Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Dynamic DMA mapping support.
  4 *
  5 * This implementation is a fallback for platforms that do not support
  6 * I/O TLBs (aka DMA address translation hardware).
  7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  9 * Copyright (C) 2000, 2003 Hewlett-Packard Co
 10 *	David Mosberger-Tang <davidm@hpl.hp.com>
 11 *
 12 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
 13 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
 14 *			unnecessary i-cache flushing.
 15 * 04/07/.. ak		Better overflow handling. Assorted fixes.
 16 * 05/09/10 linville	Add support for syncing ranges, support syncing for
 17 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
 18 * 08/12/11 beckyb	Add highmem support
 19 */
 20
 21#define pr_fmt(fmt) "software IO TLB: " fmt
 22
 23#include <linux/cache.h>
 24#include <linux/dma-direct.h>
 25#include <linux/dma-noncoherent.h>
 26#include <linux/mm.h>
 27#include <linux/export.h>
 28#include <linux/spinlock.h>
 29#include <linux/string.h>
 30#include <linux/swiotlb.h>
 31#include <linux/pfn.h>
 32#include <linux/types.h>
 33#include <linux/ctype.h>
 34#include <linux/highmem.h>
 35#include <linux/gfp.h>
 36#include <linux/scatterlist.h>
 37#include <linux/mem_encrypt.h>
 38#include <linux/set_memory.h>
 39#ifdef CONFIG_DEBUG_FS
 40#include <linux/debugfs.h>
 41#endif
 42
 43#include <asm/io.h>
 44#include <asm/dma.h>
 45
 46#include <linux/init.h>
 47#include <linux/memblock.h>
 48#include <linux/iommu-helper.h>
 49
 50#define CREATE_TRACE_POINTS
 51#include <trace/events/swiotlb.h>
 52
 53#define OFFSET(val,align) ((unsigned long)	\
 54	                   ( (val) & ( (align) - 1)))
 55
 56#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 57
 58/*
 59 * Minimum IO TLB size to bother booting with.  Systems with mainly
 60 * 64bit capable cards will only lightly use the swiotlb.  If we can't
 61 * allocate a contiguous 1MB, we're probably in trouble anyway.
 62 */
 63#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 64
 65enum swiotlb_force swiotlb_force;
 66
 67/*
 68 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 69 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 70 * API.
 71 */
 72phys_addr_t io_tlb_start, io_tlb_end;
 73
 74/*
 75 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
 76 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
 77 */
 78static unsigned long io_tlb_nslabs;
 79
 80/*
 81 * The number of used IO TLB block
 82 */
 83static unsigned long io_tlb_used;
 84
 85/*
 86 * This is a free list describing the number of free entries available from
 87 * each index
 88 */
 89static unsigned int *io_tlb_list;
 90static unsigned int io_tlb_index;
 91
 92/*
 93 * Max segment that we can provide which (if pages are contingous) will
 94 * not be bounced (unless SWIOTLB_FORCE is set).
 95 */
 96unsigned int max_segment;
 97
 98/*
 99 * We need to save away the original address corresponding to a mapped entry
100 * for the sync operations.
