Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/types.h>
  24#include <linux/kernel.h>
  25#include <linux/pci.h>
  26#include <linux/errno.h>
  27#include <linux/acpi.h>
  28#include <linux/hash.h>
  29#include <linux/cpufreq.h>
  30#include <linux/log2.h>
  31#include <linux/dmi.h>
  32#include <linux/atomic.h>
 
  33
  34#include "kfd_priv.h"
  35#include "kfd_crat.h"
  36#include "kfd_topology.h"
  37#include "kfd_device_queue_manager.h"
  38#include "kfd_iommu.h"
 
 
 
 
  39
  40/* topology_device_list - Master list of all topology devices */
  41static struct list_head topology_device_list;
  42static struct kfd_system_properties sys_props;
  43
  44static DECLARE_RWSEM(topology_lock);
  45static atomic_t topology_crat_proximity_domain;
  46
  47struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
  48						uint32_t proximity_domain)
  49{
  50	struct kfd_topology_device *top_dev;
  51	struct kfd_topology_device *device = NULL;
  52
  53	down_read(&topology_lock);
  54
  55	list_for_each_entry(top_dev, &topology_device_list, list)
  56		if (top_dev->proximity_domain == proximity_domain) {
  57			device = top_dev;
  58			break;
  59		}
  60
 
 
 
 
 
 
 
 
 
 
 
 
  61	up_read(&topology_lock);
  62
  63	return device;
  64}
  65
  66struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
  67{
  68	struct kfd_topology_device *top_dev;
  69	struct kfd_dev *device = NULL;
  70
  71	down_read(&topology_lock);
  72
  73	list_for_each_entry(top_dev, &topology_device_list, list)
  74		if (top_dev->gpu_id == gpu_id) {
  75			device = top_dev->gpu;
  76			break;
  77		}
  78
  79	up_read(&topology_lock);
  80
  81	return device;
 
 
 
 
 
 
 
 
 
 
 
  82}
  83
  84struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
  85{
  86	struct kfd_topology_device *top_dev;
  87	struct kfd_dev *device = NULL;
  88
  89	down_read(&topology_lock);
  90
  91	list_for_each_entry(top_dev, &topology_device_list, list)
  92		if (top_dev->gpu->pdev == pdev) {
  93			device = top_dev->gpu;
  94			break;
  95		}
  96
  97	up_read(&topology_lock);
  98
  99	return device;
 100}
 101
 102/* Called with write topology_lock acquired */
 103static void kfd_release_topology_device(struct kfd_topology_device *dev)
 104{
 105	struct kfd_mem_properties *mem;
 106	struct kfd_cache_properties *cache;
 107	struct kfd_iolink_properties *iolink;
 
 108	struct kfd_perf_properties *perf;
 109
 110	list_del(&dev->list);
 111
 112	while (dev->mem_props.next != &dev->mem_props) {
 113		mem = container_of(dev->mem_props.next,
 114				struct kfd_mem_properties, list);
 115		list_del(&mem->list);
 116		kfree(mem);
 117	}
 118
 119	while (dev->cache_props.next != &dev->cache_props) {
 120		cache = container_of(dev->cache_props.next,
 121				struct kfd_cache_properties, list);
 122		list_del(&cache->list);
 123		kfree(cache);
 124	}
 125
 126	while (dev->io_link_props.next != &dev->io_link_props) {
 127		iolink = container_of(dev->io_link_props.next,
 128				struct kfd_iolink_properties, list);
 129		list_del(&iolink->list);
 130		kfree(iolink);
 131	}
 132
 
 
 
 
 
 
 
 133	while (dev->perf_props.next != &dev->perf_props) {
 134		perf = container_of(dev->perf_props.next,
 135				struct kfd_perf_properties, list);
 136		list_del(&perf->list);
 137		kfree(perf);
 138	}
 139
 140	kfree(dev);
 141}
 142
 143void kfd_release_topology_device_list(struct list_head *device_list)
 144{
 145	struct kfd_topology_device *dev;
 146
 147	while (!list_empty(device_list)) {
 148		dev = list_first_entry(device_list,
 149				       struct kfd_topology_device, list);
 150		kfd_release_topology_device(dev);
 151	}
 152}
 153
 154static void kfd_release_live_view(void)
 155{
 156	kfd_release_topology_device_list(&topology_device_list);
 157	memset(&sys_props, 0, sizeof(sys_props));
 158}
 159
 160struct kfd_topology_device *kfd_create_topology_device(
 161				struct list_head *device_list)
 162{
 163	struct kfd_topology_device *dev;
 164
 165	dev = kfd_alloc_struct(dev);
 166	if (!dev) {
 167		pr_err("No memory to allocate a topology device");
 168		return NULL;
 169	}
 170
 171	INIT_LIST_HEAD(&dev->mem_props);
 172	INIT_LIST_HEAD(&dev->cache_props);
 173	INIT_LIST_HEAD(&dev->io_link_props);
 
 174	INIT_LIST_HEAD(&dev->perf_props);
 175
 176	list_add_tail(&dev->list, device_list);
 177
 178	return dev;
 179}
 180
 181
 182#define sysfs_show_gen_prop(buffer, fmt, ...) \
 183		snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
 184#define sysfs_show_32bit_prop(buffer, name, value) \
 185		sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
 186#define sysfs_show_64bit_prop(buffer, name, value) \
 187		sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
 188#define sysfs_show_32bit_val(buffer, value) \
 189		sysfs_show_gen_prop(buffer, "%u\n", value)
 190#define sysfs_show_str_val(buffer, value) \
 191		sysfs_show_gen_prop(buffer, "%s\n", value)
 
 192
 193static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
 194		char *buffer)
 195{
 196	ssize_t ret;
 197
 198	/* Making sure that the buffer is an empty string */
 199	buffer[0] = 0;
 200
 201	if (attr == &sys_props.attr_genid) {
 202		ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
 
 203	} else if (attr == &sys_props.attr_props) {
 204		sysfs_show_64bit_prop(buffer, "platform_oem",
 205				sys_props.platform_oem);
 206		sysfs_show_64bit_prop(buffer, "platform_id",
 207				sys_props.platform_id);
 208		ret = sysfs_show_64bit_prop(buffer, "platform_rev",
 209				sys_props.platform_rev);
 210	} else {
 211		ret = -EINVAL;
 212	}
 213
 214	return ret;
 215}
 216
 217static void kfd_topology_kobj_release(struct kobject *kobj)
 218{
 219	kfree(kobj);
 220}
 221
 222static const struct sysfs_ops sysprops_ops = {
 223	.show = sysprops_show,
 224};
 225
 226static struct kobj_type sysprops_type = {
 227	.release = kfd_topology_kobj_release,
 228	.sysfs_ops = &sysprops_ops,
 229};
 230
 231static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
 232		char *buffer)
 233{
 234	ssize_t ret;
 235	struct kfd_iolink_properties *iolink;
 236
 237	/* Making sure that the buffer is an empty string */
 238	buffer[0] = 0;
 239
 240	iolink = container_of(attr, struct kfd_iolink_properties, attr);
 241	sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
 242	sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
 243	sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
 244	sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
 245	sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
 246	sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
 247	sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
 248	sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
 249	sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
 250	sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
 251	sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
 252			iolink->rec_transfer_size);
 253	ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);
 
 
 
 
 
 
 254
 255	return ret;
 256}
 257
 258static const struct sysfs_ops iolink_ops = {
 259	.show = iolink_show,
 260};
 261
 262static struct kobj_type iolink_type = {
 263	.release = kfd_topology_kobj_release,
 264	.sysfs_ops = &iolink_ops,
 265};
 266
 267static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
 268		char *buffer)
 269{
 270	ssize_t ret;
 271	struct kfd_mem_properties *mem;
 272
 273	/* Making sure that the buffer is an empty string */
 274	buffer[0] = 0;
 275
 276	mem = container_of(attr, struct kfd_mem_properties, attr);
 277	sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
 278	sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
 279	sysfs_show_32bit_prop(buffer, "flags", mem->flags);
 280	sysfs_show_32bit_prop(buffer, "width", mem->width);
 281	ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);
 
 
 
 
 282
 283	return ret;
 284}
 285
 286static const struct sysfs_ops mem_ops = {
 287	.show = mem_show,
 288};
 289
 290static struct kobj_type mem_type = {
 291	.release = kfd_topology_kobj_release,
 292	.sysfs_ops = &mem_ops,
 293};
 294
 295static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
 296		char *buffer)
 297{
 298	ssize_t ret;
 299	uint32_t i, j;
 300	struct kfd_cache_properties *cache;
 301
 302	/* Making sure that the buffer is an empty string */
 303	buffer[0] = 0;
 304
 305	cache = container_of(attr, struct kfd_cache_properties, attr);
 306	sysfs_show_32bit_prop(buffer, "processor_id_low",
 
 
 307			cache->processor_id_low);
 308	sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
 309	sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
 310	sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
 311	sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
 312			cache->cachelines_per_tag);
 313	sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
 314	sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
 315	sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
 316	snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
 317	for (i = 0; i < CRAT_SIBLINGMAP_SIZE; i++)
 318		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) {
 
 
 319			/* Check each bit */
 320			if (cache->sibling_map[i] & (1 << j))
 321				ret = snprintf(buffer, PAGE_SIZE,
 322					 "%s%d%s", buffer, 1, ",");
 323			else
 324				ret = snprintf(buffer, PAGE_SIZE,
 325					 "%s%d%s", buffer, 0, ",");
 326		}
 327	/* Replace the last "," with end of line */
 328	*(buffer + strlen(buffer) - 1) = 0xA;
 329	return ret;
 330}
 331
 332static const struct sysfs_ops cache_ops = {
 333	.show = kfd_cache_show,
 334};
 335
 336static struct kobj_type cache_type = {
 337	.release = kfd_topology_kobj_release,
 338	.sysfs_ops = &cache_ops,
 339};
 340
 341/****** Sysfs of Performance Counters ******/
 342
 343struct kfd_perf_attr {
 344	struct kobj_attribute attr;
 345	uint32_t data;
 346};
 347
 348static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
 349			char *buf)
 350{
 
 351	struct kfd_perf_attr *attr;
 352
 353	buf[0] = 0;
 354	attr = container_of(attrs, struct kfd_perf_attr, attr);
 355	if (!attr->data) /* invalid data for PMC */
 356		return 0;
 357	else
 358		return sysfs_show_32bit_val(buf, attr->data);
 359}
 360
 361#define KFD_PERF_DESC(_name, _data)			\
 362{							\
 363	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
 364	.data = _data,					\
 365}
 366
 367static struct kfd_perf_attr perf_attr_iommu[] = {
 368	KFD_PERF_DESC(max_concurrent, 0),
 369	KFD_PERF_DESC(num_counters, 0),
 370	KFD_PERF_DESC(counter_ids, 0),
 371};
 372/****************************************/
 373
 374static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
 375		char *buffer)
 376{
 
 377	struct kfd_topology_device *dev;
 378	char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
 379	uint32_t i;
 380	uint32_t log_max_watch_addr;
 381
 382	/* Making sure that the buffer is an empty string */
 383	buffer[0] = 0;
 384
 385	if (strcmp(attr->name, "gpu_id") == 0) {
 386		dev = container_of(attr, struct kfd_topology_device,
 387				attr_gpuid);
 388		return sysfs_show_32bit_val(buffer, dev->gpu_id);
 
 
 389	}
 390
 391	if (strcmp(attr->name, "name") == 0) {
 392		dev = container_of(attr, struct kfd_topology_device,
 393				attr_name);
 394		for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
 395			public_name[i] =
 396					(char)dev->node_props.marketing_name[i];
 397			if (dev->node_props.marketing_name[i] == 0)
 398				break;
 399		}
 400		public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
 401		return sysfs_show_str_val(buffer, public_name);
 402	}
 403
 404	dev = container_of(attr, struct kfd_topology_device,
 405			attr_props);
 406	sysfs_show_32bit_prop(buffer, "cpu_cores_count",
 407			dev->node_props.cpu_cores_count);
 408	sysfs_show_32bit_prop(buffer, "simd_count",
 409			dev->node_props.simd_count);
 410	sysfs_show_32bit_prop(buffer, "mem_banks_count",
 411			dev->node_props.mem_banks_count);
 412	sysfs_show_32bit_prop(buffer, "caches_count",
 413			dev->node_props.caches_count);
 414	sysfs_show_32bit_prop(buffer, "io_links_count",
 415			dev->node_props.io_links_count);
 416	sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
 417			dev->node_props.cpu_core_id_base);
 418	sysfs_show_32bit_prop(buffer, "simd_id_base",
 419			dev->node_props.simd_id_base);
 420	sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
 421			dev->node_props.max_waves_per_simd);
 422	sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
 423			dev->node_props.lds_size_in_kb);
 424	sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
 425			dev->node_props.gds_size_in_kb);
 426	sysfs_show_32bit_prop(buffer, "wave_front_size",
 427			dev->node_props.wave_front_size);
 428	sysfs_show_32bit_prop(buffer, "array_count",
 429			dev->node_props.array_count);
 430	sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
 431			dev->node_props.simd_arrays_per_engine);
 432	sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
 433			dev->node_props.cu_per_simd_array);
 434	sysfs_show_32bit_prop(buffer, "simd_per_cu",
 435			dev->node_props.simd_per_cu);
 436	sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
 437			dev->node_props.max_slots_scratch_cu);
 438	sysfs_show_32bit_prop(buffer, "vendor_id",
 439			dev->node_props.vendor_id);
 440	sysfs_show_32bit_prop(buffer, "device_id",
 441			dev->node_props.device_id);
 442	sysfs_show_32bit_prop(buffer, "location_id",
 443			dev->node_props.location_id);
 444	sysfs_show_32bit_prop(buffer, "drm_render_minor",
 445			dev->node_props.drm_render_minor);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446
 447	if (dev->gpu) {
 448		log_max_watch_addr =
 449			__ilog2_u32(dev->gpu->device_info->num_of_watch_points);
 450
 451		if (log_max_watch_addr) {
 452			dev->node_props.capability |=
 453					HSA_CAP_WATCH_POINTS_SUPPORTED;
 454
 455			dev->node_props.capability |=
 456				((log_max_watch_addr <<
 457					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
 458				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
 459		}
 460
 461		if (dev->gpu->device_info->asic_family == CHIP_TONGA)
 462			dev->node_props.capability |=
 463					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
 464
 465		sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
 466			dev->node_props.max_engine_clk_fcompute);
 467
 468		sysfs_show_64bit_prop(buffer, "local_mem_size",
 469				(unsigned long long int) 0);
 470
 471		sysfs_show_32bit_prop(buffer, "fw_version",
 472			dev->gpu->kfd2kgd->get_fw_version(
 473						dev->gpu->kgd,
 474						KGD_ENGINE_MEC1));
 475		sysfs_show_32bit_prop(buffer, "capability",
 476				dev->node_props.capability);
 
