Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Queued spinlock
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
 15 * (C) Copyright 2013-2014 Red Hat, Inc.
 16 * (C) Copyright 2015 Intel Corp.
 17 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
 18 *
 19 * Authors: Waiman Long <waiman.long@hpe.com>
 20 *          Peter Zijlstra <peterz@infradead.org>
 21 */
 22
 23#ifndef _GEN_PV_LOCK_SLOWPATH
 24
 25#include <linux/smp.h>
 26#include <linux/bug.h>
 27#include <linux/cpumask.h>
 28#include <linux/percpu.h>
 29#include <linux/hardirq.h>
 30#include <linux/mutex.h>
 31#include <linux/prefetch.h>
 32#include <asm/byteorder.h>
 33#include <asm/qspinlock.h>
 34
 35/*
 
 
 
 
 
 36 * The basic principle of a queue-based spinlock can best be understood
 37 * by studying a classic queue-based spinlock implementation called the
 38 * MCS lock. The paper below provides a good description for this kind
 39 * of lock.
 40 *
 41 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
 42 *
 43 * This queued spinlock implementation is based on the MCS lock, however to make
 44 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
 45 * API, we must modify it somehow.
 
 46 *
 47 * In particular; where the traditional MCS lock consists of a tail pointer
 48 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
 49 * unlock the next pending (next->locked), we compress both these: {tail,
 50 * next->locked} into a single u32 value.
 51 *
 52 * Since a spinlock disables recursion of its own context and there is a limit
 53 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
 54 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
 55 * we can encode the tail by combining the 2-bit nesting level with the cpu
 56 * number. With one byte for the lock value and 3 bytes for the tail, only a
 57 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
 58 * we extend it to a full byte to achieve better performance for architectures
 59 * that support atomic byte write.
 60 *
 61 * We also change the first spinner to spin on the lock bit instead of its
 62 * node; whereby avoiding the need to carry a node from lock to unlock, and
 63 * preserving existing lock API. This also makes the unlock code simpler and
 64 * faster.
 65 *
 66 * N.B. The current implementation only supports architectures that allow
 67 *      atomic operations on smaller 8-bit and 16-bit data types.
 68 *
 69 */
 70
 71#include "mcs_spinlock.h"
 
 72
 
 
 
 
 
 
 
 
 
 
 
 
 73#ifdef CONFIG_PARAVIRT_SPINLOCKS
 74#define MAX_NODES	8
 75#else
 76#define MAX_NODES	4
 
 
 
 
 
 
 
 
 
 
 
 77#endif
 78
 79/*
 80 * Per-CPU queue node structures; we can never have more than 4 nested
 81 * contexts: task, softirq, hardirq, nmi.
 82 *
 83 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
 84 *
 85 * PV doubles the storage and uses the second cacheline for PV state.
 86 */
 87static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
 88
 89/*
 90 * We must be able to distinguish between no-tail and the tail at 0:0,
 91 * therefore increment the cpu number by one.
 92 */
 93
 94static inline __pure u32 encode_tail(int cpu, int idx)
 95{
 96	u32 tail;
 97
 98#ifdef CONFIG_DEBUG_SPINLOCK
 99	BUG_ON(idx > 3);
100#endif
101	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
102	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
103
104	return tail;
105}
106
107static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
108{
109	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
110	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
111
112	return per_cpu_ptr(&mcs_nodes[idx], cpu);
113}
114
115#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
 
 
 
 
116
117/*
118 * By using the whole 2nd least significant byte for the pending bit, we
119 * can allow better optimization of the lock acquisition for the pending
120 * bit holder.
121 *
122 * This internal structure is also used by the set_locked function which
123 * is not restricted to _Q_PENDING_BITS == 8.
124 */
125struct __qspinlock {
126	union {
127		atomic_t val;
128#ifdef __LITTLE_ENDIAN
129		struct {
130			u8	locked;
131			u8	pending;
132		};
133		struct {
134			u16	locked_pending;
135			u16	tail;
136		};
137#else
138		struct {
139			u16	tail;
140			u16	locked_pending;
141		};
142		struct {
143			u8	reserved[2];
144			u8	pending;
145			u8	locked;
146		};
147#endif
148	};
149};
150
151#if _Q_PENDING_BITS == 8
152/**
 