101 */
102#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
103static phys_addr_t *io_tlb_orig_addr;
104
105/*
106 * Protect the above data structures in the map and unmap calls
107 */
108static DEFINE_SPINLOCK(io_tlb_lock);
109
110static int late_alloc;
111
112static int __init
113setup_io_tlb_npages(char *str)
114{
115	if (isdigit(*str)) {
116		io_tlb_nslabs = simple_strtoul(str, &str, 0);
117		/* avoid tail segment of size < IO_TLB_SEGSIZE */
118		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
119	}
120	if (*str == ',')
121		++str;
122	if (!strcmp(str, "force")) {
123		swiotlb_force = SWIOTLB_FORCE;
124	} else if (!strcmp(str, "noforce")) {
125		swiotlb_force = SWIOTLB_NO_FORCE;
126		io_tlb_nslabs = 1;
127	}
128
129	return 0;
130}
131early_param("swiotlb", setup_io_tlb_npages);
132
133static bool no_iotlb_memory;
134
135unsigned long swiotlb_nr_tbl(void)
136{
137	return unlikely(no_iotlb_memory) ? 0 : io_tlb_nslabs;
138}
139EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
140
141unsigned int swiotlb_max_segment(void)
142{
143	return unlikely(no_iotlb_memory) ? 0 : max_segment;
144}
145EXPORT_SYMBOL_GPL(swiotlb_max_segment);
146
147void swiotlb_set_max_segment(unsigned int val)
148{
149	if (swiotlb_force == SWIOTLB_FORCE)
150		max_segment = 1;
151	else
152		max_segment = rounddown(val, PAGE_SIZE);
153}
154
155/* default to 64MB */
156#define IO_TLB_DEFAULT_SIZE (64UL<<20)
157unsigned long swiotlb_size_or_default(void)
158{
159	unsigned long size;
160
161	size = io_tlb_nslabs << IO_TLB_SHIFT;
162
163	return size ? size : (IO_TLB_DEFAULT_SIZE);
164}
165
166void swiotlb_print_info(void)
167{
168	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
169
170	if (no_iotlb_memory) {
171		pr_warn("No low mem\n");
172		return;
173	}
174
175	pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
176	       (unsigned long long)io_tlb_start,
177	       (unsigned long long)io_tlb_end,
178	       bytes >> 20);
179}
180
181/*
182 * Early SWIOTLB allocation may be too early to allow an architecture to
183 * perform the desired operations.  This function allows the architecture to
184 * call SWIOTLB when the operations are possible.  It needs to be called
185 * before the SWIOTLB memory is used.
186 */
187void __init swiotlb_update_mem_attributes(void)
188{
189	void *vaddr;
190	unsigned long bytes;
191
192	if (no_iotlb_memory || late_alloc)
193		return;
194
195	vaddr = phys_to_virt(io_tlb_start);
196	bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
197	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
198	memset(vaddr, 0, bytes);
199}
200
201int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
202{
203	unsigned long i, bytes;
204	size_t alloc_size;
205
206	bytes = nslabs << IO_TLB_SHIFT;
207
208	io_tlb_nslabs = nslabs;
209	io_tlb_start = __pa(tlb);
210	io_tlb_end = io_tlb_start + bytes;
211
212	/*
213	 * Allocate and initialize the free list array.  This array is used
214	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
215	 * between io_tlb_start and io_tlb_end.
216	 */
217	alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int));
218	io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE);
219	if (!io_tlb_list)
220		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
221		      __func__, alloc_size, PAGE_SIZE);
222
223	alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t));
224	io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE);
225	if (!io_tlb_orig_addr)
226		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
227		      __func__, alloc_size, PAGE_SIZE);
228
229	for (i = 0; i < io_tlb_nslabs; i++) {
230		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
231		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
232	}
233	io_tlb_index = 0;
234
235	if (verbose)
236		swiotlb_print_info();
237
238	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
239	return 0;
240}
241
242/*
243 * Statically reserve bounce buffer space and initialize bounce buffer data
244 * structures for the software IO TLB used to implement the DMA API.
245 */
246void  __init
247swiotlb_init(int verbose)
248{
249	size_t default_size = IO_TLB_DEFAULT_SIZE;
250	unsigned char *vstart;
251	unsigned long bytes;
252
253	if (!io_tlb_nslabs) {
254		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
255		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
256	}
257
258	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
259
260	/* Get IO TLB memory from the low pages */
261	vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE);
262	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
263		return;
264
265	if (io_tlb_start)
266		memblock_free_early(io_tlb_start,
267				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
268	pr_warn("Cannot allocate buffer");
269	no_iotlb_memory = true;
270}
271
272/*
273 * Systems with larger DMA zones (those that don't support ISA) can
274 * initialize the swiotlb later using the slab allocator if needed.
275 * This should be just like above, but with some error catching.
