Linux Audio

Check our new training course

Loading...
v4.17
 
  1/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
  2 *
  3 * This program is free software; you can redistribute it and/or
  4 * modify it under the terms of version 2 of the GNU General Public
  5 * License as published by the Free Software Foundation.
  6 *
  7 * This program is distributed in the hope that it will be useful, but
  8 * WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 10 * General Public License for more details.
 11 */
 12
 13/* Devmaps primary use is as a backend map for XDP BPF helper call
 14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
 15 * spent some effort to ensure the datapath with redirect maps does not use
 16 * any locking. This is a quick note on the details.
 17 *
 18 * We have three possible paths to get into the devmap control plane bpf
 19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
 20 * will invoke an update, delete, or lookup operation. To ensure updates and
 21 * deletes appear atomic from the datapath side xchg() is used to modify the
 22 * netdev_map array. Then because the datapath does a lookup into the netdev_map
 23 * array (read-only) from an RCU critical section we use call_rcu() to wait for
 24 * an rcu grace period before free'ing the old data structures. This ensures the
 25 * datapath always has a valid copy. However, the datapath does a "flush"
 26 * operation that pushes any pending packets in the driver outside the RCU
 27 * critical section. Each bpf_dtab_netdev tracks these pending operations using
 28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
 29 * until all bits are cleared indicating outstanding flush operations have
 30 * completed.
 31 *
 32 * BPF syscalls may race with BPF program calls on any of the update, delete
 33 * or lookup operations. As noted above the xchg() operation also keep the
 34 * netdev_map consistent in this case. From the devmap side BPF programs
 35 * calling into these operations are the same as multiple user space threads
 36 * making system calls.
 37 *
 38 * Finally, any of the above may race with a netdev_unregister notifier. The
 39 * unregister notifier must search for net devices in the map structure that
 40 * contain a reference to the net device and remove them. This is a two step
 41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
 42 * check to see if the ifindex is the same as the net_device being removed.
 43 * When removing the dev a cmpxchg() is used to ensure the correct dev is
 44 * removed, in the case of a concurrent update or delete operation it is
 45 * possible that the initially referenced dev is no longer in the map. As the
 46 * notifier hook walks the map we know that new dev references can not be
 47 * added by the user because core infrastructure ensures dev_get_by_index()
 48 * calls will fail at this point.
 
 
 
 
 
 
 49 */
 50#include <linux/bpf.h>
 
 51#include <linux/filter.h>
 
 
 52
 53#define DEV_CREATE_FLAG_MASK \
 54	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
 55
 56struct bpf_dtab_netdev {
 
 
 57	struct net_device *dev;
 58	struct bpf_dtab *dtab;
 59	unsigned int bit;
 
 
 
 
 
 
 
 60	struct rcu_head rcu;
 
 
 61};
 62
 63struct bpf_dtab {
 64	struct bpf_map map;
 65	struct bpf_dtab_netdev **netdev_map;
 66	unsigned long __percpu *flush_needed;
 67	struct list_head list;
 
 
 
 
 
 
 68};
 69
 70static DEFINE_SPINLOCK(dev_map_lock);
 71static LIST_HEAD(dev_map_list);
 72
 73static u64 dev_map_bitmap_size(const union bpf_attr *attr)
 
 74{
 75	return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
 
 
 
 
 
 
 
 
 76}
 77
 78static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
 
 79{
 80	struct bpf_dtab *dtab;
 81	int err = -EINVAL;
 82	u64 cost;
 83
 84	if (!capable(CAP_NET_ADMIN))
 85		return ERR_PTR(-EPERM);
 
 86
 87	/* check sanity of attributes */
 
 
 
 88	if (attr->max_entries == 0 || attr->key_size != 4 ||
 89	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
 90		return ERR_PTR(-EINVAL);
 
 
 91
 92	dtab = kzalloc(sizeof(*dtab), GFP_USER);
 93	if (!dtab)
 94		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 95
 
 
 
 
 
 
 96	bpf_map_init_from_attr(&dtab->map, attr);
 97
 98	/* make sure page count doesn't overflow */
 99	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
100	cost += dev_map_bitmap_size(attr) * num_possible_cpus();
101	if (cost >= U32_MAX - PAGE_SIZE)
102		goto free_dtab;
103
104	dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
105
106	/* if map size is larger than memlock limit, reject it early */
107	err = bpf_map_precharge_memlock(dtab->map.pages);
108	if (err)
109		goto free_dtab;
110
111	err = -ENOMEM;
112
113	/* A per cpu bitfield with a bit per possible net device */
114	dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
115						__alignof__(unsigned long),
116						GFP_KERNEL | __GFP_NOWARN);
117	if (!dtab->flush_needed)
118		goto free_dtab;
119
120	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
121					      sizeof(struct bpf_dtab_netdev *),
122					      dtab->map.numa_node);
123	if (!dtab->netdev_map)
124		goto free_dtab;
 
 
 
 
 
 
 
125
126	spin_lock(&dev_map_lock);
127	list_add_tail_rcu(&dtab->list, &dev_map_list);
128	spin_unlock(&dev_map_lock);
129
130	return &dtab->map;
131free_dtab:
132	free_percpu(dtab->flush_needed);
133	kfree(dtab);
134	return ERR_PTR(err);
135}
136
137static void dev_map_free(struct bpf_map *map)
138{
139	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
140	int i, cpu;
141
142	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
143	 * so the programs (can be more than one that used this map) were
144	 * disconnected from events. Wait for outstanding critical sections in
145	 * these programs to complete. The rcu critical section only guarantees
146	 * no further reads against netdev_map. It does __not__ ensure pending
147	 * flush operations (if any) are complete.
 
