Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/kernel.h>
 
   3
   4#include <linux/string.h>
   5#include <linux/bitops.h>
   6#include <linux/smp.h>
   7#include <linux/sched.h>
   8#include <linux/sched/clock.h>
   9#include <linux/thread_info.h>
  10#include <linux/init.h>
  11#include <linux/uaccess.h>
  12
  13#include <asm/cpufeature.h>
  14#include <asm/pgtable.h>
  15#include <asm/msr.h>
  16#include <asm/bugs.h>
  17#include <asm/cpu.h>
  18#include <asm/intel-family.h>
  19#include <asm/microcode_intel.h>
  20#include <asm/hwcap2.h>
  21#include <asm/elf.h>
 
 
 
 
  22
  23#ifdef CONFIG_X86_64
  24#include <linux/topology.h>
  25#endif
  26
  27#include "cpu.h"
  28
  29#ifdef CONFIG_X86_LOCAL_APIC
  30#include <asm/mpspec.h>
  31#include <asm/apic.h>
  32#endif
  33
  34/*
  35 * Just in case our CPU detection goes bad, or you have a weird system,
  36 * allow a way to override the automatic disabling of MPX.
 
 
 
  37 */
  38static int forcempx;
  39
  40static int __init forcempx_setup(char *__unused)
  41{
  42	forcempx = 1;
  43
  44	return 1;
  45}
  46__setup("intel-skd-046-workaround=disable", forcempx_setup);
  47
  48void check_mpx_erratum(struct cpuinfo_x86 *c)
  49{
  50	if (forcempx)
  51		return;
  52	/*
  53	 * Turn off the MPX feature on CPUs where SMEP is not
  54	 * available or disabled.
  55	 *
  56	 * Works around Intel Erratum SKD046: "Branch Instructions
  57	 * May Initialize MPX Bound Registers Incorrectly".
  58	 *
  59	 * This might falsely disable MPX on systems without
  60	 * SMEP, like Atom processors without SMEP.  But there
  61	 * is no such hardware known at the moment.
  62	 */
  63	if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
  64		setup_clear_cpu_cap(X86_FEATURE_MPX);
  65		pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
  66	}
  67}
  68
  69static bool ring3mwait_disabled __read_mostly;
  70
  71static int __init ring3mwait_disable(char *__unused)
  72{
  73	ring3mwait_disabled = true;
  74	return 0;
  75}
  76__setup("ring3mwait=disable", ring3mwait_disable);
  77
  78static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
  79{
  80	/*
  81	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
  82	 * cpu model and family comparison.
  83	 */
  84	if (c->x86 != 6)
  85		return;
  86	switch (c->x86_model) {
  87	case INTEL_FAM6_XEON_PHI_KNL:
  88	case INTEL_FAM6_XEON_PHI_KNM:
  89		break;
  90	default:
  91		return;
  92	}
  93
  94	if (ring3mwait_disabled)
  95		return;
  96
  97	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
  98	this_cpu_or(msr_misc_features_shadow,
  99		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
 100
 101	if (c == &boot_cpu_data)
 102		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
 103}
 104
 105/*
 106 * Early microcode releases for the Spectre v2 mitigation were broken.
 107 * Information taken from;
 108 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
 109 * - https://kb.vmware.com/s/article/52345
 110 * - Microcode revisions observed in the wild
 111 * - Release note from 20180108 microcode release
 112 */
 113struct sku_microcode {
 114	u8 model;
 115	u8 stepping;
 116	u32 microcode;
 117};
 118static const struct sku_microcode spectre_bad_microcodes[] = {
 119	{ INTEL_FAM6_KABYLAKE_DESKTOP,	0x0B,	0x80 },
 120	{ INTEL_FAM6_KABYLAKE_DESKTOP,	0x0A,	0x80 },
 121	{ INTEL_FAM6_KABYLAKE_DESKTOP,	0x09,	0x80 },
 122	{ INTEL_FAM6_KABYLAKE_MOBILE,	0x0A,	0x80 },
 123	{ INTEL_FAM6_KABYLAKE_MOBILE,	0x09,	0x80 },
 124	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
 125	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
 126	{ INTEL_FAM6_BROADWELL_CORE,	0x04,	0x28 },
 127	{ INTEL_FAM6_BROADWELL_GT3E,	0x01,	0x1b },
 128	{ INTEL_FAM6_BROADWELL_XEON_D,	0x02,	0x14 },
 129	{ INTEL_FAM6_BROADWELL_XEON_D,	0x03,	0x07000011 },
 130	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
 131	{ INTEL_FAM6_HASWELL_ULT,	0x01,	0x21 },
 132	{ INTEL_FAM6_HASWELL_GT3E,	0x01,	0x18 },
 133	{ INTEL_FAM6_HASWELL_CORE,	0x03,	0x23 },
 134	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
 135	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
 136	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
 137	/* Observed in the wild */
 138	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
 139	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
 140};
 141
 142static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
 143{
 144	int i;
 145
 146	/*
 147	 * We know that the hypervisor lie to us on the microcode version so
 148	 * we may as well hope that it is running the correct version.
 149	 */
 150	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
 151		return false;
 152
 153	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
 154		if (c->x86_model == spectre_bad_microcodes[i].model &&
 155		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
 156			return (c->microcode <= spectre_bad_microcodes[i].microcode);
 157	}
 158	return false;
 159}
 160
 161static void early_init_intel(struct cpuinfo_x86 *c)
 
 
 
 
 
 
 
 
 162{
 163	u64 misc_enable;
 
 164
 165	/* Unmask CPUID levels if masked: */
 166	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 167		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
 168				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
 169			c->cpuid_level = cpuid_eax(0);
 170			get_cpu_cap(c);
 171		}
 172	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173
 174	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
 175		(c->x86 == 0x6 && c->x86_model >= 0x0e))
 176		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 177
 178	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
 179		c->microcode = intel_get_microcode_revision();
 180
 181	/* Now if any of them are set, check the blacklist and clear the lot */
 182	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
 183	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
 184	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
 185	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
 186		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
 187		setup_clear_cpu_cap(X86_FEATURE_IBRS);
 188		setup_clear_cpu_cap(X86_FEATURE_IBPB);
 189		setup_clear_cpu_cap(X86_FEATURE_STIBP);
 190		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
 191		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
 192		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
 193		setup_clear_cpu_cap(X86_FEATURE_SSBD);
 194		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
 195	}
 196
 197	/*
 198	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
 199	 *
 200	 * A race condition between speculative fetches and invalidating
 201	 * a large page.  This is worked around in microcode, but we
 202	 * need the microcode to have already been loaded... so if it is
 203	 * not, recommend a BIOS update and disable large pages.
 204	 */
 205	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
 206	    c->microcode < 0x20e) {
 207		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
 208		clear_cpu_cap(c, X86_FEATURE_PSE);
 209	}
 210
 211#ifdef CONFIG_X86_64
 212	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
 213#else
 214	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
 215	if (c->x86 == 15 && c->x86_cache_alignment == 64)
 216		c->x86_cache_alignment = 128;
 217#endif
 218
 219	/* CPUID workaround for 0F33/0F34 CPU */
 220	if (c->x86 == 0xF && c->x86_model == 0x3
 221	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
 222		c->x86_phys_bits = 36;
 223
 224	/*
 225	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
 226	 * with P/T states and does not stop in deep C-states.
 227	 *
 228	 * It is also reliable across cores and sockets. (but not across
 229	 * cabinets - we turn it off in that case explicitly.)
 230	 */
 231	if (c->x86_power & (1 << 8)) {
 232		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 233		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
 234	}
 235
 236	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
 237	if (c->x86 == 6) {
 238		switch (c->x86_model) {
 239		case 0x27:	/* Penwell */
 240		case 0x35:	/* Cloverview */
 241		case 0x4a:	/* Merrifield */
 242			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
 243			break;
 244		default:
 245			break;
 246		}
 247	}
 248
 249	/*
 250	 * There is a known erratum on Pentium III and Core Solo
 251	 * and Core Duo CPUs.
 252	 * " Page with PAT set to WC while associated MTRR is UC
 253	 *   may consolidate to UC "
 254	 * Because of this erratum, it is better to stick with
 255	 * setting WC in MTRR rather than using PAT on these CPUs.
 
