Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
  20 *
  21 * This program is free software; you can redistribute it and/or modify
  22 * it under the terms of the version 2 of the GNU General Public License
  23 * as published by the Free Software Foundation
  24 *
  25 * This program is distributed in the hope that it will be useful,
  26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28 * GNU General Public License for more details.
  29 *
  30 * You should have received a copy of the GNU General Public License
  31 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  32 *
  33 *
  34 *
  35 * Your platform definition file should specify something like:
  36 *
  37 * static struct mcp251x_platform_data mcp251x_info = {
  38 *         .oscillator_frequency = 8000000,
  39 * };
  40 *
  41 * static struct spi_board_info spi_board_info[] = {
  42 *         {
  43 *                 .modalias = "mcp2510",
  44 *			// or "mcp2515" depending on your controller
  45 *                 .platform_data = &mcp251x_info,
  46 *                 .irq = IRQ_EINT13,
  47 *                 .max_speed_hz = 2*1000*1000,
  48 *                 .chip_select = 2,
  49 *         },
  50 * };
  51 *
  52 * Please see mcp251x.h for a description of the fields in
  53 * struct mcp251x_platform_data.
  54 *
  55 */
  56
 
  57#include <linux/can/core.h>
  58#include <linux/can/dev.h>
  59#include <linux/can/led.h>
  60#include <linux/can/platform/mcp251x.h>
  61#include <linux/clk.h>
  62#include <linux/completion.h>
  63#include <linux/delay.h>
  64#include <linux/device.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/freezer.h>
 
  67#include <linux/interrupt.h>
  68#include <linux/io.h>
 
  69#include <linux/kernel.h>
  70#include <linux/module.h>
  71#include <linux/netdevice.h>
  72#include <linux/of.h>
  73#include <linux/of_device.h>
  74#include <linux/platform_device.h>
 
 
  75#include <linux/slab.h>
  76#include <linux/spi/spi.h>
  77#include <linux/uaccess.h>
  78#include <linux/regulator/consumer.h>
  79
  80/* SPI interface instruction set */
  81#define INSTRUCTION_WRITE	0x02
  82#define INSTRUCTION_READ	0x03
  83#define INSTRUCTION_BIT_MODIFY	0x05
  84#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
  85#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
  86#define INSTRUCTION_RESET	0xC0
  87#define RTS_TXB0		0x01
  88#define RTS_TXB1		0x02
  89#define RTS_TXB2		0x04
  90#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
  91
  92
  93/* MPC251x registers */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94#define CANSTAT	      0x0e
  95#define CANCTRL	      0x0f
  96#  define CANCTRL_REQOP_MASK	    0xe0
  97#  define CANCTRL_REQOP_CONF	    0x80
  98#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  99#  define CANCTRL_REQOP_LOOPBACK    0x40
 100#  define CANCTRL_REQOP_SLEEP	    0x20
 101#  define CANCTRL_REQOP_NORMAL	    0x00
 102#  define CANCTRL_OSM		    0x08
 103#  define CANCTRL_ABAT		    0x10
 104#define TEC	      0x1c
 105#define REC	      0x1d
 106#define CNF1	      0x2a
 107#  define CNF1_SJW_SHIFT   6
 108#define CNF2	      0x29
 109#  define CNF2_BTLMODE	   0x80
 110#  define CNF2_SAM         0x40
 111#  define CNF2_PS1_SHIFT   3
 112#define CNF3	      0x28
 113#  define CNF3_SOF	   0x08
 114#  define CNF3_WAKFIL	   0x04
 115#  define CNF3_PHSEG2_MASK 0x07
 116#define CANINTE	      0x2b
 117#  define CANINTE_MERRE 0x80
 118#  define CANINTE_WAKIE 0x40
 119#  define CANINTE_ERRIE 0x20
 120#  define CANINTE_TX2IE 0x10
 121#  define CANINTE_TX1IE 0x08
 122#  define CANINTE_TX0IE 0x04
 123#  define CANINTE_RX1IE 0x02
 124#  define CANINTE_RX0IE 0x01
 125#define CANINTF	      0x2c
 126#  define CANINTF_MERRF 0x80
 127#  define CANINTF_WAKIF 0x40
 128#  define CANINTF_ERRIF 0x20
 129#  define CANINTF_TX2IF 0x10
 130#  define CANINTF_TX1IF 0x08
 131#  define CANINTF_TX0IF 0x04
 132#  define CANINTF_RX1IF 0x02
 133#  define CANINTF_RX0IF 0x01
 134#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
 135#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
 136#  define CANINTF_ERR (CANINTF_ERRIF)
 137#define EFLG	      0x2d
 138#  define EFLG_EWARN	0x01
 139#  define EFLG_RXWAR	0x02
 140#  define EFLG_TXWAR	0x04
 141#  define EFLG_RXEP	0x08
 142#  define EFLG_TXEP	0x10
 143#  define EFLG_TXBO	0x20
 144#  define EFLG_RX0OVR	0x40
 145#  define EFLG_RX1OVR	0x80
 146#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 147#  define TXBCTRL_ABTF	0x40
 148#  define TXBCTRL_MLOA	0x20
 149#  define TXBCTRL_TXERR 0x10
 150#  define TXBCTRL_TXREQ 0x08
 151#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 152#  define SIDH_SHIFT    3
 153#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 154#  define SIDL_SID_MASK    7
 155#  define SIDL_SID_SHIFT   5
 156#  define SIDL_EXIDE_SHIFT 3
 157#  define SIDL_EID_SHIFT   16
 158#  define SIDL_EID_MASK    3
 159#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 160#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 161#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 162#  define DLC_RTR_SHIFT    6
 163#define TXBCTRL_OFF 0
 164#define TXBSIDH_OFF 1
 165#define TXBSIDL_OFF 2
 166#define TXBEID8_OFF 3
 167#define TXBEID0_OFF 4
 168#define TXBDLC_OFF  5
 169#define TXBDAT_OFF  6
 170#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 171#  define RXBCTRL_BUKT	0x04
 172#  define RXBCTRL_RXM0	0x20
 173#  define RXBCTRL_RXM1	0x40
 174#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 175#  define RXBSIDH_SHIFT 3
 176#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 177#  define RXBSIDL_IDE   0x08
 178#  define RXBSIDL_SRR   0x10
 179#  define RXBSIDL_EID   3
 180#  define RXBSIDL_SHIFT 5
 181#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 182#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 183#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 184#  define RXBDLC_LEN_MASK  0x0f
 185#  define RXBDLC_RTR       0x40
 186#define RXBCTRL_OFF 0
 187#define RXBSIDH_OFF 1
 188#define RXBSIDL_OFF 2
 189#define RXBEID8_OFF 3
 190#define RXBEID0_OFF 4
 191#define RXBDLC_OFF  5
 192#define RXBDAT_OFF  6
 193#define RXFSID(n) ((n < 3) ? 0 : 4)
 194#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
 195#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
 196#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
 197#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
 198#define RXMSIDH(n) ((n) * 4 + 0x20)
 199#define RXMSIDL(n) ((n) * 4 + 0x21)
 200#define RXMEID8(n) ((n) * 4 + 0x22)
 201#define RXMEID0(n) ((n) * 4 + 0x23)
 202
 203#define GET_BYTE(val, byte)			\
 204	(((val) >> ((byte) * 8)) & 0xff)
 205#define SET_BYTE(val, byte)			\
 206	(((val) & 0xff) << ((byte) * 8))
 207
 208/*
 209 * Buffer size required for the largest SPI transfer (i.e., reading a
 210 * frame)
 211 */
 212#define CAN_FRAME_MAX_DATA_LEN	8
 213#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
 214#define CAN_FRAME_MAX_BITS	128
 215
 216#define TX_ECHO_SKB_MAX	1
 217
 218#define MCP251X_OST_DELAY_MS	(5)
 219
 220#define DEVICE_NAME "mcp251x"
 221
 222static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
 223module_param(mcp251x_enable_dma, int, 0444);
 224MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
 225
 226static const struct can_bittiming_const mcp251x_bittiming_const = {
 227	.name = DEVICE_NAME,
 228	.tseg1_min = 3,
 229	.tseg1_max = 16,
 230	.tseg2_min = 2,
 231	.tseg2_max = 8,
 232	.sjw_max = 4,
 233	.brp_min = 1,
 234	.brp_max = 64,
 235	.brp_inc = 1,
 236};
 237
 238enum mcp251x_model {
 239	CAN_MCP251X_MCP2510	= 0x2510,
 240	CAN_MCP251X_MCP2515	= 0x2515,
 
 241};
 242
 243struct mcp251x_priv {
 244	struct can_priv	   can;
 245	struct net_device *net;
 246	struct spi_device *spi;
 247	enum mcp251x_model model;
 248
 249	struct mutex mcp_lock; /* SPI device lock */
 250
 251	u8 *spi_tx_buf;
 252	u8 *spi_rx_buf;
 253	dma_addr_t spi_tx_dma;
 254	dma_addr_t spi_rx_dma;
 255
 256	struct sk_buff *tx_skb;
 257	int tx_len;
 258
 259	struct workqueue_struct *wq;
 260	struct work_struct tx_work;
 261	struct work_struct restart_work;
 262
 263	int force_quit;
 264	int after_suspend;
 265#define AFTER_SUSPEND_UP 1
 266#define AFTER_SUSPEND_DOWN 2
 267#define AFTER_SUSPEND_POWER 4
 268#define AFTER_SUSPEND_RESTART 8
 269	int restart_tx;
 
 
 270	struct regulator *power;
 271	struct regulator *transceiver;
 272	struct clk *clk;
 
 
 
 
 273};
 274
 275#define MCP251X_IS(_model) \
 276static inline int mcp251x_is_##_model(struct spi_device *spi) \
 277{ \
 278	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
 279	return priv->model == CAN_MCP251X_MCP##_model; \
 280}
 281
 282MCP251X_IS(2510);
 283MCP251X_IS(2515);
 284
 285static void mcp251x_clean(struct net_device *net)
 286{
 287	struct mcp251x_priv *priv = netdev_priv(net);
 288
 289	if (priv->tx_skb || priv->tx_len)
 290		net->stats.tx_errors++;
 291	if (priv->tx_skb)
 292		dev_kfree_skb(priv->tx_skb);
 293	if (priv->tx_len)
 294		can_free_echo_skb(priv->net, 0);
 295	priv->tx_skb = NULL;
 296	priv->tx_len = 0;
 297}
 298
 299/*
 300 * Note about handling of error return of mcp251x_spi_trans: accessing
 301 * registers via SPI is not really different conceptually than using
 302 * normal I/O assembler instructions, although it's much more
 303 * complicated from a practical POV. So it's not advisable to always
 304 * check the return value of this function. Imagine that every
 305 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 306 * error();", it would be a great mess (well there are some situation
 307 * when exception handling C++ like could be useful after all). So we
 308 * just check that transfers are OK at the beginning of our
 309 * conversation with the chip and to avoid doing really nasty things
 310 * (like injecting bogus packets in the network stack).
 311 */
 312static int mcp251x_spi_trans(struct spi_device *spi, int len)
 313{
 314	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 315	struct spi_transfer t = {
 316		.tx_buf = priv->spi_tx_buf,
 317		.rx_buf = priv->spi_rx_buf,
 318		.len = len,
 319		.cs_change = 0,
 320	};
 321	struct spi_message m;
 322	int ret;
 323
 324	spi_message_init(&m);
 325
 326	if (mcp251x_enable_dma) {
 327		t.tx_dma = priv->spi_tx_dma;
 328		t.rx_dma = priv->spi_rx_dma;
 329		m.is_dma_mapped = 1;
 330	}
 331
 332	spi_message_add_tail(&t, &m);
 333
 334	ret = spi_sync(spi, &m);
 335	if (ret)
 336		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 337	return ret;
 338}
 339
 340static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
 