 
148	 */
149
150	spin_lock(&dev_map_lock);
151	list_del_rcu(&dtab->list);
152	spin_unlock(&dev_map_lock);
153
 
 
 
 
 
 
 
 
154	synchronize_rcu();
155
156	/* To ensure all pending flush operations have completed wait for flush
157	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
158	 * Because the above synchronize_rcu() ensures the map is disconnected
159	 * from the program we can assume no new bits will be set.
160	 */
161	for_each_online_cpu(cpu) {
162		unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
163
164		while (!bitmap_empty(bitmap, dtab->map.max_entries))
165			cond_resched();
166	}
 
 
 
 
 
 
 
 
 
 
 
 
 
167
168	for (i = 0; i < dtab->map.max_entries; i++) {
169		struct bpf_dtab_netdev *dev;
 
 
170
171		dev = dtab->netdev_map[i];
172		if (!dev)
173			continue;
 
 
 
 
 
 
174
175		dev_put(dev->dev);
176		kfree(dev);
177	}
178
179	free_percpu(dtab->flush_needed);
180	bpf_map_area_free(dtab->netdev_map);
181	kfree(dtab);
182}
183
184static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
185{
186	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
187	u32 index = key ? *(u32 *)key : U32_MAX;
188	u32 *next = next_key;
189
190	if (index >= dtab->map.max_entries) {
191		*next = 0;
192		return 0;
193	}
194
195	if (index == dtab->map.max_entries - 1)
196		return -ENOENT;
197	*next = index + 1;
198	return 0;
199}
200
201void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
 
 
 
 
202{
203	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
204	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
 
205
206	__set_bit(bit, bitmap);
 
 
 
 
 
207}
208
209/* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
210 * from the driver before returning from its napi->poll() routine. The poll()
211 * routine is called either from busy_poll context or net_rx_action signaled
212 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
213 * net device can be torn down. On devmap tear down we ensure the ctx bitmap
214 * is zeroed before completing to ensure all flush operations have completed.
215 */
216void __dev_map_flush(struct bpf_map *map)
217{
218	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
219	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
220	u32 bit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
222	for_each_set_bit(bit, bitmap, map->max_entries) {
223		struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
224		struct net_device *netdev;
225
226		/* This is possible if the dev entry is removed by user space
227		 * between xdp redirect and flush op.
 
 
 
 
 
 
 
 
 
 
 
228		 */
229		if (unlikely(!dev))
230			continue;
 
231
232		__clear_bit(bit, bitmap);
233		netdev = dev->dev;
234		if (likely(netdev->netdev_ops->ndo_xdp_flush))
235			netdev->netdev_ops->ndo_xdp_flush(netdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236	}
237}
238
239/* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
240 * update happens in parallel here a dev_put wont happen until after reading the
241 * ifindex.
242 */
243struct net_device  *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
244{
245	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
246	struct bpf_dtab_netdev *dev;
247
248	if (key >= map->max_entries)
249		return NULL;
250
251	dev = READ_ONCE(dtab->netdev_map[key]);
252	return dev ? dev->dev : NULL;
 
253}
254
255static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256{
257	struct net_device *dev = __dev_map_lookup_elem(map, *(u32 *)key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
259	return dev ? &dev->ifindex : NULL;
260}
261
262static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
 
 
263{
264	if (dev->dev->netdev_ops->ndo_xdp_flush) {
265		struct net_device *fl = dev->dev;
266		unsigned long *bitmap;
267		int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268
269		for_each_online_cpu(cpu) {
270			bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
271			__clear_bit(dev->bit, bitmap);
272
273			fl->netdev_ops->ndo_xdp_flush(dev->dev);
 
274		}
275	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276}
277
278static void __dev_map_entry_free(struct rcu_head *rcu)
279{
280	struct bpf_dtab_netdev *dev;
281
282	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
283	dev_map_flush_old(dev);
 
284	dev_put(dev->dev);
285	kfree(dev);
286}
287
288static int dev_map_delete_elem(struct bpf_map *map, void *key)
289{
290	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
291	struct bpf_dtab_netdev *old_dev;
292	int k = *(u32 *)key;
293
294	if (k >= map->max_entries)
295		return -EINVAL;
296
297	/* Use call_rcu() here to ensure any rcu critical sections have
298	 * completed, but this does not guarantee a flush has happened
299	 * yet. Because driver side rcu_read_lock/unlock only protects the
300	 * running XDP program. However, for pending flush operations the
301	 * dev and ctx are stored in another per cpu map. And additionally,
302	 * the driver tear down ensures all soft irqs are complete before
303	 * removing the net device in the case of dev_put equals zero.
304	 */
305	old_dev = xchg(&dtab->netdev_map[k], NULL);
306	if (old_dev)
307		call_rcu(&old_dev->rcu, __dev_map_entry_free);
 
 
308	return 0;
309}
310
311static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
312				u64 map_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313{
314	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
315	struct net *net = current->nsproxy->net_ns;
316	struct bpf_dtab_netdev *dev, *old_dev;
 
317	u32 i = *(u32 *)key;
318	u32 ifindex = *(u32 *)value;
319
320	if (unlikely(map_flags > BPF_EXIST))
321		return -EINVAL;
322	if (unlikely(i >= dtab->map.max_entries))
323		return -E2BIG;
324	if (unlikely(map_flags == BPF_NOEXIST))
325		return -EEXIST;
326
327	if (!ifindex) {
328		dev = NULL;
329	} else {
330		dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
331				   map->numa_node);
332		if (!dev)
333			return -ENOMEM;
334
335		dev->dev = dev_get_by_index(net, ifindex);
336		if (!dev->dev) {
337			kfree(dev);
 
338			return -EINVAL;
339		}
340
341		dev->bit = i;
342		dev->dtab = dtab;
343	}
344
345	/* Use call_rcu() here to ensure rcu critical sections have completed
346	 * Remembering the driver side flush operation will happen before the
347	 * net device is removed.
348	 */
349	old_dev = xchg(&dtab->netdev_map[i], dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350	if (old_dev)
351		call_rcu(&old_dev->rcu, __dev_map_entry_free);
352
353	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354}
355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356const struct bpf_map_ops dev_map_ops = {
 
 
357	.map_alloc = dev_map_alloc,
358	.map_free = dev_map_free,
359	.map_get_next_key = dev_map_get_next_key,
360	.map_lookup_elem = dev_map_lookup_elem,
361	.map_update_elem = dev_map_update_elem,
362	.map_delete_elem = dev_map_delete_elem,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363};
364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365static int dev_map_notification(struct notifier_block *notifier,
366				ulong event, void *ptr)
367{
368	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
369	struct bpf_dtab *dtab;
370	int i;
371
372	switch (event) {
 
 
 
 
 
 
 
 
 
 
 
 
373	case NETDEV_UNREGISTER:
374		/* This rcu_read_lock/unlock pair is needed because
375		 * dev_map_list is an RCU list AND to ensure a delete
376		 * operation does not free a netdev_map entry while we
377		 * are comparing it against the netdev being unregistered.
378		 */
379		rcu_read_lock();
380		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
 