 
 
 
 
 
 477	}
 478
 479	return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
 480					cpufreq_quick_get_max(0)/1000);
 481}
 482
 483static const struct sysfs_ops node_ops = {
 484	.show = node_show,
 485};
 486
 487static struct kobj_type node_type = {
 488	.release = kfd_topology_kobj_release,
 489	.sysfs_ops = &node_ops,
 490};
 491
 492static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
 493{
 494	sysfs_remove_file(kobj, attr);
 495	kobject_del(kobj);
 496	kobject_put(kobj);
 497}
 498
 499static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
 500{
 
 501	struct kfd_iolink_properties *iolink;
 502	struct kfd_cache_properties *cache;
 503	struct kfd_mem_properties *mem;
 504	struct kfd_perf_properties *perf;
 505
 506	if (dev->kobj_iolink) {
 507		list_for_each_entry(iolink, &dev->io_link_props, list)
 508			if (iolink->kobj) {
 509				kfd_remove_sysfs_file(iolink->kobj,
 510							&iolink->attr);
 511				iolink->kobj = NULL;
 512			}
 513		kobject_del(dev->kobj_iolink);
 514		kobject_put(dev->kobj_iolink);
 515		dev->kobj_iolink = NULL;
 516	}
 517
 
 
 
 
 
 
 
 
 
 
 
 
 518	if (dev->kobj_cache) {
 519		list_for_each_entry(cache, &dev->cache_props, list)
 520			if (cache->kobj) {
 521				kfd_remove_sysfs_file(cache->kobj,
 522							&cache->attr);
 523				cache->kobj = NULL;
 524			}
 525		kobject_del(dev->kobj_cache);
 526		kobject_put(dev->kobj_cache);
 527		dev->kobj_cache = NULL;
 528	}
 529
 530	if (dev->kobj_mem) {
 531		list_for_each_entry(mem, &dev->mem_props, list)
 532			if (mem->kobj) {
 533				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
 534				mem->kobj = NULL;
 535			}
 536		kobject_del(dev->kobj_mem);
 537		kobject_put(dev->kobj_mem);
 538		dev->kobj_mem = NULL;
 539	}
 540
 541	if (dev->kobj_perf) {
 542		list_for_each_entry(perf, &dev->perf_props, list) {
 543			kfree(perf->attr_group);
 544			perf->attr_group = NULL;
 545		}
 546		kobject_del(dev->kobj_perf);
 547		kobject_put(dev->kobj_perf);
 548		dev->kobj_perf = NULL;
 549	}
 550
 551	if (dev->kobj_node) {
 552		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
 553		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
 554		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
 555		kobject_del(dev->kobj_node);
 556		kobject_put(dev->kobj_node);
 557		dev->kobj_node = NULL;
 558	}
 559}
 560
 561static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
 562		uint32_t id)
 563{
 
 564	struct kfd_iolink_properties *iolink;
 565	struct kfd_cache_properties *cache;
 566	struct kfd_mem_properties *mem;
 567	struct kfd_perf_properties *perf;
 568	int ret;
 569	uint32_t i, num_attrs;
 570	struct attribute **attrs;
 571
 572	if (WARN_ON(dev->kobj_node))
 573		return -EEXIST;
 574
 575	/*
 576	 * Creating the sysfs folders
 577	 */
 578	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
 579	if (!dev->kobj_node)
 580		return -ENOMEM;
 581
 582	ret = kobject_init_and_add(dev->kobj_node, &node_type,
 583			sys_props.kobj_nodes, "%d", id);
 584	if (ret < 0)
 
 585		return ret;
 
 586
 587	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
 588	if (!dev->kobj_mem)
 589		return -ENOMEM;
 590
 591	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
 592	if (!dev->kobj_cache)
 593		return -ENOMEM;
 594
 595	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
 596	if (!dev->kobj_iolink)
 597		return -ENOMEM;
 598
 
 
 
 
 599	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
 600	if (!dev->kobj_perf)
 601		return -ENOMEM;
 602
 603	/*
 604	 * Creating sysfs files for node properties
 605	 */
 606	dev->attr_gpuid.name = "gpu_id";
 607	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
 608	sysfs_attr_init(&dev->attr_gpuid);
 609	dev->attr_name.name = "name";
 610	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
 611	sysfs_attr_init(&dev->attr_name);
 612	dev->attr_props.name = "properties";
 613	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
 614	sysfs_attr_init(&dev->attr_props);
 615	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
 616	if (ret < 0)
 617		return ret;
 618	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
 619	if (ret < 0)
 620		return ret;
 621	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
 622	if (ret < 0)
 623		return ret;
 624
 625	i = 0;
 626	list_for_each_entry(mem, &dev->mem_props, list) {
 627		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 628		if (!mem->kobj)
 629			return -ENOMEM;
 630		ret = kobject_init_and_add(mem->kobj, &mem_type,
 631				dev->kobj_mem, "%d", i);
 632		if (ret < 0)
 
 633			return ret;
 
 634
 635		mem->attr.name = "properties";
 636		mem->attr.mode = KFD_SYSFS_FILE_MODE;
 637		sysfs_attr_init(&mem->attr);
 638		ret = sysfs_create_file(mem->kobj, &mem->attr);
 639		if (ret < 0)
 640			return ret;
 641		i++;
 642	}
 643
 644	i = 0;
 645	list_for_each_entry(cache, &dev->cache_props, list) {
 646		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 647		if (!cache->kobj)
 648			return -ENOMEM;
 649		ret = kobject_init_and_add(cache->kobj, &cache_type,
 650				dev->kobj_cache, "%d", i);
 651		if (ret < 0)
 
 652			return ret;
 
 653
 654		cache->attr.name = "properties";
 655		cache->attr.mode = KFD_SYSFS_FILE_MODE;
 656		sysfs_attr_init(&cache->attr);
 657		ret = sysfs_create_file(cache->kobj, &cache->attr);
 658		if (ret < 0)
 659			return ret;
 660		i++;
 661	}
 662
 663	i = 0;
 664	list_for_each_entry(iolink, &dev->io_link_props, list) {
 665		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 666		if (!iolink->kobj)
 667			return -ENOMEM;
 668		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
 669				dev->kobj_iolink, "%d", i);
 670		if (ret < 0)
 
 671			return ret;
 
 672
 673		iolink->attr.name = "properties";
 674		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
 675		sysfs_attr_init(&iolink->attr);
 676		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
 677		if (ret < 0)
 678			return ret;
 679		i++;
 680	}
 681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682	/* All hardware blocks have the same number of attributes. */
 683	num_attrs = ARRAY_SIZE(perf_attr_iommu);
 684	list_for_each_entry(perf, &dev->perf_props, list) {
 685		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
 686			* num_attrs + sizeof(struct attribute_group),
 687			GFP_KERNEL);
 688		if (!perf->attr_group)
 689			return -ENOMEM;
 690
 691		attrs = (struct attribute **)(perf->attr_group + 1);
 692		if (!strcmp(perf->block_name, "iommu")) {
 693		/* Information of IOMMU's num_counters and counter_ids is shown
 694		 * under /sys/bus/event_source/devices/amd_iommu. We don't
 695		 * duplicate here.
 696		 */
 697			perf_attr_iommu[0].data = perf->max_concurrent;
 698			for (i = 0; i < num_attrs; i++)
 699				attrs[i] = &perf_attr_iommu[i].attr.attr;
 700		}
 701		perf->attr_group->name = perf->block_name;
 702		perf->attr_group->attrs = attrs;
 703		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
 704		if (ret < 0)
 705			return ret;
 706	}
 707
 708	return 0;
 709}
 710
 711/* Called with write topology lock acquired */
 712static int kfd_build_sysfs_node_tree(void)
 713{
 714	struct kfd_topology_device *dev;
 715	int ret;
 716	uint32_t i = 0;
 717
 718	list_for_each_entry(dev, &topology_device_list, list) {
 719		ret = kfd_build_sysfs_node_entry(dev, i);
 720		if (ret < 0)
 721			return ret;
 722		i++;
 723	}
 724
 725	return 0;
 726}
 727
 728/* Called with write topology lock acquired */
 729static void kfd_remove_sysfs_node_tree(void)
 730{
 731	struct kfd_topology_device *dev;
 732
 733	list_for_each_entry(dev, &topology_device_list, list)
 734		kfd_remove_sysfs_node_entry(dev);
 735}
 736
 737static int kfd_topology_update_sysfs(void)
 738{
 739	int ret;
 740
 741	pr_info("Creating topology SYSFS entries\n");
 742	if (!sys_props.kobj_topology) {
 743		sys_props.kobj_topology =
 744				kfd_alloc_struct(sys_props.kobj_topology);
 745		if (!sys_props.kobj_topology)
 746			return -ENOMEM;
 747
 748		ret = kobject_init_and_add(sys_props.kobj_topology,
 749				&sysprops_type,  &kfd_device->kobj,
 750				"topology");
 751		if (ret < 0)
 
 752			return ret;
 
 753
 754		sys_props.kobj_nodes = kobject_create_and_add("nodes",
 755				sys_props.kobj_topology);
 756		if (!sys_props.kobj_nodes)
 757			return -ENOMEM;
 758
 759		sys_props.attr_genid.name = "generation_id";
 760		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
 761		sysfs_attr_init(&sys_props.attr_genid);
 762		ret = sysfs_create_file(sys_props.kobj_topology,
 763				&sys_props.attr_genid);
 764		if (ret < 0)
 765			return ret;
 766
 767		sys_props.attr_props.name = "system_properties";
 768		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
 769		sysfs_attr_init(&sys_props.attr_props);
 770		ret = sysfs_create_file(sys_props.kobj_topology,
 771				&sys_props.attr_props);
 772		if (ret < 0)
 773			return ret;
 774	}
 775
 776	kfd_remove_sysfs_node_tree();
 777
 778	return kfd_build_sysfs_node_tree();
 779}
 780
 781static void kfd_topology_release_sysfs(void)
 782{
 783	kfd_remove_sysfs_node_tree();
 784	if (sys_props.kobj_topology) {
 785		sysfs_remove_file(sys_props.kobj_topology,
 786				&sys_props.attr_genid);
 787		sysfs_remove_file(sys_props.kobj_topology,
 788				&sys_props.attr_props);
 789		if (sys_props.kobj_nodes) {
 790			kobject_del(sys_props.kobj_nodes);
 791			kobject_put(sys_props.kobj_nodes);
 792			sys_props.kobj_nodes = NULL;
 793		}
 794		kobject_del(sys_props.kobj_topology);
 795		kobject_put(sys_props.kobj_topology);
 796		sys_props.kobj_topology = NULL;
 797	}
 798}
 799
 800/* Called with write topology_lock acquired */
 801static void kfd_topology_update_device_list(struct list_head *temp_list,
 802					struct list_head *master_list)
 803{
 804	while (!list_empty(temp_list)) {
 805		list_move_tail(temp_list->next, master_list);
 806		sys_props.num_devices++;
 807	}
 808}
 809
 810static void kfd_debug_print_topology(void)
 811{
 812	struct kfd_topology_device *dev;
 813
 814	down_read(&topology_lock);
 815
 816	dev = list_last_entry(&topology_device_list,
 817			struct kfd_topology_device, list);
 818	if (dev) {
 819		if (dev->node_props.cpu_cores_count &&
 820				dev->node_props.simd_count) {
 821			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
 822				dev->node_props.device_id,
 823				dev->node_props.vendor_id);
 824		} else if (dev->node_props.cpu_cores_count)
 825			pr_info("Topology: Add CPU node\n");
 826		else if (dev->node_props.simd_count)
 827			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
 828				dev->node_props.device_id,
 829				dev->node_props.vendor_id);
 830	}
 831	up_read(&topology_lock);
 832}
 833
 834/* Helper function for intializing platform_xx members of
 835 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
 836 */
 837static void kfd_update_system_properties(void)
 838{
 839	struct kfd_topology_device *dev;
 840
 841	down_read(&topology_lock);
 842	dev = list_last_entry(&topology_device_list,
 843			struct kfd_topology_device, list);
 844	if (dev) {
 845		sys_props.platform_id =
 846			(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
 847		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
 848		sys_props.platform_rev = dev->oem_revision;
 849	}
 850	up_read(&topology_lock);
 851}
 852
 853static void find_system_memory(const struct dmi_header *dm,
 854	void *private)
 855{
 856	struct kfd_mem_properties *mem;
 857	u16 mem_width, mem_clock;
 858	struct kfd_topology_device *kdev =
 859		(struct kfd_topology_device *)private;
 860	const u8 *dmi_data = (const u8 *)(dm + 1);
 861
 862	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
 863		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
 864		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
 865		list_for_each_entry(mem, &kdev->mem_props, list) {
 866			if (mem_width != 0xFFFF && mem_width != 0)
 867				mem->width = mem_width;
 868			if (mem_clock != 0)
 869				mem->mem_clk_max = mem_clock;
 870		}
 871	}
 872}
 873
 874/*
 875 * Performance counters information is not part of CRAT but we would like to
 876 * put them in the sysfs under topology directory for Thunk to get the data.
 877 * This function is called before updating the sysfs.
 878 */
 879static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev)
 880{
 881	/* These are the only counters supported so far */
 882	return kfd_iommu_add_perf_counters(kdev);
 883}
 884
 885/* kfd_add_non_crat_information - Add information that is not currently
 886 *	defined in CRAT but is necessary for KFD topology
 887 * @dev - topology device to which addition info is added
 888 */
 889static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
 890{
 891	/* Check if CPU only node. */
 892	if (!kdev->gpu) {
 893		/* Add system memory information */
 894		dmi_walk(find_system_memory, kdev);
 895	}
 896	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
 897}
 898
 899/* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices.
 900 *	Ignore CRAT for all other devices. AMD APU is identified if both CPU
 901 *	and GPU cores are present.
 902 * @device_list - topology device list created by parsing ACPI CRAT table.
 903 * @return - TRUE if invalid, FALSE is valid.
 904 */
 905static bool kfd_is_acpi_crat_invalid(struct list_head *device_list)
 906{
 907	struct kfd_topology_device *dev;
 908
 909	list_for_each_entry(dev, device_list, list) {
 910		if (dev->node_props.cpu_cores_count &&
 911			dev->node_props.simd_count)
 912			return false;
 913	}
 914	pr_info("Ignoring ACPI CRAT on non-APU system\n");
 915	return true;
 916}
 917
 918int kfd_topology_init(void)
 919{
 920	void *crat_image = NULL;
 921	size_t image_size = 0;
 922	int ret;
 923	struct list_head temp_topology_device_list;
 924	int cpu_only_node = 0;
 925	struct kfd_topology_device *kdev;
 926	int proximity_domain;
 927
 928	/* topology_device_list - Master list of all topology devices
 929	 * temp_topology_device_list - temporary list created while parsing CRAT
 930	 * or VCRAT. Once parsing is complete the contents of list is moved to
 931	 * topology_device_list
 932	 */
 933
 934	/* Initialize the head for the both the lists */
 935	INIT_LIST_HEAD(&topology_device_list);
 936	INIT_LIST_HEAD(&temp_topology_device_list);
 937	init_rwsem(&topology_lock);
 938
 939	memset(&sys_props, 0, sizeof(sys_props));
 940
 941	/* Proximity domains in ACPI CRAT tables start counting at
 942	 * 0. The same should be true for virtual CRAT tables created
 943	 * at this stage. GPUs added later in kfd_topology_add_device
 944	 * use a counter.
 945	 */
 946	proximity_domain = 0;
 947
 948	/*
 949	 * Get the CRAT image from the ACPI. If ACPI doesn't have one
 950	 * or if ACPI CRAT is invalid create a virtual CRAT.
 951	 * NOTE: The current implementation expects all AMD APUs to have
 952	 *	CRAT. If no CRAT is available, it is assumed to be a CPU
 953	 */
 954	ret = kfd_create_crat_image_acpi(&crat_image, &image_size);
 955	if (!ret) {
 956		ret = kfd_parse_crat_table(crat_image,
 957					   &temp_topology_device_list,
 958					   proximity_domain);
 959		if (ret ||
 960		    kfd_is_acpi_crat_invalid(&temp_topology_device_list)) {
 961			kfd_release_topology_device_list(
 962				&temp_topology_device_list);
 963			kfd_destroy_crat_image(crat_image);
 964			crat_image = NULL;
 965		}
 966	}
 967
 968	if (!crat_image) {
 969		ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
 970						    COMPUTE_UNIT_CPU, NULL,
 971						    proximity_domain);
 972		cpu_only_node = 1;
 973		if (ret) {
 974			pr_err("Error creating VCRAT table for CPU\n");
 975			return ret;
 976		}
 977
 978		ret = kfd_parse_crat_table(crat_image,
 979					   &temp_topology_device_list,
 980					   proximity_domain);
 981		if (ret) {
 982			pr_err("Error parsing VCRAT table for CPU\n");
 983			goto err;
 984		}
 985	}
 986
 987	kdev = list_first_entry(&temp_topology_device_list,
 988				struct kfd_topology_device, list);
 989	kfd_add_perf_to_topology(kdev);
 990
 991	down_write(&topology_lock);
 992	kfd_topology_update_device_list(&temp_topology_device_list,
 993					&topology_device_list);
 994	atomic_set(&topology_crat_proximity_domain, sys_props.num_devices-1);
 995	ret = kfd_topology_update_sysfs();
 996	up_write(&topology_lock);
 997
 998	if (!ret) {
 999		sys_props.generation_count++;
1000		kfd_update_system_properties();
1001		kfd_debug_print_topology();
1002		pr_info("Finished initializing topology\n");
1003	} else
1004		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1005
1006	/* For nodes with GPU, this information gets added
1007	 * when GPU is detected (kfd_topology_add_device).
1008	 */
1009	if (cpu_only_node) {
1010		/* Add additional information to CPU only node created above */
1011		down_write(&topology_lock);
1012		kdev = list_first_entry(&topology_device_list,
1013				struct kfd_topology_device, list);
1014		up_write(&topology_lock);
1015		kfd_add_non_crat_information(kdev);
1016	}
1017
1018err:
1019	kfd_destroy_crat_image(crat_image);
1020	return ret;
1021}
1022
1023void kfd_topology_shutdown(void)
1024{
1025	down_write(&topology_lock);
1026	kfd_topology_release_sysfs();
1027	kfd_release_live_view();
1028	up_write(&topology_lock);
1029}
1030
1031static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
1032{
1033	uint32_t hashout;
1034	uint32_t buf[7];
1035	uint64_t local_mem_size;
1036	int i;
1037	struct kfd_local_mem_info local_mem_info;
 
