Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * AArch64 loadable module support.
  3 *
  4 * Copyright (C) 2012 ARM Limited
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 17 *
 18 * Author: Will Deacon <will.deacon@arm.com>
 19 */
 20
 
 
 21#include <linux/bitops.h>
 22#include <linux/elf.h>
 23#include <linux/gfp.h>
 24#include <linux/kasan.h>
 25#include <linux/kernel.h>
 26#include <linux/mm.h>
 27#include <linux/moduleloader.h>
 28#include <linux/vmalloc.h>
 
 
 29#include <asm/alternative.h>
 30#include <asm/insn.h>
 
 31#include <asm/sections.h>
 32
 33void *module_alloc(unsigned long size)
 34{
 35	gfp_t gfp_mask = GFP_KERNEL;
 36	void *p;
 37
 38	/* Silence the initial allocation */
 39	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
 40		gfp_mask |= __GFP_NOWARN;
 41
 42	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
 43				module_alloc_base + MODULES_VSIZE,
 44				gfp_mask, PAGE_KERNEL_EXEC, 0,
 45				NUMA_NO_NODE, __builtin_return_address(0));
 46
 47	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
 48	    !IS_ENABLED(CONFIG_KASAN))
 49		/*
 50		 * KASAN can only deal with module allocations being served
 51		 * from the reserved module region, since the remainder of
 52		 * the vmalloc region is already backed by zero shadow pages,
 53		 * and punching holes into it is non-trivial. Since the module
 54		 * region is not randomized when KASAN is enabled, it is even
 55		 * less likely that the module region gets exhausted, so we
 56		 * can simply omit this fallback in that case.
 57		 */
 58		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
 59				module_alloc_base + SZ_4G, GFP_KERNEL,
 60				PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE,
 61				__builtin_return_address(0));
 62
 63	if (p && (kasan_module_alloc(p, size) < 0)) {
 64		vfree(p);
 65		return NULL;
 66	}
 67
 68	return p;
 69}
 70
 71enum aarch64_reloc_op {
 72	RELOC_OP_NONE,
 73	RELOC_OP_ABS,
 74	RELOC_OP_PREL,
 75	RELOC_OP_PAGE,
 76};
 77
 78static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
 79{
 80	switch (reloc_op) {
 81	case RELOC_OP_ABS:
 82		return val;
 83	case RELOC_OP_PREL:
 84		return val - (u64)place;
 85	case RELOC_OP_PAGE:
 86		return (val & ~0xfff) - ((u64)place & ~0xfff);
 87	case RELOC_OP_NONE:
 88		return 0;
 89	}
 90
 91	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
 92	return 0;
 93}
 94
 95static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
 96{
 97	s64 sval = do_reloc(op, place, val);
 98
 
 
 
 
 
 
 
 
 
 
 
 
 99	switch (len) {
100	case 16:
101		*(s16 *)place = sval;
102		if (sval < S16_MIN || sval > U16_MAX)
103			return -ERANGE;
 
 
 
 
 
 
 
 
 
 
 
104		break;
105	case 32:
106		*(s32 *)place = sval;
107		if (sval < S32_MIN || sval > U32_MAX)
108			return -ERANGE;
 
 
 
 
 
 
 
 
 
 
 
