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4061
4062/* Special value to validate all deltas on a page. */
4063#define CHECK_FULL_PAGE		1L
4064
4065#ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4066
4067static const char *show_irq_str(int bits)
4068{
4069	const char *type[] = {
4070		".",	// 0
4071		"s",	// 1
4072		"h",	// 2
4073		"Hs",	// 3
4074		"n",	// 4
4075		"Ns",	// 5
4076		"Nh",	// 6
4077		"NHs",	// 7
4078	};
4079
4080	return type[bits];
4081}
4082
4083/* Assume this is a trace event */
4084static const char *show_flags(struct ring_buffer_event *event)
4085{
4086	struct trace_entry *entry;
4087	int bits = 0;
4088
4089	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4090		return "X";
4091
4092	entry = ring_buffer_event_data(event);
4093
4094	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4095		bits |= 1;
4096
4097	if (entry->flags & TRACE_FLAG_HARDIRQ)
4098		bits |= 2;
4099
4100	if (entry->flags & TRACE_FLAG_NMI)
4101		bits |= 4;
4102
4103	return show_irq_str(bits);
4104}
4105
4106static const char *show_irq(struct ring_buffer_event *event)
4107{
4108	struct trace_entry *entry;
4109
4110	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4111		return "";
4112
4113	entry = ring_buffer_event_data(event);
4114	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4115		return "d";
4116	return "";
4117}
4118
4119static const char *show_interrupt_level(void)
4120{
4121	unsigned long pc = preempt_count();
4122	unsigned char level = 0;
4123
4124	if (pc & SOFTIRQ_OFFSET)
4125		level |= 1;
4126
4127	if (pc & HARDIRQ_MASK)
4128		level |= 2;
4129
4130	if (pc & NMI_MASK)
4131		level |= 4;
4132
4133	return show_irq_str(level);
4134}
4135
4136static void dump_buffer_page(struct buffer_data_page *bpage,
4137			     struct rb_event_info *info,
4138			     unsigned long tail)
4139{
4140	struct ring_buffer_event *event;
4141	u64 ts, delta;
4142	int e;
4143
4144	ts = bpage->time_stamp;
4145	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4146
4147	for (e = 0; e < tail; e += rb_event_length(event)) {
4148
4149		event = (struct ring_buffer_event *)(bpage->data + e);
4150
4151		switch (event->type_len) {
4152
4153		case RINGBUF_TYPE_TIME_EXTEND:
4154			delta = rb_event_time_stamp(event);
4155			ts += delta;
4156			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4157				e, ts, delta);
4158			break;
4159
4160		case RINGBUF_TYPE_TIME_STAMP:
4161			delta = rb_event_time_stamp(event);
4162			ts = rb_fix_abs_ts(delta, ts);
4163			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4164				e, ts, delta);
4165			break;
4166
4167		case RINGBUF_TYPE_PADDING:
4168			ts += event->time_delta;
4169			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4170				e, ts, event->time_delta);
4171			break;
4172
4173		case RINGBUF_TYPE_DATA:
4174			ts += event->time_delta;
4175			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4176				e, ts, event->time_delta,
4177				show_flags(event), show_irq(event));
4178			break;
4179
4180		default:
4181			break;
4182		}
4183	}
4184	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4185}
4186
4187static DEFINE_PER_CPU(atomic_t, checking);
4188static atomic_t ts_dump;
4189
4190#define buffer_warn_return(fmt, ...)					\
4191	do {								\
4192		/* If another report is happening, ignore this one */	\
4193		if (atomic_inc_return(&ts_dump) != 1) {			\
4194			atomic_dec(&ts_dump);				\
4195			goto out;					\
4196		}							\
4197		atomic_inc(&cpu_buffer->record_disabled);		\
4198		pr_warn(fmt, ##__VA_ARGS__);				\
4199		dump_buffer_page(bpage, info, tail);			\
4200		atomic_dec(&ts_dump);					\
4201		/* There's some cases in boot up that this can happen */ \
4202		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4203			/* Do not re-enable checking */			\
4204			return;						\
4205	} while (0)
4206
4207/*
4208 * Check if the current event time stamp matches the deltas on
4209 * the buffer page.
4210 */
4211static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4212			 struct rb_event_info *info,
4213			 unsigned long tail)
4214{
4215	struct buffer_data_page *bpage;
4216	u64 ts, delta;
4217	bool full = false;
4218	int ret;
4219
4220	bpage = info->tail_page->page;
4221
4222	if (tail == CHECK_FULL_PAGE) {
4223		full = true;
4224		tail = local_read(&bpage->commit);
4225	} else if (info->add_timestamp &
4226		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4227		/* Ignore events with absolute time stamps */
4228		return;
4229	}
4230
4231	/*
4232	 * Do not check the first event (skip possible extends too).
4233	 * Also do not check if previous events have not been committed.
4234	 */
4235	if (tail <= 8 || tail > local_read(&bpage->commit))
4236		return;
4237
4238	/*
4239	 * If this interrupted another event,
4240	 */
4241	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4242		goto out;
4243
4244	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4245	if (ret < 0) {
4246		if (delta < ts) {
4247			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4248					   cpu_buffer->cpu, ts, delta);
4249			goto out;
4250		}
4251	}
4252	if ((full && ts > info->ts) ||
4253	    (!full && ts + info->delta != info->ts)) {
4254		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4255				   cpu_buffer->cpu,
4256				   ts + info->delta, info->ts, info->delta,
4257				   info->before, info->after,
4258				   full ? " (full)" : "", show_interrupt_level());
4259	}
4260out:
4261	atomic_dec(this_cpu_ptr(&checking));
4262}
4263#else
4264static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4265			 struct rb_event_info *info,
4266			 unsigned long tail)
4267{
4268}
4269#endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4270
4271static struct ring_buffer_event *
4272__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4273		  struct rb_event_info *info)
4274{
4275	struct ring_buffer_event *event;
4276	struct buffer_page *tail_page;
4277	unsigned long tail, write, w;
 
 
 
 
 
 
 
 
4278
4279	/* Don't let the compiler play games with cpu_buffer->tail_page */
4280	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4281
4282 /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4283	barrier();
4284	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4285	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4286	barrier();
4287	info->ts = rb_time_stamp(cpu_buffer->buffer);
4288
4289	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4290		info->delta = info->ts;
4291	} else {
4292		/*
4293		 * If interrupting an event time update, we may need an
4294		 * absolute timestamp.
4295		 * Don't bother if this is the start of a new page (w == 0).
4296		 */
4297		if (!w) {
4298			/* Use the sub-buffer timestamp */
4299			info->delta = 0;
4300		} else if (unlikely(info->before != info->after)) {
4301			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4302			info->length += RB_LEN_TIME_EXTEND;
4303		} else {
4304			info->delta = info->ts - info->after;
4305			if (unlikely(test_time_stamp(info->delta))) {
4306				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4307				info->length += RB_LEN_TIME_EXTEND;
4308			}
4309		}
4310	}
4311
4312 /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4313
4314 /*C*/	write = local_add_return(info->length, &tail_page->write);
4315
4316	/* set write to only the index of the write */
4317	write &= RB_WRITE_MASK;
4318
4319	tail = write - info->length;
4320
4321	/* See if we shot pass the end of this buffer page */
4322	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4323		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4324		return rb_move_tail(cpu_buffer, tail, info);
4325	}
4326
4327	if (likely(tail == w)) {
4328		/* Nothing interrupted us between A and C */
4329 /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4330		/*
4331		 * If something came in between C and D, the write stamp
4332		 * may now not be in sync. But that's fine as the before_stamp
4333		 * will be different and then next event will just be forced
4334		 * to use an absolute timestamp.
4335		 */
4336		if (likely(!(info->add_timestamp &
4337			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4338			/* This did not interrupt any time update */
4339			info->delta = info->ts - info->after;
4340		else
4341			/* Just use full timestamp for interrupting event */
4342			info->delta = info->ts;
4343		check_buffer(cpu_buffer, info, tail);
4344	} else {
4345		u64 ts;
4346		/* SLOW PATH - Interrupted between A and C */
4347
4348		/* Save the old before_stamp */
4349		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4350
4351		/*
4352		 * Read a new timestamp and update the before_stamp to make
4353		 * the next event after this one force using an absolute
4354		 * timestamp. This is in case an interrupt were to come in
4355		 * between E and F.
4356		 */
4357		ts = rb_time_stamp(cpu_buffer->buffer);
4358		rb_time_set(&cpu_buffer->before_stamp, ts);
4359
4360		barrier();
4361 /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4362		barrier();
4363 /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4364		    info->after == info->before && info->after < ts) {
4365			/*
4366			 * Nothing came after this event between C and F, it is
4367			 * safe to use info->after for the delta as it
4368			 * matched info->before and is still valid.
4369			 */
4370			info->delta = ts - info->after;
4371		} else {
4372			/*
4373			 * Interrupted between C and F:
4374			 * Lost the previous events time stamp. Just set the
4375			 * delta to zero, and this will be the same time as
4376			 * the event this event interrupted. And the events that
4377			 * came after this will still be correct (as they would
4378			 * have built their delta on the previous event.
4379			 */
4380			info->delta = 0;
4381		}
4382		info->ts = ts;
4383		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4384	}
4385
4386	/*
4387	 * If this is the first commit on the page, then it has the same
4388	 * timestamp as the page itself.
4389	 */
4390	if (unlikely(!tail && !(info->add_timestamp &
4391				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4392		info->delta = 0;
4393
 
 
 
 
4394	/* We reserved something on the buffer */
4395
4396	event = __rb_page_index(tail_page, tail);
4397	rb_update_event(cpu_buffer, event, info);
4398
4399	local_inc(&tail_page->entries);
4400
4401	/*
4402	 * If this is the first commit on the page, then update
4403	 * its timestamp.
4404	 */
4405	if (unlikely(!tail))
4406		tail_page->page->time_stamp = info->ts;
4407
4408	/* account for these added bytes */
4409	local_add(info->length, &cpu_buffer->entries_bytes);
4410
4411	return event;
4412}
4413
4414static __always_inline struct ring_buffer_event *
4415rb_reserve_next_event(struct trace_buffer *buffer,
4416		      struct ring_buffer_per_cpu *cpu_buffer,
4417		      unsigned long length)
4418{
4419	struct ring_buffer_event *event;
4420	struct rb_event_info info;
4421	int nr_loops = 0;
4422	int add_ts_default;
4423
4424	/*
4425	 * ring buffer does cmpxchg as well as atomic64 operations
4426	 * (which some archs use locking for atomic64), make sure this
4427	 * is safe in NMI context
4428	 */
4429	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4430	     IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4431	    (unlikely(in_nmi()))) {
4432		return NULL;
4433	}
4434
4435	rb_start_commit(cpu_buffer);
4436	/* The commit page can not change after this */
4437
4438#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4439	/*
4440	 * Due to the ability to swap a cpu buffer from a buffer
4441	 * it is possible it was swapped before we committed.
4442	 * (committing stops a swap). We check for it here and
4443	 * if it happened, we have to fail the write.
4444	 */
4445	barrier();
4446	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4447		local_dec(&cpu_buffer->committing);
4448		local_dec(&cpu_buffer->commits);
4449		return NULL;
4450	}
4451#endif
4452
4453	info.length = rb_calculate_event_length(length);
4454
4455	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4456		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4457		info.length += RB_LEN_TIME_EXTEND;
4458		if (info.length > cpu_buffer->buffer->max_data_size)
4459			goto out_fail;
4460	} else {
4461		add_ts_default = RB_ADD_STAMP_NONE;
4462	}
4463
4464 again:
4465	info.add_timestamp = add_ts_default;
4466	info.delta = 0;
4467
4468	/*
4469	 * We allow for interrupts to reenter here and do a trace.
4470	 * If one does, it will cause this original code to loop
4471	 * back here. Even with heavy interrupts happening, this
4472	 * should only happen a few times in a row. If this happens
4473	 * 1000 times in a row, there must be either an interrupt
4474	 * storm or we have something buggy.
4475	 * Bail!
4476	 */
4477	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4478		goto out_fail;
4479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4480	event = __rb_reserve_next(cpu_buffer, &info);
4481
4482	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4483		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4484			info.length -= RB_LEN_TIME_EXTEND;
4485		goto again;
4486	}
4487
4488	if (likely(event))
4489		return event;
 
 
 