 
 
 
 
 
 
 
 
 
 
 
 341{
 342	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 343	u8 val = 0;
 344
 345	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 346	priv->spi_tx_buf[1] = reg;
 347
 348	mcp251x_spi_trans(spi, 3);
 349	val = priv->spi_rx_buf[2];
 
 
 
 
 350
 351	return val;
 352}
 353
 354static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
 355		uint8_t *v1, uint8_t *v2)
 356{
 357	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 358
 359	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 360	priv->spi_tx_buf[1] = reg;
 361
 362	mcp251x_spi_trans(spi, 4);
 
 
 
 
 
 
 
 363
 364	*v1 = priv->spi_rx_buf[2];
 365	*v2 = priv->spi_rx_buf[3];
 
 366}
 367
 368static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
 369{
 370	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 371
 372	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 373	priv->spi_tx_buf[1] = reg;
 374	priv->spi_tx_buf[2] = val;
 375
 376	mcp251x_spi_trans(spi, 3);
 
 
 
 
 
 
 
 
 
 
 
 
 377}
 378
 379static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 380			       u8 mask, uint8_t val)
 381{
 382	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 383
 384	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 385	priv->spi_tx_buf[1] = reg;
 386	priv->spi_tx_buf[2] = mask;
 387	priv->spi_tx_buf[3] = val;
 388
 389	mcp251x_spi_trans(spi, 4);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390}
 391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 393				int len, int tx_buf_idx)
 394{
 395	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 396
 397	if (mcp251x_is_2510(spi)) {
 398		int i;
 399
 400		for (i = 1; i < TXBDAT_OFF + len; i++)
 401			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 402					  buf[i]);
 403	} else {
 404		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 405		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
 406	}
 407}
 408
 409static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 410			  int tx_buf_idx)
 411{
 412	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 413	u32 sid, eid, exide, rtr;
 414	u8 buf[SPI_TRANSFER_BUF_LEN];
 415
 416	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 417	if (exide)
 418		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 419	else
 420		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 421	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 422	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 423
 424	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 425	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 426	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 427		(exide << SIDL_EXIDE_SHIFT) |
 428		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 429	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 430	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 431	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
 432	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
 433	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
 434
 435	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 436	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 437	mcp251x_spi_trans(priv->spi, 1);
 438}
 439
 440static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 441				int buf_idx)
 442{
 443	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 444
 445	if (mcp251x_is_2510(spi)) {
 446		int i, len;
 447
 448		for (i = 1; i < RXBDAT_OFF; i++)
 449			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 450
 451		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 452		for (; i < (RXBDAT_OFF + len); i++)
 453			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 454	} else {
 455		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 456		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 457		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 
 
 
 
 
 
 
 
 458	}
 459}
 460
 461static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 462{
 463	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 464	struct sk_buff *skb;
 465	struct can_frame *frame;
 466	u8 buf[SPI_TRANSFER_BUF_LEN];
 467
 468	skb = alloc_can_skb(priv->net, &frame);
 469	if (!skb) {
 470		dev_err(&spi->dev, "cannot allocate RX skb\n");
 471		priv->net->stats.rx_dropped++;
 472		return;
 473	}
 474
 475	mcp251x_hw_rx_frame(spi, buf, buf_idx);
 476	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 477		/* Extended ID format */
 478		frame->can_id = CAN_EFF_FLAG;
 479		frame->can_id |=
 480			/* Extended ID part */
 481			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 482			SET_BYTE(buf[RXBEID8_OFF], 1) |
 483			SET_BYTE(buf[RXBEID0_OFF], 0) |
 484			/* Standard ID part */
 485			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 486			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 487		/* Remote transmission request */
 488		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 489			frame->can_id |= CAN_RTR_FLAG;
 490	} else {
 491		/* Standard ID format */
 492		frame->can_id =
 493			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 494			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 495		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 496			frame->can_id |= CAN_RTR_FLAG;
 497	}
 498	/* Data length */
 499	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 500	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
 
 501
 
 
 502	priv->net->stats.rx_packets++;
 503	priv->net->stats.rx_bytes += frame->can_dlc;
 504
 505	can_led_event(priv->net, CAN_LED_EVENT_RX);
 506
 507	netif_rx_ni(skb);
 508}
 509
 510static void mcp251x_hw_sleep(struct spi_device *spi)
 511{
 512	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 513}
 514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 516					   struct net_device *net)
 517{
 518	struct mcp251x_priv *priv = netdev_priv(net);
 519	struct spi_device *spi = priv->spi;
 520
 521	if (priv->tx_skb || priv->tx_len) {
 522		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 523		return NETDEV_TX_BUSY;
 524	}
 525
 526	if (can_dropped_invalid_skb(net, skb))
 527		return NETDEV_TX_OK;
 528
 529	netif_stop_queue(net);
 530	priv->tx_skb = skb;
 531	queue_work(priv->wq, &priv->tx_work);
 532
 533	return NETDEV_TX_OK;
 534}
 535
 536static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 537{
 538	struct mcp251x_priv *priv = netdev_priv(net);
 539
 540	switch (mode) {
 541	case CAN_MODE_START:
 542		mcp251x_clean(net);
 543		/* We have to delay work since SPI I/O may sleep */
 544		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 545		priv->restart_tx = 1;
 546		if (priv->can.restart_ms == 0)
 547			priv->after_suspend = AFTER_SUSPEND_RESTART;
 548		queue_work(priv->wq, &priv->restart_work);
 549		break;
 550	default:
 551		return -EOPNOTSUPP;
 552	}
 553
 554	return 0;
 555}
 556
 557static int mcp251x_set_normal_mode(struct spi_device *spi)
 558{
 559	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 560	unsigned long timeout;
 
 561
 562	/* Enable interrupts */
 563	mcp251x_write_reg(spi, CANINTE,
 564			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 565			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 566
 567	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 568		/* Put device into loopback mode */
 569		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 570	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 571		/* Put device into listen-only mode */
 572		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 573	} else {
 574		/* Put device into normal mode */
 575		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 576
 577		/* Wait for the device to enter normal mode */
 578		timeout = jiffies + HZ;
 579		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
 580			schedule();
 581			if (time_after(jiffies, timeout)) {
 582				dev_err(&spi->dev, "MCP251x didn't"
 583					" enter in normal mode\n");
 584				return -EBUSY;
 585			}
 586		}
 587	}
 588	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 589	return 0;
 590}
 591
 592static int mcp251x_do_set_bittiming(struct net_device *net)
 593{
 594	struct mcp251x_priv *priv = netdev_priv(net);
 595	struct can_bittiming *bt = &priv->can.bittiming;
 596	struct spi_device *spi = priv->spi;
 597
 598	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 599			  (bt->brp - 1));
 600	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 601			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 602			   CNF2_SAM : 0) |
 603			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 604			  (bt->prop_seg - 1));
 605	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 606			   (bt->phase_seg2 - 1));
 607	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 608		mcp251x_read_reg(spi, CNF1),
 609		mcp251x_read_reg(spi, CNF2),
 610		mcp251x_read_reg(spi, CNF3));
 611
 612	return 0;
 613}
 614
 615static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
 616{
 617	mcp251x_do_set_bittiming(net);
 618
 619	mcp251x_write_reg(spi, RXBCTRL(0),
 620			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 621	mcp251x_write_reg(spi, RXBCTRL(1),
 622			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
 623	return 0;
 624}
 625
 626static int mcp251x_hw_reset(struct spi_device *spi)
 627{
 628	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 629	u8 reg;
 630	int ret;
 631
 632	/* Wait for oscillator startup timer after power up */
 633	mdelay(MCP251X_OST_DELAY_MS);
 634
 635	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 636	ret = mcp251x_spi_trans(spi, 1);
 637	if (ret)
 638		return ret;
 639
 640	/* Wait for oscillator startup timer after reset */
 641	mdelay(MCP251X_OST_DELAY_MS);
 642	
 643	reg = mcp251x_read_reg(spi, CANSTAT);
 644	if ((reg & CANCTRL_REQOP_MASK) != CANCTRL_REQOP_CONF)
 645		return -ENODEV;
 646
 647	return 0;
 
 
 
 
 
