Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#ifndef __XFS_BUF_H__
19#define __XFS_BUF_H__
20
21#include <linux/list.h>
22#include <linux/types.h>
23#include <linux/spinlock.h>
24#include <linux/mm.h>
25#include <linux/fs.h>
26#include <linux/dax.h>
27#include <linux/buffer_head.h>
28#include <linux/uio.h>
29#include <linux/list_lru.h>
30
31/*
32 * Base types
33 */
34
35#define XFS_BUF_DADDR_NULL ((xfs_daddr_t) (-1LL))
36
37typedef enum {
38 XBRW_READ = 1, /* transfer into target memory */
39 XBRW_WRITE = 2, /* transfer from target memory */
40 XBRW_ZERO = 3, /* Zero target memory */
41} xfs_buf_rw_t;
42
43#define XBF_READ (1 << 0) /* buffer intended for reading from device */
44#define XBF_WRITE (1 << 1) /* buffer intended for writing to device */
45#define XBF_READ_AHEAD (1 << 2) /* asynchronous read-ahead */
46#define XBF_NO_IOACCT (1 << 3) /* bypass I/O accounting (non-LRU bufs) */
47#define XBF_ASYNC (1 << 4) /* initiator will not wait for completion */
48#define XBF_DONE (1 << 5) /* all pages in the buffer uptodate */
49#define XBF_STALE (1 << 6) /* buffer has been staled, do not find it */
50#define XBF_WRITE_FAIL (1 << 24)/* async writes have failed on this buffer */
51
52/* I/O hints for the BIO layer */
53#define XBF_SYNCIO (1 << 10)/* treat this buffer as synchronous I/O */
54#define XBF_FUA (1 << 11)/* force cache write through mode */
55#define XBF_FLUSH (1 << 12)/* flush the disk cache before a write */
56
57/* flags used only as arguments to access routines */
58#define XBF_TRYLOCK (1 << 16)/* lock requested, but do not wait */
59#define XBF_UNMAPPED (1 << 17)/* do not map the buffer */
60
61/* flags used only internally */
62#define _XBF_PAGES (1 << 20)/* backed by refcounted pages */
63#define _XBF_KMEM (1 << 21)/* backed by heap memory */
64#define _XBF_DELWRI_Q (1 << 22)/* buffer on a delwri queue */
65#define _XBF_COMPOUND (1 << 23)/* compound buffer */
66
67typedef unsigned int xfs_buf_flags_t;
68
69#define XFS_BUF_FLAGS \
70 { XBF_READ, "READ" }, \
71 { XBF_WRITE, "WRITE" }, \
72 { XBF_READ_AHEAD, "READ_AHEAD" }, \
73 { XBF_NO_IOACCT, "NO_IOACCT" }, \
74 { XBF_ASYNC, "ASYNC" }, \
75 { XBF_DONE, "DONE" }, \
76 { XBF_STALE, "STALE" }, \
77 { XBF_WRITE_FAIL, "WRITE_FAIL" }, \
78 { XBF_SYNCIO, "SYNCIO" }, \
79 { XBF_FUA, "FUA" }, \
80 { XBF_FLUSH, "FLUSH" }, \
81 { XBF_TRYLOCK, "TRYLOCK" }, /* should never be set */\
82 { XBF_UNMAPPED, "UNMAPPED" }, /* ditto */\
83 { _XBF_PAGES, "PAGES" }, \
84 { _XBF_KMEM, "KMEM" }, \
85 { _XBF_DELWRI_Q, "DELWRI_Q" }, \
86 { _XBF_COMPOUND, "COMPOUND" }
87
88
89/*
90 * Internal state flags.
91 */
92#define XFS_BSTATE_DISPOSE (1 << 0) /* buffer being discarded */
93#define XFS_BSTATE_IN_FLIGHT (1 << 1) /* I/O in flight */
94
95/*
96 * The xfs_buftarg contains 2 notions of "sector size" -
97 *
98 * 1) The metadata sector size, which is the minimum unit and
99 * alignment of IO which will be performed by metadata operations.
100 * 2) The device logical sector size
101 *
102 * The first is specified at mkfs time, and is stored on-disk in the
103 * superblock's sb_sectsize.
104 *
105 * The latter is derived from the underlying device, and controls direct IO
106 * alignment constraints.