 
 
 
 
 
 
 
 
 
 
153 * clear_pending_set_locked - take ownership and clear the pending bit.
154 * @lock: Pointer to queued spinlock structure
155 *
156 * *,1,0 -> *,0,1
157 *
158 * Lock stealing is not allowed if this function is used.
159 */
160static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
161{
162	struct __qspinlock *l = (void *)lock;
163
164	WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
165}
166
167/*
168 * xchg_tail - Put in the new queue tail code word & retrieve previous one
169 * @lock : Pointer to queued spinlock structure
170 * @tail : The new queue tail code word
171 * Return: The previous queue tail code word
172 *
173 * xchg(lock, tail), which heads an address dependency
174 *
175 * p,*,* -> n,*,* ; prev = xchg(lock, node)
176 */
177static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
178{
179	struct __qspinlock *l = (void *)lock;
180
181	/*
182	 * Use release semantics to make sure that the MCS node is properly
183	 * initialized before changing the tail code.
184	 */
185	return (u32)xchg_release(&l->tail,
186				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
187}
188
189#else /* _Q_PENDING_BITS == 8 */
190
191/**
 
 
 
 
 
 
 
 
 
 
 
192 * clear_pending_set_locked - take ownership and clear the pending bit.
193 * @lock: Pointer to queued spinlock structure
194 *
195 * *,1,0 -> *,0,1
196 */
197static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
198{
199	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
200}
201
202/**
203 * xchg_tail - Put in the new queue tail code word & retrieve previous one
204 * @lock : Pointer to queued spinlock structure
205 * @tail : The new queue tail code word
206 * Return: The previous queue tail code word
207 *
208 * xchg(lock, tail)
209 *
210 * p,*,* -> n,*,* ; prev = xchg(lock, node)
211 */
212static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
213{
214	u32 old, new, val = atomic_read(&lock->val);
215
216	for (;;) {
217		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
218		/*
219		 * Use release semantics to make sure that the MCS node is
220		 * properly initialized before changing the tail code.
 
221		 */
222		old = atomic_cmpxchg_release(&lock->val, val, new);
223		if (old == val)
224			break;
225
226		val = old;
227	}
228	return old;
229}
230#endif /* _Q_PENDING_BITS == 8 */
231
232/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233 * set_locked - Set the lock bit and own the lock
234 * @lock: Pointer to queued spinlock structure
235 *
236 * *,*,0 -> *,0,1
237 */
238static __always_inline void set_locked(struct qspinlock *lock)
239{
240	struct __qspinlock *l = (void *)lock;
241
242	WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
243}
244
245
246/*
247 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
248 * all the PV callbacks.
249 */
250
251static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
252static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
253					   struct mcs_spinlock *prev) { }
254static __always_inline void __pv_kick_node(struct qspinlock *lock,
255					   struct mcs_spinlock *node) { }
256static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
257						   struct mcs_spinlock *node)
258						   { return 0; }
259
260#define pv_enabled()		false
261
262#define pv_init_node		__pv_init_node
263#define pv_wait_node		__pv_wait_node
264#define pv_kick_node		__pv_kick_node
265#define pv_wait_head_or_lock	__pv_wait_head_or_lock
266
267#ifdef CONFIG_PARAVIRT_SPINLOCKS
268#define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
269#endif
270
271#endif /* _GEN_PV_LOCK_SLOWPATH */
272
273/**
274 * queued_spin_lock_slowpath - acquire the queued spinlock
275 * @lock: Pointer to queued spinlock structure
276 * @val: Current value of the queued spinlock 32-bit word
277 *
278 * (queue tail, pending bit, lock value)
279 *
280 *              fast     :    slow                                  :    unlock
281 *                       :                                          :
282 * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
283 *                       :       | ^--------.------.             /  :
284 *                       :       v           \      \            |  :
285 * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
286 *                       :       | ^--'              |           |  :
287 *                       :       v                   |           |  :
288 * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
289 *   queue               :       | ^--'                          |  :
290 *                       :       v                               |  :
291 * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
292 *   queue               :         ^--'                             :
293 */
294void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
295{
296	struct mcs_spinlock *prev, *next, *node;
297	u32 new, old, tail;
298	int idx;
299
300	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
301
302	if (pv_enabled())
303		goto queue;
304
305	if (virt_spin_lock(lock))
306		return;
307
308	/*
309	 * wait for in-progress pending->locked hand-overs
 
