Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (C) 2013 Imagination Technologies
  3 * Author: Paul Burton <paul.burton@mips.com>
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms of the GNU General Public License as published by the
  7 * Free Software Foundation;  either version 2 of the  License, or (at your
  8 * option) any later version.
  9 */
 10
 11#include <linux/errno.h>
 12#include <linux/percpu.h>
 13#include <linux/spinlock.h>
 14
 15#include <asm/mips-cps.h>
 16#include <asm/mipsregs.h>
 17
 18void __iomem *mips_gcr_base;
 19void __iomem *mips_cm_l2sync_base;
 20int mips_cm_is64;
 21
 22static char *cm2_tr[8] = {
 23	"mem",	"gcr",	"gic",	"mmio",
 24	"0x04", "cpc", "0x06", "0x07"
 25};
 26
 27/* CM3 Tag ECC transaction type */
 28static char *cm3_tr[16] = {
 29	[0x0] = "ReqNoData",
 30	[0x1] = "0x1",
 31	[0x2] = "ReqWData",
 32	[0x3] = "0x3",
 33	[0x4] = "IReqNoResp",
 34	[0x5] = "IReqWResp",
 35	[0x6] = "IReqNoRespDat",
 36	[0x7] = "IReqWRespDat",
 37	[0x8] = "RespNoData",
 38	[0x9] = "RespDataFol",
 39	[0xa] = "RespWData",
 40	[0xb] = "RespDataOnly",
 41	[0xc] = "IRespNoData",
 42	[0xd] = "IRespDataFol",
 43	[0xe] = "IRespWData",
 44	[0xf] = "IRespDataOnly"
 45};
 46
 47static char *cm2_cmd[32] = {
 48	[0x00] = "0x00",
 49	[0x01] = "Legacy Write",
 50	[0x02] = "Legacy Read",
 51	[0x03] = "0x03",
 52	[0x04] = "0x04",
 53	[0x05] = "0x05",
 54	[0x06] = "0x06",
 55	[0x07] = "0x07",
 56	[0x08] = "Coherent Read Own",
 57	[0x09] = "Coherent Read Share",
 58	[0x0a] = "Coherent Read Discard",
 59	[0x0b] = "Coherent Ready Share Always",
 60	[0x0c] = "Coherent Upgrade",
 61	[0x0d] = "Coherent Writeback",
 62	[0x0e] = "0x0e",
 63	[0x0f] = "0x0f",
 64	[0x10] = "Coherent Copyback",
 65	[0x11] = "Coherent Copyback Invalidate",
 66	[0x12] = "Coherent Invalidate",
 67	[0x13] = "Coherent Write Invalidate",
 68	[0x14] = "Coherent Completion Sync",
 69	[0x15] = "0x15",
 70	[0x16] = "0x16",
 71	[0x17] = "0x17",
 72	[0x18] = "0x18",
 73	[0x19] = "0x19",
 74	[0x1a] = "0x1a",
 75	[0x1b] = "0x1b",
 76	[0x1c] = "0x1c",
 77	[0x1d] = "0x1d",
 78	[0x1e] = "0x1e",
 79	[0x1f] = "0x1f"
 80};
 81
 82/* CM3 Tag ECC command type */
 83static char *cm3_cmd[16] = {
 84	[0x0] = "Legacy Read",
 85	[0x1] = "Legacy Write",
 86	[0x2] = "Coherent Read Own",
 87	[0x3] = "Coherent Read Share",
 88	[0x4] = "Coherent Read Discard",
 89	[0x5] = "Coherent Evicted",
 90	[0x6] = "Coherent Upgrade",
 91	[0x7] = "Coherent Upgrade for Store Conditional",
 92	[0x8] = "Coherent Writeback",
 93	[0x9] = "Coherent Write Invalidate",
 94	[0xa] = "0xa",
 95	[0xb] = "0xb",
 96	[0xc] = "0xc",
 97	[0xd] = "0xd",
 98	[0xe] = "0xe",
 99	[0xf] = "0xf"
100};
101
102/* CM3 Tag ECC command group */
103static char *cm3_cmd_group[8] = {
104	[0x0] = "Normal",
105	[0x1] = "Registers",
106	[0x2] = "TLB",
107	[0x3] = "0x3",
108	[0x4] = "L1I",
109	[0x5] = "L1D",
110	[0x6] = "L3",
111	[0x7] = "L2"
112};
113
114static char *cm2_core[8] = {
115	"Invalid/OK",	"Invalid/Data",
116	"Shared/OK",	"Shared/Data",
117	"Modified/OK",	"Modified/Data",
118	"Exclusive/OK", "Exclusive/Data"
119};
120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121static char *cm2_causes[32] = {
122	"None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR",
123	"COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07",
124	"0x08", "0x09", "0x0a", "0x0b",
125	"0x0c", "0x0d", "0x0e", "0x0f",
126	"0x10", "0x11", "0x12", "0x13",
127	"0x14", "0x15", "0x16", "INTVN_WR_ERR",
128	"INTVN_RD_ERR", "0x19", "0x1a", "0x1b",
129	"0x1c", "0x1d", "0x1e", "0x1f"
130};
131
132static char *cm3_causes[32] = {
133	"0x0", "MP_CORRECTABLE_ECC_ERR", "MP_REQUEST_DECODE_ERR",
134	"MP_UNCORRECTABLE_ECC_ERR", "MP_PARITY_ERR", "MP_COHERENCE_ERR",
135	"CMBIU_REQUEST_DECODE_ERR", "CMBIU_PARITY_ERR", "CMBIU_AXI_RESP_ERR",
136	"0x9", "RBI_BUS_ERR", "0xb", "0xc", "0xd", "0xe", "0xf", "0x10",
137	"0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18",
138	"0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f"
139};
140
141static DEFINE_PER_CPU_ALIGNED(spinlock_t, cm_core_lock);
142static DEFINE_PER_CPU_ALIGNED(unsigned long, cm_core_lock_flags);
143
144phys_addr_t __mips_cm_phys_base(void)
145{
146	u32 config3 = read_c0_config3();
147	unsigned long cmgcr;
148
149	/* Check the CMGCRBase register is implemented */
150	if (!(config3 & MIPS_CONF3_CMGCR))
 
 
 
 
 
 
151		return 0;
152
153	/* Read the address from CMGCRBase */
154	cmgcr = read_c0_cmgcrbase();
155	return (cmgcr & MIPS_CMGCRF_BASE) << (36 - 32);
156}
157
158phys_addr_t mips_cm_phys_base(void)
159	__attribute__((weak, alias("__mips_cm_phys_base")));
160
161phys_addr_t __mips_cm_l2sync_phys_base(void)
162{
163	u32 base_reg;
164
165	/*
166	 * If the L2-only sync region is already enabled then leave it at it's
167	 * current location.