107 */
108typedef struct xfs_buftarg {
109 dev_t bt_dev;
110 struct block_device *bt_bdev;
111 struct dax_device *bt_daxdev;
112 struct xfs_mount *bt_mount;
113 unsigned int bt_meta_sectorsize;
114 size_t bt_meta_sectormask;
115 size_t bt_logical_sectorsize;
116 size_t bt_logical_sectormask;
117
118 /* LRU control structures */
119 struct shrinker bt_shrinker;
120 struct list_lru bt_lru;
121
122 struct percpu_counter bt_io_count;
123} xfs_buftarg_t;
124
125struct xfs_buf;
126typedef void (*xfs_buf_iodone_t)(struct xfs_buf *);
127
128
129#define XB_PAGES 2
130
131struct xfs_buf_map {
132 xfs_daddr_t bm_bn; /* block number for I/O */
133 int bm_len; /* size of I/O */
134};
135
136#define DEFINE_SINGLE_BUF_MAP(map, blkno, numblk) \
137 struct xfs_buf_map (map) = { .bm_bn = (blkno), .bm_len = (numblk) };
138
139struct xfs_buf_ops {
140 char *name;
141 void (*verify_read)(struct xfs_buf *);
142 void (*verify_write)(struct xfs_buf *);
143 xfs_failaddr_t (*verify_struct)(struct xfs_buf *bp);
144};
145
146typedef struct xfs_buf {
147 /*
148 * first cacheline holds all the fields needed for an uncontended cache
149 * hit to be fully processed. The semaphore straddles the cacheline
150 * boundary, but the counter and lock sits on the first cacheline,
151 * which is the only bit that is touched if we hit the semaphore
152 * fast-path on locking.
153 */
154 struct rhash_head b_rhash_head; /* pag buffer hash node */
155 xfs_daddr_t b_bn; /* block number of buffer */
156 int b_length; /* size of buffer in BBs */
157 atomic_t b_hold; /* reference count */
158 atomic_t b_lru_ref; /* lru reclaim ref count */
159 xfs_buf_flags_t b_flags; /* status flags */
160 struct semaphore b_sema; /* semaphore for lockables */
161
162 /*
163 * concurrent access to b_lru and b_lru_flags are protected by
164 * bt_lru_lock and not by b_sema
165 */
166 struct list_head b_lru; /* lru list */
167 spinlock_t b_lock; /* internal state lock */
168 unsigned int b_state; /* internal state flags */
169 int b_io_error; /* internal IO error state */
170 wait_queue_head_t b_waiters; /* unpin waiters */
171 struct list_head b_list;
172 struct xfs_perag *b_pag; /* contains rbtree root */
173 xfs_buftarg_t *b_target; /* buffer target (device) */
174 void *b_addr; /* virtual address of buffer */
175 struct work_struct b_ioend_work;
176 struct workqueue_struct *b_ioend_wq; /* I/O completion wq */
177 xfs_buf_iodone_t b_iodone; /* I/O completion function */
178 struct completion b_iowait; /* queue for I/O waiters */
179 void *b_log_item;
180 struct list_head b_li_list; /* Log items list head */
181 struct xfs_trans *b_transp;
182 struct page **b_pages; /* array of page pointers */
183 struct page *b_page_array[XB_PAGES]; /* inline pages */
184 struct xfs_buf_map *b_maps; /* compound buffer map */
185 struct xfs_buf_map __b_map; /* inline compound buffer map */
186 int b_map_count;
187 int b_io_length; /* IO size in BBs */
188 atomic_t b_pin_count; /* pin count */
189 atomic_t b_io_remaining; /* #outstanding I/O requests */
190 unsigned int b_page_count; /* size of page array */
191 unsigned int b_offset; /* page offset in first page */
192 int b_error; /* error code on I/O */
193
194 /*
195 * async write failure retry count. Initialised to zero on the first
196 * failure, then when it exceeds the maximum configured without a
197 * success the write is considered to be failed permanently and the
198 * iodone handler will take appropriate action.
199 *
200 * For retry timeouts, we record the jiffie of the first failure. This
201 * means that we can change the retry timeout for buffers already under
202 * I/O and thus avoid getting stuck in a retry loop with a long timeout.