310	 *
311	 * 0,1,0 -> 0,0,1
312	 */
313	if (val == _Q_PENDING_VAL) {
314		while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
315			cpu_relax();
 
316	}
317
318	/*
 
 
 
 
 
 
319	 * trylock || pending
320	 *
321	 * 0,0,0 -> 0,0,1 ; trylock
322	 * 0,0,1 -> 0,1,1 ; pending
323	 */
324	for (;;) {
325		/*
326		 * If we observe any contention; queue.
327		 */
328		if (val & ~_Q_LOCKED_MASK)
329			goto queue;
330
331		new = _Q_LOCKED_VAL;
332		if (val == new)
333			new |= _Q_PENDING_VAL;
 
 
 
 
 
334
335		/*
336		 * Acquire semantic is required here as the function may
337		 * return immediately if the lock was free.
338		 */
339		old = atomic_cmpxchg_acquire(&lock->val, val, new);
340		if (old == val)
341			break;
342
343		val = old;
344	}
345
346	/*
347	 * we won the trylock
348	 */
349	if (new == _Q_LOCKED_VAL)
350		return;
351
352	/*
353	 * we're pending, wait for the owner to go away.
354	 *
355	 * *,1,1 -> *,1,0
356	 *
357	 * this wait loop must be a load-acquire such that we match the
358	 * store-release that clears the locked bit and create lock
359	 * sequentiality; this is because not all clear_pending_set_locked()
360	 * implementations imply full barriers.
 
361	 */
362	smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK));
 
363
364	/*
365	 * take ownership and clear the pending bit.
366	 *
367	 * *,1,0 -> *,0,1
368	 */
369	clear_pending_set_locked(lock);
 
370	return;
371
372	/*
373	 * End of pending bit optimistic spinning and beginning of MCS
374	 * queuing.
375	 */
376queue:
377	node = this_cpu_ptr(&mcs_nodes[0]);
 
 
378	idx = node->count++;
379	tail = encode_tail(smp_processor_id(), idx);
380
381	node += idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382
383	/*
384	 * Ensure that we increment the head node->count before initialising
385	 * the actual node. If the compiler is kind enough to reorder these
386	 * stores, then an IRQ could overwrite our assignments.
387	 */
388	barrier();
389
390	node->locked = 0;
391	node->next = NULL;
392	pv_init_node(node);
393
394	/*
395	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
396	 * attempt the trylock once more in the hope someone let go while we
397	 * weren't watching.
398	 */
399	if (queued_spin_trylock(lock))
400		goto release;
401
402	/*
 
 
 
 
 
 
 