168	 */
169	base_reg = read_gcr_l2_only_sync_base();
170	if (base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN)
171		return base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE;
172
173	/* Default to following the CM */
174	return mips_cm_phys_base() + MIPS_CM_GCR_SIZE;
175}
176
177phys_addr_t mips_cm_l2sync_phys_base(void)
178	__attribute__((weak, alias("__mips_cm_l2sync_phys_base")));
179
180static void mips_cm_probe_l2sync(void)
181{
182	unsigned major_rev;
183	phys_addr_t addr;
184
185	/* L2-only sync was introduced with CM major revision 6 */
186	major_rev = (read_gcr_rev() & CM_GCR_REV_MAJOR) >>
187		__ffs(CM_GCR_REV_MAJOR);
188	if (major_rev < 6)
189		return;
190
191	/* Find a location for the L2 sync region */
192	addr = mips_cm_l2sync_phys_base();
193	BUG_ON((addr & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE) != addr);
194	if (!addr)
195		return;
196
197	/* Set the region base address & enable it */
198	write_gcr_l2_only_sync_base(addr | CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN);
199
200	/* Map the region */
201	mips_cm_l2sync_base = ioremap_nocache(addr, MIPS_CM_L2SYNC_SIZE);
202}
203
204int mips_cm_probe(void)
205{
206	phys_addr_t addr;
207	u32 base_reg;
208	unsigned cpu;
209
210	/*
211	 * No need to probe again if we have already been
212	 * here before.
213	 */
214	if (mips_gcr_base)
215		return 0;
216
217	addr = mips_cm_phys_base();
218	BUG_ON((addr & CM_GCR_BASE_GCRBASE) != addr);
219	if (!addr)
220		return -ENODEV;
221
222	mips_gcr_base = ioremap_nocache(addr, MIPS_CM_GCR_SIZE);
223	if (!mips_gcr_base)
224		return -ENXIO;
225
226	/* sanity check that we're looking at a CM */
227	base_reg = read_gcr_base();
228	if ((base_reg & CM_GCR_BASE_GCRBASE) != addr) {
229		pr_err("GCRs appear to have been moved (expected them at 0x%08lx)!\n",
230		       (unsigned long)addr);
 
231		mips_gcr_base = NULL;
232		return -ENODEV;
233	}
234
235	/* set default target to memory */
236	change_gcr_base(CM_GCR_BASE_CMDEFTGT, CM_GCR_BASE_CMDEFTGT_MEM);
237
238	/* disable CM regions */
239	write_gcr_reg0_base(CM_GCR_REGn_BASE_BASEADDR);
240	write_gcr_reg0_mask(CM_GCR_REGn_MASK_ADDRMASK);
241	write_gcr_reg1_base(CM_GCR_REGn_BASE_BASEADDR);
242	write_gcr_reg1_mask(CM_GCR_REGn_MASK_ADDRMASK);
243	write_gcr_reg2_base(CM_GCR_REGn_BASE_BASEADDR);
244	write_gcr_reg2_mask(CM_GCR_REGn_MASK_ADDRMASK);
245	write_gcr_reg3_base(CM_GCR_REGn_BASE_BASEADDR);
246	write_gcr_reg3_mask(CM_GCR_REGn_MASK_ADDRMASK);
247
248	/* probe for an L2-only sync region */
249	mips_cm_probe_l2sync();
250
251	/* determine register width for this CM */
252	mips_cm_is64 = IS_ENABLED(CONFIG_64BIT) && (mips_cm_revision() >= CM_REV_CM3);
253
254	for_each_possible_cpu(cpu)
255		spin_lock_init(&per_cpu(cm_core_lock, cpu));
256
257	return 0;
258}
259
260void mips_cm_lock_other(unsigned int cluster, unsigned int core,
261			unsigned int vp, unsigned int block)
262{
263	unsigned int curr_core, cm_rev;
264	u32 val;
265
266	cm_rev = mips_cm_revision();
267	preempt_disable();
268
269	if (cm_rev >= CM_REV_CM3) {
270		val = core << __ffs(CM3_GCR_Cx_OTHER_CORE);
271		val |= vp << __ffs(CM3_GCR_Cx_OTHER_VP);
272
273		if (cm_rev >= CM_REV_CM3_5) {
274			val |= CM_GCR_Cx_OTHER_CLUSTER_EN;
275			val |= cluster << __ffs(CM_GCR_Cx_OTHER_CLUSTER);
276			val |= block << __ffs(CM_GCR_Cx_OTHER_BLOCK);
277		} else {
278			WARN_ON(cluster != 0);
279			WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
280		}
281
282		/*
283		 * We need to disable interrupts in SMP systems in order to
284		 * ensure that we don't interrupt the caller with code which
285		 * may modify the redirect register. We do so here in a
286		 * slightly obscure way by using a spin lock, since this has
287		 * the neat property of also catching any nested uses of
288		 * mips_cm_lock_other() leading to a deadlock or a nice warning
289		 * with lockdep enabled.