4490 out_fail:
4491	rb_end_commit(cpu_buffer);
4492	return NULL;
4493}
4494
4495/**
4496 * ring_buffer_lock_reserve - reserve a part of the buffer
4497 * @buffer: the ring buffer to reserve from
4498 * @length: the length of the data to reserve (excluding event header)
4499 *
4500 * Returns a reserved event on the ring buffer to copy directly to.
4501 * The user of this interface will need to get the body to write into
4502 * and can use the ring_buffer_event_data() interface.
4503 *
4504 * The length is the length of the data needed, not the event length
4505 * which also includes the event header.
4506 *
4507 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4508 * If NULL is returned, then nothing has been allocated or locked.
4509 */
4510struct ring_buffer_event *
4511ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4512{
4513	struct ring_buffer_per_cpu *cpu_buffer;
4514	struct ring_buffer_event *event;
4515	int cpu;
4516
4517	/* If we are tracing schedule, we don't want to recurse */
4518	preempt_disable_notrace();
4519
4520	if (unlikely(atomic_read(&buffer->record_disabled)))
4521		goto out;
4522
4523	cpu = raw_smp_processor_id();
4524
4525	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4526		goto out;
4527
4528	cpu_buffer = buffer->buffers[cpu];
4529
4530	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4531		goto out;
4532
4533	if (unlikely(length > buffer->max_data_size))
4534		goto out;
4535
4536	if (unlikely(trace_recursive_lock(cpu_buffer)))
4537		goto out;
4538
4539	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4540	if (!event)
4541		goto out_unlock;
4542
4543	return event;
4544
4545 out_unlock:
4546	trace_recursive_unlock(cpu_buffer);
4547 out:
4548	preempt_enable_notrace();
4549	return NULL;
4550}
4551EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4552
4553/*
4554 * Decrement the entries to the page that an event is on.
4555 * The event does not even need to exist, only the pointer
4556 * to the page it is on. This may only be called before the commit
4557 * takes place.
4558 */
4559static inline void
4560rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4561		   struct ring_buffer_event *event)
4562{
4563	unsigned long addr = (unsigned long)event;
4564	struct buffer_page *bpage = cpu_buffer->commit_page;
4565	struct buffer_page *start;
4566
4567	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4568
4569	/* Do the likely case first */
4570	if (likely(bpage->page == (void *)addr)) {
4571		local_dec(&bpage->entries);
4572		return;
4573	}
4574
4575	/*
4576	 * Because the commit page may be on the reader page we
4577	 * start with the next page and check the end loop there.
4578	 */
4579	rb_inc_page(&bpage);
4580	start = bpage;
4581	do {
4582		if (bpage->page == (void *)addr) {
4583			local_dec(&bpage->entries);
4584			return;
4585		}
4586		rb_inc_page(&bpage);
4587	} while (bpage != start);
4588
4589	/* commit not part of this buffer?? */
4590	RB_WARN_ON(cpu_buffer, 1);
4591}
4592
4593/**
4594 * ring_buffer_discard_commit - discard an event that has not been committed
4595 * @buffer: the ring buffer
4596 * @event: non committed event to discard
4597 *
4598 * Sometimes an event that is in the ring buffer needs to be ignored.
4599 * This function lets the user discard an event in the ring buffer
4600 * and then that event will not be read later.
4601 *
4602 * This function only works if it is called before the item has been
4603 * committed. It will try to free the event from the ring buffer
4604 * if another event has not been added behind it.
4605 *
4606 * If another event has been added behind it, it will set the event
4607 * up as discarded, and perform the commit.
4608 *
4609 * If this function is called, do not call ring_buffer_unlock_commit on
4610 * the event.
4611 */
4612void ring_buffer_discard_commit(struct trace_buffer *buffer,
4613				struct ring_buffer_event *event)
4614{
4615	struct ring_buffer_per_cpu *cpu_buffer;
4616	int cpu;
4617
4618	/* The event is discarded regardless */
4619	rb_event_discard(event);
4620
4621	cpu = smp_processor_id();
4622	cpu_buffer = buffer->buffers[cpu];
4623
4624	/*
4625	 * This must only be called if the event has not been
4626	 * committed yet. Thus we can assume that preemption
4627	 * is still disabled.
4628	 */
4629	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4630
4631	rb_decrement_entry(cpu_buffer, event);
4632	if (rb_try_to_discard(cpu_buffer, event))
4633		goto out;
4634
 
 
 
 
 
4635 out:
4636	rb_end_commit(cpu_buffer);
4637
4638	trace_recursive_unlock(cpu_buffer);
4639
4640	preempt_enable_notrace();
4641
4642}
4643EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4644
4645/**
4646 * ring_buffer_write - write data to the buffer without reserving
4647 * @buffer: The ring buffer to write to.
4648 * @length: The length of the data being written (excluding the event header)
4649 * @data: The data to write to the buffer.
4650 *
4651 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4652 * one function. If you already have the data to write to the buffer, it
4653 * may be easier to simply call this function.
4654 *
4655 * Note, like ring_buffer_lock_reserve, the length is the length of the data
4656 * and not the length of the event which would hold the header.
4657 */
4658int ring_buffer_write(struct trace_buffer *buffer,
4659		      unsigned long length,
4660		      void *data)
4661{
4662	struct ring_buffer_per_cpu *cpu_buffer;
4663	struct ring_buffer_event *event;
4664	void *body;
4665	int ret = -EBUSY;
4666	int cpu;
4667
4668	preempt_disable_notrace();
4669
4670	if (atomic_read(&buffer->record_disabled))
4671		goto out;
4672
4673	cpu = raw_smp_processor_id();
4674
4675	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4676		goto out;
4677
4678	cpu_buffer = buffer->buffers[cpu];
4679
4680	if (atomic_read(&cpu_buffer->record_disabled))
4681		goto out;
4682
4683	if (length > buffer->max_data_size)
4684		goto out;
4685
4686	if (unlikely(trace_recursive_lock(cpu_buffer)))
4687		goto out;
4688
4689	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4690	if (!event)
4691		goto out_unlock;
4692
4693	body = rb_event_data(event);
4694
4695	memcpy(body, data, length);
4696
4697	rb_commit(cpu_buffer);
4698
4699	rb_wakeups(buffer, cpu_buffer);
4700
4701	ret = 0;
4702
4703 out_unlock:
4704	trace_recursive_unlock(cpu_buffer);
4705
4706 out:
4707	preempt_enable_notrace();
4708
4709	return ret;
4710}
4711EXPORT_SYMBOL_GPL(ring_buffer_write);
4712
4713static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4714{
4715	struct buffer_page *reader = cpu_buffer->reader_page;
4716	struct buffer_page *head = rb_set_head_page(cpu_buffer);
4717	struct buffer_page *commit = cpu_buffer->commit_page;
4718
4719	/* In case of error, head will be NULL */
4720	if (unlikely(!head))
4721		return true;
4722
4723	/* Reader should exhaust content in reader page */
4724	if (reader->read != rb_page_size(reader))
4725		return false;
4726
4727	/*
4728	 * If writers are committing on the reader page, knowing all
4729	 * committed content has been read, the ring buffer is empty.
4730	 */
4731	if (commit == reader)
4732		return true;
4733
4734	/*
4735	 * If writers are committing on a page other than reader page
4736	 * and head page, there should always be content to read.
4737	 */
4738	if (commit != head)
4739		return false;
4740
4741	/*
4742	 * Writers are committing on the head page, we just need
4743	 * to care about there're committed data, and the reader will
4744	 * swap reader page with head page when it is to read data.
4745	 */
4746	return rb_page_commit(commit) == 0;
4747}
4748
4749/**
4750 * ring_buffer_record_disable - stop all writes into the buffer
4751 * @buffer: The ring buffer to stop writes to.
4752 *
4753 * This prevents all writes to the buffer. Any attempt to write
4754 * to the buffer after this will fail and return NULL.
4755 *
4756 * The caller should call synchronize_rcu() after this.
4757 */
4758void ring_buffer_record_disable(struct trace_buffer *buffer)
4759{
4760	atomic_inc(&buffer->record_disabled);
4761}
4762EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4763
4764/**
4765 * ring_buffer_record_enable - enable writes to the buffer
4766 * @buffer: The ring buffer to enable writes
4767 *
4768 * Note, multiple disables will need the same number of enables
4769 * to truly enable the writing (much like preempt_disable).
4770 */
4771void ring_buffer_record_enable(struct trace_buffer *buffer)
4772{
4773	atomic_dec(&buffer->record_disabled);
4774}
4775EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4776
4777/**
4778 * ring_buffer_record_off - stop all writes into the buffer
4779 * @buffer: The ring buffer to stop writes to.
4780 *
4781 * This prevents all writes to the buffer. Any attempt to write
4782 * to the buffer after this will fail and return NULL.
4783 *
4784 * This is different than ring_buffer_record_disable() as
4785 * it works like an on/off switch, where as the disable() version
4786 * must be paired with a enable().
4787 */
4788void ring_buffer_record_off(struct trace_buffer *buffer)
4789{
4790	unsigned int rd;
4791	unsigned int new_rd;
4792
4793	rd = atomic_read(&buffer->record_disabled);
4794	do {
 
4795		new_rd = rd | RB_BUFFER_OFF;
4796	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4797}
4798EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4799
4800/**
4801 * ring_buffer_record_on - restart writes into the buffer
4802 * @buffer: The ring buffer to start writes to.
4803 *
4804 * This enables all writes to the buffer that was disabled by
4805 * ring_buffer_record_off().
4806 *
4807 * This is different than ring_buffer_record_enable() as
4808 * it works like an on/off switch, where as the enable() version
4809 * must be paired with a disable().
4810 */
4811void ring_buffer_record_on(struct trace_buffer *buffer)
4812{
4813	unsigned int rd;
4814	unsigned int new_rd;
4815
4816	rd = atomic_read(&buffer->record_disabled);
4817	do {
 
4818		new_rd = rd & ~RB_BUFFER_OFF;
4819	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4820}
4821EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4822
4823/**
4824 * ring_buffer_record_is_on - return true if the ring buffer can write
4825 * @buffer: The ring buffer to see if write is enabled
4826 *
4827 * Returns true if the ring buffer is in a state that it accepts writes.
4828 */
4829bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4830{
4831	return !atomic_read(&buffer->record_disabled);
4832}
4833
4834/**
4835 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4836 * @buffer: The ring buffer to see if write is set enabled
4837 *
4838 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4839 * Note that this does NOT mean it is in a writable state.
4840 *
4841 * It may return true when the ring buffer has been disabled by
4842 * ring_buffer_record_disable(), as that is a temporary disabling of
4843 * the ring buffer.
4844 */
4845bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4846{
4847	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4848}
4849
4850/**
4851 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4852 * @buffer: The ring buffer to stop writes to.
4853 * @cpu: The CPU buffer to stop
4854 *
4855 * This prevents all writes to the buffer. Any attempt to write
4856 * to the buffer after this will fail and return NULL.
4857 *
4858 * The caller should call synchronize_rcu() after this.
4859 */
4860void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4861{
4862	struct ring_buffer_per_cpu *cpu_buffer;
4863
4864	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4865		return;
4866
4867	cpu_buffer = buffer->buffers[cpu];
4868	atomic_inc(&cpu_buffer->record_disabled);
4869}
4870EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4871
4872/**
4873 * ring_buffer_record_enable_cpu - enable writes to the buffer
4874 * @buffer: The ring buffer to enable writes
4875 * @cpu: The CPU to enable.
4876 *
4877 * Note, multiple disables will need the same number of enables
4878 * to truly enable the writing (much like preempt_disable).
4879 */
4880void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4881{
4882	struct ring_buffer_per_cpu *cpu_buffer;
4883
4884	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4885		return;
4886
4887	cpu_buffer = buffer->buffers[cpu];
4888	atomic_dec(&cpu_buffer->record_disabled);
4889}
4890EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4891
4892/*
4893 * The total entries in the ring buffer is the running counter
4894 * of entries entered into the ring buffer, minus the sum of
4895 * the entries read from the ring buffer and the number of
4896 * entries that were overwritten.
4897 */
4898static inline unsigned long
4899rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4900{
4901	return local_read(&cpu_buffer->entries) -
4902		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4903}
4904
4905/**
4906 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4907 * @buffer: The ring buffer
4908 * @cpu: The per CPU buffer to read from.
4909 */
4910u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4911{
4912	unsigned long flags;
4913	struct ring_buffer_per_cpu *cpu_buffer;
4914	struct buffer_page *bpage;
4915	u64 ret = 0;
4916
4917	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4918		return 0;
4919
4920	cpu_buffer = buffer->buffers[cpu];
4921	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4922	/*
4923	 * if the tail is on reader_page, oldest time stamp is on the reader
4924	 * page
4925	 */
4926	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4927		bpage = cpu_buffer->reader_page;
4928	else
4929		bpage = rb_set_head_page(cpu_buffer);
4930	if (bpage)
4931		ret = bpage->page->time_stamp;
4932	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4933
4934	return ret;
4935}
4936EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4937
4938/**
4939 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4940 * @buffer: The ring buffer
4941 * @cpu: The per CPU buffer to read from.
4942 */
4943unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4944{
4945	struct ring_buffer_per_cpu *cpu_buffer;
4946	unsigned long ret;
4947
4948	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4949		return 0;
4950
4951	cpu_buffer = buffer->buffers[cpu];
4952	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4953
4954	return ret;
4955}
4956EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4957
4958/**
4959 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4960 * @buffer: The ring buffer
4961 * @cpu: The per CPU buffer to get the entries from.
4962 */
4963unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4964{
4965	struct ring_buffer_per_cpu *cpu_buffer;
4966
4967	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4968		return 0;
4969
4970	cpu_buffer = buffer->buffers[cpu];
4971
4972	return rb_num_of_entries(cpu_buffer);
4973}
4974EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4975
4976/**
4977 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4978 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4979 * @buffer: The ring buffer
4980 * @cpu: The per CPU buffer to get the number of overruns from
4981 */
4982unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4983{
4984	struct ring_buffer_per_cpu *cpu_buffer;
4985	unsigned long ret;
4986
4987	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4988		return 0;
4989
4990	cpu_buffer = buffer->buffers[cpu];
4991	ret = local_read(&cpu_buffer->overrun);
4992
4993	return ret;
4994}
4995EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4996
4997/**
4998 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4999 * commits failing due to the buffer wrapping around while there are uncommitted
5000 * events, such as during an interrupt storm.
5001 * @buffer: The ring buffer
5002 * @cpu: The per CPU buffer to get the number of overruns from
5003 */
5004unsigned long
5005ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5006{
5007	struct ring_buffer_per_cpu *cpu_buffer;
5008	unsigned long ret;
5009
5010	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5011		return 0;
5012
5013	cpu_buffer = buffer->buffers[cpu];
5014	ret = local_read(&cpu_buffer->commit_overrun);
5015
5016	return ret;
5017}
5018EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5019
5020/**
5021 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5022 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5023 * @buffer: The ring buffer
5024 * @cpu: The per CPU buffer to get the number of overruns from
5025 */
5026unsigned long
5027ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5028{
5029	struct ring_buffer_per_cpu *cpu_buffer;
5030	unsigned long ret;
5031
5032	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5033		return 0;
5034
5035	cpu_buffer = buffer->buffers[cpu];
5036	ret = local_read(&cpu_buffer->dropped_events);
5037
5038	return ret;
5039}
5040EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5041
5042/**
5043 * ring_buffer_read_events_cpu - get the number of events successfully read
5044 * @buffer: The ring buffer
5045 * @cpu: The per CPU buffer to get the number of events read
5046 */
5047unsigned long
5048ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5049{
5050	struct ring_buffer_per_cpu *cpu_buffer;
5051
5052	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5053		return 0;
5054
5055	cpu_buffer = buffer->buffers[cpu];
5056	return cpu_buffer->read;
5057}
5058EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5059
5060/**
5061 * ring_buffer_entries - get the number of entries in a buffer
5062 * @buffer: The ring buffer
5063 *
5064 * Returns the total number of entries in the ring buffer
5065 * (all CPU entries)
5066 */
5067unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5068{
5069	struct ring_buffer_per_cpu *cpu_buffer;
5070	unsigned long entries = 0;
5071	int cpu;
5072
5073	/* if you care about this being correct, lock the buffer */
5074	for_each_buffer_cpu(buffer, cpu) {
5075		cpu_buffer = buffer->buffers[cpu];
5076		entries += rb_num_of_entries(cpu_buffer);
5077	}
5078
5079	return entries;
5080}
5081EXPORT_SYMBOL_GPL(ring_buffer_entries);
5082
5083/**
5084 * ring_buffer_overruns - get the number of overruns in buffer
5085 * @buffer: The ring buffer
5086 *
5087 * Returns the total number of overruns in the ring buffer
5088 * (all CPU entries)
5089 */
5090unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5091{
5092	struct ring_buffer_per_cpu *cpu_buffer;
5093	unsigned long overruns = 0;
5094	int cpu;
5095
5096	/* if you care about this being correct, lock the buffer */
5097	for_each_buffer_cpu(buffer, cpu) {
5098		cpu_buffer = buffer->buffers[cpu];
5099		overruns += local_read(&cpu_buffer->overrun);
5100	}
5101
5102	return overruns;
5103}
5104EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5105
5106static void rb_iter_reset(struct ring_buffer_iter *iter)
5107{
5108	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5109
5110	/* Iterator usage is expected to have record disabled */
5111	iter->head_page = cpu_buffer->reader_page;
5112	iter->head = cpu_buffer->reader_page->read;
5113	iter->next_event = iter->head;
5114
5115	iter->cache_reader_page = iter->head_page;
5116	iter->cache_read = cpu_buffer->read;
5117	iter->cache_pages_removed = cpu_buffer->pages_removed;
5118
5119	if (iter->head) {
5120		iter->read_stamp = cpu_buffer->read_stamp;
5121		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5122	} else {
5123		iter->read_stamp = iter->head_page->page->time_stamp;
5124		iter->page_stamp = iter->read_stamp;
5125	}
5126}
5127
5128/**
5129 * ring_buffer_iter_reset - reset an iterator
5130 * @iter: The iterator to reset
5131 *
5132 * Resets the iterator, so that it will start from the beginning
5133 * again.
5134 */
5135void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5136{
5137	struct ring_buffer_per_cpu *cpu_buffer;
5138	unsigned long flags;
5139
5140	if (!iter)
5141		return;
5142
5143	cpu_buffer = iter->cpu_buffer;
5144
5145	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5146	rb_iter_reset(iter);
5147	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5148}
5149EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5150
5151/**
5152 * ring_buffer_iter_empty - check if an iterator has no more to read
5153 * @iter: The iterator to check
5154 */
5155int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5156{
5157	struct ring_buffer_per_cpu *cpu_buffer;
5158	struct buffer_page *reader;
5159	struct buffer_page *head_page;
5160	struct buffer_page *commit_page;
5161	struct buffer_page *curr_commit_page;
5162	unsigned commit;
5163	u64 curr_commit_ts;
5164	u64 commit_ts;
5165
5166	cpu_buffer = iter->cpu_buffer;
 