 
 648}
 649
 650static int mcp251x_hw_probe(struct spi_device *spi)
 651{
 652	u8 ctrl;
 653	int ret;
 654
 655	ret = mcp251x_hw_reset(spi);
 656	if (ret)
 657		return ret;
 658
 659	ctrl = mcp251x_read_reg(spi, CANCTRL);
 660
 661	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
 662
 663	/* Check for power up default value */
 664	if ((ctrl & 0x17) != 0x07)
 665		return -ENODEV;
 666
 667	return 0;
 668}
 669
 670static int mcp251x_power_enable(struct regulator *reg, int enable)
 671{
 672	if (IS_ERR_OR_NULL(reg))
 673		return 0;
 674
 675	if (enable)
 676		return regulator_enable(reg);
 677	else
 678		return regulator_disable(reg);
 679}
 680
 681static void mcp251x_open_clean(struct net_device *net)
 682{
 683	struct mcp251x_priv *priv = netdev_priv(net);
 684	struct spi_device *spi = priv->spi;
 685
 686	free_irq(spi->irq, priv);
 687	mcp251x_hw_sleep(spi);
 688	mcp251x_power_enable(priv->transceiver, 0);
 689	close_candev(net);
 690}
 691
 692static int mcp251x_stop(struct net_device *net)
 693{
 694	struct mcp251x_priv *priv = netdev_priv(net);
 695	struct spi_device *spi = priv->spi;
 696
 697	close_candev(net);
 698
 699	priv->force_quit = 1;
 700	free_irq(spi->irq, priv);
 701	destroy_workqueue(priv->wq);
 702	priv->wq = NULL;
 703
 704	mutex_lock(&priv->mcp_lock);
 705
 706	/* Disable and clear pending interrupts */
 707	mcp251x_write_reg(spi, CANINTE, 0x00);
 708	mcp251x_write_reg(spi, CANINTF, 0x00);
 709
 710	mcp251x_write_reg(spi, TXBCTRL(0), 0);
 711	mcp251x_clean(net);
 712
 713	mcp251x_hw_sleep(spi);
 714
 715	mcp251x_power_enable(priv->transceiver, 0);
 716
 717	priv->can.state = CAN_STATE_STOPPED;
 718
 719	mutex_unlock(&priv->mcp_lock);
 720
 721	can_led_event(net, CAN_LED_EVENT_STOP);
 722
 723	return 0;
 724}
 725
 726static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 727{
 728	struct sk_buff *skb;
 729	struct can_frame *frame;
 730
 731	skb = alloc_can_err_skb(net, &frame);
 732	if (skb) {
 733		frame->can_id |= can_id;
 734		frame->data[1] = data1;
 735		netif_rx_ni(skb);
 736	} else {
 737		netdev_err(net, "cannot allocate error skb\n");
 738	}
 739}
 740
 741static void mcp251x_tx_work_handler(struct work_struct *ws)
 742{
 743	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 744						 tx_work);
 745	struct spi_device *spi = priv->spi;
 746	struct net_device *net = priv->net;
 747	struct can_frame *frame;
 748
 749	mutex_lock(&priv->mcp_lock);
 750	if (priv->tx_skb) {
 751		if (priv->can.state == CAN_STATE_BUS_OFF) {
 752			mcp251x_clean(net);
 753		} else {
 754			frame = (struct can_frame *)priv->tx_skb->data;
 755
 756			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
 757				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
 758			mcp251x_hw_tx(spi, frame, 0);
 759			priv->tx_len = 1 + frame->can_dlc;
 760			can_put_echo_skb(priv->tx_skb, net, 0);
 761			priv->tx_skb = NULL;
 762		}
 763	}
 764	mutex_unlock(&priv->mcp_lock);
 765}
 766
 767static void mcp251x_restart_work_handler(struct work_struct *ws)
 768{
 769	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 770						 restart_work);
 771	struct spi_device *spi = priv->spi;
 772	struct net_device *net = priv->net;
 773
 774	mutex_lock(&priv->mcp_lock);
 775	if (priv->after_suspend) {
 776		mcp251x_hw_reset(spi);
 777		mcp251x_setup(net, spi);
 
 
 
 
 
 
 778		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
 779			mcp251x_set_normal_mode(spi);
 780		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
 781			netif_device_attach(net);
 782			mcp251x_clean(net);
 783			mcp251x_set_normal_mode(spi);
 784			netif_wake_queue(net);
 785		} else {
 786			mcp251x_hw_sleep(spi);
 787		}
 788		priv->after_suspend = 0;
 789		priv->force_quit = 0;
 790	}
 791
 792	if (priv->restart_tx) {
 793		priv->restart_tx = 0;
 794		mcp251x_write_reg(spi, TXBCTRL(0), 0);
 795		mcp251x_clean(net);
 796		netif_wake_queue(net);
 797		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
 798	}
 799	mutex_unlock(&priv->mcp_lock);
 800}
 801
 802static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
 803{
 804	struct mcp251x_priv *priv = dev_id;
 805	struct spi_device *spi = priv->spi;
 806	struct net_device *net = priv->net;
 807
 808	mutex_lock(&priv->mcp_lock);
 809	while (!priv->force_quit) {
 810		enum can_state new_state;
 811		u8 intf, eflag;
 812		u8 clear_intf = 0;
 813		int can_id = 0, data1 = 0;
 814
 815		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
 816
 817		/* mask out flags we don't care about */
 818		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
 819
 820		/* receive buffer 0 */
 821		if (intf & CANINTF_RX0IF) {
 822			mcp251x_hw_rx(spi, 0);
 823			/*
 824			 * Free one buffer ASAP
 825			 * (The MCP2515 does this automatically.)
 826			 */
 827			if (mcp251x_is_2510(spi))
 828				mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
 
 
 
 
 
 
 
 
 
 
 
 
 
 829		}
 830
 831		/* receive buffer 1 */
 832		if (intf & CANINTF_RX1IF) {
 833			mcp251x_hw_rx(spi, 1);
 834			/* the MCP2515 does this automatically */
 835			if (mcp251x_is_2510(spi))
 836				clear_intf |= CANINTF_RX1IF;
 837		}
 838
 
 
 
 839		/* any error or tx interrupt we need to clear? */
 840		if (intf & (CANINTF_ERR | CANINTF_TX))
 841			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
 842		if (clear_intf)
 843			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
 844
 845		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
 846			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
 847
 848		/* Update can state */
 849		if (eflag & EFLG_TXBO) {
 850			new_state = CAN_STATE_BUS_OFF;
 851			can_id |= CAN_ERR_BUSOFF;
 852		} else if (eflag & EFLG_TXEP) {
 853			new_state = CAN_STATE_ERROR_PASSIVE;
 854			can_id |= CAN_ERR_CRTL;
 855			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
 856		} else if (eflag & EFLG_RXEP) {
 857			new_state = CAN_STATE_ERROR_PASSIVE;
 858			can_id |= CAN_ERR_CRTL;
 859			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
 860		} else if (eflag & EFLG_TXWAR) {
 861			new_state = CAN_STATE_ERROR_WARNING;
 862			can_id |= CAN_ERR_CRTL;
 863			data1 |= CAN_ERR_CRTL_TX_WARNING;
 864		} else if (eflag & EFLG_RXWAR) {
 865			new_state = CAN_STATE_ERROR_WARNING;
 866			can_id |= CAN_ERR_CRTL;
 867			data1 |= CAN_ERR_CRTL_RX_WARNING;
 868		} else {
 869			new_state = CAN_STATE_ERROR_ACTIVE;
 870		}
 871
 872		/* Update can state statistics */
 873		switch (priv->can.state) {
 874		case CAN_STATE_ERROR_ACTIVE:
 875			if (new_state >= CAN_STATE_ERROR_WARNING &&
 876			    new_state <= CAN_STATE_BUS_OFF)
 877				priv->can.can_stats.error_warning++;
 878		case CAN_STATE_ERROR_WARNING:	/* fallthrough */
 
 879			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
 880			    new_state <= CAN_STATE_BUS_OFF)
 881				priv->can.can_stats.error_passive++;
 882			break;
 883		default:
 884			break;
 885		}
 886		priv->can.state = new_state;
 887
 888		if (intf & CANINTF_ERRIF) {
 889			/* Handle overflow counters */
 890			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
 891				if (eflag & EFLG_RX0OVR) {
 892					net->stats.rx_over_errors++;
 893					net->stats.rx_errors++;
 894				}
 895				if (eflag & EFLG_RX1OVR) {
 896					net->stats.rx_over_errors++;
 897					net->stats.rx_errors++;
 898				}
 899				can_id |= CAN_ERR_CRTL;
 900				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
 901			}
 902			mcp251x_error_skb(net, can_id, data1);
 903		}
 904
 905		if (priv->can.state == CAN_STATE_BUS_OFF) {
 906			if (priv->can.restart_ms == 0) {
 907				priv->force_quit = 1;
 908				priv->can.can_stats.bus_off++;
 909				can_bus_off(net);
 910				mcp251x_hw_sleep(spi);
 911				break;
 912			}
 913		}
 914
 915		if (intf == 0)
 916			break;
 917
 918		if (intf & CANINTF_TX) {
 919			net->stats.tx_packets++;
 920			net->stats.tx_bytes += priv->tx_len - 1;
 921			can_led_event(net, CAN_LED_EVENT_TX);
 922			if (priv->tx_len) {
 923				can_get_echo_skb(net, 0);
 924				priv->tx_len = 0;
 925			}
 926			netif_wake_queue(net);
 927		}
 928
 929	}
 930	mutex_unlock(&priv->mcp_lock);
 931	return IRQ_HANDLED;
 932}
 933
 934static int mcp251x_open(struct net_device *net)
 935{
 936	struct mcp251x_priv *priv = netdev_priv(net);
 937	struct spi_device *spi = priv->spi;
 938	unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
 939	int ret;
 940
 941	ret = open_candev(net);
 942	if (ret) {
 943		dev_err(&spi->dev, "unable to set initial baudrate!\n");
 944		return ret;
 945	}
 946
 947	mutex_lock(&priv->mcp_lock);
 948	mcp251x_power_enable(priv->transceiver, 1);
 949
 950	priv->force_quit = 0;
 951	priv->tx_skb = NULL;
 952	priv->tx_len = 0;
 
 
 
 953
 954	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
 955				   flags | IRQF_ONESHOT, DEVICE_NAME, priv);
 
 956	if (ret) {
 957		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
 958		mcp251x_power_enable(priv->transceiver, 0);
 959		close_candev(net);
 960		goto open_unlock;
 961	}
 962
 963	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
 964				   0);
 965	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
 966	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
 967
 968	ret = mcp251x_hw_reset(spi);
 969	if (ret) {
 970		mcp251x_open_clean(net);
 971		goto open_unlock;
 972	}
 973	ret = mcp251x_setup(net, spi);
 974	if (ret) {
 975		mcp251x_open_clean(net);
 976		goto open_unlock;
 977	}
 978	ret = mcp251x_set_normal_mode(spi);
 979	if (ret) {
 980		mcp251x_open_clean(net);
 981		goto open_unlock;
 982	}
 983
 984	can_led_event(net, CAN_LED_EVENT_OPEN);
 985
 986	netif_wake_queue(net);
 
 
 
 987
 988open_unlock:
 
 
 
 
 
 989	mutex_unlock(&priv->mcp_lock);
 990	return ret;
 991}
 992
 993static const struct net_device_ops mcp251x_netdev_ops = {
 994	.ndo_open = mcp251x_open,
 995	.ndo_stop = mcp251x_stop,
 996	.ndo_start_xmit = mcp251x_hard_start_xmit,
 997	.ndo_change_mtu = can_change_mtu,
 998};
 999
 
 
 
 
1000static const struct of_device_id mcp251x_of_match[] = {
1001	{
1002		.compatible	= "microchip,mcp2510",
1003		.data		= (void *)CAN_MCP251X_MCP2510,
1004	},
1005	{
1006		.compatible	= "microchip,mcp2515",
1007		.data		= (void *)CAN_MCP251X_MCP2515,
1008	},
 
 
 
 
1009	{ }
1010};
1011MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1012
1013static const struct spi_device_id mcp251x_id_table[] = {
1014	{
1015		.name		= "mcp2510",
1016		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1017	},
1018	{
1019		.name		= "mcp2515",
1020		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1021	},
 
 
 
 
1022	{ }
1023};
1024MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1025
1026static int mcp251x_can_probe(struct spi_device *spi)
1027{
1028	const struct of_device_id *of_id = of_match_device(mcp251x_of_match,
1029							   &spi->dev);
1030	struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
1031	struct net_device *net;
1032	struct mcp251x_priv *priv;
1033	struct clk *clk;
1034	int freq, ret;
 