290		 */
291		spin_lock_irqsave(this_cpu_ptr(&cm_core_lock),
292				  *this_cpu_ptr(&cm_core_lock_flags));
293	} else {
294		WARN_ON(cluster != 0);
295		WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
296
297		/*
298		 * We only have a GCR_CL_OTHER per core in systems with
299		 * CM 2.5 & older, so have to ensure other VP(E)s don't
300		 * race with us.
301		 */
302		curr_core = cpu_core(&current_cpu_data);
303		spin_lock_irqsave(&per_cpu(cm_core_lock, curr_core),
304				  per_cpu(cm_core_lock_flags, curr_core));
305
306		val = core << __ffs(CM_GCR_Cx_OTHER_CORENUM);
307	}
308
309	write_gcr_cl_other(val);
310
311	/*
312	 * Ensure the core-other region reflects the appropriate core &
313	 * VP before any accesses to it occur.
314	 */
315	mb();
316}
317
318void mips_cm_unlock_other(void)
319{
320	unsigned int curr_core;
321
322	if (mips_cm_revision() < CM_REV_CM3) {
323		curr_core = cpu_core(&current_cpu_data);
324		spin_unlock_irqrestore(&per_cpu(cm_core_lock, curr_core),
325				       per_cpu(cm_core_lock_flags, curr_core));
326	} else {
327		spin_unlock_irqrestore(this_cpu_ptr(&cm_core_lock),
328				       *this_cpu_ptr(&cm_core_lock_flags));
329	}
330
331	preempt_enable();
332}
333
334void mips_cm_error_report(void)
335{
336	u64 cm_error, cm_addr, cm_other;
337	unsigned long revision;
338	int ocause, cause;
339	char buf[256];
340
341	if (!mips_cm_present())
342		return;
343
344	revision = mips_cm_revision();
345	cm_error = read_gcr_error_cause();
346	cm_addr = read_gcr_error_addr();
347	cm_other = read_gcr_error_mult();
348
349	if (revision < CM_REV_CM3) { /* CM2 */
350		cause = cm_error >> __ffs(CM_GCR_ERROR_CAUSE_ERRTYPE);
351		ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND);
352
353		if (!cause)
354			return;
355
356		if (cause < 16) {
357			unsigned long cca_bits = (cm_error >> 15) & 7;
358			unsigned long tr_bits = (cm_error >> 12) & 7;
359			unsigned long cmd_bits = (cm_error >> 7) & 0x1f;
360			unsigned long stag_bits = (cm_error >> 3) & 15;
361			unsigned long sport_bits = (cm_error >> 0) & 7;
362
363			snprintf(buf, sizeof(buf),
364				 "CCA=%lu TR=%s MCmd=%s STag=%lu "
365				 "SPort=%lu\n", cca_bits, cm2_tr[tr_bits],
366				 cm2_cmd[cmd_bits], stag_bits, sport_bits);
367		} else {
368			/* glob state & sresp together */
369			unsigned long c3_bits = (cm_error >> 18) & 7;
370			unsigned long c2_bits = (cm_error >> 15) & 7;
371			unsigned long c1_bits = (cm_error >> 12) & 7;
372			unsigned long c0_bits = (cm_error >> 9) & 7;
373			unsigned long sc_bit = (cm_error >> 8) & 1;
374			unsigned long cmd_bits = (cm_error >> 3) & 0x1f;
375			unsigned long sport_bits = (cm_error >> 0) & 7;
376
377			snprintf(buf, sizeof(buf),
378				 "C3=%s C2=%s C1=%s C0=%s SC=%s "
379				 "MCmd=%s SPort=%lu\n",
380				 cm2_core[c3_bits], cm2_core[c2_bits],
381				 cm2_core[c1_bits], cm2_core[c0_bits],
382				 sc_bit ? "True" : "False",
383				 cm2_cmd[cmd_bits], sport_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384		}
385			pr_err("CM_ERROR=%08llx %s <%s>\n", cm_error,
386			       cm2_causes[cause], buf);
387		pr_err("CM_ADDR =%08llx\n", cm_addr);
388		pr_err("CM_OTHER=%08llx %s\n", cm_other, cm2_causes[ocause]);
389	} else { /* CM3 */
390		ulong core_id_bits, vp_id_bits, cmd_bits, cmd_group_bits;
391		ulong cm3_cca_bits, mcp_bits, cm3_tr_bits, sched_bit;
392
393		cause = cm_error >> __ffs64(CM3_GCR_ERROR_CAUSE_ERRTYPE);
394		ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND);
395
396		if (!cause)
397			return;
398
399		/* Used by cause == {1,2,3} */
400		core_id_bits = (cm_error >> 22) & 0xf;
401		vp_id_bits = (cm_error >> 18) & 0xf;
402		cmd_bits = (cm_error >> 14) & 0xf;
403		cmd_group_bits = (cm_error >> 11) & 0xf;
404		cm3_cca_bits = (cm_error >> 8) & 7;
405		mcp_bits = (cm_error >> 5) & 0xf;
406		cm3_tr_bits = (cm_error >> 1) & 0xf;
407		sched_bit = cm_error & 0x1;
408