 256	 *
 257	 * Enable PAT WC only on P4, Core 2 or later CPUs.
 258	 */
 259	if (c->x86 == 6 && c->x86_model < 15)
 
 260		clear_cpu_cap(c, X86_FEATURE_PAT);
 261
 262	/*
 263	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
 264	 * clear the fast string and enhanced fast string CPU capabilities.
 265	 */
 266	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 267		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
 268		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
 269			pr_info("Disabled fast string operations\n");
 270			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
 271			setup_clear_cpu_cap(X86_FEATURE_ERMS);
 272		}
 273	}
 274
 275	/*
 276	 * Intel Quark Core DevMan_001.pdf section 6.4.11
 277	 * "The operating system also is required to invalidate (i.e., flush)
 278	 *  the TLB when any changes are made to any of the page table entries.
 279	 *  The operating system must reload CR3 to cause the TLB to be flushed"
 280	 *
 281	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
 282	 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
 283	 * to be modified.
 284	 */
 285	if (c->x86 == 5 && c->x86_model == 9) {
 286		pr_info("Disabling PGE capability bit\n");
 287		setup_clear_cpu_cap(X86_FEATURE_PGE);
 288	}
 289
 290	if (c->cpuid_level >= 0x00000001) {
 291		u32 eax, ebx, ecx, edx;
 292
 293		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 294		/*
 295		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
 296		 * apicids which are reserved per package. Store the resulting
 297		 * shift value for the package management code.
 298		 */
 299		if (edx & (1U << 28))
 300			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
 301	}
 302
 303	check_mpx_erratum(c);
 