1035
1036	clk = devm_clk_get(&spi->dev, NULL);
1037	if (IS_ERR(clk)) {
1038		if (pdata)
1039			freq = pdata->oscillator_frequency;
1040		else
1041			return PTR_ERR(clk);
1042	} else {
1043		freq = clk_get_rate(clk);
1044	}
1045
1046	/* Sanity check */
1047	if (freq < 1000000 || freq > 25000000)
1048		return -ERANGE;
1049
1050	/* Allocate can/net device */
1051	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1052	if (!net)
1053		return -ENOMEM;
1054
1055	if (!IS_ERR(clk)) {
1056		ret = clk_prepare_enable(clk);
1057		if (ret)
1058			goto out_free;
1059	}
1060
1061	net->netdev_ops = &mcp251x_netdev_ops;
 
1062	net->flags |= IFF_ECHO;
1063
1064	priv = netdev_priv(net);
1065	priv->can.bittiming_const = &mcp251x_bittiming_const;
1066	priv->can.do_set_mode = mcp251x_do_set_mode;
1067	priv->can.clock.freq = freq / 2;
1068	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1069		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1070	if (of_id)
1071		priv->model = (enum mcp251x_model)of_id->data;
1072	else
1073		priv->model = spi_get_device_id(spi)->driver_data;
1074	priv->net = net;
1075	priv->clk = clk;
1076
1077	spi_set_drvdata(spi, priv);
1078
1079	/* Configure the SPI bus */
1080	spi->bits_per_word = 8;
1081	if (mcp251x_is_2510(spi))
1082		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1083	else
1084		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1085	ret = spi_setup(spi);
1086	if (ret)
1087		goto out_clk;
1088
1089	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1090	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1091	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1092	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1093		ret = -EPROBE_DEFER;
1094		goto out_clk;
1095	}
1096
1097	ret = mcp251x_power_enable(priv->power, 1);
1098	if (ret)
1099		goto out_clk;
1100
 
 
 
 
 
 
 
 
 
1101	priv->spi = spi;
1102	mutex_init(&priv->mcp_lock);
1103
1104	/* If requested, allocate DMA buffers */
1105	if (mcp251x_enable_dma) {
1106		spi->dev.coherent_dma_mask = ~0;
1107
1108		/*
1109		 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1110		 * that much and share it between Tx and Rx DMA buffers.
1111		 */
1112		priv->spi_tx_buf = dmam_alloc_coherent(&spi->dev,
1113						       PAGE_SIZE,
1114						       &priv->spi_tx_dma,
1115						       GFP_DMA);
1116
1117		if (priv->spi_tx_buf) {
1118			priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
1119			priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1120							(PAGE_SIZE / 2));
1121		} else {
1122			/* Fall back to non-DMA */
1123			mcp251x_enable_dma = 0;
1124		}
1125	}
1126
1127	/* Allocate non-DMA buffers */
1128	if (!mcp251x_enable_dma) {
1129		priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1130						GFP_KERNEL);
1131		if (!priv->spi_tx_buf) {
1132			ret = -ENOMEM;
1133			goto error_probe;
1134		}
1135		priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1136						GFP_KERNEL);
1137		if (!priv->spi_rx_buf) {
1138			ret = -ENOMEM;
1139			goto error_probe;
1140		}
1141	}
1142
1143	SET_NETDEV_DEV(net, &spi->dev);
1144
1145	/* Here is OK to not lock the MCP, no one knows about it yet */
1146	ret = mcp251x_hw_probe(spi);
1147	if (ret) {
1148		if (ret == -ENODEV)
1149			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n", priv->model);
 
1150		goto error_probe;
1151	}
1152
1153	mcp251x_hw_sleep(spi);
1154
1155	ret = register_candev(net);
1156	if (ret)
1157		goto error_probe;
1158
1159	devm_can_led_init(net);
 
 
1160
1161	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1162	return 0;
1163
 
 
 
1164error_probe:
 
 
1165	mcp251x_power_enable(priv->power, 0);
1166
1167out_clk:
1168	if (!IS_ERR(clk))
1169		clk_disable_unprepare(clk);
1170
1171out_free:
1172	free_candev(net);
1173
1174	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1175	return ret;
1176}
1177
1178static int mcp251x_can_remove(struct spi_device *spi)
1179{
1180	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1181	struct net_device *net = priv->net;
1182
1183	unregister_candev(net);
1184
1185	mcp251x_power_enable(priv->power, 0);
1186
1187	if (!IS_ERR(priv->clk))
1188		clk_disable_unprepare(priv->clk);
 
 
1189
1190	free_candev(net);
1191
1192	return 0;
1193}
1194
1195static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1196{
1197	struct spi_device *spi = to_spi_device(dev);
1198	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1199	struct net_device *net = priv->net;
1200
1201	priv->force_quit = 1;
1202	disable_irq(spi->irq);
1203	/*
1204	 * Note: at this point neither IST nor workqueues are running.
1205	 * open/stop cannot be called anyway so locking is not needed
1206	 */
1207	if (netif_running(net)) {
1208		netif_device_detach(net);
1209
1210		mcp251x_hw_sleep(spi);
1211		mcp251x_power_enable(priv->transceiver, 0);
1212		priv->after_suspend = AFTER_SUSPEND_UP;
1213	} else {
1214		priv->after_suspend = AFTER_SUSPEND_DOWN;
1215	}
1216
1217	if (!IS_ERR_OR_NULL(priv->power)) {
1218		regulator_disable(priv->power);
1219		priv->after_suspend |= AFTER_SUSPEND_POWER;
1220	}
1221
1222	return 0;
1223}
1224
1225static int __maybe_unused mcp251x_can_resume(struct device *dev)
1226{
1227	struct spi_device *spi = to_spi_device(dev);
1228	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1229
1230	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1231		mcp251x_power_enable(priv->power, 1);
1232
1233	if (priv->after_suspend & AFTER_SUSPEND_UP) {
1234		mcp251x_power_enable(priv->transceiver, 1);
 
 
1235		queue_work(priv->wq, &priv->restart_work);
1236	} else {
1237		priv->after_suspend = 0;
1238	}
1239
1240	priv->force_quit = 0;
1241	enable_irq(spi->irq);
1242	return 0;
1243}
1244
1245static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1246	mcp251x_can_resume);
1247
1248static struct spi_driver mcp251x_can_driver = {
1249	.driver = {
1250		.name = DEVICE_NAME,
1251		.of_match_table = mcp251x_of_match,
1252		.pm = &mcp251x_can_pm_ops,
1253	},
1254	.id_table = mcp251x_id_table,
1255	.probe = mcp251x_can_probe,
1256	.remove = mcp251x_can_remove,
1257};
1258module_spi_driver(mcp251x_can_driver);
1259
1260MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1261	      "Christian Pellegrin <chripell@evolware.org>");
1262MODULE_DESCRIPTION("Microchip 251x CAN driver");
1263MODULE_LICENSE("GPL v2");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20 */
  21
  22#include <linux/bitfield.h>
  23#include <linux/can/core.h>
  24#include <linux/can/dev.h>
 
 
  25#include <linux/clk.h>
  26#include <linux/completion.h>
  27#include <linux/delay.h>
  28#include <linux/device.h>
  29#include <linux/ethtool.h>
  30#include <linux/freezer.h>
  31#include <linux/gpio/driver.h>
  32#include <linux/interrupt.h>
  33#include <linux/io.h>
  34#include <linux/iopoll.h>
  35#include <linux/kernel.h>
  36#include <linux/module.h>
  37#include <linux/netdevice.h>
 
 
  38#include <linux/platform_device.h>
  39#include <linux/property.h>
  40#include <linux/regulator/consumer.h>
  41#include <linux/slab.h>
  42#include <linux/spi/spi.h>
  43#include <linux/uaccess.h>
 
  44
  45/* SPI interface instruction set */
  46#define INSTRUCTION_WRITE	0x02
  47#define INSTRUCTION_READ	0x03
  48#define INSTRUCTION_BIT_MODIFY	0x05
  49#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
  50#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
  51#define INSTRUCTION_RESET	0xC0
  52#define RTS_TXB0		0x01
  53#define RTS_TXB1		0x02
  54#define RTS_TXB2		0x04
  55#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
  56
 