 
403	 * We have already touched the queueing cacheline; don't bother with
404	 * pending stuff.
405	 *
406	 * p,*,* -> n,*,*
407	 *
408	 * RELEASE, such that the stores to @node must be complete.
409	 */
410	old = xchg_tail(lock, tail);
411	next = NULL;
412
413	/*
414	 * if there was a previous node; link it and wait until reaching the
415	 * head of the waitqueue.
416	 */
417	if (old & _Q_TAIL_MASK) {
418		prev = decode_tail(old);
419
420		/*
421		 * We must ensure that the stores to @node are observed before
422		 * the write to prev->next. The address dependency from
423		 * xchg_tail is not sufficient to ensure this because the read
424		 * component of xchg_tail is unordered with respect to the
425		 * initialisation of @node.
426		 */
427		smp_store_release(&prev->next, node);
428
429		pv_wait_node(node, prev);
430		arch_mcs_spin_lock_contended(&node->locked);
431
432		/*
433		 * While waiting for the MCS lock, the next pointer may have
434		 * been set by another lock waiter. We optimistically load
435		 * the next pointer & prefetch the cacheline for writing
436		 * to reduce latency in the upcoming MCS unlock operation.
437		 */
438		next = READ_ONCE(node->next);
439		if (next)
440			prefetchw(next);
441	}
442
443	/*
444	 * we're at the head of the waitqueue, wait for the owner & pending to
445	 * go away.
446	 *
447	 * *,x,y -> *,0,0
448	 *
449	 * this wait loop must use a load-acquire such that we match the
450	 * store-release that clears the locked bit and create lock
451	 * sequentiality; this is because the set_locked() function below
452	 * does not imply a full barrier.
453	 *
454	 * The PV pv_wait_head_or_lock function, if active, will acquire
455	 * the lock and return a non-zero value. So we have to skip the
456	 * smp_cond_load_acquire() call. As the next PV queue head hasn't been
457	 * designated yet, there is no way for the locked value to become
458	 * _Q_SLOW_VAL. So both the set_locked() and the
459	 * atomic_cmpxchg_relaxed() calls will be safe.
460	 *
461	 * If PV isn't active, 0 will be returned instead.
462	 *
463	 */
464	if ((val = pv_wait_head_or_lock(lock, node)))
465		goto locked;
466
467	val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK));
468
469locked:
470	/*
471	 * claim the lock:
472	 *
473	 * n,0,0 -> 0,0,1 : lock, uncontended
474	 * *,0,0 -> *,0,1 : lock, contended
475	 *
476	 * If the queue head is the only one in the queue (lock value == tail),
477	 * clear the tail code and grab the lock. Otherwise, we only need
478	 * to grab the lock.
479	 */
480	for (;;) {
481		/* In the PV case we might already have _Q_LOCKED_VAL set */
482		if ((val & _Q_TAIL_MASK) != tail) {
483			set_locked(lock);
484			break;
485		}
486		/*
487		 * The smp_cond_load_acquire() call above has provided the
488		 * necessary acquire semantics required for locking. At most
489		 * two iterations of this loop may be ran.
490		 */
491		old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
492		if (old == val)
493			goto release;	/* No contention */
494
495		val = old;
 
 
 
 
 
 
 
 
 
 
 
 
496	}
497
498	/*
 
 
 
 
 
 
 
499	 * contended path; wait for next if not observed yet, release.
500	 */
501	if (!next) {
502		while (!(next = READ_ONCE(node->next)))
503			cpu_relax();
504	}
505
506	arch_mcs_spin_unlock_contended(&next->locked);
507	pv_kick_node(lock, next);
508
509release:
510	/*
511	 * release the node
512	 */
513	__this_cpu_dec(mcs_nodes[0].count);
514}
515EXPORT_SYMBOL(queued_spin_lock_slowpath);
516
517/*
518 * Generate the paravirt code for queued_spin_unlock_slowpath().
519 */
520#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
521#define _GEN_PV_LOCK_SLOWPATH
522
523#undef  pv_enabled
524#define pv_enabled()	true
525
526#undef pv_init_node
527#undef pv_wait_node
528#undef pv_kick_node
529#undef pv_wait_head_or_lock
530
531#undef  queued_spin_lock_slowpath
532#define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath
533
534#include "qspinlock_paravirt.h"
535#include "qspinlock.c"
536
 
 
 
 
 
 
 
537#endif
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Queued spinlock
  4 *
 
 
 
 
 
 
 
 
 