1038
1039	if (!gpu)
1040		return 0;
1041
1042	gpu->kfd2kgd->get_local_mem_info(gpu->kgd, &local_mem_info);
1043
1044	local_mem_size = local_mem_info.local_mem_size_private +
1045			local_mem_info.local_mem_size_public;
1046
1047	buf[0] = gpu->pdev->devfn;
1048	buf[1] = gpu->pdev->subsystem_vendor;
1049	buf[2] = gpu->pdev->subsystem_device;
1050	buf[3] = gpu->pdev->device;
1051	buf[4] = gpu->pdev->bus->number;
1052	buf[5] = lower_32_bits(local_mem_size);
1053	buf[6] = upper_32_bits(local_mem_size);
 
 
 
 
 
 
 
 
 
 
 
1054
1055	for (i = 0, hashout = 0; i < 7; i++)
1056		hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057
1058	return hashout;
1059}
1060/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1061 *		the GPU device is not already present in the topology device
1062 *		list then return NULL. This means a new topology device has to
1063 *		be created for this GPU.
1064 * TODO: Rather than assiging @gpu to first topology device withtout
1065 *		gpu attached, it will better to have more stringent check.
1066 */
1067static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
1068{
1069	struct kfd_topology_device *dev;
1070	struct kfd_topology_device *out_dev = NULL;
 
 
 
 
 
 
 
 
 
 
 
1071
1072	down_write(&topology_lock);
1073	list_for_each_entry(dev, &topology_device_list, list)
1074		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1075			dev->gpu = gpu;
1076			out_dev = dev;
 
 
 
 
 
 
 
 
 
1077			break;
1078		}
1079	up_write(&topology_lock);
1080	return out_dev;
1081}
1082
1083static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1084{
1085	/*
1086	 * TODO: Generate an event for thunk about the arrival/removal
1087	 * of the GPU
1088	 */
1089}
1090
1091/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1092 *		patch this after CRAT parsing.
1093 */
1094static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1095{
1096	struct kfd_mem_properties *mem;
1097	struct kfd_local_mem_info local_mem_info;
1098
1099	if (!dev)
1100		return;
1101
1102	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1103	 * single bank of VRAM local memory.
1104	 * for dGPUs - VCRAT reports only one bank of Local Memory
1105	 * for APUs - If CRAT from ACPI reports more than one bank, then
1106	 *	all the banks will report the same mem_clk_max information
1107	 */
1108	dev->gpu->kfd2kgd->get_local_mem_info(dev->gpu->kgd,
1109		&local_mem_info);
1110
1111	list_for_each_entry(mem, &dev->mem_props, list)
1112		mem->mem_clk_max = local_mem_info.mem_clk_max;
1113}
1114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1116{
1117	struct kfd_iolink_properties *link;
 
1118
1119	if (!dev || !dev->gpu)
1120		return;
1121
1122	/* GPU only creates direck links so apply flags setting to all */
1123	if (dev->gpu->device_info->asic_family == CHIP_HAWAII)
1124		list_for_each_entry(link, &dev->io_link_props, list)
1125			link->flags = CRAT_IOLINK_FLAGS_ENABLED |
1126				CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1127				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128}
1129
1130int kfd_topology_add_device(struct kfd_dev *gpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131{
1132	uint32_t gpu_id;
1133	struct kfd_topology_device *dev;
1134	struct kfd_cu_info cu_info;
1135	int res = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136	struct list_head temp_topology_device_list;
1137	void *crat_image = NULL;
1138	size_t image_size = 0;
1139	int proximity_domain;
 
 
 
 
 
 
 
 
 
1140
1141	INIT_LIST_HEAD(&temp_topology_device_list);
1142
1143	gpu_id = kfd_generate_gpu_id(gpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144
1145	pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146
1147	proximity_domain = atomic_inc_return(&topology_crat_proximity_domain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148
1149	/* Check to see if this gpu device exists in the topology_device_list.
1150	 * If so, assign the gpu to that device,
1151	 * else create a Virtual CRAT for this gpu device and then parse that
1152	 * CRAT to create a new topology device. Once created assign the gpu to
1153	 * that topology device
1154	 */
 
1155	dev = kfd_assign_gpu(gpu);
1156	if (!dev) {
1157		res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1158						    COMPUTE_UNIT_GPU, gpu,
1159						    proximity_domain);
1160		if (res) {
1161			pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1162			       gpu_id);
1163			return res;
1164		}
1165		res = kfd_parse_crat_table(crat_image,
1166					   &temp_topology_device_list,
1167					   proximity_domain);
1168		if (res) {
1169			pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1170			       gpu_id);
1171			goto err;
1172		}
1173
1174		down_write(&topology_lock);
1175		kfd_topology_update_device_list(&temp_topology_device_list,
1176			&topology_device_list);
1177
1178		/* Update the SYSFS tree, since we added another topology
1179		 * device
1180		 */
1181		res = kfd_topology_update_sysfs();
1182		up_write(&topology_lock);
1183
1184		if (!res)
1185			sys_props.generation_count++;
1186		else
1187			pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1188						gpu_id, res);
1189		dev = kfd_assign_gpu(gpu);
1190		if (WARN_ON(!dev)) {
1191			res = -ENODEV;
1192			goto err;
1193		}
1194	}
1195
 
1196	dev->gpu_id = gpu_id;
1197	gpu->id = gpu_id;
1198
 
 
1199	/* TODO: Move the following lines to function
1200	 *	kfd_add_non_crat_information
1201	 */
1202
1203	/* Fill-in additional information that is not available in CRAT but
1204	 * needed for the topology
1205	 */
 
 
 
 
 
 
1206
1207	dev->gpu->kfd2kgd->get_cu_info(dev->gpu->kgd, &cu_info);
1208	dev->node_props.simd_arrays_per_engine =
1209		cu_info.num_shader_arrays_per_engine;
 
 
 
 
 
 
 
 
 
 
 
 
1210
1211	dev->node_props.vendor_id = gpu->pdev->vendor;
1212	dev->node_props.device_id = gpu->pdev->device;
1213	dev->node_props.location_id = PCI_DEVID(gpu->pdev->bus->number,
1214		gpu->pdev->devfn);
1215	dev->node_props.max_engine_clk_fcompute =
1216		dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(dev->gpu->kgd);
1217	dev->node_props.max_engine_clk_ccompute =
1218		cpufreq_quick_get_max(0) / 1000;
1219	dev->node_props.drm_render_minor =
1220		gpu->shared_resources.drm_render_minor;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1221
1222	kfd_fill_mem_clk_max_info(dev);
1223	kfd_fill_iolink_non_crat_info(dev);
1224
1225	switch (dev->gpu->device_info->asic_family) {
1226	case CHIP_KAVERI:
1227	case CHIP_HAWAII:
1228	case CHIP_TONGA:
1229		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
1230			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1231			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1232		break;
1233	case CHIP_CARRIZO:
1234	case CHIP_FIJI:
1235	case CHIP_POLARIS10:
1236	case CHIP_POLARIS11:
 
 
1237		pr_debug("Adding doorbell packet type capability\n");
1238		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
1239			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1240			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1241		break;
1242	default:
1243		WARN(1, "Unexpected ASIC family %u",
1244		     dev->gpu->device_info->asic_family);
 
 
 
1245	}
1246
 
 
 
 
 
 
1247	/* Fix errors in CZ CRAT.
1248	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
1249	 *		because it doesn't consider masked out CUs
1250	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
1251	 * capability flag: Carrizo CRAT doesn't report IOMMU flags
1252	 */
1253	if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) {
1254		dev->node_props.simd_count =
1255			cu_info.simd_per_cu * cu_info.cu_active_number;
1256		dev->node_props.max_waves_per_simd = 10;
1257		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
1258	}
1259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260	kfd_debug_print_topology();
1261
1262	if (!res)
1263		kfd_notify_gpu_change(gpu_id, 1);
1264err:
1265	kfd_destroy_crat_image(crat_image);
1266	return res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267}
1268
1269int kfd_topology_remove_device(struct kfd_dev *gpu)
1270{
1271	struct kfd_topology_device *dev, *tmp;
1272	uint32_t gpu_id;
1273	int res = -ENODEV;
 
1274
1275	down_write(&topology_lock);
1276
1277	list_for_each_entry_safe(dev, tmp, &topology_device_list, list)
1278		if (dev->gpu == gpu) {
1279			gpu_id = dev->gpu_id;
1280			kfd_remove_sysfs_node_entry(dev);
1281			kfd_release_topology_device(dev);
1282			sys_props.num_devices--;
 
 
 
1283			res = 0;
1284			if (kfd_topology_update_sysfs() < 0)
1285				kfd_topology_release_sysfs();
1286			break;
1287		}
 
 
1288
1289	up_write(&topology_lock);
1290
1291	if (!res)
1292		kfd_notify_gpu_change(gpu_id, 0);
1293
1294	return res;
1295}
1296
1297/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
1298 *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
1299 *	returned through @kdev
1300 * Return -	0: On success (@kdev will be NULL for non GPU nodes)
1301 *		-1: If end of list
1302 */
1303int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev)
1304{
1305
1306	struct kfd_topology_device *top_dev;
1307	uint8_t device_idx = 0;
1308
1309	*kdev = NULL;
1310	down_read(&topology_lock);
1311
1312	list_for_each_entry(top_dev, &topology_device_list, list) {
1313		if (device_idx == idx) {
1314			*kdev = top_dev->gpu;
1315			up_read(&topology_lock);
1316			return 0;
1317		}
1318
1319		device_idx++;
1320	}
1321
1322	up_read(&topology_lock);
1323
1324	return -1;
1325
1326}
1327
1328static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
1329{
1330	const struct cpuinfo_x86 *cpuinfo;
1331	int first_cpu_of_numa_node;
1332
1333	if (!cpumask || cpumask == cpu_none_mask)
1334		return -1;
1335	first_cpu_of_numa_node = cpumask_first(cpumask);
1336	if (first_cpu_of_numa_node >= nr_cpu_ids)
1337		return -1;
1338	cpuinfo = &cpu_data(first_cpu_of_numa_node);
1339
1340	return cpuinfo->apicid;
 