 
 304}
 305
 306#ifdef CONFIG_X86_32
 307/*
 308 *	Early probe support logic for ppro memory erratum #50
 309 *
 310 *	This is called before we do cpu ident work
 311 */
 312
 313int ppro_with_ram_bug(void)
 314{
 315	/* Uses data from early_cpu_detect now */
 316	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
 317	    boot_cpu_data.x86 == 6 &&
 318	    boot_cpu_data.x86_model == 1 &&
 319	    boot_cpu_data.x86_stepping < 8) {
 320		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
 321		return 1;
 322	}
 323	return 0;
 324}
 325
 326static void intel_smp_check(struct cpuinfo_x86 *c)
 327{
 328	/* calling is from identify_secondary_cpu() ? */
 329	if (!c->cpu_index)
 330		return;
 331
 332	/*
 333	 * Mask B, Pentium, but not Pentium MMX
 334	 */
 335	if (c->x86 == 5 &&
 336	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
 337	    c->x86_model <= 3) {
 338		/*
 339		 * Remember we have B step Pentia with bugs
 340		 */
 341		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
 342				    "with B stepping processors.\n");
 343	}
 344}
 345
 346static int forcepae;
 347static int __init forcepae_setup(char *__unused)
 348{
 349	forcepae = 1;
 350	return 1;
 351}
 352__setup("forcepae", forcepae_setup);
 353
 354static void intel_workarounds(struct cpuinfo_x86 *c)
 355{
 356#ifdef CONFIG_X86_F00F_BUG
 357	/*
 358	 * All models of Pentium and Pentium with MMX technology CPUs
 359	 * have the F0 0F bug, which lets nonprivileged users lock up the
 360	 * system. Announce that the fault handler will be checking for it.
 361	 * The Quark is also family 5, but does not have the same bug.
 362	 */
 363	clear_cpu_bug(c, X86_BUG_F00F);
 364	if (c->x86 == 5 && c->x86_model < 9) {
 365		static int f00f_workaround_enabled;
 366
 367		set_cpu_bug(c, X86_BUG_F00F);
 368		if (!f00f_workaround_enabled) {
 369			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
 370			f00f_workaround_enabled = 1;
 371		}
 372	}
 373#endif
 374
 375	/*
 376	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
 377	 * model 3 mask 3
 378	 */
 379	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
 380		clear_cpu_cap(c, X86_FEATURE_SEP);
 381
 382	/*
 383	 * PAE CPUID issue: many Pentium M report no PAE but may have a
 384	 * functionally usable PAE implementation.
 385	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
 386	 */
 387	if (forcepae) {
 388		pr_warn("PAE forced!\n");
 389		set_cpu_cap(c, X86_FEATURE_PAE);
 390		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
 391	}
 392
 393	/*
 394	 * P4 Xeon erratum 037 workaround.
 395	 * Hardware prefetcher may cause stale data to be loaded into the cache.
 396	 */
 397	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
 398		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
 399				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
 400			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
 401			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
 402		}
 403	}
 404
 405	/*
 406	 * See if we have a good local APIC by checking for buggy Pentia,
 407	 * i.e. all B steppings and the C2 stepping of P54C when using their
 408	 * integrated APIC (see 11AP erratum in "Pentium Processor
 409	 * Specification Update").
 410	 */
 411	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
 412	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
 413		set_cpu_bug(c, X86_BUG_11AP);
 414
 415
 416#ifdef CONFIG_X86_INTEL_USERCOPY
 417	/*
 418	 * Set up the preferred alignment for movsl bulk memory moves
 419	 */
 420	switch (c->x86) {
 421	case 4:		/* 486: untested */
 422		break;
 423	case 5:		/* Old Pentia: untested */
 424		break;
 425	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
 426		movsl_mask.mask = 7;
 427		break;
 428	case 15:	/* P4 is OK down to 8-byte alignment */
 429		movsl_mask.mask = 7;
 430		break;
 431	}
 432#endif
 433
 434	intel_smp_check(c);
 435}
 436#else
 437static void intel_workarounds(struct cpuinfo_x86 *c)
 438{
 439}
 440#endif
 441
 442static void srat_detect_node(struct cpuinfo_x86 *c)
 443{
 444#ifdef CONFIG_NUMA
 445	unsigned node;
 446	int cpu = smp_processor_id();
 447
 448	/* Don't do the funky fallback heuristics the AMD version employs
 449	   for now. */
 450	node = numa_cpu_node(cpu);
 451	if (node == NUMA_NO_NODE || !node_online(node)) {
 452		/* reuse the value from init_cpu_to_node() */
 453		node = cpu_to_node(cpu);
 454	}
 455	numa_set_node(cpu, node);
 456#endif
 457}
 458
 459/*
 460 * find out the number of processor cores on the die
 461 */
 462static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
 463{
 464	unsigned int eax, ebx, ecx, edx;
 465
 466	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
 467		return 1;
 468
 469	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
 470	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
 471	if (eax & 0x1f)
 472		return (eax >> 26) + 1;
 473	else
 474		return 1;
 475}
 476
 477static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
 478{
 479	/* Intel VMX MSR indicated features */
 480#define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
 481#define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
 482#define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
 483#define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
 484#define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
 485#define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
 486
 487	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
 488
 489	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
 490	clear_cpu_cap(c, X86_FEATURE_VNMI);
 491	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
 492	clear_cpu_cap(c, X86_FEATURE_EPT);
 493	clear_cpu_cap(c, X86_FEATURE_VPID);
 494
 495	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
 496	msr_ctl = vmx_msr_high | vmx_msr_low;
 497	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
 498		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
 499	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
 500		set_cpu_cap(c, X86_FEATURE_VNMI);
 501	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
 502		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
 503		      vmx_msr_low, vmx_msr_high);
 504		msr_ctl2 = vmx_msr_high | vmx_msr_low;
 505		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
 506		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
 507			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
 508		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
 509			set_cpu_cap(c, X86_FEATURE_EPT);
 510		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
 511			set_cpu_cap(c, X86_FEATURE_VPID);
 512	}
 513}
 514
 515#define MSR_IA32_TME_ACTIVATE		0x982
 516
 517/* Helpers to access TME_ACTIVATE MSR */
 518#define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
 519#define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
 520
 521#define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */
 522#define TME_ACTIVATE_POLICY_AES_XTS_128	0
 523
 524#define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
 525
 526#define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */
 527#define TME_ACTIVATE_CRYPTO_AES_XTS_128	1
 528
 529/* Values for mktme_status (SW only construct) */
 530#define MKTME_ENABLED			0
 531#define MKTME_DISABLED			1
 532#define MKTME_UNINITIALIZED		2
 533static int mktme_status = MKTME_UNINITIALIZED;
 534
 535static void detect_tme(struct cpuinfo_x86 *c)
 536{
 537	u64 tme_activate, tme_policy, tme_crypto_algs;
 538	int keyid_bits = 0, nr_keyids = 0;
 539	static u64 tme_activate_cpu0 = 0;
 540
 541	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
 542
 543	if (mktme_status != MKTME_UNINITIALIZED) {
 544		if (tme_activate != tme_activate_cpu0) {
 545			/* Broken BIOS? */
 546			pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
 547			pr_err_once("x86/tme: MKTME is not usable\n");
 548			mktme_status = MKTME_DISABLED;
 549
 550			/* Proceed. We may need to exclude bits from x86_phys_bits. */
 551		}
 552	} else {
 553		tme_activate_cpu0 = tme_activate;
 554	}
 555
 556	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
 557		pr_info_once("x86/tme: not enabled by BIOS\n");
 558		mktme_status = MKTME_DISABLED;
 559		return;
 560	}
 561
 562	if (mktme_status != MKTME_UNINITIALIZED)
 563		goto detect_keyid_bits;
 564
 565	pr_info("x86/tme: enabled by BIOS\n");
 566
 567	tme_policy = TME_ACTIVATE_POLICY(tme_activate);
 568	if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
 569		pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
 570
 571	tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
 572	if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
 573		pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
 574				tme_crypto_algs);
 575		mktme_status = MKTME_DISABLED;
 576	}
 577detect_keyid_bits:
 578	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
 579	nr_keyids = (1UL << keyid_bits) - 1;
 580	if (nr_keyids) {
 581		pr_info_once("x86/mktme: enabled by BIOS\n");
 582		pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
 583	} else {
 584		pr_info_once("x86/mktme: disabled by BIOS\n");
 585	}
 586
 587	if (mktme_status == MKTME_UNINITIALIZED) {
 588		/* MKTME is usable */
 589		mktme_status = MKTME_ENABLED;
 590	}
 591
 592	/*
 593	 * KeyID bits effectively lower the number of physical address
 594	 * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
 595	 */
 596	c->x86_phys_bits -= keyid_bits;
 597}
 598
 599static void init_intel_energy_perf(struct cpuinfo_x86 *c)
 600{
 601	u64 epb;
 602
 603	/*
 604	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
 605	 * (x86_energy_perf_policy(8) is available to change it at run-time.)
 606	 */
 607	if (!cpu_has(c, X86_FEATURE_EPB))
 608		return;
 609
 610	rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
 611	if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
 612		return;
 613
 614	pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
 615	pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
 616	epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
 617	wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
 618}
 619
 620static void intel_bsp_resume(struct cpuinfo_x86 *c)
 621{
 622	/*
 623	 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
 624	 * so reinitialize it properly like during bootup:
 625	 */
 626	init_intel_energy_perf(c);
 627}
 628
 629static void init_cpuid_fault(struct cpuinfo_x86 *c)
 630{
 631	u64 msr;
 632
 633	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
 634		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
 635			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
 636	}
 637}
 638
 639static void init_intel_misc_features(struct cpuinfo_x86 *c)
 640{
 641	u64 msr;
 642
 643	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
 644		return;
 645
 646	/* Clear all MISC features */
 647	this_cpu_write(msr_misc_features_shadow, 0);
 648
 649	/* Check features and update capabilities and shadow control bits */
 650	init_cpuid_fault(c);
 651	probe_xeon_phi_r3mwait(c);
 652
 653	msr = this_cpu_read(msr_misc_features_shadow);
 654	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
 655}
 656
 657static void init_intel(struct cpuinfo_x86 *c)
 658{
 659	unsigned int l2 = 0;
 660
 661	early_init_intel(c);
 662
 663	intel_workarounds(c);
 664
 665	/*
 666	 * Detect the extended topology information if available. This
 667	 * will reinitialise the initial_apicid which will be used
 668	 * in init_intel_cacheinfo()
 669	 */
 670	detect_extended_topology(c);
 671
 672	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
 673		/*
 674		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
 675		 * detection.
 676		 */
 677		c->x86_max_cores = intel_num_cpu_cores(c);
 678#ifdef CONFIG_X86_32
 679		detect_ht(c);
 680#endif
 681	}
 682
 683	l2 = init_intel_cacheinfo(c);
 684
 685	/* Detect legacy cache sizes if init_intel_cacheinfo did not */
 686	if (l2 == 0) {
 687		cpu_detect_cache_sizes(c);
 688		l2 = c->x86_cache_size;
 689	}
 690
 691	if (c->cpuid_level > 9) {
 692		unsigned eax = cpuid_eax(10);
 693		/* Check for version and the number of counters */
 694		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
 695			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
 696	}
 697
 698	if (cpu_has(c, X86_FEATURE_XMM2))
 699		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
 700
 701	if (boot_cpu_has(X86_FEATURE_DS)) {
 702		unsigned int l1;
 
 703		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
 704		if (!(l1 & (1<<11)))
 705			set_cpu_cap(c, X86_FEATURE_BTS);
 706		if (!(l1 & (1<<12)))
 707			set_cpu_cap(c, X86_FEATURE_PEBS);
 708	}
 709
 710	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
 711	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
 
 
 712		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
 713
 714	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
 715		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
 
 716		set_cpu_bug(c, X86_BUG_MONITOR);
 717
 718#ifdef CONFIG_X86_64
 719	if (c->x86 == 15)
 720		c->x86_cache_alignment = c->x86_clflush_size * 2;
 721	if (c->x86 == 6)
 722		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
 723#else
 724	/*
 725	 * Names for the Pentium II/Celeron processors
 726	 * detectable only by also checking the cache size.
 727	 * Dixon is NOT a Celeron.
 728	 */
 729	if (c->x86 == 6) {
 