203 *
204 * last_error is used to ensure that we are getting repeated errors, not
205 * different errors. e.g. a block device might change ENOSPC to EIO when
206 * a failure timeout occurs, so we want to re-initialise the error
207 * retry behaviour appropriately when that happens.
208 */
209 int b_retries;
210 unsigned long b_first_retry_time; /* in jiffies */
211 int b_last_error;
212
213 const struct xfs_buf_ops *b_ops;
214
215#ifdef XFS_BUF_LOCK_TRACKING
216 int b_last_holder;
217#endif
218} xfs_buf_t;
219
220/* Finding and Reading Buffers */
221struct xfs_buf *_xfs_buf_find(struct xfs_buftarg *target,
222 struct xfs_buf_map *map, int nmaps,
223 xfs_buf_flags_t flags, struct xfs_buf *new_bp);
224
225static inline struct xfs_buf *
226xfs_incore(
227 struct xfs_buftarg *target,
228 xfs_daddr_t blkno,
229 size_t numblks,
230 xfs_buf_flags_t flags)
231{
232 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
233 return _xfs_buf_find(target, &map, 1, flags, NULL);
234}
235
236struct xfs_buf *_xfs_buf_alloc(struct xfs_buftarg *target,
237 struct xfs_buf_map *map, int nmaps,
238 xfs_buf_flags_t flags);
239
240static inline struct xfs_buf *
241xfs_buf_alloc(
242 struct xfs_buftarg *target,
243 xfs_daddr_t blkno,
244 size_t numblks,
245 xfs_buf_flags_t flags)
246{
247 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
248 return _xfs_buf_alloc(target, &map, 1, flags);
249}
250
251struct xfs_buf *xfs_buf_get_map(struct xfs_buftarg *target,
252 struct xfs_buf_map *map, int nmaps,
253 xfs_buf_flags_t flags);
254struct xfs_buf *xfs_buf_read_map(struct xfs_buftarg *target,
255 struct xfs_buf_map *map, int nmaps,
256 xfs_buf_flags_t flags,
257 const struct xfs_buf_ops *ops);
258void xfs_buf_readahead_map(struct xfs_buftarg *target,
259 struct xfs_buf_map *map, int nmaps,
260 const struct xfs_buf_ops *ops);
261
262static inline struct xfs_buf *
263xfs_buf_get(
264 struct xfs_buftarg *target,
265 xfs_daddr_t blkno,
266 size_t numblks,
267 xfs_buf_flags_t flags)
268{
269 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
270 return xfs_buf_get_map(target, &map, 1, flags);
271}
272
273static inline struct xfs_buf *
274xfs_buf_read(
275 struct xfs_buftarg *target,
276 xfs_daddr_t blkno,
277 size_t numblks,
278 xfs_buf_flags_t flags,
279 const struct xfs_buf_ops *ops)
280{
281 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
282 return xfs_buf_read_map(target, &map, 1, flags, ops);
283}
284
285static inline void
286xfs_buf_readahead(
287 struct xfs_buftarg *target,
288 xfs_daddr_t blkno,
289 size_t numblks,
290 const struct xfs_buf_ops *ops)
291{
292 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
293 return xfs_buf_readahead_map(target, &map, 1, ops);
294}
295
296void xfs_buf_set_empty(struct xfs_buf *bp, size_t numblks);
297int xfs_buf_associate_memory(struct xfs_buf *bp, void *mem, size_t length);
298
299struct xfs_buf *xfs_buf_get_uncached(struct xfs_buftarg *target, size_t numblks,
300 int flags);
301int xfs_buf_read_uncached(struct xfs_buftarg *target, xfs_daddr_t daddr,
302 size_t numblks, int flags, struct xfs_buf **bpp,