 
1341}
1342
1343/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
1344 *	of the given NUMA node (numa_node_id)
1345 * Return -1 on failure
1346 */
1347int kfd_numa_node_to_apic_id(int numa_node_id)
1348{
1349	if (numa_node_id == -1) {
1350		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
1351		return kfd_cpumask_to_apic_id(cpu_online_mask);
1352	}
1353	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
1354}
1355
1356#if defined(CONFIG_DEBUG_FS)
1357
1358int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
1359{
1360	struct kfd_topology_device *dev;
1361	unsigned int i = 0;
1362	int r = 0;
1363
1364	down_read(&topology_lock);
1365
1366	list_for_each_entry(dev, &topology_device_list, list) {
1367		if (!dev->gpu) {
1368			i++;
1369			continue;
1370		}
1371
1372		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
1373		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
1374		if (r)
1375			break;
1376	}
1377
1378	up_read(&topology_lock);
1379
1380	return r;
1381}
1382
1383int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
1384{
1385	struct kfd_topology_device *dev;
1386	unsigned int i = 0;
1387	int r = 0;
1388
1389	down_read(&topology_lock);
1390
1391	list_for_each_entry(dev, &topology_device_list, list) {
1392		if (!dev->gpu) {
1393			i++;
1394			continue;
1395		}
1396
1397		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
1398		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packets);
1399		if (r)
1400			break;
1401	}
1402
1403	up_read(&topology_lock);
1404
1405	return r;
1406}
1407
1408#endif
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/types.h>
  25#include <linux/kernel.h>
  26#include <linux/pci.h>
  27#include <linux/errno.h>
  28#include <linux/acpi.h>
  29#include <linux/hash.h>
  30#include <linux/cpufreq.h>
  31#include <linux/log2.h>
  32#include <linux/dmi.h>
  33#include <linux/atomic.h>
  34#include <linux/crc16.h>
  35
  36#include "kfd_priv.h"
  37#include "kfd_crat.h"
  38#include "kfd_topology.h"
  39#include "kfd_device_queue_manager.h"
  40#include "kfd_svm.h"
  41#include "kfd_debug.h"
  42#include "amdgpu_amdkfd.h"
  43#include "amdgpu_ras.h"
  44#include "amdgpu.h"
  45
  46/* topology_device_list - Master list of all topology devices */
  47static struct list_head topology_device_list;
  48static struct kfd_system_properties sys_props;
  49
  50static DECLARE_RWSEM(topology_lock);
  51static uint32_t topology_crat_proximity_domain;
  52
  53struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
  54						uint32_t proximity_domain)
  55{
  56	struct kfd_topology_device *top_dev;
  57	struct kfd_topology_device *device = NULL;
  58
 
 
  59	list_for_each_entry(top_dev, &topology_device_list, list)
  60		if (top_dev->proximity_domain == proximity_domain) {
  61			device = top_dev;
  62			break;
  63		}
  64
  65	return device;
  66}
  67
  68struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
  69						uint32_t proximity_domain)
  70{
  71	struct kfd_topology_device *device = NULL;
  72
  73	down_read(&topology_lock);
  74
  75	device = kfd_topology_device_by_proximity_domain_no_lock(
  76							proximity_domain);
  77	up_read(&topology_lock);
  78
  79	return device;
  80}
  81
  82struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
  83{
  84	struct kfd_topology_device *top_dev = NULL;
  85	struct kfd_topology_device *ret = NULL;
  86
  87	down_read(&topology_lock);
  88
  89	list_for_each_entry(top_dev, &topology_device_list, list)
  90		if (top_dev->gpu_id == gpu_id) {
  91			ret = top_dev;
  92			break;
  93		}
  94
  95	up_read(&topology_lock);
  96
  97	return ret;
  98}
  99
 100struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
 101{
 102	struct kfd_topology_device *top_dev;
 103
 104	top_dev = kfd_topology_device_by_id(gpu_id);
 105	if (!top_dev)
 106		return NULL;
 107
 108	return top_dev->gpu;
 109}
 110
 111struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev)
 112{
 113	struct kfd_topology_device *top_dev;
 114	struct kfd_node *device = NULL;
 115
 116	down_read(&topology_lock);
 117
 118	list_for_each_entry(top_dev, &topology_device_list, list)
 119		if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
 120			device = top_dev->gpu;
 121			break;
 122		}
 123
 124	up_read(&topology_lock);
 125
 126	return device;
 127}
 128
 129/* Called with write topology_lock acquired */
 130static void kfd_release_topology_device(struct kfd_topology_device *dev)
 131{
 132	struct kfd_mem_properties *mem;
 133	struct kfd_cache_properties *cache;
 134	struct kfd_iolink_properties *iolink;
 135	struct kfd_iolink_properties *p2plink;
 136	struct kfd_perf_properties *perf;
 137
 138	list_del(&dev->list);
 139
 140	while (dev->mem_props.next != &dev->mem_props) {
 141		mem = container_of(dev->mem_props.next,
 142				struct kfd_mem_properties, list);
 143		list_del(&mem->list);
 144		kfree(mem);
 145	}
 146
 147	while (dev->cache_props.next != &dev->cache_props) {
 148		cache = container_of(dev->cache_props.next,
 149				struct kfd_cache_properties, list);
 150		list_del(&cache->list);
 151		kfree(cache);
 152	}
 153
 154	while (dev->io_link_props.next != &dev->io_link_props) {
 155		iolink = container_of(dev->io_link_props.next,
 156				struct kfd_iolink_properties, list);
 157		list_del(&iolink->list);
 158		kfree(iolink);
 159	}
 160
 161	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
 162		p2plink = container_of(dev->p2p_link_props.next,
 163				struct kfd_iolink_properties, list);
 164		list_del(&p2plink->list);
 165		kfree(p2plink);
 166	}
 167
 168	while (dev->perf_props.next != &dev->perf_props) {
 169		perf = container_of(dev->perf_props.next,
 170				struct kfd_perf_properties, list);
 171		list_del(&perf->list);
 172		kfree(perf);
 173	}
 174
 175	kfree(dev);
 176}
 177
 178void kfd_release_topology_device_list(struct list_head *device_list)
 179{
 180	struct kfd_topology_device *dev;
 181
 182	while (!list_empty(device_list)) {
 183		dev = list_first_entry(device_list,
 184				       struct kfd_topology_device, list);
 185		kfd_release_topology_device(dev);
 186	}
 187}
 188
 189static void kfd_release_live_view(void)
 190{
 191	kfd_release_topology_device_list(&topology_device_list);
 192	memset(&sys_props, 0, sizeof(sys_props));
 193}
 194
 195struct kfd_topology_device *kfd_create_topology_device(
 196				struct list_head *device_list)
 197{
 198	struct kfd_topology_device *dev;
 199
 200	dev = kfd_alloc_struct(dev);
 201	if (!dev) {
 202		pr_err("No memory to allocate a topology device");
 203		return NULL;
 204	}
 205
 206	INIT_LIST_HEAD(&dev->mem_props);
 207	INIT_LIST_HEAD(&dev->cache_props);
 208	INIT_LIST_HEAD(&dev->io_link_props);
 209	INIT_LIST_HEAD(&dev->p2p_link_props);
 210	INIT_LIST_HEAD(&dev->perf_props);
 211
 212	list_add_tail(&dev->list, device_list);
 213
 214	return dev;
 215}
 216
 217
 218#define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
 219		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
 220				  fmt, __VA_ARGS__))
 221#define sysfs_show_32bit_prop(buffer, offs, name, value) \
 222		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
 223#define sysfs_show_64bit_prop(buffer, offs, name, value) \
 224		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
 225#define sysfs_show_32bit_val(buffer, offs, value) \
 226		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
 227#define sysfs_show_str_val(buffer, offs, value) \
 228		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
 229
 230static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
 231		char *buffer)
 232{
 233	int offs = 0;
 234
 235	/* Making sure that the buffer is an empty string */
 236	buffer[0] = 0;
 237
 238	if (attr == &sys_props.attr_genid) {
 239		sysfs_show_32bit_val(buffer, offs,
 240				     sys_props.generation_count);
 241	} else if (attr == &sys_props.attr_props) {
 242		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
 243				      sys_props.platform_oem);
 244		sysfs_show_64bit_prop(buffer, offs, "platform_id",
 245				      sys_props.platform_id);
 246		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
 247				      sys_props.platform_rev);
 248	} else {
 249		offs = -EINVAL;
 250	}
 251
 252	return offs;
 253}
 254
 255static void kfd_topology_kobj_release(struct kobject *kobj)
 256{
 257	kfree(kobj);
 258}
 259
 260static const struct sysfs_ops sysprops_ops = {
 261	.show = sysprops_show,
 262};
 263
 264static const struct kobj_type sysprops_type = {
 265	.release = kfd_topology_kobj_release,
 266	.sysfs_ops = &sysprops_ops,
 267};
 268
 269static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
 270		char *buffer)
 271{
 272	int offs = 0;
 273	struct kfd_iolink_properties *iolink;
 274
 275	/* Making sure that the buffer is an empty string */
 276	buffer[0] = 0;
 277
 278	iolink = container_of(attr, struct kfd_iolink_properties, attr);
 279	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
 280		return -EPERM;
 281	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
 282	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
 283	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
 284	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
 285	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
 286	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
 287	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
 288	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
 289	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
 290			      iolink->min_bandwidth);
 291	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
 292			      iolink->max_bandwidth);
 293	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
 294			      iolink->rec_transfer_size);
 295	sysfs_show_32bit_prop(buffer, offs, "recommended_sdma_engine_id_mask",
 296			      iolink->rec_sdma_eng_id_mask);
 297	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
 298
 299	return offs;
 300}
 301
 302static const struct sysfs_ops iolink_ops = {
 303	.show = iolink_show,
 304};
 305
 306static const struct kobj_type iolink_type = {
 307	.release = kfd_topology_kobj_release,
 308	.sysfs_ops = &iolink_ops,
 309};
 310
 311static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
 312		char *buffer)
 313{
 314	int offs = 0;
 315	struct kfd_mem_properties *mem;
 316
 317	/* Making sure that the buffer is an empty string */
 318	buffer[0] = 0;
 319
 320	mem = container_of(attr, struct kfd_mem_properties, attr);
 321	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
 322		return -EPERM;
 323	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
 324	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
 325			      mem->size_in_bytes);
 326	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
 327	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
 328	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
 329			      mem->mem_clk_max);
 330
 331	return offs;
 332}
 333
 334static const struct sysfs_ops mem_ops = {
 335	.show = mem_show,
 336};
 337
 338static const struct kobj_type mem_type = {
 339	.release = kfd_topology_kobj_release,
 340	.sysfs_ops = &mem_ops,
 341};
 342
 343static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
 344		char *buffer)
 345{
 346	int offs = 0;
 347	uint32_t i, j;
 348	struct kfd_cache_properties *cache;
 349
 350	/* Making sure that the buffer is an empty string */
 351	buffer[0] = 0;
 
 352	cache = container_of(attr, struct kfd_cache_properties, attr);
 353	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
 354		return -EPERM;
 355	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
 356			cache->processor_id_low);
 357	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
 358	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
 359	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
 360			      cache->cacheline_size);
 361	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
 362			      cache->cachelines_per_tag);
 363	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
 364	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
 365	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
 366
 367	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
 368	for (i = 0; i < cache->sibling_map_size; i++)
 369		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
 370			/* Check each bit */
 371			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
 372						(cache->sibling_map[i] >> j) & 1);
 373
 
 
 
 
 374	/* Replace the last "," with end of line */
 375	buffer[offs-1] = '\n';
 376	return offs;
 377}
 378
 379static const struct sysfs_ops cache_ops = {
 380	.show = kfd_cache_show,
 381};
 382
 383static const struct kobj_type cache_type = {
 384	.release = kfd_topology_kobj_release,
 385	.sysfs_ops = &cache_ops,
 386};
 387
 388/****** Sysfs of Performance Counters ******/
 389
 390struct kfd_perf_attr {
 391	struct kobj_attribute attr;
 392	uint32_t data;
 393};
 394
 395static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
 396			char *buf)
 397{
 398	int offs = 0;
 399	struct kfd_perf_attr *attr;
 400
 401	buf[0] = 0;
 402	attr = container_of(attrs, struct kfd_perf_attr, attr);
 403	if (!attr->data) /* invalid data for PMC */
 404		return 0;
 405	else
 406		return sysfs_show_32bit_val(buf, offs, attr->data);
 407}
 408
 409#define KFD_PERF_DESC(_name, _data)			\
 410{							\
 411	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
 412	.data = _data,					\
 413}
 414
 415static struct kfd_perf_attr perf_attr_iommu[] = {
 416	KFD_PERF_DESC(max_concurrent, 0),
 417	KFD_PERF_DESC(num_counters, 0),
 418	KFD_PERF_DESC(counter_ids, 0),
 419};
 420/****************************************/
 421
 422static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
 423		char *buffer)
 424{
 425	int offs = 0;
 426	struct kfd_topology_device *dev;
 
 
 427	uint32_t log_max_watch_addr;
 428
 429	/* Making sure that the buffer is an empty string */
 430	buffer[0] = 0;
 431
 432	if (strcmp(attr->name, "gpu_id") == 0) {
 433		dev = container_of(attr, struct kfd_topology_device,
 434				attr_gpuid);
 435		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 436			return -EPERM;
 437		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
 438	}
 439
 440	if (strcmp(attr->name, "name") == 0) {
 441		dev = container_of(attr, struct kfd_topology_device,
 442				attr_name);
 443
 444		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 445			return -EPERM;
 446		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
 
 
 