 730		char *p = NULL;
 731
 732		switch (c->x86_model) {
 733		case 5:
 734			if (l2 == 0)
 735				p = "Celeron (Covington)";
 736			else if (l2 == 256)
 737				p = "Mobile Pentium II (Dixon)";
 738			break;
 739
 740		case 6:
 741			if (l2 == 128)
 742				p = "Celeron (Mendocino)";
 743			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
 744				p = "Celeron-A";
 745			break;
 746
 747		case 8:
 748			if (l2 == 128)
 749				p = "Celeron (Coppermine)";
 750			break;
 751		}
 752
 753		if (p)
 754			strcpy(c->x86_model_id, p);
 755	}
 756
 757	if (c->x86 == 15)
 758		set_cpu_cap(c, X86_FEATURE_P4);
 759	if (c->x86 == 6)
 760		set_cpu_cap(c, X86_FEATURE_P3);
 761#endif
 762
 763	/* Work around errata */
 764	srat_detect_node(c);
 765
 766	if (cpu_has(c, X86_FEATURE_VMX))
 767		detect_vmx_virtcap(c);
 768
 769	if (cpu_has(c, X86_FEATURE_TME))
 770		detect_tme(c);
 771
 772	init_intel_energy_perf(c);
 773
 774	init_intel_misc_features(c);
 775}
 776
 777#ifdef CONFIG_X86_32
 778static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
 779{
 780	/*
 781	 * Intel PIII Tualatin. This comes in two flavours.
 782	 * One has 256kb of cache, the other 512. We have no way
 783	 * to determine which, so we use a boottime override
 784	 * for the 512kb model, and assume 256 otherwise.
 785	 */
 786	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
 787		size = 256;
 788
 789	/*
 790	 * Intel Quark SoC X1000 contains a 4-way set associative
 791	 * 16K cache with a 16 byte cache line and 256 lines per tag
 792	 */
 793	if ((c->x86 == 5) && (c->x86_model == 9))
 794		size = 16;
 795	return size;
 796}
 797#endif
 798
 799#define TLB_INST_4K	0x01
 800#define TLB_INST_4M	0x02
 801#define TLB_INST_2M_4M	0x03
 802
 803#define TLB_INST_ALL	0x05
 804#define TLB_INST_1G	0x06
 805
 806#define TLB_DATA_4K	0x11
 807#define TLB_DATA_4M	0x12
 808#define TLB_DATA_2M_4M	0x13
 809#define TLB_DATA_4K_4M	0x14
 810
 811#define TLB_DATA_1G	0x16
 812
 813#define TLB_DATA0_4K	0x21
 814#define TLB_DATA0_4M	0x22
 815#define TLB_DATA0_2M_4M	0x23
 
 816
 817#define STLB_4K		0x41
 818#define STLB_4K_2M	0x42
 
 
 
 
 
 
 
 
 
 
 819
 820static const struct _tlb_table intel_tlb_table[] = {
 821	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
 822	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
 823	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
 824	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
 825	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
 826	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
 827	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
 828	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 829	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 830	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 831	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
 832	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
 833	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
 834	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
 835	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
 836	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
 837	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
 838	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
 839	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
 840	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
 
 841	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
 842	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
 843	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
 844	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
 845	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
 846	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
 847	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
 848	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
 849	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
 850	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
 851	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
 852	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
 853	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
 854	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
 855	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
 856	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
 857	{ 0x00, 0, 0 }
 858};
 859
 860static void intel_tlb_lookup(const unsigned char desc)
 861{
 862	unsigned char k;
 863	if (desc == 0)
 864		return;
 865
 866	/* look up this descriptor in the table */
 867	for (k = 0; intel_tlb_table[k].descriptor != desc && \
 868			intel_tlb_table[k].descriptor != 0; k++)
 869		;
 870
 871	if (intel_tlb_table[k].tlb_type == 0)
 872		return;
 873
 874	switch (intel_tlb_table[k].tlb_type) {
 875	case STLB_4K:
 876		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 877			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 878		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 879			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 880		break;
 881	case STLB_4K_2M:
 882		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 883			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 884		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 885			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 886		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 887			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 888		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
 889			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
 890		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 891			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 892		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 893			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 894		break;
 895	case TLB_INST_ALL:
 896		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 897			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 898		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 899			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 900		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 901			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 902		break;
 903	case TLB_INST_4K:
 904		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 905			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 906		break;
 907	case TLB_INST_4M:
 908		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 909			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 910		break;
 911	case TLB_INST_2M_4M:
 912		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 913			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 914		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 915			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 916		break;
 917	case TLB_DATA_4K:
 918	case TLB_DATA0_4K:
 919		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 920			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 921		break;
 922	case TLB_DATA_4M:
 923	case TLB_DATA0_4M:
 924		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 925			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 926		break;
 927	case TLB_DATA_2M_4M:
 928	case TLB_DATA0_2M_4M:
 929		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
 930			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
 931		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 932			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 933		break;
 934	case TLB_DATA_4K_4M:
 935		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 936			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 937		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 938			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 939		break;
 
 
 
 
 
 
 940	case TLB_DATA_1G:
 941		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
 942			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
 943		break;
 944	}
 945}
 946
 947static void intel_detect_tlb(struct cpuinfo_x86 *c)
 948{
 949	int i, j, n;
 950	unsigned int regs[4];
 951	unsigned char *desc = (unsigned char *)regs;
 952
 953	if (c->cpuid_level < 2)
 954		return;
 955
 956	/* Number of times to iterate */
 957	n = cpuid_eax(2) & 0xFF;
 958
 959	for (i = 0 ; i < n ; i++) {
 960		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
 961
 962		/* If bit 31 is set, this is an unknown format */
 963		for (j = 0 ; j < 3 ; j++)
 964			if (regs[j] & (1 << 31))
 965				regs[j] = 0;
 966
 967		/* Byte 0 is level count, not a descriptor */
 968		for (j = 1 ; j < 16 ; j++)
 969			intel_tlb_lookup(desc[j]);
 970	}
 971}
 972
 973static const struct cpu_dev intel_cpu_dev = {
 974	.c_vendor	= "Intel",
 975	.c_ident	= { "GenuineIntel" },
 976#ifdef CONFIG_X86_32
 977	.legacy_models = {
 978		{ .family = 4, .model_names =
 979		  {
 980			  [0] = "486 DX-25/33",
 981			  [1] = "486 DX-50",
 982			  [2] = "486 SX",
 983			  [3] = "486 DX/2",
 984			  [4] = "486 SL",
 985			  [5] = "486 SX/2",
 986			  [7] = "486 DX/2-WB",
 987			  [8] = "486 DX/4",
 988			  [9] = "486 DX/4-WB"
 989		  }
 990		},
 991		{ .family = 5, .model_names =
 992		  {
 993			  [0] = "Pentium 60/66 A-step",
 994			  [1] = "Pentium 60/66",
 995			  [2] = "Pentium 75 - 200",
 996			  [3] = "OverDrive PODP5V83",
 997			  [4] = "Pentium MMX",
 998			  [7] = "Mobile Pentium 75 - 200",
 999			  [8] = "Mobile Pentium MMX",
1000			  [9] = "Quark SoC X1000",
1001		  }
1002		},
1003		{ .family = 6, .model_names =
1004		  {
1005			  [0] = "Pentium Pro A-step",
1006			  [1] = "Pentium Pro",
1007			  [3] = "Pentium II (Klamath)",
1008			  [4] = "Pentium II (Deschutes)",
1009			  [5] = "Pentium II (Deschutes)",
1010			  [6] = "Mobile Pentium II",
1011			  [7] = "Pentium III (Katmai)",
1012			  [8] = "Pentium III (Coppermine)",
1013			  [10] = "Pentium III (Cascades)",
1014			  [11] = "Pentium III (Tualatin)",
1015		  }
1016		},
1017		{ .family = 15, .model_names =
1018		  {
1019			  [0] = "Pentium 4 (Unknown)",
1020			  [1] = "Pentium 4 (Willamette)",
1021			  [2] = "Pentium 4 (Northwood)",
1022			  [4] = "Pentium 4 (Foster)",
1023			  [5] = "Pentium 4 (Foster)",
1024		  }
1025		},
1026	},
1027	.legacy_cache_size = intel_size_cache,
1028#endif
1029	.c_detect_tlb	= intel_detect_tlb,
1030	.c_early_init   = early_init_intel,
 