 
 
 
 
381			for (i = 0; i < dtab->map.max_entries; i++) {
382				struct bpf_dtab_netdev *dev, *odev;
383
384				dev = READ_ONCE(dtab->netdev_map[i]);
385				if (!dev ||
386				    dev->dev->ifindex != netdev->ifindex)
387					continue;
388				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
389				if (dev == odev)
390					call_rcu(&dev->rcu,
391						 __dev_map_entry_free);
 
 
392			}
393		}
394		rcu_read_unlock();
395		break;
396	default:
397		break;
398	}
399	return NOTIFY_OK;
400}
401
402static struct notifier_block dev_map_notifier = {
403	.notifier_call = dev_map_notification,
404};
405
406static int __init dev_map_init(void)
407{
 
 
 
408	register_netdevice_notifier(&dev_map_notifier);
 
409	return 0;
410}
411
412subsys_initcall(dev_map_init);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
 
 
 
 
 
 
 
 
 
   3 */
   4
   5/* Devmaps primary use is as a backend map for XDP BPF helper call
   6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
   7 * spent some effort to ensure the datapath with redirect maps does not use
   8 * any locking. This is a quick note on the details.
   9 *
  10 * We have three possible paths to get into the devmap control plane bpf
  11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
  12 * will invoke an update, delete, or lookup operation. To ensure updates and
  13 * deletes appear atomic from the datapath side xchg() is used to modify the
  14 * netdev_map array. Then because the datapath does a lookup into the netdev_map
  15 * array (read-only) from an RCU critical section we use call_rcu() to wait for
  16 * an rcu grace period before free'ing the old data structures. This ensures the
  17 * datapath always has a valid copy. However, the datapath does a "flush"
  18 * operation that pushes any pending packets in the driver outside the RCU
  19 * critical section. Each bpf_dtab_netdev tracks these pending operations using
  20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
  21 * this list is empty, indicating outstanding flush operations have completed.
 
  22 *
  23 * BPF syscalls may race with BPF program calls on any of the update, delete
  24 * or lookup operations. As noted above the xchg() operation also keep the
  25 * netdev_map consistent in this case. From the devmap side BPF programs
  26 * calling into these operations are the same as multiple user space threads
  27 * making system calls.
  28 *
  29 * Finally, any of the above may race with a netdev_unregister notifier. The
  30 * unregister notifier must search for net devices in the map structure that
  31 * contain a reference to the net device and remove them. This is a two step
  32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
  33 * check to see if the ifindex is the same as the net_device being removed.
  34 * When removing the dev a cmpxchg() is used to ensure the correct dev is
  35 * removed, in the case of a concurrent update or delete operation it is
  36 * possible that the initially referenced dev is no longer in the map. As the
  37 * notifier hook walks the map we know that new dev references can not be
  38 * added by the user because core infrastructure ensures dev_get_by_index()
  39 * calls will fail at this point.
  40 *
  41 * The devmap_hash type is a map type which interprets keys as ifindexes and
  42 * indexes these using a hashmap. This allows maps that use ifindex as key to be
  43 * densely packed instead of having holes in the lookup array for unused
  44 * ifindexes. The setup and packet enqueue/send code is shared between the two
  45 * types of devmap; only the lookup and insertion is different.
  46 */
  47#include <linux/bpf.h>
  48#include <net/xdp.h>
  49#include <linux/filter.h>
  50#include <trace/events/xdp.h>
  51#include <linux/btf_ids.h>
  52
  53#define DEV_CREATE_FLAG_MASK \
  54	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
  55
  56struct xdp_dev_bulk_queue {
  57	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
  58	struct list_head flush_node;
  59	struct net_device *dev;
  60	struct net_device *dev_rx;
  61	struct bpf_prog *xdp_prog;
  62	unsigned int count;
  63};
  64
  65struct bpf_dtab_netdev {
  66	struct net_device *dev; /* must be first member, due to tracepoint */
  67	struct hlist_node index_hlist;
  68	struct bpf_prog *xdp_prog;
  69	struct rcu_head rcu;
  70	unsigned int idx;
  71	struct bpf_devmap_val val;
  72};
  73
  74struct bpf_dtab {
  75	struct bpf_map map;
  76	struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */
 
  77	struct list_head list;
  78
  79	/* these are only used for DEVMAP_HASH type maps */
  80	struct hlist_head *dev_index_head;
  81	spinlock_t index_lock;
  82	unsigned int items;
  83	u32 n_buckets;
  84};
  85
  86static DEFINE_SPINLOCK(dev_map_lock);
  87static LIST_HEAD(dev_map_list);
  88
  89static struct hlist_head *dev_map_create_hash(unsigned int entries,
  90					      int numa_node)
  91{
  92	int i;
  93	struct hlist_head *hash;
  94
  95	hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node);
  96	if (hash != NULL)
  97		for (i = 0; i < entries; i++)
  98			INIT_HLIST_HEAD(&hash[i]);
  99
 100	return hash;
 101}
 102
 103static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
 104						    int idx)
 105{
 106	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
 107}
 
 108
 109static int dev_map_alloc_check(union bpf_attr *attr)
 110{
 111	u32 valsize = attr->value_size;
 112
 113	/* check sanity of attributes. 2 value sizes supported:
 114	 * 4 bytes: ifindex
 115	 * 8 bytes: ifindex + prog fd
 116	 */
 117	if (attr->max_entries == 0 || attr->key_size != 4 ||
 118	    (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
 119	     valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
 120	    attr->map_flags & ~DEV_CREATE_FLAG_MASK)
 121		return -EINVAL;
 122
 123	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
 124		/* Hash table size must be power of 2; roundup_pow_of_two()
 125		 * can overflow into UB on 32-bit arches
 126		 */
 127		if (attr->max_entries > 1UL << 31)
 128			return -EINVAL;
 129	}
 130
 131	return 0;
 132}
 133
 134static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
 135{
 136	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
 137	 * verifier prevents writes from the BPF side
 138	 */
 139	attr->map_flags |= BPF_F_RDONLY_PROG;
 140	bpf_map_init_from_attr(&dtab->map, attr);
 141
 142	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
 143		/* Hash table size must be power of 2 */
 144		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
 145		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
 146							   dtab->map.numa_node);
 147		if (!dtab->dev_index_head)
 148			return -ENOMEM;
 149
 150		spin_lock_init(&dtab->index_lock);
 151	} else {
 152		dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries *
 153						      sizeof(struct bpf_dtab_netdev *),
 154						      dtab->map.numa_node);
 155		if (!dtab->netdev_map)
 156			return -ENOMEM;
 157	}
 158
 159	return 0;
 160}
 161
 162static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
 163{
 164	struct bpf_dtab *dtab;
 165	int err;
 166
 167	dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE);
 168	if (!dtab)
 169		return ERR_PTR(-ENOMEM);
 170
 171	err = dev_map_init_map(dtab, attr);
 172	if (err) {
 173		bpf_map_area_free(dtab);
 174		return ERR_PTR(err);
 175	}
 176
 177	spin_lock(&dev_map_lock);
 178	list_add_tail_rcu(&dtab->list, &dev_map_list);
 179	spin_unlock(&dev_map_lock);
 180
 181	return &dtab->map;
 