  57/* MPC251x registers */
  58#define BFPCTRL			0x0c
  59#  define BFPCTRL_B0BFM		BIT(0)
  60#  define BFPCTRL_B1BFM		BIT(1)
  61#  define BFPCTRL_BFM(n)	(BFPCTRL_B0BFM << (n))
  62#  define BFPCTRL_BFM_MASK	GENMASK(1, 0)
  63#  define BFPCTRL_B0BFE		BIT(2)
  64#  define BFPCTRL_B1BFE		BIT(3)
  65#  define BFPCTRL_BFE(n)	(BFPCTRL_B0BFE << (n))
  66#  define BFPCTRL_BFE_MASK	GENMASK(3, 2)
  67#  define BFPCTRL_B0BFS		BIT(4)
  68#  define BFPCTRL_B1BFS		BIT(5)
  69#  define BFPCTRL_BFS(n)	(BFPCTRL_B0BFS << (n))
  70#  define BFPCTRL_BFS_MASK	GENMASK(5, 4)
  71#define TXRTSCTRL		0x0d
  72#  define TXRTSCTRL_B0RTSM	BIT(0)
  73#  define TXRTSCTRL_B1RTSM	BIT(1)
  74#  define TXRTSCTRL_B2RTSM	BIT(2)
  75#  define TXRTSCTRL_RTSM(n)	(TXRTSCTRL_B0RTSM << (n))
  76#  define TXRTSCTRL_RTSM_MASK	GENMASK(2, 0)
  77#  define TXRTSCTRL_B0RTS	BIT(3)
  78#  define TXRTSCTRL_B1RTS	BIT(4)
  79#  define TXRTSCTRL_B2RTS	BIT(5)
  80#  define TXRTSCTRL_RTS(n)	(TXRTSCTRL_B0RTS << (n))
  81#  define TXRTSCTRL_RTS_MASK	GENMASK(5, 3)
  82#define CANSTAT	      0x0e
  83#define CANCTRL	      0x0f
  84#  define CANCTRL_REQOP_MASK	    0xe0
  85#  define CANCTRL_REQOP_CONF	    0x80
  86#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  87#  define CANCTRL_REQOP_LOOPBACK    0x40
  88#  define CANCTRL_REQOP_SLEEP	    0x20
  89#  define CANCTRL_REQOP_NORMAL	    0x00
  90#  define CANCTRL_OSM		    0x08
  91#  define CANCTRL_ABAT		    0x10
  92#define TEC	      0x1c
  93#define REC	      0x1d
  94#define CNF1	      0x2a
  95#  define CNF1_SJW_SHIFT   6
  96#define CNF2	      0x29
  97#  define CNF2_BTLMODE	   0x80
  98#  define CNF2_SAM         0x40
  99#  define CNF2_PS1_SHIFT   3
 100#define CNF3	      0x28
 101#  define CNF3_SOF	   0x08
 102#  define CNF3_WAKFIL	   0x04
 103#  define CNF3_PHSEG2_MASK 0x07
 104#define CANINTE	      0x2b
 105#  define CANINTE_MERRE 0x80
 106#  define CANINTE_WAKIE 0x40
 107#  define CANINTE_ERRIE 0x20
 108#  define CANINTE_TX2IE 0x10
 109#  define CANINTE_TX1IE 0x08
 110#  define CANINTE_TX0IE 0x04
 111#  define CANINTE_RX1IE 0x02
 112#  define CANINTE_RX0IE 0x01
 113#define CANINTF	      0x2c
 114#  define CANINTF_MERRF 0x80
 115#  define CANINTF_WAKIF 0x40
 116#  define CANINTF_ERRIF 0x20
 117#  define CANINTF_TX2IF 0x10
 118#  define CANINTF_TX1IF 0x08
 119#  define CANINTF_TX0IF 0x04
 120#  define CANINTF_RX1IF 0x02
 121#  define CANINTF_RX0IF 0x01
 122#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
 123#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
 124#  define CANINTF_ERR (CANINTF_ERRIF)
 125#define EFLG	      0x2d
 126#  define EFLG_EWARN	0x01
 127#  define EFLG_RXWAR	0x02
 128#  define EFLG_TXWAR	0x04
 129#  define EFLG_RXEP	0x08
 130#  define EFLG_TXEP	0x10
 131#  define EFLG_TXBO	0x20
 132#  define EFLG_RX0OVR	0x40
 133#  define EFLG_RX1OVR	0x80
 134#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 135#  define TXBCTRL_ABTF	0x40
 136#  define TXBCTRL_MLOA	0x20
 137#  define TXBCTRL_TXERR 0x10
 138#  define TXBCTRL_TXREQ 0x08
 139#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 140#  define SIDH_SHIFT    3
 141#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 142#  define SIDL_SID_MASK    7
 143#  define SIDL_SID_SHIFT   5
 144#  define SIDL_EXIDE_SHIFT 3
 145#  define SIDL_EID_SHIFT   16
 146#  define SIDL_EID_MASK    3
 147#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 148#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 149#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 150#  define DLC_RTR_SHIFT    6
 151#define TXBCTRL_OFF 0
 152#define TXBSIDH_OFF 1
 153#define TXBSIDL_OFF 2
 154#define TXBEID8_OFF 3
 155#define TXBEID0_OFF 4
 156#define TXBDLC_OFF  5
 157#define TXBDAT_OFF  6
 158#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 159#  define RXBCTRL_BUKT	0x04
 160#  define RXBCTRL_RXM0	0x20
 161#  define RXBCTRL_RXM1	0x40
 162#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 163#  define RXBSIDH_SHIFT 3
 164#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 165#  define RXBSIDL_IDE   0x08
 166#  define RXBSIDL_SRR   0x10
 167#  define RXBSIDL_EID   3
 168#  define RXBSIDL_SHIFT 5
 169#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 170#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 171#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 172#  define RXBDLC_LEN_MASK  0x0f
 173#  define RXBDLC_RTR       0x40
 174#define RXBCTRL_OFF 0
 175#define RXBSIDH_OFF 1
 176#define RXBSIDL_OFF 2
 177#define RXBEID8_OFF 3
 178#define RXBEID0_OFF 4
 179#define RXBDLC_OFF  5
 180#define RXBDAT_OFF  6
 181#define RXFSID(n) ((n < 3) ? 0 : 4)
 182#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
 183#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
 184#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
 185#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
 186#define RXMSIDH(n) ((n) * 4 + 0x20)
 187#define RXMSIDL(n) ((n) * 4 + 0x21)
 188#define RXMEID8(n) ((n) * 4 + 0x22)
 189#define RXMEID0(n) ((n) * 4 + 0x23)
 190
 191#define GET_BYTE(val, byte)			\
 192	(((val) >> ((byte) * 8)) & 0xff)
 193#define SET_BYTE(val, byte)			\
 194	(((val) & 0xff) << ((byte) * 8))
 195
 196/* Buffer size required for the largest SPI transfer (i.e., reading a
 
 197 * frame)
 198 */
 199#define CAN_FRAME_MAX_DATA_LEN	8
 200#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
 201#define CAN_FRAME_MAX_BITS	128
 202
 203#define TX_ECHO_SKB_MAX	1
 204
 205#define MCP251X_OST_DELAY_MS	(5)
 206
 207#define DEVICE_NAME "mcp251x"
 208
 
 
 
 
 209static const struct can_bittiming_const mcp251x_bittiming_const = {
 210	.name = DEVICE_NAME,
 211	.tseg1_min = 3,
 212	.tseg1_max = 16,
 213	.tseg2_min = 2,
 214	.tseg2_max = 8,
 215	.sjw_max = 4,
 216	.brp_min = 1,
 217	.brp_max = 64,
 218	.brp_inc = 1,
 219};
 220
 221enum mcp251x_model {
 222	CAN_MCP251X_MCP2510	= 0x2510,
 223	CAN_MCP251X_MCP2515	= 0x2515,
 224	CAN_MCP251X_MCP25625	= 0x25625,
 225};
 226
 227struct mcp251x_priv {
 228	struct can_priv	   can;
 229	struct net_device *net;
 230	struct spi_device *spi;
 231	enum mcp251x_model model;
 232
 233	struct mutex mcp_lock; /* SPI device lock */
 234
 235	u8 *spi_tx_buf;
 236	u8 *spi_rx_buf;
 
 
 237
 238	struct sk_buff *tx_skb;
 
 239
 240	struct workqueue_struct *wq;
 241	struct work_struct tx_work;
 242	struct work_struct restart_work;
 243
 244	int force_quit;
 245	int after_suspend;
 246#define AFTER_SUSPEND_UP 1
 247#define AFTER_SUSPEND_DOWN 2
 248#define AFTER_SUSPEND_POWER 4
 249#define AFTER_SUSPEND_RESTART 8
 250	int restart_tx;
 251	bool tx_busy;
 252
 253	struct regulator *power;
 254	struct regulator *transceiver;
 255	struct clk *clk;
 256#ifdef CONFIG_GPIOLIB
 257	struct gpio_chip gpio;
 258	u8 reg_bfpctrl;
 259#endif
 260};
 261
 262#define MCP251X_IS(_model) \
 263static inline int mcp251x_is_##_model(struct spi_device *spi) \
 264{ \
 265	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
 266	return priv->model == CAN_MCP251X_MCP##_model; \
 267}
 268
 269MCP251X_IS(2510);
 
 270
 271static void mcp251x_clean(struct net_device *net)
 272{
 273	struct mcp251x_priv *priv = netdev_priv(net);
 274
 275	if (priv->tx_skb || priv->tx_busy)
 276		net->stats.tx_errors++;
 277	dev_kfree_skb(priv->tx_skb);
 278	if (priv->tx_busy)
 279		can_free_echo_skb(priv->net, 0, NULL);
 
 280	priv->tx_skb = NULL;
 281	priv->tx_busy = false;
 282}
 283
 284/* Note about handling of error return of mcp251x_spi_trans: accessing
 
 285 * registers via SPI is not really different conceptually than using
 286 * normal I/O assembler instructions, although it's much more
 287 * complicated from a practical POV. So it's not advisable to always
 288 * check the return value of this function. Imagine that every
 289 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 290 * error();", it would be a great mess (well there are some situation
 291 * when exception handling C++ like could be useful after all). So we
 292 * just check that transfers are OK at the beginning of our
 293 * conversation with the chip and to avoid doing really nasty things
 294 * (like injecting bogus packets in the network stack).
 295 */
 296static int mcp251x_spi_trans(struct spi_device *spi, int len)
 297{
 298	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 299	struct spi_transfer t = {
 300		.tx_buf = priv->spi_tx_buf,
 301		.rx_buf = priv->spi_rx_buf,
 302		.len = len,
 303		.cs_change = 0,
 304	};
 305	struct spi_message m;
 306	int ret;
 307
 308	spi_message_init(&m);
 
 
 
 
 
 
 
 309	spi_message_add_tail(&t, &m);
 310
 311	ret = spi_sync(spi, &m);
 312	if (ret)
 313		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 314	return ret;
 315}
 316
 317static int mcp251x_spi_write(struct spi_device *spi, int len)
 318{
 319	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 320	int ret;
 321
 322	ret = spi_write(spi, priv->spi_tx_buf, len);
 323	if (ret)
 324		dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
 325
 326	return ret;
 327}
 328
 329static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
 330{
 331	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 332	u8 val = 0;
 333
 334	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 335	priv->spi_tx_buf[1] = reg;
 336
 337	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 338		spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
 339	} else {
 340		mcp251x_spi_trans(spi, 3);
 341		val = priv->spi_rx_buf[2];
 342	}
 343
 344	return val;
 345}
 346
 347static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
 