1031	.c_init		= init_intel,
1032	.c_bsp_resume	= intel_bsp_resume,
1033	.c_x86_vendor	= X86_VENDOR_INTEL,
1034};
1035
1036cpu_dev_register(intel_cpu_dev);
1037
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/kernel.h>
  3#include <linux/pgtable.h>
  4
  5#include <linux/string.h>
  6#include <linux/bitops.h>
  7#include <linux/smp.h>
  8#include <linux/sched.h>
  9#include <linux/sched/clock.h>
 10#include <linux/thread_info.h>
 11#include <linux/init.h>
 12#include <linux/uaccess.h>
 13
 14#include <asm/cpufeature.h>
 
 15#include <asm/msr.h>
 16#include <asm/bugs.h>
 17#include <asm/cpu.h>
 18#include <asm/intel-family.h>
 19#include <asm/microcode.h>
 20#include <asm/hwcap2.h>
 21#include <asm/elf.h>
 22#include <asm/cpu_device_id.h>
 23#include <asm/resctrl.h>
 24#include <asm/numa.h>
 25#include <asm/thermal.h>
 26
 27#ifdef CONFIG_X86_64
 28#include <linux/topology.h>
 29#endif
 30
 31#include "cpu.h"
 32
 33#ifdef CONFIG_X86_LOCAL_APIC
 34#include <asm/mpspec.h>
 35#include <asm/apic.h>
 36#endif
 37
 38/*
 39 * Processors which have self-snooping capability can handle conflicting
 40 * memory type across CPUs by snooping its own cache. However, there exists
 41 * CPU models in which having conflicting memory types still leads to
 42 * unpredictable behavior, machine check errors, or hangs. Clear this
 43 * feature to prevent its use on machines with known erratas.
 44 */
 45static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
 
 
 
 
 
 
 
 
 
 
 46{
 47	switch (c->x86_vfm) {
 48	case INTEL_CORE_YONAH:
 49	case INTEL_CORE2_MEROM:
 50	case INTEL_CORE2_MEROM_L:
 51	case INTEL_CORE2_PENRYN:
 52	case INTEL_CORE2_DUNNINGTON:
 53	case INTEL_NEHALEM:
 54	case INTEL_NEHALEM_G:
 55	case INTEL_NEHALEM_EP:
 56	case INTEL_NEHALEM_EX:
 57	case INTEL_WESTMERE:
 58	case INTEL_WESTMERE_EP:
 59	case INTEL_SANDYBRIDGE:
 60		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
 
 
 61	}
 62}
 63
 64static bool ring3mwait_disabled __read_mostly;
 65
 66static int __init ring3mwait_disable(char *__unused)
 67{
 68	ring3mwait_disabled = true;
 69	return 1;
 70}
 71__setup("ring3mwait=disable", ring3mwait_disable);
 72
 73static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
 74{
 75	/*
 76	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
 77	 * cpu model and family comparison.
 78	 */
 79	if (c->x86 != 6)
 80		return;
 81	switch (c->x86_vfm) {
 82	case INTEL_XEON_PHI_KNL:
 83	case INTEL_XEON_PHI_KNM:
 84		break;
 85	default:
 86		return;
 87	}
 88
 89	if (ring3mwait_disabled)
 90		return;
 91
 92	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
 93	this_cpu_or(msr_misc_features_shadow,
 94		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
 95
 96	if (c == &boot_cpu_data)
 97		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
 98}
 99
100/*
101 * Early microcode releases for the Spectre v2 mitigation were broken.
102 * Information taken from;
103 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
104 * - https://kb.vmware.com/s/article/52345
105 * - Microcode revisions observed in the wild
106 * - Release note from 20180108 microcode release
107 */
108struct sku_microcode {
109	u32 vfm;
110	u8 stepping;
111	u32 microcode;
112};
113static const struct sku_microcode spectre_bad_microcodes[] = {
114	{ INTEL_KABYLAKE,	0x0B,	0x80 },
115	{ INTEL_KABYLAKE,	0x0A,	0x80 },
116	{ INTEL_KABYLAKE,	0x09,	0x80 },
117	{ INTEL_KABYLAKE_L,	0x0A,	0x80 },
118	{ INTEL_KABYLAKE_L,	0x09,	0x80 },
119	{ INTEL_SKYLAKE_X,	0x03,	0x0100013e },
120	{ INTEL_SKYLAKE_X,	0x04,	0x0200003c },
121	{ INTEL_BROADWELL,	0x04,	0x28 },
122	{ INTEL_BROADWELL_G,	0x01,	0x1b },
123	{ INTEL_BROADWELL_D,	0x02,	0x14 },
124	{ INTEL_BROADWELL_D,	0x03,	0x07000011 },
125	{ INTEL_BROADWELL_X,	0x01,	0x0b000025 },
126	{ INTEL_HASWELL_L,	0x01,	0x21 },
127	{ INTEL_HASWELL_G,	0x01,	0x18 },
128	{ INTEL_HASWELL,	0x03,	0x23 },
129	{ INTEL_HASWELL_X,	0x02,	0x3b },
130	{ INTEL_HASWELL_X,	0x04,	0x10 },
131	{ INTEL_IVYBRIDGE_X,	0x04,	0x42a },
132	/* Observed in the wild */
133	{ INTEL_SANDYBRIDGE_X,	0x06,	0x61b },
134	{ INTEL_SANDYBRIDGE_X,	0x07,	0x712 },
135};
136
137static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
138{
139	int i;
140
141	/*
142	 * We know that the hypervisor lie to us on the microcode version so
143	 * we may as well hope that it is running the correct version.
144	 */
145	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
146		return false;
147
148	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
149		if (c->x86_vfm == spectre_bad_microcodes[i].vfm &&
150		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
151			return (c->microcode <= spectre_bad_microcodes[i].microcode);
152	}
153	return false;
154}
155
156#define MSR_IA32_TME_ACTIVATE		0x982
157
158/* Helpers to access TME_ACTIVATE MSR */
159#define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
160#define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
161
162#define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
163
164static void detect_tme_early(struct cpuinfo_x86 *c)
165{
166	u64 tme_activate;
167	int keyid_bits;
168
169	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
170
171	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
172		pr_info_once("x86/tme: not enabled by BIOS\n");
173		clear_cpu_cap(c, X86_FEATURE_TME);
174		return;
 