 
  5 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
  6 * (C) Copyright 2013-2014,2018 Red Hat, Inc.
  7 * (C) Copyright 2015 Intel Corp.
  8 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
  9 *
 10 * Authors: Waiman Long <longman@redhat.com>
 11 *          Peter Zijlstra <peterz@infradead.org>
 12 */
 13
 14#ifndef _GEN_PV_LOCK_SLOWPATH
 15
 16#include <linux/smp.h>
 17#include <linux/bug.h>
 18#include <linux/cpumask.h>
 19#include <linux/percpu.h>
 20#include <linux/hardirq.h>
 21#include <linux/mutex.h>
 22#include <linux/prefetch.h>
 23#include <asm/byteorder.h>
 24#include <asm/qspinlock.h>
 25
 26/*
 27 * Include queued spinlock statistics code
 28 */
 29#include "qspinlock_stat.h"
 30
 31/*
 32 * The basic principle of a queue-based spinlock can best be understood
 33 * by studying a classic queue-based spinlock implementation called the
 34 * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable
 35 * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and
 36 * Scott") is available at
 37 *
 38 * https://bugzilla.kernel.org/show_bug.cgi?id=206115
 39 *
 40 * This queued spinlock implementation is based on the MCS lock, however to
 41 * make it fit the 4 bytes we assume spinlock_t to be, and preserve its
 42 * existing API, we must modify it somehow.
 43 *
 44 * In particular; where the traditional MCS lock consists of a tail pointer
 45 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
 46 * unlock the next pending (next->locked), we compress both these: {tail,
 47 * next->locked} into a single u32 value.
 48 *
 49 * Since a spinlock disables recursion of its own context and there is a limit
 50 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
 51 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
 52 * we can encode the tail by combining the 2-bit nesting level with the cpu
 53 * number. With one byte for the lock value and 3 bytes for the tail, only a
 54 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
 55 * we extend it to a full byte to achieve better performance for architectures
 56 * that support atomic byte write.
 57 *
 58 * We also change the first spinner to spin on the lock bit instead of its
 59 * node; whereby avoiding the need to carry a node from lock to unlock, and
 60 * preserving existing lock API. This also makes the unlock code simpler and
 61 * faster.
 62 *
 63 * N.B. The current implementation only supports architectures that allow
 64 *      atomic operations on smaller 8-bit and 16-bit data types.
 65 *
 66 */
 67
 68#include "mcs_spinlock.h"
 69#define MAX_NODES	4
 70
 71/*
 72 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
 73 * size and four of them will fit nicely in one 64-byte cacheline. For
 74 * pvqspinlock, however, we need more space for extra data. To accommodate
 75 * that, we insert two more long words to pad it up to 32 bytes. IOW, only
 76 * two of them can fit in a cacheline in this case. That is OK as it is rare
 77 * to have more than 2 levels of slowpath nesting in actual use. We don't
 78 * want to penalize pvqspinlocks to optimize for a rare case in native
 79 * qspinlocks.
 80 */
 81struct qnode {
 82	struct mcs_spinlock mcs;
 83#ifdef CONFIG_PARAVIRT_SPINLOCKS
 84	long reserved[2];
 85#endif
 86};
 87
 88/*
 89 * The pending bit spinning loop count.
 90 * This heuristic is used to limit the number of lockword accesses
 91 * made by atomic_cond_read_relaxed when waiting for the lock to
 92 * transition out of the "== _Q_PENDING_VAL" state. We don't spin
 93 * indefinitely because there's no guarantee that we'll make forward
 94 * progress.
 95 */
 96#ifndef _Q_PENDING_LOOPS
 97#define _Q_PENDING_LOOPS	1
 98#endif
 99
100/*
101 * Per-CPU queue node structures; we can never have more than 4 nested
102 * contexts: task, softirq, hardirq, nmi.
103 *
104 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
105 *
106 * PV doubles the storage and uses the second cacheline for PV state.
107 */
108static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
109
110/*
111 * We must be able to distinguish between no-tail and the tail at 0:0,
112 * therefore increment the cpu number by one.
113 */
114
115static inline __pure u32 encode_tail(int cpu, int idx)
116{
117	u32 tail;
118
 
 
 
119	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
120	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
121
122	return tail;
123}
124
125static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
126{
127	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
128	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
129
130	return per_cpu_ptr(&qnodes[idx].mcs, cpu);
131}
132
133static inline __pure
134struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
135{
136	return &((struct qnode *)base + idx)->mcs;
137}
138
139#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
141#if _Q_PENDING_BITS == 8
142/**
143 * clear_pending - clear the pending bit.
144 * @lock: Pointer to queued spinlock structure
145 *
146 * *,1,* -> *,0,*
147 */
148static __always_inline void clear_pending(struct qspinlock *lock)
149{
150	WRITE_ONCE(lock->pending, 0);
151}
152
153/**
154 * clear_pending_set_locked - take ownership and clear the pending bit.
155 * @lock: Pointer to queued spinlock structure
156 *
157 * *,1,0 -> *,0,1
158 *
159 * Lock stealing is not allowed if this function is used.
160 */
161static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
162{
163	WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
 