 
 447	}
 448
 449	dev = container_of(attr, struct kfd_topology_device,
 450			attr_props);
 451	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
 452		return -EPERM;
 453	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
 454			      dev->node_props.cpu_cores_count);
 455	sysfs_show_32bit_prop(buffer, offs, "simd_count",
 456			      dev->gpu ? dev->node_props.simd_count : 0);
 457	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
 458			      dev->node_props.mem_banks_count);
 459	sysfs_show_32bit_prop(buffer, offs, "caches_count",
 460			      dev->node_props.caches_count);
 461	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
 462			      dev->node_props.io_links_count);
 463	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
 464			      dev->node_props.p2p_links_count);
 465	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
 466			      dev->node_props.cpu_core_id_base);
 467	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
 468			      dev->node_props.simd_id_base);
 469	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
 470			      dev->node_props.max_waves_per_simd);
 471	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
 472			      dev->node_props.lds_size_in_kb);
 473	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
 474			      dev->node_props.gds_size_in_kb);
 475	sysfs_show_32bit_prop(buffer, offs, "num_gws",
 476			      dev->node_props.num_gws);
 477	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
 478			      dev->node_props.wave_front_size);
 479	sysfs_show_32bit_prop(buffer, offs, "array_count",
 480			      dev->gpu ? (dev->node_props.array_count *
 481					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
 482	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
 483			      dev->node_props.simd_arrays_per_engine);
 484	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
 485			      dev->node_props.cu_per_simd_array);
 486	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
 487			      dev->node_props.simd_per_cu);
 488	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
 489			      dev->node_props.max_slots_scratch_cu);
 490	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
 491			      dev->node_props.gfx_target_version);
 492	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
 493			      dev->node_props.vendor_id);
 494	sysfs_show_32bit_prop(buffer, offs, "device_id",
 495			      dev->node_props.device_id);
 496	sysfs_show_32bit_prop(buffer, offs, "location_id",
 497			      dev->node_props.location_id);
 498	sysfs_show_32bit_prop(buffer, offs, "domain",
 499			      dev->node_props.domain);
 500	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
 501			      dev->node_props.drm_render_minor);
 502	sysfs_show_64bit_prop(buffer, offs, "hive_id",
 503			      dev->node_props.hive_id);
 504	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
 505			      dev->node_props.num_sdma_engines);
 506	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
 507			      dev->node_props.num_sdma_xgmi_engines);
 508	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
 509			      dev->node_props.num_sdma_queues_per_engine);
 510	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
 511			      dev->node_props.num_cp_queues);
 512
 513	if (dev->gpu) {
 514		log_max_watch_addr =
 515			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
 516
 517		if (log_max_watch_addr) {
 518			dev->node_props.capability |=
 519					HSA_CAP_WATCH_POINTS_SUPPORTED;
 520
 521			dev->node_props.capability |=
 522				((log_max_watch_addr <<
 523					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
 524				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
 525		}
 526
 527		if (dev->gpu->adev->asic_type == CHIP_TONGA)
 528			dev->node_props.capability |=
 529					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
 530
 531		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
 532			dev->node_props.max_engine_clk_fcompute);
 533
 534		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
 
 535
 536		sysfs_show_32bit_prop(buffer, offs, "fw_version",
 537				      dev->gpu->kfd->mec_fw_version);
 538		sysfs_show_32bit_prop(buffer, offs, "capability",
 539				      dev->node_props.capability);
 540		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
 541				      dev->node_props.debug_prop);
 542		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
 543				      dev->gpu->kfd->sdma_fw_version);
 544		sysfs_show_64bit_prop(buffer, offs, "unique_id",
 545				      dev->gpu->adev->unique_id);
 546		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
 547				      NUM_XCC(dev->gpu->xcc_mask));
 548	}
 549
 550	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
 551				     cpufreq_quick_get_max(0)/1000);
 552}
 553
 554static const struct sysfs_ops node_ops = {
 555	.show = node_show,
 556};
 557
 558static const struct kobj_type node_type = {
 559	.release = kfd_topology_kobj_release,
 560	.sysfs_ops = &node_ops,
 561};
 562
 563static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
 564{
 565	sysfs_remove_file(kobj, attr);
 566	kobject_del(kobj);
 567	kobject_put(kobj);
 568}
 569
 570static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
 571{
 572	struct kfd_iolink_properties *p2plink;
 573	struct kfd_iolink_properties *iolink;
 574	struct kfd_cache_properties *cache;
 575	struct kfd_mem_properties *mem;
 576	struct kfd_perf_properties *perf;
 577
 578	if (dev->kobj_iolink) {
 579		list_for_each_entry(iolink, &dev->io_link_props, list)
 580			if (iolink->kobj) {
 581				kfd_remove_sysfs_file(iolink->kobj,
 582							&iolink->attr);
 583				iolink->kobj = NULL;
 584			}
 585		kobject_del(dev->kobj_iolink);
 586		kobject_put(dev->kobj_iolink);
 587		dev->kobj_iolink = NULL;
 588	}
 589
 590	if (dev->kobj_p2plink) {
 591		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
 592			if (p2plink->kobj) {
 593				kfd_remove_sysfs_file(p2plink->kobj,
 594							&p2plink->attr);
 595				p2plink->kobj = NULL;
 596			}
 597		kobject_del(dev->kobj_p2plink);
 598		kobject_put(dev->kobj_p2plink);
 599		dev->kobj_p2plink = NULL;
 600	}
 601
 602	if (dev->kobj_cache) {
 603		list_for_each_entry(cache, &dev->cache_props, list)
 604			if (cache->kobj) {
 605				kfd_remove_sysfs_file(cache->kobj,
 606							&cache->attr);
 607				cache->kobj = NULL;
 608			}
 609		kobject_del(dev->kobj_cache);
 610		kobject_put(dev->kobj_cache);
 611		dev->kobj_cache = NULL;
 612	}
 613
 614	if (dev->kobj_mem) {
 615		list_for_each_entry(mem, &dev->mem_props, list)
 616			if (mem->kobj) {
 617				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
 618				mem->kobj = NULL;
 619			}
 620		kobject_del(dev->kobj_mem);
 621		kobject_put(dev->kobj_mem);
 622		dev->kobj_mem = NULL;
 623	}
 624
 625	if (dev->kobj_perf) {
 626		list_for_each_entry(perf, &dev->perf_props, list) {
 627			kfree(perf->attr_group);
 628			perf->attr_group = NULL;
 629		}
 630		kobject_del(dev->kobj_perf);
 631		kobject_put(dev->kobj_perf);
 632		dev->kobj_perf = NULL;
 633	}
 634
 635	if (dev->kobj_node) {
 636		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
 637		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
 638		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
 639		kobject_del(dev->kobj_node);
 640		kobject_put(dev->kobj_node);
 641		dev->kobj_node = NULL;
 642	}
 643}
 644
 645static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
 646		uint32_t id)
 647{
 648	struct kfd_iolink_properties *p2plink;
 649	struct kfd_iolink_properties *iolink;
 650	struct kfd_cache_properties *cache;
 651	struct kfd_mem_properties *mem;
 652	struct kfd_perf_properties *perf;
 653	int ret;
 654	uint32_t i, num_attrs;
 655	struct attribute **attrs;
 656
 657	if (WARN_ON(dev->kobj_node))
 658		return -EEXIST;
 659
 660	/*
 661	 * Creating the sysfs folders
 662	 */
 663	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
 664	if (!dev->kobj_node)
 665		return -ENOMEM;
 666
 667	ret = kobject_init_and_add(dev->kobj_node, &node_type,
 668			sys_props.kobj_nodes, "%d", id);
 669	if (ret < 0) {
 670		kobject_put(dev->kobj_node);
 671		return ret;
 672	}
 673
 674	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
 675	if (!dev->kobj_mem)
 676		return -ENOMEM;
 677
 678	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
 679	if (!dev->kobj_cache)
 680		return -ENOMEM;
 681
 682	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
 683	if (!dev->kobj_iolink)
 684		return -ENOMEM;
 685
 686	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
 687	if (!dev->kobj_p2plink)
 688		return -ENOMEM;
 689
 690	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
 691	if (!dev->kobj_perf)
 692		return -ENOMEM;
 693
 694	/*
 695	 * Creating sysfs files for node properties
 696	 */
 697	dev->attr_gpuid.name = "gpu_id";
 698	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
 699	sysfs_attr_init(&dev->attr_gpuid);
 700	dev->attr_name.name = "name";
 701	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
 702	sysfs_attr_init(&dev->attr_name);
 703	dev->attr_props.name = "properties";
 704	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
 705	sysfs_attr_init(&dev->attr_props);
 706	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
 707	if (ret < 0)
 708		return ret;
 709	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
 710	if (ret < 0)
 711		return ret;
 712	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
 713	if (ret < 0)
 714		return ret;
 715
 716	i = 0;
 717	list_for_each_entry(mem, &dev->mem_props, list) {
 718		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 719		if (!mem->kobj)
 720			return -ENOMEM;
 721		ret = kobject_init_and_add(mem->kobj, &mem_type,
 722				dev->kobj_mem, "%d", i);
 723		if (ret < 0) {
 724			kobject_put(mem->kobj);
 725			return ret;
 726		}
 727
 728		mem->attr.name = "properties";
 729		mem->attr.mode = KFD_SYSFS_FILE_MODE;
 730		sysfs_attr_init(&mem->attr);
 731		ret = sysfs_create_file(mem->kobj, &mem->attr);
 732		if (ret < 0)
 733			return ret;
 734		i++;
 735	}
 736
 737	i = 0;
 738	list_for_each_entry(cache, &dev->cache_props, list) {
 739		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 740		if (!cache->kobj)
 741			return -ENOMEM;
 742		ret = kobject_init_and_add(cache->kobj, &cache_type,
 743				dev->kobj_cache, "%d", i);
 744		if (ret < 0) {
 745			kobject_put(cache->kobj);
 746			return ret;
 747		}
 748
 749		cache->attr.name = "properties";
 750		cache->attr.mode = KFD_SYSFS_FILE_MODE;
 751		sysfs_attr_init(&cache->attr);
 752		ret = sysfs_create_file(cache->kobj, &cache->attr);
 753		if (ret < 0)
 754			return ret;
 755		i++;
 756	}
 757
 758	i = 0;
 759	list_for_each_entry(iolink, &dev->io_link_props, list) {
 760		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 761		if (!iolink->kobj)
 762			return -ENOMEM;
 763		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
 764				dev->kobj_iolink, "%d", i);
 765		if (ret < 0) {
 766			kobject_put(iolink->kobj);
 767			return ret;
 768		}
 769
 770		iolink->attr.name = "properties";
 771		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
 772		sysfs_attr_init(&iolink->attr);
 773		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
 774		if (ret < 0)
 775			return ret;
 776		i++;
 777	}
 778
 779	i = 0;
 780	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
 781		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
 782		if (!p2plink->kobj)
 783			return -ENOMEM;
 784		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
 785				dev->kobj_p2plink, "%d", i);
 786		if (ret < 0) {
 787			kobject_put(p2plink->kobj);
 788			return ret;
 789		}
 790
 791		p2plink->attr.name = "properties";
 792		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
 793		sysfs_attr_init(&p2plink->attr);
 794		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
 795		if (ret < 0)
 796			return ret;
 797		i++;
 798	}
 799
 800	/* All hardware blocks have the same number of attributes. */
 801	num_attrs = ARRAY_SIZE(perf_attr_iommu);
 802	list_for_each_entry(perf, &dev->perf_props, list) {
 803		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
 804			* num_attrs + sizeof(struct attribute_group),
 805			GFP_KERNEL);
 806		if (!perf->attr_group)
 807			return -ENOMEM;
 808
 809		attrs = (struct attribute **)(perf->attr_group + 1);
 810		if (!strcmp(perf->block_name, "iommu")) {
 811		/* Information of IOMMU's num_counters and counter_ids is shown
 812		 * under /sys/bus/event_source/devices/amd_iommu. We don't
 813		 * duplicate here.
 814		 */
 815			perf_attr_iommu[0].data = perf->max_concurrent;
 816			for (i = 0; i < num_attrs; i++)
 817				attrs[i] = &perf_attr_iommu[i].attr.attr;
 818		}
 819		perf->attr_group->name = perf->block_name;
 820		perf->attr_group->attrs = attrs;
 821		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
 822		if (ret < 0)
 823			return ret;
 824	}
 825
 826	return 0;
 827}
 828
 829/* Called with write topology lock acquired */
 830static int kfd_build_sysfs_node_tree(void)
 831{
 832	struct kfd_topology_device *dev;
 833	int ret;
 834	uint32_t i = 0;
 835
 836	list_for_each_entry(dev, &topology_device_list, list) {
 837		ret = kfd_build_sysfs_node_entry(dev, i);
 838		if (ret < 0)
 839			return ret;
 840		i++;
 841	}
 842
 843	return 0;
 844}
 845
 846/* Called with write topology lock acquired */
 847static void kfd_remove_sysfs_node_tree(void)
 848{
 849	struct kfd_topology_device *dev;
 850
 851	list_for_each_entry(dev, &topology_device_list, list)
 852		kfd_remove_sysfs_node_entry(dev);
 853}
 854
 855static int kfd_topology_update_sysfs(void)
 856{
 857	int ret;
 858
 
 859	if (!sys_props.kobj_topology) {
 860		sys_props.kobj_topology =
 861				kfd_alloc_struct(sys_props.kobj_topology);
 862		if (!sys_props.kobj_topology)
 863			return -ENOMEM;
 864
 865		ret = kobject_init_and_add(sys_props.kobj_topology,
 866				&sysprops_type,  &kfd_device->kobj,
 867				"topology");
 868		if (ret < 0) {
 869			kobject_put(sys_props.kobj_topology);
 870			return ret;
 871		}
 872
 873		sys_props.kobj_nodes = kobject_create_and_add("nodes",
 874				sys_props.kobj_topology);
 875		if (!sys_props.kobj_nodes)
 876			return -ENOMEM;
 877
 878		sys_props.attr_genid.name = "generation_id";
 879		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
 880		sysfs_attr_init(&sys_props.attr_genid);
 881		ret = sysfs_create_file(sys_props.kobj_topology,
 882				&sys_props.attr_genid);
 883		if (ret < 0)
 884			return ret;
 885
 886		sys_props.attr_props.name = "system_properties";
 887		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
 888		sysfs_attr_init(&sys_props.attr_props);
 889		ret = sysfs_create_file(sys_props.kobj_topology,
 890				&sys_props.attr_props);
 891		if (ret < 0)
 892			return ret;
 893	}
 894
 895	kfd_remove_sysfs_node_tree();
 896
 897	return kfd_build_sysfs_node_tree();
 898}
 899
 900static void kfd_topology_release_sysfs(void)
 901{
 902	kfd_remove_sysfs_node_tree();
 903	if (sys_props.kobj_topology) {
 904		sysfs_remove_file(sys_props.kobj_topology,
 905				&sys_props.attr_genid);
 906		sysfs_remove_file(sys_props.kobj_topology,
 907				&sys_props.attr_props);
 908		if (sys_props.kobj_nodes) {
 909			kobject_del(sys_props.kobj_nodes);
 910			kobject_put(sys_props.kobj_nodes);
 911			sys_props.kobj_nodes = NULL;
 912		}
 913		kobject_del(sys_props.kobj_topology);
 914		kobject_put(sys_props.kobj_topology);
 915		sys_props.kobj_topology = NULL;
 916	}
 917}
 918
 919/* Called with write topology_lock acquired */
 920static void kfd_topology_update_device_list(struct list_head *temp_list,
 921					struct list_head *master_list)
 922{
 923	while (!list_empty(temp_list)) {
 924		list_move_tail(temp_list->next, master_list);
 925		sys_props.num_devices++;
 926	}
 927}
 928
 929static void kfd_debug_print_topology(void)
 930{
 931	struct kfd_topology_device *dev;
 932
 933	down_read(&topology_lock);
 934
 935	dev = list_last_entry(&topology_device_list,
 936			struct kfd_topology_device, list);
 937	if (dev) {
 938		if (dev->node_props.cpu_cores_count &&
 939				dev->node_props.simd_count) {
 940			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
 941				dev->node_props.device_id,
 942				dev->node_props.vendor_id);
 943		} else if (dev->node_props.cpu_cores_count)
 944			pr_info("Topology: Add CPU node\n");
 945		else if (dev->node_props.simd_count)
 946			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
 947				dev->node_props.device_id,
 948				dev->node_props.vendor_id);
 949	}
 950	up_read(&topology_lock);
 951}
 952
 953/* Helper function for intializing platform_xx members of
 954 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
 955 */
 956static void kfd_update_system_properties(void)
 957{
 958	struct kfd_topology_device *dev;
 959
 960	down_read(&topology_lock);
 961	dev = list_last_entry(&topology_device_list,
 962			struct kfd_topology_device, list);
 963	if (dev) {
 964		sys_props.platform_id = dev->oem_id64;
 