 
 
 
 182}
 183
 184static void dev_map_free(struct bpf_map *map)
 185{
 186	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 187	u32 i;
 188
 189	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
 190	 * so the programs (can be more than one that used this map) were
 191	 * disconnected from events. The following synchronize_rcu() guarantees
 192	 * both rcu read critical sections complete and waits for
 193	 * preempt-disable regions (NAPI being the relevant context here) so we
 194	 * are certain there will be no further reads against the netdev_map and
 195	 * all flush operations are complete. Flush operations can only be done
 196	 * from NAPI context for this reason.
 197	 */
 198
 199	spin_lock(&dev_map_lock);
 200	list_del_rcu(&dtab->list);
 201	spin_unlock(&dev_map_lock);
 202
 203	/* bpf_redirect_info->map is assigned in __bpf_xdp_redirect_map()
 204	 * during NAPI callback and cleared after the XDP redirect. There is no
 205	 * explicit RCU read section which protects bpf_redirect_info->map but
 206	 * local_bh_disable() also marks the beginning an RCU section. This
 207	 * makes the complete softirq callback RCU protected. Thus after
 208	 * following synchronize_rcu() there no bpf_redirect_info->map == map
 209	 * assignment.
 210	 */
 211	synchronize_rcu();
 212
 213	/* Make sure prior __dev_map_entry_free() have completed. */
 214	rcu_barrier();
 
 
 
 
 
 215
 216	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
 217		for (i = 0; i < dtab->n_buckets; i++) {
 218			struct bpf_dtab_netdev *dev;
 219			struct hlist_head *head;
 220			struct hlist_node *next;
 221
 222			head = dev_map_index_hash(dtab, i);
 223
 224			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
 225				hlist_del_rcu(&dev->index_hlist);
 226				if (dev->xdp_prog)
 227					bpf_prog_put(dev->xdp_prog);
 228				dev_put(dev->dev);
 229				kfree(dev);
 230			}
 231		}
 232
 233		bpf_map_area_free(dtab->dev_index_head);
 234	} else {
 235		for (i = 0; i < dtab->map.max_entries; i++) {
 236			struct bpf_dtab_netdev *dev;
 237
 238			dev = rcu_dereference_raw(dtab->netdev_map[i]);
 239			if (!dev)
 240				continue;
 241
 242			if (dev->xdp_prog)
 243				bpf_prog_put(dev->xdp_prog);
 244			dev_put(dev->dev);
 245			kfree(dev);
 246		}
 247
 248		bpf_map_area_free(dtab->netdev_map);
 
 249	}
 250
 251	bpf_map_area_free(dtab);
 
 
 252}
 253
 254static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 255{
 256	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 257	u32 index = key ? *(u32 *)key : U32_MAX;
 258	u32 *next = next_key;
 259
 260	if (index >= dtab->map.max_entries) {
 261		*next = 0;
 262		return 0;
 263	}
 264
 265	if (index == dtab->map.max_entries - 1)
 266		return -ENOENT;
 267	*next = index + 1;
 268	return 0;
 269}
 270
 271/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
 272 * by local_bh_disable() (from XDP calls inside NAPI). The
 273 * rcu_read_lock_bh_held() below makes lockdep accept both.
 274 */
 275static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
 276{
 277	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 278	struct hlist_head *head = dev_map_index_hash(dtab, key);
 279	struct bpf_dtab_netdev *dev;
 280
 281	hlist_for_each_entry_rcu(dev, head, index_hlist,
 282				 lockdep_is_held(&dtab->index_lock))
 283		if (dev->idx == key)
 284			return dev;
 285
 286	return NULL;
 287}
 288
 289static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
 290				    void *next_key)
 
 
 
 
 
 
 291{
 292	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 293	u32 idx, *next = next_key;
 294	struct bpf_dtab_netdev *dev, *next_dev;
 295	struct hlist_head *head;
 296	int i = 0;
 297
 298	if (!key)
 299		goto find_first;
 300
 301	idx = *(u32 *)key;
 302
 303	dev = __dev_map_hash_lookup_elem(map, idx);
 304	if (!dev)
 305		goto find_first;
 306
 307	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
 308				    struct bpf_dtab_netdev, index_hlist);
 309
 310	if (next_dev) {
 311		*next = next_dev->idx;
 312		return 0;
 313	}
 314
 315	i = idx & (dtab->n_buckets - 1);
 316	i++;
 317
 318 find_first:
 319	for (; i < dtab->n_buckets; i++) {
 320		head = dev_map_index_hash(dtab, i);
 321
 322		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
 323					    struct bpf_dtab_netdev,
 324					    index_hlist);
 325		if (next_dev) {
 326			*next = next_dev->idx;
 327			return 0;
 328		}
 329	}
 330
 331	return -ENOENT;
 332}
 333
 334static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog,
 335				struct xdp_frame **frames, int n,
 336				struct net_device *tx_dev,
 337				struct net_device *rx_dev)
 338{
 339	struct xdp_txq_info txq = { .dev = tx_dev };
 340	struct xdp_rxq_info rxq = { .dev = rx_dev };
 341	struct xdp_buff xdp;
 342	int i, nframes = 0;
 343
 344	for (i = 0; i < n; i++) {
 345		struct xdp_frame *xdpf = frames[i];
 346		u32 act;
 347		int err;
 348
 349		xdp_convert_frame_to_buff(xdpf, &xdp);
 350		xdp.txq = &txq;
 351		xdp.rxq = &rxq;
 352
 353		act = bpf_prog_run_xdp(xdp_prog, &xdp);
 354		switch (act) {
 355		case XDP_PASS:
 356			err = xdp_update_frame_from_buff(&xdp, xdpf);
 357			if (unlikely(err < 0))
 358				xdp_return_frame_rx_napi(xdpf);
 359			else
 360				frames[nframes++] = xdpf;
 361			break;
 362		default:
 363			bpf_warn_invalid_xdp_action(NULL, xdp_prog, act);
 364			fallthrough;
 365		case XDP_ABORTED:
 366			trace_xdp_exception(tx_dev, xdp_prog, act);
 367			fallthrough;
 368		case XDP_DROP:
 369			xdp_return_frame_rx_napi(xdpf);
 370			break;
 371		}
 372	}
 373	return nframes; /* sent frames count */
 374}
 375
 376static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
 377{
 378	struct net_device *dev = bq->dev;
 379	unsigned int cnt = bq->count;
 380	int sent = 0, err = 0;
 381	int to_send = cnt;
 382	int i;
 383
 384	if (unlikely(!cnt))
 385		return;
 386
 387	for (i = 0; i < cnt; i++) {
 388		struct xdp_frame *xdpf = bq->q[i];
 