276 */
277int
278swiotlb_late_init_with_default_size(size_t default_size)
279{
280	unsigned long bytes, req_nslabs = io_tlb_nslabs;
281	unsigned char *vstart = NULL;
282	unsigned int order;
283	int rc = 0;
284
285	if (!io_tlb_nslabs) {
286		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
287		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
288	}
289
290	/*
291	 * Get IO TLB memory from the low pages
292	 */
293	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
294	io_tlb_nslabs = SLABS_PER_PAGE << order;
295	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
296
297	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
298		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
299						  order);
300		if (vstart)
301			break;
302		order--;
303	}
304
305	if (!vstart) {
306		io_tlb_nslabs = req_nslabs;
307		return -ENOMEM;
308	}
309	if (order != get_order(bytes)) {
310		pr_warn("only able to allocate %ld MB\n",
311			(PAGE_SIZE << order) >> 20);
312		io_tlb_nslabs = SLABS_PER_PAGE << order;
313	}
314	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
315	if (rc)
316		free_pages((unsigned long)vstart, order);
317
318	return rc;
319}
320
321static void swiotlb_cleanup(void)
322{
323	io_tlb_end = 0;
324	io_tlb_start = 0;
325	io_tlb_nslabs = 0;
326	max_segment = 0;
327}
328
329int
330swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
331{
332	unsigned long i, bytes;
333
334	bytes = nslabs << IO_TLB_SHIFT;
335
336	io_tlb_nslabs = nslabs;
337	io_tlb_start = virt_to_phys(tlb);
338	io_tlb_end = io_tlb_start + bytes;
339
340	set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
341	memset(tlb, 0, bytes);
342
343	/*
344	 * Allocate and initialize the free list array.  This array is used
345	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
346	 * between io_tlb_start and io_tlb_end.
347	 */
348	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
349	                              get_order(io_tlb_nslabs * sizeof(int)));
350	if (!io_tlb_list)
351		goto cleanup3;
352
353	io_tlb_orig_addr = (phys_addr_t *)
354		__get_free_pages(GFP_KERNEL,
355				 get_order(io_tlb_nslabs *
356					   sizeof(phys_addr_t)));
357	if (!io_tlb_orig_addr)
358		goto cleanup4;
359
360	for (i = 0; i < io_tlb_nslabs; i++) {
361		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
362		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
363	}
364	io_tlb_index = 0;
365
366	swiotlb_print_info();
367
368	late_alloc = 1;
369
370	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
371
372	return 0;
373
374cleanup4:
375	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
376	                                                 sizeof(int)));
377	io_tlb_list = NULL;
378cleanup3:
379	swiotlb_cleanup();
380	return -ENOMEM;
381}
382
383void __init swiotlb_exit(void)
384{
385	if (!io_tlb_orig_addr)
386		return;
387
388	if (late_alloc) {
389		free_pages((unsigned long)io_tlb_orig_addr,
390			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
391		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
392								 sizeof(int)));
393		free_pages((unsigned long)phys_to_virt(io_tlb_start),
394			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
395	} else {
396		memblock_free_late(__pa(io_tlb_orig_addr),
397				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
398		memblock_free_late(__pa(io_tlb_list),
399				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
400		memblock_free_late(io_tlb_start,
401				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
402	}
403	swiotlb_cleanup();
404}
405
406/*
407 * Bounce: copy the swiotlb buffer from or back to the original dma location
408 */
409static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
410			   size_t size, enum dma_data_direction dir)
411{
412	unsigned long pfn = PFN_DOWN(orig_addr);
413	unsigned char *vaddr = phys_to_virt(tlb_addr);
414
415	if (PageHighMem(pfn_to_page(pfn))) {
416		/* The buffer does not have a mapping.  Map it in and copy */
417		unsigned int offset = orig_addr & ~PAGE_MASK;
418		char *buffer;
419		unsigned int sz = 0;
420		unsigned long flags;
421
422		while (size) {
423			sz = min_t(size_t, PAGE_SIZE - offset, size);
424
425			local_irq_save(flags);
426			buffer = kmap_atomic(pfn_to_page(pfn));
427			if (dir == DMA_TO_DEVICE)
428				memcpy(vaddr, buffer + offset, sz);
429			else
430				memcpy(buffer + offset, vaddr, sz);
431			kunmap_atomic(buffer);
432			local_irq_restore(flags);
433
434			size -= sz;
435			pfn++;
436			vaddr += sz;
437			offset = 0;
438		}
439	} else if (dir == DMA_TO_DEVICE) {
440		memcpy(vaddr, phys_to_virt(orig_addr), size);
441	} else {
442		memcpy(phys_to_virt(orig_addr), vaddr, size);
443	}
444}
445
446phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
447				   dma_addr_t tbl_dma_addr,
448				   phys_addr_t orig_addr,
449				   size_t mapping_size,
450				   size_t alloc_size,
451				   enum dma_data_direction dir,
452				   unsigned long attrs)
453{
454	unsigned long flags;
455	phys_addr_t tlb_addr;
456	unsigned int nslots, stride, index, wrap;
457	int i;
458	unsigned long mask;
459	unsigned long offset_slots;
460	unsigned long max_slots;
461	unsigned long tmp_io_tlb_used;
462
463	if (no_iotlb_memory)
464		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
465
466	if (mem_encrypt_active())
467		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
468
469	if (mapping_size > alloc_size) {
470		dev_warn_once(hwdev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
471			      mapping_size, alloc_size);
472		return (phys_addr_t)DMA_MAPPING_ERROR;
473	}
474
475	mask = dma_get_seg_boundary(hwdev);
476
477	tbl_dma_addr &= mask;
478
479	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
480
481	/*
482	 * Carefully handle integer overflow which can occur when mask == ~0UL.