175	}
176	pr_info_once("x86/tme: enabled by BIOS\n");
177	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
178	if (!keyid_bits)
179		return;
180
181	/*
182	 * KeyID bits are set by BIOS and can be present regardless
183	 * of whether the kernel is using them. They effectively lower
184	 * the number of physical address bits.
185	 *
186	 * Update cpuinfo_x86::x86_phys_bits accordingly.
187	 */
188	c->x86_phys_bits -= keyid_bits;
189	pr_info_once("x86/mktme: BIOS enabled: x86_phys_bits reduced by %d\n",
190		     keyid_bits);
191}
192
193void intel_unlock_cpuid_leafs(struct cpuinfo_x86 *c)
194{
195	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
196		return;
197
198	if (c->x86 < 6 || (c->x86 == 6 && c->x86_model < 0xd))
199		return;
200
201	/*
202	 * The BIOS can have limited CPUID to leaf 2, which breaks feature
203	 * enumeration. Unlock it and update the maximum leaf info.
204	 */
205	if (msr_clear_bit(MSR_IA32_MISC_ENABLE, MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0)
206		c->cpuid_level = cpuid_eax(0);
207}
208
209static void early_init_intel(struct cpuinfo_x86 *c)
210{
211	u64 misc_enable;
212
213	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
214		(c->x86 == 0x6 && c->x86_model >= 0x0e))
215		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
216
217	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
218		c->microcode = intel_get_microcode_revision();
219
220	/* Now if any of them are set, check the blacklist and clear the lot */
221	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
222	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
223	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
224	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
225		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
226		setup_clear_cpu_cap(X86_FEATURE_IBRS);
227		setup_clear_cpu_cap(X86_FEATURE_IBPB);
228		setup_clear_cpu_cap(X86_FEATURE_STIBP);
229		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
230		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
231		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
232		setup_clear_cpu_cap(X86_FEATURE_SSBD);
233		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
234	}
235
236	/*
237	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
238	 *
239	 * A race condition between speculative fetches and invalidating
240	 * a large page.  This is worked around in microcode, but we
241	 * need the microcode to have already been loaded... so if it is
242	 * not, recommend a BIOS update and disable large pages.
243	 */
244	if (c->x86_vfm == INTEL_ATOM_BONNELL && c->x86_stepping <= 2 &&
245	    c->microcode < 0x20e) {
246		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
247		clear_cpu_cap(c, X86_FEATURE_PSE);
248	}
249
250#ifdef CONFIG_X86_64
251	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
252#else
253	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
254	if (c->x86 == 15 && c->x86_cache_alignment == 64)
255		c->x86_cache_alignment = 128;
256#endif
257
258	/* CPUID workaround for 0F33/0F34 CPU */
259	if (c->x86 == 0xF && c->x86_model == 0x3
260	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
261		c->x86_phys_bits = 36;
262
263	/*
264	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
265	 * with P/T states and does not stop in deep C-states.
266	 *
267	 * It is also reliable across cores and sockets. (but not across
268	 * cabinets - we turn it off in that case explicitly.)
269	 */
270	if (c->x86_power & (1 << 8)) {
271		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
272		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
273	}
274
275	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
276	switch (c->x86_vfm) {
277	case INTEL_ATOM_SALTWELL_MID:
278	case INTEL_ATOM_SALTWELL_TABLET:
279	case INTEL_ATOM_SILVERMONT_MID:
280	case INTEL_ATOM_AIRMONT_NP:
281		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
282		break;
 
 
 
283	}
284
285	/*
286	 * PAT is broken on early family 6 CPUs, the last of which
287	 * is "Yonah" where the erratum is named "AN7":
288	 *
289	 * 	Page with PAT (Page Attribute Table) Set to USWC
290	 * 	(Uncacheable Speculative Write Combine) While
291	 * 	Associated MTRR (Memory Type Range Register) Is UC
292	 * 	(Uncacheable) May Consolidate to UC
293	 *
294	 * Disable PAT and fall back to MTRR on these CPUs.
295	 */
296	if (c->x86_vfm >= INTEL_PENTIUM_PRO &&
297	    c->x86_vfm <= INTEL_CORE_YONAH)
298		clear_cpu_cap(c, X86_FEATURE_PAT);
299
300	/*
301	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
302	 * clear the fast string and enhanced fast string CPU capabilities.
303	 */
304	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
305		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
306		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
307			pr_info("Disabled fast string operations\n");
308			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
309			setup_clear_cpu_cap(X86_FEATURE_ERMS);
310		}
311	}
312
313	/*
314	 * Intel Quark Core DevMan_001.pdf section 6.4.11
315	 * "The operating system also is required to invalidate (i.e., flush)
316	 *  the TLB when any changes are made to any of the page table entries.
317	 *  The operating system must reload CR3 to cause the TLB to be flushed"
318	 *
319	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
320	 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
321	 * to be modified.
322	 */
323	if (c->x86_vfm == INTEL_QUARK_X1000) {
324		pr_info("Disabling PGE capability bit\n");
325		setup_clear_cpu_cap(X86_FEATURE_PGE);
326	}
327
328	check_memory_type_self_snoop_errata(c);
 
329
330	/*
331	 * Adjust the number of physical bits early because it affects the
332	 * valid bits of the MTRR mask registers.
333	 */
334	if (cpu_has(c, X86_FEATURE_TME))
335		detect_tme_early(c);
336}
 