 389
 390		prefetch(xdpf);
 391	}
 392
 393	if (bq->xdp_prog) {
 394		to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev, bq->dev_rx);
 395		if (!to_send)
 396			goto out;
 397	}
 398
 399	sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags);
 400	if (sent < 0) {
 401		/* If ndo_xdp_xmit fails with an errno, no frames have
 402		 * been xmit'ed.
 403		 */
 404		err = sent;
 405		sent = 0;
 406	}
 407
 408	/* If not all frames have been transmitted, it is our
 409	 * responsibility to free them
 410	 */
 411	for (i = sent; unlikely(i < to_send); i++)
 412		xdp_return_frame_rx_napi(bq->q[i]);
 413
 414out:
 415	bq->count = 0;
 416	trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err);
 417}
 418
 419/* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the
 420 * driver before returning from its napi->poll() routine. See the comment above
 421 * xdp_do_flush() in filter.c.
 422 */
 423void __dev_flush(struct list_head *flush_list)
 424{
 425	struct xdp_dev_bulk_queue *bq, *tmp;
 426
 427	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
 428		bq_xmit_all(bq, XDP_XMIT_FLUSH);
 429		bq->dev_rx = NULL;
 430		bq->xdp_prog = NULL;
 431		__list_del_clearprev(&bq->flush_node);
 432	}
 433}
 434
 435/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
 436 * by local_bh_disable() (from XDP calls inside NAPI). The
 437 * rcu_read_lock_bh_held() below makes lockdep accept both.
 438 */
 439static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
 440{
 441	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 442	struct bpf_dtab_netdev *obj;
 443
 444	if (key >= map->max_entries)
 445		return NULL;
 446
 447	obj = rcu_dereference_check(dtab->netdev_map[key],
 448				    rcu_read_lock_bh_held());
 449	return obj;
 450}
 451
 452/* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu
 453 * variable access, and map elements stick around. See comment above
 454 * xdp_do_flush() in filter.c.
 455 */
 456static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
 457		       struct net_device *dev_rx, struct bpf_prog *xdp_prog)
 458{
 459	struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
 460
 461	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
 462		bq_xmit_all(bq, 0);
 463
 464	/* Ingress dev_rx will be the same for all xdp_frame's in
 465	 * bulk_queue, because bq stored per-CPU and must be flushed
 466	 * from net_device drivers NAPI func end.
 467	 *
 468	 * Do the same with xdp_prog and flush_list since these fields
 469	 * are only ever modified together.
 470	 */
 471	if (!bq->dev_rx) {
 472		struct list_head *flush_list = bpf_net_ctx_get_dev_flush_list();
 473
 474		bq->dev_rx = dev_rx;
 475		bq->xdp_prog = xdp_prog;
 476		list_add(&bq->flush_node, flush_list);
 477	}
 478
 479	bq->q[bq->count++] = xdpf;
 480}
 481
 482static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
 483				struct net_device *dev_rx,
 484				struct bpf_prog *xdp_prog)
 485{
 486	int err;
 487
 488	if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT))
 489		return -EOPNOTSUPP;
 490
 491	if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) &&
 492		     xdp_frame_has_frags(xdpf)))
 493		return -EOPNOTSUPP;
 494
 495	err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf));
 496	if (unlikely(err))
 497		return err;
 498
 499	bq_enqueue(dev, xdpf, dev_rx, xdp_prog);
 500	return 0;
 501}
 502
 503static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst)
 504{
 505	struct xdp_txq_info txq = { .dev = dst->dev };
 506	struct xdp_buff xdp;
 507	u32 act;
 508
 509	if (!dst->xdp_prog)
 510		return XDP_PASS;
 511
 512	__skb_pull(skb, skb->mac_len);
 513	xdp.txq = &txq;
 514
 515	act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog);
 516	switch (act) {
 517	case XDP_PASS:
 518		__skb_push(skb, skb->mac_len);
 519		break;
 520	default:
 521		bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act);
 522		fallthrough;
 523	case XDP_ABORTED:
 524		trace_xdp_exception(dst->dev, dst->xdp_prog, act);
 525		fallthrough;
 526	case XDP_DROP:
 527		kfree_skb(skb);
 528		break;
 529	}
 530
 531	return act;
 532}
 533
 534int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
 535		    struct net_device *dev_rx)
 536{
 537	return __xdp_enqueue(dev, xdpf, dev_rx, NULL);
 538}
 539
 540int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
 541		    struct net_device *dev_rx)
 542{
 543	struct net_device *dev = dst->dev;
 544
 545	return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog);
 546}
 547
 548static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf)
 549{
 550	if (!obj)
 551		return false;
 552
 553	if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT))
 554		return false;
 555
 556	if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) &&
 557		     xdp_frame_has_frags(xdpf)))
 558		return false;
 559
 560	if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf)))
 561		return false;
 562
 563	return true;
 564}
 565
 566static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj,
 567				 struct net_device *dev_rx,
 568				 struct xdp_frame *xdpf)
 569{
 570	struct xdp_frame *nxdpf;
 571
 572	nxdpf = xdpf_clone(xdpf);
 573	if (!nxdpf)
 574		return -ENOMEM;
 575
 576	bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog);
 577
 578	return 0;
 579}
 580
 581static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex)
 582{
 583	while (num_excluded--) {
 584		if (ifindex == excluded[num_excluded])
 585			return true;
 586	}
 587	return false;
 588}
 589
 590/* Get ifindex of each upper device. 'indexes' must be able to hold at
 591 * least MAX_NEST_DEV elements.
 592 * Returns the number of ifindexes added.
 593 */
 594static int get_upper_ifindexes(struct net_device *dev, int *indexes)
 595{
 596	struct net_device *upper;
 597	struct list_head *iter;
 598	int n = 0;
 599
 600	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
 601		indexes[n++] = upper->ifindex;
 602	}
 603	return n;
 604}
 605
 606int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
 607			  struct bpf_map *map, bool exclude_ingress)