409		if (cause == 1 || cause == 3) { /* Tag ECC */
410			unsigned long tag_ecc = (cm_error >> 57) & 0x1;
411			unsigned long tag_way_bits = (cm_error >> 29) & 0xffff;
412			unsigned long dword_bits = (cm_error >> 49) & 0xff;
413			unsigned long data_way_bits = (cm_error >> 45) & 0xf;
414			unsigned long data_sets_bits = (cm_error >> 29) & 0xfff;
415			unsigned long bank_bit = (cm_error >> 28) & 0x1;
416			snprintf(buf, sizeof(buf),
417				 "%s ECC Error: Way=%lu (DWORD=%lu, Sets=%lu)"
418				 "Bank=%lu CoreID=%lu VPID=%lu Command=%s"
419				 "Command Group=%s CCA=%lu MCP=%d"
420				 "Transaction type=%s Scheduler=%lu\n",
421				 tag_ecc ? "TAG" : "DATA",
422				 tag_ecc ? (unsigned long)ffs(tag_way_bits) - 1 :
423				 data_way_bits, bank_bit, dword_bits,
424				 data_sets_bits,
425				 core_id_bits, vp_id_bits,
426				 cm3_cmd[cmd_bits],
427				 cm3_cmd_group[cmd_group_bits],
428				 cm3_cca_bits, 1 << mcp_bits,
429				 cm3_tr[cm3_tr_bits], sched_bit);
430		} else if (cause == 2) {
431			unsigned long data_error_type = (cm_error >> 41) & 0xfff;
432			unsigned long data_decode_cmd = (cm_error >> 37) & 0xf;
433			unsigned long data_decode_group = (cm_error >> 34) & 0x7;
434			unsigned long data_decode_destination_id = (cm_error >> 28) & 0x3f;
435
436			snprintf(buf, sizeof(buf),
437				 "Decode Request Error: Type=%lu, Command=%lu"
438				 "Command Group=%lu Destination ID=%lu"
439				 "CoreID=%lu VPID=%lu Command=%s"
440				 "Command Group=%s CCA=%lu MCP=%d"
441				 "Transaction type=%s Scheduler=%lu\n",
442				 data_error_type, data_decode_cmd,
443				 data_decode_group, data_decode_destination_id,
444				 core_id_bits, vp_id_bits,
445				 cm3_cmd[cmd_bits],
446				 cm3_cmd_group[cmd_group_bits],
447				 cm3_cca_bits, 1 << mcp_bits,
448				 cm3_tr[cm3_tr_bits], sched_bit);
449		} else {
450			buf[0] = 0;
451		}
452
453		pr_err("CM_ERROR=%llx %s <%s>\n", cm_error,
454		       cm3_causes[cause], buf);
455		pr_err("CM_ADDR =%llx\n", cm_addr);
456		pr_err("CM_OTHER=%llx %s\n", cm_other, cm3_causes[ocause]);
457	}
458
459	/* reprime cause register */
460	write_gcr_error_cause(0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2013 Imagination Technologies
  4 * Author: Paul Burton <paul.burton@mips.com>
 
 
 
 
 
  5 */
  6
  7#include <linux/errno.h>
  8#include <linux/percpu.h>
  9#include <linux/spinlock.h>
 10
 11#include <asm/mips-cps.h>
 12#include <asm/mipsregs.h>
 13
 14void __iomem *mips_gcr_base;
 15void __iomem *mips_cm_l2sync_base;
 16int mips_cm_is64;
 17
 18static char *cm2_tr[8] = {
 19	"mem",	"gcr",	"gic",	"mmio",
 20	"0x04", "cpc", "0x06", "0x07"
 21};
 22
 23/* CM3 Tag ECC transaction type */
 24static char *cm3_tr[16] = {
 25	[0x0] = "ReqNoData",
 26	[0x1] = "0x1",
 27	[0x2] = "ReqWData",
 28	[0x3] = "0x3",
 29	[0x4] = "IReqNoResp",
 30	[0x5] = "IReqWResp",
 31	[0x6] = "IReqNoRespDat",
 32	[0x7] = "IReqWRespDat",
 33	[0x8] = "RespNoData",
 34	[0x9] = "RespDataFol",
 35	[0xa] = "RespWData",
 36	[0xb] = "RespDataOnly",
 37	[0xc] = "IRespNoData",
 38	[0xd] = "IRespDataFol",
 39	[0xe] = "IRespWData",
 40	[0xf] = "IRespDataOnly"
 41};
 42
 43static char *cm2_cmd[32] = {
 44	[0x00] = "0x00",
 45	[0x01] = "Legacy Write",
 46	[0x02] = "Legacy Read",
 47	[0x03] = "0x03",
 48	[0x04] = "0x04",
 49	[0x05] = "0x05",
 50	[0x06] = "0x06",
 51	[0x07] = "0x07",
 52	[0x08] = "Coherent Read Own",
 53	[0x09] = "Coherent Read Share",
 54	[0x0a] = "Coherent Read Discard",
 55	[0x0b] = "Coherent Ready Share Always",
 56	[0x0c] = "Coherent Upgrade",
 57	[0x0d] = "Coherent Writeback",
 58	[0x0e] = "0x0e",
 59	[0x0f] = "0x0f",
 60	[0x10] = "Coherent Copyback",
 61	[0x11] = "Coherent Copyback Invalidate",
 62	[0x12] = "Coherent Invalidate",
 63	[0x13] = "Coherent Write Invalidate",
 64	[0x14] = "Coherent Completion Sync",
 65	[0x15] = "0x15",
 66	[0x16] = "0x16",
 67	[0x17] = "0x17",
 68	[0x18] = "0x18",
