Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/module.h>
30#include <linux/moduleparam.h>
31#include <linux/mm.h>
32#include <linux/init.h>
33#include <linux/kallsyms.h>
34#include <linux/kgdb.h>
35#include <linux/kdb.h>
36#include <linux/notifier.h>
37#include <linux/interrupt.h>
38#include <linux/delay.h>
39#include <linux/nmi.h>
40#include <linux/time.h>
41#include <linux/ptrace.h>
42#include <linux/sysctl.h>
43#include <linux/cpu.h>
44#include <linux/kdebug.h>
45#include <linux/proc_fs.h>
46#include <linux/uaccess.h>
47#include <linux/slab.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76EXPORT_SYMBOL(kdb_current_task);
77struct pt_regs *kdb_current_regs;
78
79const char *kdb_diemsg;
80static int kdb_go_count;
81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
82static unsigned int kdb_continue_catastrophic =
83 CONFIG_KDB_CONTINUE_CATASTROPHIC;
84#else
85static unsigned int kdb_continue_catastrophic;
86#endif
87
88/* kdb_commands describes the available commands. */
89static kdbtab_t *kdb_commands;
90#define KDB_BASE_CMD_MAX 50
91static int kdb_max_commands = KDB_BASE_CMD_MAX;
92static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
93#define for_each_kdbcmd(cmd, num) \
94 for ((cmd) = kdb_base_commands, (num) = 0; \
95 num < kdb_max_commands; \
96 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
97
98typedef struct _kdbmsg {
99 int km_diag; /* kdb diagnostic */
100 char *km_msg; /* Corresponding message text */
101} kdbmsg_t;
102
103#define KDBMSG(msgnum, text) \
104 { KDB_##msgnum, text }
105
106static kdbmsg_t kdbmsgs[] = {
107 KDBMSG(NOTFOUND, "Command Not Found"),
108 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
109 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
110 "8 is only allowed on 64 bit systems"),
111 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
112 KDBMSG(NOTENV, "Cannot find environment variable"),
113 KDBMSG(NOENVVALUE, "Environment variable should have value"),
114 KDBMSG(NOTIMP, "Command not implemented"),
115 KDBMSG(ENVFULL, "Environment full"),
116 KDBMSG(ENVBUFFULL, "Environment buffer full"),
117 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
118#ifdef CONFIG_CPU_XSCALE
119 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
120#else
121 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
122#endif
123 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
124 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
125 KDBMSG(BADMODE, "Invalid IDMODE"),
126 KDBMSG(BADINT, "Illegal numeric value"),
127 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
128 KDBMSG(BADREG, "Invalid register name"),
129 KDBMSG(BADCPUNUM, "Invalid cpu number"),
130 KDBMSG(BADLENGTH, "Invalid length field"),
131 KDBMSG(NOBP, "No Breakpoint exists"),
132 KDBMSG(BADADDR, "Invalid address"),
133 KDBMSG(NOPERM, "Permission denied"),
134};
135#undef KDBMSG
136
137static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
138
139
140/*
141 * Initial environment. This is all kept static and local to
142 * this file. We don't want to rely on the memory allocation
143 * mechanisms in the kernel, so we use a very limited allocate-only
144 * heap for new and altered environment variables. The entire
145 * environment is limited to a fixed number of entries (add more
146 * to __env[] if required) and a fixed amount of heap (add more to
147 * KDB_ENVBUFSIZE if required).
148 */
149
150static char *__env[] = {
151#if defined(CONFIG_SMP)
152 "PROMPT=[%d]kdb> ",
153#else
154 "PROMPT=kdb> ",
155#endif
156 "MOREPROMPT=more> ",
157 "RADIX=16",
158 "MDCOUNT=8", /* lines of md output */
159 KDB_PLATFORM_ENV,
160 "DTABCOUNT=30",
161 "NOSECT=1",
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 (char *)0,
185 (char *)0,
186};
187
188static const int __nenv = ARRAY_SIZE(__env);
189
190struct task_struct *kdb_curr_task(int cpu)
191{
192 struct task_struct *p = curr_task(cpu);
193#ifdef _TIF_MCA_INIT
194 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
195 p = krp->p;
196#endif
197 return p;
198}
199
200/*
201 * Check whether the flags of the current command and the permissions
202 * of the kdb console has allow a command to be run.
203 */
204static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
205 bool no_args)
206{
207 /* permissions comes from userspace so needs massaging slightly */
208 permissions &= KDB_ENABLE_MASK;
209 permissions |= KDB_ENABLE_ALWAYS_SAFE;
210
211 /* some commands change group when launched with no arguments */
212 if (no_args)
213 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
214
215 flags |= KDB_ENABLE_ALL;
216
217 return permissions & flags;
218}
219
220/*
221 * kdbgetenv - This function will return the character string value of
222 * an environment variable.
223 * Parameters:
224 * match A character string representing an environment variable.
225 * Returns:
226 * NULL No environment variable matches 'match'
227 * char* Pointer to string value of environment variable.
228 */
229char *kdbgetenv(const char *match)
230{
231 char **ep = __env;
232 int matchlen = strlen(match);
233 int i;
234
235 for (i = 0; i < __nenv; i++) {
236 char *e = *ep++;
237
238 if (!e)
239 continue;
240
241 if ((strncmp(match, e, matchlen) == 0)
242 && ((e[matchlen] == '\0')
243 || (e[matchlen] == '='))) {
244 char *cp = strchr(e, '=');
245 return cp ? ++cp : "";
246 }
247 }
248 return NULL;
249}
250
251/*
252 * kdballocenv - This function is used to allocate bytes for
253 * environment entries.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long representation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 * Remarks:
261 * We use a static environment buffer (envbuffer) to hold the values
262 * of dynamically generated environment variables (see kdb_set). Buffer
263 * space once allocated is never free'd, so over time, the amount of space
264 * (currently 512 bytes) will be exhausted if env variables are changed
265 * frequently.
266 */
267static char *kdballocenv(size_t bytes)
268{
269#define KDB_ENVBUFSIZE 512
270 static char envbuffer[KDB_ENVBUFSIZE];
271 static int envbufsize;
272 char *ep = NULL;
273
274 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
275 ep = &envbuffer[envbufsize];
276 envbufsize += bytes;
277 }
278 return ep;
279}
280
281/*
282 * kdbgetulenv - This function will return the value of an unsigned
283 * long-valued environment variable.
284 * Parameters:
285 * match A character string representing a numeric value
286 * Outputs:
287 * *value the unsigned long represntation of the env variable 'match'
288 * Returns:
289 * Zero on success, a kdb diagnostic on failure.
290 */
291static int kdbgetulenv(const char *match, unsigned long *value)
292{
293 char *ep;
294
295 ep = kdbgetenv(match);
296 if (!ep)
297 return KDB_NOTENV;
298 if (strlen(ep) == 0)
299 return KDB_NOENVVALUE;
300
301 *value = simple_strtoul(ep, NULL, 0);
302
303 return 0;
304}
305
306/*
307 * kdbgetintenv - This function will return the value of an
308 * integer-valued environment variable.
309 * Parameters:
310 * match A character string representing an integer-valued env variable
311 * Outputs:
312 * *value the integer representation of the environment variable 'match'
313 * Returns:
314 * Zero on success, a kdb diagnostic on failure.
315 */
316int kdbgetintenv(const char *match, int *value)
317{
318 unsigned long val;
319 int diag;
320
321 diag = kdbgetulenv(match, &val);
322 if (!diag)
323 *value = (int) val;
324 return diag;
325}
326
327/*
328 * kdbgetularg - This function will convert a numeric string into an
329 * unsigned long value.
330 * Parameters:
331 * arg A character string representing a numeric value
332 * Outputs:
333 * *value the unsigned long represntation of arg.
334 * Returns:
335 * Zero on success, a kdb diagnostic on failure.
336 */
337int kdbgetularg(const char *arg, unsigned long *value)
338{
339 char *endp;
340 unsigned long val;
341
342 val = simple_strtoul(arg, &endp, 0);
343
344 if (endp == arg) {
345 /*
346 * Also try base 16, for us folks too lazy to type the
347 * leading 0x...
348 */
349 val = simple_strtoul(arg, &endp, 16);
350 if (endp == arg)
351 return KDB_BADINT;
352 }
353
354 *value = val;
355
356 return 0;
357}
358
359int kdbgetu64arg(const char *arg, u64 *value)
360{
361 char *endp;
362 u64 val;
363
364 val = simple_strtoull(arg, &endp, 0);
365
366 if (endp == arg) {
367
368 val = simple_strtoull(arg, &endp, 16);
369 if (endp == arg)
370 return KDB_BADINT;
371 }
372
373 *value = val;
374
375 return 0;
376}
377
378/*
379 * kdb_set - This function implements the 'set' command. Alter an
380 * existing environment variable or create a new one.
381 */
382int kdb_set(int argc, const char **argv)
383{
384 int i;
385 char *ep;
386 size_t varlen, vallen;
387
388 /*
389 * we can be invoked two ways:
390 * set var=value argv[1]="var", argv[2]="value"
391 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
392 * - if the latter, shift 'em down.
393 */
394 if (argc == 3) {
395 argv[2] = argv[3];
396 argc--;
397 }
398
399 if (argc != 2)
400 return KDB_ARGCOUNT;
401
402 /*
403 * Check for internal variables
404 */
405 if (strcmp(argv[1], "KDBDEBUG") == 0) {
406 unsigned int debugflags;
407 char *cp;
408
409 debugflags = simple_strtoul(argv[2], &cp, 0);
410 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
411 kdb_printf("kdb: illegal debug flags '%s'\n",
412 argv[2]);
413 return 0;
414 }
415 kdb_flags = (kdb_flags &
416 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
417 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
418
419 return 0;
420 }
421
422 /*
423 * Tokenizer squashed the '=' sign. argv[1] is variable
424 * name, argv[2] = value.
425 */
426 varlen = strlen(argv[1]);
427 vallen = strlen(argv[2]);
428 ep = kdballocenv(varlen + vallen + 2);
429 if (ep == (char *)0)
430 return KDB_ENVBUFFULL;
431
432 sprintf(ep, "%s=%s", argv[1], argv[2]);
433
434 ep[varlen+vallen+1] = '\0';
435
436 for (i = 0; i < __nenv; i++) {
437 if (__env[i]
438 && ((strncmp(__env[i], argv[1], varlen) == 0)
439 && ((__env[i][varlen] == '\0')
440 || (__env[i][varlen] == '=')))) {
441 __env[i] = ep;
442 return 0;
443 }
444 }
445
446 /*
447 * Wasn't existing variable. Fit into slot.
448 */
449 for (i = 0; i < __nenv-1; i++) {
450 if (__env[i] == (char *)0) {
451 __env[i] = ep;
452 return 0;
453 }
454 }
455
456 return KDB_ENVFULL;
457}
458
459static int kdb_check_regs(void)
460{
461 if (!kdb_current_regs) {
462 kdb_printf("No current kdb registers."
463 " You may need to select another task\n");
464 return KDB_BADREG;
465 }
466 return 0;
467}
468
469/*
470 * kdbgetaddrarg - This function is responsible for parsing an
471 * address-expression and returning the value of the expression,
472 * symbol name, and offset to the caller.
473 *
474 * The argument may consist of a numeric value (decimal or
475 * hexidecimal), a symbol name, a register name (preceded by the
476 * percent sign), an environment variable with a numeric value
477 * (preceded by a dollar sign) or a simple arithmetic expression
478 * consisting of a symbol name, +/-, and a numeric constant value
479 * (offset).
480 * Parameters:
481 * argc - count of arguments in argv
482 * argv - argument vector
483 * *nextarg - index to next unparsed argument in argv[]
484 * regs - Register state at time of KDB entry
485 * Outputs:
486 * *value - receives the value of the address-expression
487 * *offset - receives the offset specified, if any
488 * *name - receives the symbol name, if any
489 * *nextarg - index to next unparsed argument in argv[]
490 * Returns:
491 * zero is returned on success, a kdb diagnostic code is
492 * returned on error.
493 */
494int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
495 unsigned long *value, long *offset,
496 char **name)
497{
498 unsigned long addr;
499 unsigned long off = 0;
500 int positive;
501 int diag;
502 int found = 0;
503 char *symname;
504 char symbol = '\0';
505 char *cp;
506 kdb_symtab_t symtab;
507
508 /*
509 * If the enable flags prohibit both arbitrary memory access
510 * and flow control then there are no reasonable grounds to
511 * provide symbol lookup.
512 */
513 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
514 kdb_cmd_enabled, false))
515 return KDB_NOPERM;
516
517 /*
518 * Process arguments which follow the following syntax:
519 *
520 * symbol | numeric-address [+/- numeric-offset]
521 * %register
522 * $environment-variable
523 */
524
525 if (*nextarg > argc)
526 return KDB_ARGCOUNT;
527
528 symname = (char *)argv[*nextarg];
529
530 /*
531 * If there is no whitespace between the symbol
532 * or address and the '+' or '-' symbols, we
533 * remember the character and replace it with a
534 * null so the symbol/value can be properly parsed
535 */
536 cp = strpbrk(symname, "+-");
537 if (cp != NULL) {
538 symbol = *cp;
539 *cp++ = '\0';
540 }
541
542 if (symname[0] == '$') {
543 diag = kdbgetulenv(&symname[1], &addr);
544 if (diag)
545 return diag;
546 } else if (symname[0] == '%') {
547 diag = kdb_check_regs();
548 if (diag)
549 return diag;
550 /* Implement register values with % at a later time as it is
551 * arch optional.
552 */
553 return KDB_NOTIMP;
554 } else {
555 found = kdbgetsymval(symname, &symtab);
556 if (found) {
557 addr = symtab.sym_start;
558 } else {
559 diag = kdbgetularg(argv[*nextarg], &addr);
560 if (diag)
561 return diag;
562 }
563 }
564
565 if (!found)
566 found = kdbnearsym(addr, &symtab);
567
568 (*nextarg)++;
569
570 if (name)
571 *name = symname;
572 if (value)
573 *value = addr;
574 if (offset && name && *name)
575 *offset = addr - symtab.sym_start;
576
577 if ((*nextarg > argc)
578 && (symbol == '\0'))
579 return 0;
580
581 /*
582 * check for +/- and offset
583 */
584
585 if (symbol == '\0') {
586 if ((argv[*nextarg][0] != '+')
587 && (argv[*nextarg][0] != '-')) {
588 /*
589 * Not our argument. Return.
590 */
591 return 0;
592 } else {
593 positive = (argv[*nextarg][0] == '+');
594 (*nextarg)++;
595 }
596 } else
597 positive = (symbol == '+');
598
599 /*
600 * Now there must be an offset!
601 */
602 if ((*nextarg > argc)
603 && (symbol == '\0')) {
604 return KDB_INVADDRFMT;
605 }
606
607 if (!symbol) {
608 cp = (char *)argv[*nextarg];
609 (*nextarg)++;
610 }
611
612 diag = kdbgetularg(cp, &off);
613 if (diag)
614 return diag;
615
616 if (!positive)
617 off = -off;
618
619 if (offset)
620 *offset += off;
621
622 if (value)
623 *value += off;
624
625 return 0;
626}
627
628static void kdb_cmderror(int diag)
629{
630 int i;
631
632 if (diag >= 0) {
633 kdb_printf("no error detected (diagnostic is %d)\n", diag);
634 return;
635 }
636
637 for (i = 0; i < __nkdb_err; i++) {
638 if (kdbmsgs[i].km_diag == diag) {
639 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
640 return;
641 }
642 }
643
644 kdb_printf("Unknown diag %d\n", -diag);
645}
646
647/*
648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
649 * command which defines one command as a set of other commands,
650 * terminated by endefcmd. kdb_defcmd processes the initial
651 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
652 * the following commands until 'endefcmd'.
653 * Inputs:
654 * argc argument count
655 * argv argument vector
656 * Returns:
657 * zero for success, a kdb diagnostic if error
658 */
659struct defcmd_set {
660 int count;
661 int usable;
662 char *name;
663 char *usage;
664 char *help;
665 char **command;
666};
667static struct defcmd_set *defcmd_set;
668static int defcmd_set_count;
669static int defcmd_in_progress;
670
671/* Forward references */
672static int kdb_exec_defcmd(int argc, const char **argv);
673
674static int kdb_defcmd2(const char *cmdstr, const char *argv0)
675{
676 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
677 char **save_command = s->command;
678 if (strcmp(argv0, "endefcmd") == 0) {
679 defcmd_in_progress = 0;
680 if (!s->count)
681 s->usable = 0;
682 if (s->usable)
683 /* macros are always safe because when executed each
684 * internal command re-enters kdb_parse() and is
685 * safety checked individually.
686 */
687 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
688 s->help, 0,
689 KDB_ENABLE_ALWAYS_SAFE);
690 return 0;
691 }
692 if (!s->usable)
693 return KDB_NOTIMP;
694 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
695 if (!s->command) {
696 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
697 cmdstr);
698 s->usable = 0;
699 return KDB_NOTIMP;
700 }
701 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
702 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
703 kfree(save_command);
704 return 0;
705}
706
707static int kdb_defcmd(int argc, const char **argv)
708{
709 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
710 if (defcmd_in_progress) {
711 kdb_printf("kdb: nested defcmd detected, assuming missing "
712 "endefcmd\n");
713 kdb_defcmd2("endefcmd", "endefcmd");
714 }
715 if (argc == 0) {
716 int i;
717 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
718 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
719 s->usage, s->help);
720 for (i = 0; i < s->count; ++i)
721 kdb_printf("%s", s->command[i]);
722 kdb_printf("endefcmd\n");
723 }
724 return 0;
725 }
726 if (argc != 3)
727 return KDB_ARGCOUNT;
728 if (in_dbg_master()) {
729 kdb_printf("Command only available during kdb_init()\n");
730 return KDB_NOTIMP;
731 }
732 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
733 GFP_KDB);
734 if (!defcmd_set)
735 goto fail_defcmd;
736 memcpy(defcmd_set, save_defcmd_set,
737 defcmd_set_count * sizeof(*defcmd_set));
738 s = defcmd_set + defcmd_set_count;
739 memset(s, 0, sizeof(*s));
740 s->usable = 1;
741 s->name = kdb_strdup(argv[1], GFP_KDB);
742 if (!s->name)
743 goto fail_name;
744 s->usage = kdb_strdup(argv[2], GFP_KDB);
745 if (!s->usage)
746 goto fail_usage;
747 s->help = kdb_strdup(argv[3], GFP_KDB);
748 if (!s->help)
749 goto fail_help;
750 if (s->usage[0] == '"') {
751 strcpy(s->usage, argv[2]+1);
752 s->usage[strlen(s->usage)-1] = '\0';
753 }
754 if (s->help[0] == '"') {
755 strcpy(s->help, argv[3]+1);
756 s->help[strlen(s->help)-1] = '\0';
757 }
758 ++defcmd_set_count;
759 defcmd_in_progress = 1;
760 kfree(save_defcmd_set);
761 return 0;
762fail_help:
763 kfree(s->usage);
764fail_usage:
765 kfree(s->name);
766fail_name:
767 kfree(defcmd_set);
768fail_defcmd:
769 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
770 defcmd_set = save_defcmd_set;
771 return KDB_NOTIMP;
772}
773
774/*
775 * kdb_exec_defcmd - Execute the set of commands associated with this
776 * defcmd name.
777 * Inputs:
778 * argc argument count
779 * argv argument vector
780 * Returns:
781 * zero for success, a kdb diagnostic if error
782 */
783static int kdb_exec_defcmd(int argc, const char **argv)
784{
785 int i, ret;
786 struct defcmd_set *s;
787 if (argc != 0)
788 return KDB_ARGCOUNT;
789 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
790 if (strcmp(s->name, argv[0]) == 0)
791 break;
792 }
793 if (i == defcmd_set_count) {
794 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
795 argv[0]);
796 return KDB_NOTIMP;
797 }
798 for (i = 0; i < s->count; ++i) {
799 /* Recursive use of kdb_parse, do not use argv after
800 * this point */
801 argv = NULL;
802 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
803 ret = kdb_parse(s->command[i]);
804 if (ret)
805 return ret;
806 }
807 return 0;
808}
809
810/* Command history */
811#define KDB_CMD_HISTORY_COUNT 32
812#define CMD_BUFLEN 200 /* kdb_printf: max printline
813 * size == 256 */
814static unsigned int cmd_head, cmd_tail;
815static unsigned int cmdptr;
816static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
817static char cmd_cur[CMD_BUFLEN];
818
819/*
820 * The "str" argument may point to something like | grep xyz
821 */
822static void parse_grep(const char *str)
823{
824 int len;
825 char *cp = (char *)str, *cp2;
826
827 /* sanity check: we should have been called with the \ first */
828 if (*cp != '|')
829 return;
830 cp++;
831 while (isspace(*cp))
832 cp++;
833 if (strncmp(cp, "grep ", 5)) {
834 kdb_printf("invalid 'pipe', see grephelp\n");
835 return;
836 }
837 cp += 5;
838 while (isspace(*cp))
839 cp++;
840 cp2 = strchr(cp, '\n');
841 if (cp2)
842 *cp2 = '\0'; /* remove the trailing newline */
843 len = strlen(cp);
844 if (len == 0) {
845 kdb_printf("invalid 'pipe', see grephelp\n");
846 return;
847 }
848 /* now cp points to a nonzero length search string */
849 if (*cp == '"') {
850 /* allow it be "x y z" by removing the "'s - there must
851 be two of them */
852 cp++;
853 cp2 = strchr(cp, '"');
854 if (!cp2) {
855 kdb_printf("invalid quoted string, see grephelp\n");
856 return;
857 }
858 *cp2 = '\0'; /* end the string where the 2nd " was */
859 }
860 kdb_grep_leading = 0;
861 if (*cp == '^') {
862 kdb_grep_leading = 1;
863 cp++;
864 }
865 len = strlen(cp);
866 kdb_grep_trailing = 0;
867 if (*(cp+len-1) == '$') {
868 kdb_grep_trailing = 1;
869 *(cp+len-1) = '\0';
870 }
871 len = strlen(cp);
872 if (!len)
873 return;
874 if (len >= KDB_GREP_STRLEN) {
875 kdb_printf("search string too long\n");
876 return;
877 }
878 strcpy(kdb_grep_string, cp);
879 kdb_grepping_flag++;
880 return;
881}
882
883/*
884 * kdb_parse - Parse the command line, search the command table for a
885 * matching command and invoke the command function. This
886 * function may be called recursively, if it is, the second call
887 * will overwrite argv and cbuf. It is the caller's
888 * responsibility to save their argv if they recursively call
889 * kdb_parse().
890 * Parameters:
891 * cmdstr The input command line to be parsed.
892 * regs The registers at the time kdb was entered.
893 * Returns:
894 * Zero for success, a kdb diagnostic if failure.
895 * Remarks:
896 * Limited to 20 tokens.
897 *
898 * Real rudimentary tokenization. Basically only whitespace
899 * is considered a token delimeter (but special consideration
900 * is taken of the '=' sign as used by the 'set' command).
901 *
902 * The algorithm used to tokenize the input string relies on
903 * there being at least one whitespace (or otherwise useless)
904 * character between tokens as the character immediately following
905 * the token is altered in-place to a null-byte to terminate the
906 * token string.
907 */
908
909#define MAXARGC 20
910
911int kdb_parse(const char *cmdstr)
912{
913 static char *argv[MAXARGC];
914 static int argc;
915 static char cbuf[CMD_BUFLEN+2];
916 char *cp;
917 char *cpp, quoted;
918 kdbtab_t *tp;
919 int i, escaped, ignore_errors = 0, check_grep = 0;
920
921 /*
922 * First tokenize the command string.
923 */
924 cp = (char *)cmdstr;
925
926 if (KDB_FLAG(CMD_INTERRUPT)) {
927 /* Previous command was interrupted, newline must not
928 * repeat the command */
929 KDB_FLAG_CLEAR(CMD_INTERRUPT);
930 KDB_STATE_SET(PAGER);
931 argc = 0; /* no repeat */
932 }
933
934 if (*cp != '\n' && *cp != '\0') {
935 argc = 0;
936 cpp = cbuf;
937 while (*cp) {
938 /* skip whitespace */
939 while (isspace(*cp))
940 cp++;
941 if ((*cp == '\0') || (*cp == '\n') ||
942 (*cp == '#' && !defcmd_in_progress))
943 break;
944 /* special case: check for | grep pattern */
945 if (*cp == '|') {
946 check_grep++;
947 break;
948 }
949 if (cpp >= cbuf + CMD_BUFLEN) {
950 kdb_printf("kdb_parse: command buffer "
951 "overflow, command ignored\n%s\n",
952 cmdstr);
953 return KDB_NOTFOUND;
954 }
955 if (argc >= MAXARGC - 1) {
956 kdb_printf("kdb_parse: too many arguments, "
957 "command ignored\n%s\n", cmdstr);
958 return KDB_NOTFOUND;
959 }
960 argv[argc++] = cpp;
961 escaped = 0;
962 quoted = '\0';
963 /* Copy to next unquoted and unescaped
964 * whitespace or '=' */
965 while (*cp && *cp != '\n' &&
966 (escaped || quoted || !isspace(*cp))) {
967 if (cpp >= cbuf + CMD_BUFLEN)
968 break;
969 if (escaped) {
970 escaped = 0;
971 *cpp++ = *cp++;
972 continue;
973 }
974 if (*cp == '\\') {
975 escaped = 1;
976 ++cp;
977 continue;
978 }
979 if (*cp == quoted)
980 quoted = '\0';
981 else if (*cp == '\'' || *cp == '"')
982 quoted = *cp;
983 *cpp = *cp++;
984 if (*cpp == '=' && !quoted)
985 break;
986 ++cpp;
987 }
988 *cpp++ = '\0'; /* Squash a ws or '=' character */
989 }
990 }
991 if (!argc)
992 return 0;
993 if (check_grep)
994 parse_grep(cp);
995 if (defcmd_in_progress) {
996 int result = kdb_defcmd2(cmdstr, argv[0]);
997 if (!defcmd_in_progress) {
998 argc = 0; /* avoid repeat on endefcmd */
999 *(argv[0]) = '\0';
1000 }
1001 return result;
1002 }
1003 if (argv[0][0] == '-' && argv[0][1] &&
1004 (argv[0][1] < '0' || argv[0][1] > '9')) {
1005 ignore_errors = 1;
1006 ++argv[0];
1007 }
1008
1009 for_each_kdbcmd(tp, i) {
1010 if (tp->cmd_name) {
1011 /*
1012 * If this command is allowed to be abbreviated,
1013 * check to see if this is it.
1014 */
1015
1016 if (tp->cmd_minlen
1017 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018 if (strncmp(argv[0],
1019 tp->cmd_name,
1020 tp->cmd_minlen) == 0) {
1021 break;
1022 }
1023 }
1024
1025 if (strcmp(argv[0], tp->cmd_name) == 0)
1026 break;
1027 }
1028 }
1029
1030 /*
1031 * If we don't find a command by this name, see if the first
1032 * few characters of this match any of the known commands.
1033 * e.g., md1c20 should match md.
1034 */
1035 if (i == kdb_max_commands) {
1036 for_each_kdbcmd(tp, i) {
1037 if (tp->cmd_name) {
1038 if (strncmp(argv[0],
1039 tp->cmd_name,
1040 strlen(tp->cmd_name)) == 0) {
1041 break;
1042 }
1043 }
1044 }
1045 }
1046
1047 if (i < kdb_max_commands) {
1048 int result;
1049
1050 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1051 return KDB_NOPERM;
1052
1053 KDB_STATE_SET(CMD);
1054 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055 if (result && ignore_errors && result > KDB_CMD_GO)
1056 result = 0;
1057 KDB_STATE_CLEAR(CMD);
1058
1059 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1060 return result;
1061
1062 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1063 if (argv[argc])
1064 *(argv[argc]) = '\0';
1065 return result;
1066 }
1067
1068 /*
1069 * If the input with which we were presented does not
1070 * map to an existing command, attempt to parse it as an
1071 * address argument and display the result. Useful for
1072 * obtaining the address of a variable, or the nearest symbol
1073 * to an address contained in a register.
1074 */
1075 {
1076 unsigned long value;
1077 char *name = NULL;
1078 long offset;
1079 int nextarg = 0;
1080
1081 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082 &value, &offset, &name)) {
1083 return KDB_NOTFOUND;
1084 }
1085
1086 kdb_printf("%s = ", argv[0]);
1087 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1088 kdb_printf("\n");
1089 return 0;
1090 }
1091}
1092
1093
1094static int handle_ctrl_cmd(char *cmd)
1095{
1096#define CTRL_P 16
1097#define CTRL_N 14
1098
1099 /* initial situation */
1100 if (cmd_head == cmd_tail)
1101 return 0;
1102 switch (*cmd) {
1103 case CTRL_P:
1104 if (cmdptr != cmd_tail)
1105 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1107 return 1;
1108 case CTRL_N:
1109 if (cmdptr != cmd_head)
1110 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1112 return 1;
1113 }
1114 return 0;
1115}
1116
1117/*
1118 * kdb_reboot - This function implements the 'reboot' command. Reboot
1119 * the system immediately, or loop for ever on failure.
1120 */
1121static int kdb_reboot(int argc, const char **argv)
1122{
1123 emergency_restart();
1124 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1125 while (1)
1126 cpu_relax();
1127 /* NOTREACHED */
1128 return 0;
1129}
1130
1131static void kdb_dumpregs(struct pt_regs *regs)
1132{
1133 int old_lvl = console_loglevel;
1134 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1135 kdb_trap_printk++;
1136 show_regs(regs);
1137 kdb_trap_printk--;
1138 kdb_printf("\n");
1139 console_loglevel = old_lvl;
1140}
1141
1142void kdb_set_current_task(struct task_struct *p)
1143{
1144 kdb_current_task = p;
1145
1146 if (kdb_task_has_cpu(p)) {
1147 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1148 return;
1149 }
1150 kdb_current_regs = NULL;
1151}
1152
1153static void drop_newline(char *buf)
1154{
1155 size_t len = strlen(buf);
1156
1157 if (len == 0)
1158 return;
1159 if (*(buf + len - 1) == '\n')
1160 *(buf + len - 1) = '\0';
1161}
1162
1163/*
1164 * kdb_local - The main code for kdb. This routine is invoked on a
1165 * specific processor, it is not global. The main kdb() routine
1166 * ensures that only one processor at a time is in this routine.
1167 * This code is called with the real reason code on the first
1168 * entry to a kdb session, thereafter it is called with reason
1169 * SWITCH, even if the user goes back to the original cpu.
1170 * Inputs:
1171 * reason The reason KDB was invoked
1172 * error The hardware-defined error code
1173 * regs The exception frame at time of fault/breakpoint.
1174 * db_result Result code from the break or debug point.
1175 * Returns:
1176 * 0 KDB was invoked for an event which it wasn't responsible
1177 * 1 KDB handled the event for which it was invoked.
1178 * KDB_CMD_GO User typed 'go'.
1179 * KDB_CMD_CPU User switched to another cpu.
1180 * KDB_CMD_SS Single step.
1181 */
1182static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1183 kdb_dbtrap_t db_result)
1184{
1185 char *cmdbuf;
1186 int diag;
1187 struct task_struct *kdb_current =
1188 kdb_curr_task(raw_smp_processor_id());
1189
1190 KDB_DEBUG_STATE("kdb_local 1", reason);
1191 kdb_go_count = 0;
1192 if (reason == KDB_REASON_DEBUG) {
1193 /* special case below */
1194 } else {
1195 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1196 kdb_current, kdb_current ? kdb_current->pid : 0);
1197#if defined(CONFIG_SMP)
1198 kdb_printf("on processor %d ", raw_smp_processor_id());
1199#endif
1200 }
1201
1202 switch (reason) {
1203 case KDB_REASON_DEBUG:
1204 {
1205 /*
1206 * If re-entering kdb after a single step
1207 * command, don't print the message.
1208 */
1209 switch (db_result) {
1210 case KDB_DB_BPT:
1211 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1212 kdb_current, kdb_current->pid);
1213#if defined(CONFIG_SMP)
1214 kdb_printf("on processor %d ", raw_smp_processor_id());
1215#endif
1216 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1217 instruction_pointer(regs));
1218 break;
1219 case KDB_DB_SS:
1220 break;
1221 case KDB_DB_SSBPT:
1222 KDB_DEBUG_STATE("kdb_local 4", reason);
1223 return 1; /* kdba_db_trap did the work */
1224 default:
1225 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1226 db_result);
1227 break;
1228 }
1229
1230 }
1231 break;
1232 case KDB_REASON_ENTER:
1233 if (KDB_STATE(KEYBOARD))
1234 kdb_printf("due to Keyboard Entry\n");
1235 else
1236 kdb_printf("due to KDB_ENTER()\n");
1237 break;
1238 case KDB_REASON_KEYBOARD:
1239 KDB_STATE_SET(KEYBOARD);
1240 kdb_printf("due to Keyboard Entry\n");
1241 break;
1242 case KDB_REASON_ENTER_SLAVE:
1243 /* drop through, slaves only get released via cpu switch */
1244 case KDB_REASON_SWITCH:
1245 kdb_printf("due to cpu switch\n");
1246 break;
1247 case KDB_REASON_OOPS:
1248 kdb_printf("Oops: %s\n", kdb_diemsg);
1249 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1250 instruction_pointer(regs));
1251 kdb_dumpregs(regs);
1252 break;
1253 case KDB_REASON_SYSTEM_NMI:
1254 kdb_printf("due to System NonMaskable Interrupt\n");
1255 break;
1256 case KDB_REASON_NMI:
1257 kdb_printf("due to NonMaskable Interrupt @ "
1258 kdb_machreg_fmt "\n",
1259 instruction_pointer(regs));
1260 break;
1261 case KDB_REASON_SSTEP:
1262 case KDB_REASON_BREAK:
1263 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1264 reason == KDB_REASON_BREAK ?
1265 "Breakpoint" : "SS trap", instruction_pointer(regs));
1266 /*
1267 * Determine if this breakpoint is one that we
1268 * are interested in.
1269 */
1270 if (db_result != KDB_DB_BPT) {
1271 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1272 db_result);
1273 KDB_DEBUG_STATE("kdb_local 6", reason);
1274 return 0; /* Not for us, dismiss it */
1275 }
1276 break;
1277 case KDB_REASON_RECURSE:
1278 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1279 instruction_pointer(regs));
1280 break;
1281 default:
1282 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1283 KDB_DEBUG_STATE("kdb_local 8", reason);
1284 return 0; /* Not for us, dismiss it */
1285 }
1286
1287 while (1) {
1288 /*
1289 * Initialize pager context.
1290 */
1291 kdb_nextline = 1;
1292 KDB_STATE_CLEAR(SUPPRESS);
1293 kdb_grepping_flag = 0;
1294 /* ensure the old search does not leak into '/' commands */
1295 kdb_grep_string[0] = '\0';
1296
1297 cmdbuf = cmd_cur;
1298 *cmdbuf = '\0';
1299 *(cmd_hist[cmd_head]) = '\0';
1300
1301do_full_getstr:
1302#if defined(CONFIG_SMP)
1303 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1304 raw_smp_processor_id());
1305#else
1306 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1307#endif
1308 if (defcmd_in_progress)
1309 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1310
1311 /*
1312 * Fetch command from keyboard
1313 */
1314 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1315 if (*cmdbuf != '\n') {
1316 if (*cmdbuf < 32) {
1317 if (cmdptr == cmd_head) {
1318 strncpy(cmd_hist[cmd_head], cmd_cur,
1319 CMD_BUFLEN);
1320 *(cmd_hist[cmd_head] +
1321 strlen(cmd_hist[cmd_head])-1) = '\0';
1322 }
1323 if (!handle_ctrl_cmd(cmdbuf))
1324 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1325 cmdbuf = cmd_cur;
1326 goto do_full_getstr;
1327 } else {
1328 strncpy(cmd_hist[cmd_head], cmd_cur,
1329 CMD_BUFLEN);
1330 }
1331
1332 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1333 if (cmd_head == cmd_tail)
1334 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1335 }
1336
1337 cmdptr = cmd_head;
1338 diag = kdb_parse(cmdbuf);
1339 if (diag == KDB_NOTFOUND) {
1340 drop_newline(cmdbuf);
1341 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1342 diag = 0;
1343 }
1344 if (diag == KDB_CMD_GO
1345 || diag == KDB_CMD_CPU
1346 || diag == KDB_CMD_SS
1347 || diag == KDB_CMD_KGDB)
1348 break;
1349
1350 if (diag)
1351 kdb_cmderror(diag);
1352 }
1353 KDB_DEBUG_STATE("kdb_local 9", diag);
1354 return diag;
1355}
1356
1357
1358/*
1359 * kdb_print_state - Print the state data for the current processor
1360 * for debugging.
1361 * Inputs:
1362 * text Identifies the debug point
1363 * value Any integer value to be printed, e.g. reason code.
1364 */
1365void kdb_print_state(const char *text, int value)
1366{
1367 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1368 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1369 kdb_state);
1370}
1371
1372/*
1373 * kdb_main_loop - After initial setup and assignment of the
1374 * controlling cpu, all cpus are in this loop. One cpu is in
1375 * control and will issue the kdb prompt, the others will spin
1376 * until 'go' or cpu switch.
1377 *
1378 * To get a consistent view of the kernel stacks for all
1379 * processes, this routine is invoked from the main kdb code via
1380 * an architecture specific routine. kdba_main_loop is
1381 * responsible for making the kernel stacks consistent for all
1382 * processes, there should be no difference between a blocked
1383 * process and a running process as far as kdb is concerned.
1384 * Inputs:
1385 * reason The reason KDB was invoked
1386 * error The hardware-defined error code
1387 * reason2 kdb's current reason code.
1388 * Initially error but can change
1389 * according to kdb state.
1390 * db_result Result code from break or debug point.
1391 * regs The exception frame at time of fault/breakpoint.
1392 * should always be valid.
1393 * Returns:
1394 * 0 KDB was invoked for an event which it wasn't responsible
1395 * 1 KDB handled the event for which it was invoked.
1396 */
1397int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1398 kdb_dbtrap_t db_result, struct pt_regs *regs)
1399{
1400 int result = 1;
1401 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1402 while (1) {
1403 /*
1404 * All processors except the one that is in control
1405 * will spin here.
1406 */
1407 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1408 while (KDB_STATE(HOLD_CPU)) {
1409 /* state KDB is turned off by kdb_cpu to see if the
1410 * other cpus are still live, each cpu in this loop
1411 * turns it back on.
1412 */
1413 if (!KDB_STATE(KDB))
1414 KDB_STATE_SET(KDB);
1415 }
1416
1417 KDB_STATE_CLEAR(SUPPRESS);
1418 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1419 if (KDB_STATE(LEAVING))
1420 break; /* Another cpu said 'go' */
1421 /* Still using kdb, this processor is in control */
1422 result = kdb_local(reason2, error, regs, db_result);
1423 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1424
1425 if (result == KDB_CMD_CPU)
1426 break;
1427
1428 if (result == KDB_CMD_SS) {
1429 KDB_STATE_SET(DOING_SS);
1430 break;
1431 }
1432
1433 if (result == KDB_CMD_KGDB) {
1434 if (!KDB_STATE(DOING_KGDB))
1435 kdb_printf("Entering please attach debugger "
1436 "or use $D#44+ or $3#33\n");
1437 break;
1438 }
1439 if (result && result != 1 && result != KDB_CMD_GO)
1440 kdb_printf("\nUnexpected kdb_local return code %d\n",
1441 result);
1442 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1443 break;
1444 }
1445 if (KDB_STATE(DOING_SS))
1446 KDB_STATE_CLEAR(SSBPT);
1447
1448 /* Clean up any keyboard devices before leaving */
1449 kdb_kbd_cleanup_state();
1450
1451 return result;
1452}
1453
1454/*
1455 * kdb_mdr - This function implements the guts of the 'mdr', memory
1456 * read command.
1457 * mdr <addr arg>,<byte count>
1458 * Inputs:
1459 * addr Start address
1460 * count Number of bytes
1461 * Returns:
1462 * Always 0. Any errors are detected and printed by kdb_getarea.
1463 */
1464static int kdb_mdr(unsigned long addr, unsigned int count)
1465{
1466 unsigned char c;
1467 while (count--) {
1468 if (kdb_getarea(c, addr))
1469 return 0;
1470 kdb_printf("%02x", c);
1471 addr++;
1472 }
1473 kdb_printf("\n");
1474 return 0;
1475}
1476
1477/*
1478 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1479 * 'md8' 'mdr' and 'mds' commands.
1480 *
1481 * md|mds [<addr arg> [<line count> [<radix>]]]
1482 * mdWcN [<addr arg> [<line count> [<radix>]]]
1483 * where W = is the width (1, 2, 4 or 8) and N is the count.
1484 * for eg., md1c20 reads 20 bytes, 1 at a time.
1485 * mdr <addr arg>,<byte count>
1486 */
1487static void kdb_md_line(const char *fmtstr, unsigned long addr,
1488 int symbolic, int nosect, int bytesperword,
1489 int num, int repeat, int phys)
1490{
1491 /* print just one line of data */
1492 kdb_symtab_t symtab;
1493 char cbuf[32];
1494 char *c = cbuf;
1495 int i;
1496 unsigned long word;
1497
1498 memset(cbuf, '\0', sizeof(cbuf));
1499 if (phys)
1500 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1501 else
1502 kdb_printf(kdb_machreg_fmt0 " ", addr);
1503
1504 for (i = 0; i < num && repeat--; i++) {
1505 if (phys) {
1506 if (kdb_getphysword(&word, addr, bytesperword))
1507 break;
1508 } else if (kdb_getword(&word, addr, bytesperword))
1509 break;
1510 kdb_printf(fmtstr, word);
1511 if (symbolic)
1512 kdbnearsym(word, &symtab);
1513 else
1514 memset(&symtab, 0, sizeof(symtab));
1515 if (symtab.sym_name) {
1516 kdb_symbol_print(word, &symtab, 0);
1517 if (!nosect) {
1518 kdb_printf("\n");
1519 kdb_printf(" %s %s "
1520 kdb_machreg_fmt " "
1521 kdb_machreg_fmt " "
1522 kdb_machreg_fmt, symtab.mod_name,
1523 symtab.sec_name, symtab.sec_start,
1524 symtab.sym_start, symtab.sym_end);
1525 }
1526 addr += bytesperword;
1527 } else {
1528 union {
1529 u64 word;
1530 unsigned char c[8];
1531 } wc;
1532 unsigned char *cp;
1533#ifdef __BIG_ENDIAN
1534 cp = wc.c + 8 - bytesperword;
1535#else
1536 cp = wc.c;
1537#endif
1538 wc.word = word;
1539#define printable_char(c) \
1540 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1541 switch (bytesperword) {
1542 case 8:
1543 *c++ = printable_char(*cp++);
1544 *c++ = printable_char(*cp++);
1545 *c++ = printable_char(*cp++);
1546 *c++ = printable_char(*cp++);
1547 addr += 4;
1548 case 4:
1549 *c++ = printable_char(*cp++);
1550 *c++ = printable_char(*cp++);
1551 addr += 2;
1552 case 2:
1553 *c++ = printable_char(*cp++);
1554 addr++;
1555 case 1:
1556 *c++ = printable_char(*cp++);
1557 addr++;
1558 break;
1559 }
1560#undef printable_char
1561 }
1562 }
1563 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1564 " ", cbuf);
1565}
1566
1567static int kdb_md(int argc, const char **argv)
1568{
1569 static unsigned long last_addr;
1570 static int last_radix, last_bytesperword, last_repeat;
1571 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1572 int nosect = 0;
1573 char fmtchar, fmtstr[64];
1574 unsigned long addr;
1575 unsigned long word;
1576 long offset = 0;
1577 int symbolic = 0;
1578 int valid = 0;
1579 int phys = 0;
1580 int raw = 0;
1581
1582 kdbgetintenv("MDCOUNT", &mdcount);
1583 kdbgetintenv("RADIX", &radix);
1584 kdbgetintenv("BYTESPERWORD", &bytesperword);
1585
1586 /* Assume 'md <addr>' and start with environment values */
1587 repeat = mdcount * 16 / bytesperword;
1588
1589 if (strcmp(argv[0], "mdr") == 0) {
1590 if (argc == 2 || (argc == 0 && last_addr != 0))
1591 valid = raw = 1;
1592 else
1593 return KDB_ARGCOUNT;
1594 } else if (isdigit(argv[0][2])) {
1595 bytesperword = (int)(argv[0][2] - '0');
1596 if (bytesperword == 0) {
1597 bytesperword = last_bytesperword;
1598 if (bytesperword == 0)
1599 bytesperword = 4;
1600 }
1601 last_bytesperword = bytesperword;
1602 repeat = mdcount * 16 / bytesperword;
1603 if (!argv[0][3])
1604 valid = 1;
1605 else if (argv[0][3] == 'c' && argv[0][4]) {
1606 char *p;
1607 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1608 mdcount = ((repeat * bytesperword) + 15) / 16;
1609 valid = !*p;
1610 }
1611 last_repeat = repeat;
1612 } else if (strcmp(argv[0], "md") == 0)
1613 valid = 1;
1614 else if (strcmp(argv[0], "mds") == 0)
1615 valid = 1;
1616 else if (strcmp(argv[0], "mdp") == 0) {
1617 phys = valid = 1;
1618 }
1619 if (!valid)
1620 return KDB_NOTFOUND;
1621
1622 if (argc == 0) {
1623 if (last_addr == 0)
1624 return KDB_ARGCOUNT;
1625 addr = last_addr;
1626 radix = last_radix;
1627 bytesperword = last_bytesperword;
1628 repeat = last_repeat;
1629 if (raw)
1630 mdcount = repeat;
1631 else
1632 mdcount = ((repeat * bytesperword) + 15) / 16;
1633 }
1634
1635 if (argc) {
1636 unsigned long val;
1637 int diag, nextarg = 1;
1638 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1639 &offset, NULL);
1640 if (diag)
1641 return diag;
1642 if (argc > nextarg+2)
1643 return KDB_ARGCOUNT;
1644
1645 if (argc >= nextarg) {
1646 diag = kdbgetularg(argv[nextarg], &val);
1647 if (!diag) {
1648 mdcount = (int) val;
1649 if (raw)
1650 repeat = mdcount;
1651 else
1652 repeat = mdcount * 16 / bytesperword;
1653 }
1654 }
1655 if (argc >= nextarg+1) {
1656 diag = kdbgetularg(argv[nextarg+1], &val);
1657 if (!diag)
1658 radix = (int) val;
1659 }
1660 }
1661
1662 if (strcmp(argv[0], "mdr") == 0) {
1663 int ret;
1664 last_addr = addr;
1665 ret = kdb_mdr(addr, mdcount);
1666 last_addr += mdcount;
1667 last_repeat = mdcount;
1668 last_bytesperword = bytesperword; // to make REPEAT happy
1669 return ret;
1670 }
1671
1672 switch (radix) {
1673 case 10:
1674 fmtchar = 'd';
1675 break;
1676 case 16:
1677 fmtchar = 'x';
1678 break;
1679 case 8:
1680 fmtchar = 'o';
1681 break;
1682 default:
1683 return KDB_BADRADIX;
1684 }
1685
1686 last_radix = radix;
1687
1688 if (bytesperword > KDB_WORD_SIZE)
1689 return KDB_BADWIDTH;
1690
1691 switch (bytesperword) {
1692 case 8:
1693 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1694 break;
1695 case 4:
1696 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1697 break;
1698 case 2:
1699 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1700 break;
1701 case 1:
1702 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1703 break;
1704 default:
1705 return KDB_BADWIDTH;
1706 }
1707
1708 last_repeat = repeat;
1709 last_bytesperword = bytesperword;
1710
1711 if (strcmp(argv[0], "mds") == 0) {
1712 symbolic = 1;
1713 /* Do not save these changes as last_*, they are temporary mds
1714 * overrides.
1715 */
1716 bytesperword = KDB_WORD_SIZE;
1717 repeat = mdcount;
1718 kdbgetintenv("NOSECT", &nosect);
1719 }
1720
1721 /* Round address down modulo BYTESPERWORD */
1722
1723 addr &= ~(bytesperword-1);
1724
1725 while (repeat > 0) {
1726 unsigned long a;
1727 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1728
1729 if (KDB_FLAG(CMD_INTERRUPT))
1730 return 0;
1731 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1732 if (phys) {
1733 if (kdb_getphysword(&word, a, bytesperword)
1734 || word)
1735 break;
1736 } else if (kdb_getword(&word, a, bytesperword) || word)
1737 break;
1738 }
1739 n = min(num, repeat);
1740 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1741 num, repeat, phys);
1742 addr += bytesperword * n;
1743 repeat -= n;
1744 z = (z + num - 1) / num;
1745 if (z > 2) {
1746 int s = num * (z-2);
1747 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1748 " zero suppressed\n",
1749 addr, addr + bytesperword * s - 1);
1750 addr += bytesperword * s;
1751 repeat -= s;
1752 }
1753 }
1754 last_addr = addr;
1755
1756 return 0;
1757}
1758
1759/*
1760 * kdb_mm - This function implements the 'mm' command.
1761 * mm address-expression new-value
1762 * Remarks:
1763 * mm works on machine words, mmW works on bytes.
1764 */
1765static int kdb_mm(int argc, const char **argv)
1766{
1767 int diag;
1768 unsigned long addr;
1769 long offset = 0;
1770 unsigned long contents;
1771 int nextarg;
1772 int width;
1773
1774 if (argv[0][2] && !isdigit(argv[0][2]))
1775 return KDB_NOTFOUND;
1776
1777 if (argc < 2)
1778 return KDB_ARGCOUNT;
1779
1780 nextarg = 1;
1781 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1782 if (diag)
1783 return diag;
1784
1785 if (nextarg > argc)
1786 return KDB_ARGCOUNT;
1787 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1788 if (diag)
1789 return diag;
1790
1791 if (nextarg != argc + 1)
1792 return KDB_ARGCOUNT;
1793
1794 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1795 diag = kdb_putword(addr, contents, width);
1796 if (diag)
1797 return diag;
1798
1799 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1800
1801 return 0;
1802}
1803
1804/*
1805 * kdb_go - This function implements the 'go' command.
1806 * go [address-expression]
1807 */
1808static int kdb_go(int argc, const char **argv)
1809{
1810 unsigned long addr;
1811 int diag;
1812 int nextarg;
1813 long offset;
1814
1815 if (raw_smp_processor_id() != kdb_initial_cpu) {
1816 kdb_printf("go must execute on the entry cpu, "
1817 "please use \"cpu %d\" and then execute go\n",
1818 kdb_initial_cpu);
1819 return KDB_BADCPUNUM;
1820 }
1821 if (argc == 1) {
1822 nextarg = 1;
1823 diag = kdbgetaddrarg(argc, argv, &nextarg,
1824 &addr, &offset, NULL);
1825 if (diag)
1826 return diag;
1827 } else if (argc) {
1828 return KDB_ARGCOUNT;
1829 }
1830
1831 diag = KDB_CMD_GO;
1832 if (KDB_FLAG(CATASTROPHIC)) {
1833 kdb_printf("Catastrophic error detected\n");
1834 kdb_printf("kdb_continue_catastrophic=%d, ",
1835 kdb_continue_catastrophic);
1836 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1837 kdb_printf("type go a second time if you really want "
1838 "to continue\n");
1839 return 0;
1840 }
1841 if (kdb_continue_catastrophic == 2) {
1842 kdb_printf("forcing reboot\n");
1843 kdb_reboot(0, NULL);
1844 }
1845 kdb_printf("attempting to continue\n");
1846 }
1847 return diag;
1848}
1849
1850/*
1851 * kdb_rd - This function implements the 'rd' command.
1852 */
1853static int kdb_rd(int argc, const char **argv)
1854{
1855 int len = kdb_check_regs();
1856#if DBG_MAX_REG_NUM > 0
1857 int i;
1858 char *rname;
1859 int rsize;
1860 u64 reg64;
1861 u32 reg32;
1862 u16 reg16;
1863 u8 reg8;
1864
1865 if (len)
1866 return len;
1867
1868 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1869 rsize = dbg_reg_def[i].size * 2;
1870 if (rsize > 16)
1871 rsize = 2;
1872 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1873 len = 0;
1874 kdb_printf("\n");
1875 }
1876 if (len)
1877 len += kdb_printf(" ");
1878 switch(dbg_reg_def[i].size * 8) {
1879 case 8:
1880 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1881 if (!rname)
1882 break;
1883 len += kdb_printf("%s: %02x", rname, reg8);
1884 break;
1885 case 16:
1886 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1887 if (!rname)
1888 break;
1889 len += kdb_printf("%s: %04x", rname, reg16);
1890 break;
1891 case 32:
1892 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1893 if (!rname)
1894 break;
1895 len += kdb_printf("%s: %08x", rname, reg32);
1896 break;
1897 case 64:
1898 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1899 if (!rname)
1900 break;
1901 len += kdb_printf("%s: %016llx", rname, reg64);
1902 break;
1903 default:
1904 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1905 }
1906 }
1907 kdb_printf("\n");
1908#else
1909 if (len)
1910 return len;
1911
1912 kdb_dumpregs(kdb_current_regs);
1913#endif
1914 return 0;
1915}
1916
1917/*
1918 * kdb_rm - This function implements the 'rm' (register modify) command.
1919 * rm register-name new-contents
1920 * Remarks:
1921 * Allows register modification with the same restrictions as gdb
1922 */
1923static int kdb_rm(int argc, const char **argv)
1924{
1925#if DBG_MAX_REG_NUM > 0
1926 int diag;
1927 const char *rname;
1928 int i;
1929 u64 reg64;
1930 u32 reg32;
1931 u16 reg16;
1932 u8 reg8;
1933
1934 if (argc != 2)
1935 return KDB_ARGCOUNT;
1936 /*
1937 * Allow presence or absence of leading '%' symbol.
1938 */
1939 rname = argv[1];
1940 if (*rname == '%')
1941 rname++;
1942
1943 diag = kdbgetu64arg(argv[2], ®64);
1944 if (diag)
1945 return diag;
1946
1947 diag = kdb_check_regs();
1948 if (diag)
1949 return diag;
1950
1951 diag = KDB_BADREG;
1952 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1953 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1954 diag = 0;
1955 break;
1956 }
1957 }
1958 if (!diag) {
1959 switch(dbg_reg_def[i].size * 8) {
1960 case 8:
1961 reg8 = reg64;
1962 dbg_set_reg(i, ®8, kdb_current_regs);
1963 break;
1964 case 16:
1965 reg16 = reg64;
1966 dbg_set_reg(i, ®16, kdb_current_regs);
1967 break;
1968 case 32:
1969 reg32 = reg64;
1970 dbg_set_reg(i, ®32, kdb_current_regs);
1971 break;
1972 case 64:
1973 dbg_set_reg(i, ®64, kdb_current_regs);
1974 break;
1975 }
1976 }
1977 return diag;
1978#else
1979 kdb_printf("ERROR: Register set currently not implemented\n");
1980 return 0;
1981#endif
1982}
1983
1984#if defined(CONFIG_MAGIC_SYSRQ)
1985/*
1986 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1987 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1988 * sr <magic-sysrq-code>
1989 */
1990static int kdb_sr(int argc, const char **argv)
1991{
1992 bool check_mask =
1993 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1994
1995 if (argc != 1)
1996 return KDB_ARGCOUNT;
1997
1998 kdb_trap_printk++;
1999 __handle_sysrq(*argv[1], check_mask);
2000 kdb_trap_printk--;
2001
2002 return 0;
2003}
2004#endif /* CONFIG_MAGIC_SYSRQ */
2005
2006/*
2007 * kdb_ef - This function implements the 'regs' (display exception
2008 * frame) command. This command takes an address and expects to
2009 * find an exception frame at that address, formats and prints
2010 * it.
2011 * regs address-expression
2012 * Remarks:
2013 * Not done yet.
2014 */
2015static int kdb_ef(int argc, const char **argv)
2016{
2017 int diag;
2018 unsigned long addr;
2019 long offset;
2020 int nextarg;
2021
2022 if (argc != 1)
2023 return KDB_ARGCOUNT;
2024
2025 nextarg = 1;
2026 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2027 if (diag)
2028 return diag;
2029 show_regs((struct pt_regs *)addr);
2030 return 0;
2031}
2032
2033#if defined(CONFIG_MODULES)
2034/*
2035 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2036 * currently loaded kernel modules.
2037 * Mostly taken from userland lsmod.
2038 */
2039static int kdb_lsmod(int argc, const char **argv)
2040{
2041 struct module *mod;
2042
2043 if (argc != 0)
2044 return KDB_ARGCOUNT;
2045
2046 kdb_printf("Module Size modstruct Used by\n");
2047 list_for_each_entry(mod, kdb_modules, list) {
2048 if (mod->state == MODULE_STATE_UNFORMED)
2049 continue;
2050
2051 kdb_printf("%-20s%8u 0x%p ", mod->name,
2052 mod->core_layout.size, (void *)mod);
2053#ifdef CONFIG_MODULE_UNLOAD
2054 kdb_printf("%4d ", module_refcount(mod));
2055#endif
2056 if (mod->state == MODULE_STATE_GOING)
2057 kdb_printf(" (Unloading)");
2058 else if (mod->state == MODULE_STATE_COMING)
2059 kdb_printf(" (Loading)");
2060 else
2061 kdb_printf(" (Live)");
2062 kdb_printf(" 0x%p", mod->core_layout.base);
2063
2064#ifdef CONFIG_MODULE_UNLOAD
2065 {
2066 struct module_use *use;
2067 kdb_printf(" [ ");
2068 list_for_each_entry(use, &mod->source_list,
2069 source_list)
2070 kdb_printf("%s ", use->target->name);
2071 kdb_printf("]\n");
2072 }
2073#endif
2074 }
2075
2076 return 0;
2077}
2078
2079#endif /* CONFIG_MODULES */
2080
2081/*
2082 * kdb_env - This function implements the 'env' command. Display the
2083 * current environment variables.
2084 */
2085
2086static int kdb_env(int argc, const char **argv)
2087{
2088 int i;
2089
2090 for (i = 0; i < __nenv; i++) {
2091 if (__env[i])
2092 kdb_printf("%s\n", __env[i]);
2093 }
2094
2095 if (KDB_DEBUG(MASK))
2096 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2097
2098 return 0;
2099}
2100
2101#ifdef CONFIG_PRINTK
2102/*
2103 * kdb_dmesg - This function implements the 'dmesg' command to display
2104 * the contents of the syslog buffer.
2105 * dmesg [lines] [adjust]
2106 */
2107static int kdb_dmesg(int argc, const char **argv)
2108{
2109 int diag;
2110 int logging;
2111 int lines = 0;
2112 int adjust = 0;
2113 int n = 0;
2114 int skip = 0;
2115 struct kmsg_dumper dumper = { .active = 1 };
2116 size_t len;
2117 char buf[201];
2118
2119 if (argc > 2)
2120 return KDB_ARGCOUNT;
2121 if (argc) {
2122 char *cp;
2123 lines = simple_strtol(argv[1], &cp, 0);
2124 if (*cp)
2125 lines = 0;
2126 if (argc > 1) {
2127 adjust = simple_strtoul(argv[2], &cp, 0);
2128 if (*cp || adjust < 0)
2129 adjust = 0;
2130 }
2131 }
2132
2133 /* disable LOGGING if set */
2134 diag = kdbgetintenv("LOGGING", &logging);
2135 if (!diag && logging) {
2136 const char *setargs[] = { "set", "LOGGING", "0" };
2137 kdb_set(2, setargs);
2138 }
2139
2140 kmsg_dump_rewind_nolock(&dumper);
2141 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2142 n++;
2143
2144 if (lines < 0) {
2145 if (adjust >= n)
2146 kdb_printf("buffer only contains %d lines, nothing "
2147 "printed\n", n);
2148 else if (adjust - lines >= n)
2149 kdb_printf("buffer only contains %d lines, last %d "
2150 "lines printed\n", n, n - adjust);
2151 skip = adjust;
2152 lines = abs(lines);
2153 } else if (lines > 0) {
2154 skip = n - lines - adjust;
2155 lines = abs(lines);
2156 if (adjust >= n) {
2157 kdb_printf("buffer only contains %d lines, "
2158 "nothing printed\n", n);
2159 skip = n;
2160 } else if (skip < 0) {
2161 lines += skip;
2162 skip = 0;
2163 kdb_printf("buffer only contains %d lines, first "
2164 "%d lines printed\n", n, lines);
2165 }
2166 } else {
2167 lines = n;
2168 }
2169
2170 if (skip >= n || skip < 0)
2171 return 0;
2172
2173 kmsg_dump_rewind_nolock(&dumper);
2174 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2175 if (skip) {
2176 skip--;
2177 continue;
2178 }
2179 if (!lines--)
2180 break;
2181 if (KDB_FLAG(CMD_INTERRUPT))
2182 return 0;
2183
2184 kdb_printf("%.*s\n", (int)len - 1, buf);
2185 }
2186
2187 return 0;
2188}
2189#endif /* CONFIG_PRINTK */
2190
2191/* Make sure we balance enable/disable calls, must disable first. */
2192static atomic_t kdb_nmi_disabled;
2193
2194static int kdb_disable_nmi(int argc, const char *argv[])
2195{
2196 if (atomic_read(&kdb_nmi_disabled))
2197 return 0;
2198 atomic_set(&kdb_nmi_disabled, 1);
2199 arch_kgdb_ops.enable_nmi(0);
2200 return 0;
2201}
2202
2203static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2204{
2205 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2206 return -EINVAL;
2207 arch_kgdb_ops.enable_nmi(1);
2208 return 0;
2209}
2210
2211static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2212 .set = kdb_param_enable_nmi,
2213};
2214module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2215
2216/*
2217 * kdb_cpu - This function implements the 'cpu' command.
2218 * cpu [<cpunum>]
2219 * Returns:
2220 * KDB_CMD_CPU for success, a kdb diagnostic if error
2221 */
2222static void kdb_cpu_status(void)
2223{
2224 int i, start_cpu, first_print = 1;
2225 char state, prev_state = '?';
2226
2227 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2228 kdb_printf("Available cpus: ");
2229 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2230 if (!cpu_online(i)) {
2231 state = 'F'; /* cpu is offline */
2232 } else if (!kgdb_info[i].enter_kgdb) {
2233 state = 'D'; /* cpu is online but unresponsive */
2234 } else {
2235 state = ' '; /* cpu is responding to kdb */
2236 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2237 state = 'I'; /* idle task */
2238 }
2239 if (state != prev_state) {
2240 if (prev_state != '?') {
2241 if (!first_print)
2242 kdb_printf(", ");
2243 first_print = 0;
2244 kdb_printf("%d", start_cpu);
2245 if (start_cpu < i-1)
2246 kdb_printf("-%d", i-1);
2247 if (prev_state != ' ')
2248 kdb_printf("(%c)", prev_state);
2249 }
2250 prev_state = state;
2251 start_cpu = i;
2252 }
2253 }
2254 /* print the trailing cpus, ignoring them if they are all offline */
2255 if (prev_state != 'F') {
2256 if (!first_print)
2257 kdb_printf(", ");
2258 kdb_printf("%d", start_cpu);
2259 if (start_cpu < i-1)
2260 kdb_printf("-%d", i-1);
2261 if (prev_state != ' ')
2262 kdb_printf("(%c)", prev_state);
2263 }
2264 kdb_printf("\n");
2265}
2266
2267static int kdb_cpu(int argc, const char **argv)
2268{
2269 unsigned long cpunum;
2270 int diag;
2271
2272 if (argc == 0) {
2273 kdb_cpu_status();
2274 return 0;
2275 }
2276
2277 if (argc != 1)
2278 return KDB_ARGCOUNT;
2279
2280 diag = kdbgetularg(argv[1], &cpunum);
2281 if (diag)
2282 return diag;
2283
2284 /*
2285 * Validate cpunum
2286 */
2287 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2288 return KDB_BADCPUNUM;
2289
2290 dbg_switch_cpu = cpunum;
2291
2292 /*
2293 * Switch to other cpu
2294 */
2295 return KDB_CMD_CPU;
2296}
2297
2298/* The user may not realize that ps/bta with no parameters does not print idle
2299 * or sleeping system daemon processes, so tell them how many were suppressed.
2300 */
2301void kdb_ps_suppressed(void)
2302{
2303 int idle = 0, daemon = 0;
2304 unsigned long mask_I = kdb_task_state_string("I"),
2305 mask_M = kdb_task_state_string("M");
2306 unsigned long cpu;
2307 const struct task_struct *p, *g;
2308 for_each_online_cpu(cpu) {
2309 p = kdb_curr_task(cpu);
2310 if (kdb_task_state(p, mask_I))
2311 ++idle;
2312 }
2313 kdb_do_each_thread(g, p) {
2314 if (kdb_task_state(p, mask_M))
2315 ++daemon;
2316 } kdb_while_each_thread(g, p);
2317 if (idle || daemon) {
2318 if (idle)
2319 kdb_printf("%d idle process%s (state I)%s\n",
2320 idle, idle == 1 ? "" : "es",
2321 daemon ? " and " : "");
2322 if (daemon)
2323 kdb_printf("%d sleeping system daemon (state M) "
2324 "process%s", daemon,
2325 daemon == 1 ? "" : "es");
2326 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2327 }
2328}
2329
2330/*
2331 * kdb_ps - This function implements the 'ps' command which shows a
2332 * list of the active processes.
2333 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2334 */
2335void kdb_ps1(const struct task_struct *p)
2336{
2337 int cpu;
2338 unsigned long tmp;
2339
2340 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2341 return;
2342
2343 cpu = kdb_process_cpu(p);
2344 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2345 (void *)p, p->pid, p->parent->pid,
2346 kdb_task_has_cpu(p), kdb_process_cpu(p),
2347 kdb_task_state_char(p),
2348 (void *)(&p->thread),
2349 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2350 p->comm);
2351 if (kdb_task_has_cpu(p)) {
2352 if (!KDB_TSK(cpu)) {
2353 kdb_printf(" Error: no saved data for this cpu\n");
2354 } else {
2355 if (KDB_TSK(cpu) != p)
2356 kdb_printf(" Error: does not match running "
2357 "process table (0x%p)\n", KDB_TSK(cpu));
2358 }
2359 }
2360}
2361
2362static int kdb_ps(int argc, const char **argv)
2363{
2364 struct task_struct *g, *p;
2365 unsigned long mask, cpu;
2366
2367 if (argc == 0)
2368 kdb_ps_suppressed();
2369 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2370 (int)(2*sizeof(void *))+2, "Task Addr",
2371 (int)(2*sizeof(void *))+2, "Thread");
2372 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2373 /* Run the active tasks first */
2374 for_each_online_cpu(cpu) {
2375 if (KDB_FLAG(CMD_INTERRUPT))
2376 return 0;
2377 p = kdb_curr_task(cpu);
2378 if (kdb_task_state(p, mask))
2379 kdb_ps1(p);
2380 }
2381 kdb_printf("\n");
2382 /* Now the real tasks */
2383 kdb_do_each_thread(g, p) {
2384 if (KDB_FLAG(CMD_INTERRUPT))
2385 return 0;
2386 if (kdb_task_state(p, mask))
2387 kdb_ps1(p);
2388 } kdb_while_each_thread(g, p);
2389
2390 return 0;
2391}
2392
2393/*
2394 * kdb_pid - This function implements the 'pid' command which switches
2395 * the currently active process.
2396 * pid [<pid> | R]
2397 */
2398static int kdb_pid(int argc, const char **argv)
2399{
2400 struct task_struct *p;
2401 unsigned long val;
2402 int diag;
2403
2404 if (argc > 1)
2405 return KDB_ARGCOUNT;
2406
2407 if (argc) {
2408 if (strcmp(argv[1], "R") == 0) {
2409 p = KDB_TSK(kdb_initial_cpu);
2410 } else {
2411 diag = kdbgetularg(argv[1], &val);
2412 if (diag)
2413 return KDB_BADINT;
2414
2415 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2416 if (!p) {
2417 kdb_printf("No task with pid=%d\n", (pid_t)val);
2418 return 0;
2419 }
2420 }
2421 kdb_set_current_task(p);
2422 }
2423 kdb_printf("KDB current process is %s(pid=%d)\n",
2424 kdb_current_task->comm,
2425 kdb_current_task->pid);
2426
2427 return 0;
2428}
2429
2430static int kdb_kgdb(int argc, const char **argv)
2431{
2432 return KDB_CMD_KGDB;
2433}
2434
2435/*
2436 * kdb_help - This function implements the 'help' and '?' commands.
2437 */
2438static int kdb_help(int argc, const char **argv)
2439{
2440 kdbtab_t *kt;
2441 int i;
2442
2443 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2444 kdb_printf("-----------------------------"
2445 "-----------------------------\n");
2446 for_each_kdbcmd(kt, i) {
2447 char *space = "";
2448 if (KDB_FLAG(CMD_INTERRUPT))
2449 return 0;
2450 if (!kt->cmd_name)
2451 continue;
2452 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2453 continue;
2454 if (strlen(kt->cmd_usage) > 20)
2455 space = "\n ";
2456 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2457 kt->cmd_usage, space, kt->cmd_help);
2458 }
2459 return 0;
2460}
2461
2462/*
2463 * kdb_kill - This function implements the 'kill' commands.
2464 */
2465static int kdb_kill(int argc, const char **argv)
2466{
2467 long sig, pid;
2468 char *endp;
2469 struct task_struct *p;
2470
2471 if (argc != 2)
2472 return KDB_ARGCOUNT;
2473
2474 sig = simple_strtol(argv[1], &endp, 0);
2475 if (*endp)
2476 return KDB_BADINT;
2477 if ((sig >= 0) || !valid_signal(-sig)) {
2478 kdb_printf("Invalid signal parameter.<-signal>\n");
2479 return 0;
2480 }
2481 sig = -sig;
2482
2483 pid = simple_strtol(argv[2], &endp, 0);
2484 if (*endp)
2485 return KDB_BADINT;
2486 if (pid <= 0) {
2487 kdb_printf("Process ID must be large than 0.\n");
2488 return 0;
2489 }
2490
2491 /* Find the process. */
2492 p = find_task_by_pid_ns(pid, &init_pid_ns);
2493 if (!p) {
2494 kdb_printf("The specified process isn't found.\n");
2495 return 0;
2496 }
2497 p = p->group_leader;
2498 kdb_send_sig(p, sig);
2499 return 0;
2500}
2501
2502/*
2503 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2504 * I cannot call that code directly from kdb, it has an unconditional
2505 * cli()/sti() and calls routines that take locks which can stop the debugger.
2506 */
2507static void kdb_sysinfo(struct sysinfo *val)
2508{
2509 u64 uptime = ktime_get_mono_fast_ns();
2510
2511 memset(val, 0, sizeof(*val));
2512 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2513 val->loads[0] = avenrun[0];
2514 val->loads[1] = avenrun[1];
2515 val->loads[2] = avenrun[2];
2516 val->procs = nr_threads-1;
2517 si_meminfo(val);
2518
2519 return;
2520}
2521
2522/*
2523 * kdb_summary - This function implements the 'summary' command.
2524 */
2525static int kdb_summary(int argc, const char **argv)
2526{
2527 time64_t now;
2528 struct tm tm;
2529 struct sysinfo val;
2530
2531 if (argc)
2532 return KDB_ARGCOUNT;
2533
2534 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2535 kdb_printf("release %s\n", init_uts_ns.name.release);
2536 kdb_printf("version %s\n", init_uts_ns.name.version);
2537 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2538 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2539 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2540 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2541
2542 now = __ktime_get_real_seconds();
2543 time64_to_tm(now, 0, &tm);