109		break;
110	case 64:
111		*(s64 *)place = sval;
112		break;
113	default:
114		pr_err("Invalid length (%d) for data relocation\n", len);
115		return 0;
116	}
117	return 0;
118}
119
120enum aarch64_insn_movw_imm_type {
121	AARCH64_INSN_IMM_MOVNZ,
122	AARCH64_INSN_IMM_MOVKZ,
123};
124
125static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
126			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
127{
128	u64 imm;
129	s64 sval;
130	u32 insn = le32_to_cpu(*place);
131
132	sval = do_reloc(op, place, val);
133	imm = sval >> lsb;
134
135	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
136		/*
137		 * For signed MOVW relocations, we have to manipulate the
138		 * instruction encoding depending on whether or not the
139		 * immediate is less than zero.
140		 */
141		insn &= ~(3 << 29);
142		if (sval >= 0) {
143			/* >=0: Set the instruction to MOVZ (opcode 10b). */
144			insn |= 2 << 29;
145		} else {
146			/*
147			 * <0: Set the instruction to MOVN (opcode 00b).
148			 *     Since we've masked the opcode already, we
149			 *     don't need to do anything other than
150			 *     inverting the new immediate field.
151			 */
152			imm = ~imm;
153		}
154	}
155
156	/* Update the instruction with the new encoding. */
157	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
158	*place = cpu_to_le32(insn);
159
160	if (imm > U16_MAX)
161		return -ERANGE;
162
163	return 0;
164}
165
166static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
167			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
168{
169	u64 imm, imm_mask;
170	s64 sval;
171	u32 insn = le32_to_cpu(*place);
172
173	/* Calculate the relocation value. */
174	sval = do_reloc(op, place, val);
175	sval >>= lsb;
176
177	/* Extract the value bits and shift them to bit 0. */
178	imm_mask = (BIT(lsb + len) - 1) >> lsb;
179	imm = sval & imm_mask;
180
181	/* Update the instruction's immediate field. */
182	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
183	*place = cpu_to_le32(insn);
184
185	/*
186	 * Extract the upper value bits (including the sign bit) and
187	 * shift them to bit 0.
188	 */
189	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
190
191	/*
192	 * Overflow has occurred if the upper bits are not all equal to
193	 * the sign bit of the value.
194	 */
195	if ((u64)(sval + 1) >= 2)
196		return -ERANGE;
197
198	return 0;
199}
200
201static int reloc_insn_adrp(struct module *mod, __le32 *place, u64 val)
 
202{
203	u32 insn;
204
205	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
206	    !cpus_have_const_cap(ARM64_WORKAROUND_843419) ||
207	    ((u64)place & 0xfff) < 0xff8)
208		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
209				      AARCH64_INSN_IMM_ADR);
210
211	/* patch ADRP to ADR if it is in range */
212	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
213			    AARCH64_INSN_IMM_ADR)) {
214		insn = le32_to_cpu(*place);
215		insn &= ~BIT(31);
216	} else {
217		/* out of range for ADR -> emit a veneer */
218		val = module_emit_veneer_for_adrp(mod, place, val & ~0xfff);
219		if (!val)
220			return -ENOEXEC;
221		insn = aarch64_insn_gen_branch_imm((u64)place, val,
222						   AARCH64_INSN_BRANCH_NOLINK);
223	}
224
225	*place = cpu_to_le32(insn);
226	return 0;
227}
228
229int apply_relocate_add(Elf64_Shdr *sechdrs,
230		       const char *strtab,
231		       unsigned int symindex,
232		       unsigned int relsec,
233		       struct module *me)
234{
235	unsigned int i;
236	int ovf;
237	bool overflow_check;
238	Elf64_Sym *sym;
239	void *loc;
240	u64 val;
241	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
242
243	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
244		/* loc corresponds to P in the AArch64 ELF document. */
245		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
246			+ rel[i].r_offset;
247
248		/* sym is the ELF symbol we're referring to. */
249		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
250			+ ELF64_R_SYM(rel[i].r_info);
251
252		/* val corresponds to (S + A) in the AArch64 ELF document. */
253		val = sym->st_value + rel[i].r_addend;
254
255		/* Check for overflow by default. */
256		overflow_check = true;
257
258		/* Perform the static relocation. */
259		switch (ELF64_R_TYPE(rel[i].r_info)) {
260		/* Null relocations. */
261		case R_ARM_NONE:
262		case R_AARCH64_NONE:
263			ovf = 0;
264			break;
265
266		/* Data relocations. */
267		case R_AARCH64_ABS64:
268			overflow_check = false;
269			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
270			break;
271		case R_AARCH64_ABS32:
272			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
273			break;
274		case R_AARCH64_ABS16:
275			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
276			break;
277		case R_AARCH64_PREL64:
278			overflow_check = false;
279			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
280			break;
281		case R_AARCH64_PREL32:
282			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
283			break;
284		case R_AARCH64_PREL16:
285			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
286			break;
287
288		/* MOVW instruction relocations. */
289		case R_AARCH64_MOVW_UABS_G0_NC:
290			overflow_check = false;
 