 69	[0x19] = "0x19",
 70	[0x1a] = "0x1a",
 71	[0x1b] = "0x1b",
 72	[0x1c] = "0x1c",
 73	[0x1d] = "0x1d",
 74	[0x1e] = "0x1e",
 75	[0x1f] = "0x1f"
 76};
 77
 78/* CM3 Tag ECC command type */
 79static char *cm3_cmd[16] = {
 80	[0x0] = "Legacy Read",
 81	[0x1] = "Legacy Write",
 82	[0x2] = "Coherent Read Own",
 83	[0x3] = "Coherent Read Share",
 84	[0x4] = "Coherent Read Discard",
 85	[0x5] = "Coherent Evicted",
 86	[0x6] = "Coherent Upgrade",
 87	[0x7] = "Coherent Upgrade for Store Conditional",
 88	[0x8] = "Coherent Writeback",
 89	[0x9] = "Coherent Write Invalidate",
 90	[0xa] = "0xa",
 91	[0xb] = "0xb",
 92	[0xc] = "0xc",
 93	[0xd] = "0xd",
 94	[0xe] = "0xe",
 95	[0xf] = "0xf"
 96};
 97
 98/* CM3 Tag ECC command group */
 99static char *cm3_cmd_group[8] = {
100	[0x0] = "Normal",
101	[0x1] = "Registers",
102	[0x2] = "TLB",
103	[0x3] = "0x3",
104	[0x4] = "L1I",
105	[0x5] = "L1D",
106	[0x6] = "L3",
107	[0x7] = "L2"
108};
109
110static char *cm2_core[8] = {
111	"Invalid/OK",	"Invalid/Data",
112	"Shared/OK",	"Shared/Data",
113	"Modified/OK",	"Modified/Data",
114	"Exclusive/OK", "Exclusive/Data"
115};
116
117static char *cm2_l2_type[4] = {
118	[0x0] = "None",
119	[0x1] = "Tag RAM single/double ECC error",
120	[0x2] = "Data RAM single/double ECC error",
121	[0x3] = "WS RAM uncorrectable dirty parity"
122};
123
124static char *cm2_l2_instr[32] = {
125	[0x00] = "L2_NOP",
126	[0x01] = "L2_ERR_CORR",
127	[0x02] = "L2_TAG_INV",
128	[0x03] = "L2_WS_CLEAN",
129	[0x04] = "L2_RD_MDYFY_WR",
130	[0x05] = "L2_WS_MRU",
131	[0x06] = "L2_EVICT_LN2",
132	[0x07] = "0x07",
133	[0x08] = "L2_EVICT",
134	[0x09] = "L2_REFL",
135	[0x0a] = "L2_RD",
136	[0x0b] = "L2_WR",
137	[0x0c] = "L2_EVICT_MRU",
138	[0x0d] = "L2_SYNC",
139	[0x0e] = "L2_REFL_ERR",
140	[0x0f] = "0x0f",
141	[0x10] = "L2_INDX_WB_INV",
142	[0x11] = "L2_INDX_LD_TAG",
143	[0x12] = "L2_INDX_ST_TAG",
144	[0x13] = "L2_INDX_ST_DATA",
145	[0x14] = "L2_INDX_ST_ECC",
146	[0x15] = "0x15",
147	[0x16] = "0x16",
148	[0x17] = "0x17",
149	[0x18] = "L2_FTCH_AND_LCK",
150	[0x19] = "L2_HIT_INV",
151	[0x1a] = "L2_HIT_WB_INV",
152	[0x1b] = "L2_HIT_WB",
153	[0x1c] = "0x1c",
154	[0x1d] = "0x1d",
155	[0x1e] = "0x1e",
156	[0x1f] = "0x1f"
157};
158
159static char *cm2_causes[32] = {
160	"None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR",
161	"COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07",
162	"0x08", "0x09", "0x0a", "0x0b",
163	"0x0c", "0x0d", "0x0e", "0x0f",
164	"0x10", "INTVN_WR_ERR", "INTVN_RD_ERR", "0x13",
165	"0x14", "0x15", "0x16", "0x17",
166	"L2_RD_UNCORR", "L2_WR_UNCORR", "L2_CORR", "0x1b",
167	"0x1c", "0x1d", "0x1e", "0x1f"
168};
169
170static char *cm3_causes[32] = {
171	"0x0", "MP_CORRECTABLE_ECC_ERR", "MP_REQUEST_DECODE_ERR",
172	"MP_UNCORRECTABLE_ECC_ERR", "MP_PARITY_ERR", "MP_COHERENCE_ERR",
173	"CMBIU_REQUEST_DECODE_ERR", "CMBIU_PARITY_ERR", "CMBIU_AXI_RESP_ERR",
174	"0x9", "RBI_BUS_ERR", "0xb", "0xc", "0xd", "0xe", "0xf", "0x10",
175	"0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18",
176	"0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f"
177};
178
179static DEFINE_PER_CPU_ALIGNED(spinlock_t, cm_core_lock);
180static DEFINE_PER_CPU_ALIGNED(unsigned long, cm_core_lock_flags);
181
182phys_addr_t __weak mips_cm_phys_base(void)
183{
 
184	unsigned long cmgcr;
185
186	/* Check the CMGCRBase register is implemented */
187	if (!(read_c0_config() & MIPS_CONF_M))
188		return 0;
189
190	if (!(read_c0_config2() & MIPS_CONF_M))
191		return 0;
192
193	if (!(read_c0_config3() & MIPS_CONF3_CMGCR))
194		return 0;
195
196	/* Read the address from CMGCRBase */
197	cmgcr = read_c0_cmgcrbase();
198	return (cmgcr & MIPS_CMGCRF_BASE) << (36 - 32);
199}
200
201phys_addr_t __weak mips_cm_l2sync_phys_base(void)
 
 
 
202{
203	u32 base_reg;
204
205	/*
206	 * If the L2-only sync region is already enabled then leave it at it's
207	 * current location.