 608{
 609	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 610	struct bpf_dtab_netdev *dst, *last_dst = NULL;
 611	int excluded_devices[1+MAX_NEST_DEV];
 612	struct hlist_head *head;
 613	int num_excluded = 0;
 614	unsigned int i;
 615	int err;
 616
 617	if (exclude_ingress) {
 618		num_excluded = get_upper_ifindexes(dev_rx, excluded_devices);
 619		excluded_devices[num_excluded++] = dev_rx->ifindex;
 620	}
 621
 622	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
 623		for (i = 0; i < map->max_entries; i++) {
 624			dst = rcu_dereference_check(dtab->netdev_map[i],
 625						    rcu_read_lock_bh_held());
 626			if (!is_valid_dst(dst, xdpf))
 627				continue;
 628
 629			if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex))
 630				continue;
 631
 632			/* we only need n-1 clones; last_dst enqueued below */
 633			if (!last_dst) {
 634				last_dst = dst;
 635				continue;
 636			}
 637
 638			err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf);
 639			if (err)
 640				return err;
 641
 642			last_dst = dst;
 643		}
 644	} else { /* BPF_MAP_TYPE_DEVMAP_HASH */
 645		for (i = 0; i < dtab->n_buckets; i++) {
 646			head = dev_map_index_hash(dtab, i);
 647			hlist_for_each_entry_rcu(dst, head, index_hlist,
 648						 lockdep_is_held(&dtab->index_lock)) {
 649				if (!is_valid_dst(dst, xdpf))
 650					continue;
 651
 652				if (is_ifindex_excluded(excluded_devices, num_excluded,
 653							dst->dev->ifindex))
 654					continue;
 655
 656				/* we only need n-1 clones; last_dst enqueued below */
 657				if (!last_dst) {
 658					last_dst = dst;
 659					continue;
 660				}
 661
 662				err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf);
 663				if (err)
 664					return err;
 665
 666				last_dst = dst;
 667			}
 668		}
 669	}
 670
 671	/* consume the last copy of the frame */
 672	if (last_dst)
 673		bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog);
 674	else
 675		xdp_return_frame_rx_napi(xdpf); /* dtab is empty */
 676
 677	return 0;
 678}
 679
 680int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
 681			     struct bpf_prog *xdp_prog)
 682{
 683	int err;
 684
 685	err = xdp_ok_fwd_dev(dst->dev, skb->len);
 686	if (unlikely(err))
 687		return err;
 688
 689	/* Redirect has already succeeded semantically at this point, so we just
 690	 * return 0 even if packet is dropped. Helper below takes care of
 691	 * freeing skb.
 692	 */
 693	if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS)
 694		return 0;
 695
 696	skb->dev = dst->dev;
 697	generic_xdp_tx(skb, xdp_prog);
 698
 699	return 0;
 700}
 701
 702static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst,
 703				  struct sk_buff *skb,
 704				  struct bpf_prog *xdp_prog)
 705{
 706	struct sk_buff *nskb;
 707	int err;
 708
 709	nskb = skb_clone(skb, GFP_ATOMIC);
 710	if (!nskb)
 711		return -ENOMEM;
 712
 713	err = dev_map_generic_redirect(dst, nskb, xdp_prog);
 714	if (unlikely(err)) {
 715		consume_skb(nskb);
 716		return err;
 717	}
 718
 719	return 0;
 720}
 721
 722int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
 723			   struct bpf_prog *xdp_prog, struct bpf_map *map,
 724			   bool exclude_ingress)
 725{
 726	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 727	struct bpf_dtab_netdev *dst, *last_dst = NULL;
 728	int excluded_devices[1+MAX_NEST_DEV];
 729	struct hlist_head *head;
 730	struct hlist_node *next;
 731	int num_excluded = 0;
 732	unsigned int i;
 733	int err;
 734
 735	if (exclude_ingress) {
 736		num_excluded = get_upper_ifindexes(dev, excluded_devices);
 737		excluded_devices[num_excluded++] = dev->ifindex;
 738	}
 739
 740	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
 741		for (i = 0; i < map->max_entries; i++) {
 742			dst = rcu_dereference_check(dtab->netdev_map[i],
 743						    rcu_read_lock_bh_held());
 744			if (!dst)
 745				continue;
 746
 747			if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex))
 748				continue;
 749
 750			/* we only need n-1 clones; last_dst enqueued below */
 751			if (!last_dst) {
 752				last_dst = dst;
 753				continue;
 754			}
 755
 756			err = dev_map_redirect_clone(last_dst, skb, xdp_prog);
 757			if (err)
 758				return err;
 759
 760			last_dst = dst;
 761
 762		}
 763	} else { /* BPF_MAP_TYPE_DEVMAP_HASH */
 764		for (i = 0; i < dtab->n_buckets; i++) {
 765			head = dev_map_index_hash(dtab, i);
 766			hlist_for_each_entry_safe(dst, next, head, index_hlist) {
 767				if (is_ifindex_excluded(excluded_devices, num_excluded,
 768							dst->dev->ifindex))
 769					continue;
 770
 771				/* we only need n-1 clones; last_dst enqueued below */
 772				if (!last_dst) {
 773					last_dst = dst;
 774					continue;
 775				}
 776
 777				err = dev_map_redirect_clone(last_dst, skb, xdp_prog);
 778				if (err)
 779					return err;
 780
 781				last_dst = dst;
 782			}
 783		}
 784	}
 785
 786	/* consume the first skb and return */
 787	if (last_dst)
 788		return dev_map_generic_redirect(last_dst, skb, xdp_prog);
 789
 790	/* dtab is empty */
 791	consume_skb(skb);
 792	return 0;
 793}
 794
 795static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
 796{
 797	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
 798
 799	return obj ? &obj->val : NULL;
 800}
 801
 802static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
 803{
 804	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
 805								*(u32 *)key);
 806	return obj ? &obj->val : NULL;
 807}
 808
 809static void __dev_map_entry_free(struct rcu_head *rcu)
 810{
 811	struct bpf_dtab_netdev *dev;
 812
 813	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
 814	if (dev->xdp_prog)
 815		bpf_prog_put(dev->xdp_prog);
 816	dev_put(dev->dev);
 817	kfree(dev);
 818}
 819
 820static long dev_map_delete_elem(struct bpf_map *map, void *key)
 821{
 822	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 823	struct bpf_dtab_netdev *old_dev;
 824	u32 k = *(u32 *)key;
 825
 826	if (k >= map->max_entries)
 827		return -EINVAL;
 828
 829	old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL));
 830	if (old_dev) {
 