291		case R_AARCH64_MOVW_UABS_G0:
292			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
293					      AARCH64_INSN_IMM_MOVKZ);
294			break;
295		case R_AARCH64_MOVW_UABS_G1_NC:
296			overflow_check = false;
 
297		case R_AARCH64_MOVW_UABS_G1:
298			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
299					      AARCH64_INSN_IMM_MOVKZ);
300			break;
301		case R_AARCH64_MOVW_UABS_G2_NC:
302			overflow_check = false;
 
303		case R_AARCH64_MOVW_UABS_G2:
304			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
305					      AARCH64_INSN_IMM_MOVKZ);
306			break;
307		case R_AARCH64_MOVW_UABS_G3:
308			/* We're using the top bits so we can't overflow. */
309			overflow_check = false;
310			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
311					      AARCH64_INSN_IMM_MOVKZ);
312			break;
313		case R_AARCH64_MOVW_SABS_G0:
314			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
315					      AARCH64_INSN_IMM_MOVNZ);
316			break;
317		case R_AARCH64_MOVW_SABS_G1:
318			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
319					      AARCH64_INSN_IMM_MOVNZ);
320			break;
321		case R_AARCH64_MOVW_SABS_G2:
322			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
323					      AARCH64_INSN_IMM_MOVNZ);
324			break;
325		case R_AARCH64_MOVW_PREL_G0_NC:
326			overflow_check = false;
327			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
328					      AARCH64_INSN_IMM_MOVKZ);
329			break;
330		case R_AARCH64_MOVW_PREL_G0:
331			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
332					      AARCH64_INSN_IMM_MOVNZ);
333			break;
334		case R_AARCH64_MOVW_PREL_G1_NC:
335			overflow_check = false;
336			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
337					      AARCH64_INSN_IMM_MOVKZ);
338			break;
339		case R_AARCH64_MOVW_PREL_G1:
340			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
341					      AARCH64_INSN_IMM_MOVNZ);
342			break;
343		case R_AARCH64_MOVW_PREL_G2_NC:
344			overflow_check = false;
345			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
346					      AARCH64_INSN_IMM_MOVKZ);
347			break;
348		case R_AARCH64_MOVW_PREL_G2:
349			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
350					      AARCH64_INSN_IMM_MOVNZ);
351			break;
352		case R_AARCH64_MOVW_PREL_G3:
353			/* We're using the top bits so we can't overflow. */
354			overflow_check = false;
355			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
356					      AARCH64_INSN_IMM_MOVNZ);
357			break;
358
359		/* Immediate instruction relocations. */
360		case R_AARCH64_LD_PREL_LO19:
361			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
362					     AARCH64_INSN_IMM_19);
363			break;
364		case R_AARCH64_ADR_PREL_LO21:
365			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
366					     AARCH64_INSN_IMM_ADR);
367			break;
368		case R_AARCH64_ADR_PREL_PG_HI21_NC:
369			overflow_check = false;
 
370		case R_AARCH64_ADR_PREL_PG_HI21:
371			ovf = reloc_insn_adrp(me, loc, val);
372			if (ovf && ovf != -ERANGE)
373				return ovf;
374			break;
375		case R_AARCH64_ADD_ABS_LO12_NC:
376		case R_AARCH64_LDST8_ABS_LO12_NC:
377			overflow_check = false;
378			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
379					     AARCH64_INSN_IMM_12);
380			break;
381		case R_AARCH64_LDST16_ABS_LO12_NC:
382			overflow_check = false;
383			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
384					     AARCH64_INSN_IMM_12);
385			break;
386		case R_AARCH64_LDST32_ABS_LO12_NC:
387			overflow_check = false;
388			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
389					     AARCH64_INSN_IMM_12);
390			break;
391		case R_AARCH64_LDST64_ABS_LO12_NC:
392			overflow_check = false;
393			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
394					     AARCH64_INSN_IMM_12);
395			break;
396		case R_AARCH64_LDST128_ABS_LO12_NC:
397			overflow_check = false;
398			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
399					     AARCH64_INSN_IMM_12);
400			break;
401		case R_AARCH64_TSTBR14:
402			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
403					     AARCH64_INSN_IMM_14);
404			break;
405		case R_AARCH64_CONDBR19:
406			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
407					     AARCH64_INSN_IMM_19);
408			break;
409		case R_AARCH64_JUMP26:
410		case R_AARCH64_CALL26:
411			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
412					     AARCH64_INSN_IMM_26);
413
414			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
415			    ovf == -ERANGE) {
416				val = module_emit_plt_entry(me, loc, &rel[i], sym);
417				if (!val)
418					return -ENOEXEC;
419				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
420						     26, AARCH64_INSN_IMM_26);
421			}
422			break;
423
424		default:
425			pr_err("module %s: unsupported RELA relocation: %llu\n",
426			       me->name, ELF64_R_TYPE(rel[i].r_info));
427			return -ENOEXEC;
428		}
429
430		if (overflow_check && ovf == -ERANGE)
431			goto overflow;
432
433	}
434
435	return 0;
436
437overflow:
438	pr_err("module %s: overflow in relocation type %d val %Lx\n",
439	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
440	return -ENOEXEC;
441}
442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443int module_finalize(const Elf_Ehdr *hdr,
444		    const Elf_Shdr *sechdrs,
445		    struct module *me)
446{
447	const Elf_Shdr *s, *se;
448	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
449
450	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
451		if (strcmp(".altinstructions", secstrs + s->sh_name) == 0) {
452			apply_alternatives((void *)s->sh_addr, s->sh_size);
 
 
 
 
 
 
 
 
453		}
454#ifdef CONFIG_ARM64_MODULE_PLTS
455		if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
456		    !strcmp(".text.ftrace_trampoline", secstrs + s->sh_name))
457			me->arch.ftrace_trampoline = (void *)s->sh_addr;
458#endif
459	}
460
461	return 0;
462}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * AArch64 loadable module support.
  4 *
  5 * Copyright (C) 2012 ARM Limited
  6 *
 
 
 
 
 
 
 
 
 
 
 
 
  7 * Author: Will Deacon <will.deacon@arm.com>
  8 */
  9
 10#define pr_fmt(fmt) "Modules: " fmt
 11
 12#include <linux/bitops.h>
 13#include <linux/elf.h>
 14#include <linux/ftrace.h>
 15#include <linux/kasan.h>
 16#include <linux/kernel.h>
 17#include <linux/mm.h>
 18#include <linux/moduleloader.h>
 19#include <linux/random.h>
 20#include <linux/scs.h>
 21
 22#include <asm/alternative.h>
 23#include <asm/insn.h>
 24#include <asm/scs.h>
 25#include <asm/sections.h>
 26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27enum aarch64_reloc_op {
 28	RELOC_OP_NONE,
 29	RELOC_OP_ABS,
 30	RELOC_OP_PREL,
 31	RELOC_OP_PAGE,
 32};
 33
 34static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
 35{
 36	switch (reloc_op) {
 37	case RELOC_OP_ABS:
 38		return val;
 39	case RELOC_OP_PREL:
 40		return val - (u64)place;
 41	case RELOC_OP_PAGE:
 42		return (val & ~0xfff) - ((u64)place & ~0xfff);
 43	case RELOC_OP_NONE:
 44		return 0;
 45	}
 46
 47	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
 48	return 0;
 49}
 50
 51static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
 52{
 53	s64 sval = do_reloc(op, place, val);
 54
 55	/*
 56	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
 57	 * relative and absolute relocations as having a range of [-2^15, 2^16)
 58	 * or [-2^31, 2^32), respectively. However, in order to be able to
 59	 * detect overflows reliably, we have to choose whether we interpret
 60	 * such quantities as signed or as unsigned, and stick with it.
 61	 * The way we organize our address space requires a signed
 62	 * interpretation of 32-bit relative references, so let's use that
 63	 * for all R_AARCH64_PRELxx relocations. This means our upper
 64	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
 65	 */
 66
 67	switch (len) {
 68	case 16:
 69		*(s16 *)place = sval;
 70		switch (op) {
 71		case RELOC_OP_ABS:
 72			if (sval < 0 || sval > U16_MAX)
 73				return -ERANGE;
 74			break;
 75		case RELOC_OP_PREL:
 76			if (sval < S16_MIN || sval > S16_MAX)
 77				return -ERANGE;
 78			break;
 79		default:
 80			pr_err("Invalid 16-bit data relocation (%d)\n", op);
 81			return 0;
 82		}
 83		break;
 84	case 32:
 85		*(s32 *)place = sval;
 86		switch (op) {
 87		case RELOC_OP_ABS:
 88			if (sval < 0 || sval > U32_MAX)
 89				return -ERANGE;
 90			break;
 91		case RELOC_OP_PREL:
 92			if (sval < S32_MIN || sval > S32_MAX)
 93				return -ERANGE;
 94			break;
 95		default:
 96			pr_err("Invalid 32-bit data relocation (%d)\n", op);
 97			return 0;
 98		}
 99		break;
100	case 64:
101		*(s64 *)place = sval;
102		break;
103	default:
104		pr_err("Invalid length (%d) for data relocation\n", len);
105		return 0;
106	}
107	return 0;
108}
109
110enum aarch64_insn_movw_imm_type {
111	AARCH64_INSN_IMM_MOVNZ,
112	AARCH64_INSN_IMM_MOVKZ,
113};
114
115static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
116			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
117{
118	u64 imm;
119	s64 sval;
120	u32 insn = le32_to_cpu(*place);
121
122	sval = do_reloc(op, place, val);
123	imm = sval >> lsb;
124
125	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
126		/*
127		 * For signed MOVW relocations, we have to manipulate the
128		 * instruction encoding depending on whether or not the
129		 * immediate is less than zero.
130		 */
131		insn &= ~(3 << 29);
132		if (sval >= 0) {
133			/* >=0: Set the instruction to MOVZ (opcode 10b). */
134			insn |= 2 << 29;
135		} else {
136			/*
137			 * <0: Set the instruction to MOVN (opcode 00b).
138			 *     Since we've masked the opcode already, we
139			 *     don't need to do anything other than
140			 *     inverting the new immediate field.
141			 */
142			imm = ~imm;
143		}
144	}
145
146	/* Update the instruction with the new encoding. */
147	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
148	*place = cpu_to_le32(insn);
149
150	if (imm > U16_MAX)
151		return -ERANGE;
152
153	return 0;
154}
155
156static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
157			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
158{
159	u64 imm, imm_mask;
160	s64 sval;
161	u32 insn = le32_to_cpu(*place);
162
163	/* Calculate the relocation value. */
164	sval = do_reloc(op, place, val);
165	sval >>= lsb;
166
167	/* Extract the value bits and shift them to bit 0. */
168	imm_mask = (BIT(lsb + len) - 1) >> lsb;
169	imm = sval & imm_mask;
170
171	/* Update the instruction's immediate field. */
172	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
173	*place = cpu_to_le32(insn);
174
175	/*
176	 * Extract the upper value bits (including the sign bit) and
177	 * shift them to bit 0.
178	 */
179	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
180
181	/*
182	 * Overflow has occurred if the upper bits are not all equal to
183	 * the sign bit of the value.
184	 */
185	if ((u64)(sval + 1) >= 2)
186		return -ERANGE;
187
188	return 0;
189}
190
191static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
192			   __le32 *place, u64 val)
193{
194	u32 insn;
195
196	if (!is_forbidden_offset_for_adrp(place))
 
 
197		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
198				      AARCH64_INSN_IMM_ADR);
199
200	/* patch ADRP to ADR if it is in range */
201	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
202			    AARCH64_INSN_IMM_ADR)) {
203		insn = le32_to_cpu(*place);
204		insn &= ~BIT(31);
205	} else {
206		/* out of range for ADR -> emit a veneer */
207		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
208		if (!val)
209			return -ENOEXEC;
210		insn = aarch64_insn_gen_branch_imm((u64)place, val,
211						   AARCH64_INSN_BRANCH_NOLINK);
212	}
213
214	*place = cpu_to_le32(insn);
215	return 0;
216}
217
218int apply_relocate_add(Elf64_Shdr *sechdrs,
219		       const char *strtab,
220		       unsigned int symindex,
221		       unsigned int relsec,
222		       struct module *me)
223{
224	unsigned int i;
225	int ovf;
226	bool overflow_check;
227	Elf64_Sym *sym;
228	void *loc;
229	u64 val;
230	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
231
232	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
233		/* loc corresponds to P in the AArch64 ELF document. */
234		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
235			+ rel[i].r_offset;
236
237		/* sym is the ELF symbol we're referring to. */
238		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
239			+ ELF64_R_SYM(rel[i].r_info);
240
241		/* val corresponds to (S + A) in the AArch64 ELF document. */
242		val = sym->st_value + rel[i].r_addend;
243
244		/* Check for overflow by default. */
245		overflow_check = true;
246
247		/* Perform the static relocation. */
248		switch (ELF64_R_TYPE(rel[i].r_info)) {
249		/* Null relocations. */
250		case R_ARM_NONE:
251		case R_AARCH64_NONE:
252			ovf = 0;
253			break;
254
255		/* Data relocations. */
256		case R_AARCH64_ABS64:
257			overflow_check = false;
258			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
259			break;
260		case R_AARCH64_ABS32:
261			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
262			break;
263		case R_AARCH64_ABS16:
264			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
265			break;
266		case R_AARCH64_PREL64:
267			overflow_check = false;
268			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
269			break;
270		case R_AARCH64_PREL32:
271			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
272			break;
273		case R_AARCH64_PREL16:
274			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
275			break;
276
277		/* MOVW instruction relocations. */
278		case R_AARCH64_MOVW_UABS_G0_NC:
279			overflow_check = false;
280			fallthrough;
281		case R_AARCH64_MOVW_UABS_G0:
282			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
283					      AARCH64_INSN_IMM_MOVKZ);
284			break;
285		case R_AARCH64_MOVW_UABS_G1_NC:
286			overflow_check = false;
287			fallthrough;
288		case R_AARCH64_MOVW_UABS_G1:
289			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
290					      AARCH64_INSN_IMM_MOVKZ);
291			break;
292		case R_AARCH64_MOVW_UABS_G2_NC:
293			overflow_check = false;
294			fallthrough;
295		case R_AARCH64_MOVW_UABS_G2:
296			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
297					      AARCH64_INSN_IMM_MOVKZ);
298			break;
299		case R_AARCH64_MOVW_UABS_G3:
300			/* We're using the top bits so we can't overflow. */
301			overflow_check = false;
302			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
303					      AARCH64_INSN_IMM_MOVKZ);
304			break;
305		case R_AARCH64_MOVW_SABS_G0:
306			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
307					      AARCH64_INSN_IMM_MOVNZ);
308			break;
309		case R_AARCH64_MOVW_SABS_G1:
310			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
311					      AARCH64_INSN_IMM_MOVNZ);
312			break;
313		case R_AARCH64_MOVW_SABS_G2:
314			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
315					      AARCH64_INSN_IMM_MOVNZ);
316			break;
317		case R_AARCH64_MOVW_PREL_G0_NC:
318			overflow_check = false;
319			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
320					      AARCH64_INSN_IMM_MOVKZ);
321			break;
322		case R_AARCH64_MOVW_PREL_G0:
323			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
324					      AARCH64_INSN_IMM_MOVNZ);
325			break;
326		case R_AARCH64_MOVW_PREL_G1_NC:
327			overflow_check = false;
328			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
329					      AARCH64_INSN_IMM_MOVKZ);
330			break;
331		case R_AARCH64_MOVW_PREL_G1:
332			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
333					      AARCH64_INSN_IMM_MOVNZ);
334			break;
335		case R_AARCH64_MOVW_PREL_G2_NC:
336			overflow_check = false;
337			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
338					      AARCH64_INSN_IMM_MOVKZ);
339			break;
340		case R_AARCH64_MOVW_PREL_G2:
341			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
342					      AARCH64_INSN_IMM_MOVNZ);
343			break;
344		case R_AARCH64_MOVW_PREL_G3:
345			/* We're using the top bits so we can't overflow. */
346			overflow_check = false;
347			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
348					      AARCH64_INSN_IMM_MOVNZ);
349			break;
350
351		/* Immediate instruction relocations. */
352		case R_AARCH64_LD_PREL_LO19:
353			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
354					     AARCH64_INSN_IMM_19);
355			break;
356		case R_AARCH64_ADR_PREL_LO21:
357			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
358					     AARCH64_INSN_IMM_ADR);
359			break;
360		case R_AARCH64_ADR_PREL_PG_HI21_NC:
361			overflow_check = false;
362			fallthrough;
363		case R_AARCH64_ADR_PREL_PG_HI21:
364			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
365			if (ovf && ovf != -ERANGE)
366				return ovf;
367			break;
368		case R_AARCH64_ADD_ABS_LO12_NC:
369		case R_AARCH64_LDST8_ABS_LO12_NC:
370			overflow_check = false;
371			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
372					     AARCH64_INSN_IMM_12);
373			break;
374		case R_AARCH64_LDST16_ABS_LO12_NC:
375			overflow_check = false;
376			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
377					     AARCH64_INSN_IMM_12);
378			break;
379		case R_AARCH64_LDST32_ABS_LO12_NC:
380			overflow_check = false;
381			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
382					     AARCH64_INSN_IMM_12);
383			break;
384		case R_AARCH64_LDST64_ABS_LO12_NC:
385			overflow_check = false;
386			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
387					     AARCH64_INSN_IMM_12);
388			break;
389		case R_AARCH64_LDST128_ABS_LO12_NC:
390			overflow_check = false;
391			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
392					     AARCH64_INSN_IMM_12);
393			break;
394		case R_AARCH64_TSTBR14:
395			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
396					     AARCH64_INSN_IMM_14);
397			break;
398		case R_AARCH64_CONDBR19:
399			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
400					     AARCH64_INSN_IMM_19);
401			break;
402		case R_AARCH64_JUMP26:
403		case R_AARCH64_CALL26:
404			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
405					     AARCH64_INSN_IMM_26);
406			if (ovf == -ERANGE) {
407				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
 
 
408				if (!val)
409					return -ENOEXEC;
410				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
411						     26, AARCH64_INSN_IMM_26);
412			}
413			break;
414
415		default:
416			pr_err("module %s: unsupported RELA relocation: %llu\n",
417			       me->name, ELF64_R_TYPE(rel[i].r_info));
418			return -ENOEXEC;
419		}
420
421		if (overflow_check && ovf == -ERANGE)
422			goto overflow;
423
424	}
425
426	return 0;
427
428overflow:
429	pr_err("module %s: overflow in relocation type %d val %Lx\n",
430	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
431	return -ENOEXEC;
432}
433
434static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
435{
436	*plt = get_plt_entry(addr, plt);
437}
438
439static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
440				  const Elf_Shdr *sechdrs,
441				  struct module *mod)
442{
443#if defined(CONFIG_DYNAMIC_FTRACE)
444	const Elf_Shdr *s;
445	struct plt_entry *plts;
446
447	s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
448	if (!s)
449		return -ENOEXEC;
450
451	plts = (void *)s->sh_addr;
452
453	__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
454
455	mod->arch.ftrace_trampolines = plts;
456#endif
457	return 0;
458}
459
460int module_finalize(const Elf_Ehdr *hdr,
461		    const Elf_Shdr *sechdrs,
462		    struct module *me)
463{
464	const Elf_Shdr *s;
465	int ret;
466
467	s = find_section(hdr, sechdrs, ".altinstructions");
468	if (s)
469		apply_alternatives_module((void *)s->sh_addr, s->sh_size);
470
471	if (scs_is_dynamic()) {
472		s = find_section(hdr, sechdrs, ".init.eh_frame");
473		if (s) {
474			ret = __pi_scs_patch((void *)s->sh_addr, s->sh_size);
475			if (ret)
476				pr_err("module %s: error occurred during dynamic SCS patching (%d)\n",
477				       me->name, ret);
478		}
 
 
 
 
 
479	}
480
481	return module_init_ftrace_plt(hdr, sechdrs, me);
482}