208	 */
209	base_reg = read_gcr_l2_only_sync_base();
210	if (base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN)
211		return base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE;
212
213	/* Default to following the CM */
214	return mips_cm_phys_base() + MIPS_CM_GCR_SIZE;
215}
216
 
 
 
217static void mips_cm_probe_l2sync(void)
218{
219	unsigned major_rev;
220	phys_addr_t addr;
221
222	/* L2-only sync was introduced with CM major revision 6 */
223	major_rev = FIELD_GET(CM_GCR_REV_MAJOR, read_gcr_rev());
 
224	if (major_rev < 6)
225		return;
226
227	/* Find a location for the L2 sync region */
228	addr = mips_cm_l2sync_phys_base();
229	BUG_ON((addr & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE) != addr);
230	if (!addr)
231		return;
232
233	/* Set the region base address & enable it */
234	write_gcr_l2_only_sync_base(addr | CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN);
235
236	/* Map the region */
237	mips_cm_l2sync_base = ioremap(addr, MIPS_CM_L2SYNC_SIZE);
238}
239
240int mips_cm_probe(void)
241{
242	phys_addr_t addr;
243	u32 base_reg;
244	unsigned cpu;
245
246	/*
247	 * No need to probe again if we have already been
248	 * here before.
249	 */
250	if (mips_gcr_base)
251		return 0;
252
253	addr = mips_cm_phys_base();
254	BUG_ON((addr & CM_GCR_BASE_GCRBASE) != addr);
255	if (!addr)
256		return -ENODEV;
257
258	mips_gcr_base = ioremap(addr, MIPS_CM_GCR_SIZE);
259	if (!mips_gcr_base)
260		return -ENXIO;
261
262	/* sanity check that we're looking at a CM */
263	base_reg = read_gcr_base();
264	if ((base_reg & CM_GCR_BASE_GCRBASE) != addr) {
265		pr_err("GCRs appear to have been moved (expected them at 0x%08lx)!\n",
266		       (unsigned long)addr);
267		iounmap(mips_gcr_base);
268		mips_gcr_base = NULL;
269		return -ENODEV;
270	}
271
272	/* set default target to memory */
273	change_gcr_base(CM_GCR_BASE_CMDEFTGT, CM_GCR_BASE_CMDEFTGT_MEM);
274
275	/* disable CM regions */
276	write_gcr_reg0_base(CM_GCR_REGn_BASE_BASEADDR);
277	write_gcr_reg0_mask(CM_GCR_REGn_MASK_ADDRMASK);
278	write_gcr_reg1_base(CM_GCR_REGn_BASE_BASEADDR);
279	write_gcr_reg1_mask(CM_GCR_REGn_MASK_ADDRMASK);
280	write_gcr_reg2_base(CM_GCR_REGn_BASE_BASEADDR);
281	write_gcr_reg2_mask(CM_GCR_REGn_MASK_ADDRMASK);
282	write_gcr_reg3_base(CM_GCR_REGn_BASE_BASEADDR);
283	write_gcr_reg3_mask(CM_GCR_REGn_MASK_ADDRMASK);
284
285	/* probe for an L2-only sync region */
286	mips_cm_probe_l2sync();
287
288	/* determine register width for this CM */
289	mips_cm_is64 = IS_ENABLED(CONFIG_64BIT) && (mips_cm_revision() >= CM_REV_CM3);
290
291	for_each_possible_cpu(cpu)
292		spin_lock_init(&per_cpu(cm_core_lock, cpu));
293
294	return 0;
295}
296
297void mips_cm_lock_other(unsigned int cluster, unsigned int core,
298			unsigned int vp, unsigned int block)
299{
300	unsigned int curr_core, cm_rev;
301	u32 val;
302
303	cm_rev = mips_cm_revision();
304	preempt_disable();
305
306	if (cm_rev >= CM_REV_CM3) {
307		val = FIELD_PREP(CM3_GCR_Cx_OTHER_CORE, core) |
308		      FIELD_PREP(CM3_GCR_Cx_OTHER_VP, vp);
309
310		if (cm_rev >= CM_REV_CM3_5) {
311			val |= CM_GCR_Cx_OTHER_CLUSTER_EN;
312			val |= FIELD_PREP(CM_GCR_Cx_OTHER_CLUSTER, cluster);
313			val |= FIELD_PREP(CM_GCR_Cx_OTHER_BLOCK, block);
314		} else {
315			WARN_ON(cluster != 0);
316			WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
317		}
318
319		/*
320		 * We need to disable interrupts in SMP systems in order to
321		 * ensure that we don't interrupt the caller with code which
322		 * may modify the redirect register. We do so here in a
323		 * slightly obscure way by using a spin lock, since this has
324		 * the neat property of also catching any nested uses of
325		 * mips_cm_lock_other() leading to a deadlock or a nice warning
326		 * with lockdep enabled.