 
 
 
 
 
 
 
 831		call_rcu(&old_dev->rcu, __dev_map_entry_free);
 832		atomic_dec((atomic_t *)&dtab->items);
 833	}
 834	return 0;
 835}
 836
 837static long dev_map_hash_delete_elem(struct bpf_map *map, void *key)
 838{
 839	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 840	struct bpf_dtab_netdev *old_dev;
 841	u32 k = *(u32 *)key;
 842	unsigned long flags;
 843	int ret = -ENOENT;
 844
 845	spin_lock_irqsave(&dtab->index_lock, flags);
 846
 847	old_dev = __dev_map_hash_lookup_elem(map, k);
 848	if (old_dev) {
 849		dtab->items--;
 850		hlist_del_init_rcu(&old_dev->index_hlist);
 851		call_rcu(&old_dev->rcu, __dev_map_entry_free);
 852		ret = 0;
 853	}
 854	spin_unlock_irqrestore(&dtab->index_lock, flags);
 855
 856	return ret;
 857}
 858
 859static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
 860						    struct bpf_dtab *dtab,
 861						    struct bpf_devmap_val *val,
 862						    unsigned int idx)
 863{
 864	struct bpf_prog *prog = NULL;
 865	struct bpf_dtab_netdev *dev;
 866
 867	dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev),
 868				   GFP_NOWAIT | __GFP_NOWARN,
 869				   dtab->map.numa_node);
 870	if (!dev)
 871		return ERR_PTR(-ENOMEM);
 872
 873	dev->dev = dev_get_by_index(net, val->ifindex);
 874	if (!dev->dev)
 875		goto err_out;
 876
 877	if (val->bpf_prog.fd > 0) {
 878		prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
 879					     BPF_PROG_TYPE_XDP, false);
 880		if (IS_ERR(prog))
 881			goto err_put_dev;
 882		if (prog->expected_attach_type != BPF_XDP_DEVMAP ||
 883		    !bpf_prog_map_compatible(&dtab->map, prog))
 884			goto err_put_prog;
 885	}
 886
 887	dev->idx = idx;
 888	if (prog) {
 889		dev->xdp_prog = prog;
 890		dev->val.bpf_prog.id = prog->aux->id;
 891	} else {
 892		dev->xdp_prog = NULL;
 893		dev->val.bpf_prog.id = 0;
 894	}
 895	dev->val.ifindex = val->ifindex;
 896
 897	return dev;
 898err_put_prog:
 899	bpf_prog_put(prog);
 900err_put_dev:
 901	dev_put(dev->dev);
 902err_out:
 903	kfree(dev);
 904	return ERR_PTR(-EINVAL);
 905}
 906
 907static long __dev_map_update_elem(struct net *net, struct bpf_map *map,
 908				  void *key, void *value, u64 map_flags)
 909{
 910	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 
 911	struct bpf_dtab_netdev *dev, *old_dev;
 912	struct bpf_devmap_val val = {};
 913	u32 i = *(u32 *)key;
 
 914
 915	if (unlikely(map_flags > BPF_EXIST))
 916		return -EINVAL;
 917	if (unlikely(i >= dtab->map.max_entries))
 918		return -E2BIG;
 919	if (unlikely(map_flags == BPF_NOEXIST))
 920		return -EEXIST;
 921
 922	/* already verified value_size <= sizeof val */
 923	memcpy(&val, value, map->value_size);
 
 
 
 
 
