Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Alarmtimer interface
  3 *
  4 * This interface provides a timer which is similarto hrtimers,
  5 * but triggers a RTC alarm if the box is suspend.
  6 *
  7 * This interface is influenced by the Android RTC Alarm timer
  8 * interface.
  9 *
 10 * Copyright (C) 2010 IBM Corperation
 11 *
 12 * Author: John Stultz <john.stultz@linaro.org>
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 */
 18#include <linux/time.h>
 19#include <linux/hrtimer.h>
 20#include <linux/timerqueue.h>
 21#include <linux/rtc.h>
 22#include <linux/sched/signal.h>
 23#include <linux/sched/debug.h>
 24#include <linux/alarmtimer.h>
 25#include <linux/mutex.h>
 26#include <linux/platform_device.h>
 27#include <linux/posix-timers.h>
 28#include <linux/workqueue.h>
 29#include <linux/freezer.h>
 30#include <linux/compat.h>
 31#include <linux/module.h>
 
 32
 33#include "posix-timers.h"
 34
 35#define CREATE_TRACE_POINTS
 36#include <trace/events/alarmtimer.h>
 37
 38/**
 39 * struct alarm_base - Alarm timer bases
 40 * @lock:		Lock for syncrhonized access to the base
 41 * @timerqueue:		Timerqueue head managing the list of events
 42 * @gettime:		Function to read the time correlating to the base
 
 43 * @base_clockid:	clockid for the base
 44 */
 45static struct alarm_base {
 46	spinlock_t		lock;
 47	struct timerqueue_head	timerqueue;
 48	ktime_t			(*gettime)(void);
 
 49	clockid_t		base_clockid;
 50} alarm_bases[ALARM_NUMTYPE];
 51
 52#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
 53/* freezer information to handle clock_nanosleep triggered wakeups */
 54static enum alarmtimer_type freezer_alarmtype;
 55static ktime_t freezer_expires;
 56static ktime_t freezer_delta;
 57static DEFINE_SPINLOCK(freezer_delta_lock);
 58#endif
 59
 60#ifdef CONFIG_RTC_CLASS
 61static struct wakeup_source *ws;
 62
 63/* rtc timer and device for setting alarm wakeups at suspend */
 64static struct rtc_timer		rtctimer;
 65static struct rtc_device	*rtcdev;
 66static DEFINE_SPINLOCK(rtcdev_lock);
 67
 68/**
 69 * alarmtimer_get_rtcdev - Return selected rtcdevice
 70 *
 71 * This function returns the rtc device to use for wakealarms.
 72 * If one has not already been chosen, it checks to see if a
 73 * functional rtc device is available.
 74 */
 75struct rtc_device *alarmtimer_get_rtcdev(void)
 76{
 77	unsigned long flags;
 78	struct rtc_device *ret;
 79
 80	spin_lock_irqsave(&rtcdev_lock, flags);
 81	ret = rtcdev;
 82	spin_unlock_irqrestore(&rtcdev_lock, flags);
 83
 84	return ret;
 85}
 86EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
 87
 88static int alarmtimer_rtc_add_device(struct device *dev,
 89				struct class_interface *class_intf)
 90{
 91	unsigned long flags;
 92	struct rtc_device *rtc = to_rtc_device(dev);
 93	struct wakeup_source *__ws;
 
 94
 95	if (rtcdev)
 96		return -EBUSY;
 97
 98	if (!rtc->ops->set_alarm)
 99		return -1;
100	if (!device_may_wakeup(rtc->dev.parent))
101		return -1;
102
103	__ws = wakeup_source_register("alarmtimer");
 
 
 
104
105	spin_lock_irqsave(&rtcdev_lock, flags);
106	if (!rtcdev) {
107		if (!try_module_get(rtc->owner)) {
108			spin_unlock_irqrestore(&rtcdev_lock, flags);
109			return -1;
110		}
111
112		rtcdev = rtc;
113		/* hold a reference so it doesn't go away */
114		get_device(dev);
115		ws = __ws;
116		__ws = NULL;
 
117	}
 
118	spin_unlock_irqrestore(&rtcdev_lock, flags);
119
120	wakeup_source_unregister(__ws);
121
122	return 0;
123}
124
125static inline void alarmtimer_rtc_timer_init(void)
126{
127	rtc_timer_init(&rtctimer, NULL, NULL);
128}
129
130static struct class_interface alarmtimer_rtc_interface = {
131	.add_dev = &alarmtimer_rtc_add_device,
132};
133
134static int alarmtimer_rtc_interface_setup(void)
135{
136	alarmtimer_rtc_interface.class = rtc_class;
137	return class_interface_register(&alarmtimer_rtc_interface);
138}
139static void alarmtimer_rtc_interface_remove(void)
140{
141	class_interface_unregister(&alarmtimer_rtc_interface);
142}
143#else
144struct rtc_device *alarmtimer_get_rtcdev(void)
145{
146	return NULL;
147}
148#define rtcdev (NULL)
149static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
150static inline void alarmtimer_rtc_interface_remove(void) { }
151static inline void alarmtimer_rtc_timer_init(void) { }
152#endif
153
154/**
155 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
156 * @base: pointer to the base where the timer is being run
157 * @alarm: pointer to alarm being enqueued.
158 *
159 * Adds alarm to a alarm_base timerqueue
160 *
161 * Must hold base->lock when calling.
162 */
163static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
164{
165	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
166		timerqueue_del(&base->timerqueue, &alarm->node);
167
168	timerqueue_add(&base->timerqueue, &alarm->node);
169	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
170}
171
172/**
173 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
174 * @base: pointer to the base where the timer is running
175 * @alarm: pointer to alarm being removed
176 *
177 * Removes alarm to a alarm_base timerqueue
178 *
179 * Must hold base->lock when calling.
180 */
181static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
182{
183	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
184		return;
185
186	timerqueue_del(&base->timerqueue, &alarm->node);
187	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
188}
189
190
191/**
192 * alarmtimer_fired - Handles alarm hrtimer being fired.
193 * @timer: pointer to hrtimer being run
194 *
195 * When a alarm timer fires, this runs through the timerqueue to
196 * see which alarms expired, and runs those. If there are more alarm
197 * timers queued for the future, we set the hrtimer to fire when
198 * when the next future alarm timer expires.
199 */
200static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
201{
202	struct alarm *alarm = container_of(timer, struct alarm, timer);
203	struct alarm_base *base = &alarm_bases[alarm->type];
204	unsigned long flags;
205	int ret = HRTIMER_NORESTART;
206	int restart = ALARMTIMER_NORESTART;
207
208	spin_lock_irqsave(&base->lock, flags);
209	alarmtimer_dequeue(base, alarm);
210	spin_unlock_irqrestore(&base->lock, flags);
211
212	if (alarm->function)
213		restart = alarm->function(alarm, base->gettime());
214
215	spin_lock_irqsave(&base->lock, flags);
216	if (restart != ALARMTIMER_NORESTART) {
217		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
218		alarmtimer_enqueue(base, alarm);
219		ret = HRTIMER_RESTART;
220	}
221	spin_unlock_irqrestore(&base->lock, flags);
222
223	trace_alarmtimer_fired(alarm, base->gettime());
224	return ret;
225
226}
227
228ktime_t alarm_expires_remaining(const struct alarm *alarm)
229{
230	struct alarm_base *base = &alarm_bases[alarm->type];
231	return ktime_sub(alarm->node.expires, base->gettime());
232}
233EXPORT_SYMBOL_GPL(alarm_expires_remaining);
234
235#ifdef CONFIG_RTC_CLASS
236/**
237 * alarmtimer_suspend - Suspend time callback
238 * @dev: unused
239 * @state: unused
240 *
241 * When we are going into suspend, we look through the bases
242 * to see which is the soonest timer to expire. We then
243 * set an rtc timer to fire that far into the future, which
244 * will wake us from suspend.
245 */
246static int alarmtimer_suspend(struct device *dev)
247{
248	ktime_t min, now, expires;
249	int i, ret, type;
250	struct rtc_device *rtc;
251	unsigned long flags;
252	struct rtc_time tm;
253
254	spin_lock_irqsave(&freezer_delta_lock, flags);
255	min = freezer_delta;
256	expires = freezer_expires;
257	type = freezer_alarmtype;
258	freezer_delta = 0;
259	spin_unlock_irqrestore(&freezer_delta_lock, flags);
260
261	rtc = alarmtimer_get_rtcdev();
262	/* If we have no rtcdev, just return */
263	if (!rtc)
264		return 0;
265
266	/* Find the soonest timer to expire*/
267	for (i = 0; i < ALARM_NUMTYPE; i++) {
268		struct alarm_base *base = &alarm_bases[i];
269		struct timerqueue_node *next;
270		ktime_t delta;
271
272		spin_lock_irqsave(&base->lock, flags);
273		next = timerqueue_getnext(&base->timerqueue);
274		spin_unlock_irqrestore(&base->lock, flags);
275		if (!next)
276			continue;
277		delta = ktime_sub(next->expires, base->gettime());
278		if (!min || (delta < min)) {
279			expires = next->expires;
280			min = delta;
281			type = i;
282		}
283	}
284	if (min == 0)
285		return 0;
286
287	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
288		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
289		return -EBUSY;
290	}
291
292	trace_alarmtimer_suspend(expires, type);
293
294	/* Setup an rtc timer to fire that far in the future */
295	rtc_timer_cancel(rtc, &rtctimer);
296	rtc_read_time(rtc, &tm);
297	now = rtc_tm_to_ktime(tm);
298	now = ktime_add(now, min);
299
300	/* Set alarm, if in the past reject suspend briefly to handle */
301	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
302	if (ret < 0)
303		__pm_wakeup_event(ws, MSEC_PER_SEC);
304	return ret;
305}
306
307static int alarmtimer_resume(struct device *dev)
308{
309	struct rtc_device *rtc;
310
311	rtc = alarmtimer_get_rtcdev();
312	if (rtc)
313		rtc_timer_cancel(rtc, &rtctimer);
314	return 0;
315}
316
317#else
318static int alarmtimer_suspend(struct device *dev)
319{
320	return 0;
321}
322
323static int alarmtimer_resume(struct device *dev)
324{
325	return 0;
326}
327#endif
328
329static void
330__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
331	     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
332{
333	timerqueue_init(&alarm->node);
334	alarm->timer.function = alarmtimer_fired;
335	alarm->function = function;
336	alarm->type = type;
337	alarm->state = ALARMTIMER_STATE_INACTIVE;
338}
339
340/**
341 * alarm_init - Initialize an alarm structure
342 * @alarm: ptr to alarm to be initialized
343 * @type: the type of the alarm
344 * @function: callback that is run when the alarm fires
345 */
346void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
347		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
348{
349	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
350		     HRTIMER_MODE_ABS);
351	__alarm_init(alarm, type, function);
352}
353EXPORT_SYMBOL_GPL(alarm_init);
354
355/**
356 * alarm_start - Sets an absolute alarm to fire
357 * @alarm: ptr to alarm to set
358 * @start: time to run the alarm
359 */
360void alarm_start(struct alarm *alarm, ktime_t start)
361{
362	struct alarm_base *base = &alarm_bases[alarm->type];
363	unsigned long flags;
364
365	spin_lock_irqsave(&base->lock, flags);
366	alarm->node.expires = start;
367	alarmtimer_enqueue(base, alarm);
368	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
369	spin_unlock_irqrestore(&base->lock, flags);
370
371	trace_alarmtimer_start(alarm, base->gettime());
372}
373EXPORT_SYMBOL_GPL(alarm_start);
374
375/**
376 * alarm_start_relative - Sets a relative alarm to fire
377 * @alarm: ptr to alarm to set
378 * @start: time relative to now to run the alarm
379 */
380void alarm_start_relative(struct alarm *alarm, ktime_t start)
381{
382	struct alarm_base *base = &alarm_bases[alarm->type];
383
384	start = ktime_add_safe(start, base->gettime());
385	alarm_start(alarm, start);
386}
387EXPORT_SYMBOL_GPL(alarm_start_relative);
388
389void alarm_restart(struct alarm *alarm)
390{
391	struct alarm_base *base = &alarm_bases[alarm->type];
392	unsigned long flags;
393
394	spin_lock_irqsave(&base->lock, flags);
395	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
396	hrtimer_restart(&alarm->timer);
397	alarmtimer_enqueue(base, alarm);
398	spin_unlock_irqrestore(&base->lock, flags);
399}
400EXPORT_SYMBOL_GPL(alarm_restart);
401
402/**
403 * alarm_try_to_cancel - Tries to cancel an alarm timer
404 * @alarm: ptr to alarm to be canceled
405 *
406 * Returns 1 if the timer was canceled, 0 if it was not running,
407 * and -1 if the callback was running
408 */
409int alarm_try_to_cancel(struct alarm *alarm)
410{
411	struct alarm_base *base = &alarm_bases[alarm->type];
412	unsigned long flags;
413	int ret;
414
415	spin_lock_irqsave(&base->lock, flags);
416	ret = hrtimer_try_to_cancel(&alarm->timer);
417	if (ret >= 0)
418		alarmtimer_dequeue(base, alarm);
419	spin_unlock_irqrestore(&base->lock, flags);
420
421	trace_alarmtimer_cancel(alarm, base->gettime());
422	return ret;
423}
424EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
425
426
427/**
428 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
429 * @alarm: ptr to alarm to be canceled
430 *
431 * Returns 1 if the timer was canceled, 0 if it was not active.
432 */
433int alarm_cancel(struct alarm *alarm)
434{
435	for (;;) {
436		int ret = alarm_try_to_cancel(alarm);
437		if (ret >= 0)
438			return ret;
439		cpu_relax();
440	}
441}
442EXPORT_SYMBOL_GPL(alarm_cancel);
443
444
445u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
446{
447	u64 overrun = 1;
448	ktime_t delta;
449
450	delta = ktime_sub(now, alarm->node.expires);
451
452	if (delta < 0)
453		return 0;
454
455	if (unlikely(delta >= interval)) {
456		s64 incr = ktime_to_ns(interval);
457
458		overrun = ktime_divns(delta, incr);
459
460		alarm->node.expires = ktime_add_ns(alarm->node.expires,
461							incr*overrun);
462
463		if (alarm->node.expires > now)
464			return overrun;
465		/*
466		 * This (and the ktime_add() below) is the
467		 * correction for exact:
468		 */
469		overrun++;
470	}
471
472	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
473	return overrun;
474}
475EXPORT_SYMBOL_GPL(alarm_forward);
476
477u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
478{
479	struct alarm_base *base = &alarm_bases[alarm->type];
480
481	return alarm_forward(alarm, base->gettime(), interval);
482}
483EXPORT_SYMBOL_GPL(alarm_forward_now);
484
485#ifdef CONFIG_POSIX_TIMERS
486
487static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
488{
489	struct alarm_base *base;
490	unsigned long flags;
491	ktime_t delta;
492
493	switch(type) {
494	case ALARM_REALTIME:
495		base = &alarm_bases[ALARM_REALTIME];
496		type = ALARM_REALTIME_FREEZER;
497		break;
498	case ALARM_BOOTTIME:
499		base = &alarm_bases[ALARM_BOOTTIME];
500		type = ALARM_BOOTTIME_FREEZER;
501		break;
502	default:
503		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
504		return;
505	}
506
507	delta = ktime_sub(absexp, base->gettime());
508
509	spin_lock_irqsave(&freezer_delta_lock, flags);
510	if (!freezer_delta || (delta < freezer_delta)) {
511		freezer_delta = delta;
512		freezer_expires = absexp;
513		freezer_alarmtype = type;
514	}
515	spin_unlock_irqrestore(&freezer_delta_lock, flags);
516}
517
518/**
519 * clock2alarm - helper that converts from clockid to alarmtypes
520 * @clockid: clockid.
521 */
522static enum alarmtimer_type clock2alarm(clockid_t clockid)
523{
524	if (clockid == CLOCK_REALTIME_ALARM)
525		return ALARM_REALTIME;
526	if (clockid == CLOCK_BOOTTIME_ALARM)
527		return ALARM_BOOTTIME;
528	return -1;
529}
530
531/**
532 * alarm_handle_timer - Callback for posix timers
533 * @alarm: alarm that fired
534 *
535 * Posix timer callback for expired alarm timers.
536 */
537static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
538							ktime_t now)
539{
540	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
541					    it.alarm.alarmtimer);
542	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
543	unsigned long flags;
544	int si_private = 0;
545
546	spin_lock_irqsave(&ptr->it_lock, flags);
547
548	ptr->it_active = 0;
549	if (ptr->it_interval)
550		si_private = ++ptr->it_requeue_pending;
551
552	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
553		/*
554		 * Handle ignored signals and rearm the timer. This will go
555		 * away once we handle ignored signals proper.
556		 */
557		ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
558		++ptr->it_requeue_pending;
559		ptr->it_active = 1;
560		result = ALARMTIMER_RESTART;
561	}
562	spin_unlock_irqrestore(&ptr->it_lock, flags);
563
564	return result;
565}
566
567/**
568 * alarm_timer_rearm - Posix timer callback for rearming timer
569 * @timr:	Pointer to the posixtimer data struct
570 */
571static void alarm_timer_rearm(struct k_itimer *timr)
572{
573	struct alarm *alarm = &timr->it.alarm.alarmtimer;
574
575	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
576	alarm_start(alarm, alarm->node.expires);
577}
578
579/**
580 * alarm_timer_forward - Posix timer callback for forwarding timer
581 * @timr:	Pointer to the posixtimer data struct
582 * @now:	Current time to forward the timer against
583 */
584static int alarm_timer_forward(struct k_itimer *timr, ktime_t now)
585{
586	struct alarm *alarm = &timr->it.alarm.alarmtimer;
587
588	return (int) alarm_forward(alarm, timr->it_interval, now);
589}
590
591/**
592 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
593 * @timr:	Pointer to the posixtimer data struct
594 * @now:	Current time to calculate against
595 */
596static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
597{
598	struct alarm *alarm = &timr->it.alarm.alarmtimer;
599
600	return ktime_sub(now, alarm->node.expires);
601}
602
603/**
604 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
605 * @timr:	Pointer to the posixtimer data struct
606 */
607static int alarm_timer_try_to_cancel(struct k_itimer *timr)
608{
609	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
610}
611
612/**
 
 
 
 
 
 
 
 
 
 
 
 
 
613 * alarm_timer_arm - Posix timer callback to arm a timer
614 * @timr:	Pointer to the posixtimer data struct
615 * @expires:	The new expiry time
616 * @absolute:	Expiry value is absolute time
617 * @sigev_none:	Posix timer does not deliver signals
618 */
619static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
620			    bool absolute, bool sigev_none)
621{
622	struct alarm *alarm = &timr->it.alarm.alarmtimer;
623	struct alarm_base *base = &alarm_bases[alarm->type];
624
625	if (!absolute)
626		expires = ktime_add_safe(expires, base->gettime());
627	if (sigev_none)
628		alarm->node.expires = expires;
629	else
630		alarm_start(&timr->it.alarm.alarmtimer, expires);
631}
632
633/**
634 * alarm_clock_getres - posix getres interface
635 * @which_clock: clockid
636 * @tp: timespec to fill
637 *
638 * Returns the granularity of underlying alarm base clock
639 */
640static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
641{
642	if (!alarmtimer_get_rtcdev())
643		return -EINVAL;
644
645	tp->tv_sec = 0;
646	tp->tv_nsec = hrtimer_resolution;
647	return 0;
648}
649
650/**
651 * alarm_clock_get - posix clock_get interface
652 * @which_clock: clockid
653 * @tp: timespec to fill.
654 *
655 * Provides the underlying alarm base time.
656 */
657static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
658{
659	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
660
661	if (!alarmtimer_get_rtcdev())
662		return -EINVAL;
663
664	*tp = ktime_to_timespec64(base->gettime());
 
665	return 0;
666}
667
668/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669 * alarm_timer_create - posix timer_create interface
670 * @new_timer: k_itimer pointer to manage
671 *
672 * Initializes the k_itimer structure.
673 */
674static int alarm_timer_create(struct k_itimer *new_timer)
675{
676	enum  alarmtimer_type type;
677
678	if (!alarmtimer_get_rtcdev())
679		return -ENOTSUPP;
680
681	if (!capable(CAP_WAKE_ALARM))
682		return -EPERM;
683
684	type = clock2alarm(new_timer->it_clock);
685	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
686	return 0;
687}
688
689/**
690 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
691 * @alarm: ptr to alarm that fired
692 *
693 * Wakes up the task that set the alarmtimer
694 */
695static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
696								ktime_t now)
697{
698	struct task_struct *task = (struct task_struct *)alarm->data;
699
700	alarm->data = NULL;
701	if (task)
702		wake_up_process(task);
703	return ALARMTIMER_NORESTART;
704}
705
706/**
707 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
708 * @alarm: ptr to alarmtimer
709 * @absexp: absolute expiration time
710 *
711 * Sets the alarm timer and sleeps until it is fired or interrupted.
712 */
713static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
714				enum alarmtimer_type type)
715{
716	struct restart_block *restart;
717	alarm->data = (void *)current;
718	do {
719		set_current_state(TASK_INTERRUPTIBLE);
720		alarm_start(alarm, absexp);
721		if (likely(alarm->data))
722			schedule();
723
724		alarm_cancel(alarm);
725	} while (alarm->data && !signal_pending(current));
726
727	__set_current_state(TASK_RUNNING);
728
729	destroy_hrtimer_on_stack(&alarm->timer);
730
731	if (!alarm->data)
732		return 0;
733
734	if (freezing(current))
735		alarmtimer_freezerset(absexp, type);
736	restart = &current->restart_block;
737	if (restart->nanosleep.type != TT_NONE) {
738		struct timespec64 rmt;
739		ktime_t rem;
740
741		rem = ktime_sub(absexp, alarm_bases[type].gettime());
742
743		if (rem <= 0)
744			return 0;
745		rmt = ktime_to_timespec64(rem);
746
747		return nanosleep_copyout(restart, &rmt);
748	}
749	return -ERESTART_RESTARTBLOCK;
750}
751
752static void
753alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
754		    enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
755{
756	hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
757			      HRTIMER_MODE_ABS);
758	__alarm_init(alarm, type, function);
759}
760
761/**
762 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
763 * @restart: ptr to restart block
764 *
765 * Handles restarted clock_nanosleep calls
766 */
767static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
768{
769	enum  alarmtimer_type type = restart->nanosleep.clockid;
770	ktime_t exp = restart->nanosleep.expires;
771	struct alarm alarm;
772
773	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
774
775	return alarmtimer_do_nsleep(&alarm, exp, type);
776}
777
778/**
779 * alarm_timer_nsleep - alarmtimer nanosleep
780 * @which_clock: clockid
781 * @flags: determins abstime or relative
782 * @tsreq: requested sleep time (abs or rel)
783 * @rmtp: remaining sleep time saved
784 *
785 * Handles clock_nanosleep calls against _ALARM clockids
786 */
787static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
788			      const struct timespec64 *tsreq)
789{
790	enum  alarmtimer_type type = clock2alarm(which_clock);
791	struct restart_block *restart = &current->restart_block;
792	struct alarm alarm;
793	ktime_t exp;
794	int ret = 0;
795
796	if (!alarmtimer_get_rtcdev())
797		return -ENOTSUPP;
798
799	if (flags & ~TIMER_ABSTIME)
800		return -EINVAL;
801
802	if (!capable(CAP_WAKE_ALARM))
803		return -EPERM;
804
805	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
806
807	exp = timespec64_to_ktime(*tsreq);
808	/* Convert (if necessary) to absolute time */
809	if (flags != TIMER_ABSTIME) {
810		ktime_t now = alarm_bases[type].gettime();
811		exp = ktime_add(now, exp);
 
 
 
812	}
813
814	ret = alarmtimer_do_nsleep(&alarm, exp, type);
815	if (ret != -ERESTART_RESTARTBLOCK)
816		return ret;
817
818	/* abs timers don't set remaining time or restart */
819	if (flags == TIMER_ABSTIME)
820		return -ERESTARTNOHAND;
821
822	restart->fn = alarm_timer_nsleep_restart;
823	restart->nanosleep.clockid = type;
824	restart->nanosleep.expires = exp;
825	return ret;
826}
827
828const struct k_clock alarm_clock = {
829	.clock_getres		= alarm_clock_getres,
830	.clock_get		= alarm_clock_get,
 
831	.timer_create		= alarm_timer_create,
832	.timer_set		= common_timer_set,
833	.timer_del		= common_timer_del,
834	.timer_get		= common_timer_get,
835	.timer_arm		= alarm_timer_arm,
836	.timer_rearm		= alarm_timer_rearm,
837	.timer_forward		= alarm_timer_forward,
838	.timer_remaining	= alarm_timer_remaining,
839	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
 
840	.nsleep			= alarm_timer_nsleep,
841};
842#endif /* CONFIG_POSIX_TIMERS */
843
844
845/* Suspend hook structures */
846static const struct dev_pm_ops alarmtimer_pm_ops = {
847	.suspend = alarmtimer_suspend,
848	.resume = alarmtimer_resume,
849};
850
851static struct platform_driver alarmtimer_driver = {
852	.driver = {
853		.name = "alarmtimer",
854		.pm = &alarmtimer_pm_ops,
855	}
856};
857
 
 
 
 
 
 
858/**
859 * alarmtimer_init - Initialize alarm timer code
860 *
861 * This function initializes the alarm bases and registers
862 * the posix clock ids.
863 */
864static int __init alarmtimer_init(void)
865{
866	struct platform_device *pdev;
867	int error = 0;
868	int i;
869
870	alarmtimer_rtc_timer_init();
871
872	/* Initialize alarm bases */
873	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
874	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
 
875	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
876	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
 
877	for (i = 0; i < ALARM_NUMTYPE; i++) {
878		timerqueue_init_head(&alarm_bases[i].timerqueue);
879		spin_lock_init(&alarm_bases[i].lock);
880	}
881
882	error = alarmtimer_rtc_interface_setup();
883	if (error)
884		return error;
885
886	error = platform_driver_register(&alarmtimer_driver);
887	if (error)
888		goto out_if;
889
890	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
891	if (IS_ERR(pdev)) {
892		error = PTR_ERR(pdev);
893		goto out_drv;
894	}
895	return 0;
896
897out_drv:
898	platform_driver_unregister(&alarmtimer_driver);
899out_if:
900	alarmtimer_rtc_interface_remove();
901	return error;
902}
903device_initcall(alarmtimer_init);
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Alarmtimer interface
  4 *
  5 * This interface provides a timer which is similarto hrtimers,
  6 * but triggers a RTC alarm if the box is suspend.
  7 *
  8 * This interface is influenced by the Android RTC Alarm timer
  9 * interface.
 10 *
 11 * Copyright (C) 2010 IBM Corperation
 12 *
 13 * Author: John Stultz <john.stultz@linaro.org>
 
 
 
 
 14 */
 15#include <linux/time.h>
 16#include <linux/hrtimer.h>
 17#include <linux/timerqueue.h>
 18#include <linux/rtc.h>
 19#include <linux/sched/signal.h>
 20#include <linux/sched/debug.h>
 21#include <linux/alarmtimer.h>
 22#include <linux/mutex.h>
 23#include <linux/platform_device.h>
 24#include <linux/posix-timers.h>
 25#include <linux/workqueue.h>
 26#include <linux/freezer.h>
 27#include <linux/compat.h>
 28#include <linux/module.h>
 29#include <linux/time_namespace.h>
 30
 31#include "posix-timers.h"
 32
 33#define CREATE_TRACE_POINTS
 34#include <trace/events/alarmtimer.h>
 35
 36/**
 37 * struct alarm_base - Alarm timer bases
 38 * @lock:		Lock for syncrhonized access to the base
 39 * @timerqueue:		Timerqueue head managing the list of events
 40 * @get_ktime:		Function to read the time correlating to the base
 41 * @get_timespec:	Function to read the namespace time correlating to the base
 42 * @base_clockid:	clockid for the base
 43 */
 44static struct alarm_base {
 45	spinlock_t		lock;
 46	struct timerqueue_head	timerqueue;
 47	ktime_t			(*get_ktime)(void);
 48	void			(*get_timespec)(struct timespec64 *tp);
 49	clockid_t		base_clockid;
 50} alarm_bases[ALARM_NUMTYPE];
 51
 52#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
 53/* freezer information to handle clock_nanosleep triggered wakeups */
 54static enum alarmtimer_type freezer_alarmtype;
 55static ktime_t freezer_expires;
 56static ktime_t freezer_delta;
 57static DEFINE_SPINLOCK(freezer_delta_lock);
 58#endif
 59
 60#ifdef CONFIG_RTC_CLASS
 
 
 61/* rtc timer and device for setting alarm wakeups at suspend */
 62static struct rtc_timer		rtctimer;
 63static struct rtc_device	*rtcdev;
 64static DEFINE_SPINLOCK(rtcdev_lock);
 65
 66/**
 67 * alarmtimer_get_rtcdev - Return selected rtcdevice
 68 *
 69 * This function returns the rtc device to use for wakealarms.
 
 
 70 */
 71struct rtc_device *alarmtimer_get_rtcdev(void)
 72{
 73	unsigned long flags;
 74	struct rtc_device *ret;
 75
 76	spin_lock_irqsave(&rtcdev_lock, flags);
 77	ret = rtcdev;
 78	spin_unlock_irqrestore(&rtcdev_lock, flags);
 79
 80	return ret;
 81}
 82EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
 83
 84static int alarmtimer_rtc_add_device(struct device *dev,
 85				struct class_interface *class_intf)
 86{
 87	unsigned long flags;
 88	struct rtc_device *rtc = to_rtc_device(dev);
 89	struct platform_device *pdev;
 90	int ret = 0;
 91
 92	if (rtcdev)
 93		return -EBUSY;
 94
 95	if (!rtc->ops->set_alarm)
 96		return -1;
 97	if (!device_may_wakeup(rtc->dev.parent))
 98		return -1;
 99
100	pdev = platform_device_register_data(dev, "alarmtimer",
101					     PLATFORM_DEVID_AUTO, NULL, 0);
102	if (!IS_ERR(pdev))
103		device_init_wakeup(&pdev->dev, true);
104
105	spin_lock_irqsave(&rtcdev_lock, flags);
106	if (!IS_ERR(pdev) && !rtcdev) {
107		if (!try_module_get(rtc->owner)) {
108			ret = -1;
109			goto unlock;
110		}
111
112		rtcdev = rtc;
113		/* hold a reference so it doesn't go away */
114		get_device(dev);
115		pdev = NULL;
116	} else {
117		ret = -1;
118	}
119unlock:
120	spin_unlock_irqrestore(&rtcdev_lock, flags);
121
122	platform_device_unregister(pdev);
123
124	return ret;
125}
126
127static inline void alarmtimer_rtc_timer_init(void)
128{
129	rtc_timer_init(&rtctimer, NULL, NULL);
130}
131
132static struct class_interface alarmtimer_rtc_interface = {
133	.add_dev = &alarmtimer_rtc_add_device,
134};
135
136static int alarmtimer_rtc_interface_setup(void)
137{
138	alarmtimer_rtc_interface.class = rtc_class;
139	return class_interface_register(&alarmtimer_rtc_interface);
140}
141static void alarmtimer_rtc_interface_remove(void)
142{
143	class_interface_unregister(&alarmtimer_rtc_interface);
144}
145#else
 
 
 
 
 
146static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
147static inline void alarmtimer_rtc_interface_remove(void) { }
148static inline void alarmtimer_rtc_timer_init(void) { }
149#endif
150
151/**
152 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153 * @base: pointer to the base where the timer is being run
154 * @alarm: pointer to alarm being enqueued.
155 *
156 * Adds alarm to a alarm_base timerqueue
157 *
158 * Must hold base->lock when calling.
159 */
160static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161{
162	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163		timerqueue_del(&base->timerqueue, &alarm->node);
164
165	timerqueue_add(&base->timerqueue, &alarm->node);
166	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
167}
168
169/**
170 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171 * @base: pointer to the base where the timer is running
172 * @alarm: pointer to alarm being removed
173 *
174 * Removes alarm to a alarm_base timerqueue
175 *
176 * Must hold base->lock when calling.
177 */
178static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179{
180	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181		return;
182
183	timerqueue_del(&base->timerqueue, &alarm->node);
184	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
185}
186
187
188/**
189 * alarmtimer_fired - Handles alarm hrtimer being fired.
190 * @timer: pointer to hrtimer being run
191 *
192 * When a alarm timer fires, this runs through the timerqueue to
193 * see which alarms expired, and runs those. If there are more alarm
194 * timers queued for the future, we set the hrtimer to fire when
195 * the next future alarm timer expires.
196 */
197static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198{
199	struct alarm *alarm = container_of(timer, struct alarm, timer);
200	struct alarm_base *base = &alarm_bases[alarm->type];
201	unsigned long flags;
202	int ret = HRTIMER_NORESTART;
203	int restart = ALARMTIMER_NORESTART;
204
205	spin_lock_irqsave(&base->lock, flags);
206	alarmtimer_dequeue(base, alarm);
207	spin_unlock_irqrestore(&base->lock, flags);
208
209	if (alarm->function)
210		restart = alarm->function(alarm, base->get_ktime());
211
212	spin_lock_irqsave(&base->lock, flags);
213	if (restart != ALARMTIMER_NORESTART) {
214		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215		alarmtimer_enqueue(base, alarm);
216		ret = HRTIMER_RESTART;
217	}
218	spin_unlock_irqrestore(&base->lock, flags);
219
220	trace_alarmtimer_fired(alarm, base->get_ktime());
221	return ret;
222
223}
224
225ktime_t alarm_expires_remaining(const struct alarm *alarm)
226{
227	struct alarm_base *base = &alarm_bases[alarm->type];
228	return ktime_sub(alarm->node.expires, base->get_ktime());
229}
230EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232#ifdef CONFIG_RTC_CLASS
233/**
234 * alarmtimer_suspend - Suspend time callback
235 * @dev: unused
 
236 *
237 * When we are going into suspend, we look through the bases
238 * to see which is the soonest timer to expire. We then
239 * set an rtc timer to fire that far into the future, which
240 * will wake us from suspend.
241 */
242static int alarmtimer_suspend(struct device *dev)
243{
244	ktime_t min, now, expires;
245	int i, ret, type;
246	struct rtc_device *rtc;
247	unsigned long flags;
248	struct rtc_time tm;
249
250	spin_lock_irqsave(&freezer_delta_lock, flags);
251	min = freezer_delta;
252	expires = freezer_expires;
253	type = freezer_alarmtype;
254	freezer_delta = 0;
255	spin_unlock_irqrestore(&freezer_delta_lock, flags);
256
257	rtc = alarmtimer_get_rtcdev();
258	/* If we have no rtcdev, just return */
259	if (!rtc)
260		return 0;
261
262	/* Find the soonest timer to expire*/
263	for (i = 0; i < ALARM_NUMTYPE; i++) {
264		struct alarm_base *base = &alarm_bases[i];
265		struct timerqueue_node *next;
266		ktime_t delta;
267
268		spin_lock_irqsave(&base->lock, flags);
269		next = timerqueue_getnext(&base->timerqueue);
270		spin_unlock_irqrestore(&base->lock, flags);
271		if (!next)
272			continue;
273		delta = ktime_sub(next->expires, base->get_ktime());
274		if (!min || (delta < min)) {
275			expires = next->expires;
276			min = delta;
277			type = i;
278		}
279	}
280	if (min == 0)
281		return 0;
282
283	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
284		pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
285		return -EBUSY;
286	}
287
288	trace_alarmtimer_suspend(expires, type);
289
290	/* Setup an rtc timer to fire that far in the future */
291	rtc_timer_cancel(rtc, &rtctimer);
292	rtc_read_time(rtc, &tm);
293	now = rtc_tm_to_ktime(tm);
294	now = ktime_add(now, min);
295
296	/* Set alarm, if in the past reject suspend briefly to handle */
297	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
298	if (ret < 0)
299		pm_wakeup_event(dev, MSEC_PER_SEC);
300	return ret;
301}
302
303static int alarmtimer_resume(struct device *dev)
304{
305	struct rtc_device *rtc;
306
307	rtc = alarmtimer_get_rtcdev();
308	if (rtc)
309		rtc_timer_cancel(rtc, &rtctimer);
310	return 0;
311}
312
313#else
314static int alarmtimer_suspend(struct device *dev)
315{
316	return 0;
317}
318
319static int alarmtimer_resume(struct device *dev)
320{
321	return 0;
322}
323#endif
324
325static void
326__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
327	     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
328{
329	timerqueue_init(&alarm->node);
330	alarm->timer.function = alarmtimer_fired;
331	alarm->function = function;
332	alarm->type = type;
333	alarm->state = ALARMTIMER_STATE_INACTIVE;
334}
335
336/**
337 * alarm_init - Initialize an alarm structure
338 * @alarm: ptr to alarm to be initialized
339 * @type: the type of the alarm
340 * @function: callback that is run when the alarm fires
341 */
342void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
343		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
344{
345	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
346		     HRTIMER_MODE_ABS);
347	__alarm_init(alarm, type, function);
348}
349EXPORT_SYMBOL_GPL(alarm_init);
350
351/**
352 * alarm_start - Sets an absolute alarm to fire
353 * @alarm: ptr to alarm to set
354 * @start: time to run the alarm
355 */
356void alarm_start(struct alarm *alarm, ktime_t start)
357{
358	struct alarm_base *base = &alarm_bases[alarm->type];
359	unsigned long flags;
360
361	spin_lock_irqsave(&base->lock, flags);
362	alarm->node.expires = start;
363	alarmtimer_enqueue(base, alarm);
364	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
365	spin_unlock_irqrestore(&base->lock, flags);
366
367	trace_alarmtimer_start(alarm, base->get_ktime());
368}
369EXPORT_SYMBOL_GPL(alarm_start);
370
371/**
372 * alarm_start_relative - Sets a relative alarm to fire
373 * @alarm: ptr to alarm to set
374 * @start: time relative to now to run the alarm
375 */
376void alarm_start_relative(struct alarm *alarm, ktime_t start)
377{
378	struct alarm_base *base = &alarm_bases[alarm->type];
379
380	start = ktime_add_safe(start, base->get_ktime());
381	alarm_start(alarm, start);
382}
383EXPORT_SYMBOL_GPL(alarm_start_relative);
384
385void alarm_restart(struct alarm *alarm)
386{
387	struct alarm_base *base = &alarm_bases[alarm->type];
388	unsigned long flags;
389
390	spin_lock_irqsave(&base->lock, flags);
391	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
392	hrtimer_restart(&alarm->timer);
393	alarmtimer_enqueue(base, alarm);
394	spin_unlock_irqrestore(&base->lock, flags);
395}
396EXPORT_SYMBOL_GPL(alarm_restart);
397
398/**
399 * alarm_try_to_cancel - Tries to cancel an alarm timer
400 * @alarm: ptr to alarm to be canceled
401 *
402 * Returns 1 if the timer was canceled, 0 if it was not running,
403 * and -1 if the callback was running
404 */
405int alarm_try_to_cancel(struct alarm *alarm)
406{
407	struct alarm_base *base = &alarm_bases[alarm->type];
408	unsigned long flags;
409	int ret;
410
411	spin_lock_irqsave(&base->lock, flags);
412	ret = hrtimer_try_to_cancel(&alarm->timer);
413	if (ret >= 0)
414		alarmtimer_dequeue(base, alarm);
415	spin_unlock_irqrestore(&base->lock, flags);
416
417	trace_alarmtimer_cancel(alarm, base->get_ktime());
418	return ret;
419}
420EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
421
422
423/**
424 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
425 * @alarm: ptr to alarm to be canceled
426 *
427 * Returns 1 if the timer was canceled, 0 if it was not active.
428 */
429int alarm_cancel(struct alarm *alarm)
430{
431	for (;;) {
432		int ret = alarm_try_to_cancel(alarm);
433		if (ret >= 0)
434			return ret;
435		hrtimer_cancel_wait_running(&alarm->timer);
436	}
437}
438EXPORT_SYMBOL_GPL(alarm_cancel);
439
440
441u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
442{
443	u64 overrun = 1;
444	ktime_t delta;
445
446	delta = ktime_sub(now, alarm->node.expires);
447
448	if (delta < 0)
449		return 0;
450
451	if (unlikely(delta >= interval)) {
452		s64 incr = ktime_to_ns(interval);
453
454		overrun = ktime_divns(delta, incr);
455
456		alarm->node.expires = ktime_add_ns(alarm->node.expires,
457							incr*overrun);
458
459		if (alarm->node.expires > now)
460			return overrun;
461		/*
462		 * This (and the ktime_add() below) is the
463		 * correction for exact:
464		 */
465		overrun++;
466	}
467
468	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
469	return overrun;
470}
471EXPORT_SYMBOL_GPL(alarm_forward);
472
473u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
474{
475	struct alarm_base *base = &alarm_bases[alarm->type];
476
477	return alarm_forward(alarm, base->get_ktime(), interval);
478}
479EXPORT_SYMBOL_GPL(alarm_forward_now);
480
481#ifdef CONFIG_POSIX_TIMERS
482
483static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
484{
485	struct alarm_base *base;
486	unsigned long flags;
487	ktime_t delta;
488
489	switch(type) {
490	case ALARM_REALTIME:
491		base = &alarm_bases[ALARM_REALTIME];
492		type = ALARM_REALTIME_FREEZER;
493		break;
494	case ALARM_BOOTTIME:
495		base = &alarm_bases[ALARM_BOOTTIME];
496		type = ALARM_BOOTTIME_FREEZER;
497		break;
498	default:
499		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
500		return;
501	}
502
503	delta = ktime_sub(absexp, base->get_ktime());
504
505	spin_lock_irqsave(&freezer_delta_lock, flags);
506	if (!freezer_delta || (delta < freezer_delta)) {
507		freezer_delta = delta;
508		freezer_expires = absexp;
509		freezer_alarmtype = type;
510	}
511	spin_unlock_irqrestore(&freezer_delta_lock, flags);
512}
513
514/**
515 * clock2alarm - helper that converts from clockid to alarmtypes
516 * @clockid: clockid.
517 */
518static enum alarmtimer_type clock2alarm(clockid_t clockid)
519{
520	if (clockid == CLOCK_REALTIME_ALARM)
521		return ALARM_REALTIME;
522	if (clockid == CLOCK_BOOTTIME_ALARM)
523		return ALARM_BOOTTIME;
524	return -1;
525}
526
527/**
528 * alarm_handle_timer - Callback for posix timers
529 * @alarm: alarm that fired
530 *
531 * Posix timer callback for expired alarm timers.
532 */
533static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
534							ktime_t now)
535{
536	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
537					    it.alarm.alarmtimer);
538	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
539	unsigned long flags;
540	int si_private = 0;
541
542	spin_lock_irqsave(&ptr->it_lock, flags);
543
544	ptr->it_active = 0;
545	if (ptr->it_interval)
546		si_private = ++ptr->it_requeue_pending;
547
548	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
549		/*
550		 * Handle ignored signals and rearm the timer. This will go
551		 * away once we handle ignored signals proper.
552		 */
553		ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
554		++ptr->it_requeue_pending;
555		ptr->it_active = 1;
556		result = ALARMTIMER_RESTART;
557	}
558	spin_unlock_irqrestore(&ptr->it_lock, flags);
559
560	return result;
561}
562
563/**
564 * alarm_timer_rearm - Posix timer callback for rearming timer
565 * @timr:	Pointer to the posixtimer data struct
566 */
567static void alarm_timer_rearm(struct k_itimer *timr)
568{
569	struct alarm *alarm = &timr->it.alarm.alarmtimer;
570
571	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
572	alarm_start(alarm, alarm->node.expires);
573}
574
575/**
576 * alarm_timer_forward - Posix timer callback for forwarding timer
577 * @timr:	Pointer to the posixtimer data struct
578 * @now:	Current time to forward the timer against
579 */
580static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
581{
582	struct alarm *alarm = &timr->it.alarm.alarmtimer;
583
584	return alarm_forward(alarm, timr->it_interval, now);
585}
586
587/**
588 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
589 * @timr:	Pointer to the posixtimer data struct
590 * @now:	Current time to calculate against
591 */
592static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
593{
594	struct alarm *alarm = &timr->it.alarm.alarmtimer;
595
596	return ktime_sub(alarm->node.expires, now);
597}
598
599/**
600 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
601 * @timr:	Pointer to the posixtimer data struct
602 */
603static int alarm_timer_try_to_cancel(struct k_itimer *timr)
604{
605	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
606}
607
608/**
609 * alarm_timer_wait_running - Posix timer callback to wait for a timer
610 * @timr:	Pointer to the posixtimer data struct
611 *
612 * Called from the core code when timer cancel detected that the callback
613 * is running. @timr is unlocked and rcu read lock is held to prevent it
614 * from being freed.
615 */
616static void alarm_timer_wait_running(struct k_itimer *timr)
617{
618	hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
619}
620
621/**
622 * alarm_timer_arm - Posix timer callback to arm a timer
623 * @timr:	Pointer to the posixtimer data struct
624 * @expires:	The new expiry time
625 * @absolute:	Expiry value is absolute time
626 * @sigev_none:	Posix timer does not deliver signals
627 */
628static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
629			    bool absolute, bool sigev_none)
630{
631	struct alarm *alarm = &timr->it.alarm.alarmtimer;
632	struct alarm_base *base = &alarm_bases[alarm->type];
633
634	if (!absolute)
635		expires = ktime_add_safe(expires, base->get_ktime());
636	if (sigev_none)
637		alarm->node.expires = expires;
638	else
639		alarm_start(&timr->it.alarm.alarmtimer, expires);
640}
641
642/**
643 * alarm_clock_getres - posix getres interface
644 * @which_clock: clockid
645 * @tp: timespec to fill
646 *
647 * Returns the granularity of underlying alarm base clock
648 */
649static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
650{
651	if (!alarmtimer_get_rtcdev())
652		return -EINVAL;
653
654	tp->tv_sec = 0;
655	tp->tv_nsec = hrtimer_resolution;
656	return 0;
657}
658
659/**
660 * alarm_clock_get_timespec - posix clock_get_timespec interface
661 * @which_clock: clockid
662 * @tp: timespec to fill.
663 *
664 * Provides the underlying alarm base time in a tasks time namespace.
665 */
666static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
667{
668	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
669
670	if (!alarmtimer_get_rtcdev())
671		return -EINVAL;
672
673	base->get_timespec(tp);
674
675	return 0;
676}
677
678/**
679 * alarm_clock_get_ktime - posix clock_get_ktime interface
680 * @which_clock: clockid
681 *
682 * Provides the underlying alarm base time in the root namespace.
683 */
684static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
685{
686	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
687
688	if (!alarmtimer_get_rtcdev())
689		return -EINVAL;
690
691	return base->get_ktime();
692}
693
694/**
695 * alarm_timer_create - posix timer_create interface
696 * @new_timer: k_itimer pointer to manage
697 *
698 * Initializes the k_itimer structure.
699 */
700static int alarm_timer_create(struct k_itimer *new_timer)
701{
702	enum  alarmtimer_type type;
703
704	if (!alarmtimer_get_rtcdev())
705		return -EOPNOTSUPP;
706
707	if (!capable(CAP_WAKE_ALARM))
708		return -EPERM;
709
710	type = clock2alarm(new_timer->it_clock);
711	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
712	return 0;
713}
714
715/**
716 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
717 * @alarm: ptr to alarm that fired
718 *
719 * Wakes up the task that set the alarmtimer
720 */
721static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
722								ktime_t now)
723{
724	struct task_struct *task = (struct task_struct *)alarm->data;
725
726	alarm->data = NULL;
727	if (task)
728		wake_up_process(task);
729	return ALARMTIMER_NORESTART;
730}
731
732/**
733 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
734 * @alarm: ptr to alarmtimer
735 * @absexp: absolute expiration time
736 *
737 * Sets the alarm timer and sleeps until it is fired or interrupted.
738 */
739static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
740				enum alarmtimer_type type)
741{
742	struct restart_block *restart;
743	alarm->data = (void *)current;
744	do {
745		set_current_state(TASK_INTERRUPTIBLE);
746		alarm_start(alarm, absexp);
747		if (likely(alarm->data))
748			schedule();
749
750		alarm_cancel(alarm);
751	} while (alarm->data && !signal_pending(current));
752
753	__set_current_state(TASK_RUNNING);
754
755	destroy_hrtimer_on_stack(&alarm->timer);
756
757	if (!alarm->data)
758		return 0;
759
760	if (freezing(current))
761		alarmtimer_freezerset(absexp, type);
762	restart = &current->restart_block;
763	if (restart->nanosleep.type != TT_NONE) {
764		struct timespec64 rmt;
765		ktime_t rem;
766
767		rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
768
769		if (rem <= 0)
770			return 0;
771		rmt = ktime_to_timespec64(rem);
772
773		return nanosleep_copyout(restart, &rmt);
774	}
775	return -ERESTART_RESTARTBLOCK;
776}
777
778static void
779alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
780		    enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
781{
782	hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
783			      HRTIMER_MODE_ABS);
784	__alarm_init(alarm, type, function);
785}
786
787/**
788 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
789 * @restart: ptr to restart block
790 *
791 * Handles restarted clock_nanosleep calls
792 */
793static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
794{
795	enum  alarmtimer_type type = restart->nanosleep.clockid;
796	ktime_t exp = restart->nanosleep.expires;
797	struct alarm alarm;
798
799	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
800
801	return alarmtimer_do_nsleep(&alarm, exp, type);
802}
803
804/**
805 * alarm_timer_nsleep - alarmtimer nanosleep
806 * @which_clock: clockid
807 * @flags: determins abstime or relative
808 * @tsreq: requested sleep time (abs or rel)
809 * @rmtp: remaining sleep time saved
810 *
811 * Handles clock_nanosleep calls against _ALARM clockids
812 */
813static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
814			      const struct timespec64 *tsreq)
815{
816	enum  alarmtimer_type type = clock2alarm(which_clock);
817	struct restart_block *restart = &current->restart_block;
818	struct alarm alarm;
819	ktime_t exp;
820	int ret = 0;
821
822	if (!alarmtimer_get_rtcdev())
823		return -EOPNOTSUPP;
824
825	if (flags & ~TIMER_ABSTIME)
826		return -EINVAL;
827
828	if (!capable(CAP_WAKE_ALARM))
829		return -EPERM;
830
831	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
832
833	exp = timespec64_to_ktime(*tsreq);
834	/* Convert (if necessary) to absolute time */
835	if (flags != TIMER_ABSTIME) {
836		ktime_t now = alarm_bases[type].get_ktime();
837
838		exp = ktime_add_safe(now, exp);
839	} else {
840		exp = timens_ktime_to_host(which_clock, exp);
841	}
842
843	ret = alarmtimer_do_nsleep(&alarm, exp, type);
844	if (ret != -ERESTART_RESTARTBLOCK)
845		return ret;
846
847	/* abs timers don't set remaining time or restart */
848	if (flags == TIMER_ABSTIME)
849		return -ERESTARTNOHAND;
850
851	restart->fn = alarm_timer_nsleep_restart;
852	restart->nanosleep.clockid = type;
853	restart->nanosleep.expires = exp;
854	return ret;
855}
856
857const struct k_clock alarm_clock = {
858	.clock_getres		= alarm_clock_getres,
859	.clock_get_ktime	= alarm_clock_get_ktime,
860	.clock_get_timespec	= alarm_clock_get_timespec,
861	.timer_create		= alarm_timer_create,
862	.timer_set		= common_timer_set,
863	.timer_del		= common_timer_del,
864	.timer_get		= common_timer_get,
865	.timer_arm		= alarm_timer_arm,
866	.timer_rearm		= alarm_timer_rearm,
867	.timer_forward		= alarm_timer_forward,
868	.timer_remaining	= alarm_timer_remaining,
869	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
870	.timer_wait_running	= alarm_timer_wait_running,
871	.nsleep			= alarm_timer_nsleep,
872};
873#endif /* CONFIG_POSIX_TIMERS */
874
875
876/* Suspend hook structures */
877static const struct dev_pm_ops alarmtimer_pm_ops = {
878	.suspend = alarmtimer_suspend,
879	.resume = alarmtimer_resume,
880};
881
882static struct platform_driver alarmtimer_driver = {
883	.driver = {
884		.name = "alarmtimer",
885		.pm = &alarmtimer_pm_ops,
886	}
887};
888
889static void get_boottime_timespec(struct timespec64 *tp)
890{
891	ktime_get_boottime_ts64(tp);
892	timens_add_boottime(tp);
893}
894
895/**
896 * alarmtimer_init - Initialize alarm timer code
897 *
898 * This function initializes the alarm bases and registers
899 * the posix clock ids.
900 */
901static int __init alarmtimer_init(void)
902{
903	int error;
 
904	int i;
905
906	alarmtimer_rtc_timer_init();
907
908	/* Initialize alarm bases */
909	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
910	alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
911	alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64,
912	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
913	alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
914	alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
915	for (i = 0; i < ALARM_NUMTYPE; i++) {
916		timerqueue_init_head(&alarm_bases[i].timerqueue);
917		spin_lock_init(&alarm_bases[i].lock);
918	}
919
920	error = alarmtimer_rtc_interface_setup();
921	if (error)
922		return error;
923
924	error = platform_driver_register(&alarmtimer_driver);
925	if (error)
926		goto out_if;
927
 
 
 
 
 
928	return 0;
 
 
 
929out_if:
930	alarmtimer_rtc_interface_remove();
931	return error;
932}
933device_initcall(alarmtimer_init);