327		 */
328		spin_lock_irqsave(this_cpu_ptr(&cm_core_lock),
329				  *this_cpu_ptr(&cm_core_lock_flags));
330	} else {
331		WARN_ON(cluster != 0);
332		WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
333
334		/*
335		 * We only have a GCR_CL_OTHER per core in systems with
336		 * CM 2.5 & older, so have to ensure other VP(E)s don't
337		 * race with us.
338		 */
339		curr_core = cpu_core(&current_cpu_data);
340		spin_lock_irqsave(&per_cpu(cm_core_lock, curr_core),
341				  per_cpu(cm_core_lock_flags, curr_core));
342
343		val = FIELD_PREP(CM_GCR_Cx_OTHER_CORENUM, core);
344	}
345
346	write_gcr_cl_other(val);
347
348	/*
349	 * Ensure the core-other region reflects the appropriate core &
350	 * VP before any accesses to it occur.
351	 */
352	mb();
353}
354
355void mips_cm_unlock_other(void)
356{
357	unsigned int curr_core;
358
359	if (mips_cm_revision() < CM_REV_CM3) {
360		curr_core = cpu_core(&current_cpu_data);
361		spin_unlock_irqrestore(&per_cpu(cm_core_lock, curr_core),
362				       per_cpu(cm_core_lock_flags, curr_core));
363	} else {
364		spin_unlock_irqrestore(this_cpu_ptr(&cm_core_lock),
365				       *this_cpu_ptr(&cm_core_lock_flags));
366	}
367
368	preempt_enable();
369}
370
371void mips_cm_error_report(void)
372{
373	u64 cm_error, cm_addr, cm_other;
374	unsigned long revision;
375	int ocause, cause;
376	char buf[256];
377
378	if (!mips_cm_present())
379		return;
380
381	revision = mips_cm_revision();
382	cm_error = read_gcr_error_cause();
383	cm_addr = read_gcr_error_addr();
384	cm_other = read_gcr_error_mult();
385
386	if (revision < CM_REV_CM3) { /* CM2 */
387		cause = FIELD_GET(CM_GCR_ERROR_CAUSE_ERRTYPE, cm_error);
388		ocause = FIELD_GET(CM_GCR_ERROR_MULT_ERR2ND, cm_other);
389
390		if (!cause)
391			return;
392
393		if (cause < 16) {
394			unsigned long cca_bits = (cm_error >> 15) & 7;
395			unsigned long tr_bits = (cm_error >> 12) & 7;
396			unsigned long cmd_bits = (cm_error >> 7) & 0x1f;
397			unsigned long stag_bits = (cm_error >> 3) & 15;
398			unsigned long sport_bits = (cm_error >> 0) & 7;
399
400			snprintf(buf, sizeof(buf),
401				 "CCA=%lu TR=%s MCmd=%s STag=%lu "
402				 "SPort=%lu\n", cca_bits, cm2_tr[tr_bits],
403				 cm2_cmd[cmd_bits], stag_bits, sport_bits);
404		} else if (cause < 24) {
405			/* glob state & sresp together */
406			unsigned long c3_bits = (cm_error >> 18) & 7;
407			unsigned long c2_bits = (cm_error >> 15) & 7;
408			unsigned long c1_bits = (cm_error >> 12) & 7;
409			unsigned long c0_bits = (cm_error >> 9) & 7;
410			unsigned long sc_bit = (cm_error >> 8) & 1;
411			unsigned long cmd_bits = (cm_error >> 3) & 0x1f;
412			unsigned long sport_bits = (cm_error >> 0) & 7;
413
414			snprintf(buf, sizeof(buf),
415				 "C3=%s C2=%s C1=%s C0=%s SC=%s "
416				 "MCmd=%s SPort=%lu\n",
417				 cm2_core[c3_bits], cm2_core[c2_bits],
418				 cm2_core[c1_bits], cm2_core[c0_bits],
419				 sc_bit ? "True" : "False",
420				 cm2_cmd[cmd_bits], sport_bits);
421		} else {
422			unsigned long muc_bit = (cm_error >> 23) & 1;
423			unsigned long ins_bits = (cm_error >> 18) & 0x1f;
424			unsigned long arr_bits = (cm_error >> 16) & 3;
425			unsigned long dw_bits = (cm_error >> 12) & 15;
426			unsigned long way_bits = (cm_error >> 9) & 7;
427			unsigned long mway_bit = (cm_error >> 8) & 1;
428			unsigned long syn_bits = (cm_error >> 0) & 0xFF;
429
430			snprintf(buf, sizeof(buf),
431				 "Type=%s%s Instr=%s DW=%lu Way=%lu "
432				 "MWay=%s Syndrome=0x%02lx",
433				 muc_bit ? "Multi-UC " : "",
434				 cm2_l2_type[arr_bits],
435				 cm2_l2_instr[ins_bits], dw_bits, way_bits,
436				 mway_bit ? "True" : "False", syn_bits);
437		}
438		pr_err("CM_ERROR=%08llx %s <%s>\n", cm_error,
439		       cm2_causes[cause], buf);
440		pr_err("CM_ADDR =%08llx\n", cm_addr);
441		pr_err("CM_OTHER=%08llx %s\n", cm_other, cm2_causes[ocause]);
442	} else { /* CM3 */