483	 */
484	max_slots = mask + 1
485		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
486		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
487
488	/*
489	 * For mappings greater than or equal to a page, we limit the stride
490	 * (and hence alignment) to a page size.
491	 */
492	nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
493	if (alloc_size >= PAGE_SIZE)
494		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
495	else
496		stride = 1;
497
498	BUG_ON(!nslots);
499
500	/*
501	 * Find suitable number of IO TLB entries size that will fit this
502	 * request and allocate a buffer from that IO TLB pool.
503	 */
504	spin_lock_irqsave(&io_tlb_lock, flags);
505
506	if (unlikely(nslots > io_tlb_nslabs - io_tlb_used))
507		goto not_found;
508
509	index = ALIGN(io_tlb_index, stride);
510	if (index >= io_tlb_nslabs)
511		index = 0;
512	wrap = index;
513
514	do {
515		while (iommu_is_span_boundary(index, nslots, offset_slots,
516					      max_slots)) {
517			index += stride;
518			if (index >= io_tlb_nslabs)
519				index = 0;
520			if (index == wrap)
521				goto not_found;
522		}
523
524		/*
525		 * If we find a slot that indicates we have 'nslots' number of
526		 * contiguous buffers, we allocate the buffers from that slot
527		 * and mark the entries as '0' indicating unavailable.
528		 */
529		if (io_tlb_list[index] >= nslots) {
530			int count = 0;
531
532			for (i = index; i < (int) (index + nslots); i++)
533				io_tlb_list[i] = 0;
534			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
535				io_tlb_list[i] = ++count;
536			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
537
538			/*
539			 * Update the indices to avoid searching in the next
540			 * round.
541			 */
542			io_tlb_index = ((index + nslots) < io_tlb_nslabs
543					? (index + nslots) : 0);
544
545			goto found;
546		}
547		index += stride;
548		if (index >= io_tlb_nslabs)
549			index = 0;
550	} while (index != wrap);
551
552not_found:
553	tmp_io_tlb_used = io_tlb_used;
554
555	spin_unlock_irqrestore(&io_tlb_lock, flags);
556	if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
557		dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
558			 alloc_size, io_tlb_nslabs, tmp_io_tlb_used);
559	return (phys_addr_t)DMA_MAPPING_ERROR;
560found:
561	io_tlb_used += nslots;
562	spin_unlock_irqrestore(&io_tlb_lock, flags);
563
564	/*
565	 * Save away the mapping from the original address to the DMA address.
566	 * This is needed when we sync the memory.  Then we sync the buffer if
567	 * needed.
568	 */
569	for (i = 0; i < nslots; i++)
570		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
571	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
572	    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
573		swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_TO_DEVICE);
574
575	return tlb_addr;
576}
577
578/*
579 * tlb_addr is the physical address of the bounce buffer to unmap.