 
5167	reader = cpu_buffer->reader_page;
5168	head_page = cpu_buffer->head_page;
5169	commit_page = READ_ONCE(cpu_buffer->commit_page);
5170	commit_ts = commit_page->page->time_stamp;
5171
5172	/*
5173	 * When the writer goes across pages, it issues a cmpxchg which
5174	 * is a mb(), which will synchronize with the rmb here.
5175	 * (see rb_tail_page_update())
5176	 */
5177	smp_rmb();
5178	commit = rb_page_commit(commit_page);
5179	/* We want to make sure that the commit page doesn't change */
5180	smp_rmb();
5181
5182	/* Make sure commit page didn't change */
5183	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5184	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5185
5186	/* If the commit page changed, then there's more data */
5187	if (curr_commit_page != commit_page ||
5188	    curr_commit_ts != commit_ts)
5189		return 0;
5190
5191	/* Still racy, as it may return a false positive, but that's OK */
5192	return ((iter->head_page == commit_page && iter->head >= commit) ||
5193		(iter->head_page == reader && commit_page == head_page &&
5194		 head_page->read == commit &&
5195		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5196}
5197EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5198
5199static void
5200rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5201		     struct ring_buffer_event *event)
5202{
5203	u64 delta;
5204
5205	switch (event->type_len) {
5206	case RINGBUF_TYPE_PADDING:
5207		return;
5208
5209	case RINGBUF_TYPE_TIME_EXTEND:
5210		delta = rb_event_time_stamp(event);
5211		cpu_buffer->read_stamp += delta;
5212		return;
5213
5214	case RINGBUF_TYPE_TIME_STAMP:
5215		delta = rb_event_time_stamp(event);
5216		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5217		cpu_buffer->read_stamp = delta;
5218		return;
5219
5220	case RINGBUF_TYPE_DATA:
5221		cpu_buffer->read_stamp += event->time_delta;
5222		return;
5223
5224	default:
5225		RB_WARN_ON(cpu_buffer, 1);
5226	}
 
5227}
5228
5229static void
5230rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5231			  struct ring_buffer_event *event)
5232{
5233	u64 delta;
5234
5235	switch (event->type_len) {
5236	case RINGBUF_TYPE_PADDING:
5237		return;
5238
5239	case RINGBUF_TYPE_TIME_EXTEND:
5240		delta = rb_event_time_stamp(event);
5241		iter->read_stamp += delta;
5242		return;
5243
5244	case RINGBUF_TYPE_TIME_STAMP:
5245		delta = rb_event_time_stamp(event);
5246		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5247		iter->read_stamp = delta;
5248		return;
5249
5250	case RINGBUF_TYPE_DATA:
5251		iter->read_stamp += event->time_delta;
5252		return;
5253
5254	default:
5255		RB_WARN_ON(iter->cpu_buffer, 1);
5256	}
 
5257}
5258
5259static struct buffer_page *
5260rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5261{
5262	struct buffer_page *reader = NULL;
5263	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5264	unsigned long overwrite;
5265	unsigned long flags;
5266	int nr_loops = 0;
5267	bool ret;
5268
5269	local_irq_save(flags);
5270	arch_spin_lock(&cpu_buffer->lock);
5271
5272 again:
5273	/*
5274	 * This should normally only loop twice. But because the
5275	 * start of the reader inserts an empty page, it causes
5276	 * a case where we will loop three times. There should be no
5277	 * reason to loop four times (that I know of).
5278	 */
5279	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5280		reader = NULL;
5281		goto out;
5282	}
5283
5284	reader = cpu_buffer->reader_page;
5285
5286	/* If there's more to read, return this page */
5287	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5288		goto out;
5289
5290	/* Never should we have an index greater than the size */
5291	if (RB_WARN_ON(cpu_buffer,
5292		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5293		goto out;
5294
5295	/* check if we caught up to the tail */
5296	reader = NULL;
5297	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5298		goto out;
5299
5300	/* Don't bother swapping if the ring buffer is empty */
5301	if (rb_num_of_entries(cpu_buffer) == 0)
5302		goto out;
5303
5304	/*
5305	 * Reset the reader page to size zero.
5306	 */
5307	local_set(&cpu_buffer->reader_page->write, 0);
5308	local_set(&cpu_buffer->reader_page->entries, 0);
5309	local_set(&cpu_buffer->reader_page->page->commit, 0);
5310	cpu_buffer->reader_page->real_end = 0;
5311
5312 spin:
5313	/*
5314	 * Splice the empty reader page into the list around the head.
5315	 */
5316	reader = rb_set_head_page(cpu_buffer);
5317	if (!reader)
5318		goto out;
5319	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5320	cpu_buffer->reader_page->list.prev = reader->list.prev;
5321
5322	/*
5323	 * cpu_buffer->pages just needs to point to the buffer, it
5324	 *  has no specific buffer page to point to. Lets move it out
5325	 *  of our way so we don't accidentally swap it.
5326	 */
5327	cpu_buffer->pages = reader->list.prev;
5328
5329	/* The reader page will be pointing to the new head */
5330	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5331
5332	/*
5333	 * We want to make sure we read the overruns after we set up our
5334	 * pointers to the next object. The writer side does a
5335	 * cmpxchg to cross pages which acts as the mb on the writer
5336	 * side. Note, the reader will constantly fail the swap
5337	 * while the writer is updating the pointers, so this
5338	 * guarantees that the overwrite recorded here is the one we
5339	 * want to compare with the last_overrun.
5340	 */
5341	smp_mb();
5342	overwrite = local_read(&(cpu_buffer->overrun));
5343
5344	/*
5345	 * Here's the tricky part.
5346	 *
5347	 * We need to move the pointer past the header page.
5348	 * But we can only do that if a writer is not currently
5349	 * moving it. The page before the header page has the
5350	 * flag bit '1' set if it is pointing to the page we want.
5351	 * but if the writer is in the process of moving it
5352	 * than it will be '2' or already moved '0'.
5353	 */
5354
5355	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5356
5357	/*
5358	 * If we did not convert it, then we must try again.
5359	 */
5360	if (!ret)
5361		goto spin;
5362
5363	if (cpu_buffer->ring_meta)
5364		rb_update_meta_reader(cpu_buffer, reader);
5365
5366	/*
5367	 * Yay! We succeeded in replacing the page.
5368	 *
5369	 * Now make the new head point back to the reader page.
5370	 */
5371	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5372	rb_inc_page(&cpu_buffer->head_page);
5373
5374	cpu_buffer->cnt++;
5375	local_inc(&cpu_buffer->pages_read);
5376
5377	/* Finally update the reader page to the new head */
5378	cpu_buffer->reader_page = reader;
5379	cpu_buffer->reader_page->read = 0;
5380
5381	if (overwrite != cpu_buffer->last_overrun) {
5382		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5383		cpu_buffer->last_overrun = overwrite;
5384	}
5385
5386	goto again;
5387
5388 out:
5389	/* Update the read_stamp on the first event */
5390	if (reader && reader->read == 0)
5391		cpu_buffer->read_stamp = reader->page->time_stamp;
5392
5393	arch_spin_unlock(&cpu_buffer->lock);
5394	local_irq_restore(flags);
5395
5396	/*
5397	 * The writer has preempt disable, wait for it. But not forever
5398	 * Although, 1 second is pretty much "forever"
5399	 */
5400#define USECS_WAIT	1000000
5401        for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5402		/* If the write is past the end of page, a writer is still updating it */
5403		if (likely(!reader || rb_page_write(reader) <= bsize))
5404			break;
5405
5406		udelay(1);
5407
5408		/* Get the latest version of the reader write value */
5409		smp_rmb();
5410	}
5411
5412	/* The writer is not moving forward? Something is wrong */
5413	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5414		reader = NULL;
5415
5416	/*
5417	 * Make sure we see any padding after the write update
5418	 * (see rb_reset_tail()).
5419	 *
5420	 * In addition, a writer may be writing on the reader page
5421	 * if the page has not been fully filled, so the read barrier
5422	 * is also needed to make sure we see the content of what is
5423	 * committed by the writer (see rb_set_commit_to_write()).
5424	 */
5425	smp_rmb();
5426
5427
5428	return reader;
5429}
5430
5431static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5432{
5433	struct ring_buffer_event *event;
5434	struct buffer_page *reader;
5435	unsigned length;
5436
5437	reader = rb_get_reader_page(cpu_buffer);
5438
5439	/* This function should not be called when buffer is empty */
5440	if (RB_WARN_ON(cpu_buffer, !reader))
5441		return;
5442
5443	event = rb_reader_event(cpu_buffer);
5444
5445	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5446		cpu_buffer->read++;
5447
5448	rb_update_read_stamp(cpu_buffer, event);
5449
5450	length = rb_event_length(event);
5451	cpu_buffer->reader_page->read += length;
5452	cpu_buffer->read_bytes += length;
5453}
5454
5455static void rb_advance_iter(struct ring_buffer_iter *iter)
5456{
5457	struct ring_buffer_per_cpu *cpu_buffer;
 