 
164}
165
166/*
167 * xchg_tail - Put in the new queue tail code word & retrieve previous one
168 * @lock : Pointer to queued spinlock structure
169 * @tail : The new queue tail code word
170 * Return: The previous queue tail code word
171 *
172 * xchg(lock, tail), which heads an address dependency
173 *
174 * p,*,* -> n,*,* ; prev = xchg(lock, node)
175 */
176static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
177{
 
 
178	/*
179	 * We can use relaxed semantics since the caller ensures that the
180	 * MCS node is properly initialized before updating the tail.
181	 */
182	return (u32)xchg_relaxed(&lock->tail,
183				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
184}
185
186#else /* _Q_PENDING_BITS == 8 */
187
188/**
189 * clear_pending - clear the pending bit.
190 * @lock: Pointer to queued spinlock structure
191 *
192 * *,1,* -> *,0,*
193 */
194static __always_inline void clear_pending(struct qspinlock *lock)
195{
196	atomic_andnot(_Q_PENDING_VAL, &lock->val);
197}
198
199/**
200 * clear_pending_set_locked - take ownership and clear the pending bit.
201 * @lock: Pointer to queued spinlock structure
202 *
203 * *,1,0 -> *,0,1
204 */
205static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
206{
207	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
208}
209
210/**
211 * xchg_tail - Put in the new queue tail code word & retrieve previous one
212 * @lock : Pointer to queued spinlock structure
213 * @tail : The new queue tail code word
214 * Return: The previous queue tail code word
215 *
216 * xchg(lock, tail)
217 *
218 * p,*,* -> n,*,* ; prev = xchg(lock, node)
219 */
220static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
221{
222	u32 old, new, val = atomic_read(&lock->val);
223
224	for (;;) {
225		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
226		/*
227		 * We can use relaxed semantics since the caller ensures that
228		 * the MCS node is properly initialized before updating the
229		 * tail.
230		 */
231		old = atomic_cmpxchg_relaxed(&lock->val, val, new);
232		if (old == val)
233			break;
234
235		val = old;
236	}
237	return old;
238}
239#endif /* _Q_PENDING_BITS == 8 */
240
241/**
242 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
243 * @lock : Pointer to queued spinlock structure
244 * Return: The previous lock value
245 *
246 * *,*,* -> *,1,*
247 */
248#ifndef queued_fetch_set_pending_acquire
249static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
250{
251	return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
252}
253#endif
254
255/**
256 * set_locked - Set the lock bit and own the lock
257 * @lock: Pointer to queued spinlock structure
258 *
259 * *,*,0 -> *,0,1
260 */
261static __always_inline void set_locked(struct qspinlock *lock)
262{
263	WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
 
 
264}
265
266
267/*
268 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
269 * all the PV callbacks.
270 */
271
272static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
273static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
274					   struct mcs_spinlock *prev) { }
275static __always_inline void __pv_kick_node(struct qspinlock *lock,
276					   struct mcs_spinlock *node) { }
277static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
278						   struct mcs_spinlock *node)
279						   { return 0; }
280
281#define pv_enabled()		false
282
283#define pv_init_node		__pv_init_node
284#define pv_wait_node		__pv_wait_node
285#define pv_kick_node		__pv_kick_node
286#define pv_wait_head_or_lock	__pv_wait_head_or_lock
287
288#ifdef CONFIG_PARAVIRT_SPINLOCKS
289#define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
290#endif
291
292#endif /* _GEN_PV_LOCK_SLOWPATH */
293
294/**
295 * queued_spin_lock_slowpath - acquire the queued spinlock
296 * @lock: Pointer to queued spinlock structure
297 * @val: Current value of the queued spinlock 32-bit word
298 *
299 * (queue tail, pending bit, lock value)
300 *
301 *              fast     :    slow                                  :    unlock
302 *                       :                                          :
303 * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
304 *                       :       | ^--------.------.             /  :
305 *                       :       v           \      \            |  :
306 * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
307 *                       :       | ^--'              |           |  :
308 *                       :       v                   |           |  :
309 * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
310 *   queue               :       | ^--'                          |  :
311 *                       :       v                               |  :
312 * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
313 *   queue               :         ^--'                             :
314 */
315void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
316{
317	struct mcs_spinlock *prev, *next, *node;
318	u32 old, tail;
319	int idx;
320
321	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
322
323	if (pv_enabled())
324		goto pv_queue;
325
326	if (virt_spin_lock(lock))
327		return;
328
329	/*
330	 * Wait for in-progress pending->locked hand-overs with a bounded
331	 * number of spins so that we guarantee forward progress.
332	 *
333	 * 0,1,0 -> 0,0,1
334	 */
335	if (val == _Q_PENDING_VAL) {
336		int cnt = _Q_PENDING_LOOPS;
337		val = atomic_cond_read_relaxed(&lock->val,
338					       (VAL != _Q_PENDING_VAL) || !cnt--);
339	}
340
341	/*
342	 * If we observe any contention; queue.
343	 */
344	if (val & ~_Q_LOCKED_MASK)
345		goto queue;
346
347	/*
348	 * trylock || pending
349	 *
350	 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
 