 965		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
 966		sys_props.platform_rev = dev->oem_revision;
 967	}
 968	up_read(&topology_lock);
 969}
 970
 971static void find_system_memory(const struct dmi_header *dm,
 972	void *private)
 973{
 974	struct kfd_mem_properties *mem;
 975	u16 mem_width, mem_clock;
 976	struct kfd_topology_device *kdev =
 977		(struct kfd_topology_device *)private;
 978	const u8 *dmi_data = (const u8 *)(dm + 1);
 979
 980	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
 981		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
 982		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
 983		list_for_each_entry(mem, &kdev->mem_props, list) {
 984			if (mem_width != 0xFFFF && mem_width != 0)
 985				mem->width = mem_width;
 986			if (mem_clock != 0)
 987				mem->mem_clk_max = mem_clock;
 988		}
 989	}
 990}
 991
 
 
 
 
 
 
 
 
 
 
 
 992/* kfd_add_non_crat_information - Add information that is not currently
 993 *	defined in CRAT but is necessary for KFD topology
 994 * @dev - topology device to which addition info is added
 995 */
 996static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
 997{
 998	/* Check if CPU only node. */
 999	if (!kdev->gpu) {
1000		/* Add system memory information */
1001		dmi_walk(find_system_memory, kdev);
1002	}
1003	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1004}
1005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006int kfd_topology_init(void)
1007{
1008	void *crat_image = NULL;
1009	size_t image_size = 0;
1010	int ret;
1011	struct list_head temp_topology_device_list;
1012	int cpu_only_node = 0;
1013	struct kfd_topology_device *kdev;
1014	int proximity_domain;
1015
1016	/* topology_device_list - Master list of all topology devices
1017	 * temp_topology_device_list - temporary list created while parsing CRAT
1018	 * or VCRAT. Once parsing is complete the contents of list is moved to
1019	 * topology_device_list
1020	 */
1021
1022	/* Initialize the head for the both the lists */
1023	INIT_LIST_HEAD(&topology_device_list);
1024	INIT_LIST_HEAD(&temp_topology_device_list);
1025	init_rwsem(&topology_lock);
1026
1027	memset(&sys_props, 0, sizeof(sys_props));
1028
1029	/* Proximity domains in ACPI CRAT tables start counting at
1030	 * 0. The same should be true for virtual CRAT tables created
1031	 * at this stage. GPUs added later in kfd_topology_add_device
1032	 * use a counter.
1033	 */
1034	proximity_domain = 0;
1035
1036	ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1037					    COMPUTE_UNIT_CPU, NULL,
1038					    proximity_domain);
1039	cpu_only_node = 1;
1040	if (ret) {
1041		pr_err("Error creating VCRAT table for CPU\n");
1042		return ret;
 
 
 
 
 
 
 
 
 
 
 
1043	}
1044
1045	ret = kfd_parse_crat_table(crat_image,
1046				   &temp_topology_device_list,
1047				   proximity_domain);
1048	if (ret) {
1049		pr_err("Error parsing VCRAT table for CPU\n");
1050		goto err;
 
 
 
 
 
 
 
 
 
 
 
1051	}
1052
1053	kdev = list_first_entry(&temp_topology_device_list,
1054				struct kfd_topology_device, list);
 
1055
1056	down_write(&topology_lock);
1057	kfd_topology_update_device_list(&temp_topology_device_list,
1058					&topology_device_list);
1059	topology_crat_proximity_domain = sys_props.num_devices-1;
1060	ret = kfd_topology_update_sysfs();
1061	up_write(&topology_lock);
1062
1063	if (!ret) {
1064		sys_props.generation_count++;
1065		kfd_update_system_properties();
1066		kfd_debug_print_topology();
 
1067	} else
1068		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1069
1070	/* For nodes with GPU, this information gets added
1071	 * when GPU is detected (kfd_topology_add_device).
1072	 */
1073	if (cpu_only_node) {
1074		/* Add additional information to CPU only node created above */
1075		down_write(&topology_lock);
1076		kdev = list_first_entry(&topology_device_list,
1077				struct kfd_topology_device, list);
1078		up_write(&topology_lock);
1079		kfd_add_non_crat_information(kdev);
1080	}
1081
1082err:
1083	kfd_destroy_crat_image(crat_image);
1084	return ret;
1085}
1086
1087void kfd_topology_shutdown(void)
1088{
1089	down_write(&topology_lock);
1090	kfd_topology_release_sysfs();
1091	kfd_release_live_view();
1092	up_write(&topology_lock);
1093}
1094
1095static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1096{
1097	uint32_t gpu_id;
1098	uint32_t buf[8];
1099	uint64_t local_mem_size;
1100	struct kfd_topology_device *dev;
1101	bool is_unique;
1102	uint8_t *crc_buf;
1103
1104	if (!gpu)
1105		return 0;
1106
1107	crc_buf = (uint8_t *)&buf;
1108	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1109			gpu->local_mem_info.local_mem_size_public;
1110	buf[0] = gpu->adev->pdev->devfn;
1111	buf[1] = gpu->adev->pdev->subsystem_vendor |
1112		(gpu->adev->pdev->subsystem_device << 16);
1113	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1114	buf[3] = gpu->adev->pdev->device;
1115	buf[4] = gpu->adev->pdev->bus->number;
 
1116	buf[5] = lower_32_bits(local_mem_size);
1117	buf[6] = upper_32_bits(local_mem_size);
1118	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1119
1120	gpu_id = crc16(0, crc_buf, sizeof(buf)) &
1121		 ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1122
1123	/* There is a very small possibility when generating a
1124	 * 16 (KFD_GPU_ID_HASH_WIDTH) bit value from 8 word buffer
1125	 * that the value could be 0 or non-unique. So, check if
1126	 * it is unique and non-zero. If not unique increment till
1127	 * unique one is found. In case of overflow, restart from 1
1128	 */
1129
1130	down_read(&topology_lock);
1131	do {
1132		is_unique = true;
1133		if (!gpu_id)
1134			gpu_id = 1;
1135		list_for_each_entry(dev, &topology_device_list, list) {
1136			if (dev->gpu && dev->gpu_id == gpu_id) {
1137				is_unique = false;
1138				break;
1139			}
1140		}
1141		if (unlikely(!is_unique))
1142			gpu_id = (gpu_id + 1) &
1143				  ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1144	} while (!is_unique);
1145	up_read(&topology_lock);
1146
1147	return gpu_id;
1148}
1149/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1150 *		the GPU device is not already present in the topology device
1151 *		list then return NULL. This means a new topology device has to
1152 *		be created for this GPU.
 
 
1153 */
1154static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1155{
1156	struct kfd_topology_device *dev;
1157	struct kfd_topology_device *out_dev = NULL;
1158	struct kfd_mem_properties *mem;
1159	struct kfd_cache_properties *cache;
1160	struct kfd_iolink_properties *iolink;
1161	struct kfd_iolink_properties *p2plink;
1162
1163	list_for_each_entry(dev, &topology_device_list, list) {
1164		/* Discrete GPUs need their own topology device list
1165		 * entries. Don't assign them to CPU/APU nodes.
1166		 */
1167		if (dev->node_props.cpu_cores_count)
1168			continue;
1169
 
 
1170		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1171			dev->gpu = gpu;
1172			out_dev = dev;
1173
1174			list_for_each_entry(mem, &dev->mem_props, list)
1175				mem->gpu = dev->gpu;
1176			list_for_each_entry(cache, &dev->cache_props, list)
1177				cache->gpu = dev->gpu;
1178			list_for_each_entry(iolink, &dev->io_link_props, list)
1179				iolink->gpu = dev->gpu;
1180			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1181				p2plink->gpu = dev->gpu;
1182			break;
1183		}
1184	}
1185	return out_dev;
1186}
1187
1188static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1189{
1190	/*
1191	 * TODO: Generate an event for thunk about the arrival/removal
1192	 * of the GPU
1193	 */
1194}
1195
1196/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1197 *		patch this after CRAT parsing.
1198 */
1199static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1200{
1201	struct kfd_mem_properties *mem;
1202	struct kfd_local_mem_info local_mem_info;
1203
1204	if (!dev)
1205		return;
1206
1207	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1208	 * single bank of VRAM local memory.
1209	 * for dGPUs - VCRAT reports only one bank of Local Memory
1210	 * for APUs - If CRAT from ACPI reports more than one bank, then
1211	 *	all the banks will report the same mem_clk_max information
1212	 */
1213	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1214					 dev->gpu->xcp);
1215
1216	list_for_each_entry(mem, &dev->mem_props, list)
1217		mem->mem_clk_max = local_mem_info.mem_clk_max;
1218}
1219
1220static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1221					struct kfd_topology_device *target_gpu_dev,
1222					struct kfd_iolink_properties *link)
1223{
1224	/* xgmi always supports atomics between links. */
1225	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1226		return;
1227
1228	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1229	if (target_gpu_dev) {
1230		uint32_t cap;
1231
1232		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1233				PCI_EXP_DEVCAP2, &cap);
1234
1235		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1236			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1237			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1238				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1239	/* set gpu (dev) flags. */
1240	} else {
1241		if (!dev->gpu->kfd->pci_atomic_requested ||
1242				dev->gpu->adev->asic_type == CHIP_HAWAII)
1243			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1244				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1245	}
1246}
1247
1248static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1249		struct kfd_iolink_properties *outbound_link,
1250		struct kfd_iolink_properties *inbound_link)
1251{
1252	/* CPU -> GPU with PCIe */
1253	if (!to_dev->gpu &&
1254	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1255		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1256
1257	if (to_dev->gpu) {
1258		/* GPU <-> GPU with PCIe and
1259		 * Vega20 with XGMI
1260		 */
1261		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1262		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1263		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1264			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1265			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1266		}
1267	}
1268}
1269
1270#define REC_SDMA_NUM_GPU	8
1271static const int rec_sdma_eng_map[REC_SDMA_NUM_GPU][REC_SDMA_NUM_GPU] = {
1272							{ -1, 14, 12, 2, 4, 8, 10, 6 },
1273							{ 14, -1, 2, 10, 8, 4, 6, 12 },
1274							{ 10, 2, -1, 12, 14, 6, 4, 8 },
1275							{ 2, 12, 10, -1, 6, 14, 8, 4 },
1276							{ 4, 8, 14, 6, -1, 10, 12, 2 },
1277							{ 8, 4, 6, 14, 12, -1, 2, 10 },
1278							{ 10, 6, 4, 8, 12, 2, -1, 14 },
1279							{ 6, 12, 8, 4, 2, 10, 14, -1 }};
1280
1281static void kfd_set_recommended_sdma_engines(struct kfd_topology_device *to_dev,
1282					     struct kfd_iolink_properties *outbound_link,
1283					     struct kfd_iolink_properties *inbound_link)
1284{
1285	struct kfd_node *gpu = outbound_link->gpu;
1286	struct amdgpu_device *adev = gpu->adev;
1287	int num_xgmi_nodes = adev->gmc.xgmi.num_physical_nodes;
1288	bool support_rec_eng = !amdgpu_sriov_vf(adev) && to_dev->gpu &&
1289		adev->aid_mask && num_xgmi_nodes && gpu->kfd->num_nodes == 1 &&
1290		kfd_get_num_xgmi_sdma_engines(gpu) >= 14 &&
1291		(!(adev->flags & AMD_IS_APU) && num_xgmi_nodes == 8);
1292
1293	if (support_rec_eng) {
1294		int src_socket_id = adev->gmc.xgmi.physical_node_id;
1295		int dst_socket_id = to_dev->gpu->adev->gmc.xgmi.physical_node_id;
1296
1297		outbound_link->rec_sdma_eng_id_mask =
1298			1 << rec_sdma_eng_map[src_socket_id][dst_socket_id];
1299		inbound_link->rec_sdma_eng_id_mask =
1300			1 << rec_sdma_eng_map[dst_socket_id][src_socket_id];
1301	} else {
1302		int num_sdma_eng = kfd_get_num_sdma_engines(gpu);
1303		int i, eng_offset = 0;
1304
1305		if (outbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1306		    kfd_get_num_xgmi_sdma_engines(gpu) && to_dev->gpu) {
1307			eng_offset = num_sdma_eng;
1308			num_sdma_eng = kfd_get_num_xgmi_sdma_engines(gpu);
1309		}
1310
1311		for (i = 0; i < num_sdma_eng; i++) {
1312			outbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset));
1313			inbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset));
1314		}
1315	}
1316}
1317
1318static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1319{
1320	struct kfd_iolink_properties *link, *inbound_link;
1321	struct kfd_topology_device *peer_dev;
1322
1323	if (!dev || !dev->gpu)
1324		return;
1325
1326	/* GPU only creates direct links so apply flags setting to all */
1327	list_for_each_entry(link, &dev->io_link_props, list) {
1328		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1329		kfd_set_iolink_no_atomics(dev, NULL, link);
1330		peer_dev = kfd_topology_device_by_proximity_domain(
1331				link->node_to);
1332
1333		if (!peer_dev)
1334			continue;
1335
1336		/* Include the CPU peer in GPU hive if connected over xGMI. */
1337		if (!peer_dev->gpu &&
1338		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1339			/*
1340			 * If the GPU is not part of a GPU hive, use its pci
1341			 * device location as the hive ID to bind with the CPU.
1342			 */
1343			if (!dev->node_props.hive_id)
1344				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1345			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1346		}
1347
1348		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1349									list) {
1350			if (inbound_link->node_to != link->node_from)
1351				continue;
1352
1353			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1354			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1355			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1356			kfd_set_recommended_sdma_engines(peer_dev, link, inbound_link);
1357		}
1358	}
1359
1360	/* Create indirect links so apply flags setting to all */
1361	list_for_each_entry(link, &dev->p2p_link_props, list) {
1362		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1363		kfd_set_iolink_no_atomics(dev, NULL, link);
1364		peer_dev = kfd_topology_device_by_proximity_domain(
1365				link->node_to);
1366
1367		if (!peer_dev)
1368			continue;
1369
1370		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1371									list) {
1372			if (inbound_link->node_to != link->node_from)
1373				continue;
1374
1375			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1376			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1377			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1378		}
1379	}
1380}
1381
1382static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1383				struct kfd_iolink_properties *p2plink)
1384{
1385	int ret;
1386
1387	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1388	if (!p2plink->kobj)
1389		return -ENOMEM;
1390
1391	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1392			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1393	if (ret < 0) {
1394		kobject_put(p2plink->kobj);
1395		return ret;
1396	}
1397
1398	p2plink->attr.name = "properties";
1399	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1400	sysfs_attr_init(&p2plink->attr);
1401	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1402	if (ret < 0)
1403		return ret;
1404
1405	return 0;
1406}
1407
1408static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1409{
1410	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1411	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1412	struct kfd_topology_device *cpu_dev;
1413	int ret = 0;
1414	int i, num_cpu;
1415
1416	num_cpu = 0;
1417	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1418		if (cpu_dev->gpu)
1419			break;
1420		num_cpu++;
1421	}
1422
1423	if (list_empty(&kdev->io_link_props))
1424		return -ENODATA;
1425
1426	gpu_link = list_first_entry(&kdev->io_link_props,
1427				    struct kfd_iolink_properties, list);
1428
1429	for (i = 0; i < num_cpu; i++) {
1430		/* CPU <--> GPU */
1431		if (gpu_link->node_to == i)
1432			continue;
1433
1434		/* find CPU <-->  CPU links */
1435		cpu_link = NULL;
1436		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1437		if (cpu_dev) {
1438			list_for_each_entry(tmp_link,
1439					&cpu_dev->io_link_props, list) {
1440				if (tmp_link->node_to == gpu_link->node_to) {
1441					cpu_link = tmp_link;
1442					break;
1443				}
1444			}
1445		}
1446
1447		if (!cpu_link)
1448			return -ENOMEM;
1449
1450		/* CPU <--> CPU <--> GPU, GPU node*/
1451		props = kfd_alloc_struct(props);
1452		if (!props)
1453			return -ENOMEM;
1454
1455		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1456		props->weight = gpu_link->weight + cpu_link->weight;
1457		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1458		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1459		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1460		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1461
1462		props->node_from = gpu_node;
1463		props->node_to = i;
1464		kdev->node_props.p2p_links_count++;
1465		list_add_tail(&props->list, &kdev->p2p_link_props);
1466		ret = kfd_build_p2p_node_entry(kdev, props);
1467		if (ret < 0)
1468			return ret;
1469
1470		/* for small Bar, no CPU --> GPU in-direct links */
1471		if (kfd_dev_is_large_bar(kdev->gpu)) {
1472			/* CPU <--> CPU <--> GPU, CPU node*/
1473			props2 = kfd_alloc_struct(props2);
1474			if (!props2)
1475				return -ENOMEM;
1476
1477			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1478			props2->node_from = i;
1479			props2->node_to = gpu_node;
1480			props2->kobj = NULL;
1481			cpu_dev->node_props.p2p_links_count++;
1482			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1483			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1484			if (ret < 0)
1485				return ret;
1486		}
1487	}
1488	return ret;
1489}
1490
1491#if defined(CONFIG_HSA_AMD_P2P)
1492static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1493		struct kfd_topology_device *peer, int from, int to)
1494{
1495	struct kfd_iolink_properties *props = NULL;
1496	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1497	struct kfd_topology_device *cpu_dev;
1498	int ret = 0;
1499
1500	if (!amdgpu_device_is_peer_accessible(
1501				kdev->gpu->adev,
1502				peer->gpu->adev))
1503		return ret;
1504
1505	if (list_empty(&kdev->io_link_props))
1506		return -ENODATA;
1507
1508	iolink1 = list_first_entry(&kdev->io_link_props,
1509				   struct kfd_iolink_properties, list);
1510
1511	if (list_empty(&peer->io_link_props))
1512		return -ENODATA;
1513
1514	iolink2 = list_first_entry(&peer->io_link_props,
1515				   struct kfd_iolink_properties, list);
1516
1517	props = kfd_alloc_struct(props);
1518	if (!props)
1519		return -ENOMEM;
1520
1521	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1522
1523	props->weight = iolink1->weight + iolink2->weight;
1524	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1525	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1526	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1527	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1528
1529	if (iolink1->node_to != iolink2->node_to) {
1530		/* CPU->CPU  link*/
1531		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1532		if (cpu_dev) {
1533			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1534				if (iolink3->node_to != iolink2->node_to)
1535					continue;
1536
1537				props->weight += iolink3->weight;
1538				props->min_latency += iolink3->min_latency;
1539				props->max_latency += iolink3->max_latency;
1540				props->min_bandwidth = min(props->min_bandwidth,
1541							   iolink3->min_bandwidth);
1542				props->max_bandwidth = min(props->max_bandwidth,
1543							   iolink3->max_bandwidth);
1544				break;
1545			}
1546		} else {
1547			WARN(1, "CPU node not found");
1548		}
1549	}
1550
1551	props->node_from = from;
1552	props->node_to = to;
1553	peer->node_props.p2p_links_count++;
1554	list_add_tail(&props->list, &peer->p2p_link_props);
1555	ret = kfd_build_p2p_node_entry(peer, props);
1556
1557	return ret;
1558}
1559#endif
1560
1561static int kfd_dev_create_p2p_links(void)
1562{
 