443		ulong core_id_bits, vp_id_bits, cmd_bits, cmd_group_bits;
444		ulong cm3_cca_bits, mcp_bits, cm3_tr_bits, sched_bit;
445
446		cause = FIELD_GET(CM3_GCR_ERROR_CAUSE_ERRTYPE, cm_error);
447		ocause = FIELD_GET(CM_GCR_ERROR_MULT_ERR2ND, cm_other);
448
449		if (!cause)
450			return;
451
452		/* Used by cause == {1,2,3} */
453		core_id_bits = (cm_error >> 22) & 0xf;
454		vp_id_bits = (cm_error >> 18) & 0xf;
455		cmd_bits = (cm_error >> 14) & 0xf;
456		cmd_group_bits = (cm_error >> 11) & 0xf;
457		cm3_cca_bits = (cm_error >> 8) & 7;
458		mcp_bits = (cm_error >> 5) & 0xf;
459		cm3_tr_bits = (cm_error >> 1) & 0xf;
460		sched_bit = cm_error & 0x1;
461
462		if (cause == 1 || cause == 3) { /* Tag ECC */
463			unsigned long tag_ecc = (cm_error >> 57) & 0x1;
464			unsigned long tag_way_bits = (cm_error >> 29) & 0xffff;
465			unsigned long dword_bits = (cm_error >> 49) & 0xff;
466			unsigned long data_way_bits = (cm_error >> 45) & 0xf;
467			unsigned long data_sets_bits = (cm_error >> 29) & 0xfff;
468			unsigned long bank_bit = (cm_error >> 28) & 0x1;
469			snprintf(buf, sizeof(buf),
470				 "%s ECC Error: Way=%lu (DWORD=%lu, Sets=%lu)"
471				 "Bank=%lu CoreID=%lu VPID=%lu Command=%s"
472				 "Command Group=%s CCA=%lu MCP=%d"
473				 "Transaction type=%s Scheduler=%lu\n",
474				 tag_ecc ? "TAG" : "DATA",
475				 tag_ecc ? (unsigned long)ffs(tag_way_bits) - 1 :
476				 data_way_bits, bank_bit, dword_bits,
477				 data_sets_bits,
478				 core_id_bits, vp_id_bits,
479				 cm3_cmd[cmd_bits],
480				 cm3_cmd_group[cmd_group_bits],
481				 cm3_cca_bits, 1 << mcp_bits,
482				 cm3_tr[cm3_tr_bits], sched_bit);
483		} else if (cause == 2) {
484			unsigned long data_error_type = (cm_error >> 41) & 0xfff;
485			unsigned long data_decode_cmd = (cm_error >> 37) & 0xf;
486			unsigned long data_decode_group = (cm_error >> 34) & 0x7;
487			unsigned long data_decode_destination_id = (cm_error >> 28) & 0x3f;
488
489			snprintf(buf, sizeof(buf),
490				 "Decode Request Error: Type=%lu, Command=%lu"
491				 "Command Group=%lu Destination ID=%lu"
492				 "CoreID=%lu VPID=%lu Command=%s"
493				 "Command Group=%s CCA=%lu MCP=%d"
494				 "Transaction type=%s Scheduler=%lu\n",
495				 data_error_type, data_decode_cmd,
496				 data_decode_group, data_decode_destination_id,
497				 core_id_bits, vp_id_bits,
498				 cm3_cmd[cmd_bits],
499				 cm3_cmd_group[cmd_group_bits],
500				 cm3_cca_bits, 1 << mcp_bits,
501				 cm3_tr[cm3_tr_bits], sched_bit);
502		} else {
503			buf[0] = 0;
504		}
505
506		pr_err("CM_ERROR=%llx %s <%s>\n", cm_error,
507		       cm3_causes[cause], buf);
508		pr_err("CM_ADDR =%llx\n", cm_addr);
509		pr_err("CM_OTHER=%llx %s\n", cm_other, cm3_causes[ocause]);
510	}
511
512	/* reprime cause register */
513	write_gcr_error_cause(cm_error);
514}
515
516unsigned int mips_cps_first_online_in_cluster(void)
517{
518	unsigned int local_cl;
519	int i;
520
521	local_cl = cpu_cluster(&current_cpu_data);
522
523	/*
524	 * We rely upon knowledge that CPUs are numbered sequentially by
525	 * cluster - ie. CPUs 0..X will be in cluster 0, CPUs X+1..Y in cluster
526	 * 1, CPUs Y+1..Z in cluster 2 etc. This means that CPUs in the same
527	 * cluster will immediately precede or follow one another.
528	 *
529	 * First we scan backwards, until we find an online CPU in the cluster
530	 * or we move on to another cluster.
531	 */
532	for (i = smp_processor_id() - 1; i >= 0; i--) {
533		if (cpu_cluster(&cpu_data[i]) != local_cl)
534			break;
535		if (!cpu_online(i))
536			continue;
537		return false;
538	}
539
540	/* Then do the same for higher numbered CPUs */
541	for (i = smp_processor_id() + 1; i < nr_cpu_ids; i++) {
542		if (cpu_cluster(&cpu_data[i]) != local_cl)
543			break;
544		if (!cpu_online(i))
545			continue;
546		return false;
547	}
548
549	/* We found no online CPUs in the local cluster */
550	return true;
551}