 
337
338static void bsp_init_intel(struct cpuinfo_x86 *c)
339{
340	resctrl_cpu_detect(c);
341}
342
343#ifdef CONFIG_X86_32
344/*
345 *	Early probe support logic for ppro memory erratum #50
346 *
347 *	This is called before we do cpu ident work
348 */
349
350int ppro_with_ram_bug(void)
351{
352	/* Uses data from early_cpu_detect now */
353	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
354	    boot_cpu_data.x86 == 6 &&
355	    boot_cpu_data.x86_model == 1 &&
356	    boot_cpu_data.x86_stepping < 8) {
357		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
358		return 1;
359	}
360	return 0;
361}
362
363static void intel_smp_check(struct cpuinfo_x86 *c)
364{
365	/* calling is from identify_secondary_cpu() ? */
366	if (!c->cpu_index)
367		return;
368
369	/*
370	 * Mask B, Pentium, but not Pentium MMX
371	 */
372	if (c->x86 == 5 &&
373	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
374	    c->x86_model <= 3) {
375		/*
376		 * Remember we have B step Pentia with bugs
377		 */
378		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
379				    "with B stepping processors.\n");
380	}
381}
382
383static int forcepae;
384static int __init forcepae_setup(char *__unused)
385{
386	forcepae = 1;
387	return 1;
388}
389__setup("forcepae", forcepae_setup);
390
391static void intel_workarounds(struct cpuinfo_x86 *c)
392{
393#ifdef CONFIG_X86_F00F_BUG
394	/*
395	 * All models of Pentium and Pentium with MMX technology CPUs
396	 * have the F0 0F bug, which lets nonprivileged users lock up the
397	 * system. Announce that the fault handler will be checking for it.
398	 * The Quark is also family 5, but does not have the same bug.
399	 */
400	clear_cpu_bug(c, X86_BUG_F00F);
401	if (c->x86 == 5 && c->x86_model < 9) {
402		static int f00f_workaround_enabled;
403
404		set_cpu_bug(c, X86_BUG_F00F);
405		if (!f00f_workaround_enabled) {
406			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
407			f00f_workaround_enabled = 1;
408		}
409	}
410#endif
411
412	/*
413	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
414	 * model 3 mask 3
415	 */
416	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
417		clear_cpu_cap(c, X86_FEATURE_SEP);
418
419	/*
420	 * PAE CPUID issue: many Pentium M report no PAE but may have a
421	 * functionally usable PAE implementation.
422	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
423	 */
424	if (forcepae) {
425		pr_warn("PAE forced!\n");
426		set_cpu_cap(c, X86_FEATURE_PAE);
427		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
428	}
429
430	/*
431	 * P4 Xeon erratum 037 workaround.
432	 * Hardware prefetcher may cause stale data to be loaded into the cache.
433	 */
434	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
435		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
436				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
437			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
438			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
439		}
440	}
441
442	/*
443	 * See if we have a good local APIC by checking for buggy Pentia,
444	 * i.e. all B steppings and the C2 stepping of P54C when using their
445	 * integrated APIC (see 11AP erratum in "Pentium Processor
446	 * Specification Update").
447	 */
448	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
449	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
450		set_cpu_bug(c, X86_BUG_11AP);
451
452
453#ifdef CONFIG_X86_INTEL_USERCOPY
454	/*
455	 * Set up the preferred alignment for movsl bulk memory moves
456	 */
457	switch (c->x86) {
458	case 4:		/* 486: untested */
459		break;
460	case 5:		/* Old Pentia: untested */
461		break;
462	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
463		movsl_mask.mask = 7;
464		break;
465	case 15:	/* P4 is OK down to 8-byte alignment */
466		movsl_mask.mask = 7;
467		break;
468	}
469#endif
470
471	intel_smp_check(c);
472}
473#else
474static void intel_workarounds(struct cpuinfo_x86 *c)
475{
476}
477#endif
478
479static void srat_detect_node(struct cpuinfo_x86 *c)
480{
481#ifdef CONFIG_NUMA
482	unsigned node;
483	int cpu = smp_processor_id();
484
485	/* Don't do the funky fallback heuristics the AMD version employs
486	   for now. */
487	node = numa_cpu_node(cpu);
488	if (node == NUMA_NO_NODE || !node_online(node)) {
489		/* reuse the value from init_cpu_to_node() */
490		node = cpu_to_node(cpu);
491	}
492	numa_set_node(cpu, node);
493#endif
494}
495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496static void init_cpuid_fault(struct cpuinfo_x86 *c)
497{
498	u64 msr;
499
500	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
501		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
502			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
503	}
504}
505
506static void init_intel_misc_features(struct cpuinfo_x86 *c)
507{
508	u64 msr;
509
510	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
511		return;
512
513	/* Clear all MISC features */
514	this_cpu_write(msr_misc_features_shadow, 0);
515
516	/* Check features and update capabilities and shadow control bits */
517	init_cpuid_fault(c);
518	probe_xeon_phi_r3mwait(c);
519
520	msr = this_cpu_read(msr_misc_features_shadow);
521	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
522}
523
524static void init_intel(struct cpuinfo_x86 *c)
525{
 
 
526	early_init_intel(c);
527
528	intel_workarounds(c);
529
530	init_intel_cacheinfo(c);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531
532	if (c->cpuid_level > 9) {
533		unsigned eax = cpuid_eax(10);
534		/* Check for version and the number of counters */
535		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
536			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
537	}
538
539	if (cpu_has(c, X86_FEATURE_XMM2))
540		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
541
542	if (boot_cpu_has(X86_FEATURE_DS)) {
543		unsigned int l1, l2;
544
545		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
546		if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
547			set_cpu_cap(c, X86_FEATURE_BTS);
548		if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
549			set_cpu_cap(c, X86_FEATURE_PEBS);
550	}
551
552	if (boot_cpu_has(X86_FEATURE_CLFLUSH) &&
553	    (c->x86_vfm == INTEL_CORE2_DUNNINGTON ||
554	     c->x86_vfm == INTEL_NEHALEM_EX ||
555	     c->x86_vfm == INTEL_WESTMERE_EX))
556		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
557
558	if (boot_cpu_has(X86_FEATURE_MWAIT) &&
559	    (c->x86_vfm == INTEL_ATOM_GOLDMONT ||
560	     c->x86_vfm == INTEL_LUNARLAKE_M))
561		set_cpu_bug(c, X86_BUG_MONITOR);
562
563#ifdef CONFIG_X86_64
564	if (c->x86 == 15)
565		c->x86_cache_alignment = c->x86_clflush_size * 2;
566	if (c->x86 == 6)
567		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
568#else
569	/*
570	 * Names for the Pentium II/Celeron processors
571	 * detectable only by also checking the cache size.
572	 * Dixon is NOT a Celeron.
573	 */
574	if (c->x86 == 6) {
575		unsigned int l2 = c->x86_cache_size;
576		char *p = NULL;
577
578		switch (c->x86_model) {
579		case 5:
580			if (l2 == 0)
581				p = "Celeron (Covington)";
582			else if (l2 == 256)
583				p = "Mobile Pentium II (Dixon)";
584			break;
585
586		case 6:
587			if (l2 == 128)
588				p = "Celeron (Mendocino)";
589			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
590				p = "Celeron-A";
591			break;
592
593		case 8:
594			if (l2 == 128)
595				p = "Celeron (Coppermine)";
596			break;
597		}
598
599		if (p)
600			strcpy(c->x86_model_id, p);
601	}
602
603	if (c->x86 == 15)
604		set_cpu_cap(c, X86_FEATURE_P4);
605	if (c->x86 == 6)
606		set_cpu_cap(c, X86_FEATURE_P3);
607#endif
608
609	/* Work around errata */
610	srat_detect_node(c);
611
612	init_ia32_feat_ctl(c);
 
613
614	init_intel_misc_features(c);
 