303 const struct xfs_buf_ops *ops);
304void xfs_buf_hold(struct xfs_buf *bp);
305
306/* Releasing Buffers */
307extern void xfs_buf_free(xfs_buf_t *);
308extern void xfs_buf_rele(xfs_buf_t *);
309
310/* Locking and Unlocking Buffers */
311extern int xfs_buf_trylock(xfs_buf_t *);
312extern void xfs_buf_lock(xfs_buf_t *);
313extern void xfs_buf_unlock(xfs_buf_t *);
314#define xfs_buf_islocked(bp) \
315 ((bp)->b_sema.count <= 0)
316
317/* Buffer Read and Write Routines */
318extern int xfs_bwrite(struct xfs_buf *bp);
319extern void xfs_buf_ioend(struct xfs_buf *bp);
320extern void __xfs_buf_ioerror(struct xfs_buf *bp, int error,
321 xfs_failaddr_t failaddr);
322#define xfs_buf_ioerror(bp, err) __xfs_buf_ioerror((bp), (err), __this_address)
323extern void xfs_buf_ioerror_alert(struct xfs_buf *, const char *func);
324extern void xfs_buf_submit(struct xfs_buf *bp);
325extern int xfs_buf_submit_wait(struct xfs_buf *bp);
326extern void xfs_buf_iomove(xfs_buf_t *, size_t, size_t, void *,
327 xfs_buf_rw_t);
328#define xfs_buf_zero(bp, off, len) \
329 xfs_buf_iomove((bp), (off), (len), NULL, XBRW_ZERO)
330
331/* Buffer Utility Routines */
332extern void *xfs_buf_offset(struct xfs_buf *, size_t);
333extern void xfs_buf_stale(struct xfs_buf *bp);
334
335/* Delayed Write Buffer Routines */
336extern void xfs_buf_delwri_cancel(struct list_head *);
337extern bool xfs_buf_delwri_queue(struct xfs_buf *, struct list_head *);
338extern int xfs_buf_delwri_submit(struct list_head *);
339extern int xfs_buf_delwri_submit_nowait(struct list_head *);
340extern int xfs_buf_delwri_pushbuf(struct xfs_buf *, struct list_head *);
341
342/* Buffer Daemon Setup Routines */
343extern int xfs_buf_init(void);
344extern void xfs_buf_terminate(void);
345
346/*
347 * These macros use the IO block map rather than b_bn. b_bn is now really
348 * just for the buffer cache index for cached buffers. As IO does not use b_bn
349 * anymore, uncached buffers do not use b_bn at all and hence must modify the IO
350 * map directly. Uncached buffers are not allowed to be discontiguous, so this
351 * is safe to do.
352 *
353 * In future, uncached buffers will pass the block number directly to the io
354 * request function and hence these macros will go away at that point.
355 */
356#define XFS_BUF_ADDR(bp) ((bp)->b_maps[0].bm_bn)
357#define XFS_BUF_SET_ADDR(bp, bno) ((bp)->b_maps[0].bm_bn = (xfs_daddr_t)(bno))
358
359void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref);
360
361static inline int xfs_buf_ispinned(struct xfs_buf *bp)
362{
363 return atomic_read(&bp->b_pin_count);
364}
365
366static inline void xfs_buf_relse(xfs_buf_t *bp)
367{
368 xfs_buf_unlock(bp);
369 xfs_buf_rele(bp);
370}
371
372static inline int
373xfs_buf_verify_cksum(struct xfs_buf *bp, unsigned long cksum_offset)
374{
375 return xfs_verify_cksum(bp->b_addr, BBTOB(bp->b_length),
376 cksum_offset);
377}
378
379static inline void
380xfs_buf_update_cksum(struct xfs_buf *bp, unsigned long cksum_offset)
381{
382 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length),
383 cksum_offset);
384}
385
386/*
387 * Handling of buftargs.
