Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Core kernel scheduler code and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 */
 
 
 
 
   8#include "sched.h"
   9
  10#include <linux/kthread.h>
  11#include <linux/nospec.h>
  12
 
 
 
  13#include <asm/switch_to.h>
  14#include <asm/tlb.h>
  15
  16#include "../workqueue_internal.h"
 
  17#include "../smpboot.h"
  18
  19#define CREATE_TRACE_POINTS
  20#include <trace/events/sched.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  21
  22DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  23
  24#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
  25/*
  26 * Debugging: various feature bits
  27 *
  28 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  29 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  30 * at compile time and compiler optimization based on features default.
  31 */
  32#define SCHED_FEAT(name, enabled)	\
  33	(1UL << __SCHED_FEAT_##name) * enabled |
  34const_debug unsigned int sysctl_sched_features =
  35#include "features.h"
  36	0;
  37#undef SCHED_FEAT
  38#endif
  39
  40/*
  41 * Number of tasks to iterate in a single balance run.
  42 * Limited because this is done with IRQs disabled.
  43 */
  44const_debug unsigned int sysctl_sched_nr_migrate = 32;
  45
  46/*
  47 * period over which we average the RT time consumption, measured
  48 * in ms.
  49 *
  50 * default: 1s
  51 */
  52const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  53
  54/*
  55 * period over which we measure -rt task CPU usage in us.
  56 * default: 1s
  57 */
  58unsigned int sysctl_sched_rt_period = 1000000;
  59
  60__read_mostly int scheduler_running;
  61
  62/*
  63 * part of the period that we allow rt tasks to run in us.
  64 * default: 0.95s
  65 */
  66int sysctl_sched_rt_runtime = 950000;
  67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68/*
  69 * __task_rq_lock - lock the rq @p resides on.
  70 */
  71struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  72	__acquires(rq->lock)
  73{
  74	struct rq *rq;
  75
  76	lockdep_assert_held(&p->pi_lock);
  77
  78	for (;;) {
  79		rq = task_rq(p);
  80		raw_spin_lock(&rq->lock);
  81		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  82			rq_pin_lock(rq, rf);
  83			return rq;
  84		}
  85		raw_spin_unlock(&rq->lock);
  86
  87		while (unlikely(task_on_rq_migrating(p)))
  88			cpu_relax();
  89	}
  90}
  91
  92/*
  93 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  94 */
  95struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  96	__acquires(p->pi_lock)
  97	__acquires(rq->lock)
  98{
  99	struct rq *rq;
 100
 101	for (;;) {
 102		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
 103		rq = task_rq(p);
 104		raw_spin_lock(&rq->lock);
 105		/*
 106		 *	move_queued_task()		task_rq_lock()
 107		 *
 108		 *	ACQUIRE (rq->lock)
 109		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
 110		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
 111		 *	[S] ->cpu = new_cpu		[L] task_rq()
 112		 *					[L] ->on_rq
 113		 *	RELEASE (rq->lock)
 114		 *
 115		 * If we observe the old CPU in task_rq_lock, the acquire of
 116		 * the old rq->lock will fully serialize against the stores.
 117		 *
 118		 * If we observe the new CPU in task_rq_lock, the acquire will
 119		 * pair with the WMB to ensure we must then also see migrating.
 
 120		 */
 121		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 122			rq_pin_lock(rq, rf);
 123			return rq;
 124		}
 125		raw_spin_unlock(&rq->lock);
 126		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 127
 128		while (unlikely(task_on_rq_migrating(p)))
 129			cpu_relax();
 130	}
 131}
 132
 133/*
 134 * RQ-clock updating methods:
 135 */
 136
 137static void update_rq_clock_task(struct rq *rq, s64 delta)
 138{
 139/*
 140 * In theory, the compile should just see 0 here, and optimize out the call
 141 * to sched_rt_avg_update. But I don't trust it...
 142 */
 143#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 144	s64 steal = 0, irq_delta = 0;
 145#endif
 146#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 147	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 148
 149	/*
 150	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 151	 * this case when a previous update_rq_clock() happened inside a
 152	 * {soft,}irq region.
 153	 *
 154	 * When this happens, we stop ->clock_task and only update the
 155	 * prev_irq_time stamp to account for the part that fit, so that a next
 156	 * update will consume the rest. This ensures ->clock_task is
 157	 * monotonic.
 158	 *
 159	 * It does however cause some slight miss-attribution of {soft,}irq
 160	 * time, a more accurate solution would be to update the irq_time using
 161	 * the current rq->clock timestamp, except that would require using
 162	 * atomic ops.
 163	 */
 164	if (irq_delta > delta)
 165		irq_delta = delta;
 166
 167	rq->prev_irq_time += irq_delta;
 168	delta -= irq_delta;
 169#endif
 170#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 171	if (static_key_false((&paravirt_steal_rq_enabled))) {
 172		steal = paravirt_steal_clock(cpu_of(rq));
 173		steal -= rq->prev_steal_time_rq;
 174
 175		if (unlikely(steal > delta))
 176			steal = delta;
 177
 178		rq->prev_steal_time_rq += steal;
 179		delta -= steal;
 180	}
 181#endif
 182
 183	rq->clock_task += delta;
 184
 185#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 186	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 187		sched_rt_avg_update(rq, irq_delta + steal);
 188#endif
 
 189}
 190
 191void update_rq_clock(struct rq *rq)
 192{
 193	s64 delta;
 194
 195	lockdep_assert_held(&rq->lock);
 196
 197	if (rq->clock_update_flags & RQCF_ACT_SKIP)
 198		return;
 199
 200#ifdef CONFIG_SCHED_DEBUG
 201	if (sched_feat(WARN_DOUBLE_CLOCK))
 202		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
 203	rq->clock_update_flags |= RQCF_UPDATED;
 204#endif
 205
 206	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 207	if (delta < 0)
 208		return;
 209	rq->clock += delta;
 210	update_rq_clock_task(rq, delta);
 211}
 212
 
 
 
 
 
 
 
 213
 214#ifdef CONFIG_SCHED_HRTICK
 215/*
 216 * Use HR-timers to deliver accurate preemption points.
 217 */
 218
 219static void hrtick_clear(struct rq *rq)
 220{
 221	if (hrtimer_active(&rq->hrtick_timer))
 222		hrtimer_cancel(&rq->hrtick_timer);
 223}
 224
 225/*
 226 * High-resolution timer tick.
 227 * Runs from hardirq context with interrupts disabled.
 228 */
 229static enum hrtimer_restart hrtick(struct hrtimer *timer)
 230{
 231	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 232	struct rq_flags rf;
 233
 234	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 235
 236	rq_lock(rq, &rf);
 237	update_rq_clock(rq);
 238	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 239	rq_unlock(rq, &rf);
 240
 241	return HRTIMER_NORESTART;
 242}
 243
 244#ifdef CONFIG_SMP
 245
 246static void __hrtick_restart(struct rq *rq)
 247{
 248	struct hrtimer *timer = &rq->hrtick_timer;
 249
 250	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
 251}
 252
 253/*
 254 * called from hardirq (IPI) context
 255 */
 256static void __hrtick_start(void *arg)
 257{
 258	struct rq *rq = arg;
 259	struct rq_flags rf;
 260
 261	rq_lock(rq, &rf);
 262	__hrtick_restart(rq);
 263	rq->hrtick_csd_pending = 0;
 264	rq_unlock(rq, &rf);
 265}
 266
 267/*
 268 * Called to set the hrtick timer state.
 269 *
 270 * called with rq->lock held and irqs disabled
 271 */
 272void hrtick_start(struct rq *rq, u64 delay)
 273{
 274	struct hrtimer *timer = &rq->hrtick_timer;
 275	ktime_t time;
 276	s64 delta;
 277
 278	/*
 279	 * Don't schedule slices shorter than 10000ns, that just
 280	 * doesn't make sense and can cause timer DoS.
 281	 */
 282	delta = max_t(s64, delay, 10000LL);
 283	time = ktime_add_ns(timer->base->get_time(), delta);
 284
 285	hrtimer_set_expires(timer, time);
 286
 287	if (rq == this_rq()) {
 288		__hrtick_restart(rq);
 289	} else if (!rq->hrtick_csd_pending) {
 290		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 291		rq->hrtick_csd_pending = 1;
 292	}
 293}
 294
 295#else
 296/*
 297 * Called to set the hrtick timer state.
 298 *
 299 * called with rq->lock held and irqs disabled
 300 */
 301void hrtick_start(struct rq *rq, u64 delay)
 302{
 303	/*
 304	 * Don't schedule slices shorter than 10000ns, that just
 305	 * doesn't make sense. Rely on vruntime for fairness.
 306	 */
 307	delay = max_t(u64, delay, 10000LL);
 308	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 309		      HRTIMER_MODE_REL_PINNED);
 310}
 
 311#endif /* CONFIG_SMP */
 312
 313static void hrtick_rq_init(struct rq *rq)
 314{
 315#ifdef CONFIG_SMP
 316	rq->hrtick_csd_pending = 0;
 317
 318	rq->hrtick_csd.flags = 0;
 319	rq->hrtick_csd.func = __hrtick_start;
 320	rq->hrtick_csd.info = rq;
 321#endif
 322
 323	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 324	rq->hrtick_timer.function = hrtick;
 325}
 326#else	/* CONFIG_SCHED_HRTICK */
 327static inline void hrtick_clear(struct rq *rq)
 328{
 329}
 330
 331static inline void hrtick_rq_init(struct rq *rq)
 332{
 333}
 334#endif	/* CONFIG_SCHED_HRTICK */
 335
 336/*
 337 * cmpxchg based fetch_or, macro so it works for different integer types
 338 */
 339#define fetch_or(ptr, mask)						\
 340	({								\
 341		typeof(ptr) _ptr = (ptr);				\
 342		typeof(mask) _mask = (mask);				\
 343		typeof(*_ptr) _old, _val = *_ptr;			\
 344									\
 345		for (;;) {						\
 346			_old = cmpxchg(_ptr, _val, _val | _mask);	\
 347			if (_old == _val)				\
 348				break;					\
 349			_val = _old;					\
 350		}							\
 351	_old;								\
 352})
 353
 354#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 355/*
 356 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 357 * this avoids any races wrt polling state changes and thereby avoids
 358 * spurious IPIs.
 359 */
 360static bool set_nr_and_not_polling(struct task_struct *p)
 361{
 362	struct thread_info *ti = task_thread_info(p);
 363	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 364}
 365
 366/*
 367 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 368 *
 369 * If this returns true, then the idle task promises to call
 370 * sched_ttwu_pending() and reschedule soon.
 371 */
 372static bool set_nr_if_polling(struct task_struct *p)
 373{
 374	struct thread_info *ti = task_thread_info(p);
 375	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 376
 377	for (;;) {
 378		if (!(val & _TIF_POLLING_NRFLAG))
 379			return false;
 380		if (val & _TIF_NEED_RESCHED)
 381			return true;
 382		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 383		if (old == val)
 384			break;
 385		val = old;
 386	}
 387	return true;
 388}
 389
 390#else
 391static bool set_nr_and_not_polling(struct task_struct *p)
 392{
 393	set_tsk_need_resched(p);
 394	return true;
 395}
 396
 397#ifdef CONFIG_SMP
 398static bool set_nr_if_polling(struct task_struct *p)
 399{
 400	return false;
 401}
 402#endif
 403#endif
 404
 405void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 406{
 407	struct wake_q_node *node = &task->wake_q;
 408
 409	/*
 410	 * Atomically grab the task, if ->wake_q is !nil already it means
 411	 * its already queued (either by us or someone else) and will get the
 412	 * wakeup due to that.
 413	 *
 414	 * This cmpxchg() implies a full barrier, which pairs with the write
 415	 * barrier implied by the wakeup in wake_up_q().
 416	 */
 417	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
 418		return;
 419
 420	get_task_struct(task);
 421
 422	/*
 423	 * The head is context local, there can be no concurrency.
 424	 */
 425	*head->lastp = node;
 426	head->lastp = &node->next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427}
 428
 429void wake_up_q(struct wake_q_head *head)
 430{
 431	struct wake_q_node *node = head->first;
 432
 433	while (node != WAKE_Q_TAIL) {
 434		struct task_struct *task;
 435
 436		task = container_of(node, struct task_struct, wake_q);
 437		BUG_ON(!task);
 438		/* Task can safely be re-inserted now: */
 439		node = node->next;
 440		task->wake_q.next = NULL;
 441
 442		/*
 443		 * wake_up_process() implies a wmb() to pair with the queueing
 444		 * in wake_q_add() so as not to miss wakeups.
 445		 */
 446		wake_up_process(task);
 447		put_task_struct(task);
 448	}
 449}
 450
 451/*
 452 * resched_curr - mark rq's current task 'to be rescheduled now'.
 453 *
 454 * On UP this means the setting of the need_resched flag, on SMP it
 455 * might also involve a cross-CPU call to trigger the scheduler on
 456 * the target CPU.
 457 */
 458void resched_curr(struct rq *rq)
 459{
 460	struct task_struct *curr = rq->curr;
 461	int cpu;
 462
 463	lockdep_assert_held(&rq->lock);
 464
 465	if (test_tsk_need_resched(curr))
 466		return;
 467
 468	cpu = cpu_of(rq);
 469
 470	if (cpu == smp_processor_id()) {
 471		set_tsk_need_resched(curr);
 472		set_preempt_need_resched();
 473		return;
 474	}
 475
 476	if (set_nr_and_not_polling(curr))
 477		smp_send_reschedule(cpu);
 478	else
 479		trace_sched_wake_idle_without_ipi(cpu);
 480}
 481
 482void resched_cpu(int cpu)
 483{
 484	struct rq *rq = cpu_rq(cpu);
 485	unsigned long flags;
 486
 487	raw_spin_lock_irqsave(&rq->lock, flags);
 488	if (cpu_online(cpu) || cpu == smp_processor_id())
 489		resched_curr(rq);
 490	raw_spin_unlock_irqrestore(&rq->lock, flags);
 491}
 492
 493#ifdef CONFIG_SMP
 494#ifdef CONFIG_NO_HZ_COMMON
 495/*
 496 * In the semi idle case, use the nearest busy CPU for migrating timers
 497 * from an idle CPU.  This is good for power-savings.
 498 *
 499 * We don't do similar optimization for completely idle system, as
 500 * selecting an idle CPU will add more delays to the timers than intended
 501 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 502 */
 503int get_nohz_timer_target(void)
 504{
 505	int i, cpu = smp_processor_id();
 506	struct sched_domain *sd;
 507
 508	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
 509		return cpu;
 
 
 
 510
 511	rcu_read_lock();
 512	for_each_domain(cpu, sd) {
 513		for_each_cpu(i, sched_domain_span(sd)) {
 
 514			if (cpu == i)
 515				continue;
 516
 517			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
 518				cpu = i;
 519				goto unlock;
 520			}
 521		}
 522	}
 523
 524	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
 525		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
 
 526unlock:
 527	rcu_read_unlock();
 528	return cpu;
 529}
 530
 531/*
 532 * When add_timer_on() enqueues a timer into the timer wheel of an
 533 * idle CPU then this timer might expire before the next timer event
 534 * which is scheduled to wake up that CPU. In case of a completely
 535 * idle system the next event might even be infinite time into the
 536 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 537 * leaves the inner idle loop so the newly added timer is taken into
 538 * account when the CPU goes back to idle and evaluates the timer
 539 * wheel for the next timer event.
 540 */
 541static void wake_up_idle_cpu(int cpu)
 542{
 543	struct rq *rq = cpu_rq(cpu);
 544
 545	if (cpu == smp_processor_id())
 546		return;
 547
 548	if (set_nr_and_not_polling(rq->idle))
 549		smp_send_reschedule(cpu);
 550	else
 551		trace_sched_wake_idle_without_ipi(cpu);
 552}
 553
 554static bool wake_up_full_nohz_cpu(int cpu)
 555{
 556	/*
 557	 * We just need the target to call irq_exit() and re-evaluate
 558	 * the next tick. The nohz full kick at least implies that.
 559	 * If needed we can still optimize that later with an
 560	 * empty IRQ.
 561	 */
 562	if (cpu_is_offline(cpu))
 563		return true;  /* Don't try to wake offline CPUs. */
 564	if (tick_nohz_full_cpu(cpu)) {
 565		if (cpu != smp_processor_id() ||
 566		    tick_nohz_tick_stopped())
 567			tick_nohz_full_kick_cpu(cpu);
 568		return true;
 569	}
 570
 571	return false;
 572}
 573
 574/*
 575 * Wake up the specified CPU.  If the CPU is going offline, it is the
 576 * caller's responsibility to deal with the lost wakeup, for example,
 577 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 578 */
 579void wake_up_nohz_cpu(int cpu)
 580{
 581	if (!wake_up_full_nohz_cpu(cpu))
 582		wake_up_idle_cpu(cpu);
 583}
 584
 585static inline bool got_nohz_idle_kick(void)
 586{
 587	int cpu = smp_processor_id();
 588
 589	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
 590		return false;
 591
 592	if (idle_cpu(cpu) && !need_resched())
 593		return true;
 594
 595	/*
 596	 * We can't run Idle Load Balance on this CPU for this time so we
 597	 * cancel it and clear NOHZ_BALANCE_KICK
 598	 */
 599	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
 600	return false;
 601}
 602
 603#else /* CONFIG_NO_HZ_COMMON */
 604
 605static inline bool got_nohz_idle_kick(void)
 606{
 607	return false;
 
 
 608}
 609
 610#endif /* CONFIG_NO_HZ_COMMON */
 611
 612#ifdef CONFIG_NO_HZ_FULL
 613bool sched_can_stop_tick(struct rq *rq)
 614{
 615	int fifo_nr_running;
 616
 617	/* Deadline tasks, even if single, need the tick */
 618	if (rq->dl.dl_nr_running)
 619		return false;
 620
 621	/*
 622	 * If there are more than one RR tasks, we need the tick to effect the
 623	 * actual RR behaviour.
 624	 */
 625	if (rq->rt.rr_nr_running) {
 626		if (rq->rt.rr_nr_running == 1)
 627			return true;
 628		else
 629			return false;
 630	}
 631
 632	/*
 633	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 634	 * forced preemption between FIFO tasks.
 635	 */
 636	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 637	if (fifo_nr_running)
 638		return true;
 639
 640	/*
 641	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 642	 * if there's more than one we need the tick for involuntary
 643	 * preemption.
 644	 */
 645	if (rq->nr_running > 1)
 646		return false;
 647
 648	return true;
 649}
 650#endif /* CONFIG_NO_HZ_FULL */
 651
 652void sched_avg_update(struct rq *rq)
 653{
 654	s64 period = sched_avg_period();
 655
 656	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
 657		/*
 658		 * Inline assembly required to prevent the compiler
 659		 * optimising this loop into a divmod call.
 660		 * See __iter_div_u64_rem() for another example of this.
 661		 */
 662		asm("" : "+rm" (rq->age_stamp));
 663		rq->age_stamp += period;
 664		rq->rt_avg /= 2;
 665	}
 666}
 667
 668#endif /* CONFIG_SMP */
 669
 670#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 671			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 672/*
 673 * Iterate task_group tree rooted at *from, calling @down when first entering a
 674 * node and @up when leaving it for the final time.
 675 *
 676 * Caller must hold rcu_lock or sufficient equivalent.
 677 */
 678int walk_tg_tree_from(struct task_group *from,
 679			     tg_visitor down, tg_visitor up, void *data)
 680{
 681	struct task_group *parent, *child;
 682	int ret;
 683
 684	parent = from;
 685
 686down:
 687	ret = (*down)(parent, data);
 688	if (ret)
 689		goto out;
 690	list_for_each_entry_rcu(child, &parent->children, siblings) {
 691		parent = child;
 692		goto down;
 693
 694up:
 695		continue;
 696	}
 697	ret = (*up)(parent, data);
 698	if (ret || parent == from)
 699		goto out;
 700
 701	child = parent;
 702	parent = parent->parent;
 703	if (parent)
 704		goto up;
 705out:
 706	return ret;
 707}
 708
 709int tg_nop(struct task_group *tg, void *data)
 710{
 711	return 0;
 712}
 713#endif
 714
 715static void set_load_weight(struct task_struct *p, bool update_load)
 716{
 717	int prio = p->static_prio - MAX_RT_PRIO;
 718	struct load_weight *load = &p->se.load;
 719
 720	/*
 721	 * SCHED_IDLE tasks get minimal weight:
 722	 */
 723	if (idle_policy(p->policy)) {
 724		load->weight = scale_load(WEIGHT_IDLEPRIO);
 725		load->inv_weight = WMULT_IDLEPRIO;
 726		return;
 727	}
 728
 729	/*
 730	 * SCHED_OTHER tasks have to update their load when changing their
 731	 * weight
 732	 */
 733	if (update_load && p->sched_class == &fair_sched_class) {
 734		reweight_task(p, prio);
 735	} else {
 736		load->weight = scale_load(sched_prio_to_weight[prio]);
 737		load->inv_weight = sched_prio_to_wmult[prio];
 738	}
 739}
 740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 742{
 743	if (!(flags & ENQUEUE_NOCLOCK))
 744		update_rq_clock(rq);
 745
 746	if (!(flags & ENQUEUE_RESTORE))
 747		sched_info_queued(rq, p);
 
 
 748
 
 749	p->sched_class->enqueue_task(rq, p, flags);
 750}
 751
 752static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 753{
 754	if (!(flags & DEQUEUE_NOCLOCK))
 755		update_rq_clock(rq);
 756
 757	if (!(flags & DEQUEUE_SAVE))
 758		sched_info_dequeued(rq, p);
 
 
 759
 
 760	p->sched_class->dequeue_task(rq, p, flags);
 761}
 762
 763void activate_task(struct rq *rq, struct task_struct *p, int flags)
 764{
 765	if (task_contributes_to_load(p))
 766		rq->nr_uninterruptible--;
 767
 768	enqueue_task(rq, p, flags);
 
 
 769}
 770
 771void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 772{
 773	if (task_contributes_to_load(p))
 774		rq->nr_uninterruptible++;
 775
 776	dequeue_task(rq, p, flags);
 777}
 778
 779/*
 780 * __normal_prio - return the priority that is based on the static prio
 781 */
 782static inline int __normal_prio(struct task_struct *p)
 783{
 784	return p->static_prio;
 785}
 786
 787/*
 788 * Calculate the expected normal priority: i.e. priority
 789 * without taking RT-inheritance into account. Might be
 790 * boosted by interactivity modifiers. Changes upon fork,
 791 * setprio syscalls, and whenever the interactivity
 792 * estimator recalculates.
 793 */
 794static inline int normal_prio(struct task_struct *p)
 795{
 796	int prio;
 797
 798	if (task_has_dl_policy(p))
 799		prio = MAX_DL_PRIO-1;
 800	else if (task_has_rt_policy(p))
 801		prio = MAX_RT_PRIO-1 - p->rt_priority;
 802	else
 803		prio = __normal_prio(p);
 804	return prio;
 805}
 806
 807/*
 808 * Calculate the current priority, i.e. the priority
 809 * taken into account by the scheduler. This value might
 810 * be boosted by RT tasks, or might be boosted by
 811 * interactivity modifiers. Will be RT if the task got
 812 * RT-boosted. If not then it returns p->normal_prio.
 813 */
 814static int effective_prio(struct task_struct *p)
 815{
 816	p->normal_prio = normal_prio(p);
 817	/*
 818	 * If we are RT tasks or we were boosted to RT priority,
 819	 * keep the priority unchanged. Otherwise, update priority
 820	 * to the normal priority:
 821	 */
 822	if (!rt_prio(p->prio))
 823		return p->normal_prio;
 824	return p->prio;
 825}
 826
 827/**
 828 * task_curr - is this task currently executing on a CPU?
 829 * @p: the task in question.
 830 *
 831 * Return: 1 if the task is currently executing. 0 otherwise.
 832 */
 833inline int task_curr(const struct task_struct *p)
 834{
 835	return cpu_curr(task_cpu(p)) == p;
 836}
 837
 838/*
 839 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 840 * use the balance_callback list if you want balancing.
 841 *
 842 * this means any call to check_class_changed() must be followed by a call to
 843 * balance_callback().
 844 */
 845static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 846				       const struct sched_class *prev_class,
 847				       int oldprio)
 848{
 849	if (prev_class != p->sched_class) {
 850		if (prev_class->switched_from)
 851			prev_class->switched_from(rq, p);
 852
 853		p->sched_class->switched_to(rq, p);
 854	} else if (oldprio != p->prio || dl_task(p))
 855		p->sched_class->prio_changed(rq, p, oldprio);
 856}
 857
 858void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 859{
 860	const struct sched_class *class;
 861
 862	if (p->sched_class == rq->curr->sched_class) {
 863		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 864	} else {
 865		for_each_class(class) {
 866			if (class == rq->curr->sched_class)
 867				break;
 868			if (class == p->sched_class) {
 869				resched_curr(rq);
 870				break;
 871			}
 872		}
 873	}
 874
 875	/*
 876	 * A queue event has occurred, and we're going to schedule.  In
 877	 * this case, we can save a useless back to back clock update.
 878	 */
 879	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
 880		rq_clock_skip_update(rq);
 881}
 882
 883#ifdef CONFIG_SMP
 884
 885static inline bool is_per_cpu_kthread(struct task_struct *p)
 886{
 887	if (!(p->flags & PF_KTHREAD))
 888		return false;
 889
 890	if (p->nr_cpus_allowed != 1)
 891		return false;
 892
 893	return true;
 894}
 895
 896/*
 897 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
 898 * __set_cpus_allowed_ptr() and select_fallback_rq().
 899 */
 900static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
 901{
 902	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
 903		return false;
 904
 905	if (is_per_cpu_kthread(p))
 906		return cpu_online(cpu);
 907
 908	return cpu_active(cpu);
 909}
 910
 911/*
 912 * This is how migration works:
 913 *
 914 * 1) we invoke migration_cpu_stop() on the target CPU using
 915 *    stop_one_cpu().
 916 * 2) stopper starts to run (implicitly forcing the migrated thread
 917 *    off the CPU)
 918 * 3) it checks whether the migrated task is still in the wrong runqueue.
 919 * 4) if it's in the wrong runqueue then the migration thread removes
 920 *    it and puts it into the right queue.
 921 * 5) stopper completes and stop_one_cpu() returns and the migration
 922 *    is done.
 923 */
 924
 925/*
 926 * move_queued_task - move a queued task to new rq.
 927 *
 928 * Returns (locked) new rq. Old rq's lock is released.
 929 */
 930static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
 931				   struct task_struct *p, int new_cpu)
 932{
 933	lockdep_assert_held(&rq->lock);
 934
 935	p->on_rq = TASK_ON_RQ_MIGRATING;
 936	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
 937	set_task_cpu(p, new_cpu);
 938	rq_unlock(rq, rf);
 939
 940	rq = cpu_rq(new_cpu);
 941
 942	rq_lock(rq, rf);
 943	BUG_ON(task_cpu(p) != new_cpu);
 944	enqueue_task(rq, p, 0);
 945	p->on_rq = TASK_ON_RQ_QUEUED;
 946	check_preempt_curr(rq, p, 0);
 947
 948	return rq;
 949}
 950
 951struct migration_arg {
 952	struct task_struct *task;
 953	int dest_cpu;
 954};
 955
 956/*
 957 * Move (not current) task off this CPU, onto the destination CPU. We're doing
 958 * this because either it can't run here any more (set_cpus_allowed()
 959 * away from this CPU, or CPU going down), or because we're
 960 * attempting to rebalance this task on exec (sched_exec).
 961 *
 962 * So we race with normal scheduler movements, but that's OK, as long
 963 * as the task is no longer on this CPU.
 964 */
 965static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
 966				 struct task_struct *p, int dest_cpu)
 967{
 968	/* Affinity changed (again). */
 969	if (!is_cpu_allowed(p, dest_cpu))
 970		return rq;
 971
 972	update_rq_clock(rq);
 973	rq = move_queued_task(rq, rf, p, dest_cpu);
 974
 975	return rq;
 976}
 977
 978/*
 979 * migration_cpu_stop - this will be executed by a highprio stopper thread
 980 * and performs thread migration by bumping thread off CPU then
 981 * 'pushing' onto another runqueue.
 982 */
 983static int migration_cpu_stop(void *data)
 984{
 985	struct migration_arg *arg = data;
 986	struct task_struct *p = arg->task;
 987	struct rq *rq = this_rq();
 988	struct rq_flags rf;
 989
 990	/*
 991	 * The original target CPU might have gone down and we might
 992	 * be on another CPU but it doesn't matter.
 993	 */
 994	local_irq_disable();
 995	/*
 996	 * We need to explicitly wake pending tasks before running
 997	 * __migrate_task() such that we will not miss enforcing cpus_allowed
 998	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
 999	 */
1000	sched_ttwu_pending();
1001
1002	raw_spin_lock(&p->pi_lock);
1003	rq_lock(rq, &rf);
1004	/*
1005	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1006	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1007	 * we're holding p->pi_lock.
1008	 */
1009	if (task_rq(p) == rq) {
1010		if (task_on_rq_queued(p))
1011			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1012		else
1013			p->wake_cpu = arg->dest_cpu;
1014	}
1015	rq_unlock(rq, &rf);
1016	raw_spin_unlock(&p->pi_lock);
1017
1018	local_irq_enable();
1019	return 0;
1020}
1021
1022/*
1023 * sched_class::set_cpus_allowed must do the below, but is not required to
1024 * actually call this function.
1025 */
1026void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1027{
1028	cpumask_copy(&p->cpus_allowed, new_mask);
1029	p->nr_cpus_allowed = cpumask_weight(new_mask);
1030}
1031
1032void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1033{
1034	struct rq *rq = task_rq(p);
1035	bool queued, running;
1036
1037	lockdep_assert_held(&p->pi_lock);
1038
1039	queued = task_on_rq_queued(p);
1040	running = task_current(rq, p);
1041
1042	if (queued) {
1043		/*
1044		 * Because __kthread_bind() calls this on blocked tasks without
1045		 * holding rq->lock.
1046		 */
1047		lockdep_assert_held(&rq->lock);
1048		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1049	}
1050	if (running)
1051		put_prev_task(rq, p);
1052
1053	p->sched_class->set_cpus_allowed(p, new_mask);
1054
1055	if (queued)
1056		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1057	if (running)
1058		set_curr_task(rq, p);
1059}
1060
1061/*
1062 * Change a given task's CPU affinity. Migrate the thread to a
1063 * proper CPU and schedule it away if the CPU it's executing on
1064 * is removed from the allowed bitmask.
1065 *
1066 * NOTE: the caller must have a valid reference to the task, the
1067 * task must not exit() & deallocate itself prematurely. The
1068 * call is not atomic; no spinlocks may be held.
1069 */
1070static int __set_cpus_allowed_ptr(struct task_struct *p,
1071				  const struct cpumask *new_mask, bool check)
1072{
1073	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1074	unsigned int dest_cpu;
1075	struct rq_flags rf;
1076	struct rq *rq;
1077	int ret = 0;
1078
1079	rq = task_rq_lock(p, &rf);
1080	update_rq_clock(rq);
1081
1082	if (p->flags & PF_KTHREAD) {
1083		/*
1084		 * Kernel threads are allowed on online && !active CPUs
1085		 */
1086		cpu_valid_mask = cpu_online_mask;
1087	}
1088
1089	/*
1090	 * Must re-check here, to close a race against __kthread_bind(),
1091	 * sched_setaffinity() is not guaranteed to observe the flag.
1092	 */
1093	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1094		ret = -EINVAL;
1095		goto out;
1096	}
1097
1098	if (cpumask_equal(&p->cpus_allowed, new_mask))
1099		goto out;
1100
1101	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
 
 
 
 
 
 
1102		ret = -EINVAL;
1103		goto out;
1104	}
1105
1106	do_set_cpus_allowed(p, new_mask);
1107
1108	if (p->flags & PF_KTHREAD) {
1109		/*
1110		 * For kernel threads that do indeed end up on online &&
1111		 * !active we want to ensure they are strict per-CPU threads.
1112		 */
1113		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1114			!cpumask_intersects(new_mask, cpu_active_mask) &&
1115			p->nr_cpus_allowed != 1);
1116	}
1117
1118	/* Can the task run on the task's current CPU? If so, we're done */
1119	if (cpumask_test_cpu(task_cpu(p), new_mask))
1120		goto out;
1121
1122	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1123	if (task_running(rq, p) || p->state == TASK_WAKING) {
1124		struct migration_arg arg = { p, dest_cpu };
1125		/* Need help from migration thread: drop lock and wait. */
1126		task_rq_unlock(rq, p, &rf);
1127		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1128		tlb_migrate_finish(p->mm);
1129		return 0;
1130	} else if (task_on_rq_queued(p)) {
1131		/*
1132		 * OK, since we're going to drop the lock immediately
1133		 * afterwards anyway.
1134		 */
1135		rq = move_queued_task(rq, &rf, p, dest_cpu);
1136	}
1137out:
1138	task_rq_unlock(rq, p, &rf);
1139
1140	return ret;
1141}
1142
1143int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1144{
1145	return __set_cpus_allowed_ptr(p, new_mask, false);
1146}
1147EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1148
1149void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1150{
1151#ifdef CONFIG_SCHED_DEBUG
1152	/*
1153	 * We should never call set_task_cpu() on a blocked task,
1154	 * ttwu() will sort out the placement.
1155	 */
1156	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1157			!p->on_rq);
1158
1159	/*
1160	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1161	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1162	 * time relying on p->on_rq.
1163	 */
1164	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1165		     p->sched_class == &fair_sched_class &&
1166		     (p->on_rq && !task_on_rq_migrating(p)));
1167
1168#ifdef CONFIG_LOCKDEP
1169	/*
1170	 * The caller should hold either p->pi_lock or rq->lock, when changing
1171	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1172	 *
1173	 * sched_move_task() holds both and thus holding either pins the cgroup,
1174	 * see task_group().
1175	 *
1176	 * Furthermore, all task_rq users should acquire both locks, see
1177	 * task_rq_lock().
1178	 */
1179	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1180				      lockdep_is_held(&task_rq(p)->lock)));
1181#endif
1182	/*
1183	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1184	 */
1185	WARN_ON_ONCE(!cpu_online(new_cpu));
1186#endif
1187
1188	trace_sched_migrate_task(p, new_cpu);
1189
1190	if (task_cpu(p) != new_cpu) {
1191		if (p->sched_class->migrate_task_rq)
1192			p->sched_class->migrate_task_rq(p);
1193		p->se.nr_migrations++;
 
1194		perf_event_task_migrate(p);
1195	}
1196
1197	__set_task_cpu(p, new_cpu);
1198}
1199
 
1200static void __migrate_swap_task(struct task_struct *p, int cpu)
1201{
1202	if (task_on_rq_queued(p)) {
1203		struct rq *src_rq, *dst_rq;
1204		struct rq_flags srf, drf;
1205
1206		src_rq = task_rq(p);
1207		dst_rq = cpu_rq(cpu);
1208
1209		rq_pin_lock(src_rq, &srf);
1210		rq_pin_lock(dst_rq, &drf);
1211
1212		p->on_rq = TASK_ON_RQ_MIGRATING;
1213		deactivate_task(src_rq, p, 0);
1214		set_task_cpu(p, cpu);
1215		activate_task(dst_rq, p, 0);
1216		p->on_rq = TASK_ON_RQ_QUEUED;
1217		check_preempt_curr(dst_rq, p, 0);
1218
1219		rq_unpin_lock(dst_rq, &drf);
1220		rq_unpin_lock(src_rq, &srf);
1221
1222	} else {
1223		/*
1224		 * Task isn't running anymore; make it appear like we migrated
1225		 * it before it went to sleep. This means on wakeup we make the
1226		 * previous CPU our target instead of where it really is.
1227		 */
1228		p->wake_cpu = cpu;
1229	}
1230}
1231
1232struct migration_swap_arg {
1233	struct task_struct *src_task, *dst_task;
1234	int src_cpu, dst_cpu;
1235};
1236
1237static int migrate_swap_stop(void *data)
1238{
1239	struct migration_swap_arg *arg = data;
1240	struct rq *src_rq, *dst_rq;
1241	int ret = -EAGAIN;
1242
1243	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1244		return -EAGAIN;
1245
1246	src_rq = cpu_rq(arg->src_cpu);
1247	dst_rq = cpu_rq(arg->dst_cpu);
1248
1249	double_raw_lock(&arg->src_task->pi_lock,
1250			&arg->dst_task->pi_lock);
1251	double_rq_lock(src_rq, dst_rq);
1252
1253	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1254		goto unlock;
1255
1256	if (task_cpu(arg->src_task) != arg->src_cpu)
1257		goto unlock;
1258
1259	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1260		goto unlock;
1261
1262	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1263		goto unlock;
1264
1265	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1266	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1267
1268	ret = 0;
1269
1270unlock:
1271	double_rq_unlock(src_rq, dst_rq);
1272	raw_spin_unlock(&arg->dst_task->pi_lock);
1273	raw_spin_unlock(&arg->src_task->pi_lock);
1274
1275	return ret;
1276}
1277
1278/*
1279 * Cross migrate two tasks
1280 */
1281int migrate_swap(struct task_struct *cur, struct task_struct *p)
 
1282{
1283	struct migration_swap_arg arg;
1284	int ret = -EINVAL;
1285
1286	arg = (struct migration_swap_arg){
1287		.src_task = cur,
1288		.src_cpu = task_cpu(cur),
1289		.dst_task = p,
1290		.dst_cpu = task_cpu(p),
1291	};
1292
1293	if (arg.src_cpu == arg.dst_cpu)
1294		goto out;
1295
1296	/*
1297	 * These three tests are all lockless; this is OK since all of them
1298	 * will be re-checked with proper locks held further down the line.
1299	 */
1300	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1301		goto out;
1302
1303	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1304		goto out;
1305
1306	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1307		goto out;
1308
1309	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1310	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1311
1312out:
1313	return ret;
1314}
 
1315
1316/*
1317 * wait_task_inactive - wait for a thread to unschedule.
1318 *
1319 * If @match_state is nonzero, it's the @p->state value just checked and
1320 * not expected to change.  If it changes, i.e. @p might have woken up,
1321 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1322 * we return a positive number (its total switch count).  If a second call
1323 * a short while later returns the same number, the caller can be sure that
1324 * @p has remained unscheduled the whole time.
1325 *
1326 * The caller must ensure that the task *will* unschedule sometime soon,
1327 * else this function might spin for a *long* time. This function can't
1328 * be called with interrupts off, or it may introduce deadlock with
1329 * smp_call_function() if an IPI is sent by the same process we are
1330 * waiting to become inactive.
1331 */
1332unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1333{
1334	int running, queued;
1335	struct rq_flags rf;
1336	unsigned long ncsw;
1337	struct rq *rq;
1338
1339	for (;;) {
1340		/*
1341		 * We do the initial early heuristics without holding
1342		 * any task-queue locks at all. We'll only try to get
1343		 * the runqueue lock when things look like they will
1344		 * work out!
1345		 */
1346		rq = task_rq(p);
1347
1348		/*
1349		 * If the task is actively running on another CPU
1350		 * still, just relax and busy-wait without holding
1351		 * any locks.
1352		 *
1353		 * NOTE! Since we don't hold any locks, it's not
1354		 * even sure that "rq" stays as the right runqueue!
1355		 * But we don't care, since "task_running()" will
1356		 * return false if the runqueue has changed and p
1357		 * is actually now running somewhere else!
1358		 */
1359		while (task_running(rq, p)) {
1360			if (match_state && unlikely(p->state != match_state))
1361				return 0;
1362			cpu_relax();
1363		}
1364
1365		/*
1366		 * Ok, time to look more closely! We need the rq
1367		 * lock now, to be *sure*. If we're wrong, we'll
1368		 * just go back and repeat.
1369		 */
1370		rq = task_rq_lock(p, &rf);
1371		trace_sched_wait_task(p);
1372		running = task_running(rq, p);
1373		queued = task_on_rq_queued(p);
1374		ncsw = 0;
1375		if (!match_state || p->state == match_state)
1376			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1377		task_rq_unlock(rq, p, &rf);
1378
1379		/*
1380		 * If it changed from the expected state, bail out now.
1381		 */
1382		if (unlikely(!ncsw))
1383			break;
1384
1385		/*
1386		 * Was it really running after all now that we
1387		 * checked with the proper locks actually held?
1388		 *
1389		 * Oops. Go back and try again..
1390		 */
1391		if (unlikely(running)) {
1392			cpu_relax();
1393			continue;
1394		}
1395
1396		/*
1397		 * It's not enough that it's not actively running,
1398		 * it must be off the runqueue _entirely_, and not
1399		 * preempted!
1400		 *
1401		 * So if it was still runnable (but just not actively
1402		 * running right now), it's preempted, and we should
1403		 * yield - it could be a while.
1404		 */
1405		if (unlikely(queued)) {
1406			ktime_t to = NSEC_PER_SEC / HZ;
1407
1408			set_current_state(TASK_UNINTERRUPTIBLE);
1409			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1410			continue;
1411		}
1412
1413		/*
1414		 * Ahh, all good. It wasn't running, and it wasn't
1415		 * runnable, which means that it will never become
1416		 * running in the future either. We're all done!
1417		 */
1418		break;
1419	}
1420
1421	return ncsw;
1422}
1423
1424/***
1425 * kick_process - kick a running thread to enter/exit the kernel
1426 * @p: the to-be-kicked thread
1427 *
1428 * Cause a process which is running on another CPU to enter
1429 * kernel-mode, without any delay. (to get signals handled.)
1430 *
1431 * NOTE: this function doesn't have to take the runqueue lock,
1432 * because all it wants to ensure is that the remote task enters
1433 * the kernel. If the IPI races and the task has been migrated
1434 * to another CPU then no harm is done and the purpose has been
1435 * achieved as well.
1436 */
1437void kick_process(struct task_struct *p)
1438{
1439	int cpu;
1440
1441	preempt_disable();
1442	cpu = task_cpu(p);
1443	if ((cpu != smp_processor_id()) && task_curr(p))
1444		smp_send_reschedule(cpu);
1445	preempt_enable();
1446}
1447EXPORT_SYMBOL_GPL(kick_process);
1448
1449/*
1450 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1451 *
1452 * A few notes on cpu_active vs cpu_online:
1453 *
1454 *  - cpu_active must be a subset of cpu_online
1455 *
1456 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1457 *    see __set_cpus_allowed_ptr(). At this point the newly online
1458 *    CPU isn't yet part of the sched domains, and balancing will not
1459 *    see it.
1460 *
1461 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1462 *    avoid the load balancer to place new tasks on the to be removed
1463 *    CPU. Existing tasks will remain running there and will be taken
1464 *    off.
1465 *
1466 * This means that fallback selection must not select !active CPUs.
1467 * And can assume that any active CPU must be online. Conversely
1468 * select_task_rq() below may allow selection of !active CPUs in order
1469 * to satisfy the above rules.
1470 */
1471static int select_fallback_rq(int cpu, struct task_struct *p)
1472{
1473	int nid = cpu_to_node(cpu);
1474	const struct cpumask *nodemask = NULL;
1475	enum { cpuset, possible, fail } state = cpuset;
1476	int dest_cpu;
1477
1478	/*
1479	 * If the node that the CPU is on has been offlined, cpu_to_node()
1480	 * will return -1. There is no CPU on the node, and we should
1481	 * select the CPU on the other node.
1482	 */
1483	if (nid != -1) {
1484		nodemask = cpumask_of_node(nid);
1485
1486		/* Look for allowed, online CPU in same node. */
1487		for_each_cpu(dest_cpu, nodemask) {
1488			if (!cpu_active(dest_cpu))
1489				continue;
1490			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1491				return dest_cpu;
1492		}
1493	}
1494
1495	for (;;) {
1496		/* Any allowed, online CPU? */
1497		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1498			if (!is_cpu_allowed(p, dest_cpu))
1499				continue;
1500
1501			goto out;
1502		}
1503
1504		/* No more Mr. Nice Guy. */
1505		switch (state) {
1506		case cpuset:
1507			if (IS_ENABLED(CONFIG_CPUSETS)) {
1508				cpuset_cpus_allowed_fallback(p);
1509				state = possible;
1510				break;
1511			}
1512			/* Fall-through */
1513		case possible:
1514			do_set_cpus_allowed(p, cpu_possible_mask);
1515			state = fail;
1516			break;
1517
1518		case fail:
1519			BUG();
1520			break;
1521		}
1522	}
1523
1524out:
1525	if (state != cpuset) {
1526		/*
1527		 * Don't tell them about moving exiting tasks or
1528		 * kernel threads (both mm NULL), since they never
1529		 * leave kernel.
1530		 */
1531		if (p->mm && printk_ratelimit()) {
1532			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1533					task_pid_nr(p), p->comm, cpu);
1534		}
1535	}
1536
1537	return dest_cpu;
1538}
1539
1540/*
1541 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1542 */
1543static inline
1544int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1545{
1546	lockdep_assert_held(&p->pi_lock);
1547
1548	if (p->nr_cpus_allowed > 1)
1549		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1550	else
1551		cpu = cpumask_any(&p->cpus_allowed);
1552
1553	/*
1554	 * In order not to call set_task_cpu() on a blocking task we need
1555	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1556	 * CPU.
1557	 *
1558	 * Since this is common to all placement strategies, this lives here.
1559	 *
1560	 * [ this allows ->select_task() to simply return task_cpu(p) and
1561	 *   not worry about this generic constraint ]
1562	 */
1563	if (unlikely(!is_cpu_allowed(p, cpu)))
1564		cpu = select_fallback_rq(task_cpu(p), p);
1565
1566	return cpu;
1567}
1568
1569static void update_avg(u64 *avg, u64 sample)
1570{
1571	s64 diff = sample - *avg;
1572	*avg += diff >> 3;
1573}
1574
1575void sched_set_stop_task(int cpu, struct task_struct *stop)
1576{
1577	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1578	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1579
1580	if (stop) {
1581		/*
1582		 * Make it appear like a SCHED_FIFO task, its something
1583		 * userspace knows about and won't get confused about.
1584		 *
1585		 * Also, it will make PI more or less work without too
1586		 * much confusion -- but then, stop work should not
1587		 * rely on PI working anyway.
1588		 */
1589		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1590
1591		stop->sched_class = &stop_sched_class;
1592	}
1593
1594	cpu_rq(cpu)->stop = stop;
1595
1596	if (old_stop) {
1597		/*
1598		 * Reset it back to a normal scheduling class so that
1599		 * it can die in pieces.
1600		 */
1601		old_stop->sched_class = &rt_sched_class;
1602	}
1603}
1604
1605#else
1606
1607static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1608					 const struct cpumask *new_mask, bool check)
1609{
1610	return set_cpus_allowed_ptr(p, new_mask);
1611}
1612
1613#endif /* CONFIG_SMP */
1614
1615static void
1616ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1617{
1618	struct rq *rq;
1619
1620	if (!schedstat_enabled())
1621		return;
1622
1623	rq = this_rq();
1624
1625#ifdef CONFIG_SMP
1626	if (cpu == rq->cpu) {
1627		__schedstat_inc(rq->ttwu_local);
1628		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1629	} else {
1630		struct sched_domain *sd;
1631
1632		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1633		rcu_read_lock();
1634		for_each_domain(rq->cpu, sd) {
1635			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1636				__schedstat_inc(sd->ttwu_wake_remote);
1637				break;
1638			}
1639		}
1640		rcu_read_unlock();
1641	}
1642
1643	if (wake_flags & WF_MIGRATED)
1644		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1645#endif /* CONFIG_SMP */
1646
1647	__schedstat_inc(rq->ttwu_count);
1648	__schedstat_inc(p->se.statistics.nr_wakeups);
1649
1650	if (wake_flags & WF_SYNC)
1651		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1652}
1653
1654static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1655{
1656	activate_task(rq, p, en_flags);
1657	p->on_rq = TASK_ON_RQ_QUEUED;
1658
1659	/* If a worker is waking up, notify the workqueue: */
1660	if (p->flags & PF_WQ_WORKER)
1661		wq_worker_waking_up(p, cpu_of(rq));
1662}
1663
1664/*
1665 * Mark the task runnable and perform wakeup-preemption.
1666 */
1667static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1668			   struct rq_flags *rf)
1669{
1670	check_preempt_curr(rq, p, wake_flags);
1671	p->state = TASK_RUNNING;
1672	trace_sched_wakeup(p);
1673
1674#ifdef CONFIG_SMP
1675	if (p->sched_class->task_woken) {
1676		/*
1677		 * Our task @p is fully woken up and running; so its safe to
1678		 * drop the rq->lock, hereafter rq is only used for statistics.
1679		 */
1680		rq_unpin_lock(rq, rf);
1681		p->sched_class->task_woken(rq, p);
1682		rq_repin_lock(rq, rf);
1683	}
1684
1685	if (rq->idle_stamp) {
1686		u64 delta = rq_clock(rq) - rq->idle_stamp;
1687		u64 max = 2*rq->max_idle_balance_cost;
1688
1689		update_avg(&rq->avg_idle, delta);
1690
1691		if (rq->avg_idle > max)
1692			rq->avg_idle = max;
1693
1694		rq->idle_stamp = 0;
1695	}
1696#endif
1697}
1698
1699static void
1700ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1701		 struct rq_flags *rf)
1702{
1703	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1704
1705	lockdep_assert_held(&rq->lock);
1706
1707#ifdef CONFIG_SMP
1708	if (p->sched_contributes_to_load)
1709		rq->nr_uninterruptible--;
1710
 
1711	if (wake_flags & WF_MIGRATED)
1712		en_flags |= ENQUEUE_MIGRATED;
1713#endif
1714
1715	ttwu_activate(rq, p, en_flags);
1716	ttwu_do_wakeup(rq, p, wake_flags, rf);
1717}
1718
1719/*
1720 * Called in case the task @p isn't fully descheduled from its runqueue,
1721 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1722 * since all we need to do is flip p->state to TASK_RUNNING, since
1723 * the task is still ->on_rq.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1724 */
1725static int ttwu_remote(struct task_struct *p, int wake_flags)
1726{
1727	struct rq_flags rf;
1728	struct rq *rq;
1729	int ret = 0;
1730
1731	rq = __task_rq_lock(p, &rf);
1732	if (task_on_rq_queued(p)) {
1733		/* check_preempt_curr() may use rq clock */
1734		update_rq_clock(rq);
1735		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1736		ret = 1;
1737	}
1738	__task_rq_unlock(rq, &rf);
1739
1740	return ret;
1741}
1742
1743#ifdef CONFIG_SMP
1744void sched_ttwu_pending(void)
1745{
 
1746	struct rq *rq = this_rq();
1747	struct llist_node *llist = llist_del_all(&rq->wake_list);
1748	struct task_struct *p, *t;
1749	struct rq_flags rf;
1750
1751	if (!llist)
1752		return;
1753
 
 
 
 
 
 
 
1754	rq_lock_irqsave(rq, &rf);
1755	update_rq_clock(rq);
1756
1757	llist_for_each_entry_safe(p, t, llist, wake_entry)
 
 
 
 
 
 
1758		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
 
1759
1760	rq_unlock_irqrestore(rq, &rf);
1761}
1762
1763void scheduler_ipi(void)
1764{
1765	/*
1766	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1767	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1768	 * this IPI.
1769	 */
1770	preempt_fold_need_resched();
1771
1772	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1773		return;
1774
1775	/*
1776	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1777	 * traditionally all their work was done from the interrupt return
1778	 * path. Now that we actually do some work, we need to make sure
1779	 * we do call them.
1780	 *
1781	 * Some archs already do call them, luckily irq_enter/exit nest
1782	 * properly.
1783	 *
1784	 * Arguably we should visit all archs and update all handlers,
1785	 * however a fair share of IPIs are still resched only so this would
1786	 * somewhat pessimize the simple resched case.
1787	 */
1788	irq_enter();
1789	sched_ttwu_pending();
1790
1791	/*
1792	 * Check if someone kicked us for doing the nohz idle load balance.
1793	 */
1794	if (unlikely(got_nohz_idle_kick())) {
1795		this_rq()->idle_balance = 1;
1796		raise_softirq_irqoff(SCHED_SOFTIRQ);
1797	}
1798	irq_exit();
1799}
1800
1801static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
 
 
 
 
 
 
1802{
1803	struct rq *rq = cpu_rq(cpu);
1804
1805	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1806
1807	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1808		if (!set_nr_if_polling(rq->idle))
1809			smp_send_reschedule(cpu);
1810		else
1811			trace_sched_wake_idle_without_ipi(cpu);
1812	}
1813}
1814
1815void wake_up_if_idle(int cpu)
1816{
1817	struct rq *rq = cpu_rq(cpu);
1818	struct rq_flags rf;
1819
1820	rcu_read_lock();
1821
1822	if (!is_idle_task(rcu_dereference(rq->curr)))
1823		goto out;
1824
1825	if (set_nr_if_polling(rq->idle)) {
1826		trace_sched_wake_idle_without_ipi(cpu);
1827	} else {
1828		rq_lock_irqsave(rq, &rf);
1829		if (is_idle_task(rq->curr))
1830			smp_send_reschedule(cpu);
1831		/* Else CPU is not idle, do nothing here: */
1832		rq_unlock_irqrestore(rq, &rf);
1833	}
1834
1835out:
1836	rcu_read_unlock();
1837}
1838
1839bool cpus_share_cache(int this_cpu, int that_cpu)
1840{
1841	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1842}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1843#endif /* CONFIG_SMP */
1844
1845static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1846{
1847	struct rq *rq = cpu_rq(cpu);
1848	struct rq_flags rf;
1849
1850#if defined(CONFIG_SMP)
1851	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1852		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1853		ttwu_queue_remote(p, cpu, wake_flags);
1854		return;
1855	}
1856#endif
1857
1858	rq_lock(rq, &rf);
1859	update_rq_clock(rq);
1860	ttwu_do_activate(rq, p, wake_flags, &rf);
1861	rq_unlock(rq, &rf);
1862}
1863
1864/*
1865 * Notes on Program-Order guarantees on SMP systems.
1866 *
1867 *  MIGRATION
1868 *
1869 * The basic program-order guarantee on SMP systems is that when a task [t]
1870 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1871 * execution on its new CPU [c1].
1872 *
1873 * For migration (of runnable tasks) this is provided by the following means:
1874 *
1875 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1876 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1877 *     rq(c1)->lock (if not at the same time, then in that order).
1878 *  C) LOCK of the rq(c1)->lock scheduling in task
1879 *
1880 * Transitivity guarantees that B happens after A and C after B.
1881 * Note: we only require RCpc transitivity.
1882 * Note: the CPU doing B need not be c0 or c1
1883 *
1884 * Example:
1885 *
1886 *   CPU0            CPU1            CPU2
1887 *
1888 *   LOCK rq(0)->lock
1889 *   sched-out X
1890 *   sched-in Y
1891 *   UNLOCK rq(0)->lock
1892 *
1893 *                                   LOCK rq(0)->lock // orders against CPU0
1894 *                                   dequeue X
1895 *                                   UNLOCK rq(0)->lock
1896 *
1897 *                                   LOCK rq(1)->lock
1898 *                                   enqueue X
1899 *                                   UNLOCK rq(1)->lock
1900 *
1901 *                   LOCK rq(1)->lock // orders against CPU2
1902 *                   sched-out Z
1903 *                   sched-in X
1904 *                   UNLOCK rq(1)->lock
1905 *
1906 *
1907 *  BLOCKING -- aka. SLEEP + WAKEUP
1908 *
1909 * For blocking we (obviously) need to provide the same guarantee as for
1910 * migration. However the means are completely different as there is no lock
1911 * chain to provide order. Instead we do:
1912 *
1913 *   1) smp_store_release(X->on_cpu, 0)
1914 *   2) smp_cond_load_acquire(!X->on_cpu)
1915 *
1916 * Example:
1917 *
1918 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1919 *
1920 *   LOCK rq(0)->lock LOCK X->pi_lock
1921 *   dequeue X
1922 *   sched-out X
1923 *   smp_store_release(X->on_cpu, 0);
1924 *
1925 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1926 *                    X->state = WAKING
1927 *                    set_task_cpu(X,2)
1928 *
1929 *                    LOCK rq(2)->lock
1930 *                    enqueue X
1931 *                    X->state = RUNNING
1932 *                    UNLOCK rq(2)->lock
1933 *
1934 *                                          LOCK rq(2)->lock // orders against CPU1
1935 *                                          sched-out Z
1936 *                                          sched-in X
1937 *                                          UNLOCK rq(2)->lock
1938 *
1939 *                    UNLOCK X->pi_lock
1940 *   UNLOCK rq(0)->lock
1941 *
1942 *
1943 * However; for wakeups there is a second guarantee we must provide, namely we
1944 * must observe the state that lead to our wakeup. That is, not only must our
1945 * task observe its own prior state, it must also observe the stores prior to
1946 * its wakeup.
1947 *
1948 * This means that any means of doing remote wakeups must order the CPU doing
1949 * the wakeup against the CPU the task is going to end up running on. This,
1950 * however, is already required for the regular Program-Order guarantee above,
1951 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1952 *
1953 */
1954
1955/**
1956 * try_to_wake_up - wake up a thread
1957 * @p: the thread to be awakened
1958 * @state: the mask of task states that can be woken
1959 * @wake_flags: wake modifier flags (WF_*)
1960 *
1961 * If (@state & @p->state) @p->state = TASK_RUNNING.
 
 
1962 *
1963 * If the task was not queued/runnable, also place it back on a runqueue.
1964 *
1965 * Atomic against schedule() which would dequeue a task, also see
1966 * set_current_state().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967 *
1968 * Return: %true if @p->state changes (an actual wakeup was done),
1969 *	   %false otherwise.
1970 */
1971static int
1972try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1973{
1974	unsigned long flags;
1975	int cpu, success = 0;
1976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1977	/*
1978	 * If we are going to wake up a thread waiting for CONDITION we
1979	 * need to ensure that CONDITION=1 done by the caller can not be
1980	 * reordered with p->state check below. This pairs with mb() in
1981	 * set_current_state() the waiting thread does.
1982	 */
1983	raw_spin_lock_irqsave(&p->pi_lock, flags);
1984	smp_mb__after_spinlock();
1985	if (!(p->state & state))
1986		goto out;
1987
1988	trace_sched_waking(p);
1989
1990	/* We're going to change ->state: */
1991	success = 1;
1992	cpu = task_cpu(p);
1993
1994	/*
1995	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1996	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1997	 * in smp_cond_load_acquire() below.
1998	 *
1999	 * sched_ttwu_pending()                 try_to_wake_up()
2000	 *   [S] p->on_rq = 1;                  [L] P->state
2001	 *       UNLOCK rq->lock  -----.
2002	 *                              \
2003	 *				 +---   RMB
2004	 * schedule()                   /
2005	 *       LOCK rq->lock    -----'
2006	 *       UNLOCK rq->lock
2007	 *
2008	 * [task p]
2009	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
 
 
 
2010	 *
2011	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2012	 * last wakeup of our task and the schedule that got our task
2013	 * current.
2014	 */
2015	smp_rmb();
2016	if (p->on_rq && ttwu_remote(p, wake_flags))
2017		goto stat;
 
 
 
 
 
2018
2019#ifdef CONFIG_SMP
2020	/*
2021	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2022	 * possible to, falsely, observe p->on_cpu == 0.
2023	 *
2024	 * One must be running (->on_cpu == 1) in order to remove oneself
2025	 * from the runqueue.
2026	 *
2027	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2028	 *      UNLOCK rq->lock
2029	 *			RMB
2030	 *      LOCK   rq->lock
2031	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2032	 *
2033	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2034	 * from the consecutive calls to schedule(); the first switching to our
2035	 * task, the second putting it to sleep.
 
 
 
 
 
 
2036	 */
2037	smp_rmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2038
2039	/*
2040	 * If the owning (remote) CPU is still in the middle of schedule() with
2041	 * this task as prev, wait until its done referencing the task.
2042	 *
2043	 * Pairs with the smp_store_release() in finish_task().
2044	 *
2045	 * This ensures that tasks getting woken will be fully ordered against
2046	 * their previous state and preserve Program Order.
2047	 */
2048	smp_cond_load_acquire(&p->on_cpu, !VAL);
2049
2050	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2051	p->state = TASK_WAKING;
2052
2053	if (p->in_iowait) {
2054		delayacct_blkio_end(p);
2055		atomic_dec(&task_rq(p)->nr_iowait);
2056	}
2057
2058	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2059	if (task_cpu(p) != cpu) {
2060		wake_flags |= WF_MIGRATED;
 
2061		set_task_cpu(p, cpu);
2062	}
2063
2064#else /* CONFIG_SMP */
2065
2066	if (p->in_iowait) {
2067		delayacct_blkio_end(p);
2068		atomic_dec(&task_rq(p)->nr_iowait);
2069	}
2070
2071#endif /* CONFIG_SMP */
2072
2073	ttwu_queue(p, cpu, wake_flags);
2074stat:
2075	ttwu_stat(p, cpu, wake_flags);
2076out:
2077	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 
 
 
 
2078
2079	return success;
2080}
2081
2082/**
2083 * try_to_wake_up_local - try to wake up a local task with rq lock held
2084 * @p: the thread to be awakened
2085 * @rf: request-queue flags for pinning
2086 *
2087 * Put @p on the run-queue if it's not already there. The caller must
2088 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2089 * the current task.
 
 
 
 
 
 
 
 
 
2090 */
2091static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2092{
2093	struct rq *rq = task_rq(p);
2094
2095	if (WARN_ON_ONCE(rq != this_rq()) ||
2096	    WARN_ON_ONCE(p == current))
2097		return;
2098
2099	lockdep_assert_held(&rq->lock);
2100
2101	if (!raw_spin_trylock(&p->pi_lock)) {
2102		/*
2103		 * This is OK, because current is on_cpu, which avoids it being
2104		 * picked for load-balance and preemption/IRQs are still
2105		 * disabled avoiding further scheduler activity on it and we've
2106		 * not yet picked a replacement task.
2107		 */
2108		rq_unlock(rq, rf);
2109		raw_spin_lock(&p->pi_lock);
2110		rq_relock(rq, rf);
2111	}
2112
2113	if (!(p->state & TASK_NORMAL))
2114		goto out;
2115
2116	trace_sched_waking(p);
2117
2118	if (!task_on_rq_queued(p)) {
2119		if (p->in_iowait) {
2120			delayacct_blkio_end(p);
2121			atomic_dec(&rq->nr_iowait);
 
 
 
 
 
 
 
 
 
 
 
 
2122		}
2123		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2124	}
2125
2126	ttwu_do_wakeup(rq, p, 0, rf);
2127	ttwu_stat(p, smp_processor_id(), 0);
2128out:
2129	raw_spin_unlock(&p->pi_lock);
2130}
2131
2132/**
2133 * wake_up_process - Wake up a specific process
2134 * @p: The process to be woken up.
2135 *
2136 * Attempt to wake up the nominated process and move it to the set of runnable
2137 * processes.
2138 *
2139 * Return: 1 if the process was woken up, 0 if it was already running.
2140 *
2141 * It may be assumed that this function implies a write memory barrier before
2142 * changing the task state if and only if any tasks are woken up.
2143 */
2144int wake_up_process(struct task_struct *p)
2145{
2146	return try_to_wake_up(p, TASK_NORMAL, 0);
2147}
2148EXPORT_SYMBOL(wake_up_process);
2149
2150int wake_up_state(struct task_struct *p, unsigned int state)
2151{
2152	return try_to_wake_up(p, state, 0);
2153}
2154
2155/*
2156 * Perform scheduler related setup for a newly forked process p.
2157 * p is forked by current.
2158 *
2159 * __sched_fork() is basic setup used by init_idle() too:
2160 */
2161static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2162{
2163	p->on_rq			= 0;
2164
2165	p->se.on_rq			= 0;
2166	p->se.exec_start		= 0;
2167	p->se.sum_exec_runtime		= 0;
2168	p->se.prev_sum_exec_runtime	= 0;
2169	p->se.nr_migrations		= 0;
2170	p->se.vruntime			= 0;
2171	INIT_LIST_HEAD(&p->se.group_node);
2172
2173#ifdef CONFIG_FAIR_GROUP_SCHED
2174	p->se.cfs_rq			= NULL;
2175#endif
2176
2177#ifdef CONFIG_SCHEDSTATS
2178	/* Even if schedstat is disabled, there should not be garbage */
2179	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2180#endif
2181
2182	RB_CLEAR_NODE(&p->dl.rb_node);
2183	init_dl_task_timer(&p->dl);
2184	init_dl_inactive_task_timer(&p->dl);
2185	__dl_clear_params(p);
2186
2187	INIT_LIST_HEAD(&p->rt.run_list);
2188	p->rt.timeout		= 0;
2189	p->rt.time_slice	= sched_rr_timeslice;
2190	p->rt.on_rq		= 0;
2191	p->rt.on_list		= 0;
2192
2193#ifdef CONFIG_PREEMPT_NOTIFIERS
2194	INIT_HLIST_HEAD(&p->preempt_notifiers);
2195#endif
2196
2197#ifdef CONFIG_NUMA_BALANCING
2198	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2199		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2200		p->mm->numa_scan_seq = 0;
2201	}
2202
2203	if (clone_flags & CLONE_VM)
2204		p->numa_preferred_nid = current->numa_preferred_nid;
2205	else
2206		p->numa_preferred_nid = -1;
2207
2208	p->node_stamp = 0ULL;
2209	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2210	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2211	p->numa_work.next = &p->numa_work;
2212	p->numa_faults = NULL;
2213	p->last_task_numa_placement = 0;
2214	p->last_sum_exec_runtime = 0;
2215
2216	p->numa_group = NULL;
2217#endif /* CONFIG_NUMA_BALANCING */
2218}
2219
2220DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2221
2222#ifdef CONFIG_NUMA_BALANCING
2223
2224void set_numabalancing_state(bool enabled)
2225{
2226	if (enabled)
2227		static_branch_enable(&sched_numa_balancing);
2228	else
2229		static_branch_disable(&sched_numa_balancing);
2230}
2231
2232#ifdef CONFIG_PROC_SYSCTL
2233int sysctl_numa_balancing(struct ctl_table *table, int write,
2234			 void __user *buffer, size_t *lenp, loff_t *ppos)
2235{
2236	struct ctl_table t;
2237	int err;
2238	int state = static_branch_likely(&sched_numa_balancing);
2239
2240	if (write && !capable(CAP_SYS_ADMIN))
2241		return -EPERM;
2242
2243	t = *table;
2244	t.data = &state;
2245	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2246	if (err < 0)
2247		return err;
2248	if (write)
2249		set_numabalancing_state(state);
2250	return err;
2251}
2252#endif
2253#endif
2254
2255#ifdef CONFIG_SCHEDSTATS
2256
2257DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2258static bool __initdata __sched_schedstats = false;
2259
2260static void set_schedstats(bool enabled)
2261{
2262	if (enabled)
2263		static_branch_enable(&sched_schedstats);
2264	else
2265		static_branch_disable(&sched_schedstats);
2266}
2267
2268void force_schedstat_enabled(void)
2269{
2270	if (!schedstat_enabled()) {
2271		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2272		static_branch_enable(&sched_schedstats);
2273	}
2274}
2275
2276static int __init setup_schedstats(char *str)
2277{
2278	int ret = 0;
2279	if (!str)
2280		goto out;
2281
2282	/*
2283	 * This code is called before jump labels have been set up, so we can't
2284	 * change the static branch directly just yet.  Instead set a temporary
2285	 * variable so init_schedstats() can do it later.
2286	 */
2287	if (!strcmp(str, "enable")) {
2288		__sched_schedstats = true;
2289		ret = 1;
2290	} else if (!strcmp(str, "disable")) {
2291		__sched_schedstats = false;
2292		ret = 1;
2293	}
2294out:
2295	if (!ret)
2296		pr_warn("Unable to parse schedstats=\n");
2297
2298	return ret;
2299}
2300__setup("schedstats=", setup_schedstats);
2301
2302static void __init init_schedstats(void)
2303{
2304	set_schedstats(__sched_schedstats);
2305}
2306
2307#ifdef CONFIG_PROC_SYSCTL
2308int sysctl_schedstats(struct ctl_table *table, int write,
2309			 void __user *buffer, size_t *lenp, loff_t *ppos)
2310{
2311	struct ctl_table t;
2312	int err;
2313	int state = static_branch_likely(&sched_schedstats);
2314
2315	if (write && !capable(CAP_SYS_ADMIN))
2316		return -EPERM;
2317
2318	t = *table;
2319	t.data = &state;
2320	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2321	if (err < 0)
2322		return err;
2323	if (write)
2324		set_schedstats(state);
2325	return err;
2326}
2327#endif /* CONFIG_PROC_SYSCTL */
2328#else  /* !CONFIG_SCHEDSTATS */
2329static inline void init_schedstats(void) {}
2330#endif /* CONFIG_SCHEDSTATS */
2331
2332/*
2333 * fork()/clone()-time setup:
2334 */
2335int sched_fork(unsigned long clone_flags, struct task_struct *p)
2336{
2337	unsigned long flags;
2338	int cpu = get_cpu();
2339
2340	__sched_fork(clone_flags, p);
2341	/*
2342	 * We mark the process as NEW here. This guarantees that
2343	 * nobody will actually run it, and a signal or other external
2344	 * event cannot wake it up and insert it on the runqueue either.
2345	 */
2346	p->state = TASK_NEW;
2347
2348	/*
2349	 * Make sure we do not leak PI boosting priority to the child.
2350	 */
2351	p->prio = current->normal_prio;
2352
 
 
2353	/*
2354	 * Revert to default priority/policy on fork if requested.
2355	 */
2356	if (unlikely(p->sched_reset_on_fork)) {
2357		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2358			p->policy = SCHED_NORMAL;
2359			p->static_prio = NICE_TO_PRIO(0);
2360			p->rt_priority = 0;
2361		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2362			p->static_prio = NICE_TO_PRIO(0);
2363
2364		p->prio = p->normal_prio = __normal_prio(p);
2365		set_load_weight(p, false);
2366
2367		/*
2368		 * We don't need the reset flag anymore after the fork. It has
2369		 * fulfilled its duty:
2370		 */
2371		p->sched_reset_on_fork = 0;
2372	}
2373
2374	if (dl_prio(p->prio)) {
2375		put_cpu();
2376		return -EAGAIN;
2377	} else if (rt_prio(p->prio)) {
2378		p->sched_class = &rt_sched_class;
2379	} else {
2380		p->sched_class = &fair_sched_class;
2381	}
2382
2383	init_entity_runnable_average(&p->se);
2384
2385	/*
2386	 * The child is not yet in the pid-hash so no cgroup attach races,
2387	 * and the cgroup is pinned to this child due to cgroup_fork()
2388	 * is ran before sched_fork().
2389	 *
2390	 * Silence PROVE_RCU.
2391	 */
2392	raw_spin_lock_irqsave(&p->pi_lock, flags);
 
2393	/*
2394	 * We're setting the CPU for the first time, we don't migrate,
2395	 * so use __set_task_cpu().
2396	 */
2397	__set_task_cpu(p, cpu);
2398	if (p->sched_class->task_fork)
2399		p->sched_class->task_fork(p);
2400	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2401
2402#ifdef CONFIG_SCHED_INFO
2403	if (likely(sched_info_on()))
2404		memset(&p->sched_info, 0, sizeof(p->sched_info));
2405#endif
2406#if defined(CONFIG_SMP)
2407	p->on_cpu = 0;
2408#endif
2409	init_task_preempt_count(p);
2410#ifdef CONFIG_SMP
2411	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2412	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2413#endif
2414
2415	put_cpu();
2416	return 0;
2417}
2418
 
 
 
 
 
2419unsigned long to_ratio(u64 period, u64 runtime)
2420{
2421	if (runtime == RUNTIME_INF)
2422		return BW_UNIT;
2423
2424	/*
2425	 * Doing this here saves a lot of checks in all
2426	 * the calling paths, and returning zero seems
2427	 * safe for them anyway.
2428	 */
2429	if (period == 0)
2430		return 0;
2431
2432	return div64_u64(runtime << BW_SHIFT, period);
2433}
2434
2435/*
2436 * wake_up_new_task - wake up a newly created task for the first time.
2437 *
2438 * This function will do some initial scheduler statistics housekeeping
2439 * that must be done for every newly created context, then puts the task
2440 * on the runqueue and wakes it.
2441 */
2442void wake_up_new_task(struct task_struct *p)
2443{
2444	struct rq_flags rf;
2445	struct rq *rq;
2446
2447	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2448	p->state = TASK_RUNNING;
2449#ifdef CONFIG_SMP
2450	/*
2451	 * Fork balancing, do it here and not earlier because:
2452	 *  - cpus_allowed can change in the fork path
2453	 *  - any previously selected CPU might disappear through hotplug
2454	 *
2455	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2456	 * as we're not fully set-up yet.
2457	 */
2458	p->recent_used_cpu = task_cpu(p);
 
2459	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2460#endif
2461	rq = __task_rq_lock(p, &rf);
2462	update_rq_clock(rq);
2463	post_init_entity_util_avg(&p->se);
2464
2465	activate_task(rq, p, ENQUEUE_NOCLOCK);
2466	p->on_rq = TASK_ON_RQ_QUEUED;
2467	trace_sched_wakeup_new(p);
2468	check_preempt_curr(rq, p, WF_FORK);
2469#ifdef CONFIG_SMP
2470	if (p->sched_class->task_woken) {
2471		/*
2472		 * Nothing relies on rq->lock after this, so its fine to
2473		 * drop it.
2474		 */
2475		rq_unpin_lock(rq, &rf);
2476		p->sched_class->task_woken(rq, p);
2477		rq_repin_lock(rq, &rf);
2478	}
2479#endif
2480	task_rq_unlock(rq, p, &rf);
2481}
2482
2483#ifdef CONFIG_PREEMPT_NOTIFIERS
2484
2485static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2486
2487void preempt_notifier_inc(void)
2488{
2489	static_branch_inc(&preempt_notifier_key);
2490}
2491EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2492
2493void preempt_notifier_dec(void)
2494{
2495	static_branch_dec(&preempt_notifier_key);
2496}
2497EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2498
2499/**
2500 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2501 * @notifier: notifier struct to register
2502 */
2503void preempt_notifier_register(struct preempt_notifier *notifier)
2504{
2505	if (!static_branch_unlikely(&preempt_notifier_key))
2506		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2507
2508	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2509}
2510EXPORT_SYMBOL_GPL(preempt_notifier_register);
2511
2512/**
2513 * preempt_notifier_unregister - no longer interested in preemption notifications
2514 * @notifier: notifier struct to unregister
2515 *
2516 * This is *not* safe to call from within a preemption notifier.
2517 */
2518void preempt_notifier_unregister(struct preempt_notifier *notifier)
2519{
2520	hlist_del(&notifier->link);
2521}
2522EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2523
2524static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2525{
2526	struct preempt_notifier *notifier;
2527
2528	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2529		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2530}
2531
2532static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533{
2534	if (static_branch_unlikely(&preempt_notifier_key))
2535		__fire_sched_in_preempt_notifiers(curr);
2536}
2537
2538static void
2539__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2540				   struct task_struct *next)
2541{
2542	struct preempt_notifier *notifier;
2543
2544	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2545		notifier->ops->sched_out(notifier, next);
2546}
2547
2548static __always_inline void
2549fire_sched_out_preempt_notifiers(struct task_struct *curr,
2550				 struct task_struct *next)
2551{
2552	if (static_branch_unlikely(&preempt_notifier_key))
2553		__fire_sched_out_preempt_notifiers(curr, next);
2554}
2555
2556#else /* !CONFIG_PREEMPT_NOTIFIERS */
2557
2558static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2559{
2560}
2561
2562static inline void
2563fire_sched_out_preempt_notifiers(struct task_struct *curr,
2564				 struct task_struct *next)
2565{
2566}
2567
2568#endif /* CONFIG_PREEMPT_NOTIFIERS */
2569
2570static inline void prepare_task(struct task_struct *next)
2571{
2572#ifdef CONFIG_SMP
2573	/*
2574	 * Claim the task as running, we do this before switching to it
2575	 * such that any running task will have this set.
 
 
2576	 */
2577	next->on_cpu = 1;
2578#endif
2579}
2580
2581static inline void finish_task(struct task_struct *prev)
2582{
2583#ifdef CONFIG_SMP
2584	/*
2585	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2586	 * We must ensure this doesn't happen until the switch is completely
 
2587	 * finished.
2588	 *
2589	 * In particular, the load of prev->state in finish_task_switch() must
2590	 * happen before this.
2591	 *
2592	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2593	 */
2594	smp_store_release(&prev->on_cpu, 0);
2595#endif
2596}
2597
2598static inline void
2599prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2600{
2601	/*
2602	 * Since the runqueue lock will be released by the next
2603	 * task (which is an invalid locking op but in the case
2604	 * of the scheduler it's an obvious special-case), so we
2605	 * do an early lockdep release here:
2606	 */
2607	rq_unpin_lock(rq, rf);
2608	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2609#ifdef CONFIG_DEBUG_SPINLOCK
2610	/* this is a valid case when another task releases the spinlock */
2611	rq->lock.owner = next;
2612#endif
2613}
2614
2615static inline void finish_lock_switch(struct rq *rq)
2616{
2617	/*
2618	 * If we are tracking spinlock dependencies then we have to
2619	 * fix up the runqueue lock - which gets 'carried over' from
2620	 * prev into current:
2621	 */
2622	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2623	raw_spin_unlock_irq(&rq->lock);
2624}
2625
2626/*
2627 * NOP if the arch has not defined these:
2628 */
2629
2630#ifndef prepare_arch_switch
2631# define prepare_arch_switch(next)	do { } while (0)
2632#endif
2633
2634#ifndef finish_arch_post_lock_switch
2635# define finish_arch_post_lock_switch()	do { } while (0)
2636#endif
2637
2638/**
2639 * prepare_task_switch - prepare to switch tasks
2640 * @rq: the runqueue preparing to switch
2641 * @prev: the current task that is being switched out
2642 * @next: the task we are going to switch to.
2643 *
2644 * This is called with the rq lock held and interrupts off. It must
2645 * be paired with a subsequent finish_task_switch after the context
2646 * switch.
2647 *
2648 * prepare_task_switch sets up locking and calls architecture specific
2649 * hooks.
2650 */
2651static inline void
2652prepare_task_switch(struct rq *rq, struct task_struct *prev,
2653		    struct task_struct *next)
2654{
 
2655	sched_info_switch(rq, prev, next);
2656	perf_event_task_sched_out(prev, next);
 
2657	fire_sched_out_preempt_notifiers(prev, next);
2658	prepare_task(next);
2659	prepare_arch_switch(next);
2660}
2661
2662/**
2663 * finish_task_switch - clean up after a task-switch
2664 * @prev: the thread we just switched away from.
2665 *
2666 * finish_task_switch must be called after the context switch, paired
2667 * with a prepare_task_switch call before the context switch.
2668 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2669 * and do any other architecture-specific cleanup actions.
2670 *
2671 * Note that we may have delayed dropping an mm in context_switch(). If
2672 * so, we finish that here outside of the runqueue lock. (Doing it
2673 * with the lock held can cause deadlocks; see schedule() for
2674 * details.)
2675 *
2676 * The context switch have flipped the stack from under us and restored the
2677 * local variables which were saved when this task called schedule() in the
2678 * past. prev == current is still correct but we need to recalculate this_rq
2679 * because prev may have moved to another CPU.
2680 */
2681static struct rq *finish_task_switch(struct task_struct *prev)
2682	__releases(rq->lock)
2683{
2684	struct rq *rq = this_rq();
2685	struct mm_struct *mm = rq->prev_mm;
2686	long prev_state;
2687
2688	/*
2689	 * The previous task will have left us with a preempt_count of 2
2690	 * because it left us after:
2691	 *
2692	 *	schedule()
2693	 *	  preempt_disable();			// 1
2694	 *	  __schedule()
2695	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2696	 *
2697	 * Also, see FORK_PREEMPT_COUNT.
2698	 */
2699	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2700		      "corrupted preempt_count: %s/%d/0x%x\n",
2701		      current->comm, current->pid, preempt_count()))
2702		preempt_count_set(FORK_PREEMPT_COUNT);
2703
2704	rq->prev_mm = NULL;
2705
2706	/*
2707	 * A task struct has one reference for the use as "current".
2708	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2709	 * schedule one last time. The schedule call will never return, and
2710	 * the scheduled task must drop that reference.
2711	 *
2712	 * We must observe prev->state before clearing prev->on_cpu (in
2713	 * finish_task), otherwise a concurrent wakeup can get prev
2714	 * running on another CPU and we could rave with its RUNNING -> DEAD
2715	 * transition, resulting in a double drop.
2716	 */
2717	prev_state = prev->state;
2718	vtime_task_switch(prev);
2719	perf_event_task_sched_in(prev, current);
2720	finish_task(prev);
2721	finish_lock_switch(rq);
2722	finish_arch_post_lock_switch();
 
2723
2724	fire_sched_in_preempt_notifiers(current);
2725	/*
2726	 * When switching through a kernel thread, the loop in
2727	 * membarrier_{private,global}_expedited() may have observed that
2728	 * kernel thread and not issued an IPI. It is therefore possible to
2729	 * schedule between user->kernel->user threads without passing though
2730	 * switch_mm(). Membarrier requires a barrier after storing to
2731	 * rq->curr, before returning to userspace, so provide them here:
2732	 *
2733	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2734	 *   provided by mmdrop(),
2735	 * - a sync_core for SYNC_CORE.
2736	 */
2737	if (mm) {
2738		membarrier_mm_sync_core_before_usermode(mm);
2739		mmdrop(mm);
2740	}
2741	if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) {
2742		switch (prev_state) {
2743		case TASK_DEAD:
2744			if (prev->sched_class->task_dead)
2745				prev->sched_class->task_dead(prev);
2746
2747			/*
2748			 * Remove function-return probe instances associated with this
2749			 * task and put them back on the free list.
2750			 */
2751			kprobe_flush_task(prev);
2752
2753			/* Task is done with its stack. */
2754			put_task_stack(prev);
 
 
 
2755
2756			put_task_struct(prev);
2757			break;
2758
2759		case TASK_PARKED:
2760			kthread_park_complete(prev);
2761			break;
2762		}
2763	}
2764
2765	tick_nohz_task_switch();
2766	return rq;
2767}
2768
2769#ifdef CONFIG_SMP
2770
2771/* rq->lock is NOT held, but preemption is disabled */
2772static void __balance_callback(struct rq *rq)
2773{
2774	struct callback_head *head, *next;
2775	void (*func)(struct rq *rq);
2776	unsigned long flags;
2777
2778	raw_spin_lock_irqsave(&rq->lock, flags);
2779	head = rq->balance_callback;
2780	rq->balance_callback = NULL;
2781	while (head) {
2782		func = (void (*)(struct rq *))head->func;
2783		next = head->next;
2784		head->next = NULL;
2785		head = next;
2786
2787		func(rq);
2788	}
2789	raw_spin_unlock_irqrestore(&rq->lock, flags);
2790}
2791
2792static inline void balance_callback(struct rq *rq)
2793{
2794	if (unlikely(rq->balance_callback))
2795		__balance_callback(rq);
2796}
2797
2798#else
2799
2800static inline void balance_callback(struct rq *rq)
2801{
2802}
2803
2804#endif
2805
2806/**
2807 * schedule_tail - first thing a freshly forked thread must call.
2808 * @prev: the thread we just switched away from.
2809 */
2810asmlinkage __visible void schedule_tail(struct task_struct *prev)
2811	__releases(rq->lock)
2812{
2813	struct rq *rq;
2814
2815	/*
2816	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2817	 * finish_task_switch() for details.
2818	 *
2819	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2820	 * and the preempt_enable() will end up enabling preemption (on
2821	 * PREEMPT_COUNT kernels).
2822	 */
2823
2824	rq = finish_task_switch(prev);
2825	balance_callback(rq);
2826	preempt_enable();
2827
2828	if (current->set_child_tid)
2829		put_user(task_pid_vnr(current), current->set_child_tid);
 
 
2830}
2831
2832/*
2833 * context_switch - switch to the new MM and the new thread's register state.
2834 */
2835static __always_inline struct rq *
2836context_switch(struct rq *rq, struct task_struct *prev,
2837	       struct task_struct *next, struct rq_flags *rf)
2838{
2839	struct mm_struct *mm, *oldmm;
2840
2841	prepare_task_switch(rq, prev, next);
2842
2843	mm = next->mm;
2844	oldmm = prev->active_mm;
2845	/*
2846	 * For paravirt, this is coupled with an exit in switch_to to
2847	 * combine the page table reload and the switch backend into
2848	 * one hypercall.
2849	 */
2850	arch_start_context_switch(prev);
2851
2852	/*
2853	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2854	 * NULL, we will pass through mmdrop() in finish_task_switch().
2855	 * Both of these contain the full memory barrier required by
2856	 * membarrier after storing to rq->curr, before returning to
2857	 * user-space.
2858	 */
2859	if (!mm) {
2860		next->active_mm = oldmm;
2861		mmgrab(oldmm);
2862		enter_lazy_tlb(oldmm, next);
2863	} else
2864		switch_mm_irqs_off(oldmm, mm, next);
2865
2866	if (!prev->mm) {
2867		prev->active_mm = NULL;
2868		rq->prev_mm = oldmm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2869	}
2870
2871	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2872
2873	prepare_lock_switch(rq, next, rf);
2874
2875	/* Here we just switch the register state and the stack. */
2876	switch_to(prev, next, prev);
2877	barrier();
2878
2879	return finish_task_switch(prev);
2880}
2881
2882/*
2883 * nr_running and nr_context_switches:
2884 *
2885 * externally visible scheduler statistics: current number of runnable
2886 * threads, total number of context switches performed since bootup.
2887 */
2888unsigned long nr_running(void)
2889{
2890	unsigned long i, sum = 0;
2891
2892	for_each_online_cpu(i)
2893		sum += cpu_rq(i)->nr_running;
2894
2895	return sum;
2896}
2897
2898/*
2899 * Check if only the current task is running on the CPU.
2900 *
2901 * Caution: this function does not check that the caller has disabled
2902 * preemption, thus the result might have a time-of-check-to-time-of-use
2903 * race.  The caller is responsible to use it correctly, for example:
2904 *
2905 * - from a non-preemptable section (of course)
2906 *
2907 * - from a thread that is bound to a single CPU
2908 *
2909 * - in a loop with very short iterations (e.g. a polling loop)
2910 */
2911bool single_task_running(void)
2912{
2913	return raw_rq()->nr_running == 1;
2914}
2915EXPORT_SYMBOL(single_task_running);
2916
2917unsigned long long nr_context_switches(void)
2918{
2919	int i;
2920	unsigned long long sum = 0;
2921
2922	for_each_possible_cpu(i)
2923		sum += cpu_rq(i)->nr_switches;
2924
2925	return sum;
2926}
2927
2928/*
 
 
 
 
 
 
 
 
 
 
 
 
2929 * IO-wait accounting, and how its mostly bollocks (on SMP).
2930 *
2931 * The idea behind IO-wait account is to account the idle time that we could
2932 * have spend running if it were not for IO. That is, if we were to improve the
2933 * storage performance, we'd have a proportional reduction in IO-wait time.
2934 *
2935 * This all works nicely on UP, where, when a task blocks on IO, we account
2936 * idle time as IO-wait, because if the storage were faster, it could've been
2937 * running and we'd not be idle.
2938 *
2939 * This has been extended to SMP, by doing the same for each CPU. This however
2940 * is broken.
2941 *
2942 * Imagine for instance the case where two tasks block on one CPU, only the one
2943 * CPU will have IO-wait accounted, while the other has regular idle. Even
2944 * though, if the storage were faster, both could've ran at the same time,
2945 * utilising both CPUs.
2946 *
2947 * This means, that when looking globally, the current IO-wait accounting on
2948 * SMP is a lower bound, by reason of under accounting.
2949 *
2950 * Worse, since the numbers are provided per CPU, they are sometimes
2951 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2952 * associated with any one particular CPU, it can wake to another CPU than it
2953 * blocked on. This means the per CPU IO-wait number is meaningless.
2954 *
2955 * Task CPU affinities can make all that even more 'interesting'.
2956 */
2957
2958unsigned long nr_iowait(void)
2959{
2960	unsigned long i, sum = 0;
2961
2962	for_each_possible_cpu(i)
2963		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2964
2965	return sum;
2966}
2967
2968/*
2969 * Consumers of these two interfaces, like for example the cpufreq menu
2970 * governor are using nonsensical data. Boosting frequency for a CPU that has
2971 * IO-wait which might not even end up running the task when it does become
2972 * runnable.
2973 */
2974
2975unsigned long nr_iowait_cpu(int cpu)
2976{
2977	struct rq *this = cpu_rq(cpu);
2978	return atomic_read(&this->nr_iowait);
2979}
2980
2981void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2982{
2983	struct rq *rq = this_rq();
2984	*nr_waiters = atomic_read(&rq->nr_iowait);
2985	*load = rq->load.weight;
2986}
2987
2988#ifdef CONFIG_SMP
2989
2990/*
2991 * sched_exec - execve() is a valuable balancing opportunity, because at
2992 * this point the task has the smallest effective memory and cache footprint.
2993 */
2994void sched_exec(void)
2995{
2996	struct task_struct *p = current;
2997	unsigned long flags;
2998	int dest_cpu;
2999
3000	raw_spin_lock_irqsave(&p->pi_lock, flags);
3001	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3002	if (dest_cpu == smp_processor_id())
3003		goto unlock;
3004
3005	if (likely(cpu_active(dest_cpu))) {
3006		struct migration_arg arg = { p, dest_cpu };
3007
3008		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3009		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3010		return;
3011	}
3012unlock:
3013	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3014}
3015
3016#endif
3017
3018DEFINE_PER_CPU(struct kernel_stat, kstat);
3019DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3020
3021EXPORT_PER_CPU_SYMBOL(kstat);
3022EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3023
3024/*
3025 * The function fair_sched_class.update_curr accesses the struct curr
3026 * and its field curr->exec_start; when called from task_sched_runtime(),
3027 * we observe a high rate of cache misses in practice.
3028 * Prefetching this data results in improved performance.
3029 */
3030static inline void prefetch_curr_exec_start(struct task_struct *p)
3031{
3032#ifdef CONFIG_FAIR_GROUP_SCHED
3033	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3034#else
3035	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3036#endif
3037	prefetch(curr);
3038	prefetch(&curr->exec_start);
3039}
3040
3041/*
3042 * Return accounted runtime for the task.
3043 * In case the task is currently running, return the runtime plus current's
3044 * pending runtime that have not been accounted yet.
3045 */
3046unsigned long long task_sched_runtime(struct task_struct *p)
3047{
3048	struct rq_flags rf;
3049	struct rq *rq;
3050	u64 ns;
3051
3052#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3053	/*
3054	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3055	 * So we have a optimization chance when the task's delta_exec is 0.
3056	 * Reading ->on_cpu is racy, but this is ok.
3057	 *
3058	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3059	 * If we race with it entering CPU, unaccounted time is 0. This is
3060	 * indistinguishable from the read occurring a few cycles earlier.
3061	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3062	 * been accounted, so we're correct here as well.
3063	 */
3064	if (!p->on_cpu || !task_on_rq_queued(p))
3065		return p->se.sum_exec_runtime;
3066#endif
3067
3068	rq = task_rq_lock(p, &rf);
3069	/*
3070	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3071	 * project cycles that may never be accounted to this
3072	 * thread, breaking clock_gettime().
3073	 */
3074	if (task_current(rq, p) && task_on_rq_queued(p)) {
3075		prefetch_curr_exec_start(p);
3076		update_rq_clock(rq);
3077		p->sched_class->update_curr(rq);
3078	}
3079	ns = p->se.sum_exec_runtime;
3080	task_rq_unlock(rq, p, &rf);
3081
3082	return ns;
3083}
3084
3085/*
3086 * This function gets called by the timer code, with HZ frequency.
3087 * We call it with interrupts disabled.
3088 */
3089void scheduler_tick(void)
3090{
3091	int cpu = smp_processor_id();
3092	struct rq *rq = cpu_rq(cpu);
3093	struct task_struct *curr = rq->curr;
3094	struct rq_flags rf;
 
3095
 
3096	sched_clock_tick();
3097
3098	rq_lock(rq, &rf);
3099
3100	update_rq_clock(rq);
 
 
3101	curr->sched_class->task_tick(rq, curr, 0);
3102	cpu_load_update_active(rq);
3103	calc_global_load_tick(rq);
 
3104
3105	rq_unlock(rq, &rf);
3106
3107	perf_event_task_tick();
3108
3109#ifdef CONFIG_SMP
3110	rq->idle_balance = idle_cpu(cpu);
3111	trigger_load_balance(rq);
3112#endif
3113}
3114
3115#ifdef CONFIG_NO_HZ_FULL
3116
3117struct tick_work {
3118	int			cpu;
 
3119	struct delayed_work	work;
3120};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3121
3122static struct tick_work __percpu *tick_work_cpu;
3123
3124static void sched_tick_remote(struct work_struct *work)
3125{
3126	struct delayed_work *dwork = to_delayed_work(work);
3127	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3128	int cpu = twork->cpu;
3129	struct rq *rq = cpu_rq(cpu);
 
3130	struct rq_flags rf;
 
 
3131
3132	/*
3133	 * Handle the tick only if it appears the remote CPU is running in full
3134	 * dynticks mode. The check is racy by nature, but missing a tick or
3135	 * having one too much is no big deal because the scheduler tick updates
3136	 * statistics and checks timeslices in a time-independent way, regardless
3137	 * of when exactly it is running.
3138	 */
3139	if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
3140		struct task_struct *curr;
3141		u64 delta;
3142
3143		rq_lock_irq(rq, &rf);
3144		update_rq_clock(rq);
3145		curr = rq->curr;
3146		delta = rq_clock_task(rq) - curr->se.exec_start;
3147
 
 
 
3148		/*
3149		 * Make sure the next tick runs within a reasonable
3150		 * amount of time.
3151		 */
 
3152		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3153		curr->sched_class->task_tick(rq, curr, 0);
3154		rq_unlock_irq(rq, &rf);
3155	}
 
 
 
 
 
 
3156
3157	/*
3158	 * Run the remote tick once per second (1Hz). This arbitrary
3159	 * frequency is large enough to avoid overload but short enough
3160	 * to keep scheduler internal stats reasonably up to date.
 
3161	 */
3162	queue_delayed_work(system_unbound_wq, dwork, HZ);
 
 
 
3163}
3164
3165static void sched_tick_start(int cpu)
3166{
 
3167	struct tick_work *twork;
3168
3169	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3170		return;
3171
3172	WARN_ON_ONCE(!tick_work_cpu);
3173
3174	twork = per_cpu_ptr(tick_work_cpu, cpu);
3175	twork->cpu = cpu;
3176	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3177	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
 
 
 
 
3178}
3179
3180#ifdef CONFIG_HOTPLUG_CPU
3181static void sched_tick_stop(int cpu)
3182{
3183	struct tick_work *twork;
 
3184
3185	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3186		return;
3187
3188	WARN_ON_ONCE(!tick_work_cpu);
3189
3190	twork = per_cpu_ptr(tick_work_cpu, cpu);
3191	cancel_delayed_work_sync(&twork->work);
 
 
 
3192}
3193#endif /* CONFIG_HOTPLUG_CPU */
3194
3195int __init sched_tick_offload_init(void)
3196{
3197	tick_work_cpu = alloc_percpu(struct tick_work);
3198	BUG_ON(!tick_work_cpu);
3199
3200	return 0;
3201}
3202
3203#else /* !CONFIG_NO_HZ_FULL */
3204static inline void sched_tick_start(int cpu) { }
3205static inline void sched_tick_stop(int cpu) { }
3206#endif
3207
3208#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3209				defined(CONFIG_PREEMPT_TRACER))
3210/*
3211 * If the value passed in is equal to the current preempt count
3212 * then we just disabled preemption. Start timing the latency.
3213 */
3214static inline void preempt_latency_start(int val)
3215{
3216	if (preempt_count() == val) {
3217		unsigned long ip = get_lock_parent_ip();
3218#ifdef CONFIG_DEBUG_PREEMPT
3219		current->preempt_disable_ip = ip;
3220#endif
3221		trace_preempt_off(CALLER_ADDR0, ip);
3222	}
3223}
3224
3225void preempt_count_add(int val)
3226{
3227#ifdef CONFIG_DEBUG_PREEMPT
3228	/*
3229	 * Underflow?
3230	 */
3231	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3232		return;
3233#endif
3234	__preempt_count_add(val);
3235#ifdef CONFIG_DEBUG_PREEMPT
3236	/*
3237	 * Spinlock count overflowing soon?
3238	 */
3239	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3240				PREEMPT_MASK - 10);
3241#endif
3242	preempt_latency_start(val);
3243}
3244EXPORT_SYMBOL(preempt_count_add);
3245NOKPROBE_SYMBOL(preempt_count_add);
3246
3247/*
3248 * If the value passed in equals to the current preempt count
3249 * then we just enabled preemption. Stop timing the latency.
3250 */
3251static inline void preempt_latency_stop(int val)
3252{
3253	if (preempt_count() == val)
3254		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3255}
3256
3257void preempt_count_sub(int val)
3258{
3259#ifdef CONFIG_DEBUG_PREEMPT
3260	/*
3261	 * Underflow?
3262	 */
3263	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3264		return;
3265	/*
3266	 * Is the spinlock portion underflowing?
3267	 */
3268	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3269			!(preempt_count() & PREEMPT_MASK)))
3270		return;
3271#endif
3272
3273	preempt_latency_stop(val);
3274	__preempt_count_sub(val);
3275}
3276EXPORT_SYMBOL(preempt_count_sub);
3277NOKPROBE_SYMBOL(preempt_count_sub);
3278
3279#else
3280static inline void preempt_latency_start(int val) { }
3281static inline void preempt_latency_stop(int val) { }
3282#endif
3283
3284static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3285{
3286#ifdef CONFIG_DEBUG_PREEMPT
3287	return p->preempt_disable_ip;
3288#else
3289	return 0;
3290#endif
3291}
3292
3293/*
3294 * Print scheduling while atomic bug:
3295 */
3296static noinline void __schedule_bug(struct task_struct *prev)
3297{
3298	/* Save this before calling printk(), since that will clobber it */
3299	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3300
3301	if (oops_in_progress)
3302		return;
3303
3304	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3305		prev->comm, prev->pid, preempt_count());
3306
3307	debug_show_held_locks(prev);
3308	print_modules();
3309	if (irqs_disabled())
3310		print_irqtrace_events(prev);
3311	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3312	    && in_atomic_preempt_off()) {
3313		pr_err("Preemption disabled at:");
3314		print_ip_sym(preempt_disable_ip);
3315		pr_cont("\n");
3316	}
3317	if (panic_on_warn)
3318		panic("scheduling while atomic\n");
3319
3320	dump_stack();
3321	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3322}
3323
3324/*
3325 * Various schedule()-time debugging checks and statistics:
3326 */
3327static inline void schedule_debug(struct task_struct *prev)
3328{
3329#ifdef CONFIG_SCHED_STACK_END_CHECK
3330	if (task_stack_end_corrupted(prev))
3331		panic("corrupted stack end detected inside scheduler\n");
 
 
 
 
 
 
 
 
 
 
 
 
3332#endif
3333
3334	if (unlikely(in_atomic_preempt_off())) {
3335		__schedule_bug(prev);
3336		preempt_count_set(PREEMPT_DISABLED);
3337	}
3338	rcu_sleep_check();
3339
3340	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3341
3342	schedstat_inc(this_rq()->sched_count);
3343}
3344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3345/*
3346 * Pick up the highest-prio task:
3347 */
3348static inline struct task_struct *
3349pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3350{
3351	const struct sched_class *class;
3352	struct task_struct *p;
3353
3354	/*
3355	 * Optimization: we know that if all tasks are in the fair class we can
3356	 * call that function directly, but only if the @prev task wasn't of a
3357	 * higher scheduling class, because otherwise those loose the
3358	 * opportunity to pull in more work from other CPUs.
3359	 */
3360	if (likely((prev->sched_class == &idle_sched_class ||
3361		    prev->sched_class == &fair_sched_class) &&
3362		   rq->nr_running == rq->cfs.h_nr_running)) {
3363
3364		p = fair_sched_class.pick_next_task(rq, prev, rf);
3365		if (unlikely(p == RETRY_TASK))
3366			goto again;
3367
3368		/* Assumes fair_sched_class->next == idle_sched_class */
3369		if (unlikely(!p))
3370			p = idle_sched_class.pick_next_task(rq, prev, rf);
 
 
3371
3372		return p;
3373	}
3374
3375again:
 
 
3376	for_each_class(class) {
3377		p = class->pick_next_task(rq, prev, rf);
3378		if (p) {
3379			if (unlikely(p == RETRY_TASK))
3380				goto again;
3381			return p;
3382		}
3383	}
3384
3385	/* The idle class should always have a runnable task: */
3386	BUG();
3387}
3388
3389/*
3390 * __schedule() is the main scheduler function.
3391 *
3392 * The main means of driving the scheduler and thus entering this function are:
3393 *
3394 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3395 *
3396 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3397 *      paths. For example, see arch/x86/entry_64.S.
3398 *
3399 *      To drive preemption between tasks, the scheduler sets the flag in timer
3400 *      interrupt handler scheduler_tick().
3401 *
3402 *   3. Wakeups don't really cause entry into schedule(). They add a
3403 *      task to the run-queue and that's it.
3404 *
3405 *      Now, if the new task added to the run-queue preempts the current
3406 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3407 *      called on the nearest possible occasion:
3408 *
3409 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3410 *
3411 *         - in syscall or exception context, at the next outmost
3412 *           preempt_enable(). (this might be as soon as the wake_up()'s
3413 *           spin_unlock()!)
3414 *
3415 *         - in IRQ context, return from interrupt-handler to
3416 *           preemptible context
3417 *
3418 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3419 *         then at the next:
3420 *
3421 *          - cond_resched() call
3422 *          - explicit schedule() call
3423 *          - return from syscall or exception to user-space
3424 *          - return from interrupt-handler to user-space
3425 *
3426 * WARNING: must be called with preemption disabled!
3427 */
3428static void __sched notrace __schedule(bool preempt)
3429{
3430	struct task_struct *prev, *next;
3431	unsigned long *switch_count;
 
3432	struct rq_flags rf;
3433	struct rq *rq;
3434	int cpu;
3435
3436	cpu = smp_processor_id();
3437	rq = cpu_rq(cpu);
3438	prev = rq->curr;
3439
3440	schedule_debug(prev);
3441
3442	if (sched_feat(HRTICK))
3443		hrtick_clear(rq);
3444
3445	local_irq_disable();
3446	rcu_note_context_switch(preempt);
3447
3448	/*
3449	 * Make sure that signal_pending_state()->signal_pending() below
3450	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3451	 * done by the caller to avoid the race with signal_wake_up().
3452	 *
3453	 * The membarrier system call requires a full memory barrier
 
 
 
 
 
 
 
3454	 * after coming from user-space, before storing to rq->curr.
3455	 */
3456	rq_lock(rq, &rf);
3457	smp_mb__after_spinlock();
3458
3459	/* Promote REQ to ACT */
3460	rq->clock_update_flags <<= 1;
3461	update_rq_clock(rq);
3462
3463	switch_count = &prev->nivcsw;
3464	if (!preempt && prev->state) {
3465		if (unlikely(signal_pending_state(prev->state, prev))) {
 
 
 
 
 
 
 
 
 
3466			prev->state = TASK_RUNNING;
3467		} else {
3468			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3469			prev->on_rq = 0;
 
 
3470
3471			if (prev->in_iowait) {
3472				atomic_inc(&rq->nr_iowait);
3473				delayacct_blkio_start();
3474			}
3475
3476			/*
3477			 * If a worker went to sleep, notify and ask workqueue
3478			 * whether it wants to wake up a task to maintain
3479			 * concurrency.
 
 
 
 
 
 
3480			 */
3481			if (prev->flags & PF_WQ_WORKER) {
3482				struct task_struct *to_wakeup;
3483
3484				to_wakeup = wq_worker_sleeping(prev);
3485				if (to_wakeup)
3486					try_to_wake_up_local(to_wakeup, &rf);
3487			}
3488		}
3489		switch_count = &prev->nvcsw;
3490	}
3491
3492	next = pick_next_task(rq, prev, &rf);
3493	clear_tsk_need_resched(prev);
3494	clear_preempt_need_resched();
3495
3496	if (likely(prev != next)) {
3497		rq->nr_switches++;
3498		rq->curr = next;
 
 
 
 
3499		/*
3500		 * The membarrier system call requires each architecture
3501		 * to have a full memory barrier after updating
3502		 * rq->curr, before returning to user-space.
3503		 *
3504		 * Here are the schemes providing that barrier on the
3505		 * various architectures:
3506		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3507		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3508		 * - finish_lock_switch() for weakly-ordered
3509		 *   architectures where spin_unlock is a full barrier,
3510		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3511		 *   is a RELEASE barrier),
3512		 */
3513		++*switch_count;
3514
 
 
3515		trace_sched_switch(preempt, prev, next);
3516
3517		/* Also unlocks the rq: */
3518		rq = context_switch(rq, prev, next, &rf);
3519	} else {
3520		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3521		rq_unlock_irq(rq, &rf);
3522	}
3523
3524	balance_callback(rq);
3525}
3526
3527void __noreturn do_task_dead(void)
3528{
3529	/* Causes final put_task_struct in finish_task_switch(): */
3530	set_special_state(TASK_DEAD);
3531
3532	/* Tell freezer to ignore us: */
3533	current->flags |= PF_NOFREEZE;
3534
3535	__schedule(false);
3536	BUG();
3537
3538	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3539	for (;;)
3540		cpu_relax();
3541}
3542
3543static inline void sched_submit_work(struct task_struct *tsk)
3544{
3545	if (!tsk->state || tsk_is_pi_blocked(tsk))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3546		return;
 
3547	/*
3548	 * If we are going to sleep and we have plugged IO queued,
3549	 * make sure to submit it to avoid deadlocks.
3550	 */
3551	if (blk_needs_flush_plug(tsk))
3552		blk_schedule_flush_plug(tsk);
3553}
3554
 
 
 
 
 
 
 
 
 
 
3555asmlinkage __visible void __sched schedule(void)
3556{
3557	struct task_struct *tsk = current;
3558
3559	sched_submit_work(tsk);
3560	do {
3561		preempt_disable();
3562		__schedule(false);
3563		sched_preempt_enable_no_resched();
3564	} while (need_resched());
 
3565}
3566EXPORT_SYMBOL(schedule);
3567
3568/*
3569 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3570 * state (have scheduled out non-voluntarily) by making sure that all
3571 * tasks have either left the run queue or have gone into user space.
3572 * As idle tasks do not do either, they must not ever be preempted
3573 * (schedule out non-voluntarily).
3574 *
3575 * schedule_idle() is similar to schedule_preempt_disable() except that it
3576 * never enables preemption because it does not call sched_submit_work().
3577 */
3578void __sched schedule_idle(void)
3579{
3580	/*
3581	 * As this skips calling sched_submit_work(), which the idle task does
3582	 * regardless because that function is a nop when the task is in a
3583	 * TASK_RUNNING state, make sure this isn't used someplace that the
3584	 * current task can be in any other state. Note, idle is always in the
3585	 * TASK_RUNNING state.
3586	 */
3587	WARN_ON_ONCE(current->state);
3588	do {
3589		__schedule(false);
3590	} while (need_resched());
3591}
3592
3593#ifdef CONFIG_CONTEXT_TRACKING
3594asmlinkage __visible void __sched schedule_user(void)
3595{
3596	/*
3597	 * If we come here after a random call to set_need_resched(),
3598	 * or we have been woken up remotely but the IPI has not yet arrived,
3599	 * we haven't yet exited the RCU idle mode. Do it here manually until
3600	 * we find a better solution.
3601	 *
3602	 * NB: There are buggy callers of this function.  Ideally we
3603	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3604	 * too frequently to make sense yet.
3605	 */
3606	enum ctx_state prev_state = exception_enter();
3607	schedule();
3608	exception_exit(prev_state);
3609}
3610#endif
3611
3612/**
3613 * schedule_preempt_disabled - called with preemption disabled
3614 *
3615 * Returns with preemption disabled. Note: preempt_count must be 1
3616 */
3617void __sched schedule_preempt_disabled(void)
3618{
3619	sched_preempt_enable_no_resched();
3620	schedule();
3621	preempt_disable();
3622}
3623
3624static void __sched notrace preempt_schedule_common(void)
3625{
3626	do {
3627		/*
3628		 * Because the function tracer can trace preempt_count_sub()
3629		 * and it also uses preempt_enable/disable_notrace(), if
3630		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3631		 * by the function tracer will call this function again and
3632		 * cause infinite recursion.
3633		 *
3634		 * Preemption must be disabled here before the function
3635		 * tracer can trace. Break up preempt_disable() into two
3636		 * calls. One to disable preemption without fear of being
3637		 * traced. The other to still record the preemption latency,
3638		 * which can also be traced by the function tracer.
3639		 */
3640		preempt_disable_notrace();
3641		preempt_latency_start(1);
3642		__schedule(true);
3643		preempt_latency_stop(1);
3644		preempt_enable_no_resched_notrace();
3645
3646		/*
3647		 * Check again in case we missed a preemption opportunity
3648		 * between schedule and now.
3649		 */
3650	} while (need_resched());
3651}
3652
3653#ifdef CONFIG_PREEMPT
3654/*
3655 * this is the entry point to schedule() from in-kernel preemption
3656 * off of preempt_enable. Kernel preemptions off return from interrupt
3657 * occur there and call schedule directly.
3658 */
3659asmlinkage __visible void __sched notrace preempt_schedule(void)
3660{
3661	/*
3662	 * If there is a non-zero preempt_count or interrupts are disabled,
3663	 * we do not want to preempt the current task. Just return..
3664	 */
3665	if (likely(!preemptible()))
3666		return;
3667
3668	preempt_schedule_common();
3669}
3670NOKPROBE_SYMBOL(preempt_schedule);
3671EXPORT_SYMBOL(preempt_schedule);
3672
3673/**
3674 * preempt_schedule_notrace - preempt_schedule called by tracing
3675 *
3676 * The tracing infrastructure uses preempt_enable_notrace to prevent
3677 * recursion and tracing preempt enabling caused by the tracing
3678 * infrastructure itself. But as tracing can happen in areas coming
3679 * from userspace or just about to enter userspace, a preempt enable
3680 * can occur before user_exit() is called. This will cause the scheduler
3681 * to be called when the system is still in usermode.
3682 *
3683 * To prevent this, the preempt_enable_notrace will use this function
3684 * instead of preempt_schedule() to exit user context if needed before
3685 * calling the scheduler.
3686 */
3687asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3688{
3689	enum ctx_state prev_ctx;
3690
3691	if (likely(!preemptible()))
3692		return;
3693
3694	do {
3695		/*
3696		 * Because the function tracer can trace preempt_count_sub()
3697		 * and it also uses preempt_enable/disable_notrace(), if
3698		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3699		 * by the function tracer will call this function again and
3700		 * cause infinite recursion.
3701		 *
3702		 * Preemption must be disabled here before the function
3703		 * tracer can trace. Break up preempt_disable() into two
3704		 * calls. One to disable preemption without fear of being
3705		 * traced. The other to still record the preemption latency,
3706		 * which can also be traced by the function tracer.
3707		 */
3708		preempt_disable_notrace();
3709		preempt_latency_start(1);
3710		/*
3711		 * Needs preempt disabled in case user_exit() is traced
3712		 * and the tracer calls preempt_enable_notrace() causing
3713		 * an infinite recursion.
3714		 */
3715		prev_ctx = exception_enter();
3716		__schedule(true);
3717		exception_exit(prev_ctx);
3718
3719		preempt_latency_stop(1);
3720		preempt_enable_no_resched_notrace();
3721	} while (need_resched());
3722}
3723EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3724
3725#endif /* CONFIG_PREEMPT */
3726
3727/*
3728 * this is the entry point to schedule() from kernel preemption
3729 * off of irq context.
3730 * Note, that this is called and return with irqs disabled. This will
3731 * protect us against recursive calling from irq.
3732 */
3733asmlinkage __visible void __sched preempt_schedule_irq(void)
3734{
3735	enum ctx_state prev_state;
3736
3737	/* Catch callers which need to be fixed */
3738	BUG_ON(preempt_count() || !irqs_disabled());
3739
3740	prev_state = exception_enter();
3741
3742	do {
3743		preempt_disable();
3744		local_irq_enable();
3745		__schedule(true);
3746		local_irq_disable();
3747		sched_preempt_enable_no_resched();
3748	} while (need_resched());
3749
3750	exception_exit(prev_state);
3751}
3752
3753int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3754			  void *key)
3755{
 
3756	return try_to_wake_up(curr->private, mode, wake_flags);
3757}
3758EXPORT_SYMBOL(default_wake_function);
3759
3760#ifdef CONFIG_RT_MUTEXES
3761
3762static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3763{
3764	if (pi_task)
3765		prio = min(prio, pi_task->prio);
3766
3767	return prio;
3768}
3769
3770static inline int rt_effective_prio(struct task_struct *p, int prio)
3771{
3772	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3773
3774	return __rt_effective_prio(pi_task, prio);
3775}
3776
3777/*
3778 * rt_mutex_setprio - set the current priority of a task
3779 * @p: task to boost
3780 * @pi_task: donor task
3781 *
3782 * This function changes the 'effective' priority of a task. It does
3783 * not touch ->normal_prio like __setscheduler().
3784 *
3785 * Used by the rt_mutex code to implement priority inheritance
3786 * logic. Call site only calls if the priority of the task changed.
3787 */
3788void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3789{
3790	int prio, oldprio, queued, running, queue_flag =
3791		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3792	const struct sched_class *prev_class;
3793	struct rq_flags rf;
3794	struct rq *rq;
3795
3796	/* XXX used to be waiter->prio, not waiter->task->prio */
3797	prio = __rt_effective_prio(pi_task, p->normal_prio);
3798
3799	/*
3800	 * If nothing changed; bail early.
3801	 */
3802	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3803		return;
3804
3805	rq = __task_rq_lock(p, &rf);
3806	update_rq_clock(rq);
3807	/*
3808	 * Set under pi_lock && rq->lock, such that the value can be used under
3809	 * either lock.
3810	 *
3811	 * Note that there is loads of tricky to make this pointer cache work
3812	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3813	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3814	 * task is allowed to run again (and can exit). This ensures the pointer
3815	 * points to a blocked task -- which guaratees the task is present.
3816	 */
3817	p->pi_top_task = pi_task;
3818
3819	/*
3820	 * For FIFO/RR we only need to set prio, if that matches we're done.
3821	 */
3822	if (prio == p->prio && !dl_prio(prio))
3823		goto out_unlock;
3824
3825	/*
3826	 * Idle task boosting is a nono in general. There is one
3827	 * exception, when PREEMPT_RT and NOHZ is active:
3828	 *
3829	 * The idle task calls get_next_timer_interrupt() and holds
3830	 * the timer wheel base->lock on the CPU and another CPU wants
3831	 * to access the timer (probably to cancel it). We can safely
3832	 * ignore the boosting request, as the idle CPU runs this code
3833	 * with interrupts disabled and will complete the lock
3834	 * protected section without being interrupted. So there is no
3835	 * real need to boost.
3836	 */
3837	if (unlikely(p == rq->idle)) {
3838		WARN_ON(p != rq->curr);
3839		WARN_ON(p->pi_blocked_on);
3840		goto out_unlock;
3841	}
3842
3843	trace_sched_pi_setprio(p, pi_task);
3844	oldprio = p->prio;
3845
3846	if (oldprio == prio)
3847		queue_flag &= ~DEQUEUE_MOVE;
3848
3849	prev_class = p->sched_class;
3850	queued = task_on_rq_queued(p);
3851	running = task_current(rq, p);
3852	if (queued)
3853		dequeue_task(rq, p, queue_flag);
3854	if (running)
3855		put_prev_task(rq, p);
3856
3857	/*
3858	 * Boosting condition are:
3859	 * 1. -rt task is running and holds mutex A
3860	 *      --> -dl task blocks on mutex A
3861	 *
3862	 * 2. -dl task is running and holds mutex A
3863	 *      --> -dl task blocks on mutex A and could preempt the
3864	 *          running task
3865	 */
3866	if (dl_prio(prio)) {
3867		if (!dl_prio(p->normal_prio) ||
3868		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
 
3869			p->dl.dl_boosted = 1;
3870			queue_flag |= ENQUEUE_REPLENISH;
3871		} else
3872			p->dl.dl_boosted = 0;
3873		p->sched_class = &dl_sched_class;
3874	} else if (rt_prio(prio)) {
3875		if (dl_prio(oldprio))
3876			p->dl.dl_boosted = 0;
3877		if (oldprio < prio)
3878			queue_flag |= ENQUEUE_HEAD;
3879		p->sched_class = &rt_sched_class;
3880	} else {
3881		if (dl_prio(oldprio))
3882			p->dl.dl_boosted = 0;
3883		if (rt_prio(oldprio))
3884			p->rt.timeout = 0;
3885		p->sched_class = &fair_sched_class;
3886	}
3887
3888	p->prio = prio;
3889
3890	if (queued)
3891		enqueue_task(rq, p, queue_flag);
3892	if (running)
3893		set_curr_task(rq, p);
3894
3895	check_class_changed(rq, p, prev_class, oldprio);
3896out_unlock:
3897	/* Avoid rq from going away on us: */
3898	preempt_disable();
3899	__task_rq_unlock(rq, &rf);
3900
3901	balance_callback(rq);
3902	preempt_enable();
3903}
3904#else
3905static inline int rt_effective_prio(struct task_struct *p, int prio)
3906{
3907	return prio;
3908}
3909#endif
3910
3911void set_user_nice(struct task_struct *p, long nice)
3912{
3913	bool queued, running;
3914	int old_prio, delta;
3915	struct rq_flags rf;
3916	struct rq *rq;
3917
3918	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3919		return;
3920	/*
3921	 * We have to be careful, if called from sys_setpriority(),
3922	 * the task might be in the middle of scheduling on another CPU.
3923	 */
3924	rq = task_rq_lock(p, &rf);
3925	update_rq_clock(rq);
3926
3927	/*
3928	 * The RT priorities are set via sched_setscheduler(), but we still
3929	 * allow the 'normal' nice value to be set - but as expected
3930	 * it wont have any effect on scheduling until the task is
3931	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3932	 */
3933	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3934		p->static_prio = NICE_TO_PRIO(nice);
3935		goto out_unlock;
3936	}
3937	queued = task_on_rq_queued(p);
3938	running = task_current(rq, p);
3939	if (queued)
3940		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3941	if (running)
3942		put_prev_task(rq, p);
3943
3944	p->static_prio = NICE_TO_PRIO(nice);
3945	set_load_weight(p, true);
3946	old_prio = p->prio;
3947	p->prio = effective_prio(p);
3948	delta = p->prio - old_prio;
3949
3950	if (queued) {
3951		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3952		/*
3953		 * If the task increased its priority or is running and
3954		 * lowered its priority, then reschedule its CPU:
3955		 */
3956		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3957			resched_curr(rq);
3958	}
3959	if (running)
3960		set_curr_task(rq, p);
 
 
 
 
 
 
 
3961out_unlock:
3962	task_rq_unlock(rq, p, &rf);
3963}
3964EXPORT_SYMBOL(set_user_nice);
3965
3966/*
3967 * can_nice - check if a task can reduce its nice value
3968 * @p: task
3969 * @nice: nice value
3970 */
3971int can_nice(const struct task_struct *p, const int nice)
3972{
3973	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3974	int nice_rlim = nice_to_rlimit(nice);
3975
3976	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3977		capable(CAP_SYS_NICE));
3978}
3979
3980#ifdef __ARCH_WANT_SYS_NICE
3981
3982/*
3983 * sys_nice - change the priority of the current process.
3984 * @increment: priority increment
3985 *
3986 * sys_setpriority is a more generic, but much slower function that
3987 * does similar things.
3988 */
3989SYSCALL_DEFINE1(nice, int, increment)
3990{
3991	long nice, retval;
3992
3993	/*
3994	 * Setpriority might change our priority at the same moment.
3995	 * We don't have to worry. Conceptually one call occurs first
3996	 * and we have a single winner.
3997	 */
3998	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3999	nice = task_nice(current) + increment;
4000
4001	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4002	if (increment < 0 && !can_nice(current, nice))
4003		return -EPERM;
4004
4005	retval = security_task_setnice(current, nice);
4006	if (retval)
4007		return retval;
4008
4009	set_user_nice(current, nice);
4010	return 0;
4011}
4012
4013#endif
4014
4015/**
4016 * task_prio - return the priority value of a given task.
4017 * @p: the task in question.
4018 *
4019 * Return: The priority value as seen by users in /proc.
4020 * RT tasks are offset by -200. Normal tasks are centered
4021 * around 0, value goes from -16 to +15.
4022 */
4023int task_prio(const struct task_struct *p)
4024{
4025	return p->prio - MAX_RT_PRIO;
4026}
4027
4028/**
4029 * idle_cpu - is a given CPU idle currently?
4030 * @cpu: the processor in question.
4031 *
4032 * Return: 1 if the CPU is currently idle. 0 otherwise.
4033 */
4034int idle_cpu(int cpu)
4035{
4036	struct rq *rq = cpu_rq(cpu);
4037
4038	if (rq->curr != rq->idle)
4039		return 0;
4040
4041	if (rq->nr_running)
4042		return 0;
4043
4044#ifdef CONFIG_SMP
4045	if (!llist_empty(&rq->wake_list))
4046		return 0;
4047#endif
4048
4049	return 1;
4050}
4051
4052/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4053 * idle_task - return the idle task for a given CPU.
4054 * @cpu: the processor in question.
4055 *
4056 * Return: The idle task for the CPU @cpu.
4057 */
4058struct task_struct *idle_task(int cpu)
4059{
4060	return cpu_rq(cpu)->idle;
4061}
4062
4063/**
4064 * find_process_by_pid - find a process with a matching PID value.
4065 * @pid: the pid in question.
4066 *
4067 * The task of @pid, if found. %NULL otherwise.
4068 */
4069static struct task_struct *find_process_by_pid(pid_t pid)
4070{
4071	return pid ? find_task_by_vpid(pid) : current;
4072}
4073
4074/*
4075 * sched_setparam() passes in -1 for its policy, to let the functions
4076 * it calls know not to change it.
4077 */
4078#define SETPARAM_POLICY	-1
4079
4080static void __setscheduler_params(struct task_struct *p,
4081		const struct sched_attr *attr)
4082{
4083	int policy = attr->sched_policy;
4084
4085	if (policy == SETPARAM_POLICY)
4086		policy = p->policy;
4087
4088	p->policy = policy;
4089
4090	if (dl_policy(policy))
4091		__setparam_dl(p, attr);
4092	else if (fair_policy(policy))
4093		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4094
4095	/*
4096	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4097	 * !rt_policy. Always setting this ensures that things like
4098	 * getparam()/getattr() don't report silly values for !rt tasks.
4099	 */
4100	p->rt_priority = attr->sched_priority;
4101	p->normal_prio = normal_prio(p);
4102	set_load_weight(p, true);
4103}
4104
4105/* Actually do priority change: must hold pi & rq lock. */
4106static void __setscheduler(struct rq *rq, struct task_struct *p,
4107			   const struct sched_attr *attr, bool keep_boost)
4108{
 
 
 
 
 
 
 
4109	__setscheduler_params(p, attr);
4110
4111	/*
4112	 * Keep a potential priority boosting if called from
4113	 * sched_setscheduler().
4114	 */
4115	p->prio = normal_prio(p);
4116	if (keep_boost)
4117		p->prio = rt_effective_prio(p, p->prio);
4118
4119	if (dl_prio(p->prio))
4120		p->sched_class = &dl_sched_class;
4121	else if (rt_prio(p->prio))
4122		p->sched_class = &rt_sched_class;
4123	else
4124		p->sched_class = &fair_sched_class;
4125}
4126
4127/*
4128 * Check the target process has a UID that matches the current process's:
4129 */
4130static bool check_same_owner(struct task_struct *p)
4131{
4132	const struct cred *cred = current_cred(), *pcred;
4133	bool match;
4134
4135	rcu_read_lock();
4136	pcred = __task_cred(p);
4137	match = (uid_eq(cred->euid, pcred->euid) ||
4138		 uid_eq(cred->euid, pcred->uid));
4139	rcu_read_unlock();
4140	return match;
4141}
4142
4143static int __sched_setscheduler(struct task_struct *p,
4144				const struct sched_attr *attr,
4145				bool user, bool pi)
4146{
4147	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4148		      MAX_RT_PRIO - 1 - attr->sched_priority;
4149	int retval, oldprio, oldpolicy = -1, queued, running;
4150	int new_effective_prio, policy = attr->sched_policy;
4151	const struct sched_class *prev_class;
4152	struct rq_flags rf;
4153	int reset_on_fork;
4154	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4155	struct rq *rq;
4156
4157	/* The pi code expects interrupts enabled */
4158	BUG_ON(pi && in_interrupt());
4159recheck:
4160	/* Double check policy once rq lock held: */
4161	if (policy < 0) {
4162		reset_on_fork = p->sched_reset_on_fork;
4163		policy = oldpolicy = p->policy;
4164	} else {
4165		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4166
4167		if (!valid_policy(policy))
4168			return -EINVAL;
4169	}
4170
4171	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4172		return -EINVAL;
4173
4174	/*
4175	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4176	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4177	 * SCHED_BATCH and SCHED_IDLE is 0.
4178	 */
4179	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4180	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4181		return -EINVAL;
4182	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4183	    (rt_policy(policy) != (attr->sched_priority != 0)))
4184		return -EINVAL;
4185
4186	/*
4187	 * Allow unprivileged RT tasks to decrease priority:
4188	 */
4189	if (user && !capable(CAP_SYS_NICE)) {
4190		if (fair_policy(policy)) {
4191			if (attr->sched_nice < task_nice(p) &&
4192			    !can_nice(p, attr->sched_nice))
4193				return -EPERM;
4194		}
4195
4196		if (rt_policy(policy)) {
4197			unsigned long rlim_rtprio =
4198					task_rlimit(p, RLIMIT_RTPRIO);
4199
4200			/* Can't set/change the rt policy: */
4201			if (policy != p->policy && !rlim_rtprio)
4202				return -EPERM;
4203
4204			/* Can't increase priority: */
4205			if (attr->sched_priority > p->rt_priority &&
4206			    attr->sched_priority > rlim_rtprio)
4207				return -EPERM;
4208		}
4209
4210		 /*
4211		  * Can't set/change SCHED_DEADLINE policy at all for now
4212		  * (safest behavior); in the future we would like to allow
4213		  * unprivileged DL tasks to increase their relative deadline
4214		  * or reduce their runtime (both ways reducing utilization)
4215		  */
4216		if (dl_policy(policy))
4217			return -EPERM;
4218
4219		/*
4220		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4221		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4222		 */
4223		if (idle_policy(p->policy) && !idle_policy(policy)) {
4224			if (!can_nice(p, task_nice(p)))
4225				return -EPERM;
4226		}
4227
4228		/* Can't change other user's priorities: */
4229		if (!check_same_owner(p))
4230			return -EPERM;
4231
4232		/* Normal users shall not reset the sched_reset_on_fork flag: */
4233		if (p->sched_reset_on_fork && !reset_on_fork)
4234			return -EPERM;
4235	}
4236
4237	if (user) {
4238		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4239			return -EINVAL;
4240
4241		retval = security_task_setscheduler(p);
4242		if (retval)
4243			return retval;
4244	}
4245
 
 
 
 
 
 
 
 
 
 
4246	/*
4247	 * Make sure no PI-waiters arrive (or leave) while we are
4248	 * changing the priority of the task:
4249	 *
4250	 * To be able to change p->policy safely, the appropriate
4251	 * runqueue lock must be held.
4252	 */
4253	rq = task_rq_lock(p, &rf);
4254	update_rq_clock(rq);
4255
4256	/*
4257	 * Changing the policy of the stop threads its a very bad idea:
4258	 */
4259	if (p == rq->stop) {
4260		task_rq_unlock(rq, p, &rf);
4261		return -EINVAL;
4262	}
4263
4264	/*
4265	 * If not changing anything there's no need to proceed further,
4266	 * but store a possible modification of reset_on_fork.
4267	 */
4268	if (unlikely(policy == p->policy)) {
4269		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4270			goto change;
4271		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4272			goto change;
4273		if (dl_policy(policy) && dl_param_changed(p, attr))
4274			goto change;
 
 
4275
4276		p->sched_reset_on_fork = reset_on_fork;
4277		task_rq_unlock(rq, p, &rf);
4278		return 0;
4279	}
4280change:
4281
4282	if (user) {
4283#ifdef CONFIG_RT_GROUP_SCHED
4284		/*
4285		 * Do not allow realtime tasks into groups that have no runtime
4286		 * assigned.
4287		 */
4288		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4289				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4290				!task_group_is_autogroup(task_group(p))) {
4291			task_rq_unlock(rq, p, &rf);
4292			return -EPERM;
4293		}
4294#endif
4295#ifdef CONFIG_SMP
4296		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4297				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4298			cpumask_t *span = rq->rd->span;
4299
4300			/*
4301			 * Don't allow tasks with an affinity mask smaller than
4302			 * the entire root_domain to become SCHED_DEADLINE. We
4303			 * will also fail if there's no bandwidth available.
4304			 */
4305			if (!cpumask_subset(span, &p->cpus_allowed) ||
4306			    rq->rd->dl_bw.bw == 0) {
4307				task_rq_unlock(rq, p, &rf);
4308				return -EPERM;
4309			}
4310		}
4311#endif
4312	}
4313
4314	/* Re-check policy now with rq lock held: */
4315	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4316		policy = oldpolicy = -1;
4317		task_rq_unlock(rq, p, &rf);
 
 
4318		goto recheck;
4319	}
4320
4321	/*
4322	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4323	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4324	 * is available.
4325	 */
4326	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4327		task_rq_unlock(rq, p, &rf);
4328		return -EBUSY;
4329	}
4330
4331	p->sched_reset_on_fork = reset_on_fork;
4332	oldprio = p->prio;
4333
4334	if (pi) {
4335		/*
4336		 * Take priority boosted tasks into account. If the new
4337		 * effective priority is unchanged, we just store the new
4338		 * normal parameters and do not touch the scheduler class and
4339		 * the runqueue. This will be done when the task deboost
4340		 * itself.
4341		 */
4342		new_effective_prio = rt_effective_prio(p, newprio);
4343		if (new_effective_prio == oldprio)
4344			queue_flags &= ~DEQUEUE_MOVE;
4345	}
4346
4347	queued = task_on_rq_queued(p);
4348	running = task_current(rq, p);
4349	if (queued)
4350		dequeue_task(rq, p, queue_flags);
4351	if (running)
4352		put_prev_task(rq, p);
4353
4354	prev_class = p->sched_class;
 
4355	__setscheduler(rq, p, attr, pi);
 
4356
4357	if (queued) {
4358		/*
4359		 * We enqueue to tail when the priority of a task is
4360		 * increased (user space view).
4361		 */
4362		if (oldprio < p->prio)
4363			queue_flags |= ENQUEUE_HEAD;
4364
4365		enqueue_task(rq, p, queue_flags);
4366	}
4367	if (running)
4368		set_curr_task(rq, p);
4369
4370	check_class_changed(rq, p, prev_class, oldprio);
4371
4372	/* Avoid rq from going away on us: */
4373	preempt_disable();
4374	task_rq_unlock(rq, p, &rf);
4375
4376	if (pi)
 
4377		rt_mutex_adjust_pi(p);
 
4378
4379	/* Run balance callbacks after we've adjusted the PI chain: */
4380	balance_callback(rq);
4381	preempt_enable();
4382
4383	return 0;
 
 
 
 
 
 
4384}
4385
4386static int _sched_setscheduler(struct task_struct *p, int policy,
4387			       const struct sched_param *param, bool check)
4388{
4389	struct sched_attr attr = {
4390		.sched_policy   = policy,
4391		.sched_priority = param->sched_priority,
4392		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4393	};
4394
4395	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4396	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4397		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4398		policy &= ~SCHED_RESET_ON_FORK;
4399		attr.sched_policy = policy;
4400	}
4401
4402	return __sched_setscheduler(p, &attr, check, true);
4403}
4404/**
4405 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4406 * @p: the task in question.
4407 * @policy: new policy.
4408 * @param: structure containing the new RT priority.
4409 *
 
 
4410 * Return: 0 on success. An error code otherwise.
4411 *
4412 * NOTE that the task may be already dead.
4413 */
4414int sched_setscheduler(struct task_struct *p, int policy,
4415		       const struct sched_param *param)
4416{
4417	return _sched_setscheduler(p, policy, param, true);
4418}
4419EXPORT_SYMBOL_GPL(sched_setscheduler);
4420
4421int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4422{
4423	return __sched_setscheduler(p, attr, true, true);
4424}
4425EXPORT_SYMBOL_GPL(sched_setattr);
4426
4427int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4428{
4429	return __sched_setscheduler(p, attr, false, true);
4430}
4431
4432/**
4433 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4434 * @p: the task in question.
4435 * @policy: new policy.
4436 * @param: structure containing the new RT priority.
4437 *
4438 * Just like sched_setscheduler, only don't bother checking if the
4439 * current context has permission.  For example, this is needed in
4440 * stop_machine(): we create temporary high priority worker threads,
4441 * but our caller might not have that capability.
4442 *
4443 * Return: 0 on success. An error code otherwise.
4444 */
4445int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4446			       const struct sched_param *param)
4447{
4448	return _sched_setscheduler(p, policy, param, false);
4449}
4450EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4451
4452static int
4453do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4454{
4455	struct sched_param lparam;
4456	struct task_struct *p;
4457	int retval;
4458
4459	if (!param || pid < 0)
4460		return -EINVAL;
4461	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4462		return -EFAULT;
4463
4464	rcu_read_lock();
4465	retval = -ESRCH;
4466	p = find_process_by_pid(pid);
4467	if (p != NULL)
4468		retval = sched_setscheduler(p, policy, &lparam);
4469	rcu_read_unlock();
4470
 
 
 
 
 
4471	return retval;
4472}
4473
4474/*
4475 * Mimics kernel/events/core.c perf_copy_attr().
4476 */
4477static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4478{
4479	u32 size;
4480	int ret;
4481
4482	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4483		return -EFAULT;
4484
4485	/* Zero the full structure, so that a short copy will be nice: */
4486	memset(attr, 0, sizeof(*attr));
4487
4488	ret = get_user(size, &uattr->size);
4489	if (ret)
4490		return ret;
4491
4492	/* Bail out on silly large: */
4493	if (size > PAGE_SIZE)
4494		goto err_size;
4495
4496	/* ABI compatibility quirk: */
4497	if (!size)
4498		size = SCHED_ATTR_SIZE_VER0;
4499
4500	if (size < SCHED_ATTR_SIZE_VER0)
4501		goto err_size;
4502
4503	/*
4504	 * If we're handed a bigger struct than we know of,
4505	 * ensure all the unknown bits are 0 - i.e. new
4506	 * user-space does not rely on any kernel feature
4507	 * extensions we dont know about yet.
4508	 */
4509	if (size > sizeof(*attr)) {
4510		unsigned char __user *addr;
4511		unsigned char __user *end;
4512		unsigned char val;
4513
4514		addr = (void __user *)uattr + sizeof(*attr);
4515		end  = (void __user *)uattr + size;
4516
4517		for (; addr < end; addr++) {
4518			ret = get_user(val, addr);
4519			if (ret)
4520				return ret;
4521			if (val)
4522				goto err_size;
4523		}
4524		size = sizeof(*attr);
4525	}
4526
4527	ret = copy_from_user(attr, uattr, size);
4528	if (ret)
4529		return -EFAULT;
4530
4531	/*
4532	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4533	 * to be strict and return an error on out-of-bounds values?
4534	 */
4535	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4536
4537	return 0;
4538
4539err_size:
4540	put_user(sizeof(*attr), &uattr->size);
4541	return -E2BIG;
4542}
4543
4544/**
4545 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4546 * @pid: the pid in question.
4547 * @policy: new policy.
4548 * @param: structure containing the new RT priority.
4549 *
4550 * Return: 0 on success. An error code otherwise.
4551 */
4552SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4553{
4554	if (policy < 0)
4555		return -EINVAL;
4556
4557	return do_sched_setscheduler(pid, policy, param);
4558}
4559
4560/**
4561 * sys_sched_setparam - set/change the RT priority of a thread
4562 * @pid: the pid in question.
4563 * @param: structure containing the new RT priority.
4564 *
4565 * Return: 0 on success. An error code otherwise.
4566 */
4567SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4568{
4569	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4570}
4571
4572/**
4573 * sys_sched_setattr - same as above, but with extended sched_attr
4574 * @pid: the pid in question.
4575 * @uattr: structure containing the extended parameters.
4576 * @flags: for future extension.
4577 */
4578SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4579			       unsigned int, flags)
4580{
4581	struct sched_attr attr;
4582	struct task_struct *p;
4583	int retval;
4584
4585	if (!uattr || pid < 0 || flags)
4586		return -EINVAL;
4587
4588	retval = sched_copy_attr(uattr, &attr);
4589	if (retval)
4590		return retval;
4591
4592	if ((int)attr.sched_policy < 0)
4593		return -EINVAL;
 
 
4594
4595	rcu_read_lock();
4596	retval = -ESRCH;
4597	p = find_process_by_pid(pid);
4598	if (p != NULL)
4599		retval = sched_setattr(p, &attr);
4600	rcu_read_unlock();
4601
 
 
 
 
 
4602	return retval;
4603}
4604
4605/**
4606 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4607 * @pid: the pid in question.
4608 *
4609 * Return: On success, the policy of the thread. Otherwise, a negative error
4610 * code.
4611 */
4612SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4613{
4614	struct task_struct *p;
4615	int retval;
4616
4617	if (pid < 0)
4618		return -EINVAL;
4619
4620	retval = -ESRCH;
4621	rcu_read_lock();
4622	p = find_process_by_pid(pid);
4623	if (p) {
4624		retval = security_task_getscheduler(p);
4625		if (!retval)
4626			retval = p->policy
4627				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4628	}
4629	rcu_read_unlock();
4630	return retval;
4631}
4632
4633/**
4634 * sys_sched_getparam - get the RT priority of a thread
4635 * @pid: the pid in question.
4636 * @param: structure containing the RT priority.
4637 *
4638 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4639 * code.
4640 */
4641SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4642{
4643	struct sched_param lp = { .sched_priority = 0 };
4644	struct task_struct *p;
4645	int retval;
4646
4647	if (!param || pid < 0)
4648		return -EINVAL;
4649
4650	rcu_read_lock();
4651	p = find_process_by_pid(pid);
4652	retval = -ESRCH;
4653	if (!p)
4654		goto out_unlock;
4655
4656	retval = security_task_getscheduler(p);
4657	if (retval)
4658		goto out_unlock;
4659
4660	if (task_has_rt_policy(p))
4661		lp.sched_priority = p->rt_priority;
4662	rcu_read_unlock();
4663
4664	/*
4665	 * This one might sleep, we cannot do it with a spinlock held ...
4666	 */
4667	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4668
4669	return retval;
4670
4671out_unlock:
4672	rcu_read_unlock();
4673	return retval;
4674}
4675
4676static int sched_read_attr(struct sched_attr __user *uattr,
4677			   struct sched_attr *attr,
4678			   unsigned int usize)
 
 
 
 
 
 
 
 
 
4679{
4680	int ret;
4681
4682	if (!access_ok(VERIFY_WRITE, uattr, usize))
4683		return -EFAULT;
4684
4685	/*
4686	 * If we're handed a smaller struct than we know of,
4687	 * ensure all the unknown bits are 0 - i.e. old
4688	 * user-space does not get uncomplete information.
4689	 */
4690	if (usize < sizeof(*attr)) {
4691		unsigned char *addr;
4692		unsigned char *end;
4693
4694		addr = (void *)attr + usize;
4695		end  = (void *)attr + sizeof(*attr);
4696
4697		for (; addr < end; addr++) {
4698			if (*addr)
4699				return -EFBIG;
4700		}
4701
4702		attr->size = usize;
4703	}
4704
4705	ret = copy_to_user(uattr, attr, attr->size);
4706	if (ret)
4707		return -EFAULT;
4708
4709	return 0;
4710}
4711
4712/**
4713 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4714 * @pid: the pid in question.
4715 * @uattr: structure containing the extended parameters.
4716 * @size: sizeof(attr) for fwd/bwd comp.
4717 * @flags: for future extension.
4718 */
4719SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4720		unsigned int, size, unsigned int, flags)
4721{
4722	struct sched_attr attr = {
4723		.size = sizeof(struct sched_attr),
4724	};
4725	struct task_struct *p;
4726	int retval;
4727
4728	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4729	    size < SCHED_ATTR_SIZE_VER0 || flags)
4730		return -EINVAL;
4731
4732	rcu_read_lock();
4733	p = find_process_by_pid(pid);
4734	retval = -ESRCH;
4735	if (!p)
4736		goto out_unlock;
4737
4738	retval = security_task_getscheduler(p);
4739	if (retval)
4740		goto out_unlock;
4741
4742	attr.sched_policy = p->policy;
4743	if (p->sched_reset_on_fork)
4744		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4745	if (task_has_dl_policy(p))
4746		__getparam_dl(p, &attr);
4747	else if (task_has_rt_policy(p))
4748		attr.sched_priority = p->rt_priority;
4749	else
4750		attr.sched_nice = task_nice(p);
 
 
 
 
 
 
 
 
 
 
4751
4752	rcu_read_unlock();
4753
4754	retval = sched_read_attr(uattr, &attr, size);
4755	return retval;
4756
4757out_unlock:
4758	rcu_read_unlock();
4759	return retval;
4760}
4761
4762long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4763{
4764	cpumask_var_t cpus_allowed, new_mask;
4765	struct task_struct *p;
4766	int retval;
4767
4768	rcu_read_lock();
4769
4770	p = find_process_by_pid(pid);
4771	if (!p) {
4772		rcu_read_unlock();
4773		return -ESRCH;
4774	}
4775
4776	/* Prevent p going away */
4777	get_task_struct(p);
4778	rcu_read_unlock();
4779
4780	if (p->flags & PF_NO_SETAFFINITY) {
4781		retval = -EINVAL;
4782		goto out_put_task;
4783	}
4784	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4785		retval = -ENOMEM;
4786		goto out_put_task;
4787	}
4788	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4789		retval = -ENOMEM;
4790		goto out_free_cpus_allowed;
4791	}
4792	retval = -EPERM;
4793	if (!check_same_owner(p)) {
4794		rcu_read_lock();
4795		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4796			rcu_read_unlock();
4797			goto out_free_new_mask;
4798		}
4799		rcu_read_unlock();
4800	}
4801
4802	retval = security_task_setscheduler(p);
4803	if (retval)
4804		goto out_free_new_mask;
4805
4806
4807	cpuset_cpus_allowed(p, cpus_allowed);
4808	cpumask_and(new_mask, in_mask, cpus_allowed);
4809
4810	/*
4811	 * Since bandwidth control happens on root_domain basis,
4812	 * if admission test is enabled, we only admit -deadline
4813	 * tasks allowed to run on all the CPUs in the task's
4814	 * root_domain.
4815	 */
4816#ifdef CONFIG_SMP
4817	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4818		rcu_read_lock();
4819		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4820			retval = -EBUSY;
4821			rcu_read_unlock();
4822			goto out_free_new_mask;
4823		}
4824		rcu_read_unlock();
4825	}
4826#endif
4827again:
4828	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4829
4830	if (!retval) {
4831		cpuset_cpus_allowed(p, cpus_allowed);
4832		if (!cpumask_subset(new_mask, cpus_allowed)) {
4833			/*
4834			 * We must have raced with a concurrent cpuset
4835			 * update. Just reset the cpus_allowed to the
4836			 * cpuset's cpus_allowed
4837			 */
4838			cpumask_copy(new_mask, cpus_allowed);
4839			goto again;
4840		}
4841	}
4842out_free_new_mask:
4843	free_cpumask_var(new_mask);
4844out_free_cpus_allowed:
4845	free_cpumask_var(cpus_allowed);
4846out_put_task:
4847	put_task_struct(p);
4848	return retval;
4849}
4850
4851static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4852			     struct cpumask *new_mask)
4853{
4854	if (len < cpumask_size())
4855		cpumask_clear(new_mask);
4856	else if (len > cpumask_size())
4857		len = cpumask_size();
4858
4859	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4860}
4861
4862/**
4863 * sys_sched_setaffinity - set the CPU affinity of a process
4864 * @pid: pid of the process
4865 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4866 * @user_mask_ptr: user-space pointer to the new CPU mask
4867 *
4868 * Return: 0 on success. An error code otherwise.
4869 */
4870SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4871		unsigned long __user *, user_mask_ptr)
4872{
4873	cpumask_var_t new_mask;
4874	int retval;
4875
4876	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4877		return -ENOMEM;
4878
4879	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4880	if (retval == 0)
4881		retval = sched_setaffinity(pid, new_mask);
4882	free_cpumask_var(new_mask);
4883	return retval;
4884}
4885
4886long sched_getaffinity(pid_t pid, struct cpumask *mask)
4887{
4888	struct task_struct *p;
4889	unsigned long flags;
4890	int retval;
4891
4892	rcu_read_lock();
4893
4894	retval = -ESRCH;
4895	p = find_process_by_pid(pid);
4896	if (!p)
4897		goto out_unlock;
4898
4899	retval = security_task_getscheduler(p);
4900	if (retval)
4901		goto out_unlock;
4902
4903	raw_spin_lock_irqsave(&p->pi_lock, flags);
4904	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4905	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4906
4907out_unlock:
4908	rcu_read_unlock();
4909
4910	return retval;
4911}
4912
4913/**
4914 * sys_sched_getaffinity - get the CPU affinity of a process
4915 * @pid: pid of the process
4916 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4917 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4918 *
4919 * Return: size of CPU mask copied to user_mask_ptr on success. An
4920 * error code otherwise.
4921 */
4922SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4923		unsigned long __user *, user_mask_ptr)
4924{
4925	int ret;
4926	cpumask_var_t mask;
4927
4928	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4929		return -EINVAL;
4930	if (len & (sizeof(unsigned long)-1))
4931		return -EINVAL;
4932
4933	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4934		return -ENOMEM;
4935
4936	ret = sched_getaffinity(pid, mask);
4937	if (ret == 0) {
4938		unsigned int retlen = min(len, cpumask_size());
4939
4940		if (copy_to_user(user_mask_ptr, mask, retlen))
4941			ret = -EFAULT;
4942		else
4943			ret = retlen;
4944	}
4945	free_cpumask_var(mask);
4946
4947	return ret;
4948}
4949
4950/**
4951 * sys_sched_yield - yield the current processor to other threads.
4952 *
4953 * This function yields the current CPU to other tasks. If there are no
4954 * other threads running on this CPU then this function will return.
4955 *
4956 * Return: 0.
4957 */
4958static void do_sched_yield(void)
4959{
4960	struct rq_flags rf;
4961	struct rq *rq;
4962
4963	local_irq_disable();
4964	rq = this_rq();
4965	rq_lock(rq, &rf);
4966
4967	schedstat_inc(rq->yld_count);
4968	current->sched_class->yield_task(rq);
4969
4970	/*
4971	 * Since we are going to call schedule() anyway, there's
4972	 * no need to preempt or enable interrupts:
4973	 */
4974	preempt_disable();
4975	rq_unlock(rq, &rf);
4976	sched_preempt_enable_no_resched();
4977
4978	schedule();
4979}
4980
4981SYSCALL_DEFINE0(sched_yield)
4982{
4983	do_sched_yield();
4984	return 0;
4985}
4986
4987#ifndef CONFIG_PREEMPT
4988int __sched _cond_resched(void)
4989{
4990	if (should_resched(0)) {
4991		preempt_schedule_common();
4992		return 1;
4993	}
4994	rcu_all_qs();
4995	return 0;
4996}
4997EXPORT_SYMBOL(_cond_resched);
4998#endif
4999
5000/*
5001 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5002 * call schedule, and on return reacquire the lock.
5003 *
5004 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5005 * operations here to prevent schedule() from being called twice (once via
5006 * spin_unlock(), once by hand).
5007 */
5008int __cond_resched_lock(spinlock_t *lock)
5009{
5010	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5011	int ret = 0;
5012
5013	lockdep_assert_held(lock);
5014
5015	if (spin_needbreak(lock) || resched) {
5016		spin_unlock(lock);
5017		if (resched)
5018			preempt_schedule_common();
5019		else
5020			cpu_relax();
5021		ret = 1;
5022		spin_lock(lock);
5023	}
5024	return ret;
5025}
5026EXPORT_SYMBOL(__cond_resched_lock);
5027
5028int __sched __cond_resched_softirq(void)
5029{
5030	BUG_ON(!in_softirq());
5031
5032	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5033		local_bh_enable();
5034		preempt_schedule_common();
5035		local_bh_disable();
5036		return 1;
5037	}
5038	return 0;
5039}
5040EXPORT_SYMBOL(__cond_resched_softirq);
5041
5042/**
5043 * yield - yield the current processor to other threads.
5044 *
5045 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5046 *
5047 * The scheduler is at all times free to pick the calling task as the most
5048 * eligible task to run, if removing the yield() call from your code breaks
5049 * it, its already broken.
5050 *
5051 * Typical broken usage is:
5052 *
5053 * while (!event)
5054 *	yield();
5055 *
5056 * where one assumes that yield() will let 'the other' process run that will
5057 * make event true. If the current task is a SCHED_FIFO task that will never
5058 * happen. Never use yield() as a progress guarantee!!
5059 *
5060 * If you want to use yield() to wait for something, use wait_event().
5061 * If you want to use yield() to be 'nice' for others, use cond_resched().
5062 * If you still want to use yield(), do not!
5063 */
5064void __sched yield(void)
5065{
5066	set_current_state(TASK_RUNNING);
5067	do_sched_yield();
5068}
5069EXPORT_SYMBOL(yield);
5070
5071/**
5072 * yield_to - yield the current processor to another thread in
5073 * your thread group, or accelerate that thread toward the
5074 * processor it's on.
5075 * @p: target task
5076 * @preempt: whether task preemption is allowed or not
5077 *
5078 * It's the caller's job to ensure that the target task struct
5079 * can't go away on us before we can do any checks.
5080 *
5081 * Return:
5082 *	true (>0) if we indeed boosted the target task.
5083 *	false (0) if we failed to boost the target.
5084 *	-ESRCH if there's no task to yield to.
5085 */
5086int __sched yield_to(struct task_struct *p, bool preempt)
5087{
5088	struct task_struct *curr = current;
5089	struct rq *rq, *p_rq;
5090	unsigned long flags;
5091	int yielded = 0;
5092
5093	local_irq_save(flags);
5094	rq = this_rq();
5095
5096again:
5097	p_rq = task_rq(p);
5098	/*
5099	 * If we're the only runnable task on the rq and target rq also
5100	 * has only one task, there's absolutely no point in yielding.
5101	 */
5102	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5103		yielded = -ESRCH;
5104		goto out_irq;
5105	}
5106
5107	double_rq_lock(rq, p_rq);
5108	if (task_rq(p) != p_rq) {
5109		double_rq_unlock(rq, p_rq);
5110		goto again;
5111	}
5112
5113	if (!curr->sched_class->yield_to_task)
5114		goto out_unlock;
5115
5116	if (curr->sched_class != p->sched_class)
5117		goto out_unlock;
5118
5119	if (task_running(p_rq, p) || p->state)
5120		goto out_unlock;
5121
5122	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5123	if (yielded) {
5124		schedstat_inc(rq->yld_count);
5125		/*
5126		 * Make p's CPU reschedule; pick_next_entity takes care of
5127		 * fairness.
5128		 */
5129		if (preempt && rq != p_rq)
5130			resched_curr(p_rq);
5131	}
5132
5133out_unlock:
5134	double_rq_unlock(rq, p_rq);
5135out_irq:
5136	local_irq_restore(flags);
5137
5138	if (yielded > 0)
5139		schedule();
5140
5141	return yielded;
5142}
5143EXPORT_SYMBOL_GPL(yield_to);
5144
5145int io_schedule_prepare(void)
5146{
5147	int old_iowait = current->in_iowait;
5148
5149	current->in_iowait = 1;
5150	blk_schedule_flush_plug(current);
5151
5152	return old_iowait;
5153}
5154
5155void io_schedule_finish(int token)
5156{
5157	current->in_iowait = token;
5158}
5159
5160/*
5161 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5162 * that process accounting knows that this is a task in IO wait state.
5163 */
5164long __sched io_schedule_timeout(long timeout)
5165{
5166	int token;
5167	long ret;
5168
5169	token = io_schedule_prepare();
5170	ret = schedule_timeout(timeout);
5171	io_schedule_finish(token);
5172
5173	return ret;
5174}
5175EXPORT_SYMBOL(io_schedule_timeout);
5176
5177void io_schedule(void)
5178{
5179	int token;
5180
5181	token = io_schedule_prepare();
5182	schedule();
5183	io_schedule_finish(token);
5184}
5185EXPORT_SYMBOL(io_schedule);
5186
5187/**
5188 * sys_sched_get_priority_max - return maximum RT priority.
5189 * @policy: scheduling class.
5190 *
5191 * Return: On success, this syscall returns the maximum
5192 * rt_priority that can be used by a given scheduling class.
5193 * On failure, a negative error code is returned.
5194 */
5195SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5196{
5197	int ret = -EINVAL;
5198
5199	switch (policy) {
5200	case SCHED_FIFO:
5201	case SCHED_RR:
5202		ret = MAX_USER_RT_PRIO-1;
5203		break;
5204	case SCHED_DEADLINE:
5205	case SCHED_NORMAL:
5206	case SCHED_BATCH:
5207	case SCHED_IDLE:
5208		ret = 0;
5209		break;
5210	}
5211	return ret;
5212}
5213
5214/**
5215 * sys_sched_get_priority_min - return minimum RT priority.
5216 * @policy: scheduling class.
5217 *
5218 * Return: On success, this syscall returns the minimum
5219 * rt_priority that can be used by a given scheduling class.
5220 * On failure, a negative error code is returned.
5221 */
5222SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5223{
5224	int ret = -EINVAL;
5225
5226	switch (policy) {
5227	case SCHED_FIFO:
5228	case SCHED_RR:
5229		ret = 1;
5230		break;
5231	case SCHED_DEADLINE:
5232	case SCHED_NORMAL:
5233	case SCHED_BATCH:
5234	case SCHED_IDLE:
5235		ret = 0;
5236	}
5237	return ret;
5238}
5239
5240static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5241{
5242	struct task_struct *p;
5243	unsigned int time_slice;
5244	struct rq_flags rf;
5245	struct rq *rq;
5246	int retval;
5247
5248	if (pid < 0)
5249		return -EINVAL;
5250
5251	retval = -ESRCH;
5252	rcu_read_lock();
5253	p = find_process_by_pid(pid);
5254	if (!p)
5255		goto out_unlock;
5256
5257	retval = security_task_getscheduler(p);
5258	if (retval)
5259		goto out_unlock;
5260
5261	rq = task_rq_lock(p, &rf);
5262	time_slice = 0;
5263	if (p->sched_class->get_rr_interval)
5264		time_slice = p->sched_class->get_rr_interval(rq, p);
5265	task_rq_unlock(rq, p, &rf);
5266
5267	rcu_read_unlock();
5268	jiffies_to_timespec64(time_slice, t);
5269	return 0;
5270
5271out_unlock:
5272	rcu_read_unlock();
5273	return retval;
5274}
5275
5276/**
5277 * sys_sched_rr_get_interval - return the default timeslice of a process.
5278 * @pid: pid of the process.
5279 * @interval: userspace pointer to the timeslice value.
5280 *
5281 * this syscall writes the default timeslice value of a given process
5282 * into the user-space timespec buffer. A value of '0' means infinity.
5283 *
5284 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5285 * an error code.
5286 */
5287SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5288		struct timespec __user *, interval)
5289{
5290	struct timespec64 t;
5291	int retval = sched_rr_get_interval(pid, &t);
5292
5293	if (retval == 0)
5294		retval = put_timespec64(&t, interval);
5295
5296	return retval;
5297}
5298
5299#ifdef CONFIG_COMPAT
5300COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5301		       compat_pid_t, pid,
5302		       struct compat_timespec __user *, interval)
5303{
5304	struct timespec64 t;
5305	int retval = sched_rr_get_interval(pid, &t);
5306
5307	if (retval == 0)
5308		retval = compat_put_timespec64(&t, interval);
5309	return retval;
5310}
5311#endif
5312
5313void sched_show_task(struct task_struct *p)
5314{
5315	unsigned long free = 0;
5316	int ppid;
5317
5318	if (!try_get_task_stack(p))
5319		return;
5320
5321	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5322
5323	if (p->state == TASK_RUNNING)
5324		printk(KERN_CONT "  running task    ");
5325#ifdef CONFIG_DEBUG_STACK_USAGE
5326	free = stack_not_used(p);
5327#endif
5328	ppid = 0;
5329	rcu_read_lock();
5330	if (pid_alive(p))
5331		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5332	rcu_read_unlock();
5333	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5334		task_pid_nr(p), ppid,
5335		(unsigned long)task_thread_info(p)->flags);
5336
5337	print_worker_info(KERN_INFO, p);
5338	show_stack(p, NULL);
5339	put_task_stack(p);
5340}
5341EXPORT_SYMBOL_GPL(sched_show_task);
5342
5343static inline bool
5344state_filter_match(unsigned long state_filter, struct task_struct *p)
5345{
5346	/* no filter, everything matches */
5347	if (!state_filter)
5348		return true;
5349
5350	/* filter, but doesn't match */
5351	if (!(p->state & state_filter))
5352		return false;
5353
5354	/*
5355	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5356	 * TASK_KILLABLE).
5357	 */
5358	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5359		return false;
5360
5361	return true;
5362}
5363
5364
5365void show_state_filter(unsigned long state_filter)
5366{
5367	struct task_struct *g, *p;
5368
5369#if BITS_PER_LONG == 32
5370	printk(KERN_INFO
5371		"  task                PC stack   pid father\n");
5372#else
5373	printk(KERN_INFO
5374		"  task                        PC stack   pid father\n");
5375#endif
5376	rcu_read_lock();
5377	for_each_process_thread(g, p) {
5378		/*
5379		 * reset the NMI-timeout, listing all files on a slow
5380		 * console might take a lot of time:
5381		 * Also, reset softlockup watchdogs on all CPUs, because
5382		 * another CPU might be blocked waiting for us to process
5383		 * an IPI.
5384		 */
5385		touch_nmi_watchdog();
5386		touch_all_softlockup_watchdogs();
5387		if (state_filter_match(state_filter, p))
5388			sched_show_task(p);
5389	}
5390
5391#ifdef CONFIG_SCHED_DEBUG
5392	if (!state_filter)
5393		sysrq_sched_debug_show();
5394#endif
5395	rcu_read_unlock();
5396	/*
5397	 * Only show locks if all tasks are dumped:
5398	 */
5399	if (!state_filter)
5400		debug_show_all_locks();
5401}
5402
5403/**
5404 * init_idle - set up an idle thread for a given CPU
5405 * @idle: task in question
5406 * @cpu: CPU the idle task belongs to
5407 *
5408 * NOTE: this function does not set the idle thread's NEED_RESCHED
5409 * flag, to make booting more robust.
5410 */
5411void init_idle(struct task_struct *idle, int cpu)
5412{
5413	struct rq *rq = cpu_rq(cpu);
5414	unsigned long flags;
5415
 
 
5416	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5417	raw_spin_lock(&rq->lock);
5418
5419	__sched_fork(0, idle);
5420	idle->state = TASK_RUNNING;
5421	idle->se.exec_start = sched_clock();
5422	idle->flags |= PF_IDLE;
5423
 
5424	kasan_unpoison_task_stack(idle);
5425
5426#ifdef CONFIG_SMP
5427	/*
5428	 * Its possible that init_idle() gets called multiple times on a task,
5429	 * in that case do_set_cpus_allowed() will not do the right thing.
5430	 *
5431	 * And since this is boot we can forgo the serialization.
5432	 */
5433	set_cpus_allowed_common(idle, cpumask_of(cpu));
5434#endif
5435	/*
5436	 * We're having a chicken and egg problem, even though we are
5437	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5438	 * lockdep check in task_group() will fail.
5439	 *
5440	 * Similar case to sched_fork(). / Alternatively we could
5441	 * use task_rq_lock() here and obtain the other rq->lock.
5442	 *
5443	 * Silence PROVE_RCU
5444	 */
5445	rcu_read_lock();
5446	__set_task_cpu(idle, cpu);
5447	rcu_read_unlock();
5448
5449	rq->curr = rq->idle = idle;
 
5450	idle->on_rq = TASK_ON_RQ_QUEUED;
5451#ifdef CONFIG_SMP
5452	idle->on_cpu = 1;
5453#endif
5454	raw_spin_unlock(&rq->lock);
5455	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5456
5457	/* Set the preempt count _outside_ the spinlocks! */
5458	init_idle_preempt_count(idle, cpu);
5459
5460	/*
5461	 * The idle tasks have their own, simple scheduling class:
5462	 */
5463	idle->sched_class = &idle_sched_class;
5464	ftrace_graph_init_idle_task(idle, cpu);
5465	vtime_init_idle(idle, cpu);
5466#ifdef CONFIG_SMP
5467	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5468#endif
5469}
5470
5471#ifdef CONFIG_SMP
5472
5473int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5474			      const struct cpumask *trial)
5475{
5476	int ret = 1;
5477
5478	if (!cpumask_weight(cur))
5479		return ret;
5480
5481	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5482
5483	return ret;
5484}
5485
5486int task_can_attach(struct task_struct *p,
5487		    const struct cpumask *cs_cpus_allowed)
5488{
5489	int ret = 0;
5490
5491	/*
5492	 * Kthreads which disallow setaffinity shouldn't be moved
5493	 * to a new cpuset; we don't want to change their CPU
5494	 * affinity and isolating such threads by their set of
5495	 * allowed nodes is unnecessary.  Thus, cpusets are not
5496	 * applicable for such threads.  This prevents checking for
5497	 * success of set_cpus_allowed_ptr() on all attached tasks
5498	 * before cpus_allowed may be changed.
5499	 */
5500	if (p->flags & PF_NO_SETAFFINITY) {
5501		ret = -EINVAL;
5502		goto out;
5503	}
5504
5505	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5506					      cs_cpus_allowed))
5507		ret = dl_task_can_attach(p, cs_cpus_allowed);
5508
5509out:
5510	return ret;
5511}
5512
5513bool sched_smp_initialized __read_mostly;
5514
5515#ifdef CONFIG_NUMA_BALANCING
5516/* Migrate current task p to target_cpu */
5517int migrate_task_to(struct task_struct *p, int target_cpu)
5518{
5519	struct migration_arg arg = { p, target_cpu };
5520	int curr_cpu = task_cpu(p);
5521
5522	if (curr_cpu == target_cpu)
5523		return 0;
5524
5525	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5526		return -EINVAL;
5527
5528	/* TODO: This is not properly updating schedstats */
5529
5530	trace_sched_move_numa(p, curr_cpu, target_cpu);
5531	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5532}
5533
5534/*
5535 * Requeue a task on a given node and accurately track the number of NUMA
5536 * tasks on the runqueues
5537 */
5538void sched_setnuma(struct task_struct *p, int nid)
5539{
5540	bool queued, running;
5541	struct rq_flags rf;
5542	struct rq *rq;
5543
5544	rq = task_rq_lock(p, &rf);
5545	queued = task_on_rq_queued(p);
5546	running = task_current(rq, p);
5547
5548	if (queued)
5549		dequeue_task(rq, p, DEQUEUE_SAVE);
5550	if (running)
5551		put_prev_task(rq, p);
5552
5553	p->numa_preferred_nid = nid;
5554
5555	if (queued)
5556		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5557	if (running)
5558		set_curr_task(rq, p);
5559	task_rq_unlock(rq, p, &rf);
5560}
5561#endif /* CONFIG_NUMA_BALANCING */
5562
5563#ifdef CONFIG_HOTPLUG_CPU
5564/*
5565 * Ensure that the idle task is using init_mm right before its CPU goes
5566 * offline.
5567 */
5568void idle_task_exit(void)
5569{
5570	struct mm_struct *mm = current->active_mm;
5571
5572	BUG_ON(cpu_online(smp_processor_id()));
 
5573
5574	if (mm != &init_mm) {
5575		switch_mm(mm, &init_mm, current);
5576		current->active_mm = &init_mm;
5577		finish_arch_post_lock_switch();
5578	}
5579	mmdrop(mm);
 
5580}
5581
5582/*
5583 * Since this CPU is going 'away' for a while, fold any nr_active delta
5584 * we might have. Assumes we're called after migrate_tasks() so that the
5585 * nr_active count is stable. We need to take the teardown thread which
5586 * is calling this into account, so we hand in adjust = 1 to the load
5587 * calculation.
5588 *
5589 * Also see the comment "Global load-average calculations".
5590 */
5591static void calc_load_migrate(struct rq *rq)
5592{
5593	long delta = calc_load_fold_active(rq, 1);
5594	if (delta)
5595		atomic_long_add(delta, &calc_load_tasks);
5596}
5597
5598static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5599{
5600}
 
5601
5602static const struct sched_class fake_sched_class = {
5603	.put_prev_task = put_prev_task_fake,
5604};
 
 
 
 
5605
5606static struct task_struct fake_task = {
5607	/*
5608	 * Avoid pull_{rt,dl}_task()
5609	 */
5610	.prio = MAX_PRIO + 1,
5611	.sched_class = &fake_sched_class,
5612};
5613
5614/*
5615 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5616 * try_to_wake_up()->select_task_rq().
5617 *
5618 * Called with rq->lock held even though we'er in stop_machine() and
5619 * there's no concurrency possible, we hold the required locks anyway
5620 * because of lock validation efforts.
5621 */
5622static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5623{
5624	struct rq *rq = dead_rq;
5625	struct task_struct *next, *stop = rq->stop;
5626	struct rq_flags orf = *rf;
5627	int dest_cpu;
5628
5629	/*
5630	 * Fudge the rq selection such that the below task selection loop
5631	 * doesn't get stuck on the currently eligible stop task.
5632	 *
5633	 * We're currently inside stop_machine() and the rq is either stuck
5634	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5635	 * either way we should never end up calling schedule() until we're
5636	 * done here.
5637	 */
5638	rq->stop = NULL;
5639
5640	/*
5641	 * put_prev_task() and pick_next_task() sched
5642	 * class method both need to have an up-to-date
5643	 * value of rq->clock[_task]
5644	 */
5645	update_rq_clock(rq);
5646
5647	for (;;) {
5648		/*
5649		 * There's this thread running, bail when that's the only
5650		 * remaining thread:
5651		 */
5652		if (rq->nr_running == 1)
5653			break;
5654
5655		/*
5656		 * pick_next_task() assumes pinned rq->lock:
5657		 */
5658		next = pick_next_task(rq, &fake_task, rf);
5659		BUG_ON(!next);
5660		put_prev_task(rq, next);
5661
5662		/*
5663		 * Rules for changing task_struct::cpus_allowed are holding
5664		 * both pi_lock and rq->lock, such that holding either
5665		 * stabilizes the mask.
5666		 *
5667		 * Drop rq->lock is not quite as disastrous as it usually is
5668		 * because !cpu_active at this point, which means load-balance
5669		 * will not interfere. Also, stop-machine.
5670		 */
5671		rq_unlock(rq, rf);
5672		raw_spin_lock(&next->pi_lock);
5673		rq_relock(rq, rf);
5674
5675		/*
5676		 * Since we're inside stop-machine, _nothing_ should have
5677		 * changed the task, WARN if weird stuff happened, because in
5678		 * that case the above rq->lock drop is a fail too.
5679		 */
5680		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5681			raw_spin_unlock(&next->pi_lock);
5682			continue;
5683		}
5684
5685		/* Find suitable destination for @next, with force if needed. */
5686		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5687		rq = __migrate_task(rq, rf, next, dest_cpu);
5688		if (rq != dead_rq) {
5689			rq_unlock(rq, rf);
5690			rq = dead_rq;
5691			*rf = orf;
5692			rq_relock(rq, rf);
5693		}
5694		raw_spin_unlock(&next->pi_lock);
5695	}
5696
5697	rq->stop = stop;
5698}
5699#endif /* CONFIG_HOTPLUG_CPU */
5700
5701void set_rq_online(struct rq *rq)
5702{
5703	if (!rq->online) {
5704		const struct sched_class *class;
5705
5706		cpumask_set_cpu(rq->cpu, rq->rd->online);
5707		rq->online = 1;
5708
5709		for_each_class(class) {
5710			if (class->rq_online)
5711				class->rq_online(rq);
5712		}
5713	}
5714}
5715
5716void set_rq_offline(struct rq *rq)
5717{
5718	if (rq->online) {
5719		const struct sched_class *class;
5720
5721		for_each_class(class) {
5722			if (class->rq_offline)
5723				class->rq_offline(rq);
5724		}
5725
5726		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5727		rq->online = 0;
5728	}
5729}
5730
5731static void set_cpu_rq_start_time(unsigned int cpu)
5732{
5733	struct rq *rq = cpu_rq(cpu);
5734
5735	rq->age_stamp = sched_clock_cpu(cpu);
5736}
5737
5738/*
5739 * used to mark begin/end of suspend/resume:
5740 */
5741static int num_cpus_frozen;
5742
5743/*
5744 * Update cpusets according to cpu_active mask.  If cpusets are
5745 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5746 * around partition_sched_domains().
5747 *
5748 * If we come here as part of a suspend/resume, don't touch cpusets because we
5749 * want to restore it back to its original state upon resume anyway.
5750 */
5751static void cpuset_cpu_active(void)
5752{
5753	if (cpuhp_tasks_frozen) {
5754		/*
5755		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5756		 * resume sequence. As long as this is not the last online
5757		 * operation in the resume sequence, just build a single sched
5758		 * domain, ignoring cpusets.
5759		 */
5760		partition_sched_domains(1, NULL, NULL);
5761		if (--num_cpus_frozen)
5762			return;
5763		/*
5764		 * This is the last CPU online operation. So fall through and
5765		 * restore the original sched domains by considering the
5766		 * cpuset configurations.
5767		 */
5768		cpuset_force_rebuild();
5769	}
5770	cpuset_update_active_cpus();
5771}
5772
5773static int cpuset_cpu_inactive(unsigned int cpu)
5774{
5775	if (!cpuhp_tasks_frozen) {
5776		if (dl_cpu_busy(cpu))
5777			return -EBUSY;
5778		cpuset_update_active_cpus();
5779	} else {
5780		num_cpus_frozen++;
5781		partition_sched_domains(1, NULL, NULL);
5782	}
5783	return 0;
5784}
5785
5786int sched_cpu_activate(unsigned int cpu)
5787{
5788	struct rq *rq = cpu_rq(cpu);
5789	struct rq_flags rf;
5790
 
 
 
 
 
 
 
5791	set_cpu_active(cpu, true);
5792
5793	if (sched_smp_initialized) {
5794		sched_domains_numa_masks_set(cpu);
5795		cpuset_cpu_active();
5796	}
5797
5798	/*
5799	 * Put the rq online, if not already. This happens:
5800	 *
5801	 * 1) In the early boot process, because we build the real domains
5802	 *    after all CPUs have been brought up.
5803	 *
5804	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5805	 *    domains.
5806	 */
5807	rq_lock_irqsave(rq, &rf);
5808	if (rq->rd) {
5809		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5810		set_rq_online(rq);
5811	}
5812	rq_unlock_irqrestore(rq, &rf);
5813
5814	update_max_interval();
5815
5816	return 0;
5817}
5818
5819int sched_cpu_deactivate(unsigned int cpu)
5820{
5821	int ret;
5822
5823	set_cpu_active(cpu, false);
5824	/*
5825	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5826	 * users of this state to go away such that all new such users will
5827	 * observe it.
5828	 *
5829	 * Do sync before park smpboot threads to take care the rcu boost case.
5830	 */
5831	synchronize_rcu_mult(call_rcu, call_rcu_sched);
 
 
 
 
 
 
 
 
5832
5833	if (!sched_smp_initialized)
5834		return 0;
5835
5836	ret = cpuset_cpu_inactive(cpu);
5837	if (ret) {
5838		set_cpu_active(cpu, true);
5839		return ret;
5840	}
5841	sched_domains_numa_masks_clear(cpu);
5842	return 0;
5843}
5844
5845static void sched_rq_cpu_starting(unsigned int cpu)
5846{
5847	struct rq *rq = cpu_rq(cpu);
5848
5849	rq->calc_load_update = calc_load_update;
5850	update_max_interval();
5851}
5852
5853int sched_cpu_starting(unsigned int cpu)
5854{
5855	set_cpu_rq_start_time(cpu);
5856	sched_rq_cpu_starting(cpu);
5857	sched_tick_start(cpu);
5858	return 0;
5859}
5860
5861#ifdef CONFIG_HOTPLUG_CPU
5862int sched_cpu_dying(unsigned int cpu)
5863{
5864	struct rq *rq = cpu_rq(cpu);
5865	struct rq_flags rf;
5866
5867	/* Handle pending wakeups and then migrate everything off */
5868	sched_ttwu_pending();
5869	sched_tick_stop(cpu);
5870
5871	rq_lock_irqsave(rq, &rf);
5872	if (rq->rd) {
5873		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5874		set_rq_offline(rq);
5875	}
5876	migrate_tasks(rq, &rf);
5877	BUG_ON(rq->nr_running != 1);
5878	rq_unlock_irqrestore(rq, &rf);
5879
5880	calc_load_migrate(rq);
5881	update_max_interval();
5882	nohz_balance_exit_idle(rq);
5883	hrtick_clear(rq);
5884	return 0;
5885}
5886#endif
5887
5888#ifdef CONFIG_SCHED_SMT
5889DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5890
5891static void sched_init_smt(void)
5892{
5893	/*
5894	 * We've enumerated all CPUs and will assume that if any CPU
5895	 * has SMT siblings, CPU0 will too.
5896	 */
5897	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5898		static_branch_enable(&sched_smt_present);
5899}
5900#else
5901static inline void sched_init_smt(void) { }
5902#endif
5903
5904void __init sched_init_smp(void)
5905{
5906	sched_init_numa();
5907
5908	/*
5909	 * There's no userspace yet to cause hotplug operations; hence all the
5910	 * CPU masks are stable and all blatant races in the below code cannot
5911	 * happen.
5912	 */
5913	mutex_lock(&sched_domains_mutex);
5914	sched_init_domains(cpu_active_mask);
5915	mutex_unlock(&sched_domains_mutex);
5916
5917	/* Move init over to a non-isolated CPU */
5918	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5919		BUG();
5920	sched_init_granularity();
5921
5922	init_sched_rt_class();
5923	init_sched_dl_class();
5924
5925	sched_init_smt();
5926
5927	sched_smp_initialized = true;
5928}
5929
5930static int __init migration_init(void)
5931{
5932	sched_rq_cpu_starting(smp_processor_id());
5933	return 0;
5934}
5935early_initcall(migration_init);
5936
5937#else
5938void __init sched_init_smp(void)
5939{
5940	sched_init_granularity();
5941}
5942#endif /* CONFIG_SMP */
5943
5944int in_sched_functions(unsigned long addr)
5945{
5946	return in_lock_functions(addr) ||
5947		(addr >= (unsigned long)__sched_text_start
5948		&& addr < (unsigned long)__sched_text_end);
5949}
5950
5951#ifdef CONFIG_CGROUP_SCHED
5952/*
5953 * Default task group.
5954 * Every task in system belongs to this group at bootup.
5955 */
5956struct task_group root_task_group;
5957LIST_HEAD(task_groups);
5958
5959/* Cacheline aligned slab cache for task_group */
5960static struct kmem_cache *task_group_cache __read_mostly;
5961#endif
5962
5963DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5964DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5965
5966void __init sched_init(void)
5967{
5968	int i, j;
5969	unsigned long alloc_size = 0, ptr;
 
 
 
 
 
 
 
 
5970
5971	sched_clock_init();
5972	wait_bit_init();
5973
5974#ifdef CONFIG_FAIR_GROUP_SCHED
5975	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5976#endif
5977#ifdef CONFIG_RT_GROUP_SCHED
5978	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5979#endif
5980	if (alloc_size) {
5981		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5982
5983#ifdef CONFIG_FAIR_GROUP_SCHED
5984		root_task_group.se = (struct sched_entity **)ptr;
5985		ptr += nr_cpu_ids * sizeof(void **);
5986
5987		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5988		ptr += nr_cpu_ids * sizeof(void **);
5989
 
 
5990#endif /* CONFIG_FAIR_GROUP_SCHED */
5991#ifdef CONFIG_RT_GROUP_SCHED
5992		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5993		ptr += nr_cpu_ids * sizeof(void **);
5994
5995		root_task_group.rt_rq = (struct rt_rq **)ptr;
5996		ptr += nr_cpu_ids * sizeof(void **);
5997
5998#endif /* CONFIG_RT_GROUP_SCHED */
5999	}
6000#ifdef CONFIG_CPUMASK_OFFSTACK
6001	for_each_possible_cpu(i) {
6002		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6003			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6004		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6005			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6006	}
6007#endif /* CONFIG_CPUMASK_OFFSTACK */
6008
6009	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6010	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6011
6012#ifdef CONFIG_SMP
6013	init_defrootdomain();
6014#endif
6015
6016#ifdef CONFIG_RT_GROUP_SCHED
6017	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6018			global_rt_period(), global_rt_runtime());
6019#endif /* CONFIG_RT_GROUP_SCHED */
6020
6021#ifdef CONFIG_CGROUP_SCHED
6022	task_group_cache = KMEM_CACHE(task_group, 0);
6023
6024	list_add(&root_task_group.list, &task_groups);
6025	INIT_LIST_HEAD(&root_task_group.children);
6026	INIT_LIST_HEAD(&root_task_group.siblings);
6027	autogroup_init(&init_task);
6028#endif /* CONFIG_CGROUP_SCHED */
6029
6030	for_each_possible_cpu(i) {
6031		struct rq *rq;
6032
6033		rq = cpu_rq(i);
6034		raw_spin_lock_init(&rq->lock);
6035		rq->nr_running = 0;
6036		rq->calc_load_active = 0;
6037		rq->calc_load_update = jiffies + LOAD_FREQ;
6038		init_cfs_rq(&rq->cfs);
6039		init_rt_rq(&rq->rt);
6040		init_dl_rq(&rq->dl);
6041#ifdef CONFIG_FAIR_GROUP_SCHED
6042		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6043		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6044		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6045		/*
6046		 * How much CPU bandwidth does root_task_group get?
6047		 *
6048		 * In case of task-groups formed thr' the cgroup filesystem, it
6049		 * gets 100% of the CPU resources in the system. This overall
6050		 * system CPU resource is divided among the tasks of
6051		 * root_task_group and its child task-groups in a fair manner,
6052		 * based on each entity's (task or task-group's) weight
6053		 * (se->load.weight).
6054		 *
6055		 * In other words, if root_task_group has 10 tasks of weight
6056		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6057		 * then A0's share of the CPU resource is:
6058		 *
6059		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6060		 *
6061		 * We achieve this by letting root_task_group's tasks sit
6062		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6063		 */
6064		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6065		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6066#endif /* CONFIG_FAIR_GROUP_SCHED */
6067
6068		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6069#ifdef CONFIG_RT_GROUP_SCHED
6070		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6071#endif
6072
6073		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6074			rq->cpu_load[j] = 0;
6075
6076#ifdef CONFIG_SMP
6077		rq->sd = NULL;
6078		rq->rd = NULL;
6079		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6080		rq->balance_callback = NULL;
6081		rq->active_balance = 0;
6082		rq->next_balance = jiffies;
6083		rq->push_cpu = 0;
6084		rq->cpu = i;
6085		rq->online = 0;
6086		rq->idle_stamp = 0;
6087		rq->avg_idle = 2*sysctl_sched_migration_cost;
6088		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6089
6090		INIT_LIST_HEAD(&rq->cfs_tasks);
6091
6092		rq_attach_root(rq, &def_root_domain);
6093#ifdef CONFIG_NO_HZ_COMMON
6094		rq->last_load_update_tick = jiffies;
6095		rq->last_blocked_load_update_tick = jiffies;
6096		atomic_set(&rq->nohz_flags, 0);
 
 
6097#endif
6098#endif /* CONFIG_SMP */
6099		hrtick_rq_init(rq);
6100		atomic_set(&rq->nr_iowait, 0);
6101	}
6102
6103	set_load_weight(&init_task, false);
6104
6105	/*
6106	 * The boot idle thread does lazy MMU switching as well:
6107	 */
6108	mmgrab(&init_mm);
6109	enter_lazy_tlb(&init_mm, current);
6110
6111	/*
6112	 * Make us the idle thread. Technically, schedule() should not be
6113	 * called from this thread, however somewhere below it might be,
6114	 * but because we are the idle thread, we just pick up running again
6115	 * when this runqueue becomes "idle".
6116	 */
6117	init_idle(current, smp_processor_id());
6118
6119	calc_load_update = jiffies + LOAD_FREQ;
6120
6121#ifdef CONFIG_SMP
6122	idle_thread_set_boot_cpu();
6123	set_cpu_rq_start_time(smp_processor_id());
6124#endif
6125	init_sched_fair_class();
6126
6127	init_schedstats();
6128
 
 
 
 
6129	scheduler_running = 1;
6130}
6131
6132#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6133static inline int preempt_count_equals(int preempt_offset)
6134{
6135	int nested = preempt_count() + rcu_preempt_depth();
6136
6137	return (nested == preempt_offset);
6138}
6139
6140void __might_sleep(const char *file, int line, int preempt_offset)
6141{
6142	/*
6143	 * Blocking primitives will set (and therefore destroy) current->state,
6144	 * since we will exit with TASK_RUNNING make sure we enter with it,
6145	 * otherwise we will destroy state.
6146	 */
6147	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6148			"do not call blocking ops when !TASK_RUNNING; "
6149			"state=%lx set at [<%p>] %pS\n",
6150			current->state,
6151			(void *)current->task_state_change,
6152			(void *)current->task_state_change);
6153
6154	___might_sleep(file, line, preempt_offset);
6155}
6156EXPORT_SYMBOL(__might_sleep);
6157
6158void ___might_sleep(const char *file, int line, int preempt_offset)
6159{
6160	/* Ratelimiting timestamp: */
6161	static unsigned long prev_jiffy;
6162
6163	unsigned long preempt_disable_ip;
6164
6165	/* WARN_ON_ONCE() by default, no rate limit required: */
6166	rcu_sleep_check();
6167
6168	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6169	     !is_idle_task(current)) ||
6170	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6171	    oops_in_progress)
6172		return;
6173
6174	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6175		return;
6176	prev_jiffy = jiffies;
6177
6178	/* Save this before calling printk(), since that will clobber it: */
6179	preempt_disable_ip = get_preempt_disable_ip(current);
6180
6181	printk(KERN_ERR
6182		"BUG: sleeping function called from invalid context at %s:%d\n",
6183			file, line);
6184	printk(KERN_ERR
6185		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6186			in_atomic(), irqs_disabled(),
6187			current->pid, current->comm);
6188
6189	if (task_stack_end_corrupted(current))
6190		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6191
6192	debug_show_held_locks(current);
6193	if (irqs_disabled())
6194		print_irqtrace_events(current);
6195	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6196	    && !preempt_count_equals(preempt_offset)) {
6197		pr_err("Preemption disabled at:");
6198		print_ip_sym(preempt_disable_ip);
6199		pr_cont("\n");
6200	}
6201	dump_stack();
6202	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6203}
6204EXPORT_SYMBOL(___might_sleep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6205#endif
6206
6207#ifdef CONFIG_MAGIC_SYSRQ
6208void normalize_rt_tasks(void)
6209{
6210	struct task_struct *g, *p;
6211	struct sched_attr attr = {
6212		.sched_policy = SCHED_NORMAL,
6213	};
6214
6215	read_lock(&tasklist_lock);
6216	for_each_process_thread(g, p) {
6217		/*
6218		 * Only normalize user tasks:
6219		 */
6220		if (p->flags & PF_KTHREAD)
6221			continue;
6222
6223		p->se.exec_start = 0;
6224		schedstat_set(p->se.statistics.wait_start,  0);
6225		schedstat_set(p->se.statistics.sleep_start, 0);
6226		schedstat_set(p->se.statistics.block_start, 0);
6227
6228		if (!dl_task(p) && !rt_task(p)) {
6229			/*
6230			 * Renice negative nice level userspace
6231			 * tasks back to 0:
6232			 */
6233			if (task_nice(p) < 0)
6234				set_user_nice(p, 0);
6235			continue;
6236		}
6237
6238		__sched_setscheduler(p, &attr, false, false);
6239	}
6240	read_unlock(&tasklist_lock);
6241}
6242
6243#endif /* CONFIG_MAGIC_SYSRQ */
6244
6245#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6246/*
6247 * These functions are only useful for the IA64 MCA handling, or kdb.
6248 *
6249 * They can only be called when the whole system has been
6250 * stopped - every CPU needs to be quiescent, and no scheduling
6251 * activity can take place. Using them for anything else would
6252 * be a serious bug, and as a result, they aren't even visible
6253 * under any other configuration.
6254 */
6255
6256/**
6257 * curr_task - return the current task for a given CPU.
6258 * @cpu: the processor in question.
6259 *
6260 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6261 *
6262 * Return: The current task for @cpu.
6263 */
6264struct task_struct *curr_task(int cpu)
6265{
6266	return cpu_curr(cpu);
6267}
6268
6269#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6270
6271#ifdef CONFIG_IA64
6272/**
6273 * set_curr_task - set the current task for a given CPU.
6274 * @cpu: the processor in question.
6275 * @p: the task pointer to set.
6276 *
6277 * Description: This function must only be used when non-maskable interrupts
6278 * are serviced on a separate stack. It allows the architecture to switch the
6279 * notion of the current task on a CPU in a non-blocking manner. This function
6280 * must be called with all CPU's synchronized, and interrupts disabled, the
6281 * and caller must save the original value of the current task (see
6282 * curr_task() above) and restore that value before reenabling interrupts and
6283 * re-starting the system.
6284 *
6285 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6286 */
6287void ia64_set_curr_task(int cpu, struct task_struct *p)
6288{
6289	cpu_curr(cpu) = p;
6290}
6291
6292#endif
6293
6294#ifdef CONFIG_CGROUP_SCHED
6295/* task_group_lock serializes the addition/removal of task groups */
6296static DEFINE_SPINLOCK(task_group_lock);
6297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6298static void sched_free_group(struct task_group *tg)
6299{
6300	free_fair_sched_group(tg);
6301	free_rt_sched_group(tg);
6302	autogroup_free(tg);
6303	kmem_cache_free(task_group_cache, tg);
6304}
6305
6306/* allocate runqueue etc for a new task group */
6307struct task_group *sched_create_group(struct task_group *parent)
6308{
6309	struct task_group *tg;
6310
6311	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6312	if (!tg)
6313		return ERR_PTR(-ENOMEM);
6314
6315	if (!alloc_fair_sched_group(tg, parent))
6316		goto err;
6317
6318	if (!alloc_rt_sched_group(tg, parent))
6319		goto err;
6320
 
 
6321	return tg;
6322
6323err:
6324	sched_free_group(tg);
6325	return ERR_PTR(-ENOMEM);
6326}
6327
6328void sched_online_group(struct task_group *tg, struct task_group *parent)
6329{
6330	unsigned long flags;
6331
6332	spin_lock_irqsave(&task_group_lock, flags);
6333	list_add_rcu(&tg->list, &task_groups);
6334
6335	/* Root should already exist: */
6336	WARN_ON(!parent);
6337
6338	tg->parent = parent;
6339	INIT_LIST_HEAD(&tg->children);
6340	list_add_rcu(&tg->siblings, &parent->children);
6341	spin_unlock_irqrestore(&task_group_lock, flags);
6342
6343	online_fair_sched_group(tg);
6344}
6345
6346/* rcu callback to free various structures associated with a task group */
6347static void sched_free_group_rcu(struct rcu_head *rhp)
6348{
6349	/* Now it should be safe to free those cfs_rqs: */
6350	sched_free_group(container_of(rhp, struct task_group, rcu));
6351}
6352
6353void sched_destroy_group(struct task_group *tg)
6354{
6355	/* Wait for possible concurrent references to cfs_rqs complete: */
6356	call_rcu(&tg->rcu, sched_free_group_rcu);
6357}
6358
6359void sched_offline_group(struct task_group *tg)
6360{
6361	unsigned long flags;
6362
6363	/* End participation in shares distribution: */
6364	unregister_fair_sched_group(tg);
6365
6366	spin_lock_irqsave(&task_group_lock, flags);
6367	list_del_rcu(&tg->list);
6368	list_del_rcu(&tg->siblings);
6369	spin_unlock_irqrestore(&task_group_lock, flags);
6370}
6371
6372static void sched_change_group(struct task_struct *tsk, int type)
6373{
6374	struct task_group *tg;
6375
6376	/*
6377	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6378	 * which is pointless here. Thus, we pass "true" to task_css_check()
6379	 * to prevent lockdep warnings.
6380	 */
6381	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6382			  struct task_group, css);
6383	tg = autogroup_task_group(tsk, tg);
6384	tsk->sched_task_group = tg;
6385
6386#ifdef CONFIG_FAIR_GROUP_SCHED
6387	if (tsk->sched_class->task_change_group)
6388		tsk->sched_class->task_change_group(tsk, type);
6389	else
6390#endif
6391		set_task_rq(tsk, task_cpu(tsk));
6392}
6393
6394/*
6395 * Change task's runqueue when it moves between groups.
6396 *
6397 * The caller of this function should have put the task in its new group by
6398 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6399 * its new group.
6400 */
6401void sched_move_task(struct task_struct *tsk)
6402{
6403	int queued, running, queue_flags =
6404		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6405	struct rq_flags rf;
6406	struct rq *rq;
6407
6408	rq = task_rq_lock(tsk, &rf);
6409	update_rq_clock(rq);
6410
6411	running = task_current(rq, tsk);
6412	queued = task_on_rq_queued(tsk);
6413
6414	if (queued)
6415		dequeue_task(rq, tsk, queue_flags);
6416	if (running)
6417		put_prev_task(rq, tsk);
6418
6419	sched_change_group(tsk, TASK_MOVE_GROUP);
6420
6421	if (queued)
6422		enqueue_task(rq, tsk, queue_flags);
6423	if (running)
6424		set_curr_task(rq, tsk);
 
 
 
 
 
 
 
6425
6426	task_rq_unlock(rq, tsk, &rf);
6427}
6428
6429static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6430{
6431	return css ? container_of(css, struct task_group, css) : NULL;
6432}
6433
6434static struct cgroup_subsys_state *
6435cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6436{
6437	struct task_group *parent = css_tg(parent_css);
6438	struct task_group *tg;
6439
6440	if (!parent) {
6441		/* This is early initialization for the top cgroup */
6442		return &root_task_group.css;
6443	}
6444
6445	tg = sched_create_group(parent);
6446	if (IS_ERR(tg))
6447		return ERR_PTR(-ENOMEM);
6448
6449	return &tg->css;
6450}
6451
6452/* Expose task group only after completing cgroup initialization */
6453static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6454{
6455	struct task_group *tg = css_tg(css);
6456	struct task_group *parent = css_tg(css->parent);
6457
6458	if (parent)
6459		sched_online_group(tg, parent);
 
 
 
 
 
 
6460	return 0;
6461}
6462
6463static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6464{
6465	struct task_group *tg = css_tg(css);
6466
6467	sched_offline_group(tg);
6468}
6469
6470static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6471{
6472	struct task_group *tg = css_tg(css);
6473
6474	/*
6475	 * Relies on the RCU grace period between css_released() and this.
6476	 */
6477	sched_free_group(tg);
6478}
6479
6480/*
6481 * This is called before wake_up_new_task(), therefore we really only
6482 * have to set its group bits, all the other stuff does not apply.
6483 */
6484static void cpu_cgroup_fork(struct task_struct *task)
6485{
6486	struct rq_flags rf;
6487	struct rq *rq;
6488
6489	rq = task_rq_lock(task, &rf);
6490
6491	update_rq_clock(rq);
6492	sched_change_group(task, TASK_SET_GROUP);
6493
6494	task_rq_unlock(rq, task, &rf);
6495}
6496
6497static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6498{
6499	struct task_struct *task;
6500	struct cgroup_subsys_state *css;
6501	int ret = 0;
6502
6503	cgroup_taskset_for_each(task, css, tset) {
6504#ifdef CONFIG_RT_GROUP_SCHED
6505		if (!sched_rt_can_attach(css_tg(css), task))
6506			return -EINVAL;
6507#else
6508		/* We don't support RT-tasks being in separate groups */
6509		if (task->sched_class != &fair_sched_class)
6510			return -EINVAL;
6511#endif
6512		/*
6513		 * Serialize against wake_up_new_task() such that if its
6514		 * running, we're sure to observe its full state.
6515		 */
6516		raw_spin_lock_irq(&task->pi_lock);
6517		/*
6518		 * Avoid calling sched_move_task() before wake_up_new_task()
6519		 * has happened. This would lead to problems with PELT, due to
6520		 * move wanting to detach+attach while we're not attached yet.
6521		 */
6522		if (task->state == TASK_NEW)
6523			ret = -EINVAL;
6524		raw_spin_unlock_irq(&task->pi_lock);
6525
6526		if (ret)
6527			break;
6528	}
6529	return ret;
6530}
6531
6532static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6533{
6534	struct task_struct *task;
6535	struct cgroup_subsys_state *css;
6536
6537	cgroup_taskset_for_each(task, css, tset)
6538		sched_move_task(task);
6539}
6540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6541#ifdef CONFIG_FAIR_GROUP_SCHED
6542static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6543				struct cftype *cftype, u64 shareval)
6544{
 
 
6545	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6546}
6547
6548static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6549			       struct cftype *cft)
6550{
6551	struct task_group *tg = css_tg(css);
6552
6553	return (u64) scale_load_down(tg->shares);
6554}
6555
6556#ifdef CONFIG_CFS_BANDWIDTH
6557static DEFINE_MUTEX(cfs_constraints_mutex);
6558
6559const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6560const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
 
 
6561
6562static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6563
6564static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6565{
6566	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6567	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6568
6569	if (tg == &root_task_group)
6570		return -EINVAL;
6571
6572	/*
6573	 * Ensure we have at some amount of bandwidth every period.  This is
6574	 * to prevent reaching a state of large arrears when throttled via
6575	 * entity_tick() resulting in prolonged exit starvation.
6576	 */
6577	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6578		return -EINVAL;
6579
6580	/*
6581	 * Likewise, bound things on the otherside by preventing insane quota
6582	 * periods.  This also allows us to normalize in computing quota
6583	 * feasibility.
6584	 */
6585	if (period > max_cfs_quota_period)
6586		return -EINVAL;
6587
6588	/*
 
 
 
 
 
 
6589	 * Prevent race between setting of cfs_rq->runtime_enabled and
6590	 * unthrottle_offline_cfs_rqs().
6591	 */
6592	get_online_cpus();
6593	mutex_lock(&cfs_constraints_mutex);
6594	ret = __cfs_schedulable(tg, period, quota);
6595	if (ret)
6596		goto out_unlock;
6597
6598	runtime_enabled = quota != RUNTIME_INF;
6599	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6600	/*
6601	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6602	 * before making related changes, and on->off must occur afterwards
6603	 */
6604	if (runtime_enabled && !runtime_was_enabled)
6605		cfs_bandwidth_usage_inc();
6606	raw_spin_lock_irq(&cfs_b->lock);
6607	cfs_b->period = ns_to_ktime(period);
6608	cfs_b->quota = quota;
6609
6610	__refill_cfs_bandwidth_runtime(cfs_b);
6611
6612	/* Restart the period timer (if active) to handle new period expiry: */
6613	if (runtime_enabled)
6614		start_cfs_bandwidth(cfs_b);
6615
6616	raw_spin_unlock_irq(&cfs_b->lock);
6617
6618	for_each_online_cpu(i) {
6619		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6620		struct rq *rq = cfs_rq->rq;
6621		struct rq_flags rf;
6622
6623		rq_lock_irq(rq, &rf);
6624		cfs_rq->runtime_enabled = runtime_enabled;
6625		cfs_rq->runtime_remaining = 0;
6626
6627		if (cfs_rq->throttled)
6628			unthrottle_cfs_rq(cfs_rq);
6629		rq_unlock_irq(rq, &rf);
6630	}
6631	if (runtime_was_enabled && !runtime_enabled)
6632		cfs_bandwidth_usage_dec();
6633out_unlock:
6634	mutex_unlock(&cfs_constraints_mutex);
6635	put_online_cpus();
6636
6637	return ret;
6638}
6639
6640int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6641{
6642	u64 quota, period;
6643
6644	period = ktime_to_ns(tg->cfs_bandwidth.period);
6645	if (cfs_quota_us < 0)
6646		quota = RUNTIME_INF;
6647	else
6648		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
 
 
6649
6650	return tg_set_cfs_bandwidth(tg, period, quota);
6651}
6652
6653long tg_get_cfs_quota(struct task_group *tg)
6654{
6655	u64 quota_us;
6656
6657	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6658		return -1;
6659
6660	quota_us = tg->cfs_bandwidth.quota;
6661	do_div(quota_us, NSEC_PER_USEC);
6662
6663	return quota_us;
6664}
6665
6666int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6667{
6668	u64 quota, period;
6669
 
 
 
6670	period = (u64)cfs_period_us * NSEC_PER_USEC;
6671	quota = tg->cfs_bandwidth.quota;
6672
6673	return tg_set_cfs_bandwidth(tg, period, quota);
6674}
6675
6676long tg_get_cfs_period(struct task_group *tg)
6677{
6678	u64 cfs_period_us;
6679
6680	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6681	do_div(cfs_period_us, NSEC_PER_USEC);
6682
6683	return cfs_period_us;
6684}
6685
6686static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6687				  struct cftype *cft)
6688{
6689	return tg_get_cfs_quota(css_tg(css));
6690}
6691
6692static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6693				   struct cftype *cftype, s64 cfs_quota_us)
6694{
6695	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6696}
6697
6698static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6699				   struct cftype *cft)
6700{
6701	return tg_get_cfs_period(css_tg(css));
6702}
6703
6704static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6705				    struct cftype *cftype, u64 cfs_period_us)
6706{
6707	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6708}
6709
6710struct cfs_schedulable_data {
6711	struct task_group *tg;
6712	u64 period, quota;
6713};
6714
6715/*
6716 * normalize group quota/period to be quota/max_period
6717 * note: units are usecs
6718 */
6719static u64 normalize_cfs_quota(struct task_group *tg,
6720			       struct cfs_schedulable_data *d)
6721{
6722	u64 quota, period;
6723
6724	if (tg == d->tg) {
6725		period = d->period;
6726		quota = d->quota;
6727	} else {
6728		period = tg_get_cfs_period(tg);
6729		quota = tg_get_cfs_quota(tg);
6730	}
6731
6732	/* note: these should typically be equivalent */
6733	if (quota == RUNTIME_INF || quota == -1)
6734		return RUNTIME_INF;
6735
6736	return to_ratio(period, quota);
6737}
6738
6739static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6740{
6741	struct cfs_schedulable_data *d = data;
6742	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6743	s64 quota = 0, parent_quota = -1;
6744
6745	if (!tg->parent) {
6746		quota = RUNTIME_INF;
6747	} else {
6748		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6749
6750		quota = normalize_cfs_quota(tg, d);
6751		parent_quota = parent_b->hierarchical_quota;
6752
6753		/*
6754		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
6755		 * always take the min.  On cgroup1, only inherit when no
6756		 * limit is set:
6757		 */
6758		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6759			quota = min(quota, parent_quota);
6760		} else {
6761			if (quota == RUNTIME_INF)
6762				quota = parent_quota;
6763			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6764				return -EINVAL;
6765		}
6766	}
6767	cfs_b->hierarchical_quota = quota;
6768
6769	return 0;
6770}
6771
6772static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6773{
6774	int ret;
6775	struct cfs_schedulable_data data = {
6776		.tg = tg,
6777		.period = period,
6778		.quota = quota,
6779	};
6780
6781	if (quota != RUNTIME_INF) {
6782		do_div(data.period, NSEC_PER_USEC);
6783		do_div(data.quota, NSEC_PER_USEC);
6784	}
6785
6786	rcu_read_lock();
6787	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6788	rcu_read_unlock();
6789
6790	return ret;
6791}
6792
6793static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6794{
6795	struct task_group *tg = css_tg(seq_css(sf));
6796	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6797
6798	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6799	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6800	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6801
 
 
 
 
 
 
 
 
 
 
6802	return 0;
6803}
6804#endif /* CONFIG_CFS_BANDWIDTH */
6805#endif /* CONFIG_FAIR_GROUP_SCHED */
6806
6807#ifdef CONFIG_RT_GROUP_SCHED
6808static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6809				struct cftype *cft, s64 val)
6810{
6811	return sched_group_set_rt_runtime(css_tg(css), val);
6812}
6813
6814static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6815			       struct cftype *cft)
6816{
6817	return sched_group_rt_runtime(css_tg(css));
6818}
6819
6820static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6821				    struct cftype *cftype, u64 rt_period_us)
6822{
6823	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6824}
6825
6826static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6827				   struct cftype *cft)
6828{
6829	return sched_group_rt_period(css_tg(css));
6830}
6831#endif /* CONFIG_RT_GROUP_SCHED */
6832
6833static struct cftype cpu_legacy_files[] = {
6834#ifdef CONFIG_FAIR_GROUP_SCHED
6835	{
6836		.name = "shares",
6837		.read_u64 = cpu_shares_read_u64,
6838		.write_u64 = cpu_shares_write_u64,
6839	},
6840#endif
6841#ifdef CONFIG_CFS_BANDWIDTH
6842	{
6843		.name = "cfs_quota_us",
6844		.read_s64 = cpu_cfs_quota_read_s64,
6845		.write_s64 = cpu_cfs_quota_write_s64,
6846	},
6847	{
6848		.name = "cfs_period_us",
6849		.read_u64 = cpu_cfs_period_read_u64,
6850		.write_u64 = cpu_cfs_period_write_u64,
6851	},
6852	{
6853		.name = "stat",
6854		.seq_show = cpu_cfs_stat_show,
6855	},
6856#endif
6857#ifdef CONFIG_RT_GROUP_SCHED
6858	{
6859		.name = "rt_runtime_us",
6860		.read_s64 = cpu_rt_runtime_read,
6861		.write_s64 = cpu_rt_runtime_write,
6862	},
6863	{
6864		.name = "rt_period_us",
6865		.read_u64 = cpu_rt_period_read_uint,
6866		.write_u64 = cpu_rt_period_write_uint,
6867	},
6868#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6869	{ }	/* Terminate */
6870};
6871
6872static int cpu_extra_stat_show(struct seq_file *sf,
6873			       struct cgroup_subsys_state *css)
6874{
6875#ifdef CONFIG_CFS_BANDWIDTH
6876	{
6877		struct task_group *tg = css_tg(css);
6878		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6879		u64 throttled_usec;
6880
6881		throttled_usec = cfs_b->throttled_time;
6882		do_div(throttled_usec, NSEC_PER_USEC);
6883
6884		seq_printf(sf, "nr_periods %d\n"
6885			   "nr_throttled %d\n"
6886			   "throttled_usec %llu\n",
6887			   cfs_b->nr_periods, cfs_b->nr_throttled,
6888			   throttled_usec);
6889	}
6890#endif
6891	return 0;
6892}
6893
6894#ifdef CONFIG_FAIR_GROUP_SCHED
6895static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6896			       struct cftype *cft)
6897{
6898	struct task_group *tg = css_tg(css);
6899	u64 weight = scale_load_down(tg->shares);
6900
6901	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6902}
6903
6904static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6905				struct cftype *cft, u64 weight)
6906{
6907	/*
6908	 * cgroup weight knobs should use the common MIN, DFL and MAX
6909	 * values which are 1, 100 and 10000 respectively.  While it loses
6910	 * a bit of range on both ends, it maps pretty well onto the shares
6911	 * value used by scheduler and the round-trip conversions preserve
6912	 * the original value over the entire range.
6913	 */
6914	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6915		return -ERANGE;
6916
6917	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6918
6919	return sched_group_set_shares(css_tg(css), scale_load(weight));
6920}
6921
6922static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6923				    struct cftype *cft)
6924{
6925	unsigned long weight = scale_load_down(css_tg(css)->shares);
6926	int last_delta = INT_MAX;
6927	int prio, delta;
6928
6929	/* find the closest nice value to the current weight */
6930	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6931		delta = abs(sched_prio_to_weight[prio] - weight);
6932		if (delta >= last_delta)
6933			break;
6934		last_delta = delta;
6935	}
6936
6937	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6938}
6939
6940static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6941				     struct cftype *cft, s64 nice)
6942{
6943	unsigned long weight;
6944	int idx;
6945
6946	if (nice < MIN_NICE || nice > MAX_NICE)
6947		return -ERANGE;
6948
6949	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6950	idx = array_index_nospec(idx, 40);
6951	weight = sched_prio_to_weight[idx];
6952
6953	return sched_group_set_shares(css_tg(css), scale_load(weight));
6954}
6955#endif
6956
6957static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6958						  long period, long quota)
6959{
6960	if (quota < 0)
6961		seq_puts(sf, "max");
6962	else
6963		seq_printf(sf, "%ld", quota);
6964
6965	seq_printf(sf, " %ld\n", period);
6966}
6967
6968/* caller should put the current value in *@periodp before calling */
6969static int __maybe_unused cpu_period_quota_parse(char *buf,
6970						 u64 *periodp, u64 *quotap)
6971{
6972	char tok[21];	/* U64_MAX */
6973
6974	if (!sscanf(buf, "%s %llu", tok, periodp))
6975		return -EINVAL;
6976
6977	*periodp *= NSEC_PER_USEC;
6978
6979	if (sscanf(tok, "%llu", quotap))
6980		*quotap *= NSEC_PER_USEC;
6981	else if (!strcmp(tok, "max"))
6982		*quotap = RUNTIME_INF;
6983	else
6984		return -EINVAL;
6985
6986	return 0;
6987}
6988
6989#ifdef CONFIG_CFS_BANDWIDTH
6990static int cpu_max_show(struct seq_file *sf, void *v)
6991{
6992	struct task_group *tg = css_tg(seq_css(sf));
6993
6994	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6995	return 0;
6996}
6997
6998static ssize_t cpu_max_write(struct kernfs_open_file *of,
6999			     char *buf, size_t nbytes, loff_t off)
7000{
7001	struct task_group *tg = css_tg(of_css(of));
7002	u64 period = tg_get_cfs_period(tg);
7003	u64 quota;
7004	int ret;
7005
7006	ret = cpu_period_quota_parse(buf, &period, &quota);
7007	if (!ret)
7008		ret = tg_set_cfs_bandwidth(tg, period, quota);
7009	return ret ?: nbytes;
7010}
7011#endif
7012
7013static struct cftype cpu_files[] = {
7014#ifdef CONFIG_FAIR_GROUP_SCHED
7015	{
7016		.name = "weight",
7017		.flags = CFTYPE_NOT_ON_ROOT,
7018		.read_u64 = cpu_weight_read_u64,
7019		.write_u64 = cpu_weight_write_u64,
7020	},
7021	{
7022		.name = "weight.nice",
7023		.flags = CFTYPE_NOT_ON_ROOT,
7024		.read_s64 = cpu_weight_nice_read_s64,
7025		.write_s64 = cpu_weight_nice_write_s64,
7026	},
7027#endif
7028#ifdef CONFIG_CFS_BANDWIDTH
7029	{
7030		.name = "max",
7031		.flags = CFTYPE_NOT_ON_ROOT,
7032		.seq_show = cpu_max_show,
7033		.write = cpu_max_write,
7034	},
7035#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7036	{ }	/* terminate */
7037};
7038
7039struct cgroup_subsys cpu_cgrp_subsys = {
7040	.css_alloc	= cpu_cgroup_css_alloc,
7041	.css_online	= cpu_cgroup_css_online,
7042	.css_released	= cpu_cgroup_css_released,
7043	.css_free	= cpu_cgroup_css_free,
7044	.css_extra_stat_show = cpu_extra_stat_show,
7045	.fork		= cpu_cgroup_fork,
7046	.can_attach	= cpu_cgroup_can_attach,
7047	.attach		= cpu_cgroup_attach,
7048	.legacy_cftypes	= cpu_legacy_files,
7049	.dfl_cftypes	= cpu_files,
7050	.early_init	= true,
7051	.threaded	= true,
7052};
7053
7054#endif	/* CONFIG_CGROUP_SCHED */
7055
7056void dump_cpu_task(int cpu)
7057{
7058	pr_info("Task dump for CPU %d:\n", cpu);
7059	sched_show_task(cpu_curr(cpu));
7060}
7061
7062/*
7063 * Nice levels are multiplicative, with a gentle 10% change for every
7064 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7065 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7066 * that remained on nice 0.
7067 *
7068 * The "10% effect" is relative and cumulative: from _any_ nice level,
7069 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7070 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7071 * If a task goes up by ~10% and another task goes down by ~10% then
7072 * the relative distance between them is ~25%.)
7073 */
7074const int sched_prio_to_weight[40] = {
7075 /* -20 */     88761,     71755,     56483,     46273,     36291,
7076 /* -15 */     29154,     23254,     18705,     14949,     11916,
7077 /* -10 */      9548,      7620,      6100,      4904,      3906,
7078 /*  -5 */      3121,      2501,      1991,      1586,      1277,
7079 /*   0 */      1024,       820,       655,       526,       423,
7080 /*   5 */       335,       272,       215,       172,       137,
7081 /*  10 */       110,        87,        70,        56,        45,
7082 /*  15 */        36,        29,        23,        18,        15,
7083};
7084
7085/*
7086 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7087 *
7088 * In cases where the weight does not change often, we can use the
7089 * precalculated inverse to speed up arithmetics by turning divisions
7090 * into multiplications:
7091 */
7092const u32 sched_prio_to_wmult[40] = {
7093 /* -20 */     48388,     59856,     76040,     92818,    118348,
7094 /* -15 */    147320,    184698,    229616,    287308,    360437,
7095 /* -10 */    449829,    563644,    704093,    875809,   1099582,
7096 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7097 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7098 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7099 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7100 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7101};
7102
7103#undef CREATE_TRACE_POINTS
 
 
 
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  kernel/sched/core.c
   4 *
   5 *  Core kernel scheduler code and related syscalls
   6 *
   7 *  Copyright (C) 1991-2002  Linus Torvalds
   8 */
   9#define CREATE_TRACE_POINTS
  10#include <trace/events/sched.h>
  11#undef CREATE_TRACE_POINTS
  12
  13#include "sched.h"
  14
 
  15#include <linux/nospec.h>
  16
  17#include <linux/kcov.h>
  18#include <linux/scs.h>
  19
  20#include <asm/switch_to.h>
  21#include <asm/tlb.h>
  22
  23#include "../workqueue_internal.h"
  24#include "../../fs/io-wq.h"
  25#include "../smpboot.h"
  26
  27#include "pelt.h"
  28#include "smp.h"
  29
  30/*
  31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  32 * associated with them) to allow external modules to probe them.
  33 */
  34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
  39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
  40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
  41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
  42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
  43
  44DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  45
  46#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
  47/*
  48 * Debugging: various feature bits
  49 *
  50 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  51 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  52 * at compile time and compiler optimization based on features default.
  53 */
  54#define SCHED_FEAT(name, enabled)	\
  55	(1UL << __SCHED_FEAT_##name) * enabled |
  56const_debug unsigned int sysctl_sched_features =
  57#include "features.h"
  58	0;
  59#undef SCHED_FEAT
  60#endif
  61
  62/*
  63 * Number of tasks to iterate in a single balance run.
  64 * Limited because this is done with IRQs disabled.
  65 */
  66const_debug unsigned int sysctl_sched_nr_migrate = 32;
  67
  68/*
 
 
 
 
 
 
 
 
  69 * period over which we measure -rt task CPU usage in us.
  70 * default: 1s
  71 */
  72unsigned int sysctl_sched_rt_period = 1000000;
  73
  74__read_mostly int scheduler_running;
  75
  76/*
  77 * part of the period that we allow rt tasks to run in us.
  78 * default: 0.95s
  79 */
  80int sysctl_sched_rt_runtime = 950000;
  81
  82
  83/*
  84 * Serialization rules:
  85 *
  86 * Lock order:
  87 *
  88 *   p->pi_lock
  89 *     rq->lock
  90 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
  91 *
  92 *  rq1->lock
  93 *    rq2->lock  where: rq1 < rq2
  94 *
  95 * Regular state:
  96 *
  97 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
  98 * local CPU's rq->lock, it optionally removes the task from the runqueue and
  99 * always looks at the local rq data structures to find the most elegible task
 100 * to run next.
 101 *
 102 * Task enqueue is also under rq->lock, possibly taken from another CPU.
 103 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
 104 * the local CPU to avoid bouncing the runqueue state around [ see
 105 * ttwu_queue_wakelist() ]
 106 *
 107 * Task wakeup, specifically wakeups that involve migration, are horribly
 108 * complicated to avoid having to take two rq->locks.
 109 *
 110 * Special state:
 111 *
 112 * System-calls and anything external will use task_rq_lock() which acquires
 113 * both p->pi_lock and rq->lock. As a consequence the state they change is
 114 * stable while holding either lock:
 115 *
 116 *  - sched_setaffinity()/
 117 *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
 118 *  - set_user_nice():		p->se.load, p->*prio
 119 *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
 120 *				p->se.load, p->rt_priority,
 121 *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
 122 *  - sched_setnuma():		p->numa_preferred_nid
 123 *  - sched_move_task()/
 124 *    cpu_cgroup_fork():	p->sched_task_group
 125 *  - uclamp_update_active()	p->uclamp*
 126 *
 127 * p->state <- TASK_*:
 128 *
 129 *   is changed locklessly using set_current_state(), __set_current_state() or
 130 *   set_special_state(), see their respective comments, or by
 131 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
 132 *   concurrent self.
 133 *
 134 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
 135 *
 136 *   is set by activate_task() and cleared by deactivate_task(), under
 137 *   rq->lock. Non-zero indicates the task is runnable, the special
 138 *   ON_RQ_MIGRATING state is used for migration without holding both
 139 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
 140 *
 141 * p->on_cpu <- { 0, 1 }:
 142 *
 143 *   is set by prepare_task() and cleared by finish_task() such that it will be
 144 *   set before p is scheduled-in and cleared after p is scheduled-out, both
 145 *   under rq->lock. Non-zero indicates the task is running on its CPU.
 146 *
 147 *   [ The astute reader will observe that it is possible for two tasks on one
 148 *     CPU to have ->on_cpu = 1 at the same time. ]
 149 *
 150 * task_cpu(p): is changed by set_task_cpu(), the rules are:
 151 *
 152 *  - Don't call set_task_cpu() on a blocked task:
 153 *
 154 *    We don't care what CPU we're not running on, this simplifies hotplug,
 155 *    the CPU assignment of blocked tasks isn't required to be valid.
 156 *
 157 *  - for try_to_wake_up(), called under p->pi_lock:
 158 *
 159 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
 160 *
 161 *  - for migration called under rq->lock:
 162 *    [ see task_on_rq_migrating() in task_rq_lock() ]
 163 *
 164 *    o move_queued_task()
 165 *    o detach_task()
 166 *
 167 *  - for migration called under double_rq_lock():
 168 *
 169 *    o __migrate_swap_task()
 170 *    o push_rt_task() / pull_rt_task()
 171 *    o push_dl_task() / pull_dl_task()
 172 *    o dl_task_offline_migration()
 173 *
 174 */
 175
 176/*
 177 * __task_rq_lock - lock the rq @p resides on.
 178 */
 179struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 180	__acquires(rq->lock)
 181{
 182	struct rq *rq;
 183
 184	lockdep_assert_held(&p->pi_lock);
 185
 186	for (;;) {
 187		rq = task_rq(p);
 188		raw_spin_lock(&rq->lock);
 189		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 190			rq_pin_lock(rq, rf);
 191			return rq;
 192		}
 193		raw_spin_unlock(&rq->lock);
 194
 195		while (unlikely(task_on_rq_migrating(p)))
 196			cpu_relax();
 197	}
 198}
 199
 200/*
 201 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 202 */
 203struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 204	__acquires(p->pi_lock)
 205	__acquires(rq->lock)
 206{
 207	struct rq *rq;
 208
 209	for (;;) {
 210		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
 211		rq = task_rq(p);
 212		raw_spin_lock(&rq->lock);
 213		/*
 214		 *	move_queued_task()		task_rq_lock()
 215		 *
 216		 *	ACQUIRE (rq->lock)
 217		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
 218		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
 219		 *	[S] ->cpu = new_cpu		[L] task_rq()
 220		 *					[L] ->on_rq
 221		 *	RELEASE (rq->lock)
 222		 *
 223		 * If we observe the old CPU in task_rq_lock(), the acquire of
 224		 * the old rq->lock will fully serialize against the stores.
 225		 *
 226		 * If we observe the new CPU in task_rq_lock(), the address
 227		 * dependency headed by '[L] rq = task_rq()' and the acquire
 228		 * will pair with the WMB to ensure we then also see migrating.
 229		 */
 230		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 231			rq_pin_lock(rq, rf);
 232			return rq;
 233		}
 234		raw_spin_unlock(&rq->lock);
 235		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 236
 237		while (unlikely(task_on_rq_migrating(p)))
 238			cpu_relax();
 239	}
 240}
 241
 242/*
 243 * RQ-clock updating methods:
 244 */
 245
 246static void update_rq_clock_task(struct rq *rq, s64 delta)
 247{
 248/*
 249 * In theory, the compile should just see 0 here, and optimize out the call
 250 * to sched_rt_avg_update. But I don't trust it...
 251 */
 252	s64 __maybe_unused steal = 0, irq_delta = 0;
 253
 
 254#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 255	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 256
 257	/*
 258	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 259	 * this case when a previous update_rq_clock() happened inside a
 260	 * {soft,}irq region.
 261	 *
 262	 * When this happens, we stop ->clock_task and only update the
 263	 * prev_irq_time stamp to account for the part that fit, so that a next
 264	 * update will consume the rest. This ensures ->clock_task is
 265	 * monotonic.
 266	 *
 267	 * It does however cause some slight miss-attribution of {soft,}irq
 268	 * time, a more accurate solution would be to update the irq_time using
 269	 * the current rq->clock timestamp, except that would require using
 270	 * atomic ops.
 271	 */
 272	if (irq_delta > delta)
 273		irq_delta = delta;
 274
 275	rq->prev_irq_time += irq_delta;
 276	delta -= irq_delta;
 277#endif
 278#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 279	if (static_key_false((&paravirt_steal_rq_enabled))) {
 280		steal = paravirt_steal_clock(cpu_of(rq));
 281		steal -= rq->prev_steal_time_rq;
 282
 283		if (unlikely(steal > delta))
 284			steal = delta;
 285
 286		rq->prev_steal_time_rq += steal;
 287		delta -= steal;
 288	}
 289#endif
 290
 291	rq->clock_task += delta;
 292
 293#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 294	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 295		update_irq_load_avg(rq, irq_delta + steal);
 296#endif
 297	update_rq_clock_pelt(rq, delta);
 298}
 299
 300void update_rq_clock(struct rq *rq)
 301{
 302	s64 delta;
 303
 304	lockdep_assert_held(&rq->lock);
 305
 306	if (rq->clock_update_flags & RQCF_ACT_SKIP)
 307		return;
 308
 309#ifdef CONFIG_SCHED_DEBUG
 310	if (sched_feat(WARN_DOUBLE_CLOCK))
 311		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
 312	rq->clock_update_flags |= RQCF_UPDATED;
 313#endif
 314
 315	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 316	if (delta < 0)
 317		return;
 318	rq->clock += delta;
 319	update_rq_clock_task(rq, delta);
 320}
 321
 322static inline void
 323rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
 324{
 325	csd->flags = 0;
 326	csd->func = func;
 327	csd->info = rq;
 328}
 329
 330#ifdef CONFIG_SCHED_HRTICK
 331/*
 332 * Use HR-timers to deliver accurate preemption points.
 333 */
 334
 335static void hrtick_clear(struct rq *rq)
 336{
 337	if (hrtimer_active(&rq->hrtick_timer))
 338		hrtimer_cancel(&rq->hrtick_timer);
 339}
 340
 341/*
 342 * High-resolution timer tick.
 343 * Runs from hardirq context with interrupts disabled.
 344 */
 345static enum hrtimer_restart hrtick(struct hrtimer *timer)
 346{
 347	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 348	struct rq_flags rf;
 349
 350	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 351
 352	rq_lock(rq, &rf);
 353	update_rq_clock(rq);
 354	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 355	rq_unlock(rq, &rf);
 356
 357	return HRTIMER_NORESTART;
 358}
 359
 360#ifdef CONFIG_SMP
 361
 362static void __hrtick_restart(struct rq *rq)
 363{
 364	struct hrtimer *timer = &rq->hrtick_timer;
 365
 366	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
 367}
 368
 369/*
 370 * called from hardirq (IPI) context
 371 */
 372static void __hrtick_start(void *arg)
 373{
 374	struct rq *rq = arg;
 375	struct rq_flags rf;
 376
 377	rq_lock(rq, &rf);
 378	__hrtick_restart(rq);
 
 379	rq_unlock(rq, &rf);
 380}
 381
 382/*
 383 * Called to set the hrtick timer state.
 384 *
 385 * called with rq->lock held and irqs disabled
 386 */
 387void hrtick_start(struct rq *rq, u64 delay)
 388{
 389	struct hrtimer *timer = &rq->hrtick_timer;
 390	ktime_t time;
 391	s64 delta;
 392
 393	/*
 394	 * Don't schedule slices shorter than 10000ns, that just
 395	 * doesn't make sense and can cause timer DoS.
 396	 */
 397	delta = max_t(s64, delay, 10000LL);
 398	time = ktime_add_ns(timer->base->get_time(), delta);
 399
 400	hrtimer_set_expires(timer, time);
 401
 402	if (rq == this_rq())
 403		__hrtick_restart(rq);
 404	else
 405		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 
 
 406}
 407
 408#else
 409/*
 410 * Called to set the hrtick timer state.
 411 *
 412 * called with rq->lock held and irqs disabled
 413 */
 414void hrtick_start(struct rq *rq, u64 delay)
 415{
 416	/*
 417	 * Don't schedule slices shorter than 10000ns, that just
 418	 * doesn't make sense. Rely on vruntime for fairness.
 419	 */
 420	delay = max_t(u64, delay, 10000LL);
 421	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 422		      HRTIMER_MODE_REL_PINNED_HARD);
 423}
 424
 425#endif /* CONFIG_SMP */
 426
 427static void hrtick_rq_init(struct rq *rq)
 428{
 429#ifdef CONFIG_SMP
 430	rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
 
 
 
 
 431#endif
 432	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 
 433	rq->hrtick_timer.function = hrtick;
 434}
 435#else	/* CONFIG_SCHED_HRTICK */
 436static inline void hrtick_clear(struct rq *rq)
 437{
 438}
 439
 440static inline void hrtick_rq_init(struct rq *rq)
 441{
 442}
 443#endif	/* CONFIG_SCHED_HRTICK */
 444
 445/*
 446 * cmpxchg based fetch_or, macro so it works for different integer types
 447 */
 448#define fetch_or(ptr, mask)						\
 449	({								\
 450		typeof(ptr) _ptr = (ptr);				\
 451		typeof(mask) _mask = (mask);				\
 452		typeof(*_ptr) _old, _val = *_ptr;			\
 453									\
 454		for (;;) {						\
 455			_old = cmpxchg(_ptr, _val, _val | _mask);	\
 456			if (_old == _val)				\
 457				break;					\
 458			_val = _old;					\
 459		}							\
 460	_old;								\
 461})
 462
 463#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 464/*
 465 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 466 * this avoids any races wrt polling state changes and thereby avoids
 467 * spurious IPIs.
 468 */
 469static bool set_nr_and_not_polling(struct task_struct *p)
 470{
 471	struct thread_info *ti = task_thread_info(p);
 472	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 473}
 474
 475/*
 476 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 477 *
 478 * If this returns true, then the idle task promises to call
 479 * sched_ttwu_pending() and reschedule soon.
 480 */
 481static bool set_nr_if_polling(struct task_struct *p)
 482{
 483	struct thread_info *ti = task_thread_info(p);
 484	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 485
 486	for (;;) {
 487		if (!(val & _TIF_POLLING_NRFLAG))
 488			return false;
 489		if (val & _TIF_NEED_RESCHED)
 490			return true;
 491		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 492		if (old == val)
 493			break;
 494		val = old;
 495	}
 496	return true;
 497}
 498
 499#else
 500static bool set_nr_and_not_polling(struct task_struct *p)
 501{
 502	set_tsk_need_resched(p);
 503	return true;
 504}
 505
 506#ifdef CONFIG_SMP
 507static bool set_nr_if_polling(struct task_struct *p)
 508{
 509	return false;
 510}
 511#endif
 512#endif
 513
 514static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
 515{
 516	struct wake_q_node *node = &task->wake_q;
 517
 518	/*
 519	 * Atomically grab the task, if ->wake_q is !nil already it means
 520	 * its already queued (either by us or someone else) and will get the
 521	 * wakeup due to that.
 522	 *
 523	 * In order to ensure that a pending wakeup will observe our pending
 524	 * state, even in the failed case, an explicit smp_mb() must be used.
 525	 */
 526	smp_mb__before_atomic();
 527	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
 528		return false;
 
 529
 530	/*
 531	 * The head is context local, there can be no concurrency.
 532	 */
 533	*head->lastp = node;
 534	head->lastp = &node->next;
 535	return true;
 536}
 537
 538/**
 539 * wake_q_add() - queue a wakeup for 'later' waking.
 540 * @head: the wake_q_head to add @task to
 541 * @task: the task to queue for 'later' wakeup
 542 *
 543 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 544 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 545 * instantly.
 546 *
 547 * This function must be used as-if it were wake_up_process(); IOW the task
 548 * must be ready to be woken at this location.
 549 */
 550void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 551{
 552	if (__wake_q_add(head, task))
 553		get_task_struct(task);
 554}
 555
 556/**
 557 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
 558 * @head: the wake_q_head to add @task to
 559 * @task: the task to queue for 'later' wakeup
 560 *
 561 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 562 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 563 * instantly.
 564 *
 565 * This function must be used as-if it were wake_up_process(); IOW the task
 566 * must be ready to be woken at this location.
 567 *
 568 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
 569 * that already hold reference to @task can call the 'safe' version and trust
 570 * wake_q to do the right thing depending whether or not the @task is already
 571 * queued for wakeup.
 572 */
 573void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
 574{
 575	if (!__wake_q_add(head, task))
 576		put_task_struct(task);
 577}
 578
 579void wake_up_q(struct wake_q_head *head)
 580{
 581	struct wake_q_node *node = head->first;
 582
 583	while (node != WAKE_Q_TAIL) {
 584		struct task_struct *task;
 585
 586		task = container_of(node, struct task_struct, wake_q);
 587		BUG_ON(!task);
 588		/* Task can safely be re-inserted now: */
 589		node = node->next;
 590		task->wake_q.next = NULL;
 591
 592		/*
 593		 * wake_up_process() executes a full barrier, which pairs with
 594		 * the queueing in wake_q_add() so as not to miss wakeups.
 595		 */
 596		wake_up_process(task);
 597		put_task_struct(task);
 598	}
 599}
 600
 601/*
 602 * resched_curr - mark rq's current task 'to be rescheduled now'.
 603 *
 604 * On UP this means the setting of the need_resched flag, on SMP it
 605 * might also involve a cross-CPU call to trigger the scheduler on
 606 * the target CPU.
 607 */
 608void resched_curr(struct rq *rq)
 609{
 610	struct task_struct *curr = rq->curr;
 611	int cpu;
 612
 613	lockdep_assert_held(&rq->lock);
 614
 615	if (test_tsk_need_resched(curr))
 616		return;
 617
 618	cpu = cpu_of(rq);
 619
 620	if (cpu == smp_processor_id()) {
 621		set_tsk_need_resched(curr);
 622		set_preempt_need_resched();
 623		return;
 624	}
 625
 626	if (set_nr_and_not_polling(curr))
 627		smp_send_reschedule(cpu);
 628	else
 629		trace_sched_wake_idle_without_ipi(cpu);
 630}
 631
 632void resched_cpu(int cpu)
 633{
 634	struct rq *rq = cpu_rq(cpu);
 635	unsigned long flags;
 636
 637	raw_spin_lock_irqsave(&rq->lock, flags);
 638	if (cpu_online(cpu) || cpu == smp_processor_id())
 639		resched_curr(rq);
 640	raw_spin_unlock_irqrestore(&rq->lock, flags);
 641}
 642
 643#ifdef CONFIG_SMP
 644#ifdef CONFIG_NO_HZ_COMMON
 645/*
 646 * In the semi idle case, use the nearest busy CPU for migrating timers
 647 * from an idle CPU.  This is good for power-savings.
 648 *
 649 * We don't do similar optimization for completely idle system, as
 650 * selecting an idle CPU will add more delays to the timers than intended
 651 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 652 */
 653int get_nohz_timer_target(void)
 654{
 655	int i, cpu = smp_processor_id(), default_cpu = -1;
 656	struct sched_domain *sd;
 657
 658	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
 659		if (!idle_cpu(cpu))
 660			return cpu;
 661		default_cpu = cpu;
 662	}
 663
 664	rcu_read_lock();
 665	for_each_domain(cpu, sd) {
 666		for_each_cpu_and(i, sched_domain_span(sd),
 667			housekeeping_cpumask(HK_FLAG_TIMER)) {
 668			if (cpu == i)
 669				continue;
 670
 671			if (!idle_cpu(i)) {
 672				cpu = i;
 673				goto unlock;
 674			}
 675		}
 676	}
 677
 678	if (default_cpu == -1)
 679		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
 680	cpu = default_cpu;
 681unlock:
 682	rcu_read_unlock();
 683	return cpu;
 684}
 685
 686/*
 687 * When add_timer_on() enqueues a timer into the timer wheel of an
 688 * idle CPU then this timer might expire before the next timer event
 689 * which is scheduled to wake up that CPU. In case of a completely
 690 * idle system the next event might even be infinite time into the
 691 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 692 * leaves the inner idle loop so the newly added timer is taken into
 693 * account when the CPU goes back to idle and evaluates the timer
 694 * wheel for the next timer event.
 695 */
 696static void wake_up_idle_cpu(int cpu)
 697{
 698	struct rq *rq = cpu_rq(cpu);
 699
 700	if (cpu == smp_processor_id())
 701		return;
 702
 703	if (set_nr_and_not_polling(rq->idle))
 704		smp_send_reschedule(cpu);
 705	else
 706		trace_sched_wake_idle_without_ipi(cpu);
 707}
 708
 709static bool wake_up_full_nohz_cpu(int cpu)
 710{
 711	/*
 712	 * We just need the target to call irq_exit() and re-evaluate
 713	 * the next tick. The nohz full kick at least implies that.
 714	 * If needed we can still optimize that later with an
 715	 * empty IRQ.
 716	 */
 717	if (cpu_is_offline(cpu))
 718		return true;  /* Don't try to wake offline CPUs. */
 719	if (tick_nohz_full_cpu(cpu)) {
 720		if (cpu != smp_processor_id() ||
 721		    tick_nohz_tick_stopped())
 722			tick_nohz_full_kick_cpu(cpu);
 723		return true;
 724	}
 725
 726	return false;
 727}
 728
 729/*
 730 * Wake up the specified CPU.  If the CPU is going offline, it is the
 731 * caller's responsibility to deal with the lost wakeup, for example,
 732 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 733 */
 734void wake_up_nohz_cpu(int cpu)
 735{
 736	if (!wake_up_full_nohz_cpu(cpu))
 737		wake_up_idle_cpu(cpu);
 738}
 739
 740static void nohz_csd_func(void *info)
 741{
 742	struct rq *rq = info;
 743	int cpu = cpu_of(rq);
 744	unsigned int flags;
 
 
 
 
 745
 746	/*
 747	 * Release the rq::nohz_csd.
 
 748	 */
 749	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
 750	WARN_ON(!(flags & NOHZ_KICK_MASK));
 
 
 
 751
 752	rq->idle_balance = idle_cpu(cpu);
 753	if (rq->idle_balance && !need_resched()) {
 754		rq->nohz_idle_balance = flags;
 755		raise_softirq_irqoff(SCHED_SOFTIRQ);
 756	}
 757}
 758
 759#endif /* CONFIG_NO_HZ_COMMON */
 760
 761#ifdef CONFIG_NO_HZ_FULL
 762bool sched_can_stop_tick(struct rq *rq)
 763{
 764	int fifo_nr_running;
 765
 766	/* Deadline tasks, even if single, need the tick */
 767	if (rq->dl.dl_nr_running)
 768		return false;
 769
 770	/*
 771	 * If there are more than one RR tasks, we need the tick to effect the
 772	 * actual RR behaviour.
 773	 */
 774	if (rq->rt.rr_nr_running) {
 775		if (rq->rt.rr_nr_running == 1)
 776			return true;
 777		else
 778			return false;
 779	}
 780
 781	/*
 782	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 783	 * forced preemption between FIFO tasks.
 784	 */
 785	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 786	if (fifo_nr_running)
 787		return true;
 788
 789	/*
 790	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 791	 * if there's more than one we need the tick for involuntary
 792	 * preemption.
 793	 */
 794	if (rq->nr_running > 1)
 795		return false;
 796
 797	return true;
 798}
 799#endif /* CONFIG_NO_HZ_FULL */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800#endif /* CONFIG_SMP */
 801
 802#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 803			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 804/*
 805 * Iterate task_group tree rooted at *from, calling @down when first entering a
 806 * node and @up when leaving it for the final time.
 807 *
 808 * Caller must hold rcu_lock or sufficient equivalent.
 809 */
 810int walk_tg_tree_from(struct task_group *from,
 811			     tg_visitor down, tg_visitor up, void *data)
 812{
 813	struct task_group *parent, *child;
 814	int ret;
 815
 816	parent = from;
 817
 818down:
 819	ret = (*down)(parent, data);
 820	if (ret)
 821		goto out;
 822	list_for_each_entry_rcu(child, &parent->children, siblings) {
 823		parent = child;
 824		goto down;
 825
 826up:
 827		continue;
 828	}
 829	ret = (*up)(parent, data);
 830	if (ret || parent == from)
 831		goto out;
 832
 833	child = parent;
 834	parent = parent->parent;
 835	if (parent)
 836		goto up;
 837out:
 838	return ret;
 839}
 840
 841int tg_nop(struct task_group *tg, void *data)
 842{
 843	return 0;
 844}
 845#endif
 846
 847static void set_load_weight(struct task_struct *p, bool update_load)
 848{
 849	int prio = p->static_prio - MAX_RT_PRIO;
 850	struct load_weight *load = &p->se.load;
 851
 852	/*
 853	 * SCHED_IDLE tasks get minimal weight:
 854	 */
 855	if (task_has_idle_policy(p)) {
 856		load->weight = scale_load(WEIGHT_IDLEPRIO);
 857		load->inv_weight = WMULT_IDLEPRIO;
 858		return;
 859	}
 860
 861	/*
 862	 * SCHED_OTHER tasks have to update their load when changing their
 863	 * weight
 864	 */
 865	if (update_load && p->sched_class == &fair_sched_class) {
 866		reweight_task(p, prio);
 867	} else {
 868		load->weight = scale_load(sched_prio_to_weight[prio]);
 869		load->inv_weight = sched_prio_to_wmult[prio];
 870	}
 871}
 872
 873#ifdef CONFIG_UCLAMP_TASK
 874/*
 875 * Serializes updates of utilization clamp values
 876 *
 877 * The (slow-path) user-space triggers utilization clamp value updates which
 878 * can require updates on (fast-path) scheduler's data structures used to
 879 * support enqueue/dequeue operations.
 880 * While the per-CPU rq lock protects fast-path update operations, user-space
 881 * requests are serialized using a mutex to reduce the risk of conflicting
 882 * updates or API abuses.
 883 */
 884static DEFINE_MUTEX(uclamp_mutex);
 885
 886/* Max allowed minimum utilization */
 887unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 888
 889/* Max allowed maximum utilization */
 890unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 891
 892/*
 893 * By default RT tasks run at the maximum performance point/capacity of the
 894 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
 895 * SCHED_CAPACITY_SCALE.
 896 *
 897 * This knob allows admins to change the default behavior when uclamp is being
 898 * used. In battery powered devices, particularly, running at the maximum
 899 * capacity and frequency will increase energy consumption and shorten the
 900 * battery life.
 901 *
 902 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
 903 *
 904 * This knob will not override the system default sched_util_clamp_min defined
 905 * above.
 906 */
 907unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
 908
 909/* All clamps are required to be less or equal than these values */
 910static struct uclamp_se uclamp_default[UCLAMP_CNT];
 911
 912/*
 913 * This static key is used to reduce the uclamp overhead in the fast path. It
 914 * primarily disables the call to uclamp_rq_{inc, dec}() in
 915 * enqueue/dequeue_task().
 916 *
 917 * This allows users to continue to enable uclamp in their kernel config with
 918 * minimum uclamp overhead in the fast path.
 919 *
 920 * As soon as userspace modifies any of the uclamp knobs, the static key is
 921 * enabled, since we have an actual users that make use of uclamp
 922 * functionality.
 923 *
 924 * The knobs that would enable this static key are:
 925 *
 926 *   * A task modifying its uclamp value with sched_setattr().
 927 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
 928 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
 929 */
 930DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
 931
 932/* Integer rounded range for each bucket */
 933#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
 934
 935#define for_each_clamp_id(clamp_id) \
 936	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
 937
 938static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
 939{
 940	return clamp_value / UCLAMP_BUCKET_DELTA;
 941}
 942
 943static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
 944{
 945	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
 946}
 947
 948static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
 949{
 950	if (clamp_id == UCLAMP_MIN)
 951		return 0;
 952	return SCHED_CAPACITY_SCALE;
 953}
 954
 955static inline void uclamp_se_set(struct uclamp_se *uc_se,
 956				 unsigned int value, bool user_defined)
 957{
 958	uc_se->value = value;
 959	uc_se->bucket_id = uclamp_bucket_id(value);
 960	uc_se->user_defined = user_defined;
 961}
 962
 963static inline unsigned int
 964uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
 965		  unsigned int clamp_value)
 966{
 967	/*
 968	 * Avoid blocked utilization pushing up the frequency when we go
 969	 * idle (which drops the max-clamp) by retaining the last known
 970	 * max-clamp.
 971	 */
 972	if (clamp_id == UCLAMP_MAX) {
 973		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 974		return clamp_value;
 975	}
 976
 977	return uclamp_none(UCLAMP_MIN);
 978}
 979
 980static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
 981				     unsigned int clamp_value)
 982{
 983	/* Reset max-clamp retention only on idle exit */
 984	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 985		return;
 986
 987	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
 988}
 989
 990static inline
 991unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
 992				   unsigned int clamp_value)
 993{
 994	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 995	int bucket_id = UCLAMP_BUCKETS - 1;
 996
 997	/*
 998	 * Since both min and max clamps are max aggregated, find the
 999	 * top most bucket with tasks in.
1000	 */
1001	for ( ; bucket_id >= 0; bucket_id--) {
1002		if (!bucket[bucket_id].tasks)
1003			continue;
1004		return bucket[bucket_id].value;
1005	}
1006
1007	/* No tasks -- default clamp values */
1008	return uclamp_idle_value(rq, clamp_id, clamp_value);
1009}
1010
1011static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1012{
1013	unsigned int default_util_min;
1014	struct uclamp_se *uc_se;
1015
1016	lockdep_assert_held(&p->pi_lock);
1017
1018	uc_se = &p->uclamp_req[UCLAMP_MIN];
1019
1020	/* Only sync if user didn't override the default */
1021	if (uc_se->user_defined)
1022		return;
1023
1024	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1025	uclamp_se_set(uc_se, default_util_min, false);
1026}
1027
1028static void uclamp_update_util_min_rt_default(struct task_struct *p)
1029{
1030	struct rq_flags rf;
1031	struct rq *rq;
1032
1033	if (!rt_task(p))
1034		return;
1035
1036	/* Protect updates to p->uclamp_* */
1037	rq = task_rq_lock(p, &rf);
1038	__uclamp_update_util_min_rt_default(p);
1039	task_rq_unlock(rq, p, &rf);
1040}
1041
1042static void uclamp_sync_util_min_rt_default(void)
1043{
1044	struct task_struct *g, *p;
1045
1046	/*
1047	 * copy_process()			sysctl_uclamp
1048	 *					  uclamp_min_rt = X;
1049	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1050	 *   // link thread			  smp_mb__after_spinlock()
1051	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1052	 *   sched_post_fork()			  for_each_process_thread()
1053	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1054	 *
1055	 * Ensures that either sched_post_fork() will observe the new
1056	 * uclamp_min_rt or for_each_process_thread() will observe the new
1057	 * task.
1058	 */
1059	read_lock(&tasklist_lock);
1060	smp_mb__after_spinlock();
1061	read_unlock(&tasklist_lock);
1062
1063	rcu_read_lock();
1064	for_each_process_thread(g, p)
1065		uclamp_update_util_min_rt_default(p);
1066	rcu_read_unlock();
1067}
1068
1069static inline struct uclamp_se
1070uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1071{
1072	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1073#ifdef CONFIG_UCLAMP_TASK_GROUP
1074	struct uclamp_se uc_max;
1075
1076	/*
1077	 * Tasks in autogroups or root task group will be
1078	 * restricted by system defaults.
1079	 */
1080	if (task_group_is_autogroup(task_group(p)))
1081		return uc_req;
1082	if (task_group(p) == &root_task_group)
1083		return uc_req;
1084
1085	uc_max = task_group(p)->uclamp[clamp_id];
1086	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1087		return uc_max;
1088#endif
1089
1090	return uc_req;
1091}
1092
1093/*
1094 * The effective clamp bucket index of a task depends on, by increasing
1095 * priority:
1096 * - the task specific clamp value, when explicitly requested from userspace
1097 * - the task group effective clamp value, for tasks not either in the root
1098 *   group or in an autogroup
1099 * - the system default clamp value, defined by the sysadmin
1100 */
1101static inline struct uclamp_se
1102uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1103{
1104	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1105	struct uclamp_se uc_max = uclamp_default[clamp_id];
1106
1107	/* System default restrictions always apply */
1108	if (unlikely(uc_req.value > uc_max.value))
1109		return uc_max;
1110
1111	return uc_req;
1112}
1113
1114unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1115{
1116	struct uclamp_se uc_eff;
1117
1118	/* Task currently refcounted: use back-annotated (effective) value */
1119	if (p->uclamp[clamp_id].active)
1120		return (unsigned long)p->uclamp[clamp_id].value;
1121
1122	uc_eff = uclamp_eff_get(p, clamp_id);
1123
1124	return (unsigned long)uc_eff.value;
1125}
1126
1127/*
1128 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1129 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1130 * updates the rq's clamp value if required.
1131 *
1132 * Tasks can have a task-specific value requested from user-space, track
1133 * within each bucket the maximum value for tasks refcounted in it.
1134 * This "local max aggregation" allows to track the exact "requested" value
1135 * for each bucket when all its RUNNABLE tasks require the same clamp.
1136 */
1137static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1138				    enum uclamp_id clamp_id)
1139{
1140	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1141	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1142	struct uclamp_bucket *bucket;
1143
1144	lockdep_assert_held(&rq->lock);
1145
1146	/* Update task effective clamp */
1147	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1148
1149	bucket = &uc_rq->bucket[uc_se->bucket_id];
1150	bucket->tasks++;
1151	uc_se->active = true;
1152
1153	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1154
1155	/*
1156	 * Local max aggregation: rq buckets always track the max
1157	 * "requested" clamp value of its RUNNABLE tasks.
1158	 */
1159	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1160		bucket->value = uc_se->value;
1161
1162	if (uc_se->value > READ_ONCE(uc_rq->value))
1163		WRITE_ONCE(uc_rq->value, uc_se->value);
1164}
1165
1166/*
1167 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1168 * is released. If this is the last task reference counting the rq's max
1169 * active clamp value, then the rq's clamp value is updated.
1170 *
1171 * Both refcounted tasks and rq's cached clamp values are expected to be
1172 * always valid. If it's detected they are not, as defensive programming,
1173 * enforce the expected state and warn.
1174 */
1175static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1176				    enum uclamp_id clamp_id)
1177{
1178	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1179	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1180	struct uclamp_bucket *bucket;
1181	unsigned int bkt_clamp;
1182	unsigned int rq_clamp;
1183
1184	lockdep_assert_held(&rq->lock);
1185
1186	/*
1187	 * If sched_uclamp_used was enabled after task @p was enqueued,
1188	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1189	 *
1190	 * In this case the uc_se->active flag should be false since no uclamp
1191	 * accounting was performed at enqueue time and we can just return
1192	 * here.
1193	 *
1194	 * Need to be careful of the following enqeueue/dequeue ordering
1195	 * problem too
1196	 *
1197	 *	enqueue(taskA)
1198	 *	// sched_uclamp_used gets enabled
1199	 *	enqueue(taskB)
1200	 *	dequeue(taskA)
1201	 *	// Must not decrement bukcet->tasks here
1202	 *	dequeue(taskB)
1203	 *
1204	 * where we could end up with stale data in uc_se and
1205	 * bucket[uc_se->bucket_id].
1206	 *
1207	 * The following check here eliminates the possibility of such race.
1208	 */
1209	if (unlikely(!uc_se->active))
1210		return;
1211
1212	bucket = &uc_rq->bucket[uc_se->bucket_id];
1213
1214	SCHED_WARN_ON(!bucket->tasks);
1215	if (likely(bucket->tasks))
1216		bucket->tasks--;
1217
1218	uc_se->active = false;
1219
1220	/*
1221	 * Keep "local max aggregation" simple and accept to (possibly)
1222	 * overboost some RUNNABLE tasks in the same bucket.
1223	 * The rq clamp bucket value is reset to its base value whenever
1224	 * there are no more RUNNABLE tasks refcounting it.
1225	 */
1226	if (likely(bucket->tasks))
1227		return;
1228
1229	rq_clamp = READ_ONCE(uc_rq->value);
1230	/*
1231	 * Defensive programming: this should never happen. If it happens,
1232	 * e.g. due to future modification, warn and fixup the expected value.
1233	 */
1234	SCHED_WARN_ON(bucket->value > rq_clamp);
1235	if (bucket->value >= rq_clamp) {
1236		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1237		WRITE_ONCE(uc_rq->value, bkt_clamp);
1238	}
1239}
1240
1241static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1242{
1243	enum uclamp_id clamp_id;
1244
1245	/*
1246	 * Avoid any overhead until uclamp is actually used by the userspace.
1247	 *
1248	 * The condition is constructed such that a NOP is generated when
1249	 * sched_uclamp_used is disabled.
1250	 */
1251	if (!static_branch_unlikely(&sched_uclamp_used))
1252		return;
1253
1254	if (unlikely(!p->sched_class->uclamp_enabled))
1255		return;
1256
1257	for_each_clamp_id(clamp_id)
1258		uclamp_rq_inc_id(rq, p, clamp_id);
1259
1260	/* Reset clamp idle holding when there is one RUNNABLE task */
1261	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1262		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1263}
1264
1265static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1266{
1267	enum uclamp_id clamp_id;
1268
1269	/*
1270	 * Avoid any overhead until uclamp is actually used by the userspace.
1271	 *
1272	 * The condition is constructed such that a NOP is generated when
1273	 * sched_uclamp_used is disabled.
1274	 */
1275	if (!static_branch_unlikely(&sched_uclamp_used))
1276		return;
1277
1278	if (unlikely(!p->sched_class->uclamp_enabled))
1279		return;
1280
1281	for_each_clamp_id(clamp_id)
1282		uclamp_rq_dec_id(rq, p, clamp_id);
1283}
1284
1285static inline void
1286uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1287{
1288	struct rq_flags rf;
1289	struct rq *rq;
1290
1291	/*
1292	 * Lock the task and the rq where the task is (or was) queued.
1293	 *
1294	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1295	 * price to pay to safely serialize util_{min,max} updates with
1296	 * enqueues, dequeues and migration operations.
1297	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1298	 */
1299	rq = task_rq_lock(p, &rf);
1300
1301	/*
1302	 * Setting the clamp bucket is serialized by task_rq_lock().
1303	 * If the task is not yet RUNNABLE and its task_struct is not
1304	 * affecting a valid clamp bucket, the next time it's enqueued,
1305	 * it will already see the updated clamp bucket value.
1306	 */
1307	if (p->uclamp[clamp_id].active) {
1308		uclamp_rq_dec_id(rq, p, clamp_id);
1309		uclamp_rq_inc_id(rq, p, clamp_id);
1310	}
1311
1312	task_rq_unlock(rq, p, &rf);
1313}
1314
1315#ifdef CONFIG_UCLAMP_TASK_GROUP
1316static inline void
1317uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1318			   unsigned int clamps)
1319{
1320	enum uclamp_id clamp_id;
1321	struct css_task_iter it;
1322	struct task_struct *p;
1323
1324	css_task_iter_start(css, 0, &it);
1325	while ((p = css_task_iter_next(&it))) {
1326		for_each_clamp_id(clamp_id) {
1327			if ((0x1 << clamp_id) & clamps)
1328				uclamp_update_active(p, clamp_id);
1329		}
1330	}
1331	css_task_iter_end(&it);
1332}
1333
1334static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1335static void uclamp_update_root_tg(void)
1336{
1337	struct task_group *tg = &root_task_group;
1338
1339	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1340		      sysctl_sched_uclamp_util_min, false);
1341	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1342		      sysctl_sched_uclamp_util_max, false);
1343
1344	rcu_read_lock();
1345	cpu_util_update_eff(&root_task_group.css);
1346	rcu_read_unlock();
1347}
1348#else
1349static void uclamp_update_root_tg(void) { }
1350#endif
1351
1352int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1353				void *buffer, size_t *lenp, loff_t *ppos)
1354{
1355	bool update_root_tg = false;
1356	int old_min, old_max, old_min_rt;
1357	int result;
1358
1359	mutex_lock(&uclamp_mutex);
1360	old_min = sysctl_sched_uclamp_util_min;
1361	old_max = sysctl_sched_uclamp_util_max;
1362	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1363
1364	result = proc_dointvec(table, write, buffer, lenp, ppos);
1365	if (result)
1366		goto undo;
1367	if (!write)
1368		goto done;
1369
1370	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1371	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1372	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1373
1374		result = -EINVAL;
1375		goto undo;
1376	}
1377
1378	if (old_min != sysctl_sched_uclamp_util_min) {
1379		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1380			      sysctl_sched_uclamp_util_min, false);
1381		update_root_tg = true;
1382	}
1383	if (old_max != sysctl_sched_uclamp_util_max) {
1384		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1385			      sysctl_sched_uclamp_util_max, false);
1386		update_root_tg = true;
1387	}
1388
1389	if (update_root_tg) {
1390		static_branch_enable(&sched_uclamp_used);
1391		uclamp_update_root_tg();
1392	}
1393
1394	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1395		static_branch_enable(&sched_uclamp_used);
1396		uclamp_sync_util_min_rt_default();
1397	}
1398
1399	/*
1400	 * We update all RUNNABLE tasks only when task groups are in use.
1401	 * Otherwise, keep it simple and do just a lazy update at each next
1402	 * task enqueue time.
1403	 */
1404
1405	goto done;
1406
1407undo:
1408	sysctl_sched_uclamp_util_min = old_min;
1409	sysctl_sched_uclamp_util_max = old_max;
1410	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1411done:
1412	mutex_unlock(&uclamp_mutex);
1413
1414	return result;
1415}
1416
1417static int uclamp_validate(struct task_struct *p,
1418			   const struct sched_attr *attr)
1419{
1420	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1421	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1422
1423	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1424		lower_bound = attr->sched_util_min;
1425	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1426		upper_bound = attr->sched_util_max;
1427
1428	if (lower_bound > upper_bound)
1429		return -EINVAL;
1430	if (upper_bound > SCHED_CAPACITY_SCALE)
1431		return -EINVAL;
1432
1433	/*
1434	 * We have valid uclamp attributes; make sure uclamp is enabled.
1435	 *
1436	 * We need to do that here, because enabling static branches is a
1437	 * blocking operation which obviously cannot be done while holding
1438	 * scheduler locks.
1439	 */
1440	static_branch_enable(&sched_uclamp_used);
1441
1442	return 0;
1443}
1444
1445static void __setscheduler_uclamp(struct task_struct *p,
1446				  const struct sched_attr *attr)
1447{
1448	enum uclamp_id clamp_id;
1449
1450	/*
1451	 * On scheduling class change, reset to default clamps for tasks
1452	 * without a task-specific value.
1453	 */
1454	for_each_clamp_id(clamp_id) {
1455		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1456
1457		/* Keep using defined clamps across class changes */
1458		if (uc_se->user_defined)
1459			continue;
1460
1461		/*
1462		 * RT by default have a 100% boost value that could be modified
1463		 * at runtime.
1464		 */
1465		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1466			__uclamp_update_util_min_rt_default(p);
1467		else
1468			uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1469
1470	}
1471
1472	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1473		return;
1474
1475	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1476		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1477			      attr->sched_util_min, true);
1478	}
1479
1480	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1481		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1482			      attr->sched_util_max, true);
1483	}
1484}
1485
1486static void uclamp_fork(struct task_struct *p)
1487{
1488	enum uclamp_id clamp_id;
1489
1490	/*
1491	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1492	 * as the task is still at its early fork stages.
1493	 */
1494	for_each_clamp_id(clamp_id)
1495		p->uclamp[clamp_id].active = false;
1496
1497	if (likely(!p->sched_reset_on_fork))
1498		return;
1499
1500	for_each_clamp_id(clamp_id) {
1501		uclamp_se_set(&p->uclamp_req[clamp_id],
1502			      uclamp_none(clamp_id), false);
1503	}
1504}
1505
1506static void uclamp_post_fork(struct task_struct *p)
1507{
1508	uclamp_update_util_min_rt_default(p);
1509}
1510
1511static void __init init_uclamp_rq(struct rq *rq)
1512{
1513	enum uclamp_id clamp_id;
1514	struct uclamp_rq *uc_rq = rq->uclamp;
1515
1516	for_each_clamp_id(clamp_id) {
1517		uc_rq[clamp_id] = (struct uclamp_rq) {
1518			.value = uclamp_none(clamp_id)
1519		};
1520	}
1521
1522	rq->uclamp_flags = 0;
1523}
1524
1525static void __init init_uclamp(void)
1526{
1527	struct uclamp_se uc_max = {};
1528	enum uclamp_id clamp_id;
1529	int cpu;
1530
1531	for_each_possible_cpu(cpu)
1532		init_uclamp_rq(cpu_rq(cpu));
1533
1534	for_each_clamp_id(clamp_id) {
1535		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1536			      uclamp_none(clamp_id), false);
1537	}
1538
1539	/* System defaults allow max clamp values for both indexes */
1540	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1541	for_each_clamp_id(clamp_id) {
1542		uclamp_default[clamp_id] = uc_max;
1543#ifdef CONFIG_UCLAMP_TASK_GROUP
1544		root_task_group.uclamp_req[clamp_id] = uc_max;
1545		root_task_group.uclamp[clamp_id] = uc_max;
1546#endif
1547	}
1548}
1549
1550#else /* CONFIG_UCLAMP_TASK */
1551static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1552static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1553static inline int uclamp_validate(struct task_struct *p,
1554				  const struct sched_attr *attr)
1555{
1556	return -EOPNOTSUPP;
1557}
1558static void __setscheduler_uclamp(struct task_struct *p,
1559				  const struct sched_attr *attr) { }
1560static inline void uclamp_fork(struct task_struct *p) { }
1561static inline void uclamp_post_fork(struct task_struct *p) { }
1562static inline void init_uclamp(void) { }
1563#endif /* CONFIG_UCLAMP_TASK */
1564
1565static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1566{
1567	if (!(flags & ENQUEUE_NOCLOCK))
1568		update_rq_clock(rq);
1569
1570	if (!(flags & ENQUEUE_RESTORE)) {
1571		sched_info_queued(rq, p);
1572		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1573	}
1574
1575	uclamp_rq_inc(rq, p);
1576	p->sched_class->enqueue_task(rq, p, flags);
1577}
1578
1579static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1580{
1581	if (!(flags & DEQUEUE_NOCLOCK))
1582		update_rq_clock(rq);
1583
1584	if (!(flags & DEQUEUE_SAVE)) {
1585		sched_info_dequeued(rq, p);
1586		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1587	}
1588
1589	uclamp_rq_dec(rq, p);
1590	p->sched_class->dequeue_task(rq, p, flags);
1591}
1592
1593void activate_task(struct rq *rq, struct task_struct *p, int flags)
1594{
 
 
 
1595	enqueue_task(rq, p, flags);
1596
1597	p->on_rq = TASK_ON_RQ_QUEUED;
1598}
1599
1600void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1601{
1602	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
 
1603
1604	dequeue_task(rq, p, flags);
1605}
1606
1607/*
1608 * __normal_prio - return the priority that is based on the static prio
1609 */
1610static inline int __normal_prio(struct task_struct *p)
1611{
1612	return p->static_prio;
1613}
1614
1615/*
1616 * Calculate the expected normal priority: i.e. priority
1617 * without taking RT-inheritance into account. Might be
1618 * boosted by interactivity modifiers. Changes upon fork,
1619 * setprio syscalls, and whenever the interactivity
1620 * estimator recalculates.
1621 */
1622static inline int normal_prio(struct task_struct *p)
1623{
1624	int prio;
1625
1626	if (task_has_dl_policy(p))
1627		prio = MAX_DL_PRIO-1;
1628	else if (task_has_rt_policy(p))
1629		prio = MAX_RT_PRIO-1 - p->rt_priority;
1630	else
1631		prio = __normal_prio(p);
1632	return prio;
1633}
1634
1635/*
1636 * Calculate the current priority, i.e. the priority
1637 * taken into account by the scheduler. This value might
1638 * be boosted by RT tasks, or might be boosted by
1639 * interactivity modifiers. Will be RT if the task got
1640 * RT-boosted. If not then it returns p->normal_prio.
1641 */
1642static int effective_prio(struct task_struct *p)
1643{
1644	p->normal_prio = normal_prio(p);
1645	/*
1646	 * If we are RT tasks or we were boosted to RT priority,
1647	 * keep the priority unchanged. Otherwise, update priority
1648	 * to the normal priority:
1649	 */
1650	if (!rt_prio(p->prio))
1651		return p->normal_prio;
1652	return p->prio;
1653}
1654
1655/**
1656 * task_curr - is this task currently executing on a CPU?
1657 * @p: the task in question.
1658 *
1659 * Return: 1 if the task is currently executing. 0 otherwise.
1660 */
1661inline int task_curr(const struct task_struct *p)
1662{
1663	return cpu_curr(task_cpu(p)) == p;
1664}
1665
1666/*
1667 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1668 * use the balance_callback list if you want balancing.
1669 *
1670 * this means any call to check_class_changed() must be followed by a call to
1671 * balance_callback().
1672 */
1673static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1674				       const struct sched_class *prev_class,
1675				       int oldprio)
1676{
1677	if (prev_class != p->sched_class) {
1678		if (prev_class->switched_from)
1679			prev_class->switched_from(rq, p);
1680
1681		p->sched_class->switched_to(rq, p);
1682	} else if (oldprio != p->prio || dl_task(p))
1683		p->sched_class->prio_changed(rq, p, oldprio);
1684}
1685
1686void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1687{
1688	if (p->sched_class == rq->curr->sched_class)
 
 
1689		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1690	else if (p->sched_class > rq->curr->sched_class)
1691		resched_curr(rq);
 
 
 
 
 
 
 
 
1692
1693	/*
1694	 * A queue event has occurred, and we're going to schedule.  In
1695	 * this case, we can save a useless back to back clock update.
1696	 */
1697	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1698		rq_clock_skip_update(rq);
1699}
1700
1701#ifdef CONFIG_SMP
1702
 
 
 
 
 
 
 
 
 
 
 
1703/*
1704 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1705 * __set_cpus_allowed_ptr() and select_fallback_rq().
1706 */
1707static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1708{
1709	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1710		return false;
1711
1712	if (is_per_cpu_kthread(p))
1713		return cpu_online(cpu);
1714
1715	return cpu_active(cpu);
1716}
1717
1718/*
1719 * This is how migration works:
1720 *
1721 * 1) we invoke migration_cpu_stop() on the target CPU using
1722 *    stop_one_cpu().
1723 * 2) stopper starts to run (implicitly forcing the migrated thread
1724 *    off the CPU)
1725 * 3) it checks whether the migrated task is still in the wrong runqueue.
1726 * 4) if it's in the wrong runqueue then the migration thread removes
1727 *    it and puts it into the right queue.
1728 * 5) stopper completes and stop_one_cpu() returns and the migration
1729 *    is done.
1730 */
1731
1732/*
1733 * move_queued_task - move a queued task to new rq.
1734 *
1735 * Returns (locked) new rq. Old rq's lock is released.
1736 */
1737static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1738				   struct task_struct *p, int new_cpu)
1739{
1740	lockdep_assert_held(&rq->lock);
1741
1742	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
 
1743	set_task_cpu(p, new_cpu);
1744	rq_unlock(rq, rf);
1745
1746	rq = cpu_rq(new_cpu);
1747
1748	rq_lock(rq, rf);
1749	BUG_ON(task_cpu(p) != new_cpu);
1750	activate_task(rq, p, 0);
 
1751	check_preempt_curr(rq, p, 0);
1752
1753	return rq;
1754}
1755
1756struct migration_arg {
1757	struct task_struct *task;
1758	int dest_cpu;
1759};
1760
1761/*
1762 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1763 * this because either it can't run here any more (set_cpus_allowed()
1764 * away from this CPU, or CPU going down), or because we're
1765 * attempting to rebalance this task on exec (sched_exec).
1766 *
1767 * So we race with normal scheduler movements, but that's OK, as long
1768 * as the task is no longer on this CPU.
1769 */
1770static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1771				 struct task_struct *p, int dest_cpu)
1772{
1773	/* Affinity changed (again). */
1774	if (!is_cpu_allowed(p, dest_cpu))
1775		return rq;
1776
1777	update_rq_clock(rq);
1778	rq = move_queued_task(rq, rf, p, dest_cpu);
1779
1780	return rq;
1781}
1782
1783/*
1784 * migration_cpu_stop - this will be executed by a highprio stopper thread
1785 * and performs thread migration by bumping thread off CPU then
1786 * 'pushing' onto another runqueue.
1787 */
1788static int migration_cpu_stop(void *data)
1789{
1790	struct migration_arg *arg = data;
1791	struct task_struct *p = arg->task;
1792	struct rq *rq = this_rq();
1793	struct rq_flags rf;
1794
1795	/*
1796	 * The original target CPU might have gone down and we might
1797	 * be on another CPU but it doesn't matter.
1798	 */
1799	local_irq_disable();
1800	/*
1801	 * We need to explicitly wake pending tasks before running
1802	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1803	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1804	 */
1805	flush_smp_call_function_from_idle();
1806
1807	raw_spin_lock(&p->pi_lock);
1808	rq_lock(rq, &rf);
1809	/*
1810	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1811	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1812	 * we're holding p->pi_lock.
1813	 */
1814	if (task_rq(p) == rq) {
1815		if (task_on_rq_queued(p))
1816			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1817		else
1818			p->wake_cpu = arg->dest_cpu;
1819	}
1820	rq_unlock(rq, &rf);
1821	raw_spin_unlock(&p->pi_lock);
1822
1823	local_irq_enable();
1824	return 0;
1825}
1826
1827/*
1828 * sched_class::set_cpus_allowed must do the below, but is not required to
1829 * actually call this function.
1830 */
1831void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1832{
1833	cpumask_copy(&p->cpus_mask, new_mask);
1834	p->nr_cpus_allowed = cpumask_weight(new_mask);
1835}
1836
1837void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1838{
1839	struct rq *rq = task_rq(p);
1840	bool queued, running;
1841
1842	lockdep_assert_held(&p->pi_lock);
1843
1844	queued = task_on_rq_queued(p);
1845	running = task_current(rq, p);
1846
1847	if (queued) {
1848		/*
1849		 * Because __kthread_bind() calls this on blocked tasks without
1850		 * holding rq->lock.
1851		 */
1852		lockdep_assert_held(&rq->lock);
1853		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1854	}
1855	if (running)
1856		put_prev_task(rq, p);
1857
1858	p->sched_class->set_cpus_allowed(p, new_mask);
1859
1860	if (queued)
1861		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1862	if (running)
1863		set_next_task(rq, p);
1864}
1865
1866/*
1867 * Change a given task's CPU affinity. Migrate the thread to a
1868 * proper CPU and schedule it away if the CPU it's executing on
1869 * is removed from the allowed bitmask.
1870 *
1871 * NOTE: the caller must have a valid reference to the task, the
1872 * task must not exit() & deallocate itself prematurely. The
1873 * call is not atomic; no spinlocks may be held.
1874 */
1875static int __set_cpus_allowed_ptr(struct task_struct *p,
1876				  const struct cpumask *new_mask, bool check)
1877{
1878	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1879	unsigned int dest_cpu;
1880	struct rq_flags rf;
1881	struct rq *rq;
1882	int ret = 0;
1883
1884	rq = task_rq_lock(p, &rf);
1885	update_rq_clock(rq);
1886
1887	if (p->flags & PF_KTHREAD) {
1888		/*
1889		 * Kernel threads are allowed on online && !active CPUs
1890		 */
1891		cpu_valid_mask = cpu_online_mask;
1892	}
1893
1894	/*
1895	 * Must re-check here, to close a race against __kthread_bind(),
1896	 * sched_setaffinity() is not guaranteed to observe the flag.
1897	 */
1898	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1899		ret = -EINVAL;
1900		goto out;
1901	}
1902
1903	if (cpumask_equal(&p->cpus_mask, new_mask))
1904		goto out;
1905
1906	/*
1907	 * Picking a ~random cpu helps in cases where we are changing affinity
1908	 * for groups of tasks (ie. cpuset), so that load balancing is not
1909	 * immediately required to distribute the tasks within their new mask.
1910	 */
1911	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1912	if (dest_cpu >= nr_cpu_ids) {
1913		ret = -EINVAL;
1914		goto out;
1915	}
1916
1917	do_set_cpus_allowed(p, new_mask);
1918
1919	if (p->flags & PF_KTHREAD) {
1920		/*
1921		 * For kernel threads that do indeed end up on online &&
1922		 * !active we want to ensure they are strict per-CPU threads.
1923		 */
1924		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1925			!cpumask_intersects(new_mask, cpu_active_mask) &&
1926			p->nr_cpus_allowed != 1);
1927	}
1928
1929	/* Can the task run on the task's current CPU? If so, we're done */
1930	if (cpumask_test_cpu(task_cpu(p), new_mask))
1931		goto out;
1932
 
1933	if (task_running(rq, p) || p->state == TASK_WAKING) {
1934		struct migration_arg arg = { p, dest_cpu };
1935		/* Need help from migration thread: drop lock and wait. */
1936		task_rq_unlock(rq, p, &rf);
1937		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
 
1938		return 0;
1939	} else if (task_on_rq_queued(p)) {
1940		/*
1941		 * OK, since we're going to drop the lock immediately
1942		 * afterwards anyway.
1943		 */
1944		rq = move_queued_task(rq, &rf, p, dest_cpu);
1945	}
1946out:
1947	task_rq_unlock(rq, p, &rf);
1948
1949	return ret;
1950}
1951
1952int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1953{
1954	return __set_cpus_allowed_ptr(p, new_mask, false);
1955}
1956EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1957
1958void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1959{
1960#ifdef CONFIG_SCHED_DEBUG
1961	/*
1962	 * We should never call set_task_cpu() on a blocked task,
1963	 * ttwu() will sort out the placement.
1964	 */
1965	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1966			!p->on_rq);
1967
1968	/*
1969	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1970	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1971	 * time relying on p->on_rq.
1972	 */
1973	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1974		     p->sched_class == &fair_sched_class &&
1975		     (p->on_rq && !task_on_rq_migrating(p)));
1976
1977#ifdef CONFIG_LOCKDEP
1978	/*
1979	 * The caller should hold either p->pi_lock or rq->lock, when changing
1980	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1981	 *
1982	 * sched_move_task() holds both and thus holding either pins the cgroup,
1983	 * see task_group().
1984	 *
1985	 * Furthermore, all task_rq users should acquire both locks, see
1986	 * task_rq_lock().
1987	 */
1988	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1989				      lockdep_is_held(&task_rq(p)->lock)));
1990#endif
1991	/*
1992	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1993	 */
1994	WARN_ON_ONCE(!cpu_online(new_cpu));
1995#endif
1996
1997	trace_sched_migrate_task(p, new_cpu);
1998
1999	if (task_cpu(p) != new_cpu) {
2000		if (p->sched_class->migrate_task_rq)
2001			p->sched_class->migrate_task_rq(p, new_cpu);
2002		p->se.nr_migrations++;
2003		rseq_migrate(p);
2004		perf_event_task_migrate(p);
2005	}
2006
2007	__set_task_cpu(p, new_cpu);
2008}
2009
2010#ifdef CONFIG_NUMA_BALANCING
2011static void __migrate_swap_task(struct task_struct *p, int cpu)
2012{
2013	if (task_on_rq_queued(p)) {
2014		struct rq *src_rq, *dst_rq;
2015		struct rq_flags srf, drf;
2016
2017		src_rq = task_rq(p);
2018		dst_rq = cpu_rq(cpu);
2019
2020		rq_pin_lock(src_rq, &srf);
2021		rq_pin_lock(dst_rq, &drf);
2022
 
2023		deactivate_task(src_rq, p, 0);
2024		set_task_cpu(p, cpu);
2025		activate_task(dst_rq, p, 0);
 
2026		check_preempt_curr(dst_rq, p, 0);
2027
2028		rq_unpin_lock(dst_rq, &drf);
2029		rq_unpin_lock(src_rq, &srf);
2030
2031	} else {
2032		/*
2033		 * Task isn't running anymore; make it appear like we migrated
2034		 * it before it went to sleep. This means on wakeup we make the
2035		 * previous CPU our target instead of where it really is.
2036		 */
2037		p->wake_cpu = cpu;
2038	}
2039}
2040
2041struct migration_swap_arg {
2042	struct task_struct *src_task, *dst_task;
2043	int src_cpu, dst_cpu;
2044};
2045
2046static int migrate_swap_stop(void *data)
2047{
2048	struct migration_swap_arg *arg = data;
2049	struct rq *src_rq, *dst_rq;
2050	int ret = -EAGAIN;
2051
2052	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2053		return -EAGAIN;
2054
2055	src_rq = cpu_rq(arg->src_cpu);
2056	dst_rq = cpu_rq(arg->dst_cpu);
2057
2058	double_raw_lock(&arg->src_task->pi_lock,
2059			&arg->dst_task->pi_lock);
2060	double_rq_lock(src_rq, dst_rq);
2061
2062	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2063		goto unlock;
2064
2065	if (task_cpu(arg->src_task) != arg->src_cpu)
2066		goto unlock;
2067
2068	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2069		goto unlock;
2070
2071	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2072		goto unlock;
2073
2074	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2075	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2076
2077	ret = 0;
2078
2079unlock:
2080	double_rq_unlock(src_rq, dst_rq);
2081	raw_spin_unlock(&arg->dst_task->pi_lock);
2082	raw_spin_unlock(&arg->src_task->pi_lock);
2083
2084	return ret;
2085}
2086
2087/*
2088 * Cross migrate two tasks
2089 */
2090int migrate_swap(struct task_struct *cur, struct task_struct *p,
2091		int target_cpu, int curr_cpu)
2092{
2093	struct migration_swap_arg arg;
2094	int ret = -EINVAL;
2095
2096	arg = (struct migration_swap_arg){
2097		.src_task = cur,
2098		.src_cpu = curr_cpu,
2099		.dst_task = p,
2100		.dst_cpu = target_cpu,
2101	};
2102
2103	if (arg.src_cpu == arg.dst_cpu)
2104		goto out;
2105
2106	/*
2107	 * These three tests are all lockless; this is OK since all of them
2108	 * will be re-checked with proper locks held further down the line.
2109	 */
2110	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2111		goto out;
2112
2113	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2114		goto out;
2115
2116	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2117		goto out;
2118
2119	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2120	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2121
2122out:
2123	return ret;
2124}
2125#endif /* CONFIG_NUMA_BALANCING */
2126
2127/*
2128 * wait_task_inactive - wait for a thread to unschedule.
2129 *
2130 * If @match_state is nonzero, it's the @p->state value just checked and
2131 * not expected to change.  If it changes, i.e. @p might have woken up,
2132 * then return zero.  When we succeed in waiting for @p to be off its CPU,
2133 * we return a positive number (its total switch count).  If a second call
2134 * a short while later returns the same number, the caller can be sure that
2135 * @p has remained unscheduled the whole time.
2136 *
2137 * The caller must ensure that the task *will* unschedule sometime soon,
2138 * else this function might spin for a *long* time. This function can't
2139 * be called with interrupts off, or it may introduce deadlock with
2140 * smp_call_function() if an IPI is sent by the same process we are
2141 * waiting to become inactive.
2142 */
2143unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2144{
2145	int running, queued;
2146	struct rq_flags rf;
2147	unsigned long ncsw;
2148	struct rq *rq;
2149
2150	for (;;) {
2151		/*
2152		 * We do the initial early heuristics without holding
2153		 * any task-queue locks at all. We'll only try to get
2154		 * the runqueue lock when things look like they will
2155		 * work out!
2156		 */
2157		rq = task_rq(p);
2158
2159		/*
2160		 * If the task is actively running on another CPU
2161		 * still, just relax and busy-wait without holding
2162		 * any locks.
2163		 *
2164		 * NOTE! Since we don't hold any locks, it's not
2165		 * even sure that "rq" stays as the right runqueue!
2166		 * But we don't care, since "task_running()" will
2167		 * return false if the runqueue has changed and p
2168		 * is actually now running somewhere else!
2169		 */
2170		while (task_running(rq, p)) {
2171			if (match_state && unlikely(p->state != match_state))
2172				return 0;
2173			cpu_relax();
2174		}
2175
2176		/*
2177		 * Ok, time to look more closely! We need the rq
2178		 * lock now, to be *sure*. If we're wrong, we'll
2179		 * just go back and repeat.
2180		 */
2181		rq = task_rq_lock(p, &rf);
2182		trace_sched_wait_task(p);
2183		running = task_running(rq, p);
2184		queued = task_on_rq_queued(p);
2185		ncsw = 0;
2186		if (!match_state || p->state == match_state)
2187			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2188		task_rq_unlock(rq, p, &rf);
2189
2190		/*
2191		 * If it changed from the expected state, bail out now.
2192		 */
2193		if (unlikely(!ncsw))
2194			break;
2195
2196		/*
2197		 * Was it really running after all now that we
2198		 * checked with the proper locks actually held?
2199		 *
2200		 * Oops. Go back and try again..
2201		 */
2202		if (unlikely(running)) {
2203			cpu_relax();
2204			continue;
2205		}
2206
2207		/*
2208		 * It's not enough that it's not actively running,
2209		 * it must be off the runqueue _entirely_, and not
2210		 * preempted!
2211		 *
2212		 * So if it was still runnable (but just not actively
2213		 * running right now), it's preempted, and we should
2214		 * yield - it could be a while.
2215		 */
2216		if (unlikely(queued)) {
2217			ktime_t to = NSEC_PER_SEC / HZ;
2218
2219			set_current_state(TASK_UNINTERRUPTIBLE);
2220			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2221			continue;
2222		}
2223
2224		/*
2225		 * Ahh, all good. It wasn't running, and it wasn't
2226		 * runnable, which means that it will never become
2227		 * running in the future either. We're all done!
2228		 */
2229		break;
2230	}
2231
2232	return ncsw;
2233}
2234
2235/***
2236 * kick_process - kick a running thread to enter/exit the kernel
2237 * @p: the to-be-kicked thread
2238 *
2239 * Cause a process which is running on another CPU to enter
2240 * kernel-mode, without any delay. (to get signals handled.)
2241 *
2242 * NOTE: this function doesn't have to take the runqueue lock,
2243 * because all it wants to ensure is that the remote task enters
2244 * the kernel. If the IPI races and the task has been migrated
2245 * to another CPU then no harm is done and the purpose has been
2246 * achieved as well.
2247 */
2248void kick_process(struct task_struct *p)
2249{
2250	int cpu;
2251
2252	preempt_disable();
2253	cpu = task_cpu(p);
2254	if ((cpu != smp_processor_id()) && task_curr(p))
2255		smp_send_reschedule(cpu);
2256	preempt_enable();
2257}
2258EXPORT_SYMBOL_GPL(kick_process);
2259
2260/*
2261 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2262 *
2263 * A few notes on cpu_active vs cpu_online:
2264 *
2265 *  - cpu_active must be a subset of cpu_online
2266 *
2267 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2268 *    see __set_cpus_allowed_ptr(). At this point the newly online
2269 *    CPU isn't yet part of the sched domains, and balancing will not
2270 *    see it.
2271 *
2272 *  - on CPU-down we clear cpu_active() to mask the sched domains and
2273 *    avoid the load balancer to place new tasks on the to be removed
2274 *    CPU. Existing tasks will remain running there and will be taken
2275 *    off.
2276 *
2277 * This means that fallback selection must not select !active CPUs.
2278 * And can assume that any active CPU must be online. Conversely
2279 * select_task_rq() below may allow selection of !active CPUs in order
2280 * to satisfy the above rules.
2281 */
2282static int select_fallback_rq(int cpu, struct task_struct *p)
2283{
2284	int nid = cpu_to_node(cpu);
2285	const struct cpumask *nodemask = NULL;
2286	enum { cpuset, possible, fail } state = cpuset;
2287	int dest_cpu;
2288
2289	/*
2290	 * If the node that the CPU is on has been offlined, cpu_to_node()
2291	 * will return -1. There is no CPU on the node, and we should
2292	 * select the CPU on the other node.
2293	 */
2294	if (nid != -1) {
2295		nodemask = cpumask_of_node(nid);
2296
2297		/* Look for allowed, online CPU in same node. */
2298		for_each_cpu(dest_cpu, nodemask) {
2299			if (!cpu_active(dest_cpu))
2300				continue;
2301			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2302				return dest_cpu;
2303		}
2304	}
2305
2306	for (;;) {
2307		/* Any allowed, online CPU? */
2308		for_each_cpu(dest_cpu, p->cpus_ptr) {
2309			if (!is_cpu_allowed(p, dest_cpu))
2310				continue;
2311
2312			goto out;
2313		}
2314
2315		/* No more Mr. Nice Guy. */
2316		switch (state) {
2317		case cpuset:
2318			if (IS_ENABLED(CONFIG_CPUSETS)) {
2319				cpuset_cpus_allowed_fallback(p);
2320				state = possible;
2321				break;
2322			}
2323			fallthrough;
2324		case possible:
2325			do_set_cpus_allowed(p, cpu_possible_mask);
2326			state = fail;
2327			break;
2328
2329		case fail:
2330			BUG();
2331			break;
2332		}
2333	}
2334
2335out:
2336	if (state != cpuset) {
2337		/*
2338		 * Don't tell them about moving exiting tasks or
2339		 * kernel threads (both mm NULL), since they never
2340		 * leave kernel.
2341		 */
2342		if (p->mm && printk_ratelimit()) {
2343			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2344					task_pid_nr(p), p->comm, cpu);
2345		}
2346	}
2347
2348	return dest_cpu;
2349}
2350
2351/*
2352 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2353 */
2354static inline
2355int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2356{
2357	lockdep_assert_held(&p->pi_lock);
2358
2359	if (p->nr_cpus_allowed > 1)
2360		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2361	else
2362		cpu = cpumask_any(p->cpus_ptr);
2363
2364	/*
2365	 * In order not to call set_task_cpu() on a blocking task we need
2366	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2367	 * CPU.
2368	 *
2369	 * Since this is common to all placement strategies, this lives here.
2370	 *
2371	 * [ this allows ->select_task() to simply return task_cpu(p) and
2372	 *   not worry about this generic constraint ]
2373	 */
2374	if (unlikely(!is_cpu_allowed(p, cpu)))
2375		cpu = select_fallback_rq(task_cpu(p), p);
2376
2377	return cpu;
2378}
2379
 
 
 
 
 
 
2380void sched_set_stop_task(int cpu, struct task_struct *stop)
2381{
2382	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2383	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2384
2385	if (stop) {
2386		/*
2387		 * Make it appear like a SCHED_FIFO task, its something
2388		 * userspace knows about and won't get confused about.
2389		 *
2390		 * Also, it will make PI more or less work without too
2391		 * much confusion -- but then, stop work should not
2392		 * rely on PI working anyway.
2393		 */
2394		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2395
2396		stop->sched_class = &stop_sched_class;
2397	}
2398
2399	cpu_rq(cpu)->stop = stop;
2400
2401	if (old_stop) {
2402		/*
2403		 * Reset it back to a normal scheduling class so that
2404		 * it can die in pieces.
2405		 */
2406		old_stop->sched_class = &rt_sched_class;
2407	}
2408}
2409
2410#else
2411
2412static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2413					 const struct cpumask *new_mask, bool check)
2414{
2415	return set_cpus_allowed_ptr(p, new_mask);
2416}
2417
2418#endif /* CONFIG_SMP */
2419
2420static void
2421ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2422{
2423	struct rq *rq;
2424
2425	if (!schedstat_enabled())
2426		return;
2427
2428	rq = this_rq();
2429
2430#ifdef CONFIG_SMP
2431	if (cpu == rq->cpu) {
2432		__schedstat_inc(rq->ttwu_local);
2433		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2434	} else {
2435		struct sched_domain *sd;
2436
2437		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2438		rcu_read_lock();
2439		for_each_domain(rq->cpu, sd) {
2440			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2441				__schedstat_inc(sd->ttwu_wake_remote);
2442				break;
2443			}
2444		}
2445		rcu_read_unlock();
2446	}
2447
2448	if (wake_flags & WF_MIGRATED)
2449		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2450#endif /* CONFIG_SMP */
2451
2452	__schedstat_inc(rq->ttwu_count);
2453	__schedstat_inc(p->se.statistics.nr_wakeups);
2454
2455	if (wake_flags & WF_SYNC)
2456		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2457}
2458
 
 
 
 
 
 
 
 
 
 
2459/*
2460 * Mark the task runnable and perform wakeup-preemption.
2461 */
2462static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2463			   struct rq_flags *rf)
2464{
2465	check_preempt_curr(rq, p, wake_flags);
2466	p->state = TASK_RUNNING;
2467	trace_sched_wakeup(p);
2468
2469#ifdef CONFIG_SMP
2470	if (p->sched_class->task_woken) {
2471		/*
2472		 * Our task @p is fully woken up and running; so its safe to
2473		 * drop the rq->lock, hereafter rq is only used for statistics.
2474		 */
2475		rq_unpin_lock(rq, rf);
2476		p->sched_class->task_woken(rq, p);
2477		rq_repin_lock(rq, rf);
2478	}
2479
2480	if (rq->idle_stamp) {
2481		u64 delta = rq_clock(rq) - rq->idle_stamp;
2482		u64 max = 2*rq->max_idle_balance_cost;
2483
2484		update_avg(&rq->avg_idle, delta);
2485
2486		if (rq->avg_idle > max)
2487			rq->avg_idle = max;
2488
2489		rq->idle_stamp = 0;
2490	}
2491#endif
2492}
2493
2494static void
2495ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2496		 struct rq_flags *rf)
2497{
2498	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2499
2500	lockdep_assert_held(&rq->lock);
2501
 
2502	if (p->sched_contributes_to_load)
2503		rq->nr_uninterruptible--;
2504
2505#ifdef CONFIG_SMP
2506	if (wake_flags & WF_MIGRATED)
2507		en_flags |= ENQUEUE_MIGRATED;
2508#endif
2509
2510	activate_task(rq, p, en_flags);
2511	ttwu_do_wakeup(rq, p, wake_flags, rf);
2512}
2513
2514/*
2515 * Consider @p being inside a wait loop:
2516 *
2517 *   for (;;) {
2518 *      set_current_state(TASK_UNINTERRUPTIBLE);
2519 *
2520 *      if (CONDITION)
2521 *         break;
2522 *
2523 *      schedule();
2524 *   }
2525 *   __set_current_state(TASK_RUNNING);
2526 *
2527 * between set_current_state() and schedule(). In this case @p is still
2528 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2529 * an atomic manner.
2530 *
2531 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2532 * then schedule() must still happen and p->state can be changed to
2533 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2534 * need to do a full wakeup with enqueue.
2535 *
2536 * Returns: %true when the wakeup is done,
2537 *          %false otherwise.
2538 */
2539static int ttwu_runnable(struct task_struct *p, int wake_flags)
2540{
2541	struct rq_flags rf;
2542	struct rq *rq;
2543	int ret = 0;
2544
2545	rq = __task_rq_lock(p, &rf);
2546	if (task_on_rq_queued(p)) {
2547		/* check_preempt_curr() may use rq clock */
2548		update_rq_clock(rq);
2549		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2550		ret = 1;
2551	}
2552	__task_rq_unlock(rq, &rf);
2553
2554	return ret;
2555}
2556
2557#ifdef CONFIG_SMP
2558void sched_ttwu_pending(void *arg)
2559{
2560	struct llist_node *llist = arg;
2561	struct rq *rq = this_rq();
 
2562	struct task_struct *p, *t;
2563	struct rq_flags rf;
2564
2565	if (!llist)
2566		return;
2567
2568	/*
2569	 * rq::ttwu_pending racy indication of out-standing wakeups.
2570	 * Races such that false-negatives are possible, since they
2571	 * are shorter lived that false-positives would be.
2572	 */
2573	WRITE_ONCE(rq->ttwu_pending, 0);
2574
2575	rq_lock_irqsave(rq, &rf);
2576	update_rq_clock(rq);
2577
2578	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2579		if (WARN_ON_ONCE(p->on_cpu))
2580			smp_cond_load_acquire(&p->on_cpu, !VAL);
2581
2582		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2583			set_task_cpu(p, cpu_of(rq));
2584
2585		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2586	}
2587
2588	rq_unlock_irqrestore(rq, &rf);
2589}
2590
2591void send_call_function_single_ipi(int cpu)
2592{
2593	struct rq *rq = cpu_rq(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2594
2595	if (!set_nr_if_polling(rq->idle))
2596		arch_send_call_function_single_ipi(cpu);
2597	else
2598		trace_sched_wake_idle_without_ipi(cpu);
 
 
 
 
2599}
2600
2601/*
2602 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2603 * necessary. The wakee CPU on receipt of the IPI will queue the task
2604 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2605 * of the wakeup instead of the waker.
2606 */
2607static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2608{
2609	struct rq *rq = cpu_rq(cpu);
2610
2611	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2612
2613	WRITE_ONCE(rq->ttwu_pending, 1);
2614	__smp_call_single_queue(cpu, &p->wake_entry.llist);
 
 
 
 
2615}
2616
2617void wake_up_if_idle(int cpu)
2618{
2619	struct rq *rq = cpu_rq(cpu);
2620	struct rq_flags rf;
2621
2622	rcu_read_lock();
2623
2624	if (!is_idle_task(rcu_dereference(rq->curr)))
2625		goto out;
2626
2627	if (set_nr_if_polling(rq->idle)) {
2628		trace_sched_wake_idle_without_ipi(cpu);
2629	} else {
2630		rq_lock_irqsave(rq, &rf);
2631		if (is_idle_task(rq->curr))
2632			smp_send_reschedule(cpu);
2633		/* Else CPU is not idle, do nothing here: */
2634		rq_unlock_irqrestore(rq, &rf);
2635	}
2636
2637out:
2638	rcu_read_unlock();
2639}
2640
2641bool cpus_share_cache(int this_cpu, int that_cpu)
2642{
2643	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2644}
2645
2646static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2647{
2648	/*
2649	 * If the CPU does not share cache, then queue the task on the
2650	 * remote rqs wakelist to avoid accessing remote data.
2651	 */
2652	if (!cpus_share_cache(smp_processor_id(), cpu))
2653		return true;
2654
2655	/*
2656	 * If the task is descheduling and the only running task on the
2657	 * CPU then use the wakelist to offload the task activation to
2658	 * the soon-to-be-idle CPU as the current CPU is likely busy.
2659	 * nr_running is checked to avoid unnecessary task stacking.
2660	 */
2661	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2662		return true;
2663
2664	return false;
2665}
2666
2667static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2668{
2669	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2670		if (WARN_ON_ONCE(cpu == smp_processor_id()))
2671			return false;
2672
2673		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2674		__ttwu_queue_wakelist(p, cpu, wake_flags);
2675		return true;
2676	}
2677
2678	return false;
2679}
2680
2681#else /* !CONFIG_SMP */
2682
2683static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2684{
2685	return false;
2686}
2687
2688#endif /* CONFIG_SMP */
2689
2690static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2691{
2692	struct rq *rq = cpu_rq(cpu);
2693	struct rq_flags rf;
2694
2695	if (ttwu_queue_wakelist(p, cpu, wake_flags))
 
 
 
2696		return;
 
 
2697
2698	rq_lock(rq, &rf);
2699	update_rq_clock(rq);
2700	ttwu_do_activate(rq, p, wake_flags, &rf);
2701	rq_unlock(rq, &rf);
2702}
2703
2704/*
2705 * Notes on Program-Order guarantees on SMP systems.
2706 *
2707 *  MIGRATION
2708 *
2709 * The basic program-order guarantee on SMP systems is that when a task [t]
2710 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2711 * execution on its new CPU [c1].
2712 *
2713 * For migration (of runnable tasks) this is provided by the following means:
2714 *
2715 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2716 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2717 *     rq(c1)->lock (if not at the same time, then in that order).
2718 *  C) LOCK of the rq(c1)->lock scheduling in task
2719 *
2720 * Release/acquire chaining guarantees that B happens after A and C after B.
 
2721 * Note: the CPU doing B need not be c0 or c1
2722 *
2723 * Example:
2724 *
2725 *   CPU0            CPU1            CPU2
2726 *
2727 *   LOCK rq(0)->lock
2728 *   sched-out X
2729 *   sched-in Y
2730 *   UNLOCK rq(0)->lock
2731 *
2732 *                                   LOCK rq(0)->lock // orders against CPU0
2733 *                                   dequeue X
2734 *                                   UNLOCK rq(0)->lock
2735 *
2736 *                                   LOCK rq(1)->lock
2737 *                                   enqueue X
2738 *                                   UNLOCK rq(1)->lock
2739 *
2740 *                   LOCK rq(1)->lock // orders against CPU2
2741 *                   sched-out Z
2742 *                   sched-in X
2743 *                   UNLOCK rq(1)->lock
2744 *
2745 *
2746 *  BLOCKING -- aka. SLEEP + WAKEUP
2747 *
2748 * For blocking we (obviously) need to provide the same guarantee as for
2749 * migration. However the means are completely different as there is no lock
2750 * chain to provide order. Instead we do:
2751 *
2752 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
2753 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2754 *
2755 * Example:
2756 *
2757 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2758 *
2759 *   LOCK rq(0)->lock LOCK X->pi_lock
2760 *   dequeue X
2761 *   sched-out X
2762 *   smp_store_release(X->on_cpu, 0);
2763 *
2764 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2765 *                    X->state = WAKING
2766 *                    set_task_cpu(X,2)
2767 *
2768 *                    LOCK rq(2)->lock
2769 *                    enqueue X
2770 *                    X->state = RUNNING
2771 *                    UNLOCK rq(2)->lock
2772 *
2773 *                                          LOCK rq(2)->lock // orders against CPU1
2774 *                                          sched-out Z
2775 *                                          sched-in X
2776 *                                          UNLOCK rq(2)->lock
2777 *
2778 *                    UNLOCK X->pi_lock
2779 *   UNLOCK rq(0)->lock
2780 *
2781 *
2782 * However, for wakeups there is a second guarantee we must provide, namely we
2783 * must ensure that CONDITION=1 done by the caller can not be reordered with
2784 * accesses to the task state; see try_to_wake_up() and set_current_state().
 
 
 
 
 
 
 
2785 */
2786
2787/**
2788 * try_to_wake_up - wake up a thread
2789 * @p: the thread to be awakened
2790 * @state: the mask of task states that can be woken
2791 * @wake_flags: wake modifier flags (WF_*)
2792 *
2793 * Conceptually does:
2794 *
2795 *   If (@state & @p->state) @p->state = TASK_RUNNING.
2796 *
2797 * If the task was not queued/runnable, also place it back on a runqueue.
2798 *
2799 * This function is atomic against schedule() which would dequeue the task.
2800 *
2801 * It issues a full memory barrier before accessing @p->state, see the comment
2802 * with set_current_state().
2803 *
2804 * Uses p->pi_lock to serialize against concurrent wake-ups.
2805 *
2806 * Relies on p->pi_lock stabilizing:
2807 *  - p->sched_class
2808 *  - p->cpus_ptr
2809 *  - p->sched_task_group
2810 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2811 *
2812 * Tries really hard to only take one task_rq(p)->lock for performance.
2813 * Takes rq->lock in:
2814 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
2815 *  - ttwu_queue()       -- new rq, for enqueue of the task;
2816 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2817 *
2818 * As a consequence we race really badly with just about everything. See the
2819 * many memory barriers and their comments for details.
2820 *
2821 * Return: %true if @p->state changes (an actual wakeup was done),
2822 *	   %false otherwise.
2823 */
2824static int
2825try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2826{
2827	unsigned long flags;
2828	int cpu, success = 0;
2829
2830	preempt_disable();
2831	if (p == current) {
2832		/*
2833		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2834		 * == smp_processor_id()'. Together this means we can special
2835		 * case the whole 'p->on_rq && ttwu_runnable()' case below
2836		 * without taking any locks.
2837		 *
2838		 * In particular:
2839		 *  - we rely on Program-Order guarantees for all the ordering,
2840		 *  - we're serialized against set_special_state() by virtue of
2841		 *    it disabling IRQs (this allows not taking ->pi_lock).
2842		 */
2843		if (!(p->state & state))
2844			goto out;
2845
2846		success = 1;
2847		trace_sched_waking(p);
2848		p->state = TASK_RUNNING;
2849		trace_sched_wakeup(p);
2850		goto out;
2851	}
2852
2853	/*
2854	 * If we are going to wake up a thread waiting for CONDITION we
2855	 * need to ensure that CONDITION=1 done by the caller can not be
2856	 * reordered with p->state check below. This pairs with smp_store_mb()
2857	 * in set_current_state() that the waiting thread does.
2858	 */
2859	raw_spin_lock_irqsave(&p->pi_lock, flags);
2860	smp_mb__after_spinlock();
2861	if (!(p->state & state))
2862		goto unlock;
2863
2864	trace_sched_waking(p);
2865
2866	/* We're going to change ->state: */
2867	success = 1;
 
2868
2869	/*
2870	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2871	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2872	 * in smp_cond_load_acquire() below.
2873	 *
2874	 * sched_ttwu_pending()			try_to_wake_up()
2875	 *   STORE p->on_rq = 1			  LOAD p->state
2876	 *   UNLOCK rq->lock
2877	 *
2878	 * __schedule() (switch to task 'p')
2879	 *   LOCK rq->lock			  smp_rmb();
2880	 *   smp_mb__after_spinlock();
2881	 *   UNLOCK rq->lock
2882	 *
2883	 * [task p]
2884	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2885	 *
2886	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2887	 * __schedule().  See the comment for smp_mb__after_spinlock().
2888	 *
2889	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
 
 
2890	 */
2891	smp_rmb();
2892	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
2893		goto unlock;
2894
2895	if (p->in_iowait) {
2896		delayacct_blkio_end(p);
2897		atomic_dec(&task_rq(p)->nr_iowait);
2898	}
2899
2900#ifdef CONFIG_SMP
2901	/*
2902	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2903	 * possible to, falsely, observe p->on_cpu == 0.
2904	 *
2905	 * One must be running (->on_cpu == 1) in order to remove oneself
2906	 * from the runqueue.
2907	 *
2908	 * __schedule() (switch to task 'p')	try_to_wake_up()
2909	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2910	 *   UNLOCK rq->lock
2911	 *
2912	 * __schedule() (put 'p' to sleep)
2913	 *   LOCK rq->lock			  smp_rmb();
2914	 *   smp_mb__after_spinlock();
2915	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2916	 *
2917	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2918	 * __schedule().  See the comment for smp_mb__after_spinlock().
2919	 *
2920	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2921	 * schedule()'s deactivate_task() has 'happened' and p will no longer
2922	 * care about it's own p->state. See the comment in __schedule().
2923	 */
2924	smp_acquire__after_ctrl_dep();
2925
2926	/*
2927	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2928	 * == 0), which means we need to do an enqueue, change p->state to
2929	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
2930	 * enqueue, such as ttwu_queue_wakelist().
2931	 */
2932	p->state = TASK_WAKING;
2933
2934	/*
2935	 * If the owning (remote) CPU is still in the middle of schedule() with
2936	 * this task as prev, considering queueing p on the remote CPUs wake_list
2937	 * which potentially sends an IPI instead of spinning on p->on_cpu to
2938	 * let the waker make forward progress. This is safe because IRQs are
2939	 * disabled and the IPI will deliver after on_cpu is cleared.
2940	 *
2941	 * Ensure we load task_cpu(p) after p->on_cpu:
2942	 *
2943	 * set_task_cpu(p, cpu);
2944	 *   STORE p->cpu = @cpu
2945	 * __schedule() (switch to task 'p')
2946	 *   LOCK rq->lock
2947	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
2948	 *   STORE p->on_cpu = 1		LOAD p->cpu
2949	 *
2950	 * to ensure we observe the correct CPU on which the task is currently
2951	 * scheduling.
2952	 */
2953	if (smp_load_acquire(&p->on_cpu) &&
2954	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
2955		goto unlock;
2956
2957	/*
2958	 * If the owning (remote) CPU is still in the middle of schedule() with
2959	 * this task as prev, wait until its done referencing the task.
2960	 *
2961	 * Pairs with the smp_store_release() in finish_task().
2962	 *
2963	 * This ensures that tasks getting woken will be fully ordered against
2964	 * their previous state and preserve Program Order.
2965	 */
2966	smp_cond_load_acquire(&p->on_cpu, !VAL);
2967
 
 
 
 
 
 
 
 
2968	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2969	if (task_cpu(p) != cpu) {
2970		wake_flags |= WF_MIGRATED;
2971		psi_ttwu_dequeue(p);
2972		set_task_cpu(p, cpu);
2973	}
2974#else
2975	cpu = task_cpu(p);
 
 
 
 
 
 
2976#endif /* CONFIG_SMP */
2977
2978	ttwu_queue(p, cpu, wake_flags);
2979unlock:
 
 
2980	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2981out:
2982	if (success)
2983		ttwu_stat(p, task_cpu(p), wake_flags);
2984	preempt_enable();
2985
2986	return success;
2987}
2988
2989/**
2990 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2991 * @p: Process for which the function is to be invoked.
2992 * @func: Function to invoke.
2993 * @arg: Argument to function.
2994 *
2995 * If the specified task can be quickly locked into a definite state
2996 * (either sleeping or on a given runqueue), arrange to keep it in that
2997 * state while invoking @func(@arg).  This function can use ->on_rq and
2998 * task_curr() to work out what the state is, if required.  Given that
2999 * @func can be invoked with a runqueue lock held, it had better be quite
3000 * lightweight.
3001 *
3002 * Returns:
3003 *	@false if the task slipped out from under the locks.
3004 *	@true if the task was locked onto a runqueue or is sleeping.
3005 *		However, @func can override this by returning @false.
3006 */
3007bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3008{
3009	bool ret = false;
3010	struct rq_flags rf;
3011	struct rq *rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3012
3013	lockdep_assert_irqs_enabled();
3014	raw_spin_lock_irq(&p->pi_lock);
3015	if (p->on_rq) {
3016		rq = __task_rq_lock(p, &rf);
3017		if (task_rq(p) == rq)
3018			ret = func(p, arg);
3019		rq_unlock(rq, &rf);
3020	} else {
3021		switch (p->state) {
3022		case TASK_RUNNING:
3023		case TASK_WAKING:
3024			break;
3025		default:
3026			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3027			if (!p->on_rq)
3028				ret = func(p, arg);
3029		}
 
3030	}
3031	raw_spin_unlock_irq(&p->pi_lock);
3032	return ret;
 
 
 
3033}
3034
3035/**
3036 * wake_up_process - Wake up a specific process
3037 * @p: The process to be woken up.
3038 *
3039 * Attempt to wake up the nominated process and move it to the set of runnable
3040 * processes.
3041 *
3042 * Return: 1 if the process was woken up, 0 if it was already running.
3043 *
3044 * This function executes a full memory barrier before accessing the task state.
 
3045 */
3046int wake_up_process(struct task_struct *p)
3047{
3048	return try_to_wake_up(p, TASK_NORMAL, 0);
3049}
3050EXPORT_SYMBOL(wake_up_process);
3051
3052int wake_up_state(struct task_struct *p, unsigned int state)
3053{
3054	return try_to_wake_up(p, state, 0);
3055}
3056
3057/*
3058 * Perform scheduler related setup for a newly forked process p.
3059 * p is forked by current.
3060 *
3061 * __sched_fork() is basic setup used by init_idle() too:
3062 */
3063static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3064{
3065	p->on_rq			= 0;
3066
3067	p->se.on_rq			= 0;
3068	p->se.exec_start		= 0;
3069	p->se.sum_exec_runtime		= 0;
3070	p->se.prev_sum_exec_runtime	= 0;
3071	p->se.nr_migrations		= 0;
3072	p->se.vruntime			= 0;
3073	INIT_LIST_HEAD(&p->se.group_node);
3074
3075#ifdef CONFIG_FAIR_GROUP_SCHED
3076	p->se.cfs_rq			= NULL;
3077#endif
3078
3079#ifdef CONFIG_SCHEDSTATS
3080	/* Even if schedstat is disabled, there should not be garbage */
3081	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3082#endif
3083
3084	RB_CLEAR_NODE(&p->dl.rb_node);
3085	init_dl_task_timer(&p->dl);
3086	init_dl_inactive_task_timer(&p->dl);
3087	__dl_clear_params(p);
3088
3089	INIT_LIST_HEAD(&p->rt.run_list);
3090	p->rt.timeout		= 0;
3091	p->rt.time_slice	= sched_rr_timeslice;
3092	p->rt.on_rq		= 0;
3093	p->rt.on_list		= 0;
3094
3095#ifdef CONFIG_PREEMPT_NOTIFIERS
3096	INIT_HLIST_HEAD(&p->preempt_notifiers);
3097#endif
3098
3099#ifdef CONFIG_COMPACTION
3100	p->capture_control = NULL;
3101#endif
3102	init_numa_balancing(clone_flags, p);
3103#ifdef CONFIG_SMP
3104	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3105#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3106}
3107
3108DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3109
3110#ifdef CONFIG_NUMA_BALANCING
3111
3112void set_numabalancing_state(bool enabled)
3113{
3114	if (enabled)
3115		static_branch_enable(&sched_numa_balancing);
3116	else
3117		static_branch_disable(&sched_numa_balancing);
3118}
3119
3120#ifdef CONFIG_PROC_SYSCTL
3121int sysctl_numa_balancing(struct ctl_table *table, int write,
3122			  void *buffer, size_t *lenp, loff_t *ppos)
3123{
3124	struct ctl_table t;
3125	int err;
3126	int state = static_branch_likely(&sched_numa_balancing);
3127
3128	if (write && !capable(CAP_SYS_ADMIN))
3129		return -EPERM;
3130
3131	t = *table;
3132	t.data = &state;
3133	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3134	if (err < 0)
3135		return err;
3136	if (write)
3137		set_numabalancing_state(state);
3138	return err;
3139}
3140#endif
3141#endif
3142
3143#ifdef CONFIG_SCHEDSTATS
3144
3145DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3146static bool __initdata __sched_schedstats = false;
3147
3148static void set_schedstats(bool enabled)
3149{
3150	if (enabled)
3151		static_branch_enable(&sched_schedstats);
3152	else
3153		static_branch_disable(&sched_schedstats);
3154}
3155
3156void force_schedstat_enabled(void)
3157{
3158	if (!schedstat_enabled()) {
3159		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3160		static_branch_enable(&sched_schedstats);
3161	}
3162}
3163
3164static int __init setup_schedstats(char *str)
3165{
3166	int ret = 0;
3167	if (!str)
3168		goto out;
3169
3170	/*
3171	 * This code is called before jump labels have been set up, so we can't
3172	 * change the static branch directly just yet.  Instead set a temporary
3173	 * variable so init_schedstats() can do it later.
3174	 */
3175	if (!strcmp(str, "enable")) {
3176		__sched_schedstats = true;
3177		ret = 1;
3178	} else if (!strcmp(str, "disable")) {
3179		__sched_schedstats = false;
3180		ret = 1;
3181	}
3182out:
3183	if (!ret)
3184		pr_warn("Unable to parse schedstats=\n");
3185
3186	return ret;
3187}
3188__setup("schedstats=", setup_schedstats);
3189
3190static void __init init_schedstats(void)
3191{
3192	set_schedstats(__sched_schedstats);
3193}
3194
3195#ifdef CONFIG_PROC_SYSCTL
3196int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3197		size_t *lenp, loff_t *ppos)
3198{
3199	struct ctl_table t;
3200	int err;
3201	int state = static_branch_likely(&sched_schedstats);
3202
3203	if (write && !capable(CAP_SYS_ADMIN))
3204		return -EPERM;
3205
3206	t = *table;
3207	t.data = &state;
3208	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3209	if (err < 0)
3210		return err;
3211	if (write)
3212		set_schedstats(state);
3213	return err;
3214}
3215#endif /* CONFIG_PROC_SYSCTL */
3216#else  /* !CONFIG_SCHEDSTATS */
3217static inline void init_schedstats(void) {}
3218#endif /* CONFIG_SCHEDSTATS */
3219
3220/*
3221 * fork()/clone()-time setup:
3222 */
3223int sched_fork(unsigned long clone_flags, struct task_struct *p)
3224{
3225	unsigned long flags;
 
3226
3227	__sched_fork(clone_flags, p);
3228	/*
3229	 * We mark the process as NEW here. This guarantees that
3230	 * nobody will actually run it, and a signal or other external
3231	 * event cannot wake it up and insert it on the runqueue either.
3232	 */
3233	p->state = TASK_NEW;
3234
3235	/*
3236	 * Make sure we do not leak PI boosting priority to the child.
3237	 */
3238	p->prio = current->normal_prio;
3239
3240	uclamp_fork(p);
3241
3242	/*
3243	 * Revert to default priority/policy on fork if requested.
3244	 */
3245	if (unlikely(p->sched_reset_on_fork)) {
3246		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3247			p->policy = SCHED_NORMAL;
3248			p->static_prio = NICE_TO_PRIO(0);
3249			p->rt_priority = 0;
3250		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3251			p->static_prio = NICE_TO_PRIO(0);
3252
3253		p->prio = p->normal_prio = __normal_prio(p);
3254		set_load_weight(p, false);
3255
3256		/*
3257		 * We don't need the reset flag anymore after the fork. It has
3258		 * fulfilled its duty:
3259		 */
3260		p->sched_reset_on_fork = 0;
3261	}
3262
3263	if (dl_prio(p->prio))
 
3264		return -EAGAIN;
3265	else if (rt_prio(p->prio))
3266		p->sched_class = &rt_sched_class;
3267	else
3268		p->sched_class = &fair_sched_class;
 
3269
3270	init_entity_runnable_average(&p->se);
3271
3272	/*
3273	 * The child is not yet in the pid-hash so no cgroup attach races,
3274	 * and the cgroup is pinned to this child due to cgroup_fork()
3275	 * is ran before sched_fork().
3276	 *
3277	 * Silence PROVE_RCU.
3278	 */
3279	raw_spin_lock_irqsave(&p->pi_lock, flags);
3280	rseq_migrate(p);
3281	/*
3282	 * We're setting the CPU for the first time, we don't migrate,
3283	 * so use __set_task_cpu().
3284	 */
3285	__set_task_cpu(p, smp_processor_id());
3286	if (p->sched_class->task_fork)
3287		p->sched_class->task_fork(p);
3288	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3289
3290#ifdef CONFIG_SCHED_INFO
3291	if (likely(sched_info_on()))
3292		memset(&p->sched_info, 0, sizeof(p->sched_info));
3293#endif
3294#if defined(CONFIG_SMP)
3295	p->on_cpu = 0;
3296#endif
3297	init_task_preempt_count(p);
3298#ifdef CONFIG_SMP
3299	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3300	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3301#endif
 
 
3302	return 0;
3303}
3304
3305void sched_post_fork(struct task_struct *p)
3306{
3307	uclamp_post_fork(p);
3308}
3309
3310unsigned long to_ratio(u64 period, u64 runtime)
3311{
3312	if (runtime == RUNTIME_INF)
3313		return BW_UNIT;
3314
3315	/*
3316	 * Doing this here saves a lot of checks in all
3317	 * the calling paths, and returning zero seems
3318	 * safe for them anyway.
3319	 */
3320	if (period == 0)
3321		return 0;
3322
3323	return div64_u64(runtime << BW_SHIFT, period);
3324}
3325
3326/*
3327 * wake_up_new_task - wake up a newly created task for the first time.
3328 *
3329 * This function will do some initial scheduler statistics housekeeping
3330 * that must be done for every newly created context, then puts the task
3331 * on the runqueue and wakes it.
3332 */
3333void wake_up_new_task(struct task_struct *p)
3334{
3335	struct rq_flags rf;
3336	struct rq *rq;
3337
3338	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3339	p->state = TASK_RUNNING;
3340#ifdef CONFIG_SMP
3341	/*
3342	 * Fork balancing, do it here and not earlier because:
3343	 *  - cpus_ptr can change in the fork path
3344	 *  - any previously selected CPU might disappear through hotplug
3345	 *
3346	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3347	 * as we're not fully set-up yet.
3348	 */
3349	p->recent_used_cpu = task_cpu(p);
3350	rseq_migrate(p);
3351	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3352#endif
3353	rq = __task_rq_lock(p, &rf);
3354	update_rq_clock(rq);
3355	post_init_entity_util_avg(p);
3356
3357	activate_task(rq, p, ENQUEUE_NOCLOCK);
 
3358	trace_sched_wakeup_new(p);
3359	check_preempt_curr(rq, p, WF_FORK);
3360#ifdef CONFIG_SMP
3361	if (p->sched_class->task_woken) {
3362		/*
3363		 * Nothing relies on rq->lock after this, so its fine to
3364		 * drop it.
3365		 */
3366		rq_unpin_lock(rq, &rf);
3367		p->sched_class->task_woken(rq, p);
3368		rq_repin_lock(rq, &rf);
3369	}
3370#endif
3371	task_rq_unlock(rq, p, &rf);
3372}
3373
3374#ifdef CONFIG_PREEMPT_NOTIFIERS
3375
3376static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3377
3378void preempt_notifier_inc(void)
3379{
3380	static_branch_inc(&preempt_notifier_key);
3381}
3382EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3383
3384void preempt_notifier_dec(void)
3385{
3386	static_branch_dec(&preempt_notifier_key);
3387}
3388EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3389
3390/**
3391 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3392 * @notifier: notifier struct to register
3393 */
3394void preempt_notifier_register(struct preempt_notifier *notifier)
3395{
3396	if (!static_branch_unlikely(&preempt_notifier_key))
3397		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3398
3399	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3400}
3401EXPORT_SYMBOL_GPL(preempt_notifier_register);
3402
3403/**
3404 * preempt_notifier_unregister - no longer interested in preemption notifications
3405 * @notifier: notifier struct to unregister
3406 *
3407 * This is *not* safe to call from within a preemption notifier.
3408 */
3409void preempt_notifier_unregister(struct preempt_notifier *notifier)
3410{
3411	hlist_del(&notifier->link);
3412}
3413EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3414
3415static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3416{
3417	struct preempt_notifier *notifier;
3418
3419	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3420		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3421}
3422
3423static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3424{
3425	if (static_branch_unlikely(&preempt_notifier_key))
3426		__fire_sched_in_preempt_notifiers(curr);
3427}
3428
3429static void
3430__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3431				   struct task_struct *next)
3432{
3433	struct preempt_notifier *notifier;
3434
3435	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3436		notifier->ops->sched_out(notifier, next);
3437}
3438
3439static __always_inline void
3440fire_sched_out_preempt_notifiers(struct task_struct *curr,
3441				 struct task_struct *next)
3442{
3443	if (static_branch_unlikely(&preempt_notifier_key))
3444		__fire_sched_out_preempt_notifiers(curr, next);
3445}
3446
3447#else /* !CONFIG_PREEMPT_NOTIFIERS */
3448
3449static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3450{
3451}
3452
3453static inline void
3454fire_sched_out_preempt_notifiers(struct task_struct *curr,
3455				 struct task_struct *next)
3456{
3457}
3458
3459#endif /* CONFIG_PREEMPT_NOTIFIERS */
3460
3461static inline void prepare_task(struct task_struct *next)
3462{
3463#ifdef CONFIG_SMP
3464	/*
3465	 * Claim the task as running, we do this before switching to it
3466	 * such that any running task will have this set.
3467	 *
3468	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3469	 */
3470	WRITE_ONCE(next->on_cpu, 1);
3471#endif
3472}
3473
3474static inline void finish_task(struct task_struct *prev)
3475{
3476#ifdef CONFIG_SMP
3477	/*
3478	 * This must be the very last reference to @prev from this CPU. After
3479	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3480	 * must ensure this doesn't happen until the switch is completely
3481	 * finished.
3482	 *
3483	 * In particular, the load of prev->state in finish_task_switch() must
3484	 * happen before this.
3485	 *
3486	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3487	 */
3488	smp_store_release(&prev->on_cpu, 0);
3489#endif
3490}
3491
3492static inline void
3493prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3494{
3495	/*
3496	 * Since the runqueue lock will be released by the next
3497	 * task (which is an invalid locking op but in the case
3498	 * of the scheduler it's an obvious special-case), so we
3499	 * do an early lockdep release here:
3500	 */
3501	rq_unpin_lock(rq, rf);
3502	spin_release(&rq->lock.dep_map, _THIS_IP_);
3503#ifdef CONFIG_DEBUG_SPINLOCK
3504	/* this is a valid case when another task releases the spinlock */
3505	rq->lock.owner = next;
3506#endif
3507}
3508
3509static inline void finish_lock_switch(struct rq *rq)
3510{
3511	/*
3512	 * If we are tracking spinlock dependencies then we have to
3513	 * fix up the runqueue lock - which gets 'carried over' from
3514	 * prev into current:
3515	 */
3516	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3517	raw_spin_unlock_irq(&rq->lock);
3518}
3519
3520/*
3521 * NOP if the arch has not defined these:
3522 */
3523
3524#ifndef prepare_arch_switch
3525# define prepare_arch_switch(next)	do { } while (0)
3526#endif
3527
3528#ifndef finish_arch_post_lock_switch
3529# define finish_arch_post_lock_switch()	do { } while (0)
3530#endif
3531
3532/**
3533 * prepare_task_switch - prepare to switch tasks
3534 * @rq: the runqueue preparing to switch
3535 * @prev: the current task that is being switched out
3536 * @next: the task we are going to switch to.
3537 *
3538 * This is called with the rq lock held and interrupts off. It must
3539 * be paired with a subsequent finish_task_switch after the context
3540 * switch.
3541 *
3542 * prepare_task_switch sets up locking and calls architecture specific
3543 * hooks.
3544 */
3545static inline void
3546prepare_task_switch(struct rq *rq, struct task_struct *prev,
3547		    struct task_struct *next)
3548{
3549	kcov_prepare_switch(prev);
3550	sched_info_switch(rq, prev, next);
3551	perf_event_task_sched_out(prev, next);
3552	rseq_preempt(prev);
3553	fire_sched_out_preempt_notifiers(prev, next);
3554	prepare_task(next);
3555	prepare_arch_switch(next);
3556}
3557
3558/**
3559 * finish_task_switch - clean up after a task-switch
3560 * @prev: the thread we just switched away from.
3561 *
3562 * finish_task_switch must be called after the context switch, paired
3563 * with a prepare_task_switch call before the context switch.
3564 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3565 * and do any other architecture-specific cleanup actions.
3566 *
3567 * Note that we may have delayed dropping an mm in context_switch(). If
3568 * so, we finish that here outside of the runqueue lock. (Doing it
3569 * with the lock held can cause deadlocks; see schedule() for
3570 * details.)
3571 *
3572 * The context switch have flipped the stack from under us and restored the
3573 * local variables which were saved when this task called schedule() in the
3574 * past. prev == current is still correct but we need to recalculate this_rq
3575 * because prev may have moved to another CPU.
3576 */
3577static struct rq *finish_task_switch(struct task_struct *prev)
3578	__releases(rq->lock)
3579{
3580	struct rq *rq = this_rq();
3581	struct mm_struct *mm = rq->prev_mm;
3582	long prev_state;
3583
3584	/*
3585	 * The previous task will have left us with a preempt_count of 2
3586	 * because it left us after:
3587	 *
3588	 *	schedule()
3589	 *	  preempt_disable();			// 1
3590	 *	  __schedule()
3591	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3592	 *
3593	 * Also, see FORK_PREEMPT_COUNT.
3594	 */
3595	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3596		      "corrupted preempt_count: %s/%d/0x%x\n",
3597		      current->comm, current->pid, preempt_count()))
3598		preempt_count_set(FORK_PREEMPT_COUNT);
3599
3600	rq->prev_mm = NULL;
3601
3602	/*
3603	 * A task struct has one reference for the use as "current".
3604	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3605	 * schedule one last time. The schedule call will never return, and
3606	 * the scheduled task must drop that reference.
3607	 *
3608	 * We must observe prev->state before clearing prev->on_cpu (in
3609	 * finish_task), otherwise a concurrent wakeup can get prev
3610	 * running on another CPU and we could rave with its RUNNING -> DEAD
3611	 * transition, resulting in a double drop.
3612	 */
3613	prev_state = prev->state;
3614	vtime_task_switch(prev);
3615	perf_event_task_sched_in(prev, current);
3616	finish_task(prev);
3617	finish_lock_switch(rq);
3618	finish_arch_post_lock_switch();
3619	kcov_finish_switch(current);
3620
3621	fire_sched_in_preempt_notifiers(current);
3622	/*
3623	 * When switching through a kernel thread, the loop in
3624	 * membarrier_{private,global}_expedited() may have observed that
3625	 * kernel thread and not issued an IPI. It is therefore possible to
3626	 * schedule between user->kernel->user threads without passing though
3627	 * switch_mm(). Membarrier requires a barrier after storing to
3628	 * rq->curr, before returning to userspace, so provide them here:
3629	 *
3630	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3631	 *   provided by mmdrop(),
3632	 * - a sync_core for SYNC_CORE.
3633	 */
3634	if (mm) {
3635		membarrier_mm_sync_core_before_usermode(mm);
3636		mmdrop(mm);
3637	}
3638	if (unlikely(prev_state == TASK_DEAD)) {
3639		if (prev->sched_class->task_dead)
3640			prev->sched_class->task_dead(prev);
 
 
 
 
 
 
 
 
3641
3642		/*
3643		 * Remove function-return probe instances associated with this
3644		 * task and put them back on the free list.
3645		 */
3646		kprobe_flush_task(prev);
3647
3648		/* Task is done with its stack. */
3649		put_task_stack(prev);
3650
3651		put_task_struct_rcu_user(prev);
 
 
 
3652	}
3653
3654	tick_nohz_task_switch();
3655	return rq;
3656}
3657
3658#ifdef CONFIG_SMP
3659
3660/* rq->lock is NOT held, but preemption is disabled */
3661static void __balance_callback(struct rq *rq)
3662{
3663	struct callback_head *head, *next;
3664	void (*func)(struct rq *rq);
3665	unsigned long flags;
3666
3667	raw_spin_lock_irqsave(&rq->lock, flags);
3668	head = rq->balance_callback;
3669	rq->balance_callback = NULL;
3670	while (head) {
3671		func = (void (*)(struct rq *))head->func;
3672		next = head->next;
3673		head->next = NULL;
3674		head = next;
3675
3676		func(rq);
3677	}
3678	raw_spin_unlock_irqrestore(&rq->lock, flags);
3679}
3680
3681static inline void balance_callback(struct rq *rq)
3682{
3683	if (unlikely(rq->balance_callback))
3684		__balance_callback(rq);
3685}
3686
3687#else
3688
3689static inline void balance_callback(struct rq *rq)
3690{
3691}
3692
3693#endif
3694
3695/**
3696 * schedule_tail - first thing a freshly forked thread must call.
3697 * @prev: the thread we just switched away from.
3698 */
3699asmlinkage __visible void schedule_tail(struct task_struct *prev)
3700	__releases(rq->lock)
3701{
3702	struct rq *rq;
3703
3704	/*
3705	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3706	 * finish_task_switch() for details.
3707	 *
3708	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3709	 * and the preempt_enable() will end up enabling preemption (on
3710	 * PREEMPT_COUNT kernels).
3711	 */
3712
3713	rq = finish_task_switch(prev);
3714	balance_callback(rq);
3715	preempt_enable();
3716
3717	if (current->set_child_tid)
3718		put_user(task_pid_vnr(current), current->set_child_tid);
3719
3720	calculate_sigpending();
3721}
3722
3723/*
3724 * context_switch - switch to the new MM and the new thread's register state.
3725 */
3726static __always_inline struct rq *
3727context_switch(struct rq *rq, struct task_struct *prev,
3728	       struct task_struct *next, struct rq_flags *rf)
3729{
 
 
3730	prepare_task_switch(rq, prev, next);
3731
 
 
3732	/*
3733	 * For paravirt, this is coupled with an exit in switch_to to
3734	 * combine the page table reload and the switch backend into
3735	 * one hypercall.
3736	 */
3737	arch_start_context_switch(prev);
3738
3739	/*
3740	 * kernel -> kernel   lazy + transfer active
3741	 *   user -> kernel   lazy + mmgrab() active
3742	 *
3743	 * kernel ->   user   switch + mmdrop() active
3744	 *   user ->   user   switch
3745	 */
3746	if (!next->mm) {                                // to kernel
3747		enter_lazy_tlb(prev->active_mm, next);
3748
3749		next->active_mm = prev->active_mm;
3750		if (prev->mm)                           // from user
3751			mmgrab(prev->active_mm);
3752		else
3753			prev->active_mm = NULL;
3754	} else {                                        // to user
3755		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3756		/*
3757		 * sys_membarrier() requires an smp_mb() between setting
3758		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3759		 *
3760		 * The below provides this either through switch_mm(), or in
3761		 * case 'prev->active_mm == next->mm' through
3762		 * finish_task_switch()'s mmdrop().
3763		 */
3764		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3765
3766		if (!prev->mm) {                        // from kernel
3767			/* will mmdrop() in finish_task_switch(). */
3768			rq->prev_mm = prev->active_mm;
3769			prev->active_mm = NULL;
3770		}
3771	}
3772
3773	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3774
3775	prepare_lock_switch(rq, next, rf);
3776
3777	/* Here we just switch the register state and the stack. */
3778	switch_to(prev, next, prev);
3779	barrier();
3780
3781	return finish_task_switch(prev);
3782}
3783
3784/*
3785 * nr_running and nr_context_switches:
3786 *
3787 * externally visible scheduler statistics: current number of runnable
3788 * threads, total number of context switches performed since bootup.
3789 */
3790unsigned long nr_running(void)
3791{
3792	unsigned long i, sum = 0;
3793
3794	for_each_online_cpu(i)
3795		sum += cpu_rq(i)->nr_running;
3796
3797	return sum;
3798}
3799
3800/*
3801 * Check if only the current task is running on the CPU.
3802 *
3803 * Caution: this function does not check that the caller has disabled
3804 * preemption, thus the result might have a time-of-check-to-time-of-use
3805 * race.  The caller is responsible to use it correctly, for example:
3806 *
3807 * - from a non-preemptible section (of course)
3808 *
3809 * - from a thread that is bound to a single CPU
3810 *
3811 * - in a loop with very short iterations (e.g. a polling loop)
3812 */
3813bool single_task_running(void)
3814{
3815	return raw_rq()->nr_running == 1;
3816}
3817EXPORT_SYMBOL(single_task_running);
3818
3819unsigned long long nr_context_switches(void)
3820{
3821	int i;
3822	unsigned long long sum = 0;
3823
3824	for_each_possible_cpu(i)
3825		sum += cpu_rq(i)->nr_switches;
3826
3827	return sum;
3828}
3829
3830/*
3831 * Consumers of these two interfaces, like for example the cpuidle menu
3832 * governor, are using nonsensical data. Preferring shallow idle state selection
3833 * for a CPU that has IO-wait which might not even end up running the task when
3834 * it does become runnable.
3835 */
3836
3837unsigned long nr_iowait_cpu(int cpu)
3838{
3839	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3840}
3841
3842/*
3843 * IO-wait accounting, and how its mostly bollocks (on SMP).
3844 *
3845 * The idea behind IO-wait account is to account the idle time that we could
3846 * have spend running if it were not for IO. That is, if we were to improve the
3847 * storage performance, we'd have a proportional reduction in IO-wait time.
3848 *
3849 * This all works nicely on UP, where, when a task blocks on IO, we account
3850 * idle time as IO-wait, because if the storage were faster, it could've been
3851 * running and we'd not be idle.
3852 *
3853 * This has been extended to SMP, by doing the same for each CPU. This however
3854 * is broken.
3855 *
3856 * Imagine for instance the case where two tasks block on one CPU, only the one
3857 * CPU will have IO-wait accounted, while the other has regular idle. Even
3858 * though, if the storage were faster, both could've ran at the same time,
3859 * utilising both CPUs.
3860 *
3861 * This means, that when looking globally, the current IO-wait accounting on
3862 * SMP is a lower bound, by reason of under accounting.
3863 *
3864 * Worse, since the numbers are provided per CPU, they are sometimes
3865 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3866 * associated with any one particular CPU, it can wake to another CPU than it
3867 * blocked on. This means the per CPU IO-wait number is meaningless.
3868 *
3869 * Task CPU affinities can make all that even more 'interesting'.
3870 */
3871
3872unsigned long nr_iowait(void)
3873{
3874	unsigned long i, sum = 0;
3875
3876	for_each_possible_cpu(i)
3877		sum += nr_iowait_cpu(i);
3878
3879	return sum;
3880}
3881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3882#ifdef CONFIG_SMP
3883
3884/*
3885 * sched_exec - execve() is a valuable balancing opportunity, because at
3886 * this point the task has the smallest effective memory and cache footprint.
3887 */
3888void sched_exec(void)
3889{
3890	struct task_struct *p = current;
3891	unsigned long flags;
3892	int dest_cpu;
3893
3894	raw_spin_lock_irqsave(&p->pi_lock, flags);
3895	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3896	if (dest_cpu == smp_processor_id())
3897		goto unlock;
3898
3899	if (likely(cpu_active(dest_cpu))) {
3900		struct migration_arg arg = { p, dest_cpu };
3901
3902		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3903		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3904		return;
3905	}
3906unlock:
3907	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3908}
3909
3910#endif
3911
3912DEFINE_PER_CPU(struct kernel_stat, kstat);
3913DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3914
3915EXPORT_PER_CPU_SYMBOL(kstat);
3916EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3917
3918/*
3919 * The function fair_sched_class.update_curr accesses the struct curr
3920 * and its field curr->exec_start; when called from task_sched_runtime(),
3921 * we observe a high rate of cache misses in practice.
3922 * Prefetching this data results in improved performance.
3923 */
3924static inline void prefetch_curr_exec_start(struct task_struct *p)
3925{
3926#ifdef CONFIG_FAIR_GROUP_SCHED
3927	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3928#else
3929	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3930#endif
3931	prefetch(curr);
3932	prefetch(&curr->exec_start);
3933}
3934
3935/*
3936 * Return accounted runtime for the task.
3937 * In case the task is currently running, return the runtime plus current's
3938 * pending runtime that have not been accounted yet.
3939 */
3940unsigned long long task_sched_runtime(struct task_struct *p)
3941{
3942	struct rq_flags rf;
3943	struct rq *rq;
3944	u64 ns;
3945
3946#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3947	/*
3948	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3949	 * So we have a optimization chance when the task's delta_exec is 0.
3950	 * Reading ->on_cpu is racy, but this is ok.
3951	 *
3952	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3953	 * If we race with it entering CPU, unaccounted time is 0. This is
3954	 * indistinguishable from the read occurring a few cycles earlier.
3955	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3956	 * been accounted, so we're correct here as well.
3957	 */
3958	if (!p->on_cpu || !task_on_rq_queued(p))
3959		return p->se.sum_exec_runtime;
3960#endif
3961
3962	rq = task_rq_lock(p, &rf);
3963	/*
3964	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3965	 * project cycles that may never be accounted to this
3966	 * thread, breaking clock_gettime().
3967	 */
3968	if (task_current(rq, p) && task_on_rq_queued(p)) {
3969		prefetch_curr_exec_start(p);
3970		update_rq_clock(rq);
3971		p->sched_class->update_curr(rq);
3972	}
3973	ns = p->se.sum_exec_runtime;
3974	task_rq_unlock(rq, p, &rf);
3975
3976	return ns;
3977}
3978
3979/*
3980 * This function gets called by the timer code, with HZ frequency.
3981 * We call it with interrupts disabled.
3982 */
3983void scheduler_tick(void)
3984{
3985	int cpu = smp_processor_id();
3986	struct rq *rq = cpu_rq(cpu);
3987	struct task_struct *curr = rq->curr;
3988	struct rq_flags rf;
3989	unsigned long thermal_pressure;
3990
3991	arch_scale_freq_tick();
3992	sched_clock_tick();
3993
3994	rq_lock(rq, &rf);
3995
3996	update_rq_clock(rq);
3997	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3998	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3999	curr->sched_class->task_tick(rq, curr, 0);
 
4000	calc_global_load_tick(rq);
4001	psi_task_tick(rq);
4002
4003	rq_unlock(rq, &rf);
4004
4005	perf_event_task_tick();
4006
4007#ifdef CONFIG_SMP
4008	rq->idle_balance = idle_cpu(cpu);
4009	trigger_load_balance(rq);
4010#endif
4011}
4012
4013#ifdef CONFIG_NO_HZ_FULL
4014
4015struct tick_work {
4016	int			cpu;
4017	atomic_t		state;
4018	struct delayed_work	work;
4019};
4020/* Values for ->state, see diagram below. */
4021#define TICK_SCHED_REMOTE_OFFLINE	0
4022#define TICK_SCHED_REMOTE_OFFLINING	1
4023#define TICK_SCHED_REMOTE_RUNNING	2
4024
4025/*
4026 * State diagram for ->state:
4027 *
4028 *
4029 *          TICK_SCHED_REMOTE_OFFLINE
4030 *                    |   ^
4031 *                    |   |
4032 *                    |   | sched_tick_remote()
4033 *                    |   |
4034 *                    |   |
4035 *                    +--TICK_SCHED_REMOTE_OFFLINING
4036 *                    |   ^
4037 *                    |   |
4038 * sched_tick_start() |   | sched_tick_stop()
4039 *                    |   |
4040 *                    V   |
4041 *          TICK_SCHED_REMOTE_RUNNING
4042 *
4043 *
4044 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4045 * and sched_tick_start() are happy to leave the state in RUNNING.
4046 */
4047
4048static struct tick_work __percpu *tick_work_cpu;
4049
4050static void sched_tick_remote(struct work_struct *work)
4051{
4052	struct delayed_work *dwork = to_delayed_work(work);
4053	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4054	int cpu = twork->cpu;
4055	struct rq *rq = cpu_rq(cpu);
4056	struct task_struct *curr;
4057	struct rq_flags rf;
4058	u64 delta;
4059	int os;
4060
4061	/*
4062	 * Handle the tick only if it appears the remote CPU is running in full
4063	 * dynticks mode. The check is racy by nature, but missing a tick or
4064	 * having one too much is no big deal because the scheduler tick updates
4065	 * statistics and checks timeslices in a time-independent way, regardless
4066	 * of when exactly it is running.
4067	 */
4068	if (!tick_nohz_tick_stopped_cpu(cpu))
4069		goto out_requeue;
 
4070
4071	rq_lock_irq(rq, &rf);
4072	curr = rq->curr;
4073	if (cpu_is_offline(cpu))
4074		goto out_unlock;
4075
4076	update_rq_clock(rq);
4077
4078	if (!is_idle_task(curr)) {
4079		/*
4080		 * Make sure the next tick runs within a reasonable
4081		 * amount of time.
4082		 */
4083		delta = rq_clock_task(rq) - curr->se.exec_start;
4084		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
 
 
4085	}
4086	curr->sched_class->task_tick(rq, curr, 0);
4087
4088	calc_load_nohz_remote(rq);
4089out_unlock:
4090	rq_unlock_irq(rq, &rf);
4091out_requeue:
4092
4093	/*
4094	 * Run the remote tick once per second (1Hz). This arbitrary
4095	 * frequency is large enough to avoid overload but short enough
4096	 * to keep scheduler internal stats reasonably up to date.  But
4097	 * first update state to reflect hotplug activity if required.
4098	 */
4099	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4100	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4101	if (os == TICK_SCHED_REMOTE_RUNNING)
4102		queue_delayed_work(system_unbound_wq, dwork, HZ);
4103}
4104
4105static void sched_tick_start(int cpu)
4106{
4107	int os;
4108	struct tick_work *twork;
4109
4110	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4111		return;
4112
4113	WARN_ON_ONCE(!tick_work_cpu);
4114
4115	twork = per_cpu_ptr(tick_work_cpu, cpu);
4116	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4117	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4118	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4119		twork->cpu = cpu;
4120		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4121		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4122	}
4123}
4124
4125#ifdef CONFIG_HOTPLUG_CPU
4126static void sched_tick_stop(int cpu)
4127{
4128	struct tick_work *twork;
4129	int os;
4130
4131	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4132		return;
4133
4134	WARN_ON_ONCE(!tick_work_cpu);
4135
4136	twork = per_cpu_ptr(tick_work_cpu, cpu);
4137	/* There cannot be competing actions, but don't rely on stop-machine. */
4138	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4139	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4140	/* Don't cancel, as this would mess up the state machine. */
4141}
4142#endif /* CONFIG_HOTPLUG_CPU */
4143
4144int __init sched_tick_offload_init(void)
4145{
4146	tick_work_cpu = alloc_percpu(struct tick_work);
4147	BUG_ON(!tick_work_cpu);
 
4148	return 0;
4149}
4150
4151#else /* !CONFIG_NO_HZ_FULL */
4152static inline void sched_tick_start(int cpu) { }
4153static inline void sched_tick_stop(int cpu) { }
4154#endif
4155
4156#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4157				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4158/*
4159 * If the value passed in is equal to the current preempt count
4160 * then we just disabled preemption. Start timing the latency.
4161 */
4162static inline void preempt_latency_start(int val)
4163{
4164	if (preempt_count() == val) {
4165		unsigned long ip = get_lock_parent_ip();
4166#ifdef CONFIG_DEBUG_PREEMPT
4167		current->preempt_disable_ip = ip;
4168#endif
4169		trace_preempt_off(CALLER_ADDR0, ip);
4170	}
4171}
4172
4173void preempt_count_add(int val)
4174{
4175#ifdef CONFIG_DEBUG_PREEMPT
4176	/*
4177	 * Underflow?
4178	 */
4179	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4180		return;
4181#endif
4182	__preempt_count_add(val);
4183#ifdef CONFIG_DEBUG_PREEMPT
4184	/*
4185	 * Spinlock count overflowing soon?
4186	 */
4187	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4188				PREEMPT_MASK - 10);
4189#endif
4190	preempt_latency_start(val);
4191}
4192EXPORT_SYMBOL(preempt_count_add);
4193NOKPROBE_SYMBOL(preempt_count_add);
4194
4195/*
4196 * If the value passed in equals to the current preempt count
4197 * then we just enabled preemption. Stop timing the latency.
4198 */
4199static inline void preempt_latency_stop(int val)
4200{
4201	if (preempt_count() == val)
4202		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4203}
4204
4205void preempt_count_sub(int val)
4206{
4207#ifdef CONFIG_DEBUG_PREEMPT
4208	/*
4209	 * Underflow?
4210	 */
4211	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4212		return;
4213	/*
4214	 * Is the spinlock portion underflowing?
4215	 */
4216	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4217			!(preempt_count() & PREEMPT_MASK)))
4218		return;
4219#endif
4220
4221	preempt_latency_stop(val);
4222	__preempt_count_sub(val);
4223}
4224EXPORT_SYMBOL(preempt_count_sub);
4225NOKPROBE_SYMBOL(preempt_count_sub);
4226
4227#else
4228static inline void preempt_latency_start(int val) { }
4229static inline void preempt_latency_stop(int val) { }
4230#endif
4231
4232static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4233{
4234#ifdef CONFIG_DEBUG_PREEMPT
4235	return p->preempt_disable_ip;
4236#else
4237	return 0;
4238#endif
4239}
4240
4241/*
4242 * Print scheduling while atomic bug:
4243 */
4244static noinline void __schedule_bug(struct task_struct *prev)
4245{
4246	/* Save this before calling printk(), since that will clobber it */
4247	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4248
4249	if (oops_in_progress)
4250		return;
4251
4252	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4253		prev->comm, prev->pid, preempt_count());
4254
4255	debug_show_held_locks(prev);
4256	print_modules();
4257	if (irqs_disabled())
4258		print_irqtrace_events(prev);
4259	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4260	    && in_atomic_preempt_off()) {
4261		pr_err("Preemption disabled at:");
4262		print_ip_sym(KERN_ERR, preempt_disable_ip);
 
4263	}
4264	if (panic_on_warn)
4265		panic("scheduling while atomic\n");
4266
4267	dump_stack();
4268	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4269}
4270
4271/*
4272 * Various schedule()-time debugging checks and statistics:
4273 */
4274static inline void schedule_debug(struct task_struct *prev, bool preempt)
4275{
4276#ifdef CONFIG_SCHED_STACK_END_CHECK
4277	if (task_stack_end_corrupted(prev))
4278		panic("corrupted stack end detected inside scheduler\n");
4279
4280	if (task_scs_end_corrupted(prev))
4281		panic("corrupted shadow stack detected inside scheduler\n");
4282#endif
4283
4284#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4285	if (!preempt && prev->state && prev->non_block_count) {
4286		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4287			prev->comm, prev->pid, prev->non_block_count);
4288		dump_stack();
4289		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4290	}
4291#endif
4292
4293	if (unlikely(in_atomic_preempt_off())) {
4294		__schedule_bug(prev);
4295		preempt_count_set(PREEMPT_DISABLED);
4296	}
4297	rcu_sleep_check();
4298
4299	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4300
4301	schedstat_inc(this_rq()->sched_count);
4302}
4303
4304static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4305				  struct rq_flags *rf)
4306{
4307#ifdef CONFIG_SMP
4308	const struct sched_class *class;
4309	/*
4310	 * We must do the balancing pass before put_prev_task(), such
4311	 * that when we release the rq->lock the task is in the same
4312	 * state as before we took rq->lock.
4313	 *
4314	 * We can terminate the balance pass as soon as we know there is
4315	 * a runnable task of @class priority or higher.
4316	 */
4317	for_class_range(class, prev->sched_class, &idle_sched_class) {
4318		if (class->balance(rq, prev, rf))
4319			break;
4320	}
4321#endif
4322
4323	put_prev_task(rq, prev);
4324}
4325
4326/*
4327 * Pick up the highest-prio task:
4328 */
4329static inline struct task_struct *
4330pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4331{
4332	const struct sched_class *class;
4333	struct task_struct *p;
4334
4335	/*
4336	 * Optimization: we know that if all tasks are in the fair class we can
4337	 * call that function directly, but only if the @prev task wasn't of a
4338	 * higher scheduling class, because otherwise those loose the
4339	 * opportunity to pull in more work from other CPUs.
4340	 */
4341	if (likely(prev->sched_class <= &fair_sched_class &&
 
4342		   rq->nr_running == rq->cfs.h_nr_running)) {
4343
4344		p = pick_next_task_fair(rq, prev, rf);
4345		if (unlikely(p == RETRY_TASK))
4346			goto restart;
4347
4348		/* Assumes fair_sched_class->next == idle_sched_class */
4349		if (!p) {
4350			put_prev_task(rq, prev);
4351			p = pick_next_task_idle(rq);
4352		}
4353
4354		return p;
4355	}
4356
4357restart:
4358	put_prev_task_balance(rq, prev, rf);
4359
4360	for_each_class(class) {
4361		p = class->pick_next_task(rq);
4362		if (p)
 
 
4363			return p;
 
4364	}
4365
4366	/* The idle class should always have a runnable task: */
4367	BUG();
4368}
4369
4370/*
4371 * __schedule() is the main scheduler function.
4372 *
4373 * The main means of driving the scheduler and thus entering this function are:
4374 *
4375 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4376 *
4377 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4378 *      paths. For example, see arch/x86/entry_64.S.
4379 *
4380 *      To drive preemption between tasks, the scheduler sets the flag in timer
4381 *      interrupt handler scheduler_tick().
4382 *
4383 *   3. Wakeups don't really cause entry into schedule(). They add a
4384 *      task to the run-queue and that's it.
4385 *
4386 *      Now, if the new task added to the run-queue preempts the current
4387 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4388 *      called on the nearest possible occasion:
4389 *
4390 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4391 *
4392 *         - in syscall or exception context, at the next outmost
4393 *           preempt_enable(). (this might be as soon as the wake_up()'s
4394 *           spin_unlock()!)
4395 *
4396 *         - in IRQ context, return from interrupt-handler to
4397 *           preemptible context
4398 *
4399 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4400 *         then at the next:
4401 *
4402 *          - cond_resched() call
4403 *          - explicit schedule() call
4404 *          - return from syscall or exception to user-space
4405 *          - return from interrupt-handler to user-space
4406 *
4407 * WARNING: must be called with preemption disabled!
4408 */
4409static void __sched notrace __schedule(bool preempt)
4410{
4411	struct task_struct *prev, *next;
4412	unsigned long *switch_count;
4413	unsigned long prev_state;
4414	struct rq_flags rf;
4415	struct rq *rq;
4416	int cpu;
4417
4418	cpu = smp_processor_id();
4419	rq = cpu_rq(cpu);
4420	prev = rq->curr;
4421
4422	schedule_debug(prev, preempt);
4423
4424	if (sched_feat(HRTICK))
4425		hrtick_clear(rq);
4426
4427	local_irq_disable();
4428	rcu_note_context_switch(preempt);
4429
4430	/*
4431	 * Make sure that signal_pending_state()->signal_pending() below
4432	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4433	 * done by the caller to avoid the race with signal_wake_up():
4434	 *
4435	 * __set_current_state(@state)		signal_wake_up()
4436	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4437	 *					  wake_up_state(p, state)
4438	 *   LOCK rq->lock			    LOCK p->pi_state
4439	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4440	 *     if (signal_pending_state())	    if (p->state & @state)
4441	 *
4442	 * Also, the membarrier system call requires a full memory barrier
4443	 * after coming from user-space, before storing to rq->curr.
4444	 */
4445	rq_lock(rq, &rf);
4446	smp_mb__after_spinlock();
4447
4448	/* Promote REQ to ACT */
4449	rq->clock_update_flags <<= 1;
4450	update_rq_clock(rq);
4451
4452	switch_count = &prev->nivcsw;
4453
4454	/*
4455	 * We must load prev->state once (task_struct::state is volatile), such
4456	 * that:
4457	 *
4458	 *  - we form a control dependency vs deactivate_task() below.
4459	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4460	 */
4461	prev_state = prev->state;
4462	if (!preempt && prev_state) {
4463		if (signal_pending_state(prev_state, prev)) {
4464			prev->state = TASK_RUNNING;
4465		} else {
4466			prev->sched_contributes_to_load =
4467				(prev_state & TASK_UNINTERRUPTIBLE) &&
4468				!(prev_state & TASK_NOLOAD) &&
4469				!(prev->flags & PF_FROZEN);
4470
4471			if (prev->sched_contributes_to_load)
4472				rq->nr_uninterruptible++;
 
 
4473
4474			/*
4475			 * __schedule()			ttwu()
4476			 *   prev_state = prev->state;    if (p->on_rq && ...)
4477			 *   if (prev_state)		    goto out;
4478			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
4479			 *				  p->state = TASK_WAKING
4480			 *
4481			 * Where __schedule() and ttwu() have matching control dependencies.
4482			 *
4483			 * After this, schedule() must not care about p->state any more.
4484			 */
4485			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
 
4486
4487			if (prev->in_iowait) {
4488				atomic_inc(&rq->nr_iowait);
4489				delayacct_blkio_start();
4490			}
4491		}
4492		switch_count = &prev->nvcsw;
4493	}
4494
4495	next = pick_next_task(rq, prev, &rf);
4496	clear_tsk_need_resched(prev);
4497	clear_preempt_need_resched();
4498
4499	if (likely(prev != next)) {
4500		rq->nr_switches++;
4501		/*
4502		 * RCU users of rcu_dereference(rq->curr) may not see
4503		 * changes to task_struct made by pick_next_task().
4504		 */
4505		RCU_INIT_POINTER(rq->curr, next);
4506		/*
4507		 * The membarrier system call requires each architecture
4508		 * to have a full memory barrier after updating
4509		 * rq->curr, before returning to user-space.
4510		 *
4511		 * Here are the schemes providing that barrier on the
4512		 * various architectures:
4513		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4514		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4515		 * - finish_lock_switch() for weakly-ordered
4516		 *   architectures where spin_unlock is a full barrier,
4517		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4518		 *   is a RELEASE barrier),
4519		 */
4520		++*switch_count;
4521
4522		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4523
4524		trace_sched_switch(preempt, prev, next);
4525
4526		/* Also unlocks the rq: */
4527		rq = context_switch(rq, prev, next, &rf);
4528	} else {
4529		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4530		rq_unlock_irq(rq, &rf);
4531	}
4532
4533	balance_callback(rq);
4534}
4535
4536void __noreturn do_task_dead(void)
4537{
4538	/* Causes final put_task_struct in finish_task_switch(): */
4539	set_special_state(TASK_DEAD);
4540
4541	/* Tell freezer to ignore us: */
4542	current->flags |= PF_NOFREEZE;
4543
4544	__schedule(false);
4545	BUG();
4546
4547	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4548	for (;;)
4549		cpu_relax();
4550}
4551
4552static inline void sched_submit_work(struct task_struct *tsk)
4553{
4554	if (!tsk->state)
4555		return;
4556
4557	/*
4558	 * If a worker went to sleep, notify and ask workqueue whether
4559	 * it wants to wake up a task to maintain concurrency.
4560	 * As this function is called inside the schedule() context,
4561	 * we disable preemption to avoid it calling schedule() again
4562	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4563	 * requires it.
4564	 */
4565	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4566		preempt_disable();
4567		if (tsk->flags & PF_WQ_WORKER)
4568			wq_worker_sleeping(tsk);
4569		else
4570			io_wq_worker_sleeping(tsk);
4571		preempt_enable_no_resched();
4572	}
4573
4574	if (tsk_is_pi_blocked(tsk))
4575		return;
4576
4577	/*
4578	 * If we are going to sleep and we have plugged IO queued,
4579	 * make sure to submit it to avoid deadlocks.
4580	 */
4581	if (blk_needs_flush_plug(tsk))
4582		blk_schedule_flush_plug(tsk);
4583}
4584
4585static void sched_update_worker(struct task_struct *tsk)
4586{
4587	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4588		if (tsk->flags & PF_WQ_WORKER)
4589			wq_worker_running(tsk);
4590		else
4591			io_wq_worker_running(tsk);
4592	}
4593}
4594
4595asmlinkage __visible void __sched schedule(void)
4596{
4597	struct task_struct *tsk = current;
4598
4599	sched_submit_work(tsk);
4600	do {
4601		preempt_disable();
4602		__schedule(false);
4603		sched_preempt_enable_no_resched();
4604	} while (need_resched());
4605	sched_update_worker(tsk);
4606}
4607EXPORT_SYMBOL(schedule);
4608
4609/*
4610 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4611 * state (have scheduled out non-voluntarily) by making sure that all
4612 * tasks have either left the run queue or have gone into user space.
4613 * As idle tasks do not do either, they must not ever be preempted
4614 * (schedule out non-voluntarily).
4615 *
4616 * schedule_idle() is similar to schedule_preempt_disable() except that it
4617 * never enables preemption because it does not call sched_submit_work().
4618 */
4619void __sched schedule_idle(void)
4620{
4621	/*
4622	 * As this skips calling sched_submit_work(), which the idle task does
4623	 * regardless because that function is a nop when the task is in a
4624	 * TASK_RUNNING state, make sure this isn't used someplace that the
4625	 * current task can be in any other state. Note, idle is always in the
4626	 * TASK_RUNNING state.
4627	 */
4628	WARN_ON_ONCE(current->state);
4629	do {
4630		__schedule(false);
4631	} while (need_resched());
4632}
4633
4634#ifdef CONFIG_CONTEXT_TRACKING
4635asmlinkage __visible void __sched schedule_user(void)
4636{
4637	/*
4638	 * If we come here after a random call to set_need_resched(),
4639	 * or we have been woken up remotely but the IPI has not yet arrived,
4640	 * we haven't yet exited the RCU idle mode. Do it here manually until
4641	 * we find a better solution.
4642	 *
4643	 * NB: There are buggy callers of this function.  Ideally we
4644	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4645	 * too frequently to make sense yet.
4646	 */
4647	enum ctx_state prev_state = exception_enter();
4648	schedule();
4649	exception_exit(prev_state);
4650}
4651#endif
4652
4653/**
4654 * schedule_preempt_disabled - called with preemption disabled
4655 *
4656 * Returns with preemption disabled. Note: preempt_count must be 1
4657 */
4658void __sched schedule_preempt_disabled(void)
4659{
4660	sched_preempt_enable_no_resched();
4661	schedule();
4662	preempt_disable();
4663}
4664
4665static void __sched notrace preempt_schedule_common(void)
4666{
4667	do {
4668		/*
4669		 * Because the function tracer can trace preempt_count_sub()
4670		 * and it also uses preempt_enable/disable_notrace(), if
4671		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4672		 * by the function tracer will call this function again and
4673		 * cause infinite recursion.
4674		 *
4675		 * Preemption must be disabled here before the function
4676		 * tracer can trace. Break up preempt_disable() into two
4677		 * calls. One to disable preemption without fear of being
4678		 * traced. The other to still record the preemption latency,
4679		 * which can also be traced by the function tracer.
4680		 */
4681		preempt_disable_notrace();
4682		preempt_latency_start(1);
4683		__schedule(true);
4684		preempt_latency_stop(1);
4685		preempt_enable_no_resched_notrace();
4686
4687		/*
4688		 * Check again in case we missed a preemption opportunity
4689		 * between schedule and now.
4690		 */
4691	} while (need_resched());
4692}
4693
4694#ifdef CONFIG_PREEMPTION
4695/*
4696 * This is the entry point to schedule() from in-kernel preemption
4697 * off of preempt_enable.
 
4698 */
4699asmlinkage __visible void __sched notrace preempt_schedule(void)
4700{
4701	/*
4702	 * If there is a non-zero preempt_count or interrupts are disabled,
4703	 * we do not want to preempt the current task. Just return..
4704	 */
4705	if (likely(!preemptible()))
4706		return;
4707
4708	preempt_schedule_common();
4709}
4710NOKPROBE_SYMBOL(preempt_schedule);
4711EXPORT_SYMBOL(preempt_schedule);
4712
4713/**
4714 * preempt_schedule_notrace - preempt_schedule called by tracing
4715 *
4716 * The tracing infrastructure uses preempt_enable_notrace to prevent
4717 * recursion and tracing preempt enabling caused by the tracing
4718 * infrastructure itself. But as tracing can happen in areas coming
4719 * from userspace or just about to enter userspace, a preempt enable
4720 * can occur before user_exit() is called. This will cause the scheduler
4721 * to be called when the system is still in usermode.
4722 *
4723 * To prevent this, the preempt_enable_notrace will use this function
4724 * instead of preempt_schedule() to exit user context if needed before
4725 * calling the scheduler.
4726 */
4727asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4728{
4729	enum ctx_state prev_ctx;
4730
4731	if (likely(!preemptible()))
4732		return;
4733
4734	do {
4735		/*
4736		 * Because the function tracer can trace preempt_count_sub()
4737		 * and it also uses preempt_enable/disable_notrace(), if
4738		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4739		 * by the function tracer will call this function again and
4740		 * cause infinite recursion.
4741		 *
4742		 * Preemption must be disabled here before the function
4743		 * tracer can trace. Break up preempt_disable() into two
4744		 * calls. One to disable preemption without fear of being
4745		 * traced. The other to still record the preemption latency,
4746		 * which can also be traced by the function tracer.
4747		 */
4748		preempt_disable_notrace();
4749		preempt_latency_start(1);
4750		/*
4751		 * Needs preempt disabled in case user_exit() is traced
4752		 * and the tracer calls preempt_enable_notrace() causing
4753		 * an infinite recursion.
4754		 */
4755		prev_ctx = exception_enter();
4756		__schedule(true);
4757		exception_exit(prev_ctx);
4758
4759		preempt_latency_stop(1);
4760		preempt_enable_no_resched_notrace();
4761	} while (need_resched());
4762}
4763EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4764
4765#endif /* CONFIG_PREEMPTION */
4766
4767/*
4768 * This is the entry point to schedule() from kernel preemption
4769 * off of irq context.
4770 * Note, that this is called and return with irqs disabled. This will
4771 * protect us against recursive calling from irq.
4772 */
4773asmlinkage __visible void __sched preempt_schedule_irq(void)
4774{
4775	enum ctx_state prev_state;
4776
4777	/* Catch callers which need to be fixed */
4778	BUG_ON(preempt_count() || !irqs_disabled());
4779
4780	prev_state = exception_enter();
4781
4782	do {
4783		preempt_disable();
4784		local_irq_enable();
4785		__schedule(true);
4786		local_irq_disable();
4787		sched_preempt_enable_no_resched();
4788	} while (need_resched());
4789
4790	exception_exit(prev_state);
4791}
4792
4793int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4794			  void *key)
4795{
4796	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
4797	return try_to_wake_up(curr->private, mode, wake_flags);
4798}
4799EXPORT_SYMBOL(default_wake_function);
4800
4801#ifdef CONFIG_RT_MUTEXES
4802
4803static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4804{
4805	if (pi_task)
4806		prio = min(prio, pi_task->prio);
4807
4808	return prio;
4809}
4810
4811static inline int rt_effective_prio(struct task_struct *p, int prio)
4812{
4813	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4814
4815	return __rt_effective_prio(pi_task, prio);
4816}
4817
4818/*
4819 * rt_mutex_setprio - set the current priority of a task
4820 * @p: task to boost
4821 * @pi_task: donor task
4822 *
4823 * This function changes the 'effective' priority of a task. It does
4824 * not touch ->normal_prio like __setscheduler().
4825 *
4826 * Used by the rt_mutex code to implement priority inheritance
4827 * logic. Call site only calls if the priority of the task changed.
4828 */
4829void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4830{
4831	int prio, oldprio, queued, running, queue_flag =
4832		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4833	const struct sched_class *prev_class;
4834	struct rq_flags rf;
4835	struct rq *rq;
4836
4837	/* XXX used to be waiter->prio, not waiter->task->prio */
4838	prio = __rt_effective_prio(pi_task, p->normal_prio);
4839
4840	/*
4841	 * If nothing changed; bail early.
4842	 */
4843	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4844		return;
4845
4846	rq = __task_rq_lock(p, &rf);
4847	update_rq_clock(rq);
4848	/*
4849	 * Set under pi_lock && rq->lock, such that the value can be used under
4850	 * either lock.
4851	 *
4852	 * Note that there is loads of tricky to make this pointer cache work
4853	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4854	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4855	 * task is allowed to run again (and can exit). This ensures the pointer
4856	 * points to a blocked task -- which guaratees the task is present.
4857	 */
4858	p->pi_top_task = pi_task;
4859
4860	/*
4861	 * For FIFO/RR we only need to set prio, if that matches we're done.
4862	 */
4863	if (prio == p->prio && !dl_prio(prio))
4864		goto out_unlock;
4865
4866	/*
4867	 * Idle task boosting is a nono in general. There is one
4868	 * exception, when PREEMPT_RT and NOHZ is active:
4869	 *
4870	 * The idle task calls get_next_timer_interrupt() and holds
4871	 * the timer wheel base->lock on the CPU and another CPU wants
4872	 * to access the timer (probably to cancel it). We can safely
4873	 * ignore the boosting request, as the idle CPU runs this code
4874	 * with interrupts disabled and will complete the lock
4875	 * protected section without being interrupted. So there is no
4876	 * real need to boost.
4877	 */
4878	if (unlikely(p == rq->idle)) {
4879		WARN_ON(p != rq->curr);
4880		WARN_ON(p->pi_blocked_on);
4881		goto out_unlock;
4882	}
4883
4884	trace_sched_pi_setprio(p, pi_task);
4885	oldprio = p->prio;
4886
4887	if (oldprio == prio)
4888		queue_flag &= ~DEQUEUE_MOVE;
4889
4890	prev_class = p->sched_class;
4891	queued = task_on_rq_queued(p);
4892	running = task_current(rq, p);
4893	if (queued)
4894		dequeue_task(rq, p, queue_flag);
4895	if (running)
4896		put_prev_task(rq, p);
4897
4898	/*
4899	 * Boosting condition are:
4900	 * 1. -rt task is running and holds mutex A
4901	 *      --> -dl task blocks on mutex A
4902	 *
4903	 * 2. -dl task is running and holds mutex A
4904	 *      --> -dl task blocks on mutex A and could preempt the
4905	 *          running task
4906	 */
4907	if (dl_prio(prio)) {
4908		if (!dl_prio(p->normal_prio) ||
4909		    (pi_task && dl_prio(pi_task->prio) &&
4910		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
4911			p->dl.dl_boosted = 1;
4912			queue_flag |= ENQUEUE_REPLENISH;
4913		} else
4914			p->dl.dl_boosted = 0;
4915		p->sched_class = &dl_sched_class;
4916	} else if (rt_prio(prio)) {
4917		if (dl_prio(oldprio))
4918			p->dl.dl_boosted = 0;
4919		if (oldprio < prio)
4920			queue_flag |= ENQUEUE_HEAD;
4921		p->sched_class = &rt_sched_class;
4922	} else {
4923		if (dl_prio(oldprio))
4924			p->dl.dl_boosted = 0;
4925		if (rt_prio(oldprio))
4926			p->rt.timeout = 0;
4927		p->sched_class = &fair_sched_class;
4928	}
4929
4930	p->prio = prio;
4931
4932	if (queued)
4933		enqueue_task(rq, p, queue_flag);
4934	if (running)
4935		set_next_task(rq, p);
4936
4937	check_class_changed(rq, p, prev_class, oldprio);
4938out_unlock:
4939	/* Avoid rq from going away on us: */
4940	preempt_disable();
4941	__task_rq_unlock(rq, &rf);
4942
4943	balance_callback(rq);
4944	preempt_enable();
4945}
4946#else
4947static inline int rt_effective_prio(struct task_struct *p, int prio)
4948{
4949	return prio;
4950}
4951#endif
4952
4953void set_user_nice(struct task_struct *p, long nice)
4954{
4955	bool queued, running;
4956	int old_prio;
4957	struct rq_flags rf;
4958	struct rq *rq;
4959
4960	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4961		return;
4962	/*
4963	 * We have to be careful, if called from sys_setpriority(),
4964	 * the task might be in the middle of scheduling on another CPU.
4965	 */
4966	rq = task_rq_lock(p, &rf);
4967	update_rq_clock(rq);
4968
4969	/*
4970	 * The RT priorities are set via sched_setscheduler(), but we still
4971	 * allow the 'normal' nice value to be set - but as expected
4972	 * it wont have any effect on scheduling until the task is
4973	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4974	 */
4975	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4976		p->static_prio = NICE_TO_PRIO(nice);
4977		goto out_unlock;
4978	}
4979	queued = task_on_rq_queued(p);
4980	running = task_current(rq, p);
4981	if (queued)
4982		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4983	if (running)
4984		put_prev_task(rq, p);
4985
4986	p->static_prio = NICE_TO_PRIO(nice);
4987	set_load_weight(p, true);
4988	old_prio = p->prio;
4989	p->prio = effective_prio(p);
 
4990
4991	if (queued)
4992		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 
 
 
 
 
 
 
4993	if (running)
4994		set_next_task(rq, p);
4995
4996	/*
4997	 * If the task increased its priority or is running and
4998	 * lowered its priority, then reschedule its CPU:
4999	 */
5000	p->sched_class->prio_changed(rq, p, old_prio);
5001
5002out_unlock:
5003	task_rq_unlock(rq, p, &rf);
5004}
5005EXPORT_SYMBOL(set_user_nice);
5006
5007/*
5008 * can_nice - check if a task can reduce its nice value
5009 * @p: task
5010 * @nice: nice value
5011 */
5012int can_nice(const struct task_struct *p, const int nice)
5013{
5014	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5015	int nice_rlim = nice_to_rlimit(nice);
5016
5017	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5018		capable(CAP_SYS_NICE));
5019}
5020
5021#ifdef __ARCH_WANT_SYS_NICE
5022
5023/*
5024 * sys_nice - change the priority of the current process.
5025 * @increment: priority increment
5026 *
5027 * sys_setpriority is a more generic, but much slower function that
5028 * does similar things.
5029 */
5030SYSCALL_DEFINE1(nice, int, increment)
5031{
5032	long nice, retval;
5033
5034	/*
5035	 * Setpriority might change our priority at the same moment.
5036	 * We don't have to worry. Conceptually one call occurs first
5037	 * and we have a single winner.
5038	 */
5039	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5040	nice = task_nice(current) + increment;
5041
5042	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5043	if (increment < 0 && !can_nice(current, nice))
5044		return -EPERM;
5045
5046	retval = security_task_setnice(current, nice);
5047	if (retval)
5048		return retval;
5049
5050	set_user_nice(current, nice);
5051	return 0;
5052}
5053
5054#endif
5055
5056/**
5057 * task_prio - return the priority value of a given task.
5058 * @p: the task in question.
5059 *
5060 * Return: The priority value as seen by users in /proc.
5061 * RT tasks are offset by -200. Normal tasks are centered
5062 * around 0, value goes from -16 to +15.
5063 */
5064int task_prio(const struct task_struct *p)
5065{
5066	return p->prio - MAX_RT_PRIO;
5067}
5068
5069/**
5070 * idle_cpu - is a given CPU idle currently?
5071 * @cpu: the processor in question.
5072 *
5073 * Return: 1 if the CPU is currently idle. 0 otherwise.
5074 */
5075int idle_cpu(int cpu)
5076{
5077	struct rq *rq = cpu_rq(cpu);
5078
5079	if (rq->curr != rq->idle)
5080		return 0;
5081
5082	if (rq->nr_running)
5083		return 0;
5084
5085#ifdef CONFIG_SMP
5086	if (rq->ttwu_pending)
5087		return 0;
5088#endif
5089
5090	return 1;
5091}
5092
5093/**
5094 * available_idle_cpu - is a given CPU idle for enqueuing work.
5095 * @cpu: the CPU in question.
5096 *
5097 * Return: 1 if the CPU is currently idle. 0 otherwise.
5098 */
5099int available_idle_cpu(int cpu)
5100{
5101	if (!idle_cpu(cpu))
5102		return 0;
5103
5104	if (vcpu_is_preempted(cpu))
5105		return 0;
5106
5107	return 1;
5108}
5109
5110/**
5111 * idle_task - return the idle task for a given CPU.
5112 * @cpu: the processor in question.
5113 *
5114 * Return: The idle task for the CPU @cpu.
5115 */
5116struct task_struct *idle_task(int cpu)
5117{
5118	return cpu_rq(cpu)->idle;
5119}
5120
5121/**
5122 * find_process_by_pid - find a process with a matching PID value.
5123 * @pid: the pid in question.
5124 *
5125 * The task of @pid, if found. %NULL otherwise.
5126 */
5127static struct task_struct *find_process_by_pid(pid_t pid)
5128{
5129	return pid ? find_task_by_vpid(pid) : current;
5130}
5131
5132/*
5133 * sched_setparam() passes in -1 for its policy, to let the functions
5134 * it calls know not to change it.
5135 */
5136#define SETPARAM_POLICY	-1
5137
5138static void __setscheduler_params(struct task_struct *p,
5139		const struct sched_attr *attr)
5140{
5141	int policy = attr->sched_policy;
5142
5143	if (policy == SETPARAM_POLICY)
5144		policy = p->policy;
5145
5146	p->policy = policy;
5147
5148	if (dl_policy(policy))
5149		__setparam_dl(p, attr);
5150	else if (fair_policy(policy))
5151		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5152
5153	/*
5154	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5155	 * !rt_policy. Always setting this ensures that things like
5156	 * getparam()/getattr() don't report silly values for !rt tasks.
5157	 */
5158	p->rt_priority = attr->sched_priority;
5159	p->normal_prio = normal_prio(p);
5160	set_load_weight(p, true);
5161}
5162
5163/* Actually do priority change: must hold pi & rq lock. */
5164static void __setscheduler(struct rq *rq, struct task_struct *p,
5165			   const struct sched_attr *attr, bool keep_boost)
5166{
5167	/*
5168	 * If params can't change scheduling class changes aren't allowed
5169	 * either.
5170	 */
5171	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5172		return;
5173
5174	__setscheduler_params(p, attr);
5175
5176	/*
5177	 * Keep a potential priority boosting if called from
5178	 * sched_setscheduler().
5179	 */
5180	p->prio = normal_prio(p);
5181	if (keep_boost)
5182		p->prio = rt_effective_prio(p, p->prio);
5183
5184	if (dl_prio(p->prio))
5185		p->sched_class = &dl_sched_class;
5186	else if (rt_prio(p->prio))
5187		p->sched_class = &rt_sched_class;
5188	else
5189		p->sched_class = &fair_sched_class;
5190}
5191
5192/*
5193 * Check the target process has a UID that matches the current process's:
5194 */
5195static bool check_same_owner(struct task_struct *p)
5196{
5197	const struct cred *cred = current_cred(), *pcred;
5198	bool match;
5199
5200	rcu_read_lock();
5201	pcred = __task_cred(p);
5202	match = (uid_eq(cred->euid, pcred->euid) ||
5203		 uid_eq(cred->euid, pcred->uid));
5204	rcu_read_unlock();
5205	return match;
5206}
5207
5208static int __sched_setscheduler(struct task_struct *p,
5209				const struct sched_attr *attr,
5210				bool user, bool pi)
5211{
5212	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5213		      MAX_RT_PRIO - 1 - attr->sched_priority;
5214	int retval, oldprio, oldpolicy = -1, queued, running;
5215	int new_effective_prio, policy = attr->sched_policy;
5216	const struct sched_class *prev_class;
5217	struct rq_flags rf;
5218	int reset_on_fork;
5219	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5220	struct rq *rq;
5221
5222	/* The pi code expects interrupts enabled */
5223	BUG_ON(pi && in_interrupt());
5224recheck:
5225	/* Double check policy once rq lock held: */
5226	if (policy < 0) {
5227		reset_on_fork = p->sched_reset_on_fork;
5228		policy = oldpolicy = p->policy;
5229	} else {
5230		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5231
5232		if (!valid_policy(policy))
5233			return -EINVAL;
5234	}
5235
5236	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5237		return -EINVAL;
5238
5239	/*
5240	 * Valid priorities for SCHED_FIFO and SCHED_RR are
5241	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5242	 * SCHED_BATCH and SCHED_IDLE is 0.
5243	 */
5244	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5245	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5246		return -EINVAL;
5247	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5248	    (rt_policy(policy) != (attr->sched_priority != 0)))
5249		return -EINVAL;
5250
5251	/*
5252	 * Allow unprivileged RT tasks to decrease priority:
5253	 */
5254	if (user && !capable(CAP_SYS_NICE)) {
5255		if (fair_policy(policy)) {
5256			if (attr->sched_nice < task_nice(p) &&
5257			    !can_nice(p, attr->sched_nice))
5258				return -EPERM;
5259		}
5260
5261		if (rt_policy(policy)) {
5262			unsigned long rlim_rtprio =
5263					task_rlimit(p, RLIMIT_RTPRIO);
5264
5265			/* Can't set/change the rt policy: */
5266			if (policy != p->policy && !rlim_rtprio)
5267				return -EPERM;
5268
5269			/* Can't increase priority: */
5270			if (attr->sched_priority > p->rt_priority &&
5271			    attr->sched_priority > rlim_rtprio)
5272				return -EPERM;
5273		}
5274
5275		 /*
5276		  * Can't set/change SCHED_DEADLINE policy at all for now
5277		  * (safest behavior); in the future we would like to allow
5278		  * unprivileged DL tasks to increase their relative deadline
5279		  * or reduce their runtime (both ways reducing utilization)
5280		  */
5281		if (dl_policy(policy))
5282			return -EPERM;
5283
5284		/*
5285		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5286		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5287		 */
5288		if (task_has_idle_policy(p) && !idle_policy(policy)) {
5289			if (!can_nice(p, task_nice(p)))
5290				return -EPERM;
5291		}
5292
5293		/* Can't change other user's priorities: */
5294		if (!check_same_owner(p))
5295			return -EPERM;
5296
5297		/* Normal users shall not reset the sched_reset_on_fork flag: */
5298		if (p->sched_reset_on_fork && !reset_on_fork)
5299			return -EPERM;
5300	}
5301
5302	if (user) {
5303		if (attr->sched_flags & SCHED_FLAG_SUGOV)
5304			return -EINVAL;
5305
5306		retval = security_task_setscheduler(p);
5307		if (retval)
5308			return retval;
5309	}
5310
5311	/* Update task specific "requested" clamps */
5312	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5313		retval = uclamp_validate(p, attr);
5314		if (retval)
5315			return retval;
5316	}
5317
5318	if (pi)
5319		cpuset_read_lock();
5320
5321	/*
5322	 * Make sure no PI-waiters arrive (or leave) while we are
5323	 * changing the priority of the task:
5324	 *
5325	 * To be able to change p->policy safely, the appropriate
5326	 * runqueue lock must be held.
5327	 */
5328	rq = task_rq_lock(p, &rf);
5329	update_rq_clock(rq);
5330
5331	/*
5332	 * Changing the policy of the stop threads its a very bad idea:
5333	 */
5334	if (p == rq->stop) {
5335		retval = -EINVAL;
5336		goto unlock;
5337	}
5338
5339	/*
5340	 * If not changing anything there's no need to proceed further,
5341	 * but store a possible modification of reset_on_fork.
5342	 */
5343	if (unlikely(policy == p->policy)) {
5344		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5345			goto change;
5346		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5347			goto change;
5348		if (dl_policy(policy) && dl_param_changed(p, attr))
5349			goto change;
5350		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5351			goto change;
5352
5353		p->sched_reset_on_fork = reset_on_fork;
5354		retval = 0;
5355		goto unlock;
5356	}
5357change:
5358
5359	if (user) {
5360#ifdef CONFIG_RT_GROUP_SCHED
5361		/*
5362		 * Do not allow realtime tasks into groups that have no runtime
5363		 * assigned.
5364		 */
5365		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5366				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5367				!task_group_is_autogroup(task_group(p))) {
5368			retval = -EPERM;
5369			goto unlock;
5370		}
5371#endif
5372#ifdef CONFIG_SMP
5373		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5374				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5375			cpumask_t *span = rq->rd->span;
5376
5377			/*
5378			 * Don't allow tasks with an affinity mask smaller than
5379			 * the entire root_domain to become SCHED_DEADLINE. We
5380			 * will also fail if there's no bandwidth available.
5381			 */
5382			if (!cpumask_subset(span, p->cpus_ptr) ||
5383			    rq->rd->dl_bw.bw == 0) {
5384				retval = -EPERM;
5385				goto unlock;
5386			}
5387		}
5388#endif
5389	}
5390
5391	/* Re-check policy now with rq lock held: */
5392	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5393		policy = oldpolicy = -1;
5394		task_rq_unlock(rq, p, &rf);
5395		if (pi)
5396			cpuset_read_unlock();
5397		goto recheck;
5398	}
5399
5400	/*
5401	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5402	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5403	 * is available.
5404	 */
5405	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5406		retval = -EBUSY;
5407		goto unlock;
5408	}
5409
5410	p->sched_reset_on_fork = reset_on_fork;
5411	oldprio = p->prio;
5412
5413	if (pi) {
5414		/*
5415		 * Take priority boosted tasks into account. If the new
5416		 * effective priority is unchanged, we just store the new
5417		 * normal parameters and do not touch the scheduler class and
5418		 * the runqueue. This will be done when the task deboost
5419		 * itself.
5420		 */
5421		new_effective_prio = rt_effective_prio(p, newprio);
5422		if (new_effective_prio == oldprio)
5423			queue_flags &= ~DEQUEUE_MOVE;
5424	}
5425
5426	queued = task_on_rq_queued(p);
5427	running = task_current(rq, p);
5428	if (queued)
5429		dequeue_task(rq, p, queue_flags);
5430	if (running)
5431		put_prev_task(rq, p);
5432
5433	prev_class = p->sched_class;
5434
5435	__setscheduler(rq, p, attr, pi);
5436	__setscheduler_uclamp(p, attr);
5437
5438	if (queued) {
5439		/*
5440		 * We enqueue to tail when the priority of a task is
5441		 * increased (user space view).
5442		 */
5443		if (oldprio < p->prio)
5444			queue_flags |= ENQUEUE_HEAD;
5445
5446		enqueue_task(rq, p, queue_flags);
5447	}
5448	if (running)
5449		set_next_task(rq, p);
5450
5451	check_class_changed(rq, p, prev_class, oldprio);
5452
5453	/* Avoid rq from going away on us: */
5454	preempt_disable();
5455	task_rq_unlock(rq, p, &rf);
5456
5457	if (pi) {
5458		cpuset_read_unlock();
5459		rt_mutex_adjust_pi(p);
5460	}
5461
5462	/* Run balance callbacks after we've adjusted the PI chain: */
5463	balance_callback(rq);
5464	preempt_enable();
5465
5466	return 0;
5467
5468unlock:
5469	task_rq_unlock(rq, p, &rf);
5470	if (pi)
5471		cpuset_read_unlock();
5472	return retval;
5473}
5474
5475static int _sched_setscheduler(struct task_struct *p, int policy,
5476			       const struct sched_param *param, bool check)
5477{
5478	struct sched_attr attr = {
5479		.sched_policy   = policy,
5480		.sched_priority = param->sched_priority,
5481		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5482	};
5483
5484	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5485	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5486		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5487		policy &= ~SCHED_RESET_ON_FORK;
5488		attr.sched_policy = policy;
5489	}
5490
5491	return __sched_setscheduler(p, &attr, check, true);
5492}
5493/**
5494 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5495 * @p: the task in question.
5496 * @policy: new policy.
5497 * @param: structure containing the new RT priority.
5498 *
5499 * Use sched_set_fifo(), read its comment.
5500 *
5501 * Return: 0 on success. An error code otherwise.
5502 *
5503 * NOTE that the task may be already dead.
5504 */
5505int sched_setscheduler(struct task_struct *p, int policy,
5506		       const struct sched_param *param)
5507{
5508	return _sched_setscheduler(p, policy, param, true);
5509}
 
5510
5511int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5512{
5513	return __sched_setscheduler(p, attr, true, true);
5514}
 
5515
5516int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5517{
5518	return __sched_setscheduler(p, attr, false, true);
5519}
5520
5521/**
5522 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5523 * @p: the task in question.
5524 * @policy: new policy.
5525 * @param: structure containing the new RT priority.
5526 *
5527 * Just like sched_setscheduler, only don't bother checking if the
5528 * current context has permission.  For example, this is needed in
5529 * stop_machine(): we create temporary high priority worker threads,
5530 * but our caller might not have that capability.
5531 *
5532 * Return: 0 on success. An error code otherwise.
5533 */
5534int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5535			       const struct sched_param *param)
5536{
5537	return _sched_setscheduler(p, policy, param, false);
5538}
5539
5540/*
5541 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5542 * incapable of resource management, which is the one thing an OS really should
5543 * be doing.
5544 *
5545 * This is of course the reason it is limited to privileged users only.
5546 *
5547 * Worse still; it is fundamentally impossible to compose static priority
5548 * workloads. You cannot take two correctly working static prio workloads
5549 * and smash them together and still expect them to work.
5550 *
5551 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5552 *
5553 *   MAX_RT_PRIO / 2
5554 *
5555 * The administrator _MUST_ configure the system, the kernel simply doesn't
5556 * know enough information to make a sensible choice.
5557 */
5558void sched_set_fifo(struct task_struct *p)
5559{
5560	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5561	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5562}
5563EXPORT_SYMBOL_GPL(sched_set_fifo);
5564
5565/*
5566 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5567 */
5568void sched_set_fifo_low(struct task_struct *p)
5569{
5570	struct sched_param sp = { .sched_priority = 1 };
5571	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5572}
5573EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5574
5575void sched_set_normal(struct task_struct *p, int nice)
5576{
5577	struct sched_attr attr = {
5578		.sched_policy = SCHED_NORMAL,
5579		.sched_nice = nice,
5580	};
5581	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5582}
5583EXPORT_SYMBOL_GPL(sched_set_normal);
5584
5585static int
5586do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5587{
5588	struct sched_param lparam;
5589	struct task_struct *p;
5590	int retval;
5591
5592	if (!param || pid < 0)
5593		return -EINVAL;
5594	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5595		return -EFAULT;
5596
5597	rcu_read_lock();
5598	retval = -ESRCH;
5599	p = find_process_by_pid(pid);
5600	if (likely(p))
5601		get_task_struct(p);
5602	rcu_read_unlock();
5603
5604	if (likely(p)) {
5605		retval = sched_setscheduler(p, policy, &lparam);
5606		put_task_struct(p);
5607	}
5608
5609	return retval;
5610}
5611
5612/*
5613 * Mimics kernel/events/core.c perf_copy_attr().
5614 */
5615static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5616{
5617	u32 size;
5618	int ret;
5619
 
 
 
5620	/* Zero the full structure, so that a short copy will be nice: */
5621	memset(attr, 0, sizeof(*attr));
5622
5623	ret = get_user(size, &uattr->size);
5624	if (ret)
5625		return ret;
5626
 
 
 
 
5627	/* ABI compatibility quirk: */
5628	if (!size)
5629		size = SCHED_ATTR_SIZE_VER0;
5630	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
 
5631		goto err_size;
5632
5633	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5634	if (ret) {
5635		if (ret == -E2BIG)
5636			goto err_size;
5637		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5638	}
5639
5640	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5641	    size < SCHED_ATTR_SIZE_VER1)
5642		return -EINVAL;
5643
5644	/*
5645	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5646	 * to be strict and return an error on out-of-bounds values?
5647	 */
5648	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5649
5650	return 0;
5651
5652err_size:
5653	put_user(sizeof(*attr), &uattr->size);
5654	return -E2BIG;
5655}
5656
5657/**
5658 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5659 * @pid: the pid in question.
5660 * @policy: new policy.
5661 * @param: structure containing the new RT priority.
5662 *
5663 * Return: 0 on success. An error code otherwise.
5664 */
5665SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5666{
5667	if (policy < 0)
5668		return -EINVAL;
5669
5670	return do_sched_setscheduler(pid, policy, param);
5671}
5672
5673/**
5674 * sys_sched_setparam - set/change the RT priority of a thread
5675 * @pid: the pid in question.
5676 * @param: structure containing the new RT priority.
5677 *
5678 * Return: 0 on success. An error code otherwise.
5679 */
5680SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5681{
5682	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5683}
5684
5685/**
5686 * sys_sched_setattr - same as above, but with extended sched_attr
5687 * @pid: the pid in question.
5688 * @uattr: structure containing the extended parameters.
5689 * @flags: for future extension.
5690 */
5691SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5692			       unsigned int, flags)
5693{
5694	struct sched_attr attr;
5695	struct task_struct *p;
5696	int retval;
5697
5698	if (!uattr || pid < 0 || flags)
5699		return -EINVAL;
5700
5701	retval = sched_copy_attr(uattr, &attr);
5702	if (retval)
5703		return retval;
5704
5705	if ((int)attr.sched_policy < 0)
5706		return -EINVAL;
5707	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5708		attr.sched_policy = SETPARAM_POLICY;
5709
5710	rcu_read_lock();
5711	retval = -ESRCH;
5712	p = find_process_by_pid(pid);
5713	if (likely(p))
5714		get_task_struct(p);
5715	rcu_read_unlock();
5716
5717	if (likely(p)) {
5718		retval = sched_setattr(p, &attr);
5719		put_task_struct(p);
5720	}
5721
5722	return retval;
5723}
5724
5725/**
5726 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5727 * @pid: the pid in question.
5728 *
5729 * Return: On success, the policy of the thread. Otherwise, a negative error
5730 * code.
5731 */
5732SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5733{
5734	struct task_struct *p;
5735	int retval;
5736
5737	if (pid < 0)
5738		return -EINVAL;
5739
5740	retval = -ESRCH;
5741	rcu_read_lock();
5742	p = find_process_by_pid(pid);
5743	if (p) {
5744		retval = security_task_getscheduler(p);
5745		if (!retval)
5746			retval = p->policy
5747				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5748	}
5749	rcu_read_unlock();
5750	return retval;
5751}
5752
5753/**
5754 * sys_sched_getparam - get the RT priority of a thread
5755 * @pid: the pid in question.
5756 * @param: structure containing the RT priority.
5757 *
5758 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5759 * code.
5760 */
5761SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5762{
5763	struct sched_param lp = { .sched_priority = 0 };
5764	struct task_struct *p;
5765	int retval;
5766
5767	if (!param || pid < 0)
5768		return -EINVAL;
5769
5770	rcu_read_lock();
5771	p = find_process_by_pid(pid);
5772	retval = -ESRCH;
5773	if (!p)
5774		goto out_unlock;
5775
5776	retval = security_task_getscheduler(p);
5777	if (retval)
5778		goto out_unlock;
5779
5780	if (task_has_rt_policy(p))
5781		lp.sched_priority = p->rt_priority;
5782	rcu_read_unlock();
5783
5784	/*
5785	 * This one might sleep, we cannot do it with a spinlock held ...
5786	 */
5787	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5788
5789	return retval;
5790
5791out_unlock:
5792	rcu_read_unlock();
5793	return retval;
5794}
5795
5796/*
5797 * Copy the kernel size attribute structure (which might be larger
5798 * than what user-space knows about) to user-space.
5799 *
5800 * Note that all cases are valid: user-space buffer can be larger or
5801 * smaller than the kernel-space buffer. The usual case is that both
5802 * have the same size.
5803 */
5804static int
5805sched_attr_copy_to_user(struct sched_attr __user *uattr,
5806			struct sched_attr *kattr,
5807			unsigned int usize)
5808{
5809	unsigned int ksize = sizeof(*kattr);
5810
5811	if (!access_ok(uattr, usize))
5812		return -EFAULT;
5813
5814	/*
5815	 * sched_getattr() ABI forwards and backwards compatibility:
5816	 *
5817	 * If usize == ksize then we just copy everything to user-space and all is good.
5818	 *
5819	 * If usize < ksize then we only copy as much as user-space has space for,
5820	 * this keeps ABI compatibility as well. We skip the rest.
5821	 *
5822	 * If usize > ksize then user-space is using a newer version of the ABI,
5823	 * which part the kernel doesn't know about. Just ignore it - tooling can
5824	 * detect the kernel's knowledge of attributes from the attr->size value
5825	 * which is set to ksize in this case.
5826	 */
5827	kattr->size = min(usize, ksize);
 
 
 
 
 
5828
5829	if (copy_to_user(uattr, kattr, kattr->size))
 
5830		return -EFAULT;
5831
5832	return 0;
5833}
5834
5835/**
5836 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5837 * @pid: the pid in question.
5838 * @uattr: structure containing the extended parameters.
5839 * @usize: sizeof(attr) for fwd/bwd comp.
5840 * @flags: for future extension.
5841 */
5842SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5843		unsigned int, usize, unsigned int, flags)
5844{
5845	struct sched_attr kattr = { };
 
 
5846	struct task_struct *p;
5847	int retval;
5848
5849	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5850	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5851		return -EINVAL;
5852
5853	rcu_read_lock();
5854	p = find_process_by_pid(pid);
5855	retval = -ESRCH;
5856	if (!p)
5857		goto out_unlock;
5858
5859	retval = security_task_getscheduler(p);
5860	if (retval)
5861		goto out_unlock;
5862
5863	kattr.sched_policy = p->policy;
5864	if (p->sched_reset_on_fork)
5865		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5866	if (task_has_dl_policy(p))
5867		__getparam_dl(p, &kattr);
5868	else if (task_has_rt_policy(p))
5869		kattr.sched_priority = p->rt_priority;
5870	else
5871		kattr.sched_nice = task_nice(p);
5872
5873#ifdef CONFIG_UCLAMP_TASK
5874	/*
5875	 * This could race with another potential updater, but this is fine
5876	 * because it'll correctly read the old or the new value. We don't need
5877	 * to guarantee who wins the race as long as it doesn't return garbage.
5878	 */
5879	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5880	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5881#endif
5882
5883	rcu_read_unlock();
5884
5885	return sched_attr_copy_to_user(uattr, &kattr, usize);
 
5886
5887out_unlock:
5888	rcu_read_unlock();
5889	return retval;
5890}
5891
5892long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5893{
5894	cpumask_var_t cpus_allowed, new_mask;
5895	struct task_struct *p;
5896	int retval;
5897
5898	rcu_read_lock();
5899
5900	p = find_process_by_pid(pid);
5901	if (!p) {
5902		rcu_read_unlock();
5903		return -ESRCH;
5904	}
5905
5906	/* Prevent p going away */
5907	get_task_struct(p);
5908	rcu_read_unlock();
5909
5910	if (p->flags & PF_NO_SETAFFINITY) {
5911		retval = -EINVAL;
5912		goto out_put_task;
5913	}
5914	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5915		retval = -ENOMEM;
5916		goto out_put_task;
5917	}
5918	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5919		retval = -ENOMEM;
5920		goto out_free_cpus_allowed;
5921	}
5922	retval = -EPERM;
5923	if (!check_same_owner(p)) {
5924		rcu_read_lock();
5925		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5926			rcu_read_unlock();
5927			goto out_free_new_mask;
5928		}
5929		rcu_read_unlock();
5930	}
5931
5932	retval = security_task_setscheduler(p);
5933	if (retval)
5934		goto out_free_new_mask;
5935
5936
5937	cpuset_cpus_allowed(p, cpus_allowed);
5938	cpumask_and(new_mask, in_mask, cpus_allowed);
5939
5940	/*
5941	 * Since bandwidth control happens on root_domain basis,
5942	 * if admission test is enabled, we only admit -deadline
5943	 * tasks allowed to run on all the CPUs in the task's
5944	 * root_domain.
5945	 */
5946#ifdef CONFIG_SMP
5947	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5948		rcu_read_lock();
5949		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5950			retval = -EBUSY;
5951			rcu_read_unlock();
5952			goto out_free_new_mask;
5953		}
5954		rcu_read_unlock();
5955	}
5956#endif
5957again:
5958	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5959
5960	if (!retval) {
5961		cpuset_cpus_allowed(p, cpus_allowed);
5962		if (!cpumask_subset(new_mask, cpus_allowed)) {
5963			/*
5964			 * We must have raced with a concurrent cpuset
5965			 * update. Just reset the cpus_allowed to the
5966			 * cpuset's cpus_allowed
5967			 */
5968			cpumask_copy(new_mask, cpus_allowed);
5969			goto again;
5970		}
5971	}
5972out_free_new_mask:
5973	free_cpumask_var(new_mask);
5974out_free_cpus_allowed:
5975	free_cpumask_var(cpus_allowed);
5976out_put_task:
5977	put_task_struct(p);
5978	return retval;
5979}
5980
5981static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5982			     struct cpumask *new_mask)
5983{
5984	if (len < cpumask_size())
5985		cpumask_clear(new_mask);
5986	else if (len > cpumask_size())
5987		len = cpumask_size();
5988
5989	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5990}
5991
5992/**
5993 * sys_sched_setaffinity - set the CPU affinity of a process
5994 * @pid: pid of the process
5995 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5996 * @user_mask_ptr: user-space pointer to the new CPU mask
5997 *
5998 * Return: 0 on success. An error code otherwise.
5999 */
6000SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6001		unsigned long __user *, user_mask_ptr)
6002{
6003	cpumask_var_t new_mask;
6004	int retval;
6005
6006	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6007		return -ENOMEM;
6008
6009	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6010	if (retval == 0)
6011		retval = sched_setaffinity(pid, new_mask);
6012	free_cpumask_var(new_mask);
6013	return retval;
6014}
6015
6016long sched_getaffinity(pid_t pid, struct cpumask *mask)
6017{
6018	struct task_struct *p;
6019	unsigned long flags;
6020	int retval;
6021
6022	rcu_read_lock();
6023
6024	retval = -ESRCH;
6025	p = find_process_by_pid(pid);
6026	if (!p)
6027		goto out_unlock;
6028
6029	retval = security_task_getscheduler(p);
6030	if (retval)
6031		goto out_unlock;
6032
6033	raw_spin_lock_irqsave(&p->pi_lock, flags);
6034	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6035	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6036
6037out_unlock:
6038	rcu_read_unlock();
6039
6040	return retval;
6041}
6042
6043/**
6044 * sys_sched_getaffinity - get the CPU affinity of a process
6045 * @pid: pid of the process
6046 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6047 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6048 *
6049 * Return: size of CPU mask copied to user_mask_ptr on success. An
6050 * error code otherwise.
6051 */
6052SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6053		unsigned long __user *, user_mask_ptr)
6054{
6055	int ret;
6056	cpumask_var_t mask;
6057
6058	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6059		return -EINVAL;
6060	if (len & (sizeof(unsigned long)-1))
6061		return -EINVAL;
6062
6063	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6064		return -ENOMEM;
6065
6066	ret = sched_getaffinity(pid, mask);
6067	if (ret == 0) {
6068		unsigned int retlen = min(len, cpumask_size());
6069
6070		if (copy_to_user(user_mask_ptr, mask, retlen))
6071			ret = -EFAULT;
6072		else
6073			ret = retlen;
6074	}
6075	free_cpumask_var(mask);
6076
6077	return ret;
6078}
6079
6080/**
6081 * sys_sched_yield - yield the current processor to other threads.
6082 *
6083 * This function yields the current CPU to other tasks. If there are no
6084 * other threads running on this CPU then this function will return.
6085 *
6086 * Return: 0.
6087 */
6088static void do_sched_yield(void)
6089{
6090	struct rq_flags rf;
6091	struct rq *rq;
6092
6093	rq = this_rq_lock_irq(&rf);
 
 
6094
6095	schedstat_inc(rq->yld_count);
6096	current->sched_class->yield_task(rq);
6097
6098	/*
6099	 * Since we are going to call schedule() anyway, there's
6100	 * no need to preempt or enable interrupts:
6101	 */
6102	preempt_disable();
6103	rq_unlock(rq, &rf);
6104	sched_preempt_enable_no_resched();
6105
6106	schedule();
6107}
6108
6109SYSCALL_DEFINE0(sched_yield)
6110{
6111	do_sched_yield();
6112	return 0;
6113}
6114
6115#ifndef CONFIG_PREEMPTION
6116int __sched _cond_resched(void)
6117{
6118	if (should_resched(0)) {
6119		preempt_schedule_common();
6120		return 1;
6121	}
6122	rcu_all_qs();
6123	return 0;
6124}
6125EXPORT_SYMBOL(_cond_resched);
6126#endif
6127
6128/*
6129 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6130 * call schedule, and on return reacquire the lock.
6131 *
6132 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6133 * operations here to prevent schedule() from being called twice (once via
6134 * spin_unlock(), once by hand).
6135 */
6136int __cond_resched_lock(spinlock_t *lock)
6137{
6138	int resched = should_resched(PREEMPT_LOCK_OFFSET);
6139	int ret = 0;
6140
6141	lockdep_assert_held(lock);
6142
6143	if (spin_needbreak(lock) || resched) {
6144		spin_unlock(lock);
6145		if (resched)
6146			preempt_schedule_common();
6147		else
6148			cpu_relax();
6149		ret = 1;
6150		spin_lock(lock);
6151	}
6152	return ret;
6153}
6154EXPORT_SYMBOL(__cond_resched_lock);
6155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6156/**
6157 * yield - yield the current processor to other threads.
6158 *
6159 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6160 *
6161 * The scheduler is at all times free to pick the calling task as the most
6162 * eligible task to run, if removing the yield() call from your code breaks
6163 * it, its already broken.
6164 *
6165 * Typical broken usage is:
6166 *
6167 * while (!event)
6168 *	yield();
6169 *
6170 * where one assumes that yield() will let 'the other' process run that will
6171 * make event true. If the current task is a SCHED_FIFO task that will never
6172 * happen. Never use yield() as a progress guarantee!!
6173 *
6174 * If you want to use yield() to wait for something, use wait_event().
6175 * If you want to use yield() to be 'nice' for others, use cond_resched().
6176 * If you still want to use yield(), do not!
6177 */
6178void __sched yield(void)
6179{
6180	set_current_state(TASK_RUNNING);
6181	do_sched_yield();
6182}
6183EXPORT_SYMBOL(yield);
6184
6185/**
6186 * yield_to - yield the current processor to another thread in
6187 * your thread group, or accelerate that thread toward the
6188 * processor it's on.
6189 * @p: target task
6190 * @preempt: whether task preemption is allowed or not
6191 *
6192 * It's the caller's job to ensure that the target task struct
6193 * can't go away on us before we can do any checks.
6194 *
6195 * Return:
6196 *	true (>0) if we indeed boosted the target task.
6197 *	false (0) if we failed to boost the target.
6198 *	-ESRCH if there's no task to yield to.
6199 */
6200int __sched yield_to(struct task_struct *p, bool preempt)
6201{
6202	struct task_struct *curr = current;
6203	struct rq *rq, *p_rq;
6204	unsigned long flags;
6205	int yielded = 0;
6206
6207	local_irq_save(flags);
6208	rq = this_rq();
6209
6210again:
6211	p_rq = task_rq(p);
6212	/*
6213	 * If we're the only runnable task on the rq and target rq also
6214	 * has only one task, there's absolutely no point in yielding.
6215	 */
6216	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6217		yielded = -ESRCH;
6218		goto out_irq;
6219	}
6220
6221	double_rq_lock(rq, p_rq);
6222	if (task_rq(p) != p_rq) {
6223		double_rq_unlock(rq, p_rq);
6224		goto again;
6225	}
6226
6227	if (!curr->sched_class->yield_to_task)
6228		goto out_unlock;
6229
6230	if (curr->sched_class != p->sched_class)
6231		goto out_unlock;
6232
6233	if (task_running(p_rq, p) || p->state)
6234		goto out_unlock;
6235
6236	yielded = curr->sched_class->yield_to_task(rq, p);
6237	if (yielded) {
6238		schedstat_inc(rq->yld_count);
6239		/*
6240		 * Make p's CPU reschedule; pick_next_entity takes care of
6241		 * fairness.
6242		 */
6243		if (preempt && rq != p_rq)
6244			resched_curr(p_rq);
6245	}
6246
6247out_unlock:
6248	double_rq_unlock(rq, p_rq);
6249out_irq:
6250	local_irq_restore(flags);
6251
6252	if (yielded > 0)
6253		schedule();
6254
6255	return yielded;
6256}
6257EXPORT_SYMBOL_GPL(yield_to);
6258
6259int io_schedule_prepare(void)
6260{
6261	int old_iowait = current->in_iowait;
6262
6263	current->in_iowait = 1;
6264	blk_schedule_flush_plug(current);
6265
6266	return old_iowait;
6267}
6268
6269void io_schedule_finish(int token)
6270{
6271	current->in_iowait = token;
6272}
6273
6274/*
6275 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6276 * that process accounting knows that this is a task in IO wait state.
6277 */
6278long __sched io_schedule_timeout(long timeout)
6279{
6280	int token;
6281	long ret;
6282
6283	token = io_schedule_prepare();
6284	ret = schedule_timeout(timeout);
6285	io_schedule_finish(token);
6286
6287	return ret;
6288}
6289EXPORT_SYMBOL(io_schedule_timeout);
6290
6291void __sched io_schedule(void)
6292{
6293	int token;
6294
6295	token = io_schedule_prepare();
6296	schedule();
6297	io_schedule_finish(token);
6298}
6299EXPORT_SYMBOL(io_schedule);
6300
6301/**
6302 * sys_sched_get_priority_max - return maximum RT priority.
6303 * @policy: scheduling class.
6304 *
6305 * Return: On success, this syscall returns the maximum
6306 * rt_priority that can be used by a given scheduling class.
6307 * On failure, a negative error code is returned.
6308 */
6309SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6310{
6311	int ret = -EINVAL;
6312
6313	switch (policy) {
6314	case SCHED_FIFO:
6315	case SCHED_RR:
6316		ret = MAX_USER_RT_PRIO-1;
6317		break;
6318	case SCHED_DEADLINE:
6319	case SCHED_NORMAL:
6320	case SCHED_BATCH:
6321	case SCHED_IDLE:
6322		ret = 0;
6323		break;
6324	}
6325	return ret;
6326}
6327
6328/**
6329 * sys_sched_get_priority_min - return minimum RT priority.
6330 * @policy: scheduling class.
6331 *
6332 * Return: On success, this syscall returns the minimum
6333 * rt_priority that can be used by a given scheduling class.
6334 * On failure, a negative error code is returned.
6335 */
6336SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6337{
6338	int ret = -EINVAL;
6339
6340	switch (policy) {
6341	case SCHED_FIFO:
6342	case SCHED_RR:
6343		ret = 1;
6344		break;
6345	case SCHED_DEADLINE:
6346	case SCHED_NORMAL:
6347	case SCHED_BATCH:
6348	case SCHED_IDLE:
6349		ret = 0;
6350	}
6351	return ret;
6352}
6353
6354static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6355{
6356	struct task_struct *p;
6357	unsigned int time_slice;
6358	struct rq_flags rf;
6359	struct rq *rq;
6360	int retval;
6361
6362	if (pid < 0)
6363		return -EINVAL;
6364
6365	retval = -ESRCH;
6366	rcu_read_lock();
6367	p = find_process_by_pid(pid);
6368	if (!p)
6369		goto out_unlock;
6370
6371	retval = security_task_getscheduler(p);
6372	if (retval)
6373		goto out_unlock;
6374
6375	rq = task_rq_lock(p, &rf);
6376	time_slice = 0;
6377	if (p->sched_class->get_rr_interval)
6378		time_slice = p->sched_class->get_rr_interval(rq, p);
6379	task_rq_unlock(rq, p, &rf);
6380
6381	rcu_read_unlock();
6382	jiffies_to_timespec64(time_slice, t);
6383	return 0;
6384
6385out_unlock:
6386	rcu_read_unlock();
6387	return retval;
6388}
6389
6390/**
6391 * sys_sched_rr_get_interval - return the default timeslice of a process.
6392 * @pid: pid of the process.
6393 * @interval: userspace pointer to the timeslice value.
6394 *
6395 * this syscall writes the default timeslice value of a given process
6396 * into the user-space timespec buffer. A value of '0' means infinity.
6397 *
6398 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6399 * an error code.
6400 */
6401SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6402		struct __kernel_timespec __user *, interval)
6403{
6404	struct timespec64 t;
6405	int retval = sched_rr_get_interval(pid, &t);
6406
6407	if (retval == 0)
6408		retval = put_timespec64(&t, interval);
6409
6410	return retval;
6411}
6412
6413#ifdef CONFIG_COMPAT_32BIT_TIME
6414SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6415		struct old_timespec32 __user *, interval)
 
6416{
6417	struct timespec64 t;
6418	int retval = sched_rr_get_interval(pid, &t);
6419
6420	if (retval == 0)
6421		retval = put_old_timespec32(&t, interval);
6422	return retval;
6423}
6424#endif
6425
6426void sched_show_task(struct task_struct *p)
6427{
6428	unsigned long free = 0;
6429	int ppid;
6430
6431	if (!try_get_task_stack(p))
6432		return;
6433
6434	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6435
6436	if (p->state == TASK_RUNNING)
6437		pr_cont("  running task    ");
6438#ifdef CONFIG_DEBUG_STACK_USAGE
6439	free = stack_not_used(p);
6440#endif
6441	ppid = 0;
6442	rcu_read_lock();
6443	if (pid_alive(p))
6444		ppid = task_pid_nr(rcu_dereference(p->real_parent));
6445	rcu_read_unlock();
6446	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6447		free, task_pid_nr(p), ppid,
6448		(unsigned long)task_thread_info(p)->flags);
6449
6450	print_worker_info(KERN_INFO, p);
6451	show_stack(p, NULL, KERN_INFO);
6452	put_task_stack(p);
6453}
6454EXPORT_SYMBOL_GPL(sched_show_task);
6455
6456static inline bool
6457state_filter_match(unsigned long state_filter, struct task_struct *p)
6458{
6459	/* no filter, everything matches */
6460	if (!state_filter)
6461		return true;
6462
6463	/* filter, but doesn't match */
6464	if (!(p->state & state_filter))
6465		return false;
6466
6467	/*
6468	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6469	 * TASK_KILLABLE).
6470	 */
6471	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6472		return false;
6473
6474	return true;
6475}
6476
6477
6478void show_state_filter(unsigned long state_filter)
6479{
6480	struct task_struct *g, *p;
6481
 
 
 
 
 
 
 
6482	rcu_read_lock();
6483	for_each_process_thread(g, p) {
6484		/*
6485		 * reset the NMI-timeout, listing all files on a slow
6486		 * console might take a lot of time:
6487		 * Also, reset softlockup watchdogs on all CPUs, because
6488		 * another CPU might be blocked waiting for us to process
6489		 * an IPI.
6490		 */
6491		touch_nmi_watchdog();
6492		touch_all_softlockup_watchdogs();
6493		if (state_filter_match(state_filter, p))
6494			sched_show_task(p);
6495	}
6496
6497#ifdef CONFIG_SCHED_DEBUG
6498	if (!state_filter)
6499		sysrq_sched_debug_show();
6500#endif
6501	rcu_read_unlock();
6502	/*
6503	 * Only show locks if all tasks are dumped:
6504	 */
6505	if (!state_filter)
6506		debug_show_all_locks();
6507}
6508
6509/**
6510 * init_idle - set up an idle thread for a given CPU
6511 * @idle: task in question
6512 * @cpu: CPU the idle task belongs to
6513 *
6514 * NOTE: this function does not set the idle thread's NEED_RESCHED
6515 * flag, to make booting more robust.
6516 */
6517void init_idle(struct task_struct *idle, int cpu)
6518{
6519	struct rq *rq = cpu_rq(cpu);
6520	unsigned long flags;
6521
6522	__sched_fork(0, idle);
6523
6524	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6525	raw_spin_lock(&rq->lock);
6526
 
6527	idle->state = TASK_RUNNING;
6528	idle->se.exec_start = sched_clock();
6529	idle->flags |= PF_IDLE;
6530
6531	scs_task_reset(idle);
6532	kasan_unpoison_task_stack(idle);
6533
6534#ifdef CONFIG_SMP
6535	/*
6536	 * Its possible that init_idle() gets called multiple times on a task,
6537	 * in that case do_set_cpus_allowed() will not do the right thing.
6538	 *
6539	 * And since this is boot we can forgo the serialization.
6540	 */
6541	set_cpus_allowed_common(idle, cpumask_of(cpu));
6542#endif
6543	/*
6544	 * We're having a chicken and egg problem, even though we are
6545	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6546	 * lockdep check in task_group() will fail.
6547	 *
6548	 * Similar case to sched_fork(). / Alternatively we could
6549	 * use task_rq_lock() here and obtain the other rq->lock.
6550	 *
6551	 * Silence PROVE_RCU
6552	 */
6553	rcu_read_lock();
6554	__set_task_cpu(idle, cpu);
6555	rcu_read_unlock();
6556
6557	rq->idle = idle;
6558	rcu_assign_pointer(rq->curr, idle);
6559	idle->on_rq = TASK_ON_RQ_QUEUED;
6560#ifdef CONFIG_SMP
6561	idle->on_cpu = 1;
6562#endif
6563	raw_spin_unlock(&rq->lock);
6564	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6565
6566	/* Set the preempt count _outside_ the spinlocks! */
6567	init_idle_preempt_count(idle, cpu);
6568
6569	/*
6570	 * The idle tasks have their own, simple scheduling class:
6571	 */
6572	idle->sched_class = &idle_sched_class;
6573	ftrace_graph_init_idle_task(idle, cpu);
6574	vtime_init_idle(idle, cpu);
6575#ifdef CONFIG_SMP
6576	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6577#endif
6578}
6579
6580#ifdef CONFIG_SMP
6581
6582int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6583			      const struct cpumask *trial)
6584{
6585	int ret = 1;
6586
6587	if (!cpumask_weight(cur))
6588		return ret;
6589
6590	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6591
6592	return ret;
6593}
6594
6595int task_can_attach(struct task_struct *p,
6596		    const struct cpumask *cs_cpus_allowed)
6597{
6598	int ret = 0;
6599
6600	/*
6601	 * Kthreads which disallow setaffinity shouldn't be moved
6602	 * to a new cpuset; we don't want to change their CPU
6603	 * affinity and isolating such threads by their set of
6604	 * allowed nodes is unnecessary.  Thus, cpusets are not
6605	 * applicable for such threads.  This prevents checking for
6606	 * success of set_cpus_allowed_ptr() on all attached tasks
6607	 * before cpus_mask may be changed.
6608	 */
6609	if (p->flags & PF_NO_SETAFFINITY) {
6610		ret = -EINVAL;
6611		goto out;
6612	}
6613
6614	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6615					      cs_cpus_allowed))
6616		ret = dl_task_can_attach(p, cs_cpus_allowed);
6617
6618out:
6619	return ret;
6620}
6621
6622bool sched_smp_initialized __read_mostly;
6623
6624#ifdef CONFIG_NUMA_BALANCING
6625/* Migrate current task p to target_cpu */
6626int migrate_task_to(struct task_struct *p, int target_cpu)
6627{
6628	struct migration_arg arg = { p, target_cpu };
6629	int curr_cpu = task_cpu(p);
6630
6631	if (curr_cpu == target_cpu)
6632		return 0;
6633
6634	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6635		return -EINVAL;
6636
6637	/* TODO: This is not properly updating schedstats */
6638
6639	trace_sched_move_numa(p, curr_cpu, target_cpu);
6640	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6641}
6642
6643/*
6644 * Requeue a task on a given node and accurately track the number of NUMA
6645 * tasks on the runqueues
6646 */
6647void sched_setnuma(struct task_struct *p, int nid)
6648{
6649	bool queued, running;
6650	struct rq_flags rf;
6651	struct rq *rq;
6652
6653	rq = task_rq_lock(p, &rf);
6654	queued = task_on_rq_queued(p);
6655	running = task_current(rq, p);
6656
6657	if (queued)
6658		dequeue_task(rq, p, DEQUEUE_SAVE);
6659	if (running)
6660		put_prev_task(rq, p);
6661
6662	p->numa_preferred_nid = nid;
6663
6664	if (queued)
6665		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6666	if (running)
6667		set_next_task(rq, p);
6668	task_rq_unlock(rq, p, &rf);
6669}
6670#endif /* CONFIG_NUMA_BALANCING */
6671
6672#ifdef CONFIG_HOTPLUG_CPU
6673/*
6674 * Ensure that the idle task is using init_mm right before its CPU goes
6675 * offline.
6676 */
6677void idle_task_exit(void)
6678{
6679	struct mm_struct *mm = current->active_mm;
6680
6681	BUG_ON(cpu_online(smp_processor_id()));
6682	BUG_ON(current != this_rq()->idle);
6683
6684	if (mm != &init_mm) {
6685		switch_mm(mm, &init_mm, current);
 
6686		finish_arch_post_lock_switch();
6687	}
6688
6689	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6690}
6691
6692/*
6693 * Since this CPU is going 'away' for a while, fold any nr_active delta
6694 * we might have. Assumes we're called after migrate_tasks() so that the
6695 * nr_active count is stable. We need to take the teardown thread which
6696 * is calling this into account, so we hand in adjust = 1 to the load
6697 * calculation.
6698 *
6699 * Also see the comment "Global load-average calculations".
6700 */
6701static void calc_load_migrate(struct rq *rq)
6702{
6703	long delta = calc_load_fold_active(rq, 1);
6704	if (delta)
6705		atomic_long_add(delta, &calc_load_tasks);
6706}
6707
6708static struct task_struct *__pick_migrate_task(struct rq *rq)
6709{
6710	const struct sched_class *class;
6711	struct task_struct *next;
6712
6713	for_each_class(class) {
6714		next = class->pick_next_task(rq);
6715		if (next) {
6716			next->sched_class->put_prev_task(rq, next);
6717			return next;
6718		}
6719	}
6720
6721	/* The idle class should always have a runnable task */
6722	BUG();
6723}
 
 
 
 
6724
6725/*
6726 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6727 * try_to_wake_up()->select_task_rq().
6728 *
6729 * Called with rq->lock held even though we'er in stop_machine() and
6730 * there's no concurrency possible, we hold the required locks anyway
6731 * because of lock validation efforts.
6732 */
6733static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6734{
6735	struct rq *rq = dead_rq;
6736	struct task_struct *next, *stop = rq->stop;
6737	struct rq_flags orf = *rf;
6738	int dest_cpu;
6739
6740	/*
6741	 * Fudge the rq selection such that the below task selection loop
6742	 * doesn't get stuck on the currently eligible stop task.
6743	 *
6744	 * We're currently inside stop_machine() and the rq is either stuck
6745	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6746	 * either way we should never end up calling schedule() until we're
6747	 * done here.
6748	 */
6749	rq->stop = NULL;
6750
6751	/*
6752	 * put_prev_task() and pick_next_task() sched
6753	 * class method both need to have an up-to-date
6754	 * value of rq->clock[_task]
6755	 */
6756	update_rq_clock(rq);
6757
6758	for (;;) {
6759		/*
6760		 * There's this thread running, bail when that's the only
6761		 * remaining thread:
6762		 */
6763		if (rq->nr_running == 1)
6764			break;
6765
6766		next = __pick_migrate_task(rq);
 
 
 
 
 
6767
6768		/*
6769		 * Rules for changing task_struct::cpus_mask are holding
6770		 * both pi_lock and rq->lock, such that holding either
6771		 * stabilizes the mask.
6772		 *
6773		 * Drop rq->lock is not quite as disastrous as it usually is
6774		 * because !cpu_active at this point, which means load-balance
6775		 * will not interfere. Also, stop-machine.
6776		 */
6777		rq_unlock(rq, rf);
6778		raw_spin_lock(&next->pi_lock);
6779		rq_relock(rq, rf);
6780
6781		/*
6782		 * Since we're inside stop-machine, _nothing_ should have
6783		 * changed the task, WARN if weird stuff happened, because in
6784		 * that case the above rq->lock drop is a fail too.
6785		 */
6786		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6787			raw_spin_unlock(&next->pi_lock);
6788			continue;
6789		}
6790
6791		/* Find suitable destination for @next, with force if needed. */
6792		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6793		rq = __migrate_task(rq, rf, next, dest_cpu);
6794		if (rq != dead_rq) {
6795			rq_unlock(rq, rf);
6796			rq = dead_rq;
6797			*rf = orf;
6798			rq_relock(rq, rf);
6799		}
6800		raw_spin_unlock(&next->pi_lock);
6801	}
6802
6803	rq->stop = stop;
6804}
6805#endif /* CONFIG_HOTPLUG_CPU */
6806
6807void set_rq_online(struct rq *rq)
6808{
6809	if (!rq->online) {
6810		const struct sched_class *class;
6811
6812		cpumask_set_cpu(rq->cpu, rq->rd->online);
6813		rq->online = 1;
6814
6815		for_each_class(class) {
6816			if (class->rq_online)
6817				class->rq_online(rq);
6818		}
6819	}
6820}
6821
6822void set_rq_offline(struct rq *rq)
6823{
6824	if (rq->online) {
6825		const struct sched_class *class;
6826
6827		for_each_class(class) {
6828			if (class->rq_offline)
6829				class->rq_offline(rq);
6830		}
6831
6832		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6833		rq->online = 0;
6834	}
6835}
6836
 
 
 
 
 
 
 
6837/*
6838 * used to mark begin/end of suspend/resume:
6839 */
6840static int num_cpus_frozen;
6841
6842/*
6843 * Update cpusets according to cpu_active mask.  If cpusets are
6844 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6845 * around partition_sched_domains().
6846 *
6847 * If we come here as part of a suspend/resume, don't touch cpusets because we
6848 * want to restore it back to its original state upon resume anyway.
6849 */
6850static void cpuset_cpu_active(void)
6851{
6852	if (cpuhp_tasks_frozen) {
6853		/*
6854		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6855		 * resume sequence. As long as this is not the last online
6856		 * operation in the resume sequence, just build a single sched
6857		 * domain, ignoring cpusets.
6858		 */
6859		partition_sched_domains(1, NULL, NULL);
6860		if (--num_cpus_frozen)
6861			return;
6862		/*
6863		 * This is the last CPU online operation. So fall through and
6864		 * restore the original sched domains by considering the
6865		 * cpuset configurations.
6866		 */
6867		cpuset_force_rebuild();
6868	}
6869	cpuset_update_active_cpus();
6870}
6871
6872static int cpuset_cpu_inactive(unsigned int cpu)
6873{
6874	if (!cpuhp_tasks_frozen) {
6875		if (dl_cpu_busy(cpu))
6876			return -EBUSY;
6877		cpuset_update_active_cpus();
6878	} else {
6879		num_cpus_frozen++;
6880		partition_sched_domains(1, NULL, NULL);
6881	}
6882	return 0;
6883}
6884
6885int sched_cpu_activate(unsigned int cpu)
6886{
6887	struct rq *rq = cpu_rq(cpu);
6888	struct rq_flags rf;
6889
6890#ifdef CONFIG_SCHED_SMT
6891	/*
6892	 * When going up, increment the number of cores with SMT present.
6893	 */
6894	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6895		static_branch_inc_cpuslocked(&sched_smt_present);
6896#endif
6897	set_cpu_active(cpu, true);
6898
6899	if (sched_smp_initialized) {
6900		sched_domains_numa_masks_set(cpu);
6901		cpuset_cpu_active();
6902	}
6903
6904	/*
6905	 * Put the rq online, if not already. This happens:
6906	 *
6907	 * 1) In the early boot process, because we build the real domains
6908	 *    after all CPUs have been brought up.
6909	 *
6910	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6911	 *    domains.
6912	 */
6913	rq_lock_irqsave(rq, &rf);
6914	if (rq->rd) {
6915		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6916		set_rq_online(rq);
6917	}
6918	rq_unlock_irqrestore(rq, &rf);
6919
 
 
6920	return 0;
6921}
6922
6923int sched_cpu_deactivate(unsigned int cpu)
6924{
6925	int ret;
6926
6927	set_cpu_active(cpu, false);
6928	/*
6929	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6930	 * users of this state to go away such that all new such users will
6931	 * observe it.
6932	 *
6933	 * Do sync before park smpboot threads to take care the rcu boost case.
6934	 */
6935	synchronize_rcu();
6936
6937#ifdef CONFIG_SCHED_SMT
6938	/*
6939	 * When going down, decrement the number of cores with SMT present.
6940	 */
6941	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6942		static_branch_dec_cpuslocked(&sched_smt_present);
6943#endif
6944
6945	if (!sched_smp_initialized)
6946		return 0;
6947
6948	ret = cpuset_cpu_inactive(cpu);
6949	if (ret) {
6950		set_cpu_active(cpu, true);
6951		return ret;
6952	}
6953	sched_domains_numa_masks_clear(cpu);
6954	return 0;
6955}
6956
6957static void sched_rq_cpu_starting(unsigned int cpu)
6958{
6959	struct rq *rq = cpu_rq(cpu);
6960
6961	rq->calc_load_update = calc_load_update;
6962	update_max_interval();
6963}
6964
6965int sched_cpu_starting(unsigned int cpu)
6966{
 
6967	sched_rq_cpu_starting(cpu);
6968	sched_tick_start(cpu);
6969	return 0;
6970}
6971
6972#ifdef CONFIG_HOTPLUG_CPU
6973int sched_cpu_dying(unsigned int cpu)
6974{
6975	struct rq *rq = cpu_rq(cpu);
6976	struct rq_flags rf;
6977
6978	/* Handle pending wakeups and then migrate everything off */
 
6979	sched_tick_stop(cpu);
6980
6981	rq_lock_irqsave(rq, &rf);
6982	if (rq->rd) {
6983		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6984		set_rq_offline(rq);
6985	}
6986	migrate_tasks(rq, &rf);
6987	BUG_ON(rq->nr_running != 1);
6988	rq_unlock_irqrestore(rq, &rf);
6989
6990	calc_load_migrate(rq);
6991	update_max_interval();
6992	nohz_balance_exit_idle(rq);
6993	hrtick_clear(rq);
6994	return 0;
6995}
6996#endif
6997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6998void __init sched_init_smp(void)
6999{
7000	sched_init_numa();
7001
7002	/*
7003	 * There's no userspace yet to cause hotplug operations; hence all the
7004	 * CPU masks are stable and all blatant races in the below code cannot
7005	 * happen.
7006	 */
7007	mutex_lock(&sched_domains_mutex);
7008	sched_init_domains(cpu_active_mask);
7009	mutex_unlock(&sched_domains_mutex);
7010
7011	/* Move init over to a non-isolated CPU */
7012	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7013		BUG();
7014	sched_init_granularity();
7015
7016	init_sched_rt_class();
7017	init_sched_dl_class();
7018
 
 
7019	sched_smp_initialized = true;
7020}
7021
7022static int __init migration_init(void)
7023{
7024	sched_cpu_starting(smp_processor_id());
7025	return 0;
7026}
7027early_initcall(migration_init);
7028
7029#else
7030void __init sched_init_smp(void)
7031{
7032	sched_init_granularity();
7033}
7034#endif /* CONFIG_SMP */
7035
7036int in_sched_functions(unsigned long addr)
7037{
7038	return in_lock_functions(addr) ||
7039		(addr >= (unsigned long)__sched_text_start
7040		&& addr < (unsigned long)__sched_text_end);
7041}
7042
7043#ifdef CONFIG_CGROUP_SCHED
7044/*
7045 * Default task group.
7046 * Every task in system belongs to this group at bootup.
7047 */
7048struct task_group root_task_group;
7049LIST_HEAD(task_groups);
7050
7051/* Cacheline aligned slab cache for task_group */
7052static struct kmem_cache *task_group_cache __read_mostly;
7053#endif
7054
7055DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7056DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7057
7058void __init sched_init(void)
7059{
7060	unsigned long ptr = 0;
7061	int i;
7062
7063	/* Make sure the linker didn't screw up */
7064	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7065	       &fair_sched_class + 1 != &rt_sched_class ||
7066	       &rt_sched_class + 1   != &dl_sched_class);
7067#ifdef CONFIG_SMP
7068	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7069#endif
7070
 
7071	wait_bit_init();
7072
7073#ifdef CONFIG_FAIR_GROUP_SCHED
7074	ptr += 2 * nr_cpu_ids * sizeof(void **);
7075#endif
7076#ifdef CONFIG_RT_GROUP_SCHED
7077	ptr += 2 * nr_cpu_ids * sizeof(void **);
7078#endif
7079	if (ptr) {
7080		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7081
7082#ifdef CONFIG_FAIR_GROUP_SCHED
7083		root_task_group.se = (struct sched_entity **)ptr;
7084		ptr += nr_cpu_ids * sizeof(void **);
7085
7086		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7087		ptr += nr_cpu_ids * sizeof(void **);
7088
7089		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7090		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7091#endif /* CONFIG_FAIR_GROUP_SCHED */
7092#ifdef CONFIG_RT_GROUP_SCHED
7093		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7094		ptr += nr_cpu_ids * sizeof(void **);
7095
7096		root_task_group.rt_rq = (struct rt_rq **)ptr;
7097		ptr += nr_cpu_ids * sizeof(void **);
7098
7099#endif /* CONFIG_RT_GROUP_SCHED */
7100	}
7101#ifdef CONFIG_CPUMASK_OFFSTACK
7102	for_each_possible_cpu(i) {
7103		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7104			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7105		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7106			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7107	}
7108#endif /* CONFIG_CPUMASK_OFFSTACK */
7109
7110	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7111	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7112
7113#ifdef CONFIG_SMP
7114	init_defrootdomain();
7115#endif
7116
7117#ifdef CONFIG_RT_GROUP_SCHED
7118	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7119			global_rt_period(), global_rt_runtime());
7120#endif /* CONFIG_RT_GROUP_SCHED */
7121
7122#ifdef CONFIG_CGROUP_SCHED
7123	task_group_cache = KMEM_CACHE(task_group, 0);
7124
7125	list_add(&root_task_group.list, &task_groups);
7126	INIT_LIST_HEAD(&root_task_group.children);
7127	INIT_LIST_HEAD(&root_task_group.siblings);
7128	autogroup_init(&init_task);
7129#endif /* CONFIG_CGROUP_SCHED */
7130
7131	for_each_possible_cpu(i) {
7132		struct rq *rq;
7133
7134		rq = cpu_rq(i);
7135		raw_spin_lock_init(&rq->lock);
7136		rq->nr_running = 0;
7137		rq->calc_load_active = 0;
7138		rq->calc_load_update = jiffies + LOAD_FREQ;
7139		init_cfs_rq(&rq->cfs);
7140		init_rt_rq(&rq->rt);
7141		init_dl_rq(&rq->dl);
7142#ifdef CONFIG_FAIR_GROUP_SCHED
 
7143		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7144		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7145		/*
7146		 * How much CPU bandwidth does root_task_group get?
7147		 *
7148		 * In case of task-groups formed thr' the cgroup filesystem, it
7149		 * gets 100% of the CPU resources in the system. This overall
7150		 * system CPU resource is divided among the tasks of
7151		 * root_task_group and its child task-groups in a fair manner,
7152		 * based on each entity's (task or task-group's) weight
7153		 * (se->load.weight).
7154		 *
7155		 * In other words, if root_task_group has 10 tasks of weight
7156		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7157		 * then A0's share of the CPU resource is:
7158		 *
7159		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7160		 *
7161		 * We achieve this by letting root_task_group's tasks sit
7162		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7163		 */
 
7164		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7165#endif /* CONFIG_FAIR_GROUP_SCHED */
7166
7167		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7168#ifdef CONFIG_RT_GROUP_SCHED
7169		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7170#endif
 
 
 
 
7171#ifdef CONFIG_SMP
7172		rq->sd = NULL;
7173		rq->rd = NULL;
7174		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7175		rq->balance_callback = NULL;
7176		rq->active_balance = 0;
7177		rq->next_balance = jiffies;
7178		rq->push_cpu = 0;
7179		rq->cpu = i;
7180		rq->online = 0;
7181		rq->idle_stamp = 0;
7182		rq->avg_idle = 2*sysctl_sched_migration_cost;
7183		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7184
7185		INIT_LIST_HEAD(&rq->cfs_tasks);
7186
7187		rq_attach_root(rq, &def_root_domain);
7188#ifdef CONFIG_NO_HZ_COMMON
 
7189		rq->last_blocked_load_update_tick = jiffies;
7190		atomic_set(&rq->nohz_flags, 0);
7191
7192		rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7193#endif
7194#endif /* CONFIG_SMP */
7195		hrtick_rq_init(rq);
7196		atomic_set(&rq->nr_iowait, 0);
7197	}
7198
7199	set_load_weight(&init_task, false);
7200
7201	/*
7202	 * The boot idle thread does lazy MMU switching as well:
7203	 */
7204	mmgrab(&init_mm);
7205	enter_lazy_tlb(&init_mm, current);
7206
7207	/*
7208	 * Make us the idle thread. Technically, schedule() should not be
7209	 * called from this thread, however somewhere below it might be,
7210	 * but because we are the idle thread, we just pick up running again
7211	 * when this runqueue becomes "idle".
7212	 */
7213	init_idle(current, smp_processor_id());
7214
7215	calc_load_update = jiffies + LOAD_FREQ;
7216
7217#ifdef CONFIG_SMP
7218	idle_thread_set_boot_cpu();
 
7219#endif
7220	init_sched_fair_class();
7221
7222	init_schedstats();
7223
7224	psi_init();
7225
7226	init_uclamp();
7227
7228	scheduler_running = 1;
7229}
7230
7231#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7232static inline int preempt_count_equals(int preempt_offset)
7233{
7234	int nested = preempt_count() + rcu_preempt_depth();
7235
7236	return (nested == preempt_offset);
7237}
7238
7239void __might_sleep(const char *file, int line, int preempt_offset)
7240{
7241	/*
7242	 * Blocking primitives will set (and therefore destroy) current->state,
7243	 * since we will exit with TASK_RUNNING make sure we enter with it,
7244	 * otherwise we will destroy state.
7245	 */
7246	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7247			"do not call blocking ops when !TASK_RUNNING; "
7248			"state=%lx set at [<%p>] %pS\n",
7249			current->state,
7250			(void *)current->task_state_change,
7251			(void *)current->task_state_change);
7252
7253	___might_sleep(file, line, preempt_offset);
7254}
7255EXPORT_SYMBOL(__might_sleep);
7256
7257void ___might_sleep(const char *file, int line, int preempt_offset)
7258{
7259	/* Ratelimiting timestamp: */
7260	static unsigned long prev_jiffy;
7261
7262	unsigned long preempt_disable_ip;
7263
7264	/* WARN_ON_ONCE() by default, no rate limit required: */
7265	rcu_sleep_check();
7266
7267	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7268	     !is_idle_task(current) && !current->non_block_count) ||
7269	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7270	    oops_in_progress)
7271		return;
7272
7273	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7274		return;
7275	prev_jiffy = jiffies;
7276
7277	/* Save this before calling printk(), since that will clobber it: */
7278	preempt_disable_ip = get_preempt_disable_ip(current);
7279
7280	printk(KERN_ERR
7281		"BUG: sleeping function called from invalid context at %s:%d\n",
7282			file, line);
7283	printk(KERN_ERR
7284		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7285			in_atomic(), irqs_disabled(), current->non_block_count,
7286			current->pid, current->comm);
7287
7288	if (task_stack_end_corrupted(current))
7289		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7290
7291	debug_show_held_locks(current);
7292	if (irqs_disabled())
7293		print_irqtrace_events(current);
7294	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7295	    && !preempt_count_equals(preempt_offset)) {
7296		pr_err("Preemption disabled at:");
7297		print_ip_sym(KERN_ERR, preempt_disable_ip);
 
7298	}
7299	dump_stack();
7300	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7301}
7302EXPORT_SYMBOL(___might_sleep);
7303
7304void __cant_sleep(const char *file, int line, int preempt_offset)
7305{
7306	static unsigned long prev_jiffy;
7307
7308	if (irqs_disabled())
7309		return;
7310
7311	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7312		return;
7313
7314	if (preempt_count() > preempt_offset)
7315		return;
7316
7317	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7318		return;
7319	prev_jiffy = jiffies;
7320
7321	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7322	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7323			in_atomic(), irqs_disabled(),
7324			current->pid, current->comm);
7325
7326	debug_show_held_locks(current);
7327	dump_stack();
7328	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7329}
7330EXPORT_SYMBOL_GPL(__cant_sleep);
7331#endif
7332
7333#ifdef CONFIG_MAGIC_SYSRQ
7334void normalize_rt_tasks(void)
7335{
7336	struct task_struct *g, *p;
7337	struct sched_attr attr = {
7338		.sched_policy = SCHED_NORMAL,
7339	};
7340
7341	read_lock(&tasklist_lock);
7342	for_each_process_thread(g, p) {
7343		/*
7344		 * Only normalize user tasks:
7345		 */
7346		if (p->flags & PF_KTHREAD)
7347			continue;
7348
7349		p->se.exec_start = 0;
7350		schedstat_set(p->se.statistics.wait_start,  0);
7351		schedstat_set(p->se.statistics.sleep_start, 0);
7352		schedstat_set(p->se.statistics.block_start, 0);
7353
7354		if (!dl_task(p) && !rt_task(p)) {
7355			/*
7356			 * Renice negative nice level userspace
7357			 * tasks back to 0:
7358			 */
7359			if (task_nice(p) < 0)
7360				set_user_nice(p, 0);
7361			continue;
7362		}
7363
7364		__sched_setscheduler(p, &attr, false, false);
7365	}
7366	read_unlock(&tasklist_lock);
7367}
7368
7369#endif /* CONFIG_MAGIC_SYSRQ */
7370
7371#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7372/*
7373 * These functions are only useful for the IA64 MCA handling, or kdb.
7374 *
7375 * They can only be called when the whole system has been
7376 * stopped - every CPU needs to be quiescent, and no scheduling
7377 * activity can take place. Using them for anything else would
7378 * be a serious bug, and as a result, they aren't even visible
7379 * under any other configuration.
7380 */
7381
7382/**
7383 * curr_task - return the current task for a given CPU.
7384 * @cpu: the processor in question.
7385 *
7386 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7387 *
7388 * Return: The current task for @cpu.
7389 */
7390struct task_struct *curr_task(int cpu)
7391{
7392	return cpu_curr(cpu);
7393}
7394
7395#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7396
7397#ifdef CONFIG_IA64
7398/**
7399 * ia64_set_curr_task - set the current task for a given CPU.
7400 * @cpu: the processor in question.
7401 * @p: the task pointer to set.
7402 *
7403 * Description: This function must only be used when non-maskable interrupts
7404 * are serviced on a separate stack. It allows the architecture to switch the
7405 * notion of the current task on a CPU in a non-blocking manner. This function
7406 * must be called with all CPU's synchronized, and interrupts disabled, the
7407 * and caller must save the original value of the current task (see
7408 * curr_task() above) and restore that value before reenabling interrupts and
7409 * re-starting the system.
7410 *
7411 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7412 */
7413void ia64_set_curr_task(int cpu, struct task_struct *p)
7414{
7415	cpu_curr(cpu) = p;
7416}
7417
7418#endif
7419
7420#ifdef CONFIG_CGROUP_SCHED
7421/* task_group_lock serializes the addition/removal of task groups */
7422static DEFINE_SPINLOCK(task_group_lock);
7423
7424static inline void alloc_uclamp_sched_group(struct task_group *tg,
7425					    struct task_group *parent)
7426{
7427#ifdef CONFIG_UCLAMP_TASK_GROUP
7428	enum uclamp_id clamp_id;
7429
7430	for_each_clamp_id(clamp_id) {
7431		uclamp_se_set(&tg->uclamp_req[clamp_id],
7432			      uclamp_none(clamp_id), false);
7433		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7434	}
7435#endif
7436}
7437
7438static void sched_free_group(struct task_group *tg)
7439{
7440	free_fair_sched_group(tg);
7441	free_rt_sched_group(tg);
7442	autogroup_free(tg);
7443	kmem_cache_free(task_group_cache, tg);
7444}
7445
7446/* allocate runqueue etc for a new task group */
7447struct task_group *sched_create_group(struct task_group *parent)
7448{
7449	struct task_group *tg;
7450
7451	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7452	if (!tg)
7453		return ERR_PTR(-ENOMEM);
7454
7455	if (!alloc_fair_sched_group(tg, parent))
7456		goto err;
7457
7458	if (!alloc_rt_sched_group(tg, parent))
7459		goto err;
7460
7461	alloc_uclamp_sched_group(tg, parent);
7462
7463	return tg;
7464
7465err:
7466	sched_free_group(tg);
7467	return ERR_PTR(-ENOMEM);
7468}
7469
7470void sched_online_group(struct task_group *tg, struct task_group *parent)
7471{
7472	unsigned long flags;
7473
7474	spin_lock_irqsave(&task_group_lock, flags);
7475	list_add_rcu(&tg->list, &task_groups);
7476
7477	/* Root should already exist: */
7478	WARN_ON(!parent);
7479
7480	tg->parent = parent;
7481	INIT_LIST_HEAD(&tg->children);
7482	list_add_rcu(&tg->siblings, &parent->children);
7483	spin_unlock_irqrestore(&task_group_lock, flags);
7484
7485	online_fair_sched_group(tg);
7486}
7487
7488/* rcu callback to free various structures associated with a task group */
7489static void sched_free_group_rcu(struct rcu_head *rhp)
7490{
7491	/* Now it should be safe to free those cfs_rqs: */
7492	sched_free_group(container_of(rhp, struct task_group, rcu));
7493}
7494
7495void sched_destroy_group(struct task_group *tg)
7496{
7497	/* Wait for possible concurrent references to cfs_rqs complete: */
7498	call_rcu(&tg->rcu, sched_free_group_rcu);
7499}
7500
7501void sched_offline_group(struct task_group *tg)
7502{
7503	unsigned long flags;
7504
7505	/* End participation in shares distribution: */
7506	unregister_fair_sched_group(tg);
7507
7508	spin_lock_irqsave(&task_group_lock, flags);
7509	list_del_rcu(&tg->list);
7510	list_del_rcu(&tg->siblings);
7511	spin_unlock_irqrestore(&task_group_lock, flags);
7512}
7513
7514static void sched_change_group(struct task_struct *tsk, int type)
7515{
7516	struct task_group *tg;
7517
7518	/*
7519	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7520	 * which is pointless here. Thus, we pass "true" to task_css_check()
7521	 * to prevent lockdep warnings.
7522	 */
7523	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7524			  struct task_group, css);
7525	tg = autogroup_task_group(tsk, tg);
7526	tsk->sched_task_group = tg;
7527
7528#ifdef CONFIG_FAIR_GROUP_SCHED
7529	if (tsk->sched_class->task_change_group)
7530		tsk->sched_class->task_change_group(tsk, type);
7531	else
7532#endif
7533		set_task_rq(tsk, task_cpu(tsk));
7534}
7535
7536/*
7537 * Change task's runqueue when it moves between groups.
7538 *
7539 * The caller of this function should have put the task in its new group by
7540 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7541 * its new group.
7542 */
7543void sched_move_task(struct task_struct *tsk)
7544{
7545	int queued, running, queue_flags =
7546		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7547	struct rq_flags rf;
7548	struct rq *rq;
7549
7550	rq = task_rq_lock(tsk, &rf);
7551	update_rq_clock(rq);
7552
7553	running = task_current(rq, tsk);
7554	queued = task_on_rq_queued(tsk);
7555
7556	if (queued)
7557		dequeue_task(rq, tsk, queue_flags);
7558	if (running)
7559		put_prev_task(rq, tsk);
7560
7561	sched_change_group(tsk, TASK_MOVE_GROUP);
7562
7563	if (queued)
7564		enqueue_task(rq, tsk, queue_flags);
7565	if (running) {
7566		set_next_task(rq, tsk);
7567		/*
7568		 * After changing group, the running task may have joined a
7569		 * throttled one but it's still the running task. Trigger a
7570		 * resched to make sure that task can still run.
7571		 */
7572		resched_curr(rq);
7573	}
7574
7575	task_rq_unlock(rq, tsk, &rf);
7576}
7577
7578static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7579{
7580	return css ? container_of(css, struct task_group, css) : NULL;
7581}
7582
7583static struct cgroup_subsys_state *
7584cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7585{
7586	struct task_group *parent = css_tg(parent_css);
7587	struct task_group *tg;
7588
7589	if (!parent) {
7590		/* This is early initialization for the top cgroup */
7591		return &root_task_group.css;
7592	}
7593
7594	tg = sched_create_group(parent);
7595	if (IS_ERR(tg))
7596		return ERR_PTR(-ENOMEM);
7597
7598	return &tg->css;
7599}
7600
7601/* Expose task group only after completing cgroup initialization */
7602static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7603{
7604	struct task_group *tg = css_tg(css);
7605	struct task_group *parent = css_tg(css->parent);
7606
7607	if (parent)
7608		sched_online_group(tg, parent);
7609
7610#ifdef CONFIG_UCLAMP_TASK_GROUP
7611	/* Propagate the effective uclamp value for the new group */
7612	cpu_util_update_eff(css);
7613#endif
7614
7615	return 0;
7616}
7617
7618static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7619{
7620	struct task_group *tg = css_tg(css);
7621
7622	sched_offline_group(tg);
7623}
7624
7625static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7626{
7627	struct task_group *tg = css_tg(css);
7628
7629	/*
7630	 * Relies on the RCU grace period between css_released() and this.
7631	 */
7632	sched_free_group(tg);
7633}
7634
7635/*
7636 * This is called before wake_up_new_task(), therefore we really only
7637 * have to set its group bits, all the other stuff does not apply.
7638 */
7639static void cpu_cgroup_fork(struct task_struct *task)
7640{
7641	struct rq_flags rf;
7642	struct rq *rq;
7643
7644	rq = task_rq_lock(task, &rf);
7645
7646	update_rq_clock(rq);
7647	sched_change_group(task, TASK_SET_GROUP);
7648
7649	task_rq_unlock(rq, task, &rf);
7650}
7651
7652static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7653{
7654	struct task_struct *task;
7655	struct cgroup_subsys_state *css;
7656	int ret = 0;
7657
7658	cgroup_taskset_for_each(task, css, tset) {
7659#ifdef CONFIG_RT_GROUP_SCHED
7660		if (!sched_rt_can_attach(css_tg(css), task))
7661			return -EINVAL;
 
 
 
 
7662#endif
7663		/*
7664		 * Serialize against wake_up_new_task() such that if its
7665		 * running, we're sure to observe its full state.
7666		 */
7667		raw_spin_lock_irq(&task->pi_lock);
7668		/*
7669		 * Avoid calling sched_move_task() before wake_up_new_task()
7670		 * has happened. This would lead to problems with PELT, due to
7671		 * move wanting to detach+attach while we're not attached yet.
7672		 */
7673		if (task->state == TASK_NEW)
7674			ret = -EINVAL;
7675		raw_spin_unlock_irq(&task->pi_lock);
7676
7677		if (ret)
7678			break;
7679	}
7680	return ret;
7681}
7682
7683static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7684{
7685	struct task_struct *task;
7686	struct cgroup_subsys_state *css;
7687
7688	cgroup_taskset_for_each(task, css, tset)
7689		sched_move_task(task);
7690}
7691
7692#ifdef CONFIG_UCLAMP_TASK_GROUP
7693static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7694{
7695	struct cgroup_subsys_state *top_css = css;
7696	struct uclamp_se *uc_parent = NULL;
7697	struct uclamp_se *uc_se = NULL;
7698	unsigned int eff[UCLAMP_CNT];
7699	enum uclamp_id clamp_id;
7700	unsigned int clamps;
7701
7702	css_for_each_descendant_pre(css, top_css) {
7703		uc_parent = css_tg(css)->parent
7704			? css_tg(css)->parent->uclamp : NULL;
7705
7706		for_each_clamp_id(clamp_id) {
7707			/* Assume effective clamps matches requested clamps */
7708			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7709			/* Cap effective clamps with parent's effective clamps */
7710			if (uc_parent &&
7711			    eff[clamp_id] > uc_parent[clamp_id].value) {
7712				eff[clamp_id] = uc_parent[clamp_id].value;
7713			}
7714		}
7715		/* Ensure protection is always capped by limit */
7716		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7717
7718		/* Propagate most restrictive effective clamps */
7719		clamps = 0x0;
7720		uc_se = css_tg(css)->uclamp;
7721		for_each_clamp_id(clamp_id) {
7722			if (eff[clamp_id] == uc_se[clamp_id].value)
7723				continue;
7724			uc_se[clamp_id].value = eff[clamp_id];
7725			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7726			clamps |= (0x1 << clamp_id);
7727		}
7728		if (!clamps) {
7729			css = css_rightmost_descendant(css);
7730			continue;
7731		}
7732
7733		/* Immediately update descendants RUNNABLE tasks */
7734		uclamp_update_active_tasks(css, clamps);
7735	}
7736}
7737
7738/*
7739 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7740 * C expression. Since there is no way to convert a macro argument (N) into a
7741 * character constant, use two levels of macros.
7742 */
7743#define _POW10(exp) ((unsigned int)1e##exp)
7744#define POW10(exp) _POW10(exp)
7745
7746struct uclamp_request {
7747#define UCLAMP_PERCENT_SHIFT	2
7748#define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7749	s64 percent;
7750	u64 util;
7751	int ret;
7752};
7753
7754static inline struct uclamp_request
7755capacity_from_percent(char *buf)
7756{
7757	struct uclamp_request req = {
7758		.percent = UCLAMP_PERCENT_SCALE,
7759		.util = SCHED_CAPACITY_SCALE,
7760		.ret = 0,
7761	};
7762
7763	buf = strim(buf);
7764	if (strcmp(buf, "max")) {
7765		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7766					     &req.percent);
7767		if (req.ret)
7768			return req;
7769		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7770			req.ret = -ERANGE;
7771			return req;
7772		}
7773
7774		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7775		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7776	}
7777
7778	return req;
7779}
7780
7781static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7782				size_t nbytes, loff_t off,
7783				enum uclamp_id clamp_id)
7784{
7785	struct uclamp_request req;
7786	struct task_group *tg;
7787
7788	req = capacity_from_percent(buf);
7789	if (req.ret)
7790		return req.ret;
7791
7792	static_branch_enable(&sched_uclamp_used);
7793
7794	mutex_lock(&uclamp_mutex);
7795	rcu_read_lock();
7796
7797	tg = css_tg(of_css(of));
7798	if (tg->uclamp_req[clamp_id].value != req.util)
7799		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7800
7801	/*
7802	 * Because of not recoverable conversion rounding we keep track of the
7803	 * exact requested value
7804	 */
7805	tg->uclamp_pct[clamp_id] = req.percent;
7806
7807	/* Update effective clamps to track the most restrictive value */
7808	cpu_util_update_eff(of_css(of));
7809
7810	rcu_read_unlock();
7811	mutex_unlock(&uclamp_mutex);
7812
7813	return nbytes;
7814}
7815
7816static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7817				    char *buf, size_t nbytes,
7818				    loff_t off)
7819{
7820	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7821}
7822
7823static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7824				    char *buf, size_t nbytes,
7825				    loff_t off)
7826{
7827	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7828}
7829
7830static inline void cpu_uclamp_print(struct seq_file *sf,
7831				    enum uclamp_id clamp_id)
7832{
7833	struct task_group *tg;
7834	u64 util_clamp;
7835	u64 percent;
7836	u32 rem;
7837
7838	rcu_read_lock();
7839	tg = css_tg(seq_css(sf));
7840	util_clamp = tg->uclamp_req[clamp_id].value;
7841	rcu_read_unlock();
7842
7843	if (util_clamp == SCHED_CAPACITY_SCALE) {
7844		seq_puts(sf, "max\n");
7845		return;
7846	}
7847
7848	percent = tg->uclamp_pct[clamp_id];
7849	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7850	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7851}
7852
7853static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7854{
7855	cpu_uclamp_print(sf, UCLAMP_MIN);
7856	return 0;
7857}
7858
7859static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7860{
7861	cpu_uclamp_print(sf, UCLAMP_MAX);
7862	return 0;
7863}
7864#endif /* CONFIG_UCLAMP_TASK_GROUP */
7865
7866#ifdef CONFIG_FAIR_GROUP_SCHED
7867static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7868				struct cftype *cftype, u64 shareval)
7869{
7870	if (shareval > scale_load_down(ULONG_MAX))
7871		shareval = MAX_SHARES;
7872	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7873}
7874
7875static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7876			       struct cftype *cft)
7877{
7878	struct task_group *tg = css_tg(css);
7879
7880	return (u64) scale_load_down(tg->shares);
7881}
7882
7883#ifdef CONFIG_CFS_BANDWIDTH
7884static DEFINE_MUTEX(cfs_constraints_mutex);
7885
7886const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7887static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7888/* More than 203 days if BW_SHIFT equals 20. */
7889static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7890
7891static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7892
7893static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7894{
7895	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7896	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7897
7898	if (tg == &root_task_group)
7899		return -EINVAL;
7900
7901	/*
7902	 * Ensure we have at some amount of bandwidth every period.  This is
7903	 * to prevent reaching a state of large arrears when throttled via
7904	 * entity_tick() resulting in prolonged exit starvation.
7905	 */
7906	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7907		return -EINVAL;
7908
7909	/*
7910	 * Likewise, bound things on the otherside by preventing insane quota
7911	 * periods.  This also allows us to normalize in computing quota
7912	 * feasibility.
7913	 */
7914	if (period > max_cfs_quota_period)
7915		return -EINVAL;
7916
7917	/*
7918	 * Bound quota to defend quota against overflow during bandwidth shift.
7919	 */
7920	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7921		return -EINVAL;
7922
7923	/*
7924	 * Prevent race between setting of cfs_rq->runtime_enabled and
7925	 * unthrottle_offline_cfs_rqs().
7926	 */
7927	get_online_cpus();
7928	mutex_lock(&cfs_constraints_mutex);
7929	ret = __cfs_schedulable(tg, period, quota);
7930	if (ret)
7931		goto out_unlock;
7932
7933	runtime_enabled = quota != RUNTIME_INF;
7934	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7935	/*
7936	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7937	 * before making related changes, and on->off must occur afterwards
7938	 */
7939	if (runtime_enabled && !runtime_was_enabled)
7940		cfs_bandwidth_usage_inc();
7941	raw_spin_lock_irq(&cfs_b->lock);
7942	cfs_b->period = ns_to_ktime(period);
7943	cfs_b->quota = quota;
7944
7945	__refill_cfs_bandwidth_runtime(cfs_b);
7946
7947	/* Restart the period timer (if active) to handle new period expiry: */
7948	if (runtime_enabled)
7949		start_cfs_bandwidth(cfs_b);
7950
7951	raw_spin_unlock_irq(&cfs_b->lock);
7952
7953	for_each_online_cpu(i) {
7954		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7955		struct rq *rq = cfs_rq->rq;
7956		struct rq_flags rf;
7957
7958		rq_lock_irq(rq, &rf);
7959		cfs_rq->runtime_enabled = runtime_enabled;
7960		cfs_rq->runtime_remaining = 0;
7961
7962		if (cfs_rq->throttled)
7963			unthrottle_cfs_rq(cfs_rq);
7964		rq_unlock_irq(rq, &rf);
7965	}
7966	if (runtime_was_enabled && !runtime_enabled)
7967		cfs_bandwidth_usage_dec();
7968out_unlock:
7969	mutex_unlock(&cfs_constraints_mutex);
7970	put_online_cpus();
7971
7972	return ret;
7973}
7974
7975static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7976{
7977	u64 quota, period;
7978
7979	period = ktime_to_ns(tg->cfs_bandwidth.period);
7980	if (cfs_quota_us < 0)
7981		quota = RUNTIME_INF;
7982	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7983		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7984	else
7985		return -EINVAL;
7986
7987	return tg_set_cfs_bandwidth(tg, period, quota);
7988}
7989
7990static long tg_get_cfs_quota(struct task_group *tg)
7991{
7992	u64 quota_us;
7993
7994	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7995		return -1;
7996
7997	quota_us = tg->cfs_bandwidth.quota;
7998	do_div(quota_us, NSEC_PER_USEC);
7999
8000	return quota_us;
8001}
8002
8003static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8004{
8005	u64 quota, period;
8006
8007	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8008		return -EINVAL;
8009
8010	period = (u64)cfs_period_us * NSEC_PER_USEC;
8011	quota = tg->cfs_bandwidth.quota;
8012
8013	return tg_set_cfs_bandwidth(tg, period, quota);
8014}
8015
8016static long tg_get_cfs_period(struct task_group *tg)
8017{
8018	u64 cfs_period_us;
8019
8020	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8021	do_div(cfs_period_us, NSEC_PER_USEC);
8022
8023	return cfs_period_us;
8024}
8025
8026static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8027				  struct cftype *cft)
8028{
8029	return tg_get_cfs_quota(css_tg(css));
8030}
8031
8032static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8033				   struct cftype *cftype, s64 cfs_quota_us)
8034{
8035	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8036}
8037
8038static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8039				   struct cftype *cft)
8040{
8041	return tg_get_cfs_period(css_tg(css));
8042}
8043
8044static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8045				    struct cftype *cftype, u64 cfs_period_us)
8046{
8047	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8048}
8049
8050struct cfs_schedulable_data {
8051	struct task_group *tg;
8052	u64 period, quota;
8053};
8054
8055/*
8056 * normalize group quota/period to be quota/max_period
8057 * note: units are usecs
8058 */
8059static u64 normalize_cfs_quota(struct task_group *tg,
8060			       struct cfs_schedulable_data *d)
8061{
8062	u64 quota, period;
8063
8064	if (tg == d->tg) {
8065		period = d->period;
8066		quota = d->quota;
8067	} else {
8068		period = tg_get_cfs_period(tg);
8069		quota = tg_get_cfs_quota(tg);
8070	}
8071
8072	/* note: these should typically be equivalent */
8073	if (quota == RUNTIME_INF || quota == -1)
8074		return RUNTIME_INF;
8075
8076	return to_ratio(period, quota);
8077}
8078
8079static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8080{
8081	struct cfs_schedulable_data *d = data;
8082	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8083	s64 quota = 0, parent_quota = -1;
8084
8085	if (!tg->parent) {
8086		quota = RUNTIME_INF;
8087	} else {
8088		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8089
8090		quota = normalize_cfs_quota(tg, d);
8091		parent_quota = parent_b->hierarchical_quota;
8092
8093		/*
8094		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
8095		 * always take the min.  On cgroup1, only inherit when no
8096		 * limit is set:
8097		 */
8098		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8099			quota = min(quota, parent_quota);
8100		} else {
8101			if (quota == RUNTIME_INF)
8102				quota = parent_quota;
8103			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8104				return -EINVAL;
8105		}
8106	}
8107	cfs_b->hierarchical_quota = quota;
8108
8109	return 0;
8110}
8111
8112static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8113{
8114	int ret;
8115	struct cfs_schedulable_data data = {
8116		.tg = tg,
8117		.period = period,
8118		.quota = quota,
8119	};
8120
8121	if (quota != RUNTIME_INF) {
8122		do_div(data.period, NSEC_PER_USEC);
8123		do_div(data.quota, NSEC_PER_USEC);
8124	}
8125
8126	rcu_read_lock();
8127	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8128	rcu_read_unlock();
8129
8130	return ret;
8131}
8132
8133static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8134{
8135	struct task_group *tg = css_tg(seq_css(sf));
8136	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8137
8138	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8139	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8140	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8141
8142	if (schedstat_enabled() && tg != &root_task_group) {
8143		u64 ws = 0;
8144		int i;
8145
8146		for_each_possible_cpu(i)
8147			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8148
8149		seq_printf(sf, "wait_sum %llu\n", ws);
8150	}
8151
8152	return 0;
8153}
8154#endif /* CONFIG_CFS_BANDWIDTH */
8155#endif /* CONFIG_FAIR_GROUP_SCHED */
8156
8157#ifdef CONFIG_RT_GROUP_SCHED
8158static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8159				struct cftype *cft, s64 val)
8160{
8161	return sched_group_set_rt_runtime(css_tg(css), val);
8162}
8163
8164static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8165			       struct cftype *cft)
8166{
8167	return sched_group_rt_runtime(css_tg(css));
8168}
8169
8170static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8171				    struct cftype *cftype, u64 rt_period_us)
8172{
8173	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8174}
8175
8176static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8177				   struct cftype *cft)
8178{
8179	return sched_group_rt_period(css_tg(css));
8180}
8181#endif /* CONFIG_RT_GROUP_SCHED */
8182
8183static struct cftype cpu_legacy_files[] = {
8184#ifdef CONFIG_FAIR_GROUP_SCHED
8185	{
8186		.name = "shares",
8187		.read_u64 = cpu_shares_read_u64,
8188		.write_u64 = cpu_shares_write_u64,
8189	},
8190#endif
8191#ifdef CONFIG_CFS_BANDWIDTH
8192	{
8193		.name = "cfs_quota_us",
8194		.read_s64 = cpu_cfs_quota_read_s64,
8195		.write_s64 = cpu_cfs_quota_write_s64,
8196	},
8197	{
8198		.name = "cfs_period_us",
8199		.read_u64 = cpu_cfs_period_read_u64,
8200		.write_u64 = cpu_cfs_period_write_u64,
8201	},
8202	{
8203		.name = "stat",
8204		.seq_show = cpu_cfs_stat_show,
8205	},
8206#endif
8207#ifdef CONFIG_RT_GROUP_SCHED
8208	{
8209		.name = "rt_runtime_us",
8210		.read_s64 = cpu_rt_runtime_read,
8211		.write_s64 = cpu_rt_runtime_write,
8212	},
8213	{
8214		.name = "rt_period_us",
8215		.read_u64 = cpu_rt_period_read_uint,
8216		.write_u64 = cpu_rt_period_write_uint,
8217	},
8218#endif
8219#ifdef CONFIG_UCLAMP_TASK_GROUP
8220	{
8221		.name = "uclamp.min",
8222		.flags = CFTYPE_NOT_ON_ROOT,
8223		.seq_show = cpu_uclamp_min_show,
8224		.write = cpu_uclamp_min_write,
8225	},
8226	{
8227		.name = "uclamp.max",
8228		.flags = CFTYPE_NOT_ON_ROOT,
8229		.seq_show = cpu_uclamp_max_show,
8230		.write = cpu_uclamp_max_write,
8231	},
8232#endif
8233	{ }	/* Terminate */
8234};
8235
8236static int cpu_extra_stat_show(struct seq_file *sf,
8237			       struct cgroup_subsys_state *css)
8238{
8239#ifdef CONFIG_CFS_BANDWIDTH
8240	{
8241		struct task_group *tg = css_tg(css);
8242		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8243		u64 throttled_usec;
8244
8245		throttled_usec = cfs_b->throttled_time;
8246		do_div(throttled_usec, NSEC_PER_USEC);
8247
8248		seq_printf(sf, "nr_periods %d\n"
8249			   "nr_throttled %d\n"
8250			   "throttled_usec %llu\n",
8251			   cfs_b->nr_periods, cfs_b->nr_throttled,
8252			   throttled_usec);
8253	}
8254#endif
8255	return 0;
8256}
8257
8258#ifdef CONFIG_FAIR_GROUP_SCHED
8259static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8260			       struct cftype *cft)
8261{
8262	struct task_group *tg = css_tg(css);
8263	u64 weight = scale_load_down(tg->shares);
8264
8265	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8266}
8267
8268static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8269				struct cftype *cft, u64 weight)
8270{
8271	/*
8272	 * cgroup weight knobs should use the common MIN, DFL and MAX
8273	 * values which are 1, 100 and 10000 respectively.  While it loses
8274	 * a bit of range on both ends, it maps pretty well onto the shares
8275	 * value used by scheduler and the round-trip conversions preserve
8276	 * the original value over the entire range.
8277	 */
8278	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8279		return -ERANGE;
8280
8281	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8282
8283	return sched_group_set_shares(css_tg(css), scale_load(weight));
8284}
8285
8286static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8287				    struct cftype *cft)
8288{
8289	unsigned long weight = scale_load_down(css_tg(css)->shares);
8290	int last_delta = INT_MAX;
8291	int prio, delta;
8292
8293	/* find the closest nice value to the current weight */
8294	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8295		delta = abs(sched_prio_to_weight[prio] - weight);
8296		if (delta >= last_delta)
8297			break;
8298		last_delta = delta;
8299	}
8300
8301	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8302}
8303
8304static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8305				     struct cftype *cft, s64 nice)
8306{
8307	unsigned long weight;
8308	int idx;
8309
8310	if (nice < MIN_NICE || nice > MAX_NICE)
8311		return -ERANGE;
8312
8313	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8314	idx = array_index_nospec(idx, 40);
8315	weight = sched_prio_to_weight[idx];
8316
8317	return sched_group_set_shares(css_tg(css), scale_load(weight));
8318}
8319#endif
8320
8321static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8322						  long period, long quota)
8323{
8324	if (quota < 0)
8325		seq_puts(sf, "max");
8326	else
8327		seq_printf(sf, "%ld", quota);
8328
8329	seq_printf(sf, " %ld\n", period);
8330}
8331
8332/* caller should put the current value in *@periodp before calling */
8333static int __maybe_unused cpu_period_quota_parse(char *buf,
8334						 u64 *periodp, u64 *quotap)
8335{
8336	char tok[21];	/* U64_MAX */
8337
8338	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8339		return -EINVAL;
8340
8341	*periodp *= NSEC_PER_USEC;
8342
8343	if (sscanf(tok, "%llu", quotap))
8344		*quotap *= NSEC_PER_USEC;
8345	else if (!strcmp(tok, "max"))
8346		*quotap = RUNTIME_INF;
8347	else
8348		return -EINVAL;
8349
8350	return 0;
8351}
8352
8353#ifdef CONFIG_CFS_BANDWIDTH
8354static int cpu_max_show(struct seq_file *sf, void *v)
8355{
8356	struct task_group *tg = css_tg(seq_css(sf));
8357
8358	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8359	return 0;
8360}
8361
8362static ssize_t cpu_max_write(struct kernfs_open_file *of,
8363			     char *buf, size_t nbytes, loff_t off)
8364{
8365	struct task_group *tg = css_tg(of_css(of));
8366	u64 period = tg_get_cfs_period(tg);
8367	u64 quota;
8368	int ret;
8369
8370	ret = cpu_period_quota_parse(buf, &period, &quota);
8371	if (!ret)
8372		ret = tg_set_cfs_bandwidth(tg, period, quota);
8373	return ret ?: nbytes;
8374}
8375#endif
8376
8377static struct cftype cpu_files[] = {
8378#ifdef CONFIG_FAIR_GROUP_SCHED
8379	{
8380		.name = "weight",
8381		.flags = CFTYPE_NOT_ON_ROOT,
8382		.read_u64 = cpu_weight_read_u64,
8383		.write_u64 = cpu_weight_write_u64,
8384	},
8385	{
8386		.name = "weight.nice",
8387		.flags = CFTYPE_NOT_ON_ROOT,
8388		.read_s64 = cpu_weight_nice_read_s64,
8389		.write_s64 = cpu_weight_nice_write_s64,
8390	},
8391#endif
8392#ifdef CONFIG_CFS_BANDWIDTH
8393	{
8394		.name = "max",
8395		.flags = CFTYPE_NOT_ON_ROOT,
8396		.seq_show = cpu_max_show,
8397		.write = cpu_max_write,
8398	},
8399#endif
8400#ifdef CONFIG_UCLAMP_TASK_GROUP
8401	{
8402		.name = "uclamp.min",
8403		.flags = CFTYPE_NOT_ON_ROOT,
8404		.seq_show = cpu_uclamp_min_show,
8405		.write = cpu_uclamp_min_write,
8406	},
8407	{
8408		.name = "uclamp.max",
8409		.flags = CFTYPE_NOT_ON_ROOT,
8410		.seq_show = cpu_uclamp_max_show,
8411		.write = cpu_uclamp_max_write,
8412	},
8413#endif
8414	{ }	/* terminate */
8415};
8416
8417struct cgroup_subsys cpu_cgrp_subsys = {
8418	.css_alloc	= cpu_cgroup_css_alloc,
8419	.css_online	= cpu_cgroup_css_online,
8420	.css_released	= cpu_cgroup_css_released,
8421	.css_free	= cpu_cgroup_css_free,
8422	.css_extra_stat_show = cpu_extra_stat_show,
8423	.fork		= cpu_cgroup_fork,
8424	.can_attach	= cpu_cgroup_can_attach,
8425	.attach		= cpu_cgroup_attach,
8426	.legacy_cftypes	= cpu_legacy_files,
8427	.dfl_cftypes	= cpu_files,
8428	.early_init	= true,
8429	.threaded	= true,
8430};
8431
8432#endif	/* CONFIG_CGROUP_SCHED */
8433
8434void dump_cpu_task(int cpu)
8435{
8436	pr_info("Task dump for CPU %d:\n", cpu);
8437	sched_show_task(cpu_curr(cpu));
8438}
8439
8440/*
8441 * Nice levels are multiplicative, with a gentle 10% change for every
8442 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8443 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8444 * that remained on nice 0.
8445 *
8446 * The "10% effect" is relative and cumulative: from _any_ nice level,
8447 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8448 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8449 * If a task goes up by ~10% and another task goes down by ~10% then
8450 * the relative distance between them is ~25%.)
8451 */
8452const int sched_prio_to_weight[40] = {
8453 /* -20 */     88761,     71755,     56483,     46273,     36291,
8454 /* -15 */     29154,     23254,     18705,     14949,     11916,
8455 /* -10 */      9548,      7620,      6100,      4904,      3906,
8456 /*  -5 */      3121,      2501,      1991,      1586,      1277,
8457 /*   0 */      1024,       820,       655,       526,       423,
8458 /*   5 */       335,       272,       215,       172,       137,
8459 /*  10 */       110,        87,        70,        56,        45,
8460 /*  15 */        36,        29,        23,        18,        15,
8461};
8462
8463/*
8464 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8465 *
8466 * In cases where the weight does not change often, we can use the
8467 * precalculated inverse to speed up arithmetics by turning divisions
8468 * into multiplications:
8469 */
8470const u32 sched_prio_to_wmult[40] = {
8471 /* -20 */     48388,     59856,     76040,     92818,    118348,
8472 /* -15 */    147320,    184698,    229616,    287308,    360437,
8473 /* -10 */    449829,    563644,    704093,    875809,   1099582,
8474 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8475 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8476 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8477 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8478 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8479};
8480
8481void call_trace_sched_update_nr_running(struct rq *rq, int count)
8482{
8483        trace_sched_update_nr_running_tp(rq, count);
8484}