 348{
 349	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 350
 351	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 352	priv->spi_tx_buf[1] = reg;
 353
 354	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 355		u8 val[2] = { 0 };
 356
 357		spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
 358		*v1 = val[0];
 359		*v2 = val[1];
 360	} else {
 361		mcp251x_spi_trans(spi, 4);
 362
 363		*v1 = priv->spi_rx_buf[2];
 364		*v2 = priv->spi_rx_buf[3];
 365	}
 366}
 367
 368static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
 369{
 370	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 371
 372	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 373	priv->spi_tx_buf[1] = reg;
 374	priv->spi_tx_buf[2] = val;
 375
 376	mcp251x_spi_write(spi, 3);
 377}
 378
 379static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
 380{
 381	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 382
 383	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 384	priv->spi_tx_buf[1] = reg;
 385	priv->spi_tx_buf[2] = v1;
 386	priv->spi_tx_buf[3] = v2;
 387
 388	mcp251x_spi_write(spi, 4);
 389}
 390
 391static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 392			       u8 mask, u8 val)
 393{
 394	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 395
 396	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 397	priv->spi_tx_buf[1] = reg;
 398	priv->spi_tx_buf[2] = mask;
 399	priv->spi_tx_buf[3] = val;
 400
 401	mcp251x_spi_write(spi, 4);
 402}
 403
 404static u8 mcp251x_read_stat(struct spi_device *spi)
 405{
 406	return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
 407}
 408
 409#define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
 410	readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
 411			   delay_us, timeout_us)
 412
 413#ifdef CONFIG_GPIOLIB
 414enum {
 415	MCP251X_GPIO_TX0RTS = 0,		/* inputs */
 416	MCP251X_GPIO_TX1RTS,
 417	MCP251X_GPIO_TX2RTS,
 418	MCP251X_GPIO_RX0BF,			/* outputs */
 419	MCP251X_GPIO_RX1BF,
 420};
 421
 422#define MCP251X_GPIO_INPUT_MASK \
 423	GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
 424#define MCP251X_GPIO_OUTPUT_MASK \
 425	GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
 426
 427static const char * const mcp251x_gpio_names[] = {
 428	[MCP251X_GPIO_TX0RTS] = "TX0RTS",	/* inputs */
 429	[MCP251X_GPIO_TX1RTS] = "TX1RTS",
 430	[MCP251X_GPIO_TX2RTS] = "TX2RTS",
 431	[MCP251X_GPIO_RX0BF] = "RX0BF",		/* outputs */
 432	[MCP251X_GPIO_RX1BF] = "RX1BF",
 433};
 434
 435static inline bool mcp251x_gpio_is_input(unsigned int offset)
 436{
 437	return offset <= MCP251X_GPIO_TX2RTS;
 438}
 439
 440static int mcp251x_gpio_request(struct gpio_chip *chip,
 441				unsigned int offset)
 442{
 443	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 444	u8 val;
 445
 446	/* nothing to be done for inputs */
 447	if (mcp251x_gpio_is_input(offset))
 448		return 0;
 449
 450	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
 451
 452	mutex_lock(&priv->mcp_lock);
 453	mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
 454	mutex_unlock(&priv->mcp_lock);
 455
 456	priv->reg_bfpctrl |= val;
 457
 458	return 0;
 459}
 460
 461static void mcp251x_gpio_free(struct gpio_chip *chip,
 462			      unsigned int offset)
 463{
 464	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 465	u8 val;
 466
 467	/* nothing to be done for inputs */
 468	if (mcp251x_gpio_is_input(offset))
 469		return;
 470
 471	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
 472
 473	mutex_lock(&priv->mcp_lock);
 474	mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
 475	mutex_unlock(&priv->mcp_lock);
 476
 477	priv->reg_bfpctrl &= ~val;
 478}
 479
 480static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
 481				      unsigned int offset)
 482{
 483	if (mcp251x_gpio_is_input(offset))
 484		return GPIO_LINE_DIRECTION_IN;
 485
 486	return GPIO_LINE_DIRECTION_OUT;
 487}
 488
 489static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
 490{
 491	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 492	u8 reg, mask, val;
 493
 494	if (mcp251x_gpio_is_input(offset)) {
 495		reg = TXRTSCTRL;
 496		mask = TXRTSCTRL_RTS(offset);
 497	} else {
 498		reg = BFPCTRL;
 499		mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
 500	}
 501
 502	mutex_lock(&priv->mcp_lock);
 503	val = mcp251x_read_reg(priv->spi, reg);
 504	mutex_unlock(&priv->mcp_lock);
 505
 506	return !!(val & mask);
 507}
 508
 509static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
 510				     unsigned long *maskp, unsigned long *bitsp)
 511{
 512	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 513	unsigned long bits = 0;
 514	u8 val;
 515
 516	mutex_lock(&priv->mcp_lock);
 517	if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
 518		val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
 519		val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
 520		bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
 521	}
 522	if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
 523		val = mcp251x_read_reg(priv->spi, BFPCTRL);
 524		val = FIELD_GET(BFPCTRL_BFS_MASK, val);
 525		bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
 526	}
 527	mutex_unlock(&priv->mcp_lock);
 528
 529	bitsp[0] = bits;
 530	return 0;
 531}
 532
 533static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
 534			     int value)
 535{
 536	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 537	u8 mask, val;
 538
 539	mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
 540	val = value ? mask : 0;
 541
 542	mutex_lock(&priv->mcp_lock);
 543	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
 544	mutex_unlock(&priv->mcp_lock);
 545
 546	priv->reg_bfpctrl &= ~mask;
 547	priv->reg_bfpctrl |= val;
 548}
 549
 550static void
 551mcp251x_gpio_set_multiple(struct gpio_chip *chip,
 552			  unsigned long *maskp, unsigned long *bitsp)
 553{
 554	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 555	u8 mask, val;
 556
 557	mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
 558	mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
 559
 560	val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
 561	val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
 562
 563	if (!mask)
 564		return;
 565
 566	mutex_lock(&priv->mcp_lock);
 567	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
 568	mutex_unlock(&priv->mcp_lock);
 569
 570	priv->reg_bfpctrl &= ~mask;
 571	priv->reg_bfpctrl |= val;
 572}
 573
 574static void mcp251x_gpio_restore(struct spi_device *spi)
 575{
 576	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 577
 578	mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
 579}
 580
 581static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
 582{
 583	struct gpio_chip *gpio = &priv->gpio;
 584
 585	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
 586		return 0;
 587
 588	/* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
 589	gpio->label = priv->spi->modalias;
 590	gpio->parent = &priv->spi->dev;
 591	gpio->owner = THIS_MODULE;
 592	gpio->request = mcp251x_gpio_request;
 593	gpio->free = mcp251x_gpio_free;
 594	gpio->get_direction = mcp251x_gpio_get_direction;
 595	gpio->get = mcp251x_gpio_get;
 596	gpio->get_multiple = mcp251x_gpio_get_multiple;
 597	gpio->set = mcp251x_gpio_set;
 598	gpio->set_multiple = mcp251x_gpio_set_multiple;
 599	gpio->base = -1;
 600	gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
 601	gpio->names = mcp251x_gpio_names;
 602	gpio->can_sleep = true;
 603
 604	return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
 605}
 606#else
 607static inline void mcp251x_gpio_restore(struct spi_device *spi)
 608{
 609}
 610
 611static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
 612{
 613	return 0;
 614}
 615#endif
 616
 617static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 618				int len, int tx_buf_idx)
 619{
 620	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 621
 622	if (mcp251x_is_2510(spi)) {
 623		int i;
 624
 625		for (i = 1; i < TXBDAT_OFF + len; i++)
 626			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 627					  buf[i]);
 628	} else {
 629		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 630		mcp251x_spi_write(spi, TXBDAT_OFF + len);
 631	}
 632}
 633
 634static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 635			  int tx_buf_idx)
 636{
 637	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 638	u32 sid, eid, exide, rtr;
 639	u8 buf[SPI_TRANSFER_BUF_LEN];
 640
 641	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 642	if (exide)
 643		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 644	else
 645		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 646	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 647	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 648
 649	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 650	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 651	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 652		(exide << SIDL_EXIDE_SHIFT) |
 653		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 654	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 655	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 656	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
 657	memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
 658	mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
 659
 660	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 661	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 662	mcp251x_spi_write(priv->spi, 1);
 663}
 664
 665static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 666				int buf_idx)
 667{
 668	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 669
 670	if (mcp251x_is_2510(spi)) {
 671		int i, len;
 672
 673		for (i = 1; i < RXBDAT_OFF; i++)
 674			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 675
 676		len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 677		for (; i < (RXBDAT_OFF + len); i++)
 678			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 679	} else {
 680		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 681		if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 682			spi_write_then_read(spi, priv->spi_tx_buf, 1,
 683					    priv->spi_rx_buf,
 684					    SPI_TRANSFER_BUF_LEN);
 685			memcpy(buf + 1, priv->spi_rx_buf,
 686			       SPI_TRANSFER_BUF_LEN - 1);
 687		} else {
 688			mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 689			memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 690		}
 691	}
 692}
 693
 694static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 695{
 696	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 697	struct sk_buff *skb;
 698	struct can_frame *frame;
 699	u8 buf[SPI_TRANSFER_BUF_LEN];
 700
 701	skb = alloc_can_skb(priv->net, &frame);
 702	if (!skb) {
 703		dev_err(&spi->dev, "cannot allocate RX skb\n");
 704		priv->net->stats.rx_dropped++;
 705		return;
 706	}
 707
 708	mcp251x_hw_rx_frame(spi, buf, buf_idx);
 709	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 710		/* Extended ID format */
 711		frame->can_id = CAN_EFF_FLAG;
 712		frame->can_id |=
 713			/* Extended ID part */
 714			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 715			SET_BYTE(buf[RXBEID8_OFF], 1) |
 716			SET_BYTE(buf[RXBEID0_OFF], 0) |
 717			/* Standard ID part */
 718			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 719			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 720		/* Remote transmission request */
 721		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 722			frame->can_id |= CAN_RTR_FLAG;
 723	} else {
 724		/* Standard ID format */
 725		frame->can_id =
 726			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 727			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 728		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 729			frame->can_id |= CAN_RTR_FLAG;
 730	}
 731	/* Data length */
 732	frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 733	if (!(frame->can_id & CAN_RTR_FLAG)) {
 734		memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
 735
 736		priv->net->stats.rx_bytes += frame->len;
 737	}
 738	priv->net->stats.rx_packets++;
 
 
 
 739
 740	netif_rx(skb);
 741}
 742
 743static void mcp251x_hw_sleep(struct spi_device *spi)
 744{
 745	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 746}
 747
 748/* May only be called when device is sleeping! */
 749static int mcp251x_hw_wake(struct spi_device *spi)
 750{
 751	u8 value;
 752	int ret;
 753
 754	/* Force wakeup interrupt to wake device, but don't execute IST */
 755	disable_irq_nosync(spi->irq);
 756	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
 757
 758	/* Wait for oscillator startup timer after wake up */
 759	mdelay(MCP251X_OST_DELAY_MS);
 760
 761	/* Put device into config mode */
 762	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
 763
 764	/* Wait for the device to enter config mode */
 765	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
 766					     MCP251X_OST_DELAY_MS * 1000,
 767					     USEC_PER_SEC);
 768	if (ret) {
 769		dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
 770		return ret;
 771	}
 772
 773	/* Disable and clear pending interrupts */
 774	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 775	enable_irq(spi->irq);
 776
 777	return 0;
 778}
 779
 780static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 781					   struct net_device *net)
 782{
 783	struct mcp251x_priv *priv = netdev_priv(net);
 784	struct spi_device *spi = priv->spi;
 785
 786	if (priv->tx_skb || priv->tx_busy) {
 787		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 788		return NETDEV_TX_BUSY;
 789	}
 790
 791	if (can_dev_dropped_skb(net, skb))
 792		return NETDEV_TX_OK;
 793
 794	netif_stop_queue(net);
 795	priv->tx_skb = skb;
 796	queue_work(priv->wq, &priv->tx_work);
 797
 798	return NETDEV_TX_OK;
 799}
 800
 801static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 802{
 803	struct mcp251x_priv *priv = netdev_priv(net);
 804
 805	switch (mode) {
 806	case CAN_MODE_START:
 807		mcp251x_clean(net);
 808		/* We have to delay work since SPI I/O may sleep */
 809		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 810		priv->restart_tx = 1;
 811		if (priv->can.restart_ms == 0)
 812			priv->after_suspend = AFTER_SUSPEND_RESTART;
 813		queue_work(priv->wq, &priv->restart_work);
 814		break;
 815	default:
 816		return -EOPNOTSUPP;
 817	}
 818
 819	return 0;
 820}
 821
 822static int mcp251x_set_normal_mode(struct spi_device *spi)
 823{
 824	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 825	u8 value;
 826	int ret;
 827
 828	/* Enable interrupts */
 829	mcp251x_write_reg(spi, CANINTE,
 830			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 831			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 832
 833	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 834		/* Put device into loopback mode */
 835		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 836	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 837		/* Put device into listen-only mode */
 838		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 839	} else {
 840		/* Put device into normal mode */
 841		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 842
 843		/* Wait for the device to enter normal mode */
 844		ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
 845						     MCP251X_OST_DELAY_MS * 1000,
 846						     USEC_PER_SEC);
 847		if (ret) {
 848			dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
 849			return ret;
 