388 */
389extern xfs_buftarg_t *xfs_alloc_buftarg(struct xfs_mount *,
390 struct block_device *, struct dax_device *);
391extern void xfs_free_buftarg(struct xfs_buftarg *);
392extern void xfs_wait_buftarg(xfs_buftarg_t *);
393extern int xfs_setsize_buftarg(xfs_buftarg_t *, unsigned int);
394
395#define xfs_getsize_buftarg(buftarg) block_size((buftarg)->bt_bdev)
396#define xfs_readonly_buftarg(buftarg) bdev_read_only((buftarg)->bt_bdev)
397
398#endif /* __XFS_BUF_H__ */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#ifndef __XFS_BUF_H__
7#define __XFS_BUF_H__
8
9#include <linux/list.h>
10#include <linux/types.h>
11#include <linux/spinlock.h>
12#include <linux/mm.h>
13#include <linux/fs.h>
14#include <linux/dax.h>
15#include <linux/uio.h>
16#include <linux/list_lru.h>
17
18extern struct kmem_cache *xfs_buf_cache;
19
20/*
21 * Base types
22 */
23struct xfs_buf;
24
25#define XFS_BUF_DADDR_NULL ((xfs_daddr_t) (-1LL))
26
27#define XBF_READ (1u << 0) /* buffer intended for reading from device */
28#define XBF_WRITE (1u << 1) /* buffer intended for writing to device */
29#define XBF_READ_AHEAD (1u << 2) /* asynchronous read-ahead */
30#define XBF_NO_IOACCT (1u << 3) /* bypass I/O accounting (non-LRU bufs) */
31#define XBF_ASYNC (1u << 4) /* initiator will not wait for completion */
32#define XBF_DONE (1u << 5) /* all pages in the buffer uptodate */
33#define XBF_STALE (1u << 6) /* buffer has been staled, do not find it */
34#define XBF_WRITE_FAIL (1u << 7) /* async writes have failed on this buffer */
35
36/* buffer type flags for write callbacks */
37#define _XBF_INODES (1u << 16)/* inode buffer */
38#define _XBF_DQUOTS (1u << 17)/* dquot buffer */
39#define _XBF_LOGRECOVERY (1u << 18)/* log recovery buffer */
40
41/* flags used only internally */
42#define _XBF_PAGES (1u << 20)/* backed by refcounted pages */
43#define _XBF_KMEM (1u << 21)/* backed by heap memory */
44#define _XBF_DELWRI_Q (1u << 22)/* buffer on a delwri queue */
45
46/* flags used only as arguments to access routines */
47/*
48 * Online fsck is scanning the buffer cache for live buffers. Do not warn
49 * about length mismatches during lookups and do not return stale buffers.
50 */
51#define XBF_LIVESCAN (1u << 28)
52#define XBF_INCORE (1u << 29)/* lookup only, return if found in cache */
53#define XBF_TRYLOCK (1u << 30)/* lock requested, but do not wait */
54#define XBF_UNMAPPED (1u << 31)/* do not map the buffer */
55
56
57typedef unsigned int xfs_buf_flags_t;
58
59#define XFS_BUF_FLAGS \
60 { XBF_READ, "READ" }, \
61 { XBF_WRITE, "WRITE" }, \
62 { XBF_READ_AHEAD, "READ_AHEAD" }, \
63 { XBF_NO_IOACCT, "NO_IOACCT" }, \
64 { XBF_ASYNC, "ASYNC" }, \
65 { XBF_DONE, "DONE" }, \
66 { XBF_STALE, "STALE" }, \
67 { XBF_WRITE_FAIL, "WRITE_FAIL" }, \
68 { _XBF_INODES, "INODES" }, \
69 { _XBF_DQUOTS, "DQUOTS" }, \
70 { _XBF_LOGRECOVERY, "LOG_RECOVERY" }, \
71 { _XBF_PAGES, "PAGES" }, \
72 { _XBF_KMEM, "KMEM" }, \
73 { _XBF_DELWRI_Q, "DELWRI_Q" }, \
74 /* The following interface flags should never be set */ \
75 { XBF_LIVESCAN, "LIVESCAN" }, \
76 { XBF_INCORE, "INCORE" }, \
77 { XBF_TRYLOCK, "TRYLOCK" }, \
78 { XBF_UNMAPPED, "UNMAPPED" }
79
80/*
81 * Internal state flags.
82 */
83#define XFS_BSTATE_DISPOSE (1 << 0) /* buffer being discarded */
84#define XFS_BSTATE_IN_FLIGHT (1 << 1) /* I/O in flight */
85
86struct xfs_buf_cache {
87 spinlock_t bc_lock;
88 struct rhashtable bc_hash;
89};
90
91int xfs_buf_cache_init(struct xfs_buf_cache *bch);
92void xfs_buf_cache_destroy(struct xfs_buf_cache *bch);
93
94/*
95 * The xfs_buftarg contains 2 notions of "sector size" -
96 *
97 * 1) The metadata sector size, which is the minimum unit and
98 * alignment of IO which will be performed by metadata operations.
99 * 2) The device logical sector size
100 *
101 * The first is specified at mkfs time, and is stored on-disk in the
102 * superblock's sb_sectsize.