351	 */
352	val = queued_fetch_set_pending_acquire(lock);
 
 
 
 
 
353
354	/*
355	 * If we observe contention, there is a concurrent locker.
356	 *
357	 * Undo and queue; our setting of PENDING might have made the
358	 * n,0,0 -> 0,0,0 transition fail and it will now be waiting
359	 * on @next to become !NULL.
360	 */
361	if (unlikely(val & ~_Q_LOCKED_MASK)) {
362
363		/* Undo PENDING if we set it. */
364		if (!(val & _Q_PENDING_MASK))
365			clear_pending(lock);
 
 
 
 
366
367		goto queue;
368	}
369
370	/*
371	 * We're pending, wait for the owner to go away.
 
 
 
 
 
 
372	 *
373	 * 0,1,1 -> 0,1,0
374	 *
375	 * this wait loop must be a load-acquire such that we match the
376	 * store-release that clears the locked bit and create lock
377	 * sequentiality; this is because not all
378	 * clear_pending_set_locked() implementations imply full
379	 * barriers.
380	 */
381	if (val & _Q_LOCKED_MASK)
382		atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK));
383
384	/*
385	 * take ownership and clear the pending bit.
386	 *
387	 * 0,1,0 -> 0,0,1
388	 */
389	clear_pending_set_locked(lock);
390	lockevent_inc(lock_pending);
391	return;
392
393	/*
394	 * End of pending bit optimistic spinning and beginning of MCS
395	 * queuing.
396	 */
397queue:
398	lockevent_inc(lock_slowpath);
399pv_queue:
400	node = this_cpu_ptr(&qnodes[0].mcs);
401	idx = node->count++;
402	tail = encode_tail(smp_processor_id(), idx);
403
404	/*
405	 * 4 nodes are allocated based on the assumption that there will
406	 * not be nested NMIs taking spinlocks. That may not be true in
407	 * some architectures even though the chance of needing more than
408	 * 4 nodes will still be extremely unlikely. When that happens,
409	 * we fall back to spinning on the lock directly without using
410	 * any MCS node. This is not the most elegant solution, but is
411	 * simple enough.
412	 */
413	if (unlikely(idx >= MAX_NODES)) {
414		lockevent_inc(lock_no_node);
415		while (!queued_spin_trylock(lock))
416			cpu_relax();
417		goto release;
418	}
419
420	node = grab_mcs_node(node, idx);
421
422	/*
423	 * Keep counts of non-zero index values:
424	 */
425	lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
426
427	/*
428	 * Ensure that we increment the head node->count before initialising
429	 * the actual node. If the compiler is kind enough to reorder these
430	 * stores, then an IRQ could overwrite our assignments.
431	 */
432	barrier();
433
434	node->locked = 0;
435	node->next = NULL;
436	pv_init_node(node);
437
438	/*
439	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
440	 * attempt the trylock once more in the hope someone let go while we
441	 * weren't watching.
442	 */
443	if (queued_spin_trylock(lock))
444		goto release;
445
446	/*
447	 * Ensure that the initialisation of @node is complete before we
448	 * publish the updated tail via xchg_tail() and potentially link
449	 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
450	 */
451	smp_wmb();
452
453	/*
454	 * Publish the updated tail.
455	 * We have already touched the queueing cacheline; don't bother with
456	 * pending stuff.
457	 *
458	 * p,*,* -> n,*,*
 