 
 850		}
 851	}
 852	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 853	return 0;
 854}
 855
 856static int mcp251x_do_set_bittiming(struct net_device *net)
 857{
 858	struct mcp251x_priv *priv = netdev_priv(net);
 859	struct can_bittiming *bt = &priv->can.bittiming;
 860	struct spi_device *spi = priv->spi;
 861
 862	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 863			  (bt->brp - 1));
 864	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 865			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 866			   CNF2_SAM : 0) |
 867			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 868			  (bt->prop_seg - 1));
 869	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 870			   (bt->phase_seg2 - 1));
 871	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 872		mcp251x_read_reg(spi, CNF1),
 873		mcp251x_read_reg(spi, CNF2),
 874		mcp251x_read_reg(spi, CNF3));
 875
 876	return 0;
 877}
 878
 879static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
 880{
 881	mcp251x_do_set_bittiming(net);
 882
 883	mcp251x_write_reg(spi, RXBCTRL(0),
 884			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 885	mcp251x_write_reg(spi, RXBCTRL(1),
 886			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
 887	return 0;
 888}
 889
 890static int mcp251x_hw_reset(struct spi_device *spi)
 891{
 892	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 893	u8 value;
 894	int ret;
 895
 896	/* Wait for oscillator startup timer after power up */
 897	mdelay(MCP251X_OST_DELAY_MS);
 898
 899	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 900	ret = mcp251x_spi_write(spi, 1);
 901	if (ret)
 902		return ret;
 903
 904	/* Wait for oscillator startup timer after reset */
 905	mdelay(MCP251X_OST_DELAY_MS);
 
 
 
 
 906
 907	/* Wait for reset to finish */
 908	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
 909					     MCP251X_OST_DELAY_MS * 1000,
 910					     USEC_PER_SEC);
 911	if (ret)
 912		dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
 913	return ret;
 914}
 915
 916static int mcp251x_hw_probe(struct spi_device *spi)
 917{
 918	u8 ctrl;
 919	int ret;
 920
 921	ret = mcp251x_hw_reset(spi);
 922	if (ret)
 923		return ret;
 924
 925	ctrl = mcp251x_read_reg(spi, CANCTRL);
 926
 927	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
 928
 929	/* Check for power up default value */
 930	if ((ctrl & 0x17) != 0x07)
 931		return -ENODEV;
 932
 933	return 0;
 934}
 935
 936static int mcp251x_power_enable(struct regulator *reg, int enable)
 937{
 938	if (IS_ERR_OR_NULL(reg))
 939		return 0;
 940
 941	if (enable)
 942		return regulator_enable(reg);
 943	else
 944		return regulator_disable(reg);
 945}
 946
 
 
 
 
 
 
 
 
 
 
 
 947static int mcp251x_stop(struct net_device *net)
 948{
 949	struct mcp251x_priv *priv = netdev_priv(net);
 950	struct spi_device *spi = priv->spi;
 951
 952	close_candev(net);
 953
 954	priv->force_quit = 1;
 955	free_irq(spi->irq, priv);
 
 
 956
 957	mutex_lock(&priv->mcp_lock);
 958
 959	/* Disable and clear pending interrupts */
 960	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 
 961
 962	mcp251x_write_reg(spi, TXBCTRL(0), 0);
 963	mcp251x_clean(net);
 964
 965	mcp251x_hw_sleep(spi);
 966
 967	mcp251x_power_enable(priv->transceiver, 0);
 968
 969	priv->can.state = CAN_STATE_STOPPED;
 970
 971	mutex_unlock(&priv->mcp_lock);
 972
 
 
 973	return 0;
 974}
 975
 976static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 977{
 978	struct sk_buff *skb;
 979	struct can_frame *frame;
 980
 981	skb = alloc_can_err_skb(net, &frame);
 982	if (skb) {
 983		frame->can_id |= can_id;
 984		frame->data[1] = data1;
 985		netif_rx(skb);
 986	} else {
 987		netdev_err(net, "cannot allocate error skb\n");
 988	}
 989}
 990
 991static void mcp251x_tx_work_handler(struct work_struct *ws)
 992{
 993	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 994						 tx_work);
 995	struct spi_device *spi = priv->spi;
 996	struct net_device *net = priv->net;
 997	struct can_frame *frame;
 998
 999	mutex_lock(&priv->mcp_lock);
1000	if (priv->tx_skb) {
1001		if (priv->can.state == CAN_STATE_BUS_OFF) {
1002			mcp251x_clean(net);
1003		} else {
1004			frame = (struct can_frame *)priv->tx_skb->data;
1005
1006			if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1007				frame->len = CAN_FRAME_MAX_DATA_LEN;
1008			mcp251x_hw_tx(spi, frame, 0);
1009			priv->tx_busy = true;
1010			can_put_echo_skb(priv->tx_skb, net, 0, 0);
1011			priv->tx_skb = NULL;
1012		}
1013	}
1014	mutex_unlock(&priv->mcp_lock);
1015}
1016
1017static void mcp251x_restart_work_handler(struct work_struct *ws)
1018{
1019	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1020						 restart_work);
1021	struct spi_device *spi = priv->spi;
1022	struct net_device *net = priv->net;
1023
1024	mutex_lock(&priv->mcp_lock);
1025	if (priv->after_suspend) {
1026		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1027			mcp251x_hw_reset(spi);
1028			mcp251x_setup(net, spi);
1029			mcp251x_gpio_restore(spi);
1030		} else {
1031			mcp251x_hw_wake(spi);
1032		}
1033		priv->force_quit = 0;
1034		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1035			mcp251x_set_normal_mode(spi);
1036		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1037			netif_device_attach(net);
1038			mcp251x_clean(net);
1039			mcp251x_set_normal_mode(spi);
1040			netif_wake_queue(net);
1041		} else {
1042			mcp251x_hw_sleep(spi);
1043		}
1044		priv->after_suspend = 0;
 
1045	}
1046
1047	if (priv->restart_tx) {
1048		priv->restart_tx = 0;
1049		mcp251x_write_reg(spi, TXBCTRL(0), 0);
1050		mcp251x_clean(net);
1051		netif_wake_queue(net);
1052		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1053	}
1054	mutex_unlock(&priv->mcp_lock);
1055}
1056
1057static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1058{
1059	struct mcp251x_priv *priv = dev_id;
1060	struct spi_device *spi = priv->spi;
1061	struct net_device *net = priv->net;
1062
1063	mutex_lock(&priv->mcp_lock);
1064	while (!priv->force_quit) {
1065		enum can_state new_state;
1066		u8 intf, eflag;
1067		u8 clear_intf = 0;
1068		int can_id = 0, data1 = 0;
1069
1070		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1071
 
 
 
1072		/* receive buffer 0 */
1073		if (intf & CANINTF_RX0IF) {
1074			mcp251x_hw_rx(spi, 0);
1075			/* Free one buffer ASAP
1076			 * (The MCP2515/25625 does this automatically.)
 
1077			 */
1078			if (mcp251x_is_2510(spi))
1079				mcp251x_write_bits(spi, CANINTF,
1080						   CANINTF_RX0IF, 0x00);
1081
1082			/* check if buffer 1 is already known to be full, no need to re-read */
1083			if (!(intf & CANINTF_RX1IF)) {
1084				u8 intf1, eflag1;
1085
1086				/* intf needs to be read again to avoid a race condition */
1087				mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1088
1089				/* combine flags from both operations for error handling */
1090				intf |= intf1;
1091				eflag |= eflag1;
1092			}
1093		}
1094
1095		/* receive buffer 1 */
1096		if (intf & CANINTF_RX1IF) {
1097			mcp251x_hw_rx(spi, 1);
1098			/* The MCP2515/25625 does this automatically. */
1099			if (mcp251x_is_2510(spi))
1100				clear_intf |= CANINTF_RX1IF;
1101		}
1102
1103		/* mask out flags we don't care about */
1104		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1105
1106		/* any error or tx interrupt we need to clear? */
1107		if (intf & (CANINTF_ERR | CANINTF_TX))
1108			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1109		if (clear_intf)
1110			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1111
1112		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1113			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1114
1115		/* Update can state */
1116		if (eflag & EFLG_TXBO) {
1117			new_state = CAN_STATE_BUS_OFF;
1118			can_id |= CAN_ERR_BUSOFF;
1119		} else if (eflag & EFLG_TXEP) {
1120			new_state = CAN_STATE_ERROR_PASSIVE;
1121			can_id |= CAN_ERR_CRTL;
1122			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1123		} else if (eflag & EFLG_RXEP) {
1124			new_state = CAN_STATE_ERROR_PASSIVE;
1125			can_id |= CAN_ERR_CRTL;
1126			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1127		} else if (eflag & EFLG_TXWAR) {
1128			new_state = CAN_STATE_ERROR_WARNING;
1129			can_id |= CAN_ERR_CRTL;
1130			data1 |= CAN_ERR_CRTL_TX_WARNING;
1131		} else if (eflag & EFLG_RXWAR) {
1132			new_state = CAN_STATE_ERROR_WARNING;
1133			can_id |= CAN_ERR_CRTL;
1134			data1 |= CAN_ERR_CRTL_RX_WARNING;
1135		} else {
1136			new_state = CAN_STATE_ERROR_ACTIVE;
1137		}
1138
1139		/* Update can state statistics */
1140		switch (priv->can.state) {
1141		case CAN_STATE_ERROR_ACTIVE:
1142			if (new_state >= CAN_STATE_ERROR_WARNING &&
1143			    new_state <= CAN_STATE_BUS_OFF)
1144				priv->can.can_stats.error_warning++;
1145			fallthrough;
1146		case CAN_STATE_ERROR_WARNING:
1147			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1148			    new_state <= CAN_STATE_BUS_OFF)
1149				priv->can.can_stats.error_passive++;
1150			break;
1151		default:
1152			break;
1153		}
1154		priv->can.state = new_state;
1155
1156		if (intf & CANINTF_ERRIF) {
1157			/* Handle overflow counters */
1158			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1159				if (eflag & EFLG_RX0OVR) {
1160					net->stats.rx_over_errors++;
1161					net->stats.rx_errors++;
1162				}
1163				if (eflag & EFLG_RX1OVR) {
1164					net->stats.rx_over_errors++;
1165					net->stats.rx_errors++;
1166				}
1167				can_id |= CAN_ERR_CRTL;
1168				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1169			}
1170			mcp251x_error_skb(net, can_id, data1);
1171		}
1172
1173		if (priv->can.state == CAN_STATE_BUS_OFF) {
1174			if (priv->can.restart_ms == 0) {
1175				priv->force_quit = 1;
1176				priv->can.can_stats.bus_off++;
1177				can_bus_off(net);
1178				mcp251x_hw_sleep(spi);
1179				break;
1180			}
1181		}
1182
1183		if (intf == 0)
1184			break;
1185
1186		if (intf & CANINTF_TX) {
1187			if (priv->tx_busy) {
1188				net->stats.tx_packets++;
1189				net->stats.tx_bytes += can_get_echo_skb(net, 0,
1190									NULL);
1191				priv->tx_busy = false;
 