103 *
104 * The latter is derived from the underlying device, and controls direct IO
105 * alignment constraints.
106 */
107struct xfs_buftarg {
108 dev_t bt_dev;
109 struct file *bt_bdev_file;
110 struct block_device *bt_bdev;
111 struct dax_device *bt_daxdev;
112 struct file *bt_file;
113 u64 bt_dax_part_off;
114 struct xfs_mount *bt_mount;
115 unsigned int bt_meta_sectorsize;
116 size_t bt_meta_sectormask;
117 size_t bt_logical_sectorsize;
118 size_t bt_logical_sectormask;
119
120 /* LRU control structures */
121 struct shrinker *bt_shrinker;
122 struct list_lru bt_lru;
123
124 struct percpu_counter bt_io_count;
125 struct ratelimit_state bt_ioerror_rl;
126
127 /* Atomic write unit values */
128 unsigned int bt_bdev_awu_min;
129 unsigned int bt_bdev_awu_max;
130
131 /* built-in cache, if we're not using the perag one */
132 struct xfs_buf_cache bt_cache[];
133};
134
135#define XB_PAGES 2
136
137struct xfs_buf_map {
138 xfs_daddr_t bm_bn; /* block number for I/O */
139 int bm_len; /* size of I/O */
140 unsigned int bm_flags;
141};
142
143/*
144 * Online fsck is scanning the buffer cache for live buffers. Do not warn
145 * about length mismatches during lookups and do not return stale buffers.
146 */
147#define XBM_LIVESCAN (1U << 0)
148
149#define DEFINE_SINGLE_BUF_MAP(map, blkno, numblk) \
150 struct xfs_buf_map (map) = { .bm_bn = (blkno), .bm_len = (numblk) };
151
152struct xfs_buf_ops {
153 char *name;
154 union {
155 __be32 magic[2]; /* v4 and v5 on disk magic values */
156 __be16 magic16[2]; /* v4 and v5 on disk magic values */
157 };
158 void (*verify_read)(struct xfs_buf *);
159 void (*verify_write)(struct xfs_buf *);
160 xfs_failaddr_t (*verify_struct)(struct xfs_buf *bp);
161};
162
163struct xfs_buf {
164 /*
165 * first cacheline holds all the fields needed for an uncontended cache
166 * hit to be fully processed. The semaphore straddles the cacheline
167 * boundary, but the counter and lock sits on the first cacheline,
168 * which is the only bit that is touched if we hit the semaphore
169 * fast-path on locking.
170 */
171 struct rhash_head b_rhash_head; /* pag buffer hash node */
172
173 xfs_daddr_t b_rhash_key; /* buffer cache index */
174 int b_length; /* size of buffer in BBs */
175 atomic_t b_hold; /* reference count */
176 atomic_t b_lru_ref; /* lru reclaim ref count */
177 xfs_buf_flags_t b_flags; /* status flags */
178 struct semaphore b_sema; /* semaphore for lockables */
179
180 /*
181 * concurrent access to b_lru and b_lru_flags are protected by
182 * bt_lru_lock and not by b_sema
183 */
184 struct list_head b_lru; /* lru list */
185 spinlock_t b_lock; /* internal state lock */
186 unsigned int b_state; /* internal state flags */
187 int b_io_error; /* internal IO error state */
188 wait_queue_head_t b_waiters; /* unpin waiters */
189 struct list_head b_list;
190 struct xfs_perag *b_pag; /* contains rbtree root */
191 struct xfs_mount *b_mount;
192 struct xfs_buftarg *b_target; /* buffer target (device) */
193 void *b_addr; /* virtual address of buffer */
194 struct work_struct b_ioend_work;
195 struct completion b_iowait; /* queue for I/O waiters */
196 struct xfs_buf_log_item *b_log_item;
197 struct list_head b_li_list; /* Log items list head */
198 struct xfs_trans *b_transp;
199 struct page **b_pages; /* array of page pointers */
200 struct page *b_page_array[XB_PAGES]; /* inline pages */
201 struct xfs_buf_map *b_maps; /* compound buffer map */
202 struct xfs_buf_map __b_map; /* inline compound buffer map */
203 int b_map_count;
204 atomic_t b_pin_count; /* pin count */
205 atomic_t b_io_remaining; /* #outstanding I/O requests */
206 unsigned int b_page_count; /* size of page array */
207 unsigned int b_offset; /* page offset of b_addr,
208 only for _XBF_KMEM buffers */
209 int b_error; /* error code on I/O */
210
211 /*
212 * async write failure retry count. Initialised to zero on the first
213 * failure, then when it exceeds the maximum configured without a
214 * success the write is considered to be failed permanently and the
215 * iodone handler will take appropriate action.