 
5458
5459	cpu_buffer = iter->cpu_buffer;
5460
5461	/* If head == next_event then we need to jump to the next event */
5462	if (iter->head == iter->next_event) {
5463		/* If the event gets overwritten again, there's nothing to do */
5464		if (rb_iter_head_event(iter) == NULL)
5465			return;
5466	}
5467
5468	iter->head = iter->next_event;
5469
5470	/*
5471	 * Check if we are at the end of the buffer.
5472	 */
5473	if (iter->next_event >= rb_page_size(iter->head_page)) {
5474		/* discarded commits can make the page empty */
5475		if (iter->head_page == cpu_buffer->commit_page)
5476			return;
5477		rb_inc_iter(iter);
5478		return;
5479	}
5480
5481	rb_update_iter_read_stamp(iter, iter->event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5482}
5483
5484static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5485{
5486	return cpu_buffer->lost_events;
5487}
5488
5489static struct ring_buffer_event *
5490rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5491	       unsigned long *lost_events)
5492{
5493	struct ring_buffer_event *event;
5494	struct buffer_page *reader;
5495	int nr_loops = 0;
5496
5497	if (ts)
5498		*ts = 0;
5499 again:
5500	/*
5501	 * We repeat when a time extend is encountered.
5502	 * Since the time extend is always attached to a data event,
5503	 * we should never loop more than once.
5504	 * (We never hit the following condition more than twice).
5505	 */
5506	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5507		return NULL;
5508
5509	reader = rb_get_reader_page(cpu_buffer);
5510	if (!reader)
5511		return NULL;
5512
5513	event = rb_reader_event(cpu_buffer);
5514
5515	switch (event->type_len) {
5516	case RINGBUF_TYPE_PADDING:
5517		if (rb_null_event(event))
5518			RB_WARN_ON(cpu_buffer, 1);
5519		/*
5520		 * Because the writer could be discarding every
5521		 * event it creates (which would probably be bad)
5522		 * if we were to go back to "again" then we may never
5523		 * catch up, and will trigger the warn on, or lock
5524		 * the box. Return the padding, and we will release
5525		 * the current locks, and try again.
5526		 */
5527		return event;
5528
5529	case RINGBUF_TYPE_TIME_EXTEND:
5530		/* Internal data, OK to advance */
5531		rb_advance_reader(cpu_buffer);
5532		goto again;
5533
5534	case RINGBUF_TYPE_TIME_STAMP:
5535		if (ts) {
5536			*ts = rb_event_time_stamp(event);
5537			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5538			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5539							 cpu_buffer->cpu, ts);
5540		}
5541		/* Internal data, OK to advance */
5542		rb_advance_reader(cpu_buffer);
5543		goto again;
5544
5545	case RINGBUF_TYPE_DATA:
5546		if (ts && !(*ts)) {
5547			*ts = cpu_buffer->read_stamp + event->time_delta;
5548			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5549							 cpu_buffer->cpu, ts);
5550		}
5551		if (lost_events)
5552			*lost_events = rb_lost_events(cpu_buffer);
5553		return event;
5554
5555	default:
5556		RB_WARN_ON(cpu_buffer, 1);
5557	}
5558
5559	return NULL;
5560}
5561EXPORT_SYMBOL_GPL(ring_buffer_peek);
5562
5563static struct ring_buffer_event *
5564rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5565{
5566	struct trace_buffer *buffer;
5567	struct ring_buffer_per_cpu *cpu_buffer;
5568	struct ring_buffer_event *event;
5569	int nr_loops = 0;
5570
5571	if (ts)
5572		*ts = 0;
5573
5574	cpu_buffer = iter->cpu_buffer;
5575	buffer = cpu_buffer->buffer;
5576
5577	/*
5578	 * Check if someone performed a consuming read to the buffer
5579	 * or removed some pages from the buffer. In these cases,
5580	 * iterator was invalidated and we need to reset it.
5581	 */
5582	if (unlikely(iter->cache_read != cpu_buffer->read ||
5583		     iter->cache_reader_page != cpu_buffer->reader_page ||
5584		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5585		rb_iter_reset(iter);
5586
5587 again:
5588	if (ring_buffer_iter_empty(iter))
5589		return NULL;
5590
5591	/*
5592	 * As the writer can mess with what the iterator is trying
5593	 * to read, just give up if we fail to get an event after
5594	 * three tries. The iterator is not as reliable when reading
5595	 * the ring buffer with an active write as the consumer is.
5596	 * Do not warn if the three failures is reached.
 
5597	 */
5598	if (++nr_loops > 3)
5599		return NULL;
5600
5601	if (rb_per_cpu_empty(cpu_buffer))
5602		return NULL;
5603
5604	if (iter->head >= rb_page_size(iter->head_page)) {
5605		rb_inc_iter(iter);
5606		goto again;
5607	}
5608
5609	event = rb_iter_head_event(iter);
5610	if (!event)
5611		goto again;
5612
5613	switch (event->type_len) {
5614	case RINGBUF_TYPE_PADDING:
5615		if (rb_null_event(event)) {
5616			rb_inc_iter(iter);
5617			goto again;
5618		}
5619		rb_advance_iter(iter);
5620		return event;
5621
5622	case RINGBUF_TYPE_TIME_EXTEND:
5623		/* Internal data, OK to advance */
5624		rb_advance_iter(iter);
5625		goto again;
5626
5627	case RINGBUF_TYPE_TIME_STAMP:
5628		if (ts) {
5629			*ts = rb_event_time_stamp(event);
5630			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5631			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5632							 cpu_buffer->cpu, ts);
5633		}
5634		/* Internal data, OK to advance */
5635		rb_advance_iter(iter);
5636		goto again;
5637
5638	case RINGBUF_TYPE_DATA:
5639		if (ts && !(*ts)) {
5640			*ts = iter->read_stamp + event->time_delta;
5641			ring_buffer_normalize_time_stamp(buffer,
5642							 cpu_buffer->cpu, ts);
5643		}
5644		return event;
5645
5646	default:
5647		RB_WARN_ON(cpu_buffer, 1);
5648	}
5649
5650	return NULL;
5651}
5652EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5653
5654static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5655{
5656	if (likely(!in_nmi())) {
5657		raw_spin_lock(&cpu_buffer->reader_lock);
5658		return true;
5659	}
5660
5661	/*
5662	 * If an NMI die dumps out the content of the ring buffer
5663	 * trylock must be used to prevent a deadlock if the NMI
5664	 * preempted a task that holds the ring buffer locks. If
5665	 * we get the lock then all is fine, if not, then continue
5666	 * to do the read, but this can corrupt the ring buffer,
5667	 * so it must be permanently disabled from future writes.
5668	 * Reading from NMI is a oneshot deal.
5669	 */
5670	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5671		return true;
5672
5673	/* Continue without locking, but disable the ring buffer */
5674	atomic_inc(&cpu_buffer->record_disabled);
5675	return false;
5676}
5677
5678static inline void
5679rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5680{
5681	if (likely(locked))
5682		raw_spin_unlock(&cpu_buffer->reader_lock);
 
5683}
5684
5685/**
5686 * ring_buffer_peek - peek at the next event to be read
5687 * @buffer: The ring buffer to read
5688 * @cpu: The cpu to peak at
5689 * @ts: The timestamp counter of this event.
5690 * @lost_events: a variable to store if events were lost (may be NULL)
5691 *
5692 * This will return the event that will be read next, but does
5693 * not consume the data.
5694 */
5695struct ring_buffer_event *
5696ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5697		 unsigned long *lost_events)
5698{
5699	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5700	struct ring_buffer_event *event;
5701	unsigned long flags;
5702	bool dolock;
5703
5704	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5705		return NULL;
5706
5707 again:
5708	local_irq_save(flags);
5709	dolock = rb_reader_lock(cpu_buffer);
5710	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5711	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5712		rb_advance_reader(cpu_buffer);
5713	rb_reader_unlock(cpu_buffer, dolock);
5714	local_irq_restore(flags);
5715
5716	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5717		goto again;
5718
5719	return event;
5720}
5721
5722/** ring_buffer_iter_dropped - report if there are dropped events
5723 * @iter: The ring buffer iterator
5724 *
5725 * Returns true if there was dropped events since the last peek.
5726 */
5727bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5728{
5729	bool ret = iter->missed_events != 0;
5730
5731	iter->missed_events = 0;
5732	return ret;
5733}
5734EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5735
5736/**
5737 * ring_buffer_iter_peek - peek at the next event to be read
5738 * @iter: The ring buffer iterator
5739 * @ts: The timestamp counter of this event.
5740 *
5741 * This will return the event that will be read next, but does
5742 * not increment the iterator.
5743 */
5744struct ring_buffer_event *
5745ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5746{
5747	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5748	struct ring_buffer_event *event;
5749	unsigned long flags;
5750
5751 again:
5752	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5753	event = rb_iter_peek(iter, ts);
5754	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5755
5756	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5757		goto again;
5758
5759	return event;
5760}
5761
5762/**
5763 * ring_buffer_consume - return an event and consume it
5764 * @buffer: The ring buffer to get the next event from
5765 * @cpu: the cpu to read the buffer from
5766 * @ts: a variable to store the timestamp (may be NULL)
5767 * @lost_events: a variable to store if events were lost (may be NULL)
5768 *
5769 * Returns the next event in the ring buffer, and that event is consumed.
5770 * Meaning, that sequential reads will keep returning a different event,
5771 * and eventually empty the ring buffer if the producer is slower.
5772 */
5773struct ring_buffer_event *
5774ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5775		    unsigned long *lost_events)
5776{
5777	struct ring_buffer_per_cpu *cpu_buffer;
5778	struct ring_buffer_event *event = NULL;
5779	unsigned long flags;
5780	bool dolock;
5781
5782 again:
5783	/* might be called in atomic */
5784	preempt_disable();
5785
5786	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5787		goto out;
5788
5789	cpu_buffer = buffer->buffers[cpu];
5790	local_irq_save(flags);
5791	dolock = rb_reader_lock(cpu_buffer);
5792
5793	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5794	if (event) {
5795		cpu_buffer->lost_events = 0;
5796		rb_advance_reader(cpu_buffer);
5797	}
5798
5799	rb_reader_unlock(cpu_buffer, dolock);
5800	local_irq_restore(flags);
5801
5802 out:
5803	preempt_enable();
5804
5805	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5806		goto again;
5807
5808	return event;
5809}
5810EXPORT_SYMBOL_GPL(ring_buffer_consume);
5811
5812/**
5813 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5814 * @buffer: The ring buffer to read from
5815 * @cpu: The cpu buffer to iterate over
5816 * @flags: gfp flags to use for memory allocation
5817 *
5818 * This performs the initial preparations necessary to iterate
5819 * through the buffer.  Memory is allocated, buffer resizing
5820 * is disabled, and the iterator pointer is returned to the caller.
5821 *
 
 
 
 
5822 * After a sequence of ring_buffer_read_prepare calls, the user is
5823 * expected to make at least one call to ring_buffer_read_prepare_sync.
5824 * Afterwards, ring_buffer_read_start is invoked to get things going
5825 * for real.
5826 *
5827 * This overall must be paired with ring_buffer_read_finish.
5828 */
5829struct ring_buffer_iter *
5830ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5831{
5832	struct ring_buffer_per_cpu *cpu_buffer;
5833	struct ring_buffer_iter *iter;
5834
5835	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5836		return NULL;
5837
5838	iter = kzalloc(sizeof(*iter), flags);
5839	if (!iter)
5840		return NULL;
5841
5842	/* Holds the entire event: data and meta data */
5843	iter->event_size = buffer->subbuf_size;
5844	iter->event = kmalloc(iter->event_size, flags);
5845	if (!iter->event) {
5846		kfree(iter);
5847		return NULL;
5848	}
5849
5850	cpu_buffer = buffer->buffers[cpu];
5851
5852	iter->cpu_buffer = cpu_buffer;
5853
5854	atomic_inc(&cpu_buffer->resize_disabled);
 
5855
5856	return iter;
5857}
5858EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5859
5860/**
5861 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5862 *
5863 * All previously invoked ring_buffer_read_prepare calls to prepare
5864 * iterators will be synchronized.  Afterwards, read_buffer_read_start
5865 * calls on those iterators are allowed.
5866 */
5867void
5868ring_buffer_read_prepare_sync(void)
5869{
5870	synchronize_rcu();
5871}
5872EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5873
5874/**
5875 * ring_buffer_read_start - start a non consuming read of the buffer
5876 * @iter: The iterator returned by ring_buffer_read_prepare
5877 *
5878 * This finalizes the startup of an iteration through the buffer.
5879 * The iterator comes from a call to ring_buffer_read_prepare and
5880 * an intervening ring_buffer_read_prepare_sync must have been
5881 * performed.
5882 *
5883 * Must be paired with ring_buffer_read_finish.
5884 */
5885void
5886ring_buffer_read_start(struct ring_buffer_iter *iter)
5887{
5888	struct ring_buffer_per_cpu *cpu_buffer;
5889	unsigned long flags;
5890
5891	if (!iter)
5892		return;
5893
5894	cpu_buffer = iter->cpu_buffer;
5895
5896	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5897	arch_spin_lock(&cpu_buffer->lock);
5898	rb_iter_reset(iter);
5899	arch_spin_unlock(&cpu_buffer->lock);
5900	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5901}
5902EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5903
5904/**
5905 * ring_buffer_read_finish - finish reading the iterator of the buffer
5906 * @iter: The iterator retrieved by ring_buffer_start
5907 *
5908 * This re-enables resizing of the buffer, and frees the iterator.
 