 
459	 */
460	old = xchg_tail(lock, tail);
461	next = NULL;
462
463	/*
464	 * if there was a previous node; link it and wait until reaching the
465	 * head of the waitqueue.
466	 */
467	if (old & _Q_TAIL_MASK) {
468		prev = decode_tail(old);
469
470		/* Link @node into the waitqueue. */
471		WRITE_ONCE(prev->next, node);
 
 
 
 
 
 
472
473		pv_wait_node(node, prev);
474		arch_mcs_spin_lock_contended(&node->locked);
475
476		/*
477		 * While waiting for the MCS lock, the next pointer may have
478		 * been set by another lock waiter. We optimistically load
479		 * the next pointer & prefetch the cacheline for writing
480		 * to reduce latency in the upcoming MCS unlock operation.
481		 */
482		next = READ_ONCE(node->next);
483		if (next)
484			prefetchw(next);
485	}
486
487	/*
488	 * we're at the head of the waitqueue, wait for the owner & pending to
489	 * go away.
490	 *
491	 * *,x,y -> *,0,0
492	 *
493	 * this wait loop must use a load-acquire such that we match the
494	 * store-release that clears the locked bit and create lock
495	 * sequentiality; this is because the set_locked() function below
496	 * does not imply a full barrier.
497	 *
498	 * The PV pv_wait_head_or_lock function, if active, will acquire
499	 * the lock and return a non-zero value. So we have to skip the
500	 * atomic_cond_read_acquire() call. As the next PV queue head hasn't
501	 * been designated yet, there is no way for the locked value to become
502	 * _Q_SLOW_VAL. So both the set_locked() and the
503	 * atomic_cmpxchg_relaxed() calls will be safe.
504	 *
505	 * If PV isn't active, 0 will be returned instead.
506	 *
507	 */
508	if ((val = pv_wait_head_or_lock(lock, node)))
509		goto locked;
510
511	val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
512
513locked:
514	/*
515	 * claim the lock:
516	 *
517	 * n,0,0 -> 0,0,1 : lock, uncontended
518	 * *,*,0 -> *,*,1 : lock, contended
519	 *
520	 * If the queue head is the only one in the queue (lock value == tail)
521	 * and nobody is pending, clear the tail code and grab the lock.
522	 * Otherwise, we only need to grab the lock.
523	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524
525	/*
526	 * In the PV case we might already have _Q_LOCKED_VAL set, because
527	 * of lock stealing; therefore we must also allow:
528	 *
529	 * n,0,1 -> 0,0,1
530	 *
531	 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
532	 *       above wait condition, therefore any concurrent setting of
533	 *       PENDING will make the uncontended transition fail.
534	 */
535	if ((val & _Q_TAIL_MASK) == tail) {
536		if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
537			goto release; /* No contention */
538	}
539
540	/*
541	 * Either somebody is queued behind us or _Q_PENDING_VAL got set
542	 * which will then detect the remaining tail and queue behind us
543	 * ensuring we'll see a @next.
544	 */
545	set_locked(lock);
546
547	/*
548	 * contended path; wait for next if not observed yet, release.
549	 */
550	if (!next)
551		next = smp_cond_load_relaxed(&node->next, (VAL));
 
 
552
553	arch_mcs_spin_unlock_contended(&next->locked);
554	pv_kick_node(lock, next);
555
556release:
557	/*
558	 * release the node
559	 */
560	__this_cpu_dec(qnodes[0].mcs.count);
561}
562EXPORT_SYMBOL(queued_spin_lock_slowpath);
563
564/*
565 * Generate the paravirt code for queued_spin_unlock_slowpath().
566 */
567#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
568#define _GEN_PV_LOCK_SLOWPATH
569
570#undef  pv_enabled
571#define pv_enabled()	true
572
573#undef pv_init_node
574#undef pv_wait_node
575#undef pv_kick_node
576#undef pv_wait_head_or_lock
577
578#undef  queued_spin_lock_slowpath
579#define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath
580
581#include "qspinlock_paravirt.h"
582#include "qspinlock.c"
583
584bool nopvspin __initdata;
585static __init int parse_nopvspin(char *arg)
586{
587	nopvspin = true;
588	return 0;
589}
590early_param("nopvspin", parse_nopvspin);
591#endif