216 *
217 * For retry timeouts, we record the jiffy of the first failure. This
218 * means that we can change the retry timeout for buffers already under
219 * I/O and thus avoid getting stuck in a retry loop with a long timeout.
220 *
221 * last_error is used to ensure that we are getting repeated errors, not
222 * different errors. e.g. a block device might change ENOSPC to EIO when
223 * a failure timeout occurs, so we want to re-initialise the error
224 * retry behaviour appropriately when that happens.
225 */
226 int b_retries;
227 unsigned long b_first_retry_time; /* in jiffies */
228 int b_last_error;
229
230 const struct xfs_buf_ops *b_ops;
231 struct rcu_head b_rcu;
232};
233
234/* Finding and Reading Buffers */
235int xfs_buf_get_map(struct xfs_buftarg *target, struct xfs_buf_map *map,
236 int nmaps, xfs_buf_flags_t flags, struct xfs_buf **bpp);
237int xfs_buf_read_map(struct xfs_buftarg *target, struct xfs_buf_map *map,
238 int nmaps, xfs_buf_flags_t flags, struct xfs_buf **bpp,
239 const struct xfs_buf_ops *ops, xfs_failaddr_t fa);
240void xfs_buf_readahead_map(struct xfs_buftarg *target,
241 struct xfs_buf_map *map, int nmaps,
242 const struct xfs_buf_ops *ops);
243
244static inline int
245xfs_buf_incore(
246 struct xfs_buftarg *target,
247 xfs_daddr_t blkno,
248 size_t numblks,
249 xfs_buf_flags_t flags,
250 struct xfs_buf **bpp)
251{
252 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
253
254 return xfs_buf_get_map(target, &map, 1, XBF_INCORE | flags, bpp);
255}
256
257static inline int
258xfs_buf_get(
259 struct xfs_buftarg *target,
260 xfs_daddr_t blkno,
261 size_t numblks,
262 struct xfs_buf **bpp)
263{
264 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
265
266 return xfs_buf_get_map(target, &map, 1, 0, bpp);
267}
268
269static inline int
270xfs_buf_read(
271 struct xfs_buftarg *target,
272 xfs_daddr_t blkno,
273 size_t numblks,
274 xfs_buf_flags_t flags,
275 struct xfs_buf **bpp,
276 const struct xfs_buf_ops *ops)
277{
278 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
279
280 return xfs_buf_read_map(target, &map, 1, flags, bpp, ops,
281 __builtin_return_address(0));
282}
283
284static inline void
285xfs_buf_readahead(
286 struct xfs_buftarg *target,
287 xfs_daddr_t blkno,
288 size_t numblks,
289 const struct xfs_buf_ops *ops)
290{
291 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
292 return xfs_buf_readahead_map(target, &map, 1, ops);
293}
294
295int xfs_buf_get_uncached(struct xfs_buftarg *target, size_t numblks,
296 xfs_buf_flags_t flags, struct xfs_buf **bpp);
297int xfs_buf_read_uncached(struct xfs_buftarg *target, xfs_daddr_t daddr,
298 size_t numblks, xfs_buf_flags_t flags, struct xfs_buf **bpp,
299 const struct xfs_buf_ops *ops);
300int _xfs_buf_read(struct xfs_buf *bp, xfs_buf_flags_t flags);
301void xfs_buf_hold(struct xfs_buf *bp);
302
303/* Releasing Buffers */
304extern void xfs_buf_rele(struct xfs_buf *);
305
306/* Locking and Unlocking Buffers */
307extern int xfs_buf_trylock(struct xfs_buf *);
308extern void xfs_buf_lock(struct xfs_buf *);
309extern void xfs_buf_unlock(struct xfs_buf *);
310#define xfs_buf_islocked(bp) \
311 ((bp)->b_sema.count <= 0)
312
313static inline void xfs_buf_relse(struct xfs_buf *bp)
314{
315 xfs_buf_unlock(bp);