5909 */
5910void
5911ring_buffer_read_finish(struct ring_buffer_iter *iter)
5912{
5913	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
 
5914
5915	/* Use this opportunity to check the integrity of the ring buffer. */
 
 
 
 
 
 
5916	rb_check_pages(cpu_buffer);
 
5917
5918	atomic_dec(&cpu_buffer->resize_disabled);
5919	kfree(iter->event);
5920	kfree(iter);
5921}
5922EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5923
5924/**
5925 * ring_buffer_iter_advance - advance the iterator to the next location
5926 * @iter: The ring buffer iterator
 
5927 *
5928 * Move the location of the iterator such that the next read will
5929 * be the next location of the iterator.
5930 */
5931void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
 
5932{
 
5933	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5934	unsigned long flags;
5935
5936	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 
 
 
 
 
 
 
5937
5938	rb_advance_iter(iter);
 
 
5939
5940	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5941}
5942EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5943
5944/**
5945 * ring_buffer_size - return the size of the ring buffer (in bytes)
5946 * @buffer: The ring buffer.
5947 * @cpu: The CPU to get ring buffer size from.
5948 */
5949unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5950{
 
 
 
 
 
 
5951	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5952		return 0;
5953
5954	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5955}
5956EXPORT_SYMBOL_GPL(ring_buffer_size);
5957
5958/**
5959 * ring_buffer_max_event_size - return the max data size of an event
5960 * @buffer: The ring buffer.
5961 *
5962 * Returns the maximum size an event can be.
5963 */
5964unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5965{
5966	/* If abs timestamp is requested, events have a timestamp too */
5967	if (ring_buffer_time_stamp_abs(buffer))
5968		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5969	return buffer->max_data_size;
5970}
5971EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5972
5973static void rb_clear_buffer_page(struct buffer_page *page)
5974{
5975	local_set(&page->write, 0);
5976	local_set(&page->entries, 0);
5977	rb_init_page(page->page);
5978	page->read = 0;
5979}
5980
5981static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5982{
5983	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5984
5985	if (!meta)
5986		return;
5987
5988	meta->reader.read = cpu_buffer->reader_page->read;
5989	meta->reader.id = cpu_buffer->reader_page->id;
5990	meta->reader.lost_events = cpu_buffer->lost_events;
5991
5992	meta->entries = local_read(&cpu_buffer->entries);
5993	meta->overrun = local_read(&cpu_buffer->overrun);
5994	meta->read = cpu_buffer->read;
5995
5996	/* Some archs do not have data cache coherency between kernel and user-space */
5997	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5998}
5999
6000static void
6001rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6002{
6003	struct buffer_page *page;
6004
6005	rb_head_page_deactivate(cpu_buffer);
6006
6007	cpu_buffer->head_page
6008		= list_entry(cpu_buffer->pages, struct buffer_page, list);
6009	rb_clear_buffer_page(cpu_buffer->head_page);
6010	list_for_each_entry(page, cpu_buffer->pages, list) {
6011		rb_clear_buffer_page(page);
6012	}
 
6013
6014	cpu_buffer->tail_page = cpu_buffer->head_page;
6015	cpu_buffer->commit_page = cpu_buffer->head_page;
6016
6017	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6018	INIT_LIST_HEAD(&cpu_buffer->new_pages);
6019	rb_clear_buffer_page(cpu_buffer->reader_page);
 
 
 
6020
6021	local_set(&cpu_buffer->entries_bytes, 0);
6022	local_set(&cpu_buffer->overrun, 0);
6023	local_set(&cpu_buffer->commit_overrun, 0);
6024	local_set(&cpu_buffer->dropped_events, 0);
6025	local_set(&cpu_buffer->entries, 0);
6026	local_set(&cpu_buffer->committing, 0);
6027	local_set(&cpu_buffer->commits, 0);
6028	local_set(&cpu_buffer->pages_touched, 0);
6029	local_set(&cpu_buffer->pages_lost, 0);
6030	local_set(&cpu_buffer->pages_read, 0);
6031	cpu_buffer->last_pages_touch = 0;
6032	cpu_buffer->shortest_full = 0;
6033	cpu_buffer->read = 0;
6034	cpu_buffer->read_bytes = 0;
6035
6036	rb_time_set(&cpu_buffer->write_stamp, 0);
6037	rb_time_set(&cpu_buffer->before_stamp, 0);
6038
6039	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6040
6041	cpu_buffer->lost_events = 0;
6042	cpu_buffer->last_overrun = 0;
6043
6044	rb_head_page_activate(cpu_buffer);
6045	cpu_buffer->pages_removed = 0;
6046
6047	if (cpu_buffer->mapped) {
6048		rb_update_meta_page(cpu_buffer);
6049		if (cpu_buffer->ring_meta) {
6050			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
6051			meta->commit_buffer = meta->head_buffer;
6052		}
6053	}
6054}
6055
6056/* Must have disabled the cpu buffer then done a synchronize_rcu */
6057static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6058{
6059	unsigned long flags;
6060
6061	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6062
6063	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6064		goto out;
6065
6066	arch_spin_lock(&cpu_buffer->lock);
6067
6068	rb_reset_cpu(cpu_buffer);
6069
6070	arch_spin_unlock(&cpu_buffer->lock);
6071
6072 out:
6073	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6074}
6075
6076/**
6077 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6078 * @buffer: The ring buffer to reset a per cpu buffer of
6079 * @cpu: The CPU buffer to be reset
6080 */
6081void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6082{
6083	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6084	struct ring_buffer_meta *meta;
6085
6086	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6087		return;
6088
6089	/* prevent another thread from changing buffer sizes */
6090	mutex_lock(&buffer->mutex);
6091
6092	atomic_inc(&cpu_buffer->resize_disabled);
6093	atomic_inc(&cpu_buffer->record_disabled);
6094
6095	/* Make sure all commits have finished */
6096	synchronize_rcu();
6097
6098	reset_disabled_cpu_buffer(cpu_buffer);
6099
6100	atomic_dec(&cpu_buffer->record_disabled);
6101	atomic_dec(&cpu_buffer->resize_disabled);
6102
6103	/* Make sure persistent meta now uses this buffer's addresses */
6104	meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6105	if (meta)
6106		rb_meta_init_text_addr(meta);
6107
6108	mutex_unlock(&buffer->mutex);
6109}
6110EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6111
6112/* Flag to ensure proper resetting of atomic variables */
6113#define RESET_BIT	(1 << 30)
6114
6115/**
6116 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6117 * @buffer: The ring buffer to reset a per cpu buffer of
6118 */
6119void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6120{
6121	struct ring_buffer_per_cpu *cpu_buffer;
6122	struct ring_buffer_meta *meta;
6123	int cpu;
6124
6125	/* prevent another thread from changing buffer sizes */
6126	mutex_lock(&buffer->mutex);
6127
6128	for_each_online_buffer_cpu(buffer, cpu) {
6129		cpu_buffer = buffer->buffers[cpu];
6130
6131		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6132		atomic_inc(&cpu_buffer->record_disabled);
6133	}
6134
6135	/* Make sure all commits have finished */
6136	synchronize_rcu();
6137
6138	for_each_buffer_cpu(buffer, cpu) {
6139		cpu_buffer = buffer->buffers[cpu];
6140
6141		/*
6142		 * If a CPU came online during the synchronize_rcu(), then
6143		 * ignore it.
6144		 */
6145		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6146			continue;
6147
6148		reset_disabled_cpu_buffer(cpu_buffer);
6149
6150		/* Make sure persistent meta now uses this buffer's addresses */
6151		meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6152		if (meta)
6153			rb_meta_init_text_addr(meta);
6154
6155		atomic_dec(&cpu_buffer->record_disabled);
6156		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6157	}
6158
6159	mutex_unlock(&buffer->mutex);
6160}
 
6161
6162/**
6163 * ring_buffer_reset - reset a ring buffer
6164 * @buffer: The ring buffer to reset all cpu buffers
6165 */
6166void ring_buffer_reset(struct trace_buffer *buffer)
6167{
6168	struct ring_buffer_per_cpu *cpu_buffer;
6169	int cpu;
6170
6171	/* prevent another thread from changing buffer sizes */
6172	mutex_lock(&buffer->mutex);
6173
6174	for_each_buffer_cpu(buffer, cpu) {
6175		cpu_buffer = buffer->buffers[cpu];
6176
6177		atomic_inc(&cpu_buffer->resize_disabled);
6178		atomic_inc(&cpu_buffer->record_disabled);
6179	}
6180
6181	/* Make sure all commits have finished */
6182	synchronize_rcu();
6183
6184	for_each_buffer_cpu(buffer, cpu) {
6185		cpu_buffer = buffer->buffers[cpu];
6186
6187		reset_disabled_cpu_buffer(cpu_buffer);
6188
6189		atomic_dec(&cpu_buffer->record_disabled);
6190		atomic_dec(&cpu_buffer->resize_disabled);
6191	}
6192
6193	mutex_unlock(&buffer->mutex);
6194}
6195EXPORT_SYMBOL_GPL(ring_buffer_reset);
6196
6197/**
6198 * ring_buffer_empty - is the ring buffer empty?
6199 * @buffer: The ring buffer to test
6200 */
6201bool ring_buffer_empty(struct trace_buffer *buffer)
6202{
6203	struct ring_buffer_per_cpu *cpu_buffer;
6204	unsigned long flags;
6205	bool dolock;
6206	bool ret;
6207	int cpu;
 