615
616	split_lock_init();
617
618	intel_init_thermal(c);
619}
620
621#ifdef CONFIG_X86_32
622static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
623{
624	/*
625	 * Intel PIII Tualatin. This comes in two flavours.
626	 * One has 256kb of cache, the other 512. We have no way
627	 * to determine which, so we use a boottime override
628	 * for the 512kb model, and assume 256 otherwise.
629	 */
630	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
631		size = 256;
632
633	/*
634	 * Intel Quark SoC X1000 contains a 4-way set associative
635	 * 16K cache with a 16 byte cache line and 256 lines per tag
636	 */
637	if ((c->x86 == 5) && (c->x86_model == 9))
638		size = 16;
639	return size;
640}
641#endif
642
643#define TLB_INST_4K		0x01
644#define TLB_INST_4M		0x02
645#define TLB_INST_2M_4M		0x03
646
647#define TLB_INST_ALL		0x05
648#define TLB_INST_1G		0x06
649
650#define TLB_DATA_4K		0x11
651#define TLB_DATA_4M		0x12
652#define TLB_DATA_2M_4M		0x13
653#define TLB_DATA_4K_4M		0x14
654
655#define TLB_DATA_1G		0x16
656#define TLB_DATA_1G_2M_4M	0x17
657
658#define TLB_DATA0_4K		0x21
659#define TLB_DATA0_4M		0x22
660#define TLB_DATA0_2M_4M		0x23
661
662#define STLB_4K			0x41
663#define STLB_4K_2M		0x42
664
665/*
666 * All of leaf 0x2's one-byte TLB descriptors implies the same number of
667 * entries for their respective TLB types.  The 0x63 descriptor is an
668 * exception: it implies 4 dTLB entries for 1GB pages 32 dTLB entries
669 * for 2MB or 4MB pages.  Encode descriptor 0x63 dTLB entry count for
670 * 2MB/4MB pages here, as its count for dTLB 1GB pages is already at the
671 * intel_tlb_table[] mapping.
672 */
673#define TLB_0x63_2M_4M_ENTRIES	32
674
675static const struct _tlb_table intel_tlb_table[] = {
676	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
677	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
678	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
679	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
680	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
681	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
682	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
683	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
684	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
685	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
686	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
687	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
688	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
689	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
690	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
691	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
692	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
693	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
694	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
695	{ 0x63, TLB_DATA_1G_2M_4M,	4,	" TLB_DATA 1 GByte pages, 4-way set associative"
696						" (plus 32 entries TLB_DATA 2 MByte or 4 MByte pages, not encoded here)" },
697	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
698	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
699	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
700	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
701	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
702	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
703	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
704	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
705	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
706	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
707	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
708	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
709	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
710	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
711	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
712	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
713	{ 0x00, 0, 0 }
714};
715
716static void intel_tlb_lookup(const unsigned char desc)
717{
718	unsigned char k;
719	if (desc == 0)
720		return;
721
722	/* look up this descriptor in the table */
723	for (k = 0; intel_tlb_table[k].descriptor != desc &&
724	     intel_tlb_table[k].descriptor != 0; k++)
725		;
726
727	if (intel_tlb_table[k].tlb_type == 0)
728		return;
729
730	switch (intel_tlb_table[k].tlb_type) {
731	case STLB_4K:
732		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
733			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
734		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
735			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
736		break;
737	case STLB_4K_2M:
738		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
739			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
740		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
741			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
742		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
743			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
744		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
745			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
746		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
747			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
748		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
749			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
750		break;
751	case TLB_INST_ALL:
752		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
753			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
754		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
755			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
756		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
757			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
758		break;
759	case TLB_INST_4K:
760		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
761			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
762		break;
763	case TLB_INST_4M:
764		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
765			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
766		break;
767	case TLB_INST_2M_4M:
768		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
769			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
770		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
771			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
772		break;
773	case TLB_DATA_4K:
774	case TLB_DATA0_4K:
775		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
776			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
777		break;
778	case TLB_DATA_4M:
779	case TLB_DATA0_4M:
780		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
781			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
782		break;
783	case TLB_DATA_2M_4M:
784	case TLB_DATA0_2M_4M:
785		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
786			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
787		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
788			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
789		break;
790	case TLB_DATA_4K_4M:
791		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
792			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
793		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
794			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
795		break;
796	case TLB_DATA_1G_2M_4M:
797		if (tlb_lld_2m[ENTRIES] < TLB_0x63_2M_4M_ENTRIES)
798			tlb_lld_2m[ENTRIES] = TLB_0x63_2M_4M_ENTRIES;
799		if (tlb_lld_4m[ENTRIES] < TLB_0x63_2M_4M_ENTRIES)
800			tlb_lld_4m[ENTRIES] = TLB_0x63_2M_4M_ENTRIES;
801		fallthrough;
802	case TLB_DATA_1G:
803		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
804			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
805		break;
806	}
807}
808
809static void intel_detect_tlb(struct cpuinfo_x86 *c)
810{
811	int i, j, n;
812	unsigned int regs[4];
813	unsigned char *desc = (unsigned char *)regs;
814
815	if (c->cpuid_level < 2)
816		return;
817
818	/* Number of times to iterate */
819	n = cpuid_eax(2) & 0xFF;
820
821	for (i = 0 ; i < n ; i++) {
822		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
823
824		/* If bit 31 is set, this is an unknown format */
825		for (j = 0 ; j < 4 ; j++)
826			if (regs[j] & (1 << 31))
827				regs[j] = 0;
828
829		/* Byte 0 is level count, not a descriptor */
830		for (j = 1 ; j < 16 ; j++)
831			intel_tlb_lookup(desc[j]);
832	}
833}
834
835static const struct cpu_dev intel_cpu_dev = {
836	.c_vendor	= "Intel",
837	.c_ident	= { "GenuineIntel" },
838#ifdef CONFIG_X86_32
839	.legacy_models = {
840		{ .family = 4, .model_names =
841		  {
842			  [0] = "486 DX-25/33",
843			  [1] = "486 DX-50",
844			  [2] = "486 SX",
845			  [3] = "486 DX/2",
846			  [4] = "486 SL",
847			  [5] = "486 SX/2",
848			  [7] = "486 DX/2-WB",
849			  [8] = "486 DX/4",
850			  [9] = "486 DX/4-WB"
851		  }
852		},
853		{ .family = 5, .model_names =
854		  {
855			  [0] = "Pentium 60/66 A-step",
856			  [1] = "Pentium 60/66",
857			  [2] = "Pentium 75 - 200",
858			  [3] = "OverDrive PODP5V83",
859			  [4] = "Pentium MMX",
860			  [7] = "Mobile Pentium 75 - 200",
861			  [8] = "Mobile Pentium MMX",
862			  [9] = "Quark SoC X1000",
863		  }
864		},
865		{ .family = 6, .model_names =
866		  {
867			  [0] = "Pentium Pro A-step",
868			  [1] = "Pentium Pro",
869			  [3] = "Pentium II (Klamath)",
870			  [4] = "Pentium II (Deschutes)",
871			  [5] = "Pentium II (Deschutes)",
872			  [6] = "Mobile Pentium II",
873			  [7] = "Pentium III (Katmai)",
874			  [8] = "Pentium III (Coppermine)",
875			  [10] = "Pentium III (Cascades)",
876			  [11] = "Pentium III (Tualatin)",
877		  }
878		},
879		{ .family = 15, .model_names =
880		  {
881			  [0] = "Pentium 4 (Unknown)",
882			  [1] = "Pentium 4 (Willamette)",
883			  [2] = "Pentium 4 (Northwood)",
884			  [4] = "Pentium 4 (Foster)",
885			  [5] = "Pentium 4 (Foster)",
886		  }
887		},
888	},
889	.legacy_cache_size = intel_size_cache,
890#endif
891	.c_detect_tlb	= intel_detect_tlb,
892	.c_early_init   = early_init_intel,
893	.c_bsp_init	= bsp_init_intel,
894	.c_init		= init_intel,
 
895	.c_x86_vendor	= X86_VENDOR_INTEL,
896};
897
898cpu_dev_register(intel_cpu_dev);
899
900#define X86_HYBRID_CPU_TYPE_ID_SHIFT	24
901
902/**
903 * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
904 *
905 * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
906 * a hybrid processor. If the processor is not hybrid, returns 0.
907 */
908u8 get_this_hybrid_cpu_type(void)
909{
910	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
911		return 0;
912
913	return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
914}
915
916/**
917 * get_this_hybrid_cpu_native_id() - Get the native id of this hybrid CPU
918 *
919 * Returns the uarch native ID [23:0] of a CPU in a hybrid processor.
920 * If the processor is not hybrid, returns 0.
921 */
922u32 get_this_hybrid_cpu_native_id(void)
923{
924	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
925		return 0;
926
927	return cpuid_eax(0x0000001a) &
928	       (BIT_ULL(X86_HYBRID_CPU_TYPE_ID_SHIFT) - 1);
929}