316 xfs_buf_rele(bp);
317}
318
319/* Buffer Read and Write Routines */
320extern int xfs_bwrite(struct xfs_buf *bp);
321
322extern void __xfs_buf_ioerror(struct xfs_buf *bp, int error,
323 xfs_failaddr_t failaddr);
324#define xfs_buf_ioerror(bp, err) __xfs_buf_ioerror((bp), (err), __this_address)
325extern void xfs_buf_ioerror_alert(struct xfs_buf *bp, xfs_failaddr_t fa);
326void xfs_buf_ioend_fail(struct xfs_buf *);
327void xfs_buf_zero(struct xfs_buf *bp, size_t boff, size_t bsize);
328void __xfs_buf_mark_corrupt(struct xfs_buf *bp, xfs_failaddr_t fa);
329#define xfs_buf_mark_corrupt(bp) __xfs_buf_mark_corrupt((bp), __this_address)
330
331/* Buffer Utility Routines */
332extern void *xfs_buf_offset(struct xfs_buf *, size_t);
333extern void xfs_buf_stale(struct xfs_buf *bp);
334
335/* Delayed Write Buffer Routines */
336extern void xfs_buf_delwri_cancel(struct list_head *);
337extern bool xfs_buf_delwri_queue(struct xfs_buf *, struct list_head *);
338void xfs_buf_delwri_queue_here(struct xfs_buf *bp, struct list_head *bl);
339extern int xfs_buf_delwri_submit(struct list_head *);
340extern int xfs_buf_delwri_submit_nowait(struct list_head *);
341extern int xfs_buf_delwri_pushbuf(struct xfs_buf *, struct list_head *);
342
343static inline xfs_daddr_t xfs_buf_daddr(struct xfs_buf *bp)
344{
345 return bp->b_maps[0].bm_bn;
346}
347
348void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref);
349
350/*
351 * If the buffer is already on the LRU, do nothing. Otherwise set the buffer
352 * up with a reference count of 0 so it will be tossed from the cache when
353 * released.
354 */
355static inline void xfs_buf_oneshot(struct xfs_buf *bp)
356{
357 if (!list_empty(&bp->b_lru) || atomic_read(&bp->b_lru_ref) > 1)
358 return;
359 atomic_set(&bp->b_lru_ref, 0);
360}
361
362static inline int xfs_buf_ispinned(struct xfs_buf *bp)
363{
364 return atomic_read(&bp->b_pin_count);
365}
366
367static inline int
368xfs_buf_verify_cksum(struct xfs_buf *bp, unsigned long cksum_offset)
369{
370 return xfs_verify_cksum(bp->b_addr, BBTOB(bp->b_length),
371 cksum_offset);
372}
373
374static inline void
375xfs_buf_update_cksum(struct xfs_buf *bp, unsigned long cksum_offset)
376{
377 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length),
378 cksum_offset);
379}
380
381/*
382 * Handling of buftargs.
383 */
384struct xfs_buftarg *xfs_alloc_buftarg(struct xfs_mount *mp,
385 struct file *bdev_file);
386extern void xfs_free_buftarg(struct xfs_buftarg *);
387extern void xfs_buftarg_wait(struct xfs_buftarg *);
388extern void xfs_buftarg_drain(struct xfs_buftarg *);
389extern int xfs_setsize_buftarg(struct xfs_buftarg *, unsigned int);
390
391#define xfs_getsize_buftarg(buftarg) block_size((buftarg)->bt_bdev)
392#define xfs_readonly_buftarg(buftarg) bdev_read_only((buftarg)->bt_bdev)
393
394int xfs_buf_reverify(struct xfs_buf *bp, const struct xfs_buf_ops *ops);
395bool xfs_verify_magic(struct xfs_buf *bp, __be32 dmagic);
396bool xfs_verify_magic16(struct xfs_buf *bp, __be16 dmagic);
397
398/* for xfs_buf_mem.c only: */
399int xfs_init_buftarg(struct xfs_buftarg *btp, size_t logical_sectorsize,
400 const char *descr);
401void xfs_destroy_buftarg(struct xfs_buftarg *btp);
402
403#endif /* __XFS_BUF_H__ */