1192			}
1193			netif_wake_queue(net);
1194		}
 
1195	}
1196	mutex_unlock(&priv->mcp_lock);
1197	return IRQ_HANDLED;
1198}
1199
1200static int mcp251x_open(struct net_device *net)
1201{
1202	struct mcp251x_priv *priv = netdev_priv(net);
1203	struct spi_device *spi = priv->spi;
1204	unsigned long flags = 0;
1205	int ret;
1206
1207	ret = open_candev(net);
1208	if (ret) {
1209		dev_err(&spi->dev, "unable to set initial baudrate!\n");
1210		return ret;
1211	}
1212
1213	mutex_lock(&priv->mcp_lock);
1214	mcp251x_power_enable(priv->transceiver, 1);
1215
1216	priv->force_quit = 0;
1217	priv->tx_skb = NULL;
1218	priv->tx_busy = false;
1219
1220	if (!dev_fwnode(&spi->dev))
1221		flags = IRQF_TRIGGER_FALLING;
1222
1223	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1224				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
1225				   priv);
1226	if (ret) {
1227		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1228		goto out_close;
 
 
1229	}
1230
1231	ret = mcp251x_hw_wake(spi);
1232	if (ret)
1233		goto out_free_irq;
 
 
 
 
 
 
 
1234	ret = mcp251x_setup(net, spi);
1235	if (ret)
1236		goto out_free_irq;
 
 
1237	ret = mcp251x_set_normal_mode(spi);
1238	if (ret)
1239		goto out_free_irq;
 
 
 
 
1240
1241	netif_wake_queue(net);
1242	mutex_unlock(&priv->mcp_lock);
1243
1244	return 0;
1245
1246out_free_irq:
1247	free_irq(spi->irq, priv);
1248	mcp251x_hw_sleep(spi);
1249out_close:
1250	mcp251x_power_enable(priv->transceiver, 0);
1251	close_candev(net);
1252	mutex_unlock(&priv->mcp_lock);
1253	return ret;
1254}
1255
1256static const struct net_device_ops mcp251x_netdev_ops = {
1257	.ndo_open = mcp251x_open,
1258	.ndo_stop = mcp251x_stop,
1259	.ndo_start_xmit = mcp251x_hard_start_xmit,
1260	.ndo_change_mtu = can_change_mtu,
1261};
1262
1263static const struct ethtool_ops mcp251x_ethtool_ops = {
1264	.get_ts_info = ethtool_op_get_ts_info,
1265};
1266
1267static const struct of_device_id mcp251x_of_match[] = {
1268	{
1269		.compatible	= "microchip,mcp2510",
1270		.data		= (void *)CAN_MCP251X_MCP2510,
1271	},
1272	{
1273		.compatible	= "microchip,mcp2515",
1274		.data		= (void *)CAN_MCP251X_MCP2515,
1275	},
1276	{
1277		.compatible	= "microchip,mcp25625",
1278		.data		= (void *)CAN_MCP251X_MCP25625,
1279	},
1280	{ }
1281};
1282MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1283
1284static const struct spi_device_id mcp251x_id_table[] = {
1285	{
1286		.name		= "mcp2510",
1287		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1288	},
1289	{
1290		.name		= "mcp2515",
1291		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1292	},
1293	{
1294		.name		= "mcp25625",
1295		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1296	},
1297	{ }
1298};
1299MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1300
1301static int mcp251x_can_probe(struct spi_device *spi)
1302{
 
 
 
1303	struct net_device *net;
1304	struct mcp251x_priv *priv;
1305	struct clk *clk;
1306	u32 freq;
1307	int ret;
1308
1309	clk = devm_clk_get_optional(&spi->dev, NULL);
1310	if (IS_ERR(clk))
1311		return PTR_ERR(clk);
1312
1313	freq = clk_get_rate(clk);
1314	if (freq == 0)
1315		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
 
 
1316
1317	/* Sanity check */
1318	if (freq < 1000000 || freq > 25000000)
1319		return -ERANGE;
1320
1321	/* Allocate can/net device */
1322	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1323	if (!net)
1324		return -ENOMEM;
1325
1326	ret = clk_prepare_enable(clk);
1327	if (ret)
1328		goto out_free;
 
 
1329
1330	net->netdev_ops = &mcp251x_netdev_ops;
1331	net->ethtool_ops = &mcp251x_ethtool_ops;
1332	net->flags |= IFF_ECHO;
1333
1334	priv = netdev_priv(net);
1335	priv->can.bittiming_const = &mcp251x_bittiming_const;
1336	priv->can.do_set_mode = mcp251x_do_set_mode;
1337	priv->can.clock.freq = freq / 2;
1338	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1339		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1340	priv->model = (enum mcp251x_model)(uintptr_t)spi_get_device_match_data(spi);
 
 
 
1341	priv->net = net;
1342	priv->clk = clk;
1343
1344	spi_set_drvdata(spi, priv);
1345
1346	/* Configure the SPI bus */
1347	spi->bits_per_word = 8;
1348	if (mcp251x_is_2510(spi))
1349		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1350	else
1351		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1352	ret = spi_setup(spi);
1353	if (ret)
1354		goto out_clk;
1355
1356	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1357	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1358	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1359	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1360		ret = -EPROBE_DEFER;
1361		goto out_clk;
1362	}
1363
1364	ret = mcp251x_power_enable(priv->power, 1);
1365	if (ret)
1366		goto out_clk;
1367
1368	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1369				   0);
1370	if (!priv->wq) {
1371		ret = -ENOMEM;
1372		goto out_clk;
1373	}
1374	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1375	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1376
1377	priv->spi = spi;
1378	mutex_init(&priv->mcp_lock);
1379
1380	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1381					GFP_KERNEL);
1382	if (!priv->spi_tx_buf) {
1383		ret = -ENOMEM;
1384		goto error_probe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385	}
1386
1387	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1388					GFP_KERNEL);
1389	if (!priv->spi_rx_buf) {
1390		ret = -ENOMEM;
1391		goto error_probe;
 
 
 
 
 
 
 
 
 
1392	}
1393
1394	SET_NETDEV_DEV(net, &spi->dev);
1395
1396	/* Here is OK to not lock the MCP, no one knows about it yet */
1397	ret = mcp251x_hw_probe(spi);
1398	if (ret) {
1399		if (ret == -ENODEV)
1400			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1401				priv->model);
1402		goto error_probe;
1403	}
1404
1405	mcp251x_hw_sleep(spi);
1406
1407	ret = register_candev(net);
1408	if (ret)
1409		goto error_probe;
1410
1411	ret = mcp251x_gpio_setup(priv);
1412	if (ret)
1413		goto out_unregister_candev;
1414
1415	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1416	return 0;
1417
1418out_unregister_candev:
1419	unregister_candev(net);
1420
1421error_probe:
1422	destroy_workqueue(priv->wq);
1423	priv->wq = NULL;
1424	mcp251x_power_enable(priv->power, 0);
1425
1426out_clk:
1427	clk_disable_unprepare(clk);
 
1428
1429out_free:
1430	free_candev(net);
1431
1432	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1433	return ret;
1434}
1435
1436static void mcp251x_can_remove(struct spi_device *spi)
1437{
1438	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1439	struct net_device *net = priv->net;
1440
1441	unregister_candev(net);
1442
1443	mcp251x_power_enable(priv->power, 0);
1444
1445	destroy_workqueue(priv->wq);
1446	priv->wq = NULL;
1447
1448	clk_disable_unprepare(priv->clk);
1449
1450	free_candev(net);
 
 
1451}
1452
1453static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1454{
1455	struct spi_device *spi = to_spi_device(dev);
1456	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1457	struct net_device *net = priv->net;
1458
1459	priv->force_quit = 1;
1460	disable_irq(spi->irq);
1461	/* Note: at this point neither IST nor workqueues are running.
 
1462	 * open/stop cannot be called anyway so locking is not needed
1463	 */
1464	if (netif_running(net)) {
1465		netif_device_detach(net);
1466
1467		mcp251x_hw_sleep(spi);
1468		mcp251x_power_enable(priv->transceiver, 0);
1469		priv->after_suspend = AFTER_SUSPEND_UP;
1470	} else {
1471		priv->after_suspend = AFTER_SUSPEND_DOWN;
1472	}
1473
1474	mcp251x_power_enable(priv->power, 0);
1475	priv->after_suspend |= AFTER_SUSPEND_POWER;
 
 
1476
1477	return 0;
1478}
1479
1480static int __maybe_unused mcp251x_can_resume(struct device *dev)
1481{
1482	struct spi_device *spi = to_spi_device(dev);
1483	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1484
1485	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1486		mcp251x_power_enable(priv->power, 1);
1487	if (priv->after_suspend & AFTER_SUSPEND_UP)
 
1488		mcp251x_power_enable(priv->transceiver, 1);
1489
1490	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1491		queue_work(priv->wq, &priv->restart_work);
1492	else
1493		priv->after_suspend = 0;
 
1494
1495	priv->force_quit = 0;
1496	enable_irq(spi->irq);
1497	return 0;
1498}
1499
1500static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1501	mcp251x_can_resume);
1502
1503static struct spi_driver mcp251x_can_driver = {
1504	.driver = {
1505		.name = DEVICE_NAME,
1506		.of_match_table = mcp251x_of_match,
1507		.pm = &mcp251x_can_pm_ops,
1508	},
1509	.id_table = mcp251x_id_table,
1510	.probe = mcp251x_can_probe,
1511	.remove = mcp251x_can_remove,
1512};
1513module_spi_driver(mcp251x_can_driver);
1514
1515MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1516	      "Christian Pellegrin <chripell@evolware.org>");
1517MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1518MODULE_LICENSE("GPL v2");