1563	struct kfd_topology_device *dev;
1564	struct kfd_topology_device *new_dev;
1565#if defined(CONFIG_HSA_AMD_P2P)
1566	uint32_t i;
1567#endif
1568	uint32_t k;
1569	int ret = 0;
1570
1571	k = 0;
1572	list_for_each_entry(dev, &topology_device_list, list)
1573		k++;
1574	if (k < 2)
1575		return 0;
1576
1577	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1578	if (WARN_ON(!new_dev->gpu))
1579		return 0;
1580
1581	k--;
1582
1583	/* create in-direct links */
1584	ret = kfd_create_indirect_link_prop(new_dev, k);
1585	if (ret < 0)
1586		goto out;
1587
1588	/* create p2p links */
1589#if defined(CONFIG_HSA_AMD_P2P)
1590	i = 0;
1591	list_for_each_entry(dev, &topology_device_list, list) {
1592		if (dev == new_dev)
1593			break;
1594		if (!dev->gpu || !dev->gpu->adev ||
1595		    (dev->gpu->kfd->hive_id &&
1596		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1597			goto next;
1598
1599		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1600		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1601		if (ret < 0)
1602			goto out;
1603
1604		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1605		if (ret < 0)
1606			goto out;
1607next:
1608		i++;
1609	}
1610#endif
1611
1612out:
1613	return ret;
1614}
1615
1616/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1617static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1618				struct kfd_gpu_cache_info *pcache_info,
1619				int cu_bitmask,
1620				int cache_type, unsigned int cu_processor_id,
1621				int cu_block)
1622{
1623	unsigned int cu_sibling_map_mask;
1624	int first_active_cu;
1625	struct kfd_cache_properties *pcache = NULL;
1626
1627	cu_sibling_map_mask = cu_bitmask;
1628	cu_sibling_map_mask >>= cu_block;
1629	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1630	first_active_cu = ffs(cu_sibling_map_mask);
1631
1632	/* CU could be inactive. In case of shared cache find the first active
1633	 * CU. and incase of non-shared cache check if the CU is inactive. If
1634	 * inactive active skip it
1635	 */
1636	if (first_active_cu) {
1637		pcache = kfd_alloc_struct(pcache);
1638		if (!pcache)
1639			return -ENOMEM;
1640
1641		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1642		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1643		pcache->cache_level = pcache_info[cache_type].cache_level;
1644		pcache->cache_size = pcache_info[cache_type].cache_size;
1645		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1646
1647		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1648			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1649		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1650			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1651		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1652			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1653		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1654			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1655
1656		/* Sibling map is w.r.t processor_id_low, so shift out
1657		 * inactive CU
1658		 */
1659		cu_sibling_map_mask =
1660			cu_sibling_map_mask >> (first_active_cu - 1);
1661
1662		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1663		pcache->sibling_map[1] =
1664				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1665		pcache->sibling_map[2] =
1666				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1667		pcache->sibling_map[3] =
1668				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1669
1670		pcache->sibling_map_size = 4;
1671		*props_ext = pcache;
1672
1673		return 0;
1674	}
1675	return 1;
1676}
1677
1678/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1679static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1680				struct kfd_gpu_cache_info *pcache_info,
1681				struct amdgpu_cu_info *cu_info,
1682				struct amdgpu_gfx_config *gfx_info,
1683				int cache_type, unsigned int cu_processor_id,
1684				struct kfd_node *knode)
1685{
1686	unsigned int cu_sibling_map_mask;
1687	int first_active_cu;
1688	int i, j, k, xcc, start, end;
1689	int num_xcc = NUM_XCC(knode->xcc_mask);
1690	struct kfd_cache_properties *pcache = NULL;
1691	enum amdgpu_memory_partition mode;
1692	struct amdgpu_device *adev = knode->adev;
1693
1694	start = ffs(knode->xcc_mask) - 1;
1695	end = start + num_xcc;
1696	cu_sibling_map_mask = cu_info->bitmap[start][0][0];
1697	cu_sibling_map_mask &=
1698		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1699	first_active_cu = ffs(cu_sibling_map_mask);
1700
1701	/* CU could be inactive. In case of shared cache find the first active
1702	 * CU. and incase of non-shared cache check if the CU is inactive. If
1703	 * inactive active skip it
1704	 */
1705	if (first_active_cu) {
1706		pcache = kfd_alloc_struct(pcache);
1707		if (!pcache)
1708			return -ENOMEM;
1709
1710		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1711		pcache->processor_id_low = cu_processor_id
1712					+ (first_active_cu - 1);
1713		pcache->cache_level = pcache_info[cache_type].cache_level;
1714		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1715
1716		if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3) ||
1717		    KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 4))
1718			mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1719		else
1720			mode = UNKNOWN_MEMORY_PARTITION_MODE;
1721
1722		pcache->cache_size = pcache_info[cache_type].cache_size;
1723		/* Partition mode only affects L3 cache size */
1724		if (mode && pcache->cache_level == 3)
1725			pcache->cache_size /= mode;
1726
1727		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1728			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1729		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1730			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1731		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1732			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1733		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1734			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1735
1736		/* Sibling map is w.r.t processor_id_low, so shift out
1737		 * inactive CU
1738		 */
1739		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1740		k = 0;
1741
1742		for (xcc = start; xcc < end; xcc++) {
1743			for (i = 0; i < gfx_info->max_shader_engines; i++) {
1744				for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1745					pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1746					pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1747					pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1748					pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1749					k += 4;
1750
1751					cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1752					cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1753				}
1754			}
1755		}
1756		pcache->sibling_map_size = k;
1757		*props_ext = pcache;
1758		return 0;
1759	}
1760	return 1;
1761}
1762
1763#define KFD_MAX_CACHE_TYPES 6
1764
1765/* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1766 * tables
1767 */
1768static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1769{
1770	struct kfd_gpu_cache_info *pcache_info = NULL;
1771	int i, j, k, xcc, start, end;
1772	int ct = 0;
1773	unsigned int cu_processor_id;
1774	int ret;
1775	unsigned int num_cu_shared;
1776	struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1777	struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1778	int gpu_processor_id;
1779	struct kfd_cache_properties *props_ext;
1780	int num_of_entries = 0;
1781	int num_of_cache_types = 0;
1782	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1783
1784
1785	gpu_processor_id = dev->node_props.simd_id_base;
1786
1787	memset(cache_info, 0, sizeof(cache_info));
1788	pcache_info = cache_info;
1789	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1790	if (!num_of_cache_types) {
1791		pr_warn("no cache info found\n");
1792		return;
1793	}
1794
1795	/* For each type of cache listed in the kfd_gpu_cache_info table,
1796	 * go through all available Compute Units.
1797	 * The [i,j,k] loop will
1798	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1799	 *			will parse through all available CU
1800	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1801	 *			then it will consider only one CU from
1802	 *			the shared unit
1803	 */
1804	start = ffs(kdev->xcc_mask) - 1;
1805	end = start + NUM_XCC(kdev->xcc_mask);
1806
1807	for (ct = 0; ct < num_of_cache_types; ct++) {
1808		cu_processor_id = gpu_processor_id;
1809		if (pcache_info[ct].cache_level == 1) {
1810			for (xcc = start; xcc < end; xcc++) {
1811				for (i = 0; i < gfx_info->max_shader_engines; i++) {
1812					for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1813						for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1814
1815							ret = fill_in_l1_pcache(&props_ext, pcache_info,
1816										cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1817										cu_processor_id, k);
1818
1819							if (ret < 0)
1820								break;
1821
1822							if (!ret) {
1823								num_of_entries++;
1824								list_add_tail(&props_ext->list, &dev->cache_props);
1825							}
1826
1827							/* Move to next CU block */
1828							num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1829								gfx_info->max_cu_per_sh) ?
1830								pcache_info[ct].num_cu_shared :
1831								(gfx_info->max_cu_per_sh - k);
1832							cu_processor_id += num_cu_shared;
1833						}
1834					}
1835				}
1836			}
1837		} else {
1838			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1839						   cu_info, gfx_info, ct, cu_processor_id, kdev);
1840
1841			if (ret < 0)
1842				break;
1843
1844			if (!ret) {
1845				num_of_entries++;
1846				list_add_tail(&props_ext->list, &dev->cache_props);
1847			}
1848		}
1849	}
1850	dev->node_props.caches_count += num_of_entries;
1851	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1852}
1853
1854static int kfd_topology_add_device_locked(struct kfd_node *gpu,
1855					  struct kfd_topology_device **dev)
1856{
1857	int proximity_domain = ++topology_crat_proximity_domain;
1858	struct list_head temp_topology_device_list;
1859	void *crat_image = NULL;
1860	size_t image_size = 0;
1861	int res;
1862
1863	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1864					    COMPUTE_UNIT_GPU, gpu,
1865					    proximity_domain);
1866	if (res) {
1867		dev_err(gpu->adev->dev, "Error creating VCRAT\n");
1868		topology_crat_proximity_domain--;
1869		goto err;
1870	}
1871
1872	INIT_LIST_HEAD(&temp_topology_device_list);
1873
1874	res = kfd_parse_crat_table(crat_image,
1875				   &temp_topology_device_list,
1876				   proximity_domain);
1877	if (res) {
1878		dev_err(gpu->adev->dev, "Error parsing VCRAT\n");
1879		topology_crat_proximity_domain--;
1880		goto err;
1881	}
1882
1883	kfd_topology_update_device_list(&temp_topology_device_list,
1884					&topology_device_list);
1885
1886	*dev = kfd_assign_gpu(gpu);
1887	if (WARN_ON(!*dev)) {
1888		res = -ENODEV;
1889		goto err;
1890	}
1891
1892	/* Fill the cache affinity information here for the GPUs
1893	 * using VCRAT
1894	 */
1895	kfd_fill_cache_non_crat_info(*dev, gpu);
1896
1897	/* Update the SYSFS tree, since we added another topology
1898	 * device
1899	 */
1900	res = kfd_topology_update_sysfs();
1901	if (!res)
1902		sys_props.generation_count++;
1903	else
1904		dev_err(gpu->adev->dev, "Failed to update GPU to sysfs topology. res=%d\n",
1905			res);
1906
1907err:
1908	kfd_destroy_crat_image(crat_image);
1909	return res;
1910}
1911
1912static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1913{
1914	bool firmware_supported = true;
1915
1916	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1917			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1918		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1919						AMDGPU_MES_API_VERSION_MASK) >>
1920						AMDGPU_MES_API_VERSION_SHIFT;
1921		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1922						AMDGPU_MES_VERSION_MASK;
1923
1924		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1925		goto out;
1926	}
1927
1928	/*
1929	 * Note: Any unlisted devices here are assumed to support exception handling.
1930	 * Add additional checks here as needed.
1931	 */
1932	switch (KFD_GC_VERSION(dev->gpu)) {
1933	case IP_VERSION(9, 0, 1):
1934		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1935		break;
1936	case IP_VERSION(9, 1, 0):
1937	case IP_VERSION(9, 2, 1):
1938	case IP_VERSION(9, 2, 2):
1939	case IP_VERSION(9, 3, 0):
1940	case IP_VERSION(9, 4, 0):
1941		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1942		break;
1943	case IP_VERSION(9, 4, 1):
1944		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1945		break;
1946	case IP_VERSION(9, 4, 2):
1947		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1948		break;
1949	case IP_VERSION(10, 1, 10):
1950	case IP_VERSION(10, 1, 2):
1951	case IP_VERSION(10, 1, 1):
1952		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1953		break;
1954	case IP_VERSION(10, 3, 0):
1955	case IP_VERSION(10, 3, 2):
1956	case IP_VERSION(10, 3, 1):
1957	case IP_VERSION(10, 3, 4):
1958	case IP_VERSION(10, 3, 5):
1959		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1960		break;
1961	case IP_VERSION(10, 1, 3):
1962	case IP_VERSION(10, 3, 3):
1963		firmware_supported = false;
1964		break;
1965	default:
1966		break;
1967	}
1968
1969out:
1970	if (firmware_supported)
1971		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1972}
1973
1974static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1975{
1976	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1977				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1978				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1979
1980	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1981			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1982			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1983
1984	if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1985		dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1986
1987	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1988		if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3) ||
1989		    KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 4))
1990			dev->node_props.debug_prop |=
1991				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
1992				HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
1993		else
1994			dev->node_props.debug_prop |=
1995				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1996				HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1997
1998		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
1999			dev->node_props.capability |=
2000				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
2001
2002		dev->node_props.capability |= HSA_CAP_PER_QUEUE_RESET_SUPPORTED;
2003	} else {
2004		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
2005					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
2006
2007		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0))
2008			dev->node_props.capability |=
2009				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
2010
2011		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(12, 0, 0))
2012			dev->node_props.capability |=
2013				HSA_CAP_TRAP_DEBUG_PRECISE_ALU_OPERATIONS_SUPPORTED;
2014	}
2015
2016	kfd_topology_set_dbg_firmware_support(dev);
2017}
2018
2019int kfd_topology_add_device(struct kfd_node *gpu)
2020{
2021	uint32_t gpu_id;
2022	struct kfd_topology_device *dev;
2023	int res = 0;
2024	int i;
2025	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
2026	struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
2027	struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
2028
2029	if (gpu->xcp && !gpu->xcp->ddev) {
2030		dev_warn(gpu->adev->dev,
2031			 "Won't add GPU to topology since it has no drm node assigned.");
2032		return 0;
2033	} else {
2034		dev_dbg(gpu->adev->dev, "Adding new GPU to topology\n");
2035	}
2036
2037	/* Check to see if this gpu device exists in the topology_device_list.
2038	 * If so, assign the gpu to that device,
2039	 * else create a Virtual CRAT for this gpu device and then parse that
2040	 * CRAT to create a new topology device. Once created assign the gpu to
2041	 * that topology device
2042	 */
2043	down_write(&topology_lock);
2044	dev = kfd_assign_gpu(gpu);
2045	if (!dev)
2046		res = kfd_topology_add_device_locked(gpu, &dev);
2047	up_write(&topology_lock);
2048	if (res)
2049		return res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2050
2051	gpu_id = kfd_generate_gpu_id(gpu);
2052	dev->gpu_id = gpu_id;
2053	gpu->id = gpu_id;
2054
2055	kfd_dev_create_p2p_links();
2056
2057	/* TODO: Move the following lines to function
2058	 *	kfd_add_non_crat_information
2059	 */
2060
2061	/* Fill-in additional information that is not available in CRAT but
2062	 * needed for the topology
2063	 */
2064	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
2065		dev->node_props.name[i] = __tolower(asic_name[i]);
2066		if (asic_name[i] == '\0')
2067			break;
2068	}
2069	dev->node_props.name[i] = '\0';
2070
 