 924
 925	if (!val.ifindex) {
 926		dev = NULL;
 927		/* can not specify fd if ifindex is 0 */
 928		if (val.bpf_prog.fd > 0)
 929			return -EINVAL;
 930	} else {
 931		dev = __dev_map_alloc_node(net, dtab, &val, i);
 932		if (IS_ERR(dev))
 933			return PTR_ERR(dev);
 934	}
 935
 936	/* Use call_rcu() here to ensure rcu critical sections have completed
 937	 * Remembering the driver side flush operation will happen before the
 938	 * net device is removed.
 939	 */
 940	old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev)));
 941	if (old_dev)
 942		call_rcu(&old_dev->rcu, __dev_map_entry_free);
 943	else
 944		atomic_inc((atomic_t *)&dtab->items);
 945
 946	return 0;
 947}
 948
 949static long dev_map_update_elem(struct bpf_map *map, void *key, void *value,
 950				u64 map_flags)
 951{
 952	return __dev_map_update_elem(current->nsproxy->net_ns,
 953				     map, key, value, map_flags);
 954}
 955
 956static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
 957				       void *key, void *value, u64 map_flags)
 958{
 959	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
 960	struct bpf_dtab_netdev *dev, *old_dev;
 961	struct bpf_devmap_val val = {};
 962	u32 idx = *(u32 *)key;
 963	unsigned long flags;
 964	int err = -EEXIST;
 965
 966	/* already verified value_size <= sizeof val */
 967	memcpy(&val, value, map->value_size);
 968
 969	if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
 970		return -EINVAL;
 971
 972	spin_lock_irqsave(&dtab->index_lock, flags);
 973
 974	old_dev = __dev_map_hash_lookup_elem(map, idx);
 975	if (old_dev && (map_flags & BPF_NOEXIST))
 976		goto out_err;
 977
 978	dev = __dev_map_alloc_node(net, dtab, &val, idx);
 979	if (IS_ERR(dev)) {
 980		err = PTR_ERR(dev);
 981		goto out_err;
 982	}
 983
 984	if (old_dev) {
 985		hlist_del_rcu(&old_dev->index_hlist);
 986	} else {
 987		if (dtab->items >= dtab->map.max_entries) {
 988			spin_unlock_irqrestore(&dtab->index_lock, flags);
 989			call_rcu(&dev->rcu, __dev_map_entry_free);
 990			return -E2BIG;
 991		}
 992		dtab->items++;
 993	}
 994
 995	hlist_add_head_rcu(&dev->index_hlist,
 996			   dev_map_index_hash(dtab, idx));
 997	spin_unlock_irqrestore(&dtab->index_lock, flags);
 998
 999	if (old_dev)
1000		call_rcu(&old_dev->rcu, __dev_map_entry_free);
1001
1002	return 0;
1003
1004out_err:
1005	spin_unlock_irqrestore(&dtab->index_lock, flags);
1006	return err;
1007}
1008
1009static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
1010				     u64 map_flags)
1011{
1012	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
1013					 map, key, value, map_flags);
1014}
1015
1016static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags)
1017{
1018	return __bpf_xdp_redirect_map(map, ifindex, flags,
1019				      BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS,
1020				      __dev_map_lookup_elem);
1021}
1022
1023static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags)
1024{
1025	return __bpf_xdp_redirect_map(map, ifindex, flags,
1026				      BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS,
1027				      __dev_map_hash_lookup_elem);
1028}
1029
1030static u64 dev_map_mem_usage(const struct bpf_map *map)
1031{
1032	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
1033	u64 usage = sizeof(struct bpf_dtab);
1034
1035	if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH)
1036		usage += (u64)dtab->n_buckets * sizeof(struct hlist_head);
1037	else
1038		usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *);
1039	usage += atomic_read((atomic_t *)&dtab->items) *
1040			 (u64)sizeof(struct bpf_dtab_netdev);
1041	return usage;
1042}
1043
1044BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab)
1045const struct bpf_map_ops dev_map_ops = {
1046	.map_meta_equal = bpf_map_meta_equal,
1047	.map_alloc_check = dev_map_alloc_check,
1048	.map_alloc = dev_map_alloc,
1049	.map_free = dev_map_free,
1050	.map_get_next_key = dev_map_get_next_key,
1051	.map_lookup_elem = dev_map_lookup_elem,
1052	.map_update_elem = dev_map_update_elem,
1053	.map_delete_elem = dev_map_delete_elem,
1054	.map_check_btf = map_check_no_btf,
1055	.map_mem_usage = dev_map_mem_usage,
1056	.map_btf_id = &dev_map_btf_ids[0],
1057	.map_redirect = dev_map_redirect,
1058};
1059
1060const struct bpf_map_ops dev_map_hash_ops = {
1061	.map_meta_equal = bpf_map_meta_equal,
1062	.map_alloc_check = dev_map_alloc_check,
1063	.map_alloc = dev_map_alloc,
1064	.map_free = dev_map_free,
1065	.map_get_next_key = dev_map_hash_get_next_key,
1066	.map_lookup_elem = dev_map_hash_lookup_elem,
1067	.map_update_elem = dev_map_hash_update_elem,
1068	.map_delete_elem = dev_map_hash_delete_elem,
1069	.map_check_btf = map_check_no_btf,
1070	.map_mem_usage = dev_map_mem_usage,
1071	.map_btf_id = &dev_map_btf_ids[0],
1072	.map_redirect = dev_hash_map_redirect,
1073};
1074
1075static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
1076				       struct net_device *netdev)
1077{
1078	unsigned long flags;
1079	u32 i;
1080
1081	spin_lock_irqsave(&dtab->index_lock, flags);
1082	for (i = 0; i < dtab->n_buckets; i++) {
1083		struct bpf_dtab_netdev *dev;
1084		struct hlist_head *head;
1085		struct hlist_node *next;
1086
1087		head = dev_map_index_hash(dtab, i);
1088
1089		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
1090			if (netdev != dev->dev)
1091				continue;
1092
1093			dtab->items--;
1094			hlist_del_rcu(&dev->index_hlist);
1095			call_rcu(&dev->rcu, __dev_map_entry_free);
1096		}
1097	}
1098	spin_unlock_irqrestore(&dtab->index_lock, flags);
1099}
1100
1101static int dev_map_notification(struct notifier_block *notifier,
1102				ulong event, void *ptr)
1103{
1104	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
1105	struct bpf_dtab *dtab;
1106	int i, cpu;
1107
1108	switch (event) {
1109	case NETDEV_REGISTER:
1110		if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
1111			break;
1112
1113		/* will be freed in free_netdev() */
1114		netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue);
1115		if (!netdev->xdp_bulkq)
1116			return NOTIFY_BAD;
1117
1118		for_each_possible_cpu(cpu)
1119			per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
1120		break;
1121	case NETDEV_UNREGISTER:
1122		/* This rcu_read_lock/unlock pair is needed because
1123		 * dev_map_list is an RCU list AND to ensure a delete
1124		 * operation does not free a netdev_map entry while we
1125		 * are comparing it against the netdev being unregistered.
1126		 */
1127		rcu_read_lock();
1128		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
1129			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
1130				dev_map_hash_remove_netdev(dtab, netdev);
1131				continue;
1132			}
1133
1134			for (i = 0; i < dtab->map.max_entries; i++) {
1135				struct bpf_dtab_netdev *dev, *odev;
1136
1137				dev = rcu_dereference(dtab->netdev_map[i]);
1138				if (!dev || netdev != dev->dev)
 
1139					continue;
1140				odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL));
1141				if (dev == odev) {
1142					call_rcu(&dev->rcu,
1143						 __dev_map_entry_free);
1144					atomic_dec((atomic_t *)&dtab->items);
1145				}
1146			}
1147		}
1148		rcu_read_unlock();
1149		break;
1150	default:
1151		break;
1152	}
1153	return NOTIFY_OK;
1154}
1155
1156static struct notifier_block dev_map_notifier = {
1157	.notifier_call = dev_map_notification,
1158};
1159
1160static int __init dev_map_init(void)
1161{
1162	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
1163	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
1164		     offsetof(struct _bpf_dtab_netdev, dev));
1165	register_netdevice_notifier(&dev_map_notifier);
1166
1167	return 0;
1168}
1169
1170subsys_initcall(dev_map_init);