580 */
581void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
582			      size_t mapping_size, size_t alloc_size,
583			      enum dma_data_direction dir, unsigned long attrs)
584{
585	unsigned long flags;
586	int i, count, nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
587	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
588	phys_addr_t orig_addr = io_tlb_orig_addr[index];
589
590	/*
591	 * First, sync the memory before unmapping the entry
592	 */
593	if (orig_addr != INVALID_PHYS_ADDR &&
594	    !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
595	    ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
596		swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_FROM_DEVICE);
597
598	/*
599	 * Return the buffer to the free list by setting the corresponding
600	 * entries to indicate the number of contiguous entries available.
601	 * While returning the entries to the free list, we merge the entries
602	 * with slots below and above the pool being returned.
603	 */
604	spin_lock_irqsave(&io_tlb_lock, flags);
605	{
606		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
607			 io_tlb_list[index + nslots] : 0);
608		/*
609		 * Step 1: return the slots to the free list, merging the
610		 * slots with superceeding slots
611		 */
612		for (i = index + nslots - 1; i >= index; i--) {
613			io_tlb_list[i] = ++count;
614			io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
615		}
616		/*
617		 * Step 2: merge the returned slots with the preceding slots,
618		 * if available (non zero)
619		 */
620		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
621			io_tlb_list[i] = ++count;
622
623		io_tlb_used -= nslots;
624	}
625	spin_unlock_irqrestore(&io_tlb_lock, flags);
626}
627
628void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
629			     size_t size, enum dma_data_direction dir,
630			     enum dma_sync_target target)
631{
632	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
633	phys_addr_t orig_addr = io_tlb_orig_addr[index];
634
635	if (orig_addr == INVALID_PHYS_ADDR)
636		return;
637	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
638
639	switch (target) {
640	case SYNC_FOR_CPU:
641		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
642			swiotlb_bounce(orig_addr, tlb_addr,
643				       size, DMA_FROM_DEVICE);
644		else
645			BUG_ON(dir != DMA_TO_DEVICE);
646		break;
647	case SYNC_FOR_DEVICE:
648		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
649			swiotlb_bounce(orig_addr, tlb_addr,
650				       size, DMA_TO_DEVICE);
651		else
652			BUG_ON(dir != DMA_FROM_DEVICE);
653		break;
654	default:
655		BUG();
656	}
657}
658
659/*
660 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
661 * to the device copy the data into it as well.
662 */
663dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
664		enum dma_data_direction dir, unsigned long attrs)
665{
666	phys_addr_t swiotlb_addr;
667	dma_addr_t dma_addr;
668
669	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size,
670			      swiotlb_force);
671
672	swiotlb_addr = swiotlb_tbl_map_single(dev,
673			__phys_to_dma(dev, io_tlb_start),
674			paddr, size, size, dir, attrs);
675	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
676		return DMA_MAPPING_ERROR;
677
678	/* Ensure that the address returned is DMA'ble */
679	dma_addr = __phys_to_dma(dev, swiotlb_addr);
680	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
681		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, size, dir,
682			attrs | DMA_ATTR_SKIP_CPU_SYNC);
683		dev_WARN_ONCE(dev, 1,
684			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
685			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
686		return DMA_MAPPING_ERROR;
687	}
688
689	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
690		arch_sync_dma_for_device(swiotlb_addr, size, dir);
691	return dma_addr;
692}
693
694size_t swiotlb_max_mapping_size(struct device *dev)
695{
696	return ((size_t)1 << IO_TLB_SHIFT) * IO_TLB_SEGSIZE;
697}
698
699bool is_swiotlb_active(void)
700{
701	/*
702	 * When SWIOTLB is initialized, even if io_tlb_start points to physical
703	 * address zero, io_tlb_end surely doesn't.
704	 */
705	return io_tlb_end != 0;
706}
707
708#ifdef CONFIG_DEBUG_FS
709
710static int __init swiotlb_create_debugfs(void)
711{
712	struct dentry *root;
713
714	root = debugfs_create_dir("swiotlb", NULL);
715	debugfs_create_ulong("io_tlb_nslabs", 0400, root, &io_tlb_nslabs);
716	debugfs_create_ulong("io_tlb_used", 0400, root, &io_tlb_used);
717	return 0;
718}
719
720late_initcall(swiotlb_create_debugfs);
721
722#endif