2071	dev->node_props.simd_arrays_per_engine =
2072		gfx_info->max_sh_per_se;
2073
2074	dev->node_props.gfx_target_version =
2075				gpu->kfd->device_info.gfx_target_version;
2076	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
2077	dev->node_props.device_id = gpu->adev->pdev->device;
2078	dev->node_props.capability |=
2079		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
2080			HSA_CAP_ASIC_REVISION_MASK);
2081
2082	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
2083	if (gpu->kfd->num_nodes > 1)
2084		dev->node_props.location_id |= dev->gpu->node_id;
2085
2086	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
 
 
 
2087	dev->node_props.max_engine_clk_fcompute =
2088		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2089	dev->node_props.max_engine_clk_ccompute =
2090		cpufreq_quick_get_max(0) / 1000;
2091
2092	if (gpu->xcp)
2093		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2094	else
2095		dev->node_props.drm_render_minor =
2096				gpu->kfd->shared_resources.drm_render_minor;
2097
2098	dev->node_props.hive_id = gpu->kfd->hive_id;
2099	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2100	dev->node_props.num_sdma_xgmi_engines =
2101					kfd_get_num_xgmi_sdma_engines(gpu);
2102	dev->node_props.num_sdma_queues_per_engine =
2103				gpu->kfd->device_info.num_sdma_queues_per_engine -
2104				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2105	dev->node_props.num_gws = (dev->gpu->gws &&
2106		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2107		dev->gpu->adev->gds.gws_size : 0;
2108	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2109
2110	kfd_fill_mem_clk_max_info(dev);
2111	kfd_fill_iolink_non_crat_info(dev);
2112
2113	switch (dev->gpu->adev->asic_type) {
2114	case CHIP_KAVERI:
2115	case CHIP_HAWAII:
2116	case CHIP_TONGA:
2117		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2118			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2119			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2120		break;
2121	case CHIP_CARRIZO:
2122	case CHIP_FIJI:
2123	case CHIP_POLARIS10:
2124	case CHIP_POLARIS11:
2125	case CHIP_POLARIS12:
2126	case CHIP_VEGAM:
2127		pr_debug("Adding doorbell packet type capability\n");
2128		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2129			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2130			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2131		break;
2132	default:
2133		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2134			WARN(1, "Unexpected ASIC family %u",
2135			     dev->gpu->adev->asic_type);
2136		else
2137			kfd_topology_set_capabilities(dev);
2138	}
2139
2140	/*
2141	 * Overwrite ATS capability according to needs_iommu_device to fix
2142	 * potential missing corresponding bit in CRAT of BIOS.
2143	 */
2144	dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2145
2146	/* Fix errors in CZ CRAT.
2147	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2148	 *		because it doesn't consider masked out CUs
2149	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
 
2150	 */
2151	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2152		dev->node_props.simd_count =
2153			cu_info->simd_per_cu * cu_info->number;
2154		dev->node_props.max_waves_per_simd = 10;
 
2155	}
2156
2157	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2158	dev->node_props.capability |=
2159		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2160		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2161	dev->node_props.capability |=
2162		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2163		HSA_CAP_MEM_EDCSUPPORTED : 0;
2164
2165	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2166		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2167			HSA_CAP_RASEVENTNOTIFY : 0;
2168
2169	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2170		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2171
2172	if (dev->gpu->adev->gmc.is_app_apu ||
2173		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2174		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2175
2176	kfd_queue_ctx_save_restore_size(dev);
2177
2178	kfd_debug_print_topology();
2179
2180	kfd_notify_gpu_change(gpu_id, 1);
2181
2182	return 0;
2183}
2184
2185/**
2186 * kfd_topology_update_io_links() - Update IO links after device removal.
2187 * @proximity_domain: Proximity domain value of the dev being removed.
2188 *
2189 * The topology list currently is arranged in increasing order of
2190 * proximity domain.
2191 *
2192 * Two things need to be done when a device is removed:
2193 * 1. All the IO links to this device need to be removed.
2194 * 2. All nodes after the current device node need to move
2195 *    up once this device node is removed from the topology
2196 *    list. As a result, the proximity domain values for
2197 *    all nodes after the node being deleted reduce by 1.
2198 *    This would also cause the proximity domain values for
2199 *    io links to be updated based on new proximity domain
2200 *    values.
2201 *
2202 * Context: The caller must hold write topology_lock.
2203 */
2204static void kfd_topology_update_io_links(int proximity_domain)
2205{
2206	struct kfd_topology_device *dev;
2207	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2208
2209	list_for_each_entry(dev, &topology_device_list, list) {
2210		if (dev->proximity_domain > proximity_domain)
2211			dev->proximity_domain--;
2212
2213		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2214			/*
2215			 * If there is an io link to the dev being deleted
2216			 * then remove that IO link also.
2217			 */
2218			if (iolink->node_to == proximity_domain) {
2219				list_del(&iolink->list);
2220				dev->node_props.io_links_count--;
2221			} else {
2222				if (iolink->node_from > proximity_domain)
2223					iolink->node_from--;
2224				if (iolink->node_to > proximity_domain)
2225					iolink->node_to--;
2226			}
2227		}
2228
2229		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2230			/*
2231			 * If there is a p2p link to the dev being deleted
2232			 * then remove that p2p link also.
2233			 */
2234			if (p2plink->node_to == proximity_domain) {
2235				list_del(&p2plink->list);
2236				dev->node_props.p2p_links_count--;
2237			} else {
2238				if (p2plink->node_from > proximity_domain)
2239					p2plink->node_from--;
2240				if (p2plink->node_to > proximity_domain)
2241					p2plink->node_to--;
2242			}
2243		}
2244	}
2245}
2246
2247int kfd_topology_remove_device(struct kfd_node *gpu)
2248{
2249	struct kfd_topology_device *dev, *tmp;
2250	uint32_t gpu_id;
2251	int res = -ENODEV;
2252	int i = 0;
2253
2254	down_write(&topology_lock);
2255
2256	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2257		if (dev->gpu == gpu) {
2258			gpu_id = dev->gpu_id;
2259			kfd_remove_sysfs_node_entry(dev);
2260			kfd_release_topology_device(dev);
2261			sys_props.num_devices--;
2262			kfd_topology_update_io_links(i);
2263			topology_crat_proximity_domain = sys_props.num_devices-1;
2264			sys_props.generation_count++;
2265			res = 0;
2266			if (kfd_topology_update_sysfs() < 0)
2267				kfd_topology_release_sysfs();
2268			break;
2269		}
2270		i++;
2271	}
2272
2273	up_write(&topology_lock);
2274
2275	if (!res)
2276		kfd_notify_gpu_change(gpu_id, 0);
2277
2278	return res;
2279}
2280
2281/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2282 *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2283 *	returned through @kdev
2284 * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2285 *		-1: If end of list
2286 */
2287int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2288{
2289
2290	struct kfd_topology_device *top_dev;
2291	uint8_t device_idx = 0;
2292
2293	*kdev = NULL;
2294	down_read(&topology_lock);
2295
2296	list_for_each_entry(top_dev, &topology_device_list, list) {
2297		if (device_idx == idx) {
2298			*kdev = top_dev->gpu;
2299			up_read(&topology_lock);
2300			return 0;
2301		}
2302
2303		device_idx++;
2304	}
2305
2306	up_read(&topology_lock);
2307
2308	return -1;
2309
2310}
2311
2312static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2313{
 
2314	int first_cpu_of_numa_node;
2315
2316	if (!cpumask || cpumask == cpu_none_mask)
2317		return -1;
2318	first_cpu_of_numa_node = cpumask_first(cpumask);
2319	if (first_cpu_of_numa_node >= nr_cpu_ids)
2320		return -1;
2321#ifdef CONFIG_X86_64
2322	return cpu_data(first_cpu_of_numa_node).topo.apicid;
2323#else
2324	return first_cpu_of_numa_node;
2325#endif
2326}
2327
2328/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2329 *	of the given NUMA node (numa_node_id)
2330 * Return -1 on failure
2331 */
2332int kfd_numa_node_to_apic_id(int numa_node_id)
2333{
2334	if (numa_node_id == -1) {
2335		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2336		return kfd_cpumask_to_apic_id(cpu_online_mask);
2337	}
2338	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2339}
2340
2341#if defined(CONFIG_DEBUG_FS)
2342
2343int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2344{
2345	struct kfd_topology_device *dev;
2346	unsigned int i = 0;
2347	int r = 0;
2348
2349	down_read(&topology_lock);
2350
2351	list_for_each_entry(dev, &topology_device_list, list) {
2352		if (!dev->gpu) {
2353			i++;
2354			continue;
2355		}
2356
2357		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2358		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2359		if (r)
2360			break;
2361	}
2362
2363	up_read(&topology_lock);
2364
2365	return r;
2366}
2367
2368int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2369{
2370	struct kfd_topology_device *dev;
2371	unsigned int i = 0;
2372	int r = 0;
2373
2374	down_read(&topology_lock);
2375
2376	list_for_each_entry(dev, &topology_device_list, list) {
2377		if (!dev->gpu) {
2378			i++;
2379			continue;
2380		}
2381
2382		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2383		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2384		if (r)
2385			break;
2386	}
2387
2388	up_read(&topology_lock);
2389
2390	return r;
2391}
2392
2393#endif