6208
6209	/* yes this is racy, but if you don't like the race, lock the buffer */
6210	for_each_buffer_cpu(buffer, cpu) {
6211		cpu_buffer = buffer->buffers[cpu];
6212		local_irq_save(flags);
6213		dolock = rb_reader_lock(cpu_buffer);
6214		ret = rb_per_cpu_empty(cpu_buffer);
6215		rb_reader_unlock(cpu_buffer, dolock);
6216		local_irq_restore(flags);
6217
6218		if (!ret)
6219			return false;
6220	}
6221
6222	return true;
6223}
6224EXPORT_SYMBOL_GPL(ring_buffer_empty);
6225
6226/**
6227 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6228 * @buffer: The ring buffer
6229 * @cpu: The CPU buffer to test
6230 */
6231bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6232{
6233	struct ring_buffer_per_cpu *cpu_buffer;
6234	unsigned long flags;
6235	bool dolock;
6236	bool ret;
6237
6238	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6239		return true;
6240
6241	cpu_buffer = buffer->buffers[cpu];
6242	local_irq_save(flags);
6243	dolock = rb_reader_lock(cpu_buffer);
6244	ret = rb_per_cpu_empty(cpu_buffer);
6245	rb_reader_unlock(cpu_buffer, dolock);
6246	local_irq_restore(flags);
6247
6248	return ret;
6249}
6250EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6251
6252#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6253/**
6254 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6255 * @buffer_a: One buffer to swap with
6256 * @buffer_b: The other buffer to swap with
6257 * @cpu: the CPU of the buffers to swap
6258 *
6259 * This function is useful for tracers that want to take a "snapshot"
6260 * of a CPU buffer and has another back up buffer lying around.
6261 * it is expected that the tracer handles the cpu buffer not being
6262 * used at the moment.
6263 */
6264int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6265			 struct trace_buffer *buffer_b, int cpu)
6266{
6267	struct ring_buffer_per_cpu *cpu_buffer_a;
6268	struct ring_buffer_per_cpu *cpu_buffer_b;
6269	int ret = -EINVAL;
6270
6271	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6272	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6273		goto out;
6274
6275	cpu_buffer_a = buffer_a->buffers[cpu];
6276	cpu_buffer_b = buffer_b->buffers[cpu];
6277
6278	/* It's up to the callers to not try to swap mapped buffers */
6279	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6280		ret = -EBUSY;
6281		goto out;
6282	}
6283
6284	/* At least make sure the two buffers are somewhat the same */
6285	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6286		goto out;
6287
6288	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6289		goto out;
6290
6291	ret = -EAGAIN;
6292
6293	if (atomic_read(&buffer_a->record_disabled))
6294		goto out;
6295
6296	if (atomic_read(&buffer_b->record_disabled))
6297		goto out;
6298
6299	if (atomic_read(&cpu_buffer_a->record_disabled))
6300		goto out;
6301
6302	if (atomic_read(&cpu_buffer_b->record_disabled))
6303		goto out;
6304
6305	/*
6306	 * We can't do a synchronize_rcu here because this
6307	 * function can be called in atomic context.
6308	 * Normally this will be called from the same CPU as cpu.
6309	 * If not it's up to the caller to protect this.
6310	 */
6311	atomic_inc(&cpu_buffer_a->record_disabled);
6312	atomic_inc(&cpu_buffer_b->record_disabled);
6313
6314	ret = -EBUSY;
6315	if (local_read(&cpu_buffer_a->committing))
6316		goto out_dec;
6317	if (local_read(&cpu_buffer_b->committing))
6318		goto out_dec;
6319
6320	/*
6321	 * When resize is in progress, we cannot swap it because
6322	 * it will mess the state of the cpu buffer.
6323	 */
6324	if (atomic_read(&buffer_a->resizing))
6325		goto out_dec;
6326	if (atomic_read(&buffer_b->resizing))
6327		goto out_dec;
6328
6329	buffer_a->buffers[cpu] = cpu_buffer_b;
6330	buffer_b->buffers[cpu] = cpu_buffer_a;
6331
6332	cpu_buffer_b->buffer = buffer_a;
6333	cpu_buffer_a->buffer = buffer_b;
6334
6335	ret = 0;
6336
6337out_dec:
6338	atomic_dec(&cpu_buffer_a->record_disabled);
6339	atomic_dec(&cpu_buffer_b->record_disabled);
6340out:
6341	return ret;
6342}
6343EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6344#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6345
6346/**
6347 * ring_buffer_alloc_read_page - allocate a page to read from buffer
6348 * @buffer: the buffer to allocate for.
6349 * @cpu: the cpu buffer to allocate.
6350 *
6351 * This function is used in conjunction with ring_buffer_read_page.
6352 * When reading a full page from the ring buffer, these functions
6353 * can be used to speed up the process. The calling function should
6354 * allocate a few pages first with this function. Then when it
6355 * needs to get pages from the ring buffer, it passes the result
6356 * of this function into ring_buffer_read_page, which will swap
6357 * the page that was allocated, with the read page of the buffer.
6358 *
6359 * Returns:
6360 *  The page allocated, or ERR_PTR
6361 */
6362struct buffer_data_read_page *
6363ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6364{
6365	struct ring_buffer_per_cpu *cpu_buffer;
6366	struct buffer_data_read_page *bpage = NULL;
6367	unsigned long flags;
6368	struct page *page;
6369
6370	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6371		return ERR_PTR(-ENODEV);
6372
6373	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6374	if (!bpage)
6375		return ERR_PTR(-ENOMEM);
6376
6377	bpage->order = buffer->subbuf_order;
6378	cpu_buffer = buffer->buffers[cpu];
6379	local_irq_save(flags);
6380	arch_spin_lock(&cpu_buffer->lock);
6381
6382	if (cpu_buffer->free_page) {
6383		bpage->data = cpu_buffer->free_page;
6384		cpu_buffer->free_page = NULL;
6385	}
6386
6387	arch_spin_unlock(&cpu_buffer->lock);
6388	local_irq_restore(flags);
6389
6390	if (bpage->data)
6391		goto out;
6392
6393	page = alloc_pages_node(cpu_to_node(cpu),
6394				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6395				cpu_buffer->buffer->subbuf_order);
6396	if (!page) {
6397		kfree(bpage);
6398		return ERR_PTR(-ENOMEM);
6399	}
6400
6401	bpage->data = page_address(page);
6402
6403 out:
6404	rb_init_page(bpage->data);
6405
6406	return bpage;
6407}
6408EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6409
6410/**
6411 * ring_buffer_free_read_page - free an allocated read page
6412 * @buffer: the buffer the page was allocate for
6413 * @cpu: the cpu buffer the page came from
6414 * @data_page: the page to free
6415 *
6416 * Free a page allocated from ring_buffer_alloc_read_page.
6417 */
6418void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6419				struct buffer_data_read_page *data_page)
6420{
6421	struct ring_buffer_per_cpu *cpu_buffer;
6422	struct buffer_data_page *bpage = data_page->data;
6423	struct page *page = virt_to_page(bpage);
6424	unsigned long flags;
6425
6426	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6427		return;
6428
6429	cpu_buffer = buffer->buffers[cpu];
6430
6431	/*
6432	 * If the page is still in use someplace else, or order of the page
6433	 * is different from the subbuffer order of the buffer -
6434	 * we can't reuse it
6435	 */
6436	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6437		goto out;
6438
6439	local_irq_save(flags);
6440	arch_spin_lock(&cpu_buffer->lock);
6441
6442	if (!cpu_buffer->free_page) {
6443		cpu_buffer->free_page = bpage;
6444		bpage = NULL;
6445	}
6446
6447	arch_spin_unlock(&cpu_buffer->lock);
6448	local_irq_restore(flags);
6449
6450 out:
6451	free_pages((unsigned long)bpage, data_page->order);
6452	kfree(data_page);
6453}
6454EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6455
6456/**
6457 * ring_buffer_read_page - extract a page from the ring buffer
6458 * @buffer: buffer to extract from
6459 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6460 * @len: amount to extract
6461 * @cpu: the cpu of the buffer to extract
6462 * @full: should the extraction only happen when the page is full.
6463 *
6464 * This function will pull out a page from the ring buffer and consume it.
6465 * @data_page must be the address of the variable that was returned
6466 * from ring_buffer_alloc_read_page. This is because the page might be used
6467 * to swap with a page in the ring buffer.
6468 *
6469 * for example:
6470 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6471 *	if (IS_ERR(rpage))
6472 *		return PTR_ERR(rpage);
6473 *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6474 *	if (ret >= 0)
6475 *		process_page(ring_buffer_read_page_data(rpage), ret);
6476 *	ring_buffer_free_read_page(buffer, cpu, rpage);
6477 *
6478 * When @full is set, the function will not return true unless
6479 * the writer is off the reader page.
6480 *
6481 * Note: it is up to the calling functions to handle sleeps and wakeups.
6482 *  The ring buffer can be used anywhere in the kernel and can not
6483 *  blindly call wake_up. The layer that uses the ring buffer must be
6484 *  responsible for that.
6485 *
6486 * Returns:
6487 *  >=0 if data has been transferred, returns the offset of consumed data.
6488 *  <0 if no data has been transferred.
6489 */
6490int ring_buffer_read_page(struct trace_buffer *buffer,
6491			  struct buffer_data_read_page *data_page,
6492			  size_t len, int cpu, int full)
6493{
6494	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6495	struct ring_buffer_event *event;
6496	struct buffer_data_page *bpage;
6497	struct buffer_page *reader;
6498	unsigned long missed_events;
6499	unsigned long flags;
6500	unsigned int commit;
6501	unsigned int read;
6502	u64 save_timestamp;
6503	int ret = -1;
6504
6505	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6506		goto out;
6507
6508	/*
6509	 * If len is not big enough to hold the page header, then
6510	 * we can not copy anything.
6511	 */
6512	if (len <= BUF_PAGE_HDR_SIZE)
6513		goto out;
6514
6515	len -= BUF_PAGE_HDR_SIZE;
6516
6517	if (!data_page || !data_page->data)
6518		goto out;
6519	if (data_page->order != buffer->subbuf_order)
6520		goto out;
6521
6522	bpage = data_page->data;
6523	if (!bpage)
6524		goto out;
6525
6526	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6527
6528	reader = rb_get_reader_page(cpu_buffer);
6529	if (!reader)
6530		goto out_unlock;
6531
6532	event = rb_reader_event(cpu_buffer);
6533
6534	read = reader->read;
6535	commit = rb_page_size(reader);
6536
6537	/* Check if any events were dropped */
6538	missed_events = cpu_buffer->lost_events;
6539
6540	/*
6541	 * If this page has been partially read or
6542	 * if len is not big enough to read the rest of the page or
6543	 * a writer is still on the page, then
6544	 * we must copy the data from the page to the buffer.
6545	 * Otherwise, we can simply swap the page with the one passed in.
6546	 */
6547	if (read || (len < (commit - read)) ||
6548	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6549	    cpu_buffer->mapped) {
6550		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6551		unsigned int rpos = read;
6552		unsigned int pos = 0;
6553		unsigned int size;
6554
6555		/*
6556		 * If a full page is expected, this can still be returned
6557		 * if there's been a previous partial read and the
6558		 * rest of the page can be read and the commit page is off
6559		 * the reader page.
6560		 */
6561		if (full &&
6562		    (!read || (len < (commit - read)) ||
6563		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6564			goto out_unlock;
6565
6566		if (len > (commit - read))
6567			len = (commit - read);
6568
6569		/* Always keep the time extend and data together */
6570		size = rb_event_ts_length(event);
6571
6572		if (len < size)
6573			goto out_unlock;
6574
6575		/* save the current timestamp, since the user will need it */
6576		save_timestamp = cpu_buffer->read_stamp;
6577
6578		/* Need to copy one event at a time */
6579		do {
6580			/* We need the size of one event, because
6581			 * rb_advance_reader only advances by one event,
6582			 * whereas rb_event_ts_length may include the size of
6583			 * one or two events.
6584			 * We have already ensured there's enough space if this
6585			 * is a time extend. */
6586			size = rb_event_length(event);
6587			memcpy(bpage->data + pos, rpage->data + rpos, size);
6588
6589			len -= size;
6590
6591			rb_advance_reader(cpu_buffer);
6592			rpos = reader->read;
6593			pos += size;
6594
6595			if (rpos >= commit)
6596				break;
6597
6598			event = rb_reader_event(cpu_buffer);
6599			/* Always keep the time extend and data together */
6600			size = rb_event_ts_length(event);
6601		} while (len >= size);
6602
6603		/* update bpage */
6604		local_set(&bpage->commit, pos);
6605		bpage->time_stamp = save_timestamp;
6606
6607		/* we copied everything to the beginning */
6608		read = 0;
6609	} else {
6610		/* update the entry counter */
6611		cpu_buffer->read += rb_page_entries(reader);
6612		cpu_buffer->read_bytes += rb_page_size(reader);
6613
6614		/* swap the pages */
6615		rb_init_page(bpage);
6616		bpage = reader->page;
6617		reader->page = data_page->data;
6618		local_set(&reader->write, 0);
6619		local_set(&reader->entries, 0);
6620		reader->read = 0;
6621		data_page->data = bpage;
6622
6623		/*
6624		 * Use the real_end for the data size,
6625		 * This gives us a chance to store the lost events
6626		 * on the page.
6627		 */
6628		if (reader->real_end)
6629			local_set(&bpage->commit, reader->real_end);
6630	}
6631	ret = read;
6632
6633	cpu_buffer->lost_events = 0;
6634
6635	commit = local_read(&bpage->commit);
6636	/*
6637	 * Set a flag in the commit field if we lost events
6638	 */
6639	if (missed_events) {
6640		/* If there is room at the end of the page to save the
6641		 * missed events, then record it there.
6642		 */
6643		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6644			memcpy(&bpage->data[commit], &missed_events,
6645			       sizeof(missed_events));
6646			local_add(RB_MISSED_STORED, &bpage->commit);
6647			commit += sizeof(missed_events);
6648		}
6649		local_add(RB_MISSED_EVENTS, &bpage->commit);
6650	}
6651
6652	/*
6653	 * This page may be off to user land. Zero it out here.
6654	 */
6655	if (commit < buffer->subbuf_size)
6656		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6657
6658 out_unlock:
6659	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6660
6661 out:
6662	return ret;
6663}
6664EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6665
6666/**
6667 * ring_buffer_read_page_data - get pointer to the data in the page.
6668 * @page:  the page to get the data from
6669 *
6670 * Returns pointer to the actual data in this page.
6671 */
6672void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6673{
6674	return page->data;
6675}
6676EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6677
6678/**
6679 * ring_buffer_subbuf_size_get - get size of the sub buffer.
6680 * @buffer: the buffer to get the sub buffer size from
6681 *
6682 * Returns size of the sub buffer, in bytes.
6683 */
6684int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6685{
6686	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6687}
6688EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6689
6690/**
6691 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6692 * @buffer: The ring_buffer to get the system sub page order from
6693 *
6694 * By default, one ring buffer sub page equals to one system page. This parameter
6695 * is configurable, per ring buffer. The size of the ring buffer sub page can be
6696 * extended, but must be an order of system page size.
6697 *
6698 * Returns the order of buffer sub page size, in system pages:
6699 * 0 means the sub buffer size is 1 system page and so forth.
6700 * In case of an error < 0 is returned.
6701 */
6702int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6703{
6704	if (!buffer)
6705		return -EINVAL;
6706
6707	return buffer->subbuf_order;
6708}
6709EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6710
6711/**
6712 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6713 * @buffer: The ring_buffer to set the new page size.
6714 * @order: Order of the system pages in one sub buffer page
6715 *
6716 * By default, one ring buffer pages equals to one system page. This API can be
6717 * used to set new size of the ring buffer page. The size must be order of
6718 * system page size, that's why the input parameter @order is the order of
6719 * system pages that are allocated for one ring buffer page:
6720 *  0 - 1 system page
6721 *  1 - 2 system pages
6722 *  3 - 4 system pages
6723 *  ...
6724 *
6725 * Returns 0 on success or < 0 in case of an error.
6726 */
6727int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6728{
6729	struct ring_buffer_per_cpu *cpu_buffer;
6730	struct buffer_page *bpage, *tmp;
6731	int old_order, old_size;
6732	int nr_pages;
6733	int psize;
6734	int err;
6735	int cpu;
6736
6737	if (!buffer || order < 0)
6738		return -EINVAL;
6739
6740	if (buffer->subbuf_order == order)
6741		return 0;
6742
6743	psize = (1 << order) * PAGE_SIZE;
6744	if (psize <= BUF_PAGE_HDR_SIZE)
6745		return -EINVAL;
6746
6747	/* Size of a subbuf cannot be greater than the write counter */
6748	if (psize > RB_WRITE_MASK + 1)
6749		return -EINVAL;
6750
6751	old_order = buffer->subbuf_order;
6752	old_size = buffer->subbuf_size;
6753
6754	/* prevent another thread from changing buffer sizes */
6755	mutex_lock(&buffer->mutex);
6756	atomic_inc(&buffer->record_disabled);
6757
6758	/* Make sure all commits have finished */
6759	synchronize_rcu();
6760
6761	buffer->subbuf_order = order;
6762	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6763
6764	/* Make sure all new buffers are allocated, before deleting the old ones */
6765	for_each_buffer_cpu(buffer, cpu) {
6766
6767		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6768			continue;
6769
6770		cpu_buffer = buffer->buffers[cpu];
6771
6772		if (cpu_buffer->mapped) {
6773			err = -EBUSY;
6774			goto error;
6775		}
6776
6777		/* Update the number of pages to match the new size */
6778		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6779		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6780
6781		/* we need a minimum of two pages */
6782		if (nr_pages < 2)
6783			nr_pages = 2;
6784
6785		cpu_buffer->nr_pages_to_update = nr_pages;
6786
6787		/* Include the reader page */
6788		nr_pages++;
6789
6790		/* Allocate the new size buffer */
6791		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6792		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6793					&cpu_buffer->new_pages)) {
6794			/* not enough memory for new pages */
6795			err = -ENOMEM;
6796			goto error;
6797		}
6798	}
6799
6800	for_each_buffer_cpu(buffer, cpu) {
6801		struct buffer_data_page *old_free_data_page;
6802		struct list_head old_pages;
6803		unsigned long flags;
6804
6805		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6806			continue;
6807
6808		cpu_buffer = buffer->buffers[cpu];
6809
6810		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6811
6812		/* Clear the head bit to make the link list normal to read */
6813		rb_head_page_deactivate(cpu_buffer);
6814
6815		/*
6816		 * Collect buffers from the cpu_buffer pages list and the
6817		 * reader_page on old_pages, so they can be freed later when not
6818		 * under a spinlock. The pages list is a linked list with no
6819		 * head, adding old_pages turns it into a regular list with
6820		 * old_pages being the head.
6821		 */
6822		list_add(&old_pages, cpu_buffer->pages);
6823		list_add(&cpu_buffer->reader_page->list, &old_pages);
6824
6825		/* One page was allocated for the reader page */
6826		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6827						     struct buffer_page, list);
6828		list_del_init(&cpu_buffer->reader_page->list);
6829
6830		/* Install the new pages, remove the head from the list */
6831		cpu_buffer->pages = cpu_buffer->new_pages.next;
6832		list_del_init(&cpu_buffer->new_pages);
6833		cpu_buffer->cnt++;
6834
6835		cpu_buffer->head_page
6836			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6837		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6838
6839		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6840		cpu_buffer->nr_pages_to_update = 0;
6841
6842		old_free_data_page = cpu_buffer->free_page;
6843		cpu_buffer->free_page = NULL;
6844
6845		rb_head_page_activate(cpu_buffer);
6846
6847		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6848
6849		/* Free old sub buffers */
6850		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6851			list_del_init(&bpage->list);
6852			free_buffer_page(bpage);
6853		}
6854		free_pages((unsigned long)old_free_data_page, old_order);
6855
6856		rb_check_pages(cpu_buffer);
6857	}
6858
6859	atomic_dec(&buffer->record_disabled);
6860	mutex_unlock(&buffer->mutex);
6861
6862	return 0;
6863
6864error:
6865	buffer->subbuf_order = old_order;
6866	buffer->subbuf_size = old_size;
6867
6868	atomic_dec(&buffer->record_disabled);
6869	mutex_unlock(&buffer->mutex);
6870
6871	for_each_buffer_cpu(buffer, cpu) {
6872		cpu_buffer = buffer->buffers[cpu];
6873
6874		if (!cpu_buffer->nr_pages_to_update)
6875			continue;
6876
6877		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6878			list_del_init(&bpage->list);
6879			free_buffer_page(bpage);
6880		}
6881	}
6882
6883	return err;
6884}
6885EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6886
6887static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6888{
6889	struct page *page;
6890
6891	if (cpu_buffer->meta_page)
6892		return 0;
6893
6894	page = alloc_page(GFP_USER | __GFP_ZERO);
6895	if (!page)
6896		return -ENOMEM;
6897
6898	cpu_buffer->meta_page = page_to_virt(page);
6899
6900	return 0;
6901}
6902
6903static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6904{
6905	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6906
6907	free_page(addr);
6908	cpu_buffer->meta_page = NULL;
6909}
6910
6911static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6912				   unsigned long *subbuf_ids)
6913{
6914	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6915	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6916	struct buffer_page *first_subbuf, *subbuf;
6917	int id = 0;
6918
6919	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6920	cpu_buffer->reader_page->id = id++;
6921
6922	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6923	do {
6924		if (WARN_ON(id >= nr_subbufs))
6925			break;
6926
6927		subbuf_ids[id] = (unsigned long)subbuf->page;
6928		subbuf->id = id;
6929
6930		rb_inc_page(&subbuf);
6931		id++;
6932	} while (subbuf != first_subbuf);
6933
6934	/* install subbuf ID to kern VA translation */
6935	cpu_buffer->subbuf_ids = subbuf_ids;
6936
6937	meta->meta_struct_len = sizeof(*meta);
6938	meta->nr_subbufs = nr_subbufs;
6939	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6940	meta->meta_page_size = meta->subbuf_size;
6941
6942	rb_update_meta_page(cpu_buffer);
6943}
6944
6945static struct ring_buffer_per_cpu *
6946rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6947{
6948	struct ring_buffer_per_cpu *cpu_buffer;
6949
6950	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6951		return ERR_PTR(-EINVAL);
6952
6953	cpu_buffer = buffer->buffers[cpu];
6954
6955	mutex_lock(&cpu_buffer->mapping_lock);
6956
6957	if (!cpu_buffer->user_mapped) {
6958		mutex_unlock(&cpu_buffer->mapping_lock);
6959		return ERR_PTR(-ENODEV);
6960	}
6961
6962	return cpu_buffer;
6963}
6964
6965static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6966{
6967	mutex_unlock(&cpu_buffer->mapping_lock);
6968}
6969
6970/*
6971 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6972 * to be set-up or torn-down.
6973 */
6974static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6975			       bool inc)
6976{
6977	unsigned long flags;
6978
6979	lockdep_assert_held(&cpu_buffer->mapping_lock);
6980
6981	/* mapped is always greater or equal to user_mapped */
6982	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6983		return -EINVAL;
6984
6985	if (inc && cpu_buffer->mapped == UINT_MAX)
6986		return -EBUSY;
6987
6988	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6989		return -EINVAL;
6990
6991	mutex_lock(&cpu_buffer->buffer->mutex);
6992	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6993
6994	if (inc) {
6995		cpu_buffer->user_mapped++;
6996		cpu_buffer->mapped++;
6997	} else {
6998		cpu_buffer->user_mapped--;
6999		cpu_buffer->mapped--;
7000	}
7001
7002	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7003	mutex_unlock(&cpu_buffer->buffer->mutex);
7004
7005	return 0;
7006}
7007
7008/*
7009 *   +--------------+  pgoff == 0
7010 *   |   meta page  |
7011 *   +--------------+  pgoff == 1
7012 *   | subbuffer 0  |
7013 *   |              |
7014 *   +--------------+  pgoff == (1 + (1 << subbuf_order))
7015 *   | subbuffer 1  |
7016 *   |              |
7017 *         ...
7018 */
7019#ifdef CONFIG_MMU
7020static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7021			struct vm_area_struct *vma)
7022{
7023	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7024	unsigned int subbuf_pages, subbuf_order;
7025	struct page **pages;
7026	int p = 0, s = 0;
7027	int err;
7028
7029	/* Refuse MP_PRIVATE or writable mappings */
7030	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7031	    !(vma->vm_flags & VM_MAYSHARE))
7032		return -EPERM;
7033
7034	subbuf_order = cpu_buffer->buffer->subbuf_order;
7035	subbuf_pages = 1 << subbuf_order;
7036
7037	if (subbuf_order && pgoff % subbuf_pages)
7038		return -EINVAL;
7039
7040	/*
7041	 * Make sure the mapping cannot become writable later. Also tell the VM
7042	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7043	 */
7044	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7045		     VM_MAYWRITE);
7046
7047	lockdep_assert_held(&cpu_buffer->mapping_lock);
7048
7049	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7050	nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7051	if (nr_pages <= pgoff)
7052		return -EINVAL;
7053
7054	nr_pages -= pgoff;
7055
7056	nr_vma_pages = vma_pages(vma);
7057	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7058		return -EINVAL;
7059
7060	nr_pages = nr_vma_pages;
7061
7062	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7063	if (!pages)
7064		return -ENOMEM;
7065
7066	if (!pgoff) {
7067		unsigned long meta_page_padding;
7068
7069		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7070
7071		/*
7072		 * Pad with the zero-page to align the meta-page with the
7073		 * sub-buffers.
7074		 */
7075		meta_page_padding = subbuf_pages - 1;
7076		while (meta_page_padding-- && p < nr_pages) {
7077			unsigned long __maybe_unused zero_addr =
7078				vma->vm_start + (PAGE_SIZE * p);
7079
7080			pages[p++] = ZERO_PAGE(zero_addr);
7081		}
7082	} else {
7083		/* Skip the meta-page */
7084		pgoff -= subbuf_pages;
7085
7086		s += pgoff / subbuf_pages;
7087	}
7088
7089	while (p < nr_pages) {
7090		struct page *page;
7091		int off = 0;
7092
7093		if (WARN_ON_ONCE(s >= nr_subbufs)) {
7094			err = -EINVAL;
7095			goto out;
7096		}
7097
7098		page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7099
7100		for (; off < (1 << (subbuf_order)); off++, page++) {
7101			if (p >= nr_pages)
7102				break;
7103
7104			pages[p++] = page;
7105		}
7106		s++;
7107	}
7108
7109	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7110
7111out:
7112	kfree(pages);
7113
7114	return err;
7115}
7116#else
7117static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7118			struct vm_area_struct *vma)
7119{
7120	return -EOPNOTSUPP;
7121}
7122#endif
7123
7124int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7125		    struct vm_area_struct *vma)
7126{
7127	struct ring_buffer_per_cpu *cpu_buffer;
7128	unsigned long flags, *subbuf_ids;
7129	int err = 0;
7130
7131	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7132		return -EINVAL;
7133
7134	cpu_buffer = buffer->buffers[cpu];
7135
7136	mutex_lock(&cpu_buffer->mapping_lock);
7137
7138	if (cpu_buffer->user_mapped) {
7139		err = __rb_map_vma(cpu_buffer, vma);
7140		if (!err)
7141			err = __rb_inc_dec_mapped(cpu_buffer, true);
7142		mutex_unlock(&cpu_buffer->mapping_lock);
7143		return err;
7144	}
7145
7146	/* prevent another thread from changing buffer/sub-buffer sizes */
7147	mutex_lock(&buffer->mutex);
7148
7149	err = rb_alloc_meta_page(cpu_buffer);
7150	if (err)
7151		goto unlock;
7152
7153	/* subbuf_ids include the reader while nr_pages does not */
7154	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7155	if (!subbuf_ids) {
7156		rb_free_meta_page(cpu_buffer);
7157		err = -ENOMEM;
7158		goto unlock;
7159	}
7160
7161	atomic_inc(&cpu_buffer->resize_disabled);
7162
7163	/*
7164	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7165	 * assigned.
7166	 */
7167	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7168	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7169
7170	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7171
7172	err = __rb_map_vma(cpu_buffer, vma);
7173	if (!err) {
7174		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7175		/* This is the first time it is mapped by user */
7176		cpu_buffer->mapped++;
7177		cpu_buffer->user_mapped = 1;
7178		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7179	} else {
7180		kfree(cpu_buffer->subbuf_ids);
7181		cpu_buffer->subbuf_ids = NULL;
7182		rb_free_meta_page(cpu_buffer);
7183		atomic_dec(&cpu_buffer->resize_disabled);
7184	}
7185
7186unlock:
7187	mutex_unlock(&buffer->mutex);
7188	mutex_unlock(&cpu_buffer->mapping_lock);
7189
7190	return err;
7191}
7192
7193int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7194{
7195	struct ring_buffer_per_cpu *cpu_buffer;
7196	unsigned long flags;
7197	int err = 0;
7198
7199	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7200		return -EINVAL;
7201
7202	cpu_buffer = buffer->buffers[cpu];
7203
7204	mutex_lock(&cpu_buffer->mapping_lock);
7205
7206	if (!cpu_buffer->user_mapped) {
7207		err = -ENODEV;
7208		goto out;
7209	} else if (cpu_buffer->user_mapped > 1) {
7210		__rb_inc_dec_mapped(cpu_buffer, false);
7211		goto out;
7212	}
7213
7214	mutex_lock(&buffer->mutex);
7215	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7216
7217	/* This is the last user space mapping */
7218	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7219		cpu_buffer->mapped--;
7220	cpu_buffer->user_mapped = 0;
7221
7222	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7223
7224	kfree(cpu_buffer->subbuf_ids);
7225	cpu_buffer->subbuf_ids = NULL;
7226	rb_free_meta_page(cpu_buffer);
7227	atomic_dec(&cpu_buffer->resize_disabled);
7228
7229	mutex_unlock(&buffer->mutex);
7230
7231out:
7232	mutex_unlock(&cpu_buffer->mapping_lock);
7233
7234	return err;
7235}
7236
7237int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7238{
7239	struct ring_buffer_per_cpu *cpu_buffer;
7240	struct buffer_page *reader;
7241	unsigned long missed_events;
7242	unsigned long reader_size;
7243	unsigned long flags;
7244
7245	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7246	if (IS_ERR(cpu_buffer))
7247		return (int)PTR_ERR(cpu_buffer);
7248
7249	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7250
7251consume:
7252	if (rb_per_cpu_empty(cpu_buffer))
7253		goto out;
7254
7255	reader_size = rb_page_size(cpu_buffer->reader_page);
7256
7257	/*
7258	 * There are data to be read on the current reader page, we can
7259	 * return to the caller. But before that, we assume the latter will read
7260	 * everything. Let's update the kernel reader accordingly.
7261	 */
7262	if (cpu_buffer->reader_page->read < reader_size) {
7263		while (cpu_buffer->reader_page->read < reader_size)
7264			rb_advance_reader(cpu_buffer);
7265		goto out;
7266	}
7267
7268	reader = rb_get_reader_page(cpu_buffer);
7269	if (WARN_ON(!reader))
7270		goto out;
7271
7272	/* Check if any events were dropped */
7273	missed_events = cpu_buffer->lost_events;
7274
7275	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7276		if (missed_events) {
7277			struct buffer_data_page *bpage = reader->page;
7278			unsigned int commit;
7279			/*
7280			 * Use the real_end for the data size,
7281			 * This gives us a chance to store the lost events
7282			 * on the page.
7283			 */
7284			if (reader->real_end)
7285				local_set(&bpage->commit, reader->real_end);
7286			/*
7287			 * If there is room at the end of the page to save the
7288			 * missed events, then record it there.
7289			 */
7290			commit = rb_page_size(reader);
7291			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7292				memcpy(&bpage->data[commit], &missed_events,
7293				       sizeof(missed_events));
7294				local_add(RB_MISSED_STORED, &bpage->commit);
7295			}
7296			local_add(RB_MISSED_EVENTS, &bpage->commit);
7297		}
7298	} else {
7299		/*
7300		 * There really shouldn't be any missed events if the commit
7301		 * is on the reader page.
7302		 */
7303		WARN_ON_ONCE(missed_events);
7304	}
7305
7306	cpu_buffer->lost_events = 0;
7307
7308	goto consume;
7309
7310out:
7311	/* Some archs do not have data cache coherency between kernel and user-space */
7312	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7313
7314	rb_update_meta_page(cpu_buffer);
7315
7316	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7317	rb_put_mapped_buffer(cpu_buffer);
7318
7319	return 0;
7320}
7321
7322/*
7323 * We only allocate new buffers, never free them if the CPU goes down.
7324 * If we were to free the buffer, then the user would lose any trace that was in
7325 * the buffer.
7326 */
7327int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7328{
7329	struct trace_buffer *buffer;
7330	long nr_pages_same;
7331	int cpu_i;
7332	unsigned long nr_pages;
7333
7334	buffer = container_of(node, struct trace_buffer, node);
7335	if (cpumask_test_cpu(cpu, buffer->cpumask))
7336		return 0;
7337
7338	nr_pages = 0;
7339	nr_pages_same = 1;
7340	/* check if all cpu sizes are same */
7341	for_each_buffer_cpu(buffer, cpu_i) {
7342		/* fill in the size from first enabled cpu */
7343		if (nr_pages == 0)
7344			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7345		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7346			nr_pages_same = 0;
7347			break;
7348		}
7349	}
7350	/* allocate minimum pages, user can later expand it */
7351	if (!nr_pages_same)
7352		nr_pages = 2;
7353	buffer->buffers[cpu] =
7354		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7355	if (!buffer->buffers[cpu]) {
7356		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7357		     cpu);
7358		return -ENOMEM;
7359	}
7360	smp_wmb();
7361	cpumask_set_cpu(cpu, buffer->cpumask);
7362	return 0;
7363}
7364
7365#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7366/*
7367 * This is a basic integrity check of the ring buffer.
7368 * Late in the boot cycle this test will run when configured in.
7369 * It will kick off a thread per CPU that will go into a loop
7370 * writing to the per cpu ring buffer various sizes of data.
7371 * Some of the data will be large items, some small.
7372 *
7373 * Another thread is created that goes into a spin, sending out
7374 * IPIs to the other CPUs to also write into the ring buffer.
7375 * this is to test the nesting ability of the buffer.
7376 *
7377 * Basic stats are recorded and reported. If something in the
7378 * ring buffer should happen that's not expected, a big warning
7379 * is displayed and all ring buffers are disabled.
7380 */
7381static struct task_struct *rb_threads[NR_CPUS] __initdata;
7382
7383struct rb_test_data {
7384	struct trace_buffer *buffer;
7385	unsigned long		events;
7386	unsigned long		bytes_written;
7387	unsigned long		bytes_alloc;
7388	unsigned long		bytes_dropped;
7389	unsigned long		events_nested;
7390	unsigned long		bytes_written_nested;
7391	unsigned long		bytes_alloc_nested;
7392	unsigned long		bytes_dropped_nested;
7393	int			min_size_nested;
7394	int			max_size_nested;
7395	int			max_size;
7396	int			min_size;
7397	int			cpu;
7398	int			cnt;
7399};
7400
7401static struct rb_test_data rb_data[NR_CPUS] __initdata;
7402
7403/* 1 meg per cpu */
7404#define RB_TEST_BUFFER_SIZE	1048576
7405
7406static char rb_string[] __initdata =
7407	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7408	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7409	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7410
7411static bool rb_test_started __initdata;
7412
7413struct rb_item {
7414	int size;
7415	char str[];
7416};
7417
7418static __init int rb_write_something(struct rb_test_data *data, bool nested)
7419{
7420	struct ring_buffer_event *event;
7421	struct rb_item *item;
7422	bool started;
7423	int event_len;
7424	int size;
7425	int len;
7426	int cnt;
7427
7428	/* Have nested writes different that what is written */
7429	cnt = data->cnt + (nested ? 27 : 0);
7430
7431	/* Multiply cnt by ~e, to make some unique increment */
7432	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7433
7434	len = size + sizeof(struct rb_item);
7435
7436	started = rb_test_started;
7437	/* read rb_test_started before checking buffer enabled */
7438	smp_rmb();
7439
7440	event = ring_buffer_lock_reserve(data->buffer, len);
7441	if (!event) {
7442		/* Ignore dropped events before test starts. */
7443		if (started) {
7444			if (nested)
7445				data->bytes_dropped += len;
7446			else
7447				data->bytes_dropped_nested += len;
7448		}
7449		return len;
7450	}
7451
7452	event_len = ring_buffer_event_length(event);
7453
7454	if (RB_WARN_ON(data->buffer, event_len < len))
7455		goto out;
7456
7457	item = ring_buffer_event_data(event);
7458	item->size = size;
7459	memcpy(item->str, rb_string, size);
7460
7461	if (nested) {
7462		data->bytes_alloc_nested += event_len;
7463		data->bytes_written_nested += len;
7464		data->events_nested++;
7465		if (!data->min_size_nested || len < data->min_size_nested)
7466			data->min_size_nested = len;
7467		if (len > data->max_size_nested)
7468			data->max_size_nested = len;
7469	} else {
7470		data->bytes_alloc += event_len;
7471		data->bytes_written += len;
7472		data->events++;
7473		if (!data->min_size || len < data->min_size)
7474			data->max_size = len;
7475		if (len > data->max_size)
7476			data->max_size = len;
7477	}
7478
7479 out:
7480	ring_buffer_unlock_commit(data->buffer);
7481
7482	return 0;
7483}
7484
7485static __init int rb_test(void *arg)
7486{
7487	struct rb_test_data *data = arg;
7488
7489	while (!kthread_should_stop()) {
7490		rb_write_something(data, false);
7491		data->cnt++;
7492
7493		set_current_state(TASK_INTERRUPTIBLE);
7494		/* Now sleep between a min of 100-300us and a max of 1ms */
7495		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7496	}
7497
7498	return 0;
7499}
7500
7501static __init void rb_ipi(void *ignore)
7502{
7503	struct rb_test_data *data;
7504	int cpu = smp_processor_id();
7505
7506	data = &rb_data[cpu];
7507	rb_write_something(data, true);
7508}
7509
7510static __init int rb_hammer_test(void *arg)
7511{
7512	while (!kthread_should_stop()) {
7513
7514		/* Send an IPI to all cpus to write data! */
7515		smp_call_function(rb_ipi, NULL, 1);
7516		/* No sleep, but for non preempt, let others run */
7517		schedule();
7518	}
7519
7520	return 0;
7521}
7522
7523static __init int test_ringbuffer(void)
7524{
7525	struct task_struct *rb_hammer;
7526	struct trace_buffer *buffer;
7527	int cpu;
7528	int ret = 0;
7529
7530	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7531		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7532		return 0;
7533	}
7534
7535	pr_info("Running ring buffer tests...\n");
7536
7537	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7538	if (WARN_ON(!buffer))
7539		return 0;
7540
7541	/* Disable buffer so that threads can't write to it yet */
7542	ring_buffer_record_off(buffer);
7543
7544	for_each_online_cpu(cpu) {
7545		rb_data[cpu].buffer = buffer;
7546		rb_data[cpu].cpu = cpu;
7547		rb_data[cpu].cnt = cpu;
7548		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7549						     cpu, "rbtester/%u");
7550		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7551			pr_cont("FAILED\n");
7552			ret = PTR_ERR(rb_threads[cpu]);
7553			goto out_free;
7554		}
 
 
 
7555	}
7556
7557	/* Now create the rb hammer! */
7558	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7559	if (WARN_ON(IS_ERR(rb_hammer))) {
7560		pr_cont("FAILED\n");
7561		ret = PTR_ERR(rb_hammer);
7562		goto out_free;
7563	}
7564
7565	ring_buffer_record_on(buffer);
7566	/*
7567	 * Show buffer is enabled before setting rb_test_started.
7568	 * Yes there's a small race window where events could be
7569	 * dropped and the thread wont catch it. But when a ring
7570	 * buffer gets enabled, there will always be some kind of
7571	 * delay before other CPUs see it. Thus, we don't care about
7572	 * those dropped events. We care about events dropped after
7573	 * the threads see that the buffer is active.
7574	 */
7575	smp_wmb();
7576	rb_test_started = true;
7577
7578	set_current_state(TASK_INTERRUPTIBLE);
7579	/* Just run for 10 seconds */;
7580	schedule_timeout(10 * HZ);
7581
7582	kthread_stop(rb_hammer);
7583
7584 out_free:
7585	for_each_online_cpu(cpu) {
7586		if (!rb_threads[cpu])
7587			break;
7588		kthread_stop(rb_threads[cpu]);
7589	}
7590	if (ret) {
7591		ring_buffer_free(buffer);
7592		return ret;
7593	}
7594
7595	/* Report! */
7596	pr_info("finished\n");
7597	for_each_online_cpu(cpu) {
7598		struct ring_buffer_event *event;
7599		struct rb_test_data *data = &rb_data[cpu];
7600		struct rb_item *item;
7601		unsigned long total_events;
7602		unsigned long total_dropped;
7603		unsigned long total_written;
7604		unsigned long total_alloc;
7605		unsigned long total_read = 0;
7606		unsigned long total_size = 0;
7607		unsigned long total_len = 0;
7608		unsigned long total_lost = 0;
7609		unsigned long lost;
7610		int big_event_size;
7611		int small_event_size;
7612
7613		ret = -1;
7614
7615		total_events = data->events + data->events_nested;
7616		total_written = data->bytes_written + data->bytes_written_nested;
7617		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7618		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7619
7620		big_event_size = data->max_size + data->max_size_nested;
7621		small_event_size = data->min_size + data->min_size_nested;
7622
7623		pr_info("CPU %d:\n", cpu);
7624		pr_info("              events:    %ld\n", total_events);
7625		pr_info("       dropped bytes:    %ld\n", total_dropped);
7626		pr_info("       alloced bytes:    %ld\n", total_alloc);
7627		pr_info("       written bytes:    %ld\n", total_written);
7628		pr_info("       biggest event:    %d\n", big_event_size);
7629		pr_info("      smallest event:    %d\n", small_event_size);
7630
7631		if (RB_WARN_ON(buffer, total_dropped))
7632			break;
7633
7634		ret = 0;
7635
7636		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7637			total_lost += lost;
7638			item = ring_buffer_event_data(event);
7639			total_len += ring_buffer_event_length(event);
7640			total_size += item->size + sizeof(struct rb_item);
7641			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7642				pr_info("FAILED!\n");
7643				pr_info("buffer had: %.*s\n", item->size, item->str);
7644				pr_info("expected:   %.*s\n", item->size, rb_string);
7645				RB_WARN_ON(buffer, 1);
7646				ret = -1;
7647				break;
7648			}
7649			total_read++;
7650		}
7651		if (ret)
7652			break;
7653
7654		ret = -1;
7655
7656		pr_info("         read events:   %ld\n", total_read);
7657		pr_info("         lost events:   %ld\n", total_lost);
7658		pr_info("        total events:   %ld\n", total_lost + total_read);
7659		pr_info("  recorded len bytes:   %ld\n", total_len);
7660		pr_info(" recorded size bytes:   %ld\n", total_size);
7661		if (total_lost) {
7662			pr_info(" With dropped events, record len and size may not match\n"
7663				" alloced and written from above\n");
7664		} else {
7665			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7666				       total_size != total_written))
7667				break;
7668		}
7669		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7670			break;
7671
7672		ret = 0;
7673	}
7674	if (!ret)
7675		pr_info("Ring buffer PASSED!\n");
7676
7677	ring_buffer_free(buffer);
7678	return 0;
7679}
7680
7681late_initcall(test_ringbuffer);
7682#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */