Loading...
1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/locking/rt-mutex-design.txt for details.
12 */
13#include <linux/spinlock.h>
14#include <linux/export.h>
15#include <linux/sched/signal.h>
16#include <linux/sched/rt.h>
17#include <linux/sched/deadline.h>
18#include <linux/sched/wake_q.h>
19#include <linux/sched/debug.h>
20#include <linux/timer.h>
21
22#include "rtmutex_common.h"
23
24/*
25 * lock->owner state tracking:
26 *
27 * lock->owner holds the task_struct pointer of the owner. Bit 0
28 * is used to keep track of the "lock has waiters" state.
29 *
30 * owner bit0
31 * NULL 0 lock is free (fast acquire possible)
32 * NULL 1 lock is free and has waiters and the top waiter
33 * is going to take the lock*
34 * taskpointer 0 lock is held (fast release possible)
35 * taskpointer 1 lock is held and has waiters**
36 *
37 * The fast atomic compare exchange based acquire and release is only
38 * possible when bit 0 of lock->owner is 0.
39 *
40 * (*) It also can be a transitional state when grabbing the lock
41 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
42 * we need to set the bit0 before looking at the lock, and the owner may be
43 * NULL in this small time, hence this can be a transitional state.
44 *
45 * (**) There is a small time when bit 0 is set but there are no
46 * waiters. This can happen when grabbing the lock in the slow path.
47 * To prevent a cmpxchg of the owner releasing the lock, we need to
48 * set this bit before looking at the lock.
49 */
50
51static void
52rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
53{
54 unsigned long val = (unsigned long)owner;
55
56 if (rt_mutex_has_waiters(lock))
57 val |= RT_MUTEX_HAS_WAITERS;
58
59 lock->owner = (struct task_struct *)val;
60}
61
62static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
63{
64 lock->owner = (struct task_struct *)
65 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
66}
67
68static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
69{
70 unsigned long owner, *p = (unsigned long *) &lock->owner;
71
72 if (rt_mutex_has_waiters(lock))
73 return;
74
75 /*
76 * The rbtree has no waiters enqueued, now make sure that the
77 * lock->owner still has the waiters bit set, otherwise the
78 * following can happen:
79 *
80 * CPU 0 CPU 1 CPU2
81 * l->owner=T1
82 * rt_mutex_lock(l)
83 * lock(l->lock)
84 * l->owner = T1 | HAS_WAITERS;
85 * enqueue(T2)
86 * boost()
87 * unlock(l->lock)
88 * block()
89 *
90 * rt_mutex_lock(l)
91 * lock(l->lock)
92 * l->owner = T1 | HAS_WAITERS;
93 * enqueue(T3)
94 * boost()
95 * unlock(l->lock)
96 * block()
97 * signal(->T2) signal(->T3)
98 * lock(l->lock)
99 * dequeue(T2)
100 * deboost()
101 * unlock(l->lock)
102 * lock(l->lock)
103 * dequeue(T3)
104 * ==> wait list is empty
105 * deboost()
106 * unlock(l->lock)
107 * lock(l->lock)
108 * fixup_rt_mutex_waiters()
109 * if (wait_list_empty(l) {
110 * l->owner = owner
111 * owner = l->owner & ~HAS_WAITERS;
112 * ==> l->owner = T1
113 * }
114 * lock(l->lock)
115 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
116 * if (wait_list_empty(l) {
117 * owner = l->owner & ~HAS_WAITERS;
118 * cmpxchg(l->owner, T1, NULL)
119 * ===> Success (l->owner = NULL)
120 *
121 * l->owner = owner
122 * ==> l->owner = T1
123 * }
124 *
125 * With the check for the waiter bit in place T3 on CPU2 will not
126 * overwrite. All tasks fiddling with the waiters bit are
127 * serialized by l->lock, so nothing else can modify the waiters
128 * bit. If the bit is set then nothing can change l->owner either
129 * so the simple RMW is safe. The cmpxchg() will simply fail if it
130 * happens in the middle of the RMW because the waiters bit is
131 * still set.
132 */
133 owner = READ_ONCE(*p);
134 if (owner & RT_MUTEX_HAS_WAITERS)
135 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
136}
137
138/*
139 * We can speed up the acquire/release, if there's no debugging state to be
140 * set up.
141 */
142#ifndef CONFIG_DEBUG_RT_MUTEXES
143# define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
144# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146
147/*
148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150 * relaxed semantics suffice.
151 */
152static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153{
154 unsigned long owner, *p = (unsigned long *) &lock->owner;
155
156 do {
157 owner = *p;
158 } while (cmpxchg_relaxed(p, owner,
159 owner | RT_MUTEX_HAS_WAITERS) != owner);
160}
161
162/*
163 * Safe fastpath aware unlock:
164 * 1) Clear the waiters bit
165 * 2) Drop lock->wait_lock
166 * 3) Try to unlock the lock with cmpxchg
167 */
168static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 unsigned long flags)
170 __releases(lock->wait_lock)
171{
172 struct task_struct *owner = rt_mutex_owner(lock);
173
174 clear_rt_mutex_waiters(lock);
175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 /*
177 * If a new waiter comes in between the unlock and the cmpxchg
178 * we have two situations:
179 *
180 * unlock(wait_lock);
181 * lock(wait_lock);
182 * cmpxchg(p, owner, 0) == owner
183 * mark_rt_mutex_waiters(lock);
184 * acquire(lock);
185 * or:
186 *
187 * unlock(wait_lock);
188 * lock(wait_lock);
189 * mark_rt_mutex_waiters(lock);
190 *
191 * cmpxchg(p, owner, 0) != owner
192 * enqueue_waiter();
193 * unlock(wait_lock);
194 * lock(wait_lock);
195 * wake waiter();
196 * unlock(wait_lock);
197 * lock(wait_lock);
198 * acquire(lock);
199 */
200 return rt_mutex_cmpxchg_release(lock, owner, NULL);
201}
202
203#else
204# define rt_mutex_cmpxchg_relaxed(l,c,n) (0)
205# define rt_mutex_cmpxchg_acquire(l,c,n) (0)
206# define rt_mutex_cmpxchg_release(l,c,n) (0)
207
208static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
209{
210 lock->owner = (struct task_struct *)
211 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
212}
213
214/*
215 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
216 */
217static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
218 unsigned long flags)
219 __releases(lock->wait_lock)
220{
221 lock->owner = NULL;
222 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
223 return true;
224}
225#endif
226
227/*
228 * Only use with rt_mutex_waiter_{less,equal}()
229 */
230#define task_to_waiter(p) \
231 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
232
233static inline int
234rt_mutex_waiter_less(struct rt_mutex_waiter *left,
235 struct rt_mutex_waiter *right)
236{
237 if (left->prio < right->prio)
238 return 1;
239
240 /*
241 * If both waiters have dl_prio(), we check the deadlines of the
242 * associated tasks.
243 * If left waiter has a dl_prio(), and we didn't return 1 above,
244 * then right waiter has a dl_prio() too.
245 */
246 if (dl_prio(left->prio))
247 return dl_time_before(left->deadline, right->deadline);
248
249 return 0;
250}
251
252static inline int
253rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
254 struct rt_mutex_waiter *right)
255{
256 if (left->prio != right->prio)
257 return 0;
258
259 /*
260 * If both waiters have dl_prio(), we check the deadlines of the
261 * associated tasks.
262 * If left waiter has a dl_prio(), and we didn't return 0 above,
263 * then right waiter has a dl_prio() too.
264 */
265 if (dl_prio(left->prio))
266 return left->deadline == right->deadline;
267
268 return 1;
269}
270
271static void
272rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
273{
274 struct rb_node **link = &lock->waiters.rb_root.rb_node;
275 struct rb_node *parent = NULL;
276 struct rt_mutex_waiter *entry;
277 bool leftmost = true;
278
279 while (*link) {
280 parent = *link;
281 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
282 if (rt_mutex_waiter_less(waiter, entry)) {
283 link = &parent->rb_left;
284 } else {
285 link = &parent->rb_right;
286 leftmost = false;
287 }
288 }
289
290 rb_link_node(&waiter->tree_entry, parent, link);
291 rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
292}
293
294static void
295rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
296{
297 if (RB_EMPTY_NODE(&waiter->tree_entry))
298 return;
299
300 rb_erase_cached(&waiter->tree_entry, &lock->waiters);
301 RB_CLEAR_NODE(&waiter->tree_entry);
302}
303
304static void
305rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
306{
307 struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
308 struct rb_node *parent = NULL;
309 struct rt_mutex_waiter *entry;
310 bool leftmost = true;
311
312 while (*link) {
313 parent = *link;
314 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
315 if (rt_mutex_waiter_less(waiter, entry)) {
316 link = &parent->rb_left;
317 } else {
318 link = &parent->rb_right;
319 leftmost = false;
320 }
321 }
322
323 rb_link_node(&waiter->pi_tree_entry, parent, link);
324 rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
325}
326
327static void
328rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
329{
330 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
331 return;
332
333 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
334 RB_CLEAR_NODE(&waiter->pi_tree_entry);
335}
336
337static void rt_mutex_adjust_prio(struct task_struct *p)
338{
339 struct task_struct *pi_task = NULL;
340
341 lockdep_assert_held(&p->pi_lock);
342
343 if (task_has_pi_waiters(p))
344 pi_task = task_top_pi_waiter(p)->task;
345
346 rt_mutex_setprio(p, pi_task);
347}
348
349/*
350 * Deadlock detection is conditional:
351 *
352 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
353 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
354 *
355 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
356 * conducted independent of the detect argument.
357 *
358 * If the waiter argument is NULL this indicates the deboost path and
359 * deadlock detection is disabled independent of the detect argument
360 * and the config settings.
361 */
362static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
363 enum rtmutex_chainwalk chwalk)
364{
365 /*
366 * This is just a wrapper function for the following call,
367 * because debug_rt_mutex_detect_deadlock() smells like a magic
368 * debug feature and I wanted to keep the cond function in the
369 * main source file along with the comments instead of having
370 * two of the same in the headers.
371 */
372 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
373}
374
375/*
376 * Max number of times we'll walk the boosting chain:
377 */
378int max_lock_depth = 1024;
379
380static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
381{
382 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
383}
384
385/*
386 * Adjust the priority chain. Also used for deadlock detection.
387 * Decreases task's usage by one - may thus free the task.
388 *
389 * @task: the task owning the mutex (owner) for which a chain walk is
390 * probably needed
391 * @chwalk: do we have to carry out deadlock detection?
392 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
393 * things for a task that has just got its priority adjusted, and
394 * is waiting on a mutex)
395 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
396 * we dropped its pi_lock. Is never dereferenced, only used for
397 * comparison to detect lock chain changes.
398 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
399 * its priority to the mutex owner (can be NULL in the case
400 * depicted above or if the top waiter is gone away and we are
401 * actually deboosting the owner)
402 * @top_task: the current top waiter
403 *
404 * Returns 0 or -EDEADLK.
405 *
406 * Chain walk basics and protection scope
407 *
408 * [R] refcount on task
409 * [P] task->pi_lock held
410 * [L] rtmutex->wait_lock held
411 *
412 * Step Description Protected by
413 * function arguments:
414 * @task [R]
415 * @orig_lock if != NULL @top_task is blocked on it
416 * @next_lock Unprotected. Cannot be
417 * dereferenced. Only used for
418 * comparison.
419 * @orig_waiter if != NULL @top_task is blocked on it
420 * @top_task current, or in case of proxy
421 * locking protected by calling
422 * code
423 * again:
424 * loop_sanity_check();
425 * retry:
426 * [1] lock(task->pi_lock); [R] acquire [P]
427 * [2] waiter = task->pi_blocked_on; [P]
428 * [3] check_exit_conditions_1(); [P]
429 * [4] lock = waiter->lock; [P]
430 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
431 * unlock(task->pi_lock); release [P]
432 * goto retry;
433 * }
434 * [6] check_exit_conditions_2(); [P] + [L]
435 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
436 * [8] unlock(task->pi_lock); release [P]
437 * put_task_struct(task); release [R]
438 * [9] check_exit_conditions_3(); [L]
439 * [10] task = owner(lock); [L]
440 * get_task_struct(task); [L] acquire [R]
441 * lock(task->pi_lock); [L] acquire [P]
442 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
443 * [12] check_exit_conditions_4(); [P] + [L]
444 * [13] unlock(task->pi_lock); release [P]
445 * unlock(lock->wait_lock); release [L]
446 * goto again;
447 */
448static int rt_mutex_adjust_prio_chain(struct task_struct *task,
449 enum rtmutex_chainwalk chwalk,
450 struct rt_mutex *orig_lock,
451 struct rt_mutex *next_lock,
452 struct rt_mutex_waiter *orig_waiter,
453 struct task_struct *top_task)
454{
455 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
456 struct rt_mutex_waiter *prerequeue_top_waiter;
457 int ret = 0, depth = 0;
458 struct rt_mutex *lock;
459 bool detect_deadlock;
460 bool requeue = true;
461
462 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
463
464 /*
465 * The (de)boosting is a step by step approach with a lot of
466 * pitfalls. We want this to be preemptible and we want hold a
467 * maximum of two locks per step. So we have to check
468 * carefully whether things change under us.
469 */
470 again:
471 /*
472 * We limit the lock chain length for each invocation.
473 */
474 if (++depth > max_lock_depth) {
475 static int prev_max;
476
477 /*
478 * Print this only once. If the admin changes the limit,
479 * print a new message when reaching the limit again.
480 */
481 if (prev_max != max_lock_depth) {
482 prev_max = max_lock_depth;
483 printk(KERN_WARNING "Maximum lock depth %d reached "
484 "task: %s (%d)\n", max_lock_depth,
485 top_task->comm, task_pid_nr(top_task));
486 }
487 put_task_struct(task);
488
489 return -EDEADLK;
490 }
491
492 /*
493 * We are fully preemptible here and only hold the refcount on
494 * @task. So everything can have changed under us since the
495 * caller or our own code below (goto retry/again) dropped all
496 * locks.
497 */
498 retry:
499 /*
500 * [1] Task cannot go away as we did a get_task() before !
501 */
502 raw_spin_lock_irq(&task->pi_lock);
503
504 /*
505 * [2] Get the waiter on which @task is blocked on.
506 */
507 waiter = task->pi_blocked_on;
508
509 /*
510 * [3] check_exit_conditions_1() protected by task->pi_lock.
511 */
512
513 /*
514 * Check whether the end of the boosting chain has been
515 * reached or the state of the chain has changed while we
516 * dropped the locks.
517 */
518 if (!waiter)
519 goto out_unlock_pi;
520
521 /*
522 * Check the orig_waiter state. After we dropped the locks,
523 * the previous owner of the lock might have released the lock.
524 */
525 if (orig_waiter && !rt_mutex_owner(orig_lock))
526 goto out_unlock_pi;
527
528 /*
529 * We dropped all locks after taking a refcount on @task, so
530 * the task might have moved on in the lock chain or even left
531 * the chain completely and blocks now on an unrelated lock or
532 * on @orig_lock.
533 *
534 * We stored the lock on which @task was blocked in @next_lock,
535 * so we can detect the chain change.
536 */
537 if (next_lock != waiter->lock)
538 goto out_unlock_pi;
539
540 /*
541 * Drop out, when the task has no waiters. Note,
542 * top_waiter can be NULL, when we are in the deboosting
543 * mode!
544 */
545 if (top_waiter) {
546 if (!task_has_pi_waiters(task))
547 goto out_unlock_pi;
548 /*
549 * If deadlock detection is off, we stop here if we
550 * are not the top pi waiter of the task. If deadlock
551 * detection is enabled we continue, but stop the
552 * requeueing in the chain walk.
553 */
554 if (top_waiter != task_top_pi_waiter(task)) {
555 if (!detect_deadlock)
556 goto out_unlock_pi;
557 else
558 requeue = false;
559 }
560 }
561
562 /*
563 * If the waiter priority is the same as the task priority
564 * then there is no further priority adjustment necessary. If
565 * deadlock detection is off, we stop the chain walk. If its
566 * enabled we continue, but stop the requeueing in the chain
567 * walk.
568 */
569 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
570 if (!detect_deadlock)
571 goto out_unlock_pi;
572 else
573 requeue = false;
574 }
575
576 /*
577 * [4] Get the next lock
578 */
579 lock = waiter->lock;
580 /*
581 * [5] We need to trylock here as we are holding task->pi_lock,
582 * which is the reverse lock order versus the other rtmutex
583 * operations.
584 */
585 if (!raw_spin_trylock(&lock->wait_lock)) {
586 raw_spin_unlock_irq(&task->pi_lock);
587 cpu_relax();
588 goto retry;
589 }
590
591 /*
592 * [6] check_exit_conditions_2() protected by task->pi_lock and
593 * lock->wait_lock.
594 *
595 * Deadlock detection. If the lock is the same as the original
596 * lock which caused us to walk the lock chain or if the
597 * current lock is owned by the task which initiated the chain
598 * walk, we detected a deadlock.
599 */
600 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
601 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
602 raw_spin_unlock(&lock->wait_lock);
603 ret = -EDEADLK;
604 goto out_unlock_pi;
605 }
606
607 /*
608 * If we just follow the lock chain for deadlock detection, no
609 * need to do all the requeue operations. To avoid a truckload
610 * of conditionals around the various places below, just do the
611 * minimum chain walk checks.
612 */
613 if (!requeue) {
614 /*
615 * No requeue[7] here. Just release @task [8]
616 */
617 raw_spin_unlock(&task->pi_lock);
618 put_task_struct(task);
619
620 /*
621 * [9] check_exit_conditions_3 protected by lock->wait_lock.
622 * If there is no owner of the lock, end of chain.
623 */
624 if (!rt_mutex_owner(lock)) {
625 raw_spin_unlock_irq(&lock->wait_lock);
626 return 0;
627 }
628
629 /* [10] Grab the next task, i.e. owner of @lock */
630 task = rt_mutex_owner(lock);
631 get_task_struct(task);
632 raw_spin_lock(&task->pi_lock);
633
634 /*
635 * No requeue [11] here. We just do deadlock detection.
636 *
637 * [12] Store whether owner is blocked
638 * itself. Decision is made after dropping the locks
639 */
640 next_lock = task_blocked_on_lock(task);
641 /*
642 * Get the top waiter for the next iteration
643 */
644 top_waiter = rt_mutex_top_waiter(lock);
645
646 /* [13] Drop locks */
647 raw_spin_unlock(&task->pi_lock);
648 raw_spin_unlock_irq(&lock->wait_lock);
649
650 /* If owner is not blocked, end of chain. */
651 if (!next_lock)
652 goto out_put_task;
653 goto again;
654 }
655
656 /*
657 * Store the current top waiter before doing the requeue
658 * operation on @lock. We need it for the boost/deboost
659 * decision below.
660 */
661 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
662
663 /* [7] Requeue the waiter in the lock waiter tree. */
664 rt_mutex_dequeue(lock, waiter);
665
666 /*
667 * Update the waiter prio fields now that we're dequeued.
668 *
669 * These values can have changed through either:
670 *
671 * sys_sched_set_scheduler() / sys_sched_setattr()
672 *
673 * or
674 *
675 * DL CBS enforcement advancing the effective deadline.
676 *
677 * Even though pi_waiters also uses these fields, and that tree is only
678 * updated in [11], we can do this here, since we hold [L], which
679 * serializes all pi_waiters access and rb_erase() does not care about
680 * the values of the node being removed.
681 */
682 waiter->prio = task->prio;
683 waiter->deadline = task->dl.deadline;
684
685 rt_mutex_enqueue(lock, waiter);
686
687 /* [8] Release the task */
688 raw_spin_unlock(&task->pi_lock);
689 put_task_struct(task);
690
691 /*
692 * [9] check_exit_conditions_3 protected by lock->wait_lock.
693 *
694 * We must abort the chain walk if there is no lock owner even
695 * in the dead lock detection case, as we have nothing to
696 * follow here. This is the end of the chain we are walking.
697 */
698 if (!rt_mutex_owner(lock)) {
699 /*
700 * If the requeue [7] above changed the top waiter,
701 * then we need to wake the new top waiter up to try
702 * to get the lock.
703 */
704 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
705 wake_up_process(rt_mutex_top_waiter(lock)->task);
706 raw_spin_unlock_irq(&lock->wait_lock);
707 return 0;
708 }
709
710 /* [10] Grab the next task, i.e. the owner of @lock */
711 task = rt_mutex_owner(lock);
712 get_task_struct(task);
713 raw_spin_lock(&task->pi_lock);
714
715 /* [11] requeue the pi waiters if necessary */
716 if (waiter == rt_mutex_top_waiter(lock)) {
717 /*
718 * The waiter became the new top (highest priority)
719 * waiter on the lock. Replace the previous top waiter
720 * in the owner tasks pi waiters tree with this waiter
721 * and adjust the priority of the owner.
722 */
723 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
724 rt_mutex_enqueue_pi(task, waiter);
725 rt_mutex_adjust_prio(task);
726
727 } else if (prerequeue_top_waiter == waiter) {
728 /*
729 * The waiter was the top waiter on the lock, but is
730 * no longer the top prority waiter. Replace waiter in
731 * the owner tasks pi waiters tree with the new top
732 * (highest priority) waiter and adjust the priority
733 * of the owner.
734 * The new top waiter is stored in @waiter so that
735 * @waiter == @top_waiter evaluates to true below and
736 * we continue to deboost the rest of the chain.
737 */
738 rt_mutex_dequeue_pi(task, waiter);
739 waiter = rt_mutex_top_waiter(lock);
740 rt_mutex_enqueue_pi(task, waiter);
741 rt_mutex_adjust_prio(task);
742 } else {
743 /*
744 * Nothing changed. No need to do any priority
745 * adjustment.
746 */
747 }
748
749 /*
750 * [12] check_exit_conditions_4() protected by task->pi_lock
751 * and lock->wait_lock. The actual decisions are made after we
752 * dropped the locks.
753 *
754 * Check whether the task which owns the current lock is pi
755 * blocked itself. If yes we store a pointer to the lock for
756 * the lock chain change detection above. After we dropped
757 * task->pi_lock next_lock cannot be dereferenced anymore.
758 */
759 next_lock = task_blocked_on_lock(task);
760 /*
761 * Store the top waiter of @lock for the end of chain walk
762 * decision below.
763 */
764 top_waiter = rt_mutex_top_waiter(lock);
765
766 /* [13] Drop the locks */
767 raw_spin_unlock(&task->pi_lock);
768 raw_spin_unlock_irq(&lock->wait_lock);
769
770 /*
771 * Make the actual exit decisions [12], based on the stored
772 * values.
773 *
774 * We reached the end of the lock chain. Stop right here. No
775 * point to go back just to figure that out.
776 */
777 if (!next_lock)
778 goto out_put_task;
779
780 /*
781 * If the current waiter is not the top waiter on the lock,
782 * then we can stop the chain walk here if we are not in full
783 * deadlock detection mode.
784 */
785 if (!detect_deadlock && waiter != top_waiter)
786 goto out_put_task;
787
788 goto again;
789
790 out_unlock_pi:
791 raw_spin_unlock_irq(&task->pi_lock);
792 out_put_task:
793 put_task_struct(task);
794
795 return ret;
796}
797
798/*
799 * Try to take an rt-mutex
800 *
801 * Must be called with lock->wait_lock held and interrupts disabled
802 *
803 * @lock: The lock to be acquired.
804 * @task: The task which wants to acquire the lock
805 * @waiter: The waiter that is queued to the lock's wait tree if the
806 * callsite called task_blocked_on_lock(), otherwise NULL
807 */
808static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
809 struct rt_mutex_waiter *waiter)
810{
811 lockdep_assert_held(&lock->wait_lock);
812
813 /*
814 * Before testing whether we can acquire @lock, we set the
815 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
816 * other tasks which try to modify @lock into the slow path
817 * and they serialize on @lock->wait_lock.
818 *
819 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
820 * as explained at the top of this file if and only if:
821 *
822 * - There is a lock owner. The caller must fixup the
823 * transient state if it does a trylock or leaves the lock
824 * function due to a signal or timeout.
825 *
826 * - @task acquires the lock and there are no other
827 * waiters. This is undone in rt_mutex_set_owner(@task) at
828 * the end of this function.
829 */
830 mark_rt_mutex_waiters(lock);
831
832 /*
833 * If @lock has an owner, give up.
834 */
835 if (rt_mutex_owner(lock))
836 return 0;
837
838 /*
839 * If @waiter != NULL, @task has already enqueued the waiter
840 * into @lock waiter tree. If @waiter == NULL then this is a
841 * trylock attempt.
842 */
843 if (waiter) {
844 /*
845 * If waiter is not the highest priority waiter of
846 * @lock, give up.
847 */
848 if (waiter != rt_mutex_top_waiter(lock))
849 return 0;
850
851 /*
852 * We can acquire the lock. Remove the waiter from the
853 * lock waiters tree.
854 */
855 rt_mutex_dequeue(lock, waiter);
856
857 } else {
858 /*
859 * If the lock has waiters already we check whether @task is
860 * eligible to take over the lock.
861 *
862 * If there are no other waiters, @task can acquire
863 * the lock. @task->pi_blocked_on is NULL, so it does
864 * not need to be dequeued.
865 */
866 if (rt_mutex_has_waiters(lock)) {
867 /*
868 * If @task->prio is greater than or equal to
869 * the top waiter priority (kernel view),
870 * @task lost.
871 */
872 if (!rt_mutex_waiter_less(task_to_waiter(task),
873 rt_mutex_top_waiter(lock)))
874 return 0;
875
876 /*
877 * The current top waiter stays enqueued. We
878 * don't have to change anything in the lock
879 * waiters order.
880 */
881 } else {
882 /*
883 * No waiters. Take the lock without the
884 * pi_lock dance.@task->pi_blocked_on is NULL
885 * and we have no waiters to enqueue in @task
886 * pi waiters tree.
887 */
888 goto takeit;
889 }
890 }
891
892 /*
893 * Clear @task->pi_blocked_on. Requires protection by
894 * @task->pi_lock. Redundant operation for the @waiter == NULL
895 * case, but conditionals are more expensive than a redundant
896 * store.
897 */
898 raw_spin_lock(&task->pi_lock);
899 task->pi_blocked_on = NULL;
900 /*
901 * Finish the lock acquisition. @task is the new owner. If
902 * other waiters exist we have to insert the highest priority
903 * waiter into @task->pi_waiters tree.
904 */
905 if (rt_mutex_has_waiters(lock))
906 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
907 raw_spin_unlock(&task->pi_lock);
908
909takeit:
910 /* We got the lock. */
911 debug_rt_mutex_lock(lock);
912
913 /*
914 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
915 * are still waiters or clears it.
916 */
917 rt_mutex_set_owner(lock, task);
918
919 return 1;
920}
921
922/*
923 * Task blocks on lock.
924 *
925 * Prepare waiter and propagate pi chain
926 *
927 * This must be called with lock->wait_lock held and interrupts disabled
928 */
929static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
930 struct rt_mutex_waiter *waiter,
931 struct task_struct *task,
932 enum rtmutex_chainwalk chwalk)
933{
934 struct task_struct *owner = rt_mutex_owner(lock);
935 struct rt_mutex_waiter *top_waiter = waiter;
936 struct rt_mutex *next_lock;
937 int chain_walk = 0, res;
938
939 lockdep_assert_held(&lock->wait_lock);
940
941 /*
942 * Early deadlock detection. We really don't want the task to
943 * enqueue on itself just to untangle the mess later. It's not
944 * only an optimization. We drop the locks, so another waiter
945 * can come in before the chain walk detects the deadlock. So
946 * the other will detect the deadlock and return -EDEADLOCK,
947 * which is wrong, as the other waiter is not in a deadlock
948 * situation.
949 */
950 if (owner == task)
951 return -EDEADLK;
952
953 raw_spin_lock(&task->pi_lock);
954 waiter->task = task;
955 waiter->lock = lock;
956 waiter->prio = task->prio;
957 waiter->deadline = task->dl.deadline;
958
959 /* Get the top priority waiter on the lock */
960 if (rt_mutex_has_waiters(lock))
961 top_waiter = rt_mutex_top_waiter(lock);
962 rt_mutex_enqueue(lock, waiter);
963
964 task->pi_blocked_on = waiter;
965
966 raw_spin_unlock(&task->pi_lock);
967
968 if (!owner)
969 return 0;
970
971 raw_spin_lock(&owner->pi_lock);
972 if (waiter == rt_mutex_top_waiter(lock)) {
973 rt_mutex_dequeue_pi(owner, top_waiter);
974 rt_mutex_enqueue_pi(owner, waiter);
975
976 rt_mutex_adjust_prio(owner);
977 if (owner->pi_blocked_on)
978 chain_walk = 1;
979 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
980 chain_walk = 1;
981 }
982
983 /* Store the lock on which owner is blocked or NULL */
984 next_lock = task_blocked_on_lock(owner);
985
986 raw_spin_unlock(&owner->pi_lock);
987 /*
988 * Even if full deadlock detection is on, if the owner is not
989 * blocked itself, we can avoid finding this out in the chain
990 * walk.
991 */
992 if (!chain_walk || !next_lock)
993 return 0;
994
995 /*
996 * The owner can't disappear while holding a lock,
997 * so the owner struct is protected by wait_lock.
998 * Gets dropped in rt_mutex_adjust_prio_chain()!
999 */
1000 get_task_struct(owner);
1001
1002 raw_spin_unlock_irq(&lock->wait_lock);
1003
1004 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1005 next_lock, waiter, task);
1006
1007 raw_spin_lock_irq(&lock->wait_lock);
1008
1009 return res;
1010}
1011
1012/*
1013 * Remove the top waiter from the current tasks pi waiter tree and
1014 * queue it up.
1015 *
1016 * Called with lock->wait_lock held and interrupts disabled.
1017 */
1018static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1019 struct rt_mutex *lock)
1020{
1021 struct rt_mutex_waiter *waiter;
1022
1023 raw_spin_lock(¤t->pi_lock);
1024
1025 waiter = rt_mutex_top_waiter(lock);
1026
1027 /*
1028 * Remove it from current->pi_waiters and deboost.
1029 *
1030 * We must in fact deboost here in order to ensure we call
1031 * rt_mutex_setprio() to update p->pi_top_task before the
1032 * task unblocks.
1033 */
1034 rt_mutex_dequeue_pi(current, waiter);
1035 rt_mutex_adjust_prio(current);
1036
1037 /*
1038 * As we are waking up the top waiter, and the waiter stays
1039 * queued on the lock until it gets the lock, this lock
1040 * obviously has waiters. Just set the bit here and this has
1041 * the added benefit of forcing all new tasks into the
1042 * slow path making sure no task of lower priority than
1043 * the top waiter can steal this lock.
1044 */
1045 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1046
1047 /*
1048 * We deboosted before waking the top waiter task such that we don't
1049 * run two tasks with the 'same' priority (and ensure the
1050 * p->pi_top_task pointer points to a blocked task). This however can
1051 * lead to priority inversion if we would get preempted after the
1052 * deboost but before waking our donor task, hence the preempt_disable()
1053 * before unlock.
1054 *
1055 * Pairs with preempt_enable() in rt_mutex_postunlock();
1056 */
1057 preempt_disable();
1058 wake_q_add(wake_q, waiter->task);
1059 raw_spin_unlock(¤t->pi_lock);
1060}
1061
1062/*
1063 * Remove a waiter from a lock and give up
1064 *
1065 * Must be called with lock->wait_lock held and interrupts disabled. I must
1066 * have just failed to try_to_take_rt_mutex().
1067 */
1068static void remove_waiter(struct rt_mutex *lock,
1069 struct rt_mutex_waiter *waiter)
1070{
1071 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1072 struct task_struct *owner = rt_mutex_owner(lock);
1073 struct rt_mutex *next_lock;
1074
1075 lockdep_assert_held(&lock->wait_lock);
1076
1077 raw_spin_lock(¤t->pi_lock);
1078 rt_mutex_dequeue(lock, waiter);
1079 current->pi_blocked_on = NULL;
1080 raw_spin_unlock(¤t->pi_lock);
1081
1082 /*
1083 * Only update priority if the waiter was the highest priority
1084 * waiter of the lock and there is an owner to update.
1085 */
1086 if (!owner || !is_top_waiter)
1087 return;
1088
1089 raw_spin_lock(&owner->pi_lock);
1090
1091 rt_mutex_dequeue_pi(owner, waiter);
1092
1093 if (rt_mutex_has_waiters(lock))
1094 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1095
1096 rt_mutex_adjust_prio(owner);
1097
1098 /* Store the lock on which owner is blocked or NULL */
1099 next_lock = task_blocked_on_lock(owner);
1100
1101 raw_spin_unlock(&owner->pi_lock);
1102
1103 /*
1104 * Don't walk the chain, if the owner task is not blocked
1105 * itself.
1106 */
1107 if (!next_lock)
1108 return;
1109
1110 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1111 get_task_struct(owner);
1112
1113 raw_spin_unlock_irq(&lock->wait_lock);
1114
1115 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1116 next_lock, NULL, current);
1117
1118 raw_spin_lock_irq(&lock->wait_lock);
1119}
1120
1121/*
1122 * Recheck the pi chain, in case we got a priority setting
1123 *
1124 * Called from sched_setscheduler
1125 */
1126void rt_mutex_adjust_pi(struct task_struct *task)
1127{
1128 struct rt_mutex_waiter *waiter;
1129 struct rt_mutex *next_lock;
1130 unsigned long flags;
1131
1132 raw_spin_lock_irqsave(&task->pi_lock, flags);
1133
1134 waiter = task->pi_blocked_on;
1135 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1136 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1137 return;
1138 }
1139 next_lock = waiter->lock;
1140 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1141
1142 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1143 get_task_struct(task);
1144
1145 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1146 next_lock, NULL, task);
1147}
1148
1149void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1150{
1151 debug_rt_mutex_init_waiter(waiter);
1152 RB_CLEAR_NODE(&waiter->pi_tree_entry);
1153 RB_CLEAR_NODE(&waiter->tree_entry);
1154 waiter->task = NULL;
1155}
1156
1157/**
1158 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1159 * @lock: the rt_mutex to take
1160 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1161 * or TASK_UNINTERRUPTIBLE)
1162 * @timeout: the pre-initialized and started timer, or NULL for none
1163 * @waiter: the pre-initialized rt_mutex_waiter
1164 *
1165 * Must be called with lock->wait_lock held and interrupts disabled
1166 */
1167static int __sched
1168__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1169 struct hrtimer_sleeper *timeout,
1170 struct rt_mutex_waiter *waiter)
1171{
1172 int ret = 0;
1173
1174 for (;;) {
1175 /* Try to acquire the lock: */
1176 if (try_to_take_rt_mutex(lock, current, waiter))
1177 break;
1178
1179 /*
1180 * TASK_INTERRUPTIBLE checks for signals and
1181 * timeout. Ignored otherwise.
1182 */
1183 if (likely(state == TASK_INTERRUPTIBLE)) {
1184 /* Signal pending? */
1185 if (signal_pending(current))
1186 ret = -EINTR;
1187 if (timeout && !timeout->task)
1188 ret = -ETIMEDOUT;
1189 if (ret)
1190 break;
1191 }
1192
1193 raw_spin_unlock_irq(&lock->wait_lock);
1194
1195 debug_rt_mutex_print_deadlock(waiter);
1196
1197 schedule();
1198
1199 raw_spin_lock_irq(&lock->wait_lock);
1200 set_current_state(state);
1201 }
1202
1203 __set_current_state(TASK_RUNNING);
1204 return ret;
1205}
1206
1207static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1208 struct rt_mutex_waiter *w)
1209{
1210 /*
1211 * If the result is not -EDEADLOCK or the caller requested
1212 * deadlock detection, nothing to do here.
1213 */
1214 if (res != -EDEADLOCK || detect_deadlock)
1215 return;
1216
1217 /*
1218 * Yell lowdly and stop the task right here.
1219 */
1220 rt_mutex_print_deadlock(w);
1221 while (1) {
1222 set_current_state(TASK_INTERRUPTIBLE);
1223 schedule();
1224 }
1225}
1226
1227/*
1228 * Slow path lock function:
1229 */
1230static int __sched
1231rt_mutex_slowlock(struct rt_mutex *lock, int state,
1232 struct hrtimer_sleeper *timeout,
1233 enum rtmutex_chainwalk chwalk)
1234{
1235 struct rt_mutex_waiter waiter;
1236 unsigned long flags;
1237 int ret = 0;
1238
1239 rt_mutex_init_waiter(&waiter);
1240
1241 /*
1242 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1243 * be called in early boot if the cmpxchg() fast path is disabled
1244 * (debug, no architecture support). In this case we will acquire the
1245 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1246 * enable interrupts in that early boot case. So we need to use the
1247 * irqsave/restore variants.
1248 */
1249 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1250
1251 /* Try to acquire the lock again: */
1252 if (try_to_take_rt_mutex(lock, current, NULL)) {
1253 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1254 return 0;
1255 }
1256
1257 set_current_state(state);
1258
1259 /* Setup the timer, when timeout != NULL */
1260 if (unlikely(timeout))
1261 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1262
1263 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1264
1265 if (likely(!ret))
1266 /* sleep on the mutex */
1267 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1268
1269 if (unlikely(ret)) {
1270 __set_current_state(TASK_RUNNING);
1271 remove_waiter(lock, &waiter);
1272 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1273 }
1274
1275 /*
1276 * try_to_take_rt_mutex() sets the waiter bit
1277 * unconditionally. We might have to fix that up.
1278 */
1279 fixup_rt_mutex_waiters(lock);
1280
1281 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1282
1283 /* Remove pending timer: */
1284 if (unlikely(timeout))
1285 hrtimer_cancel(&timeout->timer);
1286
1287 debug_rt_mutex_free_waiter(&waiter);
1288
1289 return ret;
1290}
1291
1292static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1293{
1294 int ret = try_to_take_rt_mutex(lock, current, NULL);
1295
1296 /*
1297 * try_to_take_rt_mutex() sets the lock waiters bit
1298 * unconditionally. Clean this up.
1299 */
1300 fixup_rt_mutex_waiters(lock);
1301
1302 return ret;
1303}
1304
1305/*
1306 * Slow path try-lock function:
1307 */
1308static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1309{
1310 unsigned long flags;
1311 int ret;
1312
1313 /*
1314 * If the lock already has an owner we fail to get the lock.
1315 * This can be done without taking the @lock->wait_lock as
1316 * it is only being read, and this is a trylock anyway.
1317 */
1318 if (rt_mutex_owner(lock))
1319 return 0;
1320
1321 /*
1322 * The mutex has currently no owner. Lock the wait lock and try to
1323 * acquire the lock. We use irqsave here to support early boot calls.
1324 */
1325 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1326
1327 ret = __rt_mutex_slowtrylock(lock);
1328
1329 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1330
1331 return ret;
1332}
1333
1334/*
1335 * Slow path to release a rt-mutex.
1336 *
1337 * Return whether the current task needs to call rt_mutex_postunlock().
1338 */
1339static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1340 struct wake_q_head *wake_q)
1341{
1342 unsigned long flags;
1343
1344 /* irqsave required to support early boot calls */
1345 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1346
1347 debug_rt_mutex_unlock(lock);
1348
1349 /*
1350 * We must be careful here if the fast path is enabled. If we
1351 * have no waiters queued we cannot set owner to NULL here
1352 * because of:
1353 *
1354 * foo->lock->owner = NULL;
1355 * rtmutex_lock(foo->lock); <- fast path
1356 * free = atomic_dec_and_test(foo->refcnt);
1357 * rtmutex_unlock(foo->lock); <- fast path
1358 * if (free)
1359 * kfree(foo);
1360 * raw_spin_unlock(foo->lock->wait_lock);
1361 *
1362 * So for the fastpath enabled kernel:
1363 *
1364 * Nothing can set the waiters bit as long as we hold
1365 * lock->wait_lock. So we do the following sequence:
1366 *
1367 * owner = rt_mutex_owner(lock);
1368 * clear_rt_mutex_waiters(lock);
1369 * raw_spin_unlock(&lock->wait_lock);
1370 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1371 * return;
1372 * goto retry;
1373 *
1374 * The fastpath disabled variant is simple as all access to
1375 * lock->owner is serialized by lock->wait_lock:
1376 *
1377 * lock->owner = NULL;
1378 * raw_spin_unlock(&lock->wait_lock);
1379 */
1380 while (!rt_mutex_has_waiters(lock)) {
1381 /* Drops lock->wait_lock ! */
1382 if (unlock_rt_mutex_safe(lock, flags) == true)
1383 return false;
1384 /* Relock the rtmutex and try again */
1385 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1386 }
1387
1388 /*
1389 * The wakeup next waiter path does not suffer from the above
1390 * race. See the comments there.
1391 *
1392 * Queue the next waiter for wakeup once we release the wait_lock.
1393 */
1394 mark_wakeup_next_waiter(wake_q, lock);
1395 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1396
1397 return true; /* call rt_mutex_postunlock() */
1398}
1399
1400/*
1401 * debug aware fast / slowpath lock,trylock,unlock
1402 *
1403 * The atomic acquire/release ops are compiled away, when either the
1404 * architecture does not support cmpxchg or when debugging is enabled.
1405 */
1406static inline int
1407rt_mutex_fastlock(struct rt_mutex *lock, int state,
1408 int (*slowfn)(struct rt_mutex *lock, int state,
1409 struct hrtimer_sleeper *timeout,
1410 enum rtmutex_chainwalk chwalk))
1411{
1412 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1413 return 0;
1414
1415 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1416}
1417
1418static inline int
1419rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1420 struct hrtimer_sleeper *timeout,
1421 enum rtmutex_chainwalk chwalk,
1422 int (*slowfn)(struct rt_mutex *lock, int state,
1423 struct hrtimer_sleeper *timeout,
1424 enum rtmutex_chainwalk chwalk))
1425{
1426 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1427 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1428 return 0;
1429
1430 return slowfn(lock, state, timeout, chwalk);
1431}
1432
1433static inline int
1434rt_mutex_fasttrylock(struct rt_mutex *lock,
1435 int (*slowfn)(struct rt_mutex *lock))
1436{
1437 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1438 return 1;
1439
1440 return slowfn(lock);
1441}
1442
1443/*
1444 * Performs the wakeup of the the top-waiter and re-enables preemption.
1445 */
1446void rt_mutex_postunlock(struct wake_q_head *wake_q)
1447{
1448 wake_up_q(wake_q);
1449
1450 /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1451 preempt_enable();
1452}
1453
1454static inline void
1455rt_mutex_fastunlock(struct rt_mutex *lock,
1456 bool (*slowfn)(struct rt_mutex *lock,
1457 struct wake_q_head *wqh))
1458{
1459 DEFINE_WAKE_Q(wake_q);
1460
1461 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1462 return;
1463
1464 if (slowfn(lock, &wake_q))
1465 rt_mutex_postunlock(&wake_q);
1466}
1467
1468/**
1469 * rt_mutex_lock - lock a rt_mutex
1470 *
1471 * @lock: the rt_mutex to be locked
1472 */
1473void __sched rt_mutex_lock(struct rt_mutex *lock)
1474{
1475 might_sleep();
1476
1477 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1478 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1479}
1480EXPORT_SYMBOL_GPL(rt_mutex_lock);
1481
1482/**
1483 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1484 *
1485 * @lock: the rt_mutex to be locked
1486 *
1487 * Returns:
1488 * 0 on success
1489 * -EINTR when interrupted by a signal
1490 */
1491int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1492{
1493 int ret;
1494
1495 might_sleep();
1496
1497 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1498 ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1499 if (ret)
1500 mutex_release(&lock->dep_map, 1, _RET_IP_);
1501
1502 return ret;
1503}
1504EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1505
1506/*
1507 * Futex variant, must not use fastpath.
1508 */
1509int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1510{
1511 return rt_mutex_slowtrylock(lock);
1512}
1513
1514int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1515{
1516 return __rt_mutex_slowtrylock(lock);
1517}
1518
1519/**
1520 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1521 * the timeout structure is provided
1522 * by the caller
1523 *
1524 * @lock: the rt_mutex to be locked
1525 * @timeout: timeout structure or NULL (no timeout)
1526 *
1527 * Returns:
1528 * 0 on success
1529 * -EINTR when interrupted by a signal
1530 * -ETIMEDOUT when the timeout expired
1531 */
1532int
1533rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1534{
1535 int ret;
1536
1537 might_sleep();
1538
1539 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1540 ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1541 RT_MUTEX_MIN_CHAINWALK,
1542 rt_mutex_slowlock);
1543 if (ret)
1544 mutex_release(&lock->dep_map, 1, _RET_IP_);
1545
1546 return ret;
1547}
1548EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1549
1550/**
1551 * rt_mutex_trylock - try to lock a rt_mutex
1552 *
1553 * @lock: the rt_mutex to be locked
1554 *
1555 * This function can only be called in thread context. It's safe to
1556 * call it from atomic regions, but not from hard interrupt or soft
1557 * interrupt context.
1558 *
1559 * Returns 1 on success and 0 on contention
1560 */
1561int __sched rt_mutex_trylock(struct rt_mutex *lock)
1562{
1563 int ret;
1564
1565 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1566 return 0;
1567
1568 ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1569 if (ret)
1570 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1571
1572 return ret;
1573}
1574EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1575
1576/**
1577 * rt_mutex_unlock - unlock a rt_mutex
1578 *
1579 * @lock: the rt_mutex to be unlocked
1580 */
1581void __sched rt_mutex_unlock(struct rt_mutex *lock)
1582{
1583 mutex_release(&lock->dep_map, 1, _RET_IP_);
1584 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1585}
1586EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1587
1588/**
1589 * Futex variant, that since futex variants do not use the fast-path, can be
1590 * simple and will not need to retry.
1591 */
1592bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1593 struct wake_q_head *wake_q)
1594{
1595 lockdep_assert_held(&lock->wait_lock);
1596
1597 debug_rt_mutex_unlock(lock);
1598
1599 if (!rt_mutex_has_waiters(lock)) {
1600 lock->owner = NULL;
1601 return false; /* done */
1602 }
1603
1604 /*
1605 * We've already deboosted, mark_wakeup_next_waiter() will
1606 * retain preempt_disabled when we drop the wait_lock, to
1607 * avoid inversion prior to the wakeup. preempt_disable()
1608 * therein pairs with rt_mutex_postunlock().
1609 */
1610 mark_wakeup_next_waiter(wake_q, lock);
1611
1612 return true; /* call postunlock() */
1613}
1614
1615void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1616{
1617 DEFINE_WAKE_Q(wake_q);
1618 unsigned long flags;
1619 bool postunlock;
1620
1621 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1622 postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1623 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1624
1625 if (postunlock)
1626 rt_mutex_postunlock(&wake_q);
1627}
1628
1629/**
1630 * rt_mutex_destroy - mark a mutex unusable
1631 * @lock: the mutex to be destroyed
1632 *
1633 * This function marks the mutex uninitialized, and any subsequent
1634 * use of the mutex is forbidden. The mutex must not be locked when
1635 * this function is called.
1636 */
1637void rt_mutex_destroy(struct rt_mutex *lock)
1638{
1639 WARN_ON(rt_mutex_is_locked(lock));
1640#ifdef CONFIG_DEBUG_RT_MUTEXES
1641 lock->magic = NULL;
1642#endif
1643}
1644EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1645
1646/**
1647 * __rt_mutex_init - initialize the rt lock
1648 *
1649 * @lock: the rt lock to be initialized
1650 *
1651 * Initialize the rt lock to unlocked state.
1652 *
1653 * Initializing of a locked rt lock is not allowed
1654 */
1655void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1656 struct lock_class_key *key)
1657{
1658 lock->owner = NULL;
1659 raw_spin_lock_init(&lock->wait_lock);
1660 lock->waiters = RB_ROOT_CACHED;
1661
1662 if (name && key)
1663 debug_rt_mutex_init(lock, name, key);
1664}
1665EXPORT_SYMBOL_GPL(__rt_mutex_init);
1666
1667/**
1668 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1669 * proxy owner
1670 *
1671 * @lock: the rt_mutex to be locked
1672 * @proxy_owner:the task to set as owner
1673 *
1674 * No locking. Caller has to do serializing itself
1675 *
1676 * Special API call for PI-futex support. This initializes the rtmutex and
1677 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1678 * possible at this point because the pi_state which contains the rtmutex
1679 * is not yet visible to other tasks.
1680 */
1681void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1682 struct task_struct *proxy_owner)
1683{
1684 __rt_mutex_init(lock, NULL, NULL);
1685 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1686 rt_mutex_set_owner(lock, proxy_owner);
1687}
1688
1689/**
1690 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1691 *
1692 * @lock: the rt_mutex to be locked
1693 *
1694 * No locking. Caller has to do serializing itself
1695 *
1696 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1697 * (debugging) state. Concurrent operations on this rt_mutex are not
1698 * possible because it belongs to the pi_state which is about to be freed
1699 * and it is not longer visible to other tasks.
1700 */
1701void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1702 struct task_struct *proxy_owner)
1703{
1704 debug_rt_mutex_proxy_unlock(lock);
1705 rt_mutex_set_owner(lock, NULL);
1706}
1707
1708int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1709 struct rt_mutex_waiter *waiter,
1710 struct task_struct *task)
1711{
1712 int ret;
1713
1714 if (try_to_take_rt_mutex(lock, task, NULL))
1715 return 1;
1716
1717 /* We enforce deadlock detection for futexes */
1718 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1719 RT_MUTEX_FULL_CHAINWALK);
1720
1721 if (ret && !rt_mutex_owner(lock)) {
1722 /*
1723 * Reset the return value. We might have
1724 * returned with -EDEADLK and the owner
1725 * released the lock while we were walking the
1726 * pi chain. Let the waiter sort it out.
1727 */
1728 ret = 0;
1729 }
1730
1731 if (unlikely(ret))
1732 remove_waiter(lock, waiter);
1733
1734 debug_rt_mutex_print_deadlock(waiter);
1735
1736 return ret;
1737}
1738
1739/**
1740 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1741 * @lock: the rt_mutex to take
1742 * @waiter: the pre-initialized rt_mutex_waiter
1743 * @task: the task to prepare
1744 *
1745 * Returns:
1746 * 0 - task blocked on lock
1747 * 1 - acquired the lock for task, caller should wake it up
1748 * <0 - error
1749 *
1750 * Special API call for FUTEX_REQUEUE_PI support.
1751 */
1752int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1753 struct rt_mutex_waiter *waiter,
1754 struct task_struct *task)
1755{
1756 int ret;
1757
1758 raw_spin_lock_irq(&lock->wait_lock);
1759 ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1760 raw_spin_unlock_irq(&lock->wait_lock);
1761
1762 return ret;
1763}
1764
1765/**
1766 * rt_mutex_next_owner - return the next owner of the lock
1767 *
1768 * @lock: the rt lock query
1769 *
1770 * Returns the next owner of the lock or NULL
1771 *
1772 * Caller has to serialize against other accessors to the lock
1773 * itself.
1774 *
1775 * Special API call for PI-futex support
1776 */
1777struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1778{
1779 if (!rt_mutex_has_waiters(lock))
1780 return NULL;
1781
1782 return rt_mutex_top_waiter(lock)->task;
1783}
1784
1785/**
1786 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1787 * @lock: the rt_mutex we were woken on
1788 * @to: the timeout, null if none. hrtimer should already have
1789 * been started.
1790 * @waiter: the pre-initialized rt_mutex_waiter
1791 *
1792 * Wait for the the lock acquisition started on our behalf by
1793 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1794 * rt_mutex_cleanup_proxy_lock().
1795 *
1796 * Returns:
1797 * 0 - success
1798 * <0 - error, one of -EINTR, -ETIMEDOUT
1799 *
1800 * Special API call for PI-futex support
1801 */
1802int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1803 struct hrtimer_sleeper *to,
1804 struct rt_mutex_waiter *waiter)
1805{
1806 int ret;
1807
1808 raw_spin_lock_irq(&lock->wait_lock);
1809 /* sleep on the mutex */
1810 set_current_state(TASK_INTERRUPTIBLE);
1811 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1812 /*
1813 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1814 * have to fix that up.
1815 */
1816 fixup_rt_mutex_waiters(lock);
1817 raw_spin_unlock_irq(&lock->wait_lock);
1818
1819 return ret;
1820}
1821
1822/**
1823 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1824 * @lock: the rt_mutex we were woken on
1825 * @waiter: the pre-initialized rt_mutex_waiter
1826 *
1827 * Attempt to clean up after a failed rt_mutex_wait_proxy_lock().
1828 *
1829 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1830 * in fact still be granted ownership until we're removed. Therefore we can
1831 * find we are in fact the owner and must disregard the
1832 * rt_mutex_wait_proxy_lock() failure.
1833 *
1834 * Returns:
1835 * true - did the cleanup, we done.
1836 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1837 * caller should disregards its return value.
1838 *
1839 * Special API call for PI-futex support
1840 */
1841bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1842 struct rt_mutex_waiter *waiter)
1843{
1844 bool cleanup = false;
1845
1846 raw_spin_lock_irq(&lock->wait_lock);
1847 /*
1848 * Do an unconditional try-lock, this deals with the lock stealing
1849 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1850 * sets a NULL owner.
1851 *
1852 * We're not interested in the return value, because the subsequent
1853 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1854 * we will own the lock and it will have removed the waiter. If we
1855 * failed the trylock, we're still not owner and we need to remove
1856 * ourselves.
1857 */
1858 try_to_take_rt_mutex(lock, current, waiter);
1859 /*
1860 * Unless we're the owner; we're still enqueued on the wait_list.
1861 * So check if we became owner, if not, take us off the wait_list.
1862 */
1863 if (rt_mutex_owner(lock) != current) {
1864 remove_waiter(lock, waiter);
1865 cleanup = true;
1866 }
1867 /*
1868 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1869 * have to fix that up.
1870 */
1871 fixup_rt_mutex_waiters(lock);
1872
1873 raw_spin_unlock_irq(&lock->wait_lock);
1874
1875 return cleanup;
1876}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
11 *
12 * See Documentation/locking/rt-mutex-design.rst for details.
13 */
14#include <linux/spinlock.h>
15#include <linux/export.h>
16#include <linux/sched/signal.h>
17#include <linux/sched/rt.h>
18#include <linux/sched/deadline.h>
19#include <linux/sched/wake_q.h>
20#include <linux/sched/debug.h>
21#include <linux/timer.h>
22
23#include "rtmutex_common.h"
24
25/*
26 * lock->owner state tracking:
27 *
28 * lock->owner holds the task_struct pointer of the owner. Bit 0
29 * is used to keep track of the "lock has waiters" state.
30 *
31 * owner bit0
32 * NULL 0 lock is free (fast acquire possible)
33 * NULL 1 lock is free and has waiters and the top waiter
34 * is going to take the lock*
35 * taskpointer 0 lock is held (fast release possible)
36 * taskpointer 1 lock is held and has waiters**
37 *
38 * The fast atomic compare exchange based acquire and release is only
39 * possible when bit 0 of lock->owner is 0.
40 *
41 * (*) It also can be a transitional state when grabbing the lock
42 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43 * we need to set the bit0 before looking at the lock, and the owner may be
44 * NULL in this small time, hence this can be a transitional state.
45 *
46 * (**) There is a small time when bit 0 is set but there are no
47 * waiters. This can happen when grabbing the lock in the slow path.
48 * To prevent a cmpxchg of the owner releasing the lock, we need to
49 * set this bit before looking at the lock.
50 */
51
52static void
53rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
54{
55 unsigned long val = (unsigned long)owner;
56
57 if (rt_mutex_has_waiters(lock))
58 val |= RT_MUTEX_HAS_WAITERS;
59
60 WRITE_ONCE(lock->owner, (struct task_struct *)val);
61}
62
63static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64{
65 lock->owner = (struct task_struct *)
66 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67}
68
69static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70{
71 unsigned long owner, *p = (unsigned long *) &lock->owner;
72
73 if (rt_mutex_has_waiters(lock))
74 return;
75
76 /*
77 * The rbtree has no waiters enqueued, now make sure that the
78 * lock->owner still has the waiters bit set, otherwise the
79 * following can happen:
80 *
81 * CPU 0 CPU 1 CPU2
82 * l->owner=T1
83 * rt_mutex_lock(l)
84 * lock(l->lock)
85 * l->owner = T1 | HAS_WAITERS;
86 * enqueue(T2)
87 * boost()
88 * unlock(l->lock)
89 * block()
90 *
91 * rt_mutex_lock(l)
92 * lock(l->lock)
93 * l->owner = T1 | HAS_WAITERS;
94 * enqueue(T3)
95 * boost()
96 * unlock(l->lock)
97 * block()
98 * signal(->T2) signal(->T3)
99 * lock(l->lock)
100 * dequeue(T2)
101 * deboost()
102 * unlock(l->lock)
103 * lock(l->lock)
104 * dequeue(T3)
105 * ==> wait list is empty
106 * deboost()
107 * unlock(l->lock)
108 * lock(l->lock)
109 * fixup_rt_mutex_waiters()
110 * if (wait_list_empty(l) {
111 * l->owner = owner
112 * owner = l->owner & ~HAS_WAITERS;
113 * ==> l->owner = T1
114 * }
115 * lock(l->lock)
116 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
117 * if (wait_list_empty(l) {
118 * owner = l->owner & ~HAS_WAITERS;
119 * cmpxchg(l->owner, T1, NULL)
120 * ===> Success (l->owner = NULL)
121 *
122 * l->owner = owner
123 * ==> l->owner = T1
124 * }
125 *
126 * With the check for the waiter bit in place T3 on CPU2 will not
127 * overwrite. All tasks fiddling with the waiters bit are
128 * serialized by l->lock, so nothing else can modify the waiters
129 * bit. If the bit is set then nothing can change l->owner either
130 * so the simple RMW is safe. The cmpxchg() will simply fail if it
131 * happens in the middle of the RMW because the waiters bit is
132 * still set.
133 */
134 owner = READ_ONCE(*p);
135 if (owner & RT_MUTEX_HAS_WAITERS)
136 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
137}
138
139/*
140 * We can speed up the acquire/release, if there's no debugging state to be
141 * set up.
142 */
143#ifndef CONFIG_DEBUG_RT_MUTEXES
144# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146
147/*
148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150 * relaxed semantics suffice.
151 */
152static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153{
154 unsigned long owner, *p = (unsigned long *) &lock->owner;
155
156 do {
157 owner = *p;
158 } while (cmpxchg_relaxed(p, owner,
159 owner | RT_MUTEX_HAS_WAITERS) != owner);
160}
161
162/*
163 * Safe fastpath aware unlock:
164 * 1) Clear the waiters bit
165 * 2) Drop lock->wait_lock
166 * 3) Try to unlock the lock with cmpxchg
167 */
168static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 unsigned long flags)
170 __releases(lock->wait_lock)
171{
172 struct task_struct *owner = rt_mutex_owner(lock);
173
174 clear_rt_mutex_waiters(lock);
175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 /*
177 * If a new waiter comes in between the unlock and the cmpxchg
178 * we have two situations:
179 *
180 * unlock(wait_lock);
181 * lock(wait_lock);
182 * cmpxchg(p, owner, 0) == owner
183 * mark_rt_mutex_waiters(lock);
184 * acquire(lock);
185 * or:
186 *
187 * unlock(wait_lock);
188 * lock(wait_lock);
189 * mark_rt_mutex_waiters(lock);
190 *
191 * cmpxchg(p, owner, 0) != owner
192 * enqueue_waiter();
193 * unlock(wait_lock);
194 * lock(wait_lock);
195 * wake waiter();
196 * unlock(wait_lock);
197 * lock(wait_lock);
198 * acquire(lock);
199 */
200 return rt_mutex_cmpxchg_release(lock, owner, NULL);
201}
202
203#else
204# define rt_mutex_cmpxchg_acquire(l,c,n) (0)
205# define rt_mutex_cmpxchg_release(l,c,n) (0)
206
207static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
208{
209 lock->owner = (struct task_struct *)
210 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
211}
212
213/*
214 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
215 */
216static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
217 unsigned long flags)
218 __releases(lock->wait_lock)
219{
220 lock->owner = NULL;
221 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
222 return true;
223}
224#endif
225
226/*
227 * Only use with rt_mutex_waiter_{less,equal}()
228 */
229#define task_to_waiter(p) \
230 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
231
232static inline int
233rt_mutex_waiter_less(struct rt_mutex_waiter *left,
234 struct rt_mutex_waiter *right)
235{
236 if (left->prio < right->prio)
237 return 1;
238
239 /*
240 * If both waiters have dl_prio(), we check the deadlines of the
241 * associated tasks.
242 * If left waiter has a dl_prio(), and we didn't return 1 above,
243 * then right waiter has a dl_prio() too.
244 */
245 if (dl_prio(left->prio))
246 return dl_time_before(left->deadline, right->deadline);
247
248 return 0;
249}
250
251static inline int
252rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
253 struct rt_mutex_waiter *right)
254{
255 if (left->prio != right->prio)
256 return 0;
257
258 /*
259 * If both waiters have dl_prio(), we check the deadlines of the
260 * associated tasks.
261 * If left waiter has a dl_prio(), and we didn't return 0 above,
262 * then right waiter has a dl_prio() too.
263 */
264 if (dl_prio(left->prio))
265 return left->deadline == right->deadline;
266
267 return 1;
268}
269
270static void
271rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
272{
273 struct rb_node **link = &lock->waiters.rb_root.rb_node;
274 struct rb_node *parent = NULL;
275 struct rt_mutex_waiter *entry;
276 bool leftmost = true;
277
278 while (*link) {
279 parent = *link;
280 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
281 if (rt_mutex_waiter_less(waiter, entry)) {
282 link = &parent->rb_left;
283 } else {
284 link = &parent->rb_right;
285 leftmost = false;
286 }
287 }
288
289 rb_link_node(&waiter->tree_entry, parent, link);
290 rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
291}
292
293static void
294rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
295{
296 if (RB_EMPTY_NODE(&waiter->tree_entry))
297 return;
298
299 rb_erase_cached(&waiter->tree_entry, &lock->waiters);
300 RB_CLEAR_NODE(&waiter->tree_entry);
301}
302
303static void
304rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
305{
306 struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
307 struct rb_node *parent = NULL;
308 struct rt_mutex_waiter *entry;
309 bool leftmost = true;
310
311 while (*link) {
312 parent = *link;
313 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
314 if (rt_mutex_waiter_less(waiter, entry)) {
315 link = &parent->rb_left;
316 } else {
317 link = &parent->rb_right;
318 leftmost = false;
319 }
320 }
321
322 rb_link_node(&waiter->pi_tree_entry, parent, link);
323 rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
324}
325
326static void
327rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
328{
329 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
330 return;
331
332 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
333 RB_CLEAR_NODE(&waiter->pi_tree_entry);
334}
335
336static void rt_mutex_adjust_prio(struct task_struct *p)
337{
338 struct task_struct *pi_task = NULL;
339
340 lockdep_assert_held(&p->pi_lock);
341
342 if (task_has_pi_waiters(p))
343 pi_task = task_top_pi_waiter(p)->task;
344
345 rt_mutex_setprio(p, pi_task);
346}
347
348/*
349 * Deadlock detection is conditional:
350 *
351 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
352 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
353 *
354 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
355 * conducted independent of the detect argument.
356 *
357 * If the waiter argument is NULL this indicates the deboost path and
358 * deadlock detection is disabled independent of the detect argument
359 * and the config settings.
360 */
361static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
362 enum rtmutex_chainwalk chwalk)
363{
364 /*
365 * This is just a wrapper function for the following call,
366 * because debug_rt_mutex_detect_deadlock() smells like a magic
367 * debug feature and I wanted to keep the cond function in the
368 * main source file along with the comments instead of having
369 * two of the same in the headers.
370 */
371 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
372}
373
374/*
375 * Max number of times we'll walk the boosting chain:
376 */
377int max_lock_depth = 1024;
378
379static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
380{
381 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
382}
383
384/*
385 * Adjust the priority chain. Also used for deadlock detection.
386 * Decreases task's usage by one - may thus free the task.
387 *
388 * @task: the task owning the mutex (owner) for which a chain walk is
389 * probably needed
390 * @chwalk: do we have to carry out deadlock detection?
391 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
392 * things for a task that has just got its priority adjusted, and
393 * is waiting on a mutex)
394 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
395 * we dropped its pi_lock. Is never dereferenced, only used for
396 * comparison to detect lock chain changes.
397 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
398 * its priority to the mutex owner (can be NULL in the case
399 * depicted above or if the top waiter is gone away and we are
400 * actually deboosting the owner)
401 * @top_task: the current top waiter
402 *
403 * Returns 0 or -EDEADLK.
404 *
405 * Chain walk basics and protection scope
406 *
407 * [R] refcount on task
408 * [P] task->pi_lock held
409 * [L] rtmutex->wait_lock held
410 *
411 * Step Description Protected by
412 * function arguments:
413 * @task [R]
414 * @orig_lock if != NULL @top_task is blocked on it
415 * @next_lock Unprotected. Cannot be
416 * dereferenced. Only used for
417 * comparison.
418 * @orig_waiter if != NULL @top_task is blocked on it
419 * @top_task current, or in case of proxy
420 * locking protected by calling
421 * code
422 * again:
423 * loop_sanity_check();
424 * retry:
425 * [1] lock(task->pi_lock); [R] acquire [P]
426 * [2] waiter = task->pi_blocked_on; [P]
427 * [3] check_exit_conditions_1(); [P]
428 * [4] lock = waiter->lock; [P]
429 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
430 * unlock(task->pi_lock); release [P]
431 * goto retry;
432 * }
433 * [6] check_exit_conditions_2(); [P] + [L]
434 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
435 * [8] unlock(task->pi_lock); release [P]
436 * put_task_struct(task); release [R]
437 * [9] check_exit_conditions_3(); [L]
438 * [10] task = owner(lock); [L]
439 * get_task_struct(task); [L] acquire [R]
440 * lock(task->pi_lock); [L] acquire [P]
441 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
442 * [12] check_exit_conditions_4(); [P] + [L]
443 * [13] unlock(task->pi_lock); release [P]
444 * unlock(lock->wait_lock); release [L]
445 * goto again;
446 */
447static int rt_mutex_adjust_prio_chain(struct task_struct *task,
448 enum rtmutex_chainwalk chwalk,
449 struct rt_mutex *orig_lock,
450 struct rt_mutex *next_lock,
451 struct rt_mutex_waiter *orig_waiter,
452 struct task_struct *top_task)
453{
454 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
455 struct rt_mutex_waiter *prerequeue_top_waiter;
456 int ret = 0, depth = 0;
457 struct rt_mutex *lock;
458 bool detect_deadlock;
459 bool requeue = true;
460
461 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
462
463 /*
464 * The (de)boosting is a step by step approach with a lot of
465 * pitfalls. We want this to be preemptible and we want hold a
466 * maximum of two locks per step. So we have to check
467 * carefully whether things change under us.
468 */
469 again:
470 /*
471 * We limit the lock chain length for each invocation.
472 */
473 if (++depth > max_lock_depth) {
474 static int prev_max;
475
476 /*
477 * Print this only once. If the admin changes the limit,
478 * print a new message when reaching the limit again.
479 */
480 if (prev_max != max_lock_depth) {
481 prev_max = max_lock_depth;
482 printk(KERN_WARNING "Maximum lock depth %d reached "
483 "task: %s (%d)\n", max_lock_depth,
484 top_task->comm, task_pid_nr(top_task));
485 }
486 put_task_struct(task);
487
488 return -EDEADLK;
489 }
490
491 /*
492 * We are fully preemptible here and only hold the refcount on
493 * @task. So everything can have changed under us since the
494 * caller or our own code below (goto retry/again) dropped all
495 * locks.
496 */
497 retry:
498 /*
499 * [1] Task cannot go away as we did a get_task() before !
500 */
501 raw_spin_lock_irq(&task->pi_lock);
502
503 /*
504 * [2] Get the waiter on which @task is blocked on.
505 */
506 waiter = task->pi_blocked_on;
507
508 /*
509 * [3] check_exit_conditions_1() protected by task->pi_lock.
510 */
511
512 /*
513 * Check whether the end of the boosting chain has been
514 * reached or the state of the chain has changed while we
515 * dropped the locks.
516 */
517 if (!waiter)
518 goto out_unlock_pi;
519
520 /*
521 * Check the orig_waiter state. After we dropped the locks,
522 * the previous owner of the lock might have released the lock.
523 */
524 if (orig_waiter && !rt_mutex_owner(orig_lock))
525 goto out_unlock_pi;
526
527 /*
528 * We dropped all locks after taking a refcount on @task, so
529 * the task might have moved on in the lock chain or even left
530 * the chain completely and blocks now on an unrelated lock or
531 * on @orig_lock.
532 *
533 * We stored the lock on which @task was blocked in @next_lock,
534 * so we can detect the chain change.
535 */
536 if (next_lock != waiter->lock)
537 goto out_unlock_pi;
538
539 /*
540 * Drop out, when the task has no waiters. Note,
541 * top_waiter can be NULL, when we are in the deboosting
542 * mode!
543 */
544 if (top_waiter) {
545 if (!task_has_pi_waiters(task))
546 goto out_unlock_pi;
547 /*
548 * If deadlock detection is off, we stop here if we
549 * are not the top pi waiter of the task. If deadlock
550 * detection is enabled we continue, but stop the
551 * requeueing in the chain walk.
552 */
553 if (top_waiter != task_top_pi_waiter(task)) {
554 if (!detect_deadlock)
555 goto out_unlock_pi;
556 else
557 requeue = false;
558 }
559 }
560
561 /*
562 * If the waiter priority is the same as the task priority
563 * then there is no further priority adjustment necessary. If
564 * deadlock detection is off, we stop the chain walk. If its
565 * enabled we continue, but stop the requeueing in the chain
566 * walk.
567 */
568 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
569 if (!detect_deadlock)
570 goto out_unlock_pi;
571 else
572 requeue = false;
573 }
574
575 /*
576 * [4] Get the next lock
577 */
578 lock = waiter->lock;
579 /*
580 * [5] We need to trylock here as we are holding task->pi_lock,
581 * which is the reverse lock order versus the other rtmutex
582 * operations.
583 */
584 if (!raw_spin_trylock(&lock->wait_lock)) {
585 raw_spin_unlock_irq(&task->pi_lock);
586 cpu_relax();
587 goto retry;
588 }
589
590 /*
591 * [6] check_exit_conditions_2() protected by task->pi_lock and
592 * lock->wait_lock.
593 *
594 * Deadlock detection. If the lock is the same as the original
595 * lock which caused us to walk the lock chain or if the
596 * current lock is owned by the task which initiated the chain
597 * walk, we detected a deadlock.
598 */
599 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
600 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
601 raw_spin_unlock(&lock->wait_lock);
602 ret = -EDEADLK;
603 goto out_unlock_pi;
604 }
605
606 /*
607 * If we just follow the lock chain for deadlock detection, no
608 * need to do all the requeue operations. To avoid a truckload
609 * of conditionals around the various places below, just do the
610 * minimum chain walk checks.
611 */
612 if (!requeue) {
613 /*
614 * No requeue[7] here. Just release @task [8]
615 */
616 raw_spin_unlock(&task->pi_lock);
617 put_task_struct(task);
618
619 /*
620 * [9] check_exit_conditions_3 protected by lock->wait_lock.
621 * If there is no owner of the lock, end of chain.
622 */
623 if (!rt_mutex_owner(lock)) {
624 raw_spin_unlock_irq(&lock->wait_lock);
625 return 0;
626 }
627
628 /* [10] Grab the next task, i.e. owner of @lock */
629 task = get_task_struct(rt_mutex_owner(lock));
630 raw_spin_lock(&task->pi_lock);
631
632 /*
633 * No requeue [11] here. We just do deadlock detection.
634 *
635 * [12] Store whether owner is blocked
636 * itself. Decision is made after dropping the locks
637 */
638 next_lock = task_blocked_on_lock(task);
639 /*
640 * Get the top waiter for the next iteration
641 */
642 top_waiter = rt_mutex_top_waiter(lock);
643
644 /* [13] Drop locks */
645 raw_spin_unlock(&task->pi_lock);
646 raw_spin_unlock_irq(&lock->wait_lock);
647
648 /* If owner is not blocked, end of chain. */
649 if (!next_lock)
650 goto out_put_task;
651 goto again;
652 }
653
654 /*
655 * Store the current top waiter before doing the requeue
656 * operation on @lock. We need it for the boost/deboost
657 * decision below.
658 */
659 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
660
661 /* [7] Requeue the waiter in the lock waiter tree. */
662 rt_mutex_dequeue(lock, waiter);
663
664 /*
665 * Update the waiter prio fields now that we're dequeued.
666 *
667 * These values can have changed through either:
668 *
669 * sys_sched_set_scheduler() / sys_sched_setattr()
670 *
671 * or
672 *
673 * DL CBS enforcement advancing the effective deadline.
674 *
675 * Even though pi_waiters also uses these fields, and that tree is only
676 * updated in [11], we can do this here, since we hold [L], which
677 * serializes all pi_waiters access and rb_erase() does not care about
678 * the values of the node being removed.
679 */
680 waiter->prio = task->prio;
681 waiter->deadline = task->dl.deadline;
682
683 rt_mutex_enqueue(lock, waiter);
684
685 /* [8] Release the task */
686 raw_spin_unlock(&task->pi_lock);
687 put_task_struct(task);
688
689 /*
690 * [9] check_exit_conditions_3 protected by lock->wait_lock.
691 *
692 * We must abort the chain walk if there is no lock owner even
693 * in the dead lock detection case, as we have nothing to
694 * follow here. This is the end of the chain we are walking.
695 */
696 if (!rt_mutex_owner(lock)) {
697 /*
698 * If the requeue [7] above changed the top waiter,
699 * then we need to wake the new top waiter up to try
700 * to get the lock.
701 */
702 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
703 wake_up_process(rt_mutex_top_waiter(lock)->task);
704 raw_spin_unlock_irq(&lock->wait_lock);
705 return 0;
706 }
707
708 /* [10] Grab the next task, i.e. the owner of @lock */
709 task = get_task_struct(rt_mutex_owner(lock));
710 raw_spin_lock(&task->pi_lock);
711
712 /* [11] requeue the pi waiters if necessary */
713 if (waiter == rt_mutex_top_waiter(lock)) {
714 /*
715 * The waiter became the new top (highest priority)
716 * waiter on the lock. Replace the previous top waiter
717 * in the owner tasks pi waiters tree with this waiter
718 * and adjust the priority of the owner.
719 */
720 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
721 rt_mutex_enqueue_pi(task, waiter);
722 rt_mutex_adjust_prio(task);
723
724 } else if (prerequeue_top_waiter == waiter) {
725 /*
726 * The waiter was the top waiter on the lock, but is
727 * no longer the top prority waiter. Replace waiter in
728 * the owner tasks pi waiters tree with the new top
729 * (highest priority) waiter and adjust the priority
730 * of the owner.
731 * The new top waiter is stored in @waiter so that
732 * @waiter == @top_waiter evaluates to true below and
733 * we continue to deboost the rest of the chain.
734 */
735 rt_mutex_dequeue_pi(task, waiter);
736 waiter = rt_mutex_top_waiter(lock);
737 rt_mutex_enqueue_pi(task, waiter);
738 rt_mutex_adjust_prio(task);
739 } else {
740 /*
741 * Nothing changed. No need to do any priority
742 * adjustment.
743 */
744 }
745
746 /*
747 * [12] check_exit_conditions_4() protected by task->pi_lock
748 * and lock->wait_lock. The actual decisions are made after we
749 * dropped the locks.
750 *
751 * Check whether the task which owns the current lock is pi
752 * blocked itself. If yes we store a pointer to the lock for
753 * the lock chain change detection above. After we dropped
754 * task->pi_lock next_lock cannot be dereferenced anymore.
755 */
756 next_lock = task_blocked_on_lock(task);
757 /*
758 * Store the top waiter of @lock for the end of chain walk
759 * decision below.
760 */
761 top_waiter = rt_mutex_top_waiter(lock);
762
763 /* [13] Drop the locks */
764 raw_spin_unlock(&task->pi_lock);
765 raw_spin_unlock_irq(&lock->wait_lock);
766
767 /*
768 * Make the actual exit decisions [12], based on the stored
769 * values.
770 *
771 * We reached the end of the lock chain. Stop right here. No
772 * point to go back just to figure that out.
773 */
774 if (!next_lock)
775 goto out_put_task;
776
777 /*
778 * If the current waiter is not the top waiter on the lock,
779 * then we can stop the chain walk here if we are not in full
780 * deadlock detection mode.
781 */
782 if (!detect_deadlock && waiter != top_waiter)
783 goto out_put_task;
784
785 goto again;
786
787 out_unlock_pi:
788 raw_spin_unlock_irq(&task->pi_lock);
789 out_put_task:
790 put_task_struct(task);
791
792 return ret;
793}
794
795/*
796 * Try to take an rt-mutex
797 *
798 * Must be called with lock->wait_lock held and interrupts disabled
799 *
800 * @lock: The lock to be acquired.
801 * @task: The task which wants to acquire the lock
802 * @waiter: The waiter that is queued to the lock's wait tree if the
803 * callsite called task_blocked_on_lock(), otherwise NULL
804 */
805static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
806 struct rt_mutex_waiter *waiter)
807{
808 lockdep_assert_held(&lock->wait_lock);
809
810 /*
811 * Before testing whether we can acquire @lock, we set the
812 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
813 * other tasks which try to modify @lock into the slow path
814 * and they serialize on @lock->wait_lock.
815 *
816 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
817 * as explained at the top of this file if and only if:
818 *
819 * - There is a lock owner. The caller must fixup the
820 * transient state if it does a trylock or leaves the lock
821 * function due to a signal or timeout.
822 *
823 * - @task acquires the lock and there are no other
824 * waiters. This is undone in rt_mutex_set_owner(@task) at
825 * the end of this function.
826 */
827 mark_rt_mutex_waiters(lock);
828
829 /*
830 * If @lock has an owner, give up.
831 */
832 if (rt_mutex_owner(lock))
833 return 0;
834
835 /*
836 * If @waiter != NULL, @task has already enqueued the waiter
837 * into @lock waiter tree. If @waiter == NULL then this is a
838 * trylock attempt.
839 */
840 if (waiter) {
841 /*
842 * If waiter is not the highest priority waiter of
843 * @lock, give up.
844 */
845 if (waiter != rt_mutex_top_waiter(lock))
846 return 0;
847
848 /*
849 * We can acquire the lock. Remove the waiter from the
850 * lock waiters tree.
851 */
852 rt_mutex_dequeue(lock, waiter);
853
854 } else {
855 /*
856 * If the lock has waiters already we check whether @task is
857 * eligible to take over the lock.
858 *
859 * If there are no other waiters, @task can acquire
860 * the lock. @task->pi_blocked_on is NULL, so it does
861 * not need to be dequeued.
862 */
863 if (rt_mutex_has_waiters(lock)) {
864 /*
865 * If @task->prio is greater than or equal to
866 * the top waiter priority (kernel view),
867 * @task lost.
868 */
869 if (!rt_mutex_waiter_less(task_to_waiter(task),
870 rt_mutex_top_waiter(lock)))
871 return 0;
872
873 /*
874 * The current top waiter stays enqueued. We
875 * don't have to change anything in the lock
876 * waiters order.
877 */
878 } else {
879 /*
880 * No waiters. Take the lock without the
881 * pi_lock dance.@task->pi_blocked_on is NULL
882 * and we have no waiters to enqueue in @task
883 * pi waiters tree.
884 */
885 goto takeit;
886 }
887 }
888
889 /*
890 * Clear @task->pi_blocked_on. Requires protection by
891 * @task->pi_lock. Redundant operation for the @waiter == NULL
892 * case, but conditionals are more expensive than a redundant
893 * store.
894 */
895 raw_spin_lock(&task->pi_lock);
896 task->pi_blocked_on = NULL;
897 /*
898 * Finish the lock acquisition. @task is the new owner. If
899 * other waiters exist we have to insert the highest priority
900 * waiter into @task->pi_waiters tree.
901 */
902 if (rt_mutex_has_waiters(lock))
903 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
904 raw_spin_unlock(&task->pi_lock);
905
906takeit:
907 /* We got the lock. */
908 debug_rt_mutex_lock(lock);
909
910 /*
911 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
912 * are still waiters or clears it.
913 */
914 rt_mutex_set_owner(lock, task);
915
916 return 1;
917}
918
919/*
920 * Task blocks on lock.
921 *
922 * Prepare waiter and propagate pi chain
923 *
924 * This must be called with lock->wait_lock held and interrupts disabled
925 */
926static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
927 struct rt_mutex_waiter *waiter,
928 struct task_struct *task,
929 enum rtmutex_chainwalk chwalk)
930{
931 struct task_struct *owner = rt_mutex_owner(lock);
932 struct rt_mutex_waiter *top_waiter = waiter;
933 struct rt_mutex *next_lock;
934 int chain_walk = 0, res;
935
936 lockdep_assert_held(&lock->wait_lock);
937
938 /*
939 * Early deadlock detection. We really don't want the task to
940 * enqueue on itself just to untangle the mess later. It's not
941 * only an optimization. We drop the locks, so another waiter
942 * can come in before the chain walk detects the deadlock. So
943 * the other will detect the deadlock and return -EDEADLOCK,
944 * which is wrong, as the other waiter is not in a deadlock
945 * situation.
946 */
947 if (owner == task)
948 return -EDEADLK;
949
950 raw_spin_lock(&task->pi_lock);
951 waiter->task = task;
952 waiter->lock = lock;
953 waiter->prio = task->prio;
954 waiter->deadline = task->dl.deadline;
955
956 /* Get the top priority waiter on the lock */
957 if (rt_mutex_has_waiters(lock))
958 top_waiter = rt_mutex_top_waiter(lock);
959 rt_mutex_enqueue(lock, waiter);
960
961 task->pi_blocked_on = waiter;
962
963 raw_spin_unlock(&task->pi_lock);
964
965 if (!owner)
966 return 0;
967
968 raw_spin_lock(&owner->pi_lock);
969 if (waiter == rt_mutex_top_waiter(lock)) {
970 rt_mutex_dequeue_pi(owner, top_waiter);
971 rt_mutex_enqueue_pi(owner, waiter);
972
973 rt_mutex_adjust_prio(owner);
974 if (owner->pi_blocked_on)
975 chain_walk = 1;
976 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
977 chain_walk = 1;
978 }
979
980 /* Store the lock on which owner is blocked or NULL */
981 next_lock = task_blocked_on_lock(owner);
982
983 raw_spin_unlock(&owner->pi_lock);
984 /*
985 * Even if full deadlock detection is on, if the owner is not
986 * blocked itself, we can avoid finding this out in the chain
987 * walk.
988 */
989 if (!chain_walk || !next_lock)
990 return 0;
991
992 /*
993 * The owner can't disappear while holding a lock,
994 * so the owner struct is protected by wait_lock.
995 * Gets dropped in rt_mutex_adjust_prio_chain()!
996 */
997 get_task_struct(owner);
998
999 raw_spin_unlock_irq(&lock->wait_lock);
1000
1001 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1002 next_lock, waiter, task);
1003
1004 raw_spin_lock_irq(&lock->wait_lock);
1005
1006 return res;
1007}
1008
1009/*
1010 * Remove the top waiter from the current tasks pi waiter tree and
1011 * queue it up.
1012 *
1013 * Called with lock->wait_lock held and interrupts disabled.
1014 */
1015static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1016 struct rt_mutex *lock)
1017{
1018 struct rt_mutex_waiter *waiter;
1019
1020 raw_spin_lock(¤t->pi_lock);
1021
1022 waiter = rt_mutex_top_waiter(lock);
1023
1024 /*
1025 * Remove it from current->pi_waiters and deboost.
1026 *
1027 * We must in fact deboost here in order to ensure we call
1028 * rt_mutex_setprio() to update p->pi_top_task before the
1029 * task unblocks.
1030 */
1031 rt_mutex_dequeue_pi(current, waiter);
1032 rt_mutex_adjust_prio(current);
1033
1034 /*
1035 * As we are waking up the top waiter, and the waiter stays
1036 * queued on the lock until it gets the lock, this lock
1037 * obviously has waiters. Just set the bit here and this has
1038 * the added benefit of forcing all new tasks into the
1039 * slow path making sure no task of lower priority than
1040 * the top waiter can steal this lock.
1041 */
1042 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1043
1044 /*
1045 * We deboosted before waking the top waiter task such that we don't
1046 * run two tasks with the 'same' priority (and ensure the
1047 * p->pi_top_task pointer points to a blocked task). This however can
1048 * lead to priority inversion if we would get preempted after the
1049 * deboost but before waking our donor task, hence the preempt_disable()
1050 * before unlock.
1051 *
1052 * Pairs with preempt_enable() in rt_mutex_postunlock();
1053 */
1054 preempt_disable();
1055 wake_q_add(wake_q, waiter->task);
1056 raw_spin_unlock(¤t->pi_lock);
1057}
1058
1059/*
1060 * Remove a waiter from a lock and give up
1061 *
1062 * Must be called with lock->wait_lock held and interrupts disabled. I must
1063 * have just failed to try_to_take_rt_mutex().
1064 */
1065static void remove_waiter(struct rt_mutex *lock,
1066 struct rt_mutex_waiter *waiter)
1067{
1068 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1069 struct task_struct *owner = rt_mutex_owner(lock);
1070 struct rt_mutex *next_lock;
1071
1072 lockdep_assert_held(&lock->wait_lock);
1073
1074 raw_spin_lock(¤t->pi_lock);
1075 rt_mutex_dequeue(lock, waiter);
1076 current->pi_blocked_on = NULL;
1077 raw_spin_unlock(¤t->pi_lock);
1078
1079 /*
1080 * Only update priority if the waiter was the highest priority
1081 * waiter of the lock and there is an owner to update.
1082 */
1083 if (!owner || !is_top_waiter)
1084 return;
1085
1086 raw_spin_lock(&owner->pi_lock);
1087
1088 rt_mutex_dequeue_pi(owner, waiter);
1089
1090 if (rt_mutex_has_waiters(lock))
1091 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1092
1093 rt_mutex_adjust_prio(owner);
1094
1095 /* Store the lock on which owner is blocked or NULL */
1096 next_lock = task_blocked_on_lock(owner);
1097
1098 raw_spin_unlock(&owner->pi_lock);
1099
1100 /*
1101 * Don't walk the chain, if the owner task is not blocked
1102 * itself.
1103 */
1104 if (!next_lock)
1105 return;
1106
1107 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1108 get_task_struct(owner);
1109
1110 raw_spin_unlock_irq(&lock->wait_lock);
1111
1112 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1113 next_lock, NULL, current);
1114
1115 raw_spin_lock_irq(&lock->wait_lock);
1116}
1117
1118/*
1119 * Recheck the pi chain, in case we got a priority setting
1120 *
1121 * Called from sched_setscheduler
1122 */
1123void rt_mutex_adjust_pi(struct task_struct *task)
1124{
1125 struct rt_mutex_waiter *waiter;
1126 struct rt_mutex *next_lock;
1127 unsigned long flags;
1128
1129 raw_spin_lock_irqsave(&task->pi_lock, flags);
1130
1131 waiter = task->pi_blocked_on;
1132 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1133 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1134 return;
1135 }
1136 next_lock = waiter->lock;
1137 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1138
1139 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1140 get_task_struct(task);
1141
1142 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1143 next_lock, NULL, task);
1144}
1145
1146void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1147{
1148 debug_rt_mutex_init_waiter(waiter);
1149 RB_CLEAR_NODE(&waiter->pi_tree_entry);
1150 RB_CLEAR_NODE(&waiter->tree_entry);
1151 waiter->task = NULL;
1152}
1153
1154/**
1155 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1156 * @lock: the rt_mutex to take
1157 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1158 * or TASK_UNINTERRUPTIBLE)
1159 * @timeout: the pre-initialized and started timer, or NULL for none
1160 * @waiter: the pre-initialized rt_mutex_waiter
1161 *
1162 * Must be called with lock->wait_lock held and interrupts disabled
1163 */
1164static int __sched
1165__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1166 struct hrtimer_sleeper *timeout,
1167 struct rt_mutex_waiter *waiter)
1168{
1169 int ret = 0;
1170
1171 for (;;) {
1172 /* Try to acquire the lock: */
1173 if (try_to_take_rt_mutex(lock, current, waiter))
1174 break;
1175
1176 /*
1177 * TASK_INTERRUPTIBLE checks for signals and
1178 * timeout. Ignored otherwise.
1179 */
1180 if (likely(state == TASK_INTERRUPTIBLE)) {
1181 /* Signal pending? */
1182 if (signal_pending(current))
1183 ret = -EINTR;
1184 if (timeout && !timeout->task)
1185 ret = -ETIMEDOUT;
1186 if (ret)
1187 break;
1188 }
1189
1190 raw_spin_unlock_irq(&lock->wait_lock);
1191
1192 debug_rt_mutex_print_deadlock(waiter);
1193
1194 schedule();
1195
1196 raw_spin_lock_irq(&lock->wait_lock);
1197 set_current_state(state);
1198 }
1199
1200 __set_current_state(TASK_RUNNING);
1201 return ret;
1202}
1203
1204static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1205 struct rt_mutex_waiter *w)
1206{
1207 /*
1208 * If the result is not -EDEADLOCK or the caller requested
1209 * deadlock detection, nothing to do here.
1210 */
1211 if (res != -EDEADLOCK || detect_deadlock)
1212 return;
1213
1214 /*
1215 * Yell lowdly and stop the task right here.
1216 */
1217 rt_mutex_print_deadlock(w);
1218 while (1) {
1219 set_current_state(TASK_INTERRUPTIBLE);
1220 schedule();
1221 }
1222}
1223
1224/*
1225 * Slow path lock function:
1226 */
1227static int __sched
1228rt_mutex_slowlock(struct rt_mutex *lock, int state,
1229 struct hrtimer_sleeper *timeout,
1230 enum rtmutex_chainwalk chwalk)
1231{
1232 struct rt_mutex_waiter waiter;
1233 unsigned long flags;
1234 int ret = 0;
1235
1236 rt_mutex_init_waiter(&waiter);
1237
1238 /*
1239 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1240 * be called in early boot if the cmpxchg() fast path is disabled
1241 * (debug, no architecture support). In this case we will acquire the
1242 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1243 * enable interrupts in that early boot case. So we need to use the
1244 * irqsave/restore variants.
1245 */
1246 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1247
1248 /* Try to acquire the lock again: */
1249 if (try_to_take_rt_mutex(lock, current, NULL)) {
1250 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1251 return 0;
1252 }
1253
1254 set_current_state(state);
1255
1256 /* Setup the timer, when timeout != NULL */
1257 if (unlikely(timeout))
1258 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1259
1260 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1261
1262 if (likely(!ret))
1263 /* sleep on the mutex */
1264 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1265
1266 if (unlikely(ret)) {
1267 __set_current_state(TASK_RUNNING);
1268 remove_waiter(lock, &waiter);
1269 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1270 }
1271
1272 /*
1273 * try_to_take_rt_mutex() sets the waiter bit
1274 * unconditionally. We might have to fix that up.
1275 */
1276 fixup_rt_mutex_waiters(lock);
1277
1278 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1279
1280 /* Remove pending timer: */
1281 if (unlikely(timeout))
1282 hrtimer_cancel(&timeout->timer);
1283
1284 debug_rt_mutex_free_waiter(&waiter);
1285
1286 return ret;
1287}
1288
1289static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1290{
1291 int ret = try_to_take_rt_mutex(lock, current, NULL);
1292
1293 /*
1294 * try_to_take_rt_mutex() sets the lock waiters bit
1295 * unconditionally. Clean this up.
1296 */
1297 fixup_rt_mutex_waiters(lock);
1298
1299 return ret;
1300}
1301
1302/*
1303 * Slow path try-lock function:
1304 */
1305static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1306{
1307 unsigned long flags;
1308 int ret;
1309
1310 /*
1311 * If the lock already has an owner we fail to get the lock.
1312 * This can be done without taking the @lock->wait_lock as
1313 * it is only being read, and this is a trylock anyway.
1314 */
1315 if (rt_mutex_owner(lock))
1316 return 0;
1317
1318 /*
1319 * The mutex has currently no owner. Lock the wait lock and try to
1320 * acquire the lock. We use irqsave here to support early boot calls.
1321 */
1322 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1323
1324 ret = __rt_mutex_slowtrylock(lock);
1325
1326 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1327
1328 return ret;
1329}
1330
1331/*
1332 * Slow path to release a rt-mutex.
1333 *
1334 * Return whether the current task needs to call rt_mutex_postunlock().
1335 */
1336static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1337 struct wake_q_head *wake_q)
1338{
1339 unsigned long flags;
1340
1341 /* irqsave required to support early boot calls */
1342 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1343
1344 debug_rt_mutex_unlock(lock);
1345
1346 /*
1347 * We must be careful here if the fast path is enabled. If we
1348 * have no waiters queued we cannot set owner to NULL here
1349 * because of:
1350 *
1351 * foo->lock->owner = NULL;
1352 * rtmutex_lock(foo->lock); <- fast path
1353 * free = atomic_dec_and_test(foo->refcnt);
1354 * rtmutex_unlock(foo->lock); <- fast path
1355 * if (free)
1356 * kfree(foo);
1357 * raw_spin_unlock(foo->lock->wait_lock);
1358 *
1359 * So for the fastpath enabled kernel:
1360 *
1361 * Nothing can set the waiters bit as long as we hold
1362 * lock->wait_lock. So we do the following sequence:
1363 *
1364 * owner = rt_mutex_owner(lock);
1365 * clear_rt_mutex_waiters(lock);
1366 * raw_spin_unlock(&lock->wait_lock);
1367 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1368 * return;
1369 * goto retry;
1370 *
1371 * The fastpath disabled variant is simple as all access to
1372 * lock->owner is serialized by lock->wait_lock:
1373 *
1374 * lock->owner = NULL;
1375 * raw_spin_unlock(&lock->wait_lock);
1376 */
1377 while (!rt_mutex_has_waiters(lock)) {
1378 /* Drops lock->wait_lock ! */
1379 if (unlock_rt_mutex_safe(lock, flags) == true)
1380 return false;
1381 /* Relock the rtmutex and try again */
1382 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1383 }
1384
1385 /*
1386 * The wakeup next waiter path does not suffer from the above
1387 * race. See the comments there.
1388 *
1389 * Queue the next waiter for wakeup once we release the wait_lock.
1390 */
1391 mark_wakeup_next_waiter(wake_q, lock);
1392 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1393
1394 return true; /* call rt_mutex_postunlock() */
1395}
1396
1397/*
1398 * debug aware fast / slowpath lock,trylock,unlock
1399 *
1400 * The atomic acquire/release ops are compiled away, when either the
1401 * architecture does not support cmpxchg or when debugging is enabled.
1402 */
1403static inline int
1404rt_mutex_fastlock(struct rt_mutex *lock, int state,
1405 int (*slowfn)(struct rt_mutex *lock, int state,
1406 struct hrtimer_sleeper *timeout,
1407 enum rtmutex_chainwalk chwalk))
1408{
1409 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1410 return 0;
1411
1412 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1413}
1414
1415static inline int
1416rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1417 struct hrtimer_sleeper *timeout,
1418 enum rtmutex_chainwalk chwalk,
1419 int (*slowfn)(struct rt_mutex *lock, int state,
1420 struct hrtimer_sleeper *timeout,
1421 enum rtmutex_chainwalk chwalk))
1422{
1423 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1424 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1425 return 0;
1426
1427 return slowfn(lock, state, timeout, chwalk);
1428}
1429
1430static inline int
1431rt_mutex_fasttrylock(struct rt_mutex *lock,
1432 int (*slowfn)(struct rt_mutex *lock))
1433{
1434 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1435 return 1;
1436
1437 return slowfn(lock);
1438}
1439
1440/*
1441 * Performs the wakeup of the the top-waiter and re-enables preemption.
1442 */
1443void rt_mutex_postunlock(struct wake_q_head *wake_q)
1444{
1445 wake_up_q(wake_q);
1446
1447 /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1448 preempt_enable();
1449}
1450
1451static inline void
1452rt_mutex_fastunlock(struct rt_mutex *lock,
1453 bool (*slowfn)(struct rt_mutex *lock,
1454 struct wake_q_head *wqh))
1455{
1456 DEFINE_WAKE_Q(wake_q);
1457
1458 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1459 return;
1460
1461 if (slowfn(lock, &wake_q))
1462 rt_mutex_postunlock(&wake_q);
1463}
1464
1465static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1466{
1467 might_sleep();
1468
1469 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1470 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1471}
1472
1473#ifdef CONFIG_DEBUG_LOCK_ALLOC
1474/**
1475 * rt_mutex_lock_nested - lock a rt_mutex
1476 *
1477 * @lock: the rt_mutex to be locked
1478 * @subclass: the lockdep subclass
1479 */
1480void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1481{
1482 __rt_mutex_lock(lock, subclass);
1483}
1484EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1485
1486#else /* !CONFIG_DEBUG_LOCK_ALLOC */
1487
1488/**
1489 * rt_mutex_lock - lock a rt_mutex
1490 *
1491 * @lock: the rt_mutex to be locked
1492 */
1493void __sched rt_mutex_lock(struct rt_mutex *lock)
1494{
1495 __rt_mutex_lock(lock, 0);
1496}
1497EXPORT_SYMBOL_GPL(rt_mutex_lock);
1498#endif
1499
1500/**
1501 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1502 *
1503 * @lock: the rt_mutex to be locked
1504 *
1505 * Returns:
1506 * 0 on success
1507 * -EINTR when interrupted by a signal
1508 */
1509int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1510{
1511 int ret;
1512
1513 might_sleep();
1514
1515 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1516 ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1517 if (ret)
1518 mutex_release(&lock->dep_map, _RET_IP_);
1519
1520 return ret;
1521}
1522EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1523
1524/*
1525 * Futex variant, must not use fastpath.
1526 */
1527int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1528{
1529 return rt_mutex_slowtrylock(lock);
1530}
1531
1532int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1533{
1534 return __rt_mutex_slowtrylock(lock);
1535}
1536
1537/**
1538 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1539 * the timeout structure is provided
1540 * by the caller
1541 *
1542 * @lock: the rt_mutex to be locked
1543 * @timeout: timeout structure or NULL (no timeout)
1544 *
1545 * Returns:
1546 * 0 on success
1547 * -EINTR when interrupted by a signal
1548 * -ETIMEDOUT when the timeout expired
1549 */
1550int
1551rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1552{
1553 int ret;
1554
1555 might_sleep();
1556
1557 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1558 ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1559 RT_MUTEX_MIN_CHAINWALK,
1560 rt_mutex_slowlock);
1561 if (ret)
1562 mutex_release(&lock->dep_map, _RET_IP_);
1563
1564 return ret;
1565}
1566EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1567
1568/**
1569 * rt_mutex_trylock - try to lock a rt_mutex
1570 *
1571 * @lock: the rt_mutex to be locked
1572 *
1573 * This function can only be called in thread context. It's safe to
1574 * call it from atomic regions, but not from hard interrupt or soft
1575 * interrupt context.
1576 *
1577 * Returns 1 on success and 0 on contention
1578 */
1579int __sched rt_mutex_trylock(struct rt_mutex *lock)
1580{
1581 int ret;
1582
1583 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1584 return 0;
1585
1586 ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1587 if (ret)
1588 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1589
1590 return ret;
1591}
1592EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1593
1594/**
1595 * rt_mutex_unlock - unlock a rt_mutex
1596 *
1597 * @lock: the rt_mutex to be unlocked
1598 */
1599void __sched rt_mutex_unlock(struct rt_mutex *lock)
1600{
1601 mutex_release(&lock->dep_map, _RET_IP_);
1602 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1603}
1604EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1605
1606/**
1607 * Futex variant, that since futex variants do not use the fast-path, can be
1608 * simple and will not need to retry.
1609 */
1610bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1611 struct wake_q_head *wake_q)
1612{
1613 lockdep_assert_held(&lock->wait_lock);
1614
1615 debug_rt_mutex_unlock(lock);
1616
1617 if (!rt_mutex_has_waiters(lock)) {
1618 lock->owner = NULL;
1619 return false; /* done */
1620 }
1621
1622 /*
1623 * We've already deboosted, mark_wakeup_next_waiter() will
1624 * retain preempt_disabled when we drop the wait_lock, to
1625 * avoid inversion prior to the wakeup. preempt_disable()
1626 * therein pairs with rt_mutex_postunlock().
1627 */
1628 mark_wakeup_next_waiter(wake_q, lock);
1629
1630 return true; /* call postunlock() */
1631}
1632
1633void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1634{
1635 DEFINE_WAKE_Q(wake_q);
1636 unsigned long flags;
1637 bool postunlock;
1638
1639 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1640 postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1641 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1642
1643 if (postunlock)
1644 rt_mutex_postunlock(&wake_q);
1645}
1646
1647/**
1648 * rt_mutex_destroy - mark a mutex unusable
1649 * @lock: the mutex to be destroyed
1650 *
1651 * This function marks the mutex uninitialized, and any subsequent
1652 * use of the mutex is forbidden. The mutex must not be locked when
1653 * this function is called.
1654 */
1655void rt_mutex_destroy(struct rt_mutex *lock)
1656{
1657 WARN_ON(rt_mutex_is_locked(lock));
1658#ifdef CONFIG_DEBUG_RT_MUTEXES
1659 lock->magic = NULL;
1660#endif
1661}
1662EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1663
1664/**
1665 * __rt_mutex_init - initialize the rt lock
1666 *
1667 * @lock: the rt lock to be initialized
1668 *
1669 * Initialize the rt lock to unlocked state.
1670 *
1671 * Initializing of a locked rt lock is not allowed
1672 */
1673void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1674 struct lock_class_key *key)
1675{
1676 lock->owner = NULL;
1677 raw_spin_lock_init(&lock->wait_lock);
1678 lock->waiters = RB_ROOT_CACHED;
1679
1680 if (name && key)
1681 debug_rt_mutex_init(lock, name, key);
1682}
1683EXPORT_SYMBOL_GPL(__rt_mutex_init);
1684
1685/**
1686 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1687 * proxy owner
1688 *
1689 * @lock: the rt_mutex to be locked
1690 * @proxy_owner:the task to set as owner
1691 *
1692 * No locking. Caller has to do serializing itself
1693 *
1694 * Special API call for PI-futex support. This initializes the rtmutex and
1695 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1696 * possible at this point because the pi_state which contains the rtmutex
1697 * is not yet visible to other tasks.
1698 */
1699void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1700 struct task_struct *proxy_owner)
1701{
1702 __rt_mutex_init(lock, NULL, NULL);
1703 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1704 rt_mutex_set_owner(lock, proxy_owner);
1705}
1706
1707/**
1708 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1709 *
1710 * @lock: the rt_mutex to be locked
1711 *
1712 * No locking. Caller has to do serializing itself
1713 *
1714 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1715 * (debugging) state. Concurrent operations on this rt_mutex are not
1716 * possible because it belongs to the pi_state which is about to be freed
1717 * and it is not longer visible to other tasks.
1718 */
1719void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1720 struct task_struct *proxy_owner)
1721{
1722 debug_rt_mutex_proxy_unlock(lock);
1723 rt_mutex_set_owner(lock, NULL);
1724}
1725
1726/**
1727 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1728 * @lock: the rt_mutex to take
1729 * @waiter: the pre-initialized rt_mutex_waiter
1730 * @task: the task to prepare
1731 *
1732 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1733 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1734 *
1735 * NOTE: does _NOT_ remove the @waiter on failure; must either call
1736 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1737 *
1738 * Returns:
1739 * 0 - task blocked on lock
1740 * 1 - acquired the lock for task, caller should wake it up
1741 * <0 - error
1742 *
1743 * Special API call for PI-futex support.
1744 */
1745int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1746 struct rt_mutex_waiter *waiter,
1747 struct task_struct *task)
1748{
1749 int ret;
1750
1751 lockdep_assert_held(&lock->wait_lock);
1752
1753 if (try_to_take_rt_mutex(lock, task, NULL))
1754 return 1;
1755
1756 /* We enforce deadlock detection for futexes */
1757 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1758 RT_MUTEX_FULL_CHAINWALK);
1759
1760 if (ret && !rt_mutex_owner(lock)) {
1761 /*
1762 * Reset the return value. We might have
1763 * returned with -EDEADLK and the owner
1764 * released the lock while we were walking the
1765 * pi chain. Let the waiter sort it out.
1766 */
1767 ret = 0;
1768 }
1769
1770 debug_rt_mutex_print_deadlock(waiter);
1771
1772 return ret;
1773}
1774
1775/**
1776 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1777 * @lock: the rt_mutex to take
1778 * @waiter: the pre-initialized rt_mutex_waiter
1779 * @task: the task to prepare
1780 *
1781 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1782 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1783 *
1784 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1785 * on failure.
1786 *
1787 * Returns:
1788 * 0 - task blocked on lock
1789 * 1 - acquired the lock for task, caller should wake it up
1790 * <0 - error
1791 *
1792 * Special API call for PI-futex support.
1793 */
1794int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1795 struct rt_mutex_waiter *waiter,
1796 struct task_struct *task)
1797{
1798 int ret;
1799
1800 raw_spin_lock_irq(&lock->wait_lock);
1801 ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1802 if (unlikely(ret))
1803 remove_waiter(lock, waiter);
1804 raw_spin_unlock_irq(&lock->wait_lock);
1805
1806 return ret;
1807}
1808
1809/**
1810 * rt_mutex_next_owner - return the next owner of the lock
1811 *
1812 * @lock: the rt lock query
1813 *
1814 * Returns the next owner of the lock or NULL
1815 *
1816 * Caller has to serialize against other accessors to the lock
1817 * itself.
1818 *
1819 * Special API call for PI-futex support
1820 */
1821struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1822{
1823 if (!rt_mutex_has_waiters(lock))
1824 return NULL;
1825
1826 return rt_mutex_top_waiter(lock)->task;
1827}
1828
1829/**
1830 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1831 * @lock: the rt_mutex we were woken on
1832 * @to: the timeout, null if none. hrtimer should already have
1833 * been started.
1834 * @waiter: the pre-initialized rt_mutex_waiter
1835 *
1836 * Wait for the the lock acquisition started on our behalf by
1837 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1838 * rt_mutex_cleanup_proxy_lock().
1839 *
1840 * Returns:
1841 * 0 - success
1842 * <0 - error, one of -EINTR, -ETIMEDOUT
1843 *
1844 * Special API call for PI-futex support
1845 */
1846int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1847 struct hrtimer_sleeper *to,
1848 struct rt_mutex_waiter *waiter)
1849{
1850 int ret;
1851
1852 raw_spin_lock_irq(&lock->wait_lock);
1853 /* sleep on the mutex */
1854 set_current_state(TASK_INTERRUPTIBLE);
1855 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1856 /*
1857 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1858 * have to fix that up.
1859 */
1860 fixup_rt_mutex_waiters(lock);
1861 raw_spin_unlock_irq(&lock->wait_lock);
1862
1863 return ret;
1864}
1865
1866/**
1867 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1868 * @lock: the rt_mutex we were woken on
1869 * @waiter: the pre-initialized rt_mutex_waiter
1870 *
1871 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1872 * rt_mutex_wait_proxy_lock().
1873 *
1874 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1875 * in fact still be granted ownership until we're removed. Therefore we can
1876 * find we are in fact the owner and must disregard the
1877 * rt_mutex_wait_proxy_lock() failure.
1878 *
1879 * Returns:
1880 * true - did the cleanup, we done.
1881 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1882 * caller should disregards its return value.
1883 *
1884 * Special API call for PI-futex support
1885 */
1886bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1887 struct rt_mutex_waiter *waiter)
1888{
1889 bool cleanup = false;
1890
1891 raw_spin_lock_irq(&lock->wait_lock);
1892 /*
1893 * Do an unconditional try-lock, this deals with the lock stealing
1894 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1895 * sets a NULL owner.
1896 *
1897 * We're not interested in the return value, because the subsequent
1898 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1899 * we will own the lock and it will have removed the waiter. If we
1900 * failed the trylock, we're still not owner and we need to remove
1901 * ourselves.
1902 */
1903 try_to_take_rt_mutex(lock, current, waiter);
1904 /*
1905 * Unless we're the owner; we're still enqueued on the wait_list.
1906 * So check if we became owner, if not, take us off the wait_list.
1907 */
1908 if (rt_mutex_owner(lock) != current) {
1909 remove_waiter(lock, waiter);
1910 cleanup = true;
1911 }
1912 /*
1913 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1914 * have to fix that up.
1915 */
1916 fixup_rt_mutex_waiters(lock);
1917
1918 raw_spin_unlock_irq(&lock->wait_lock);
1919
1920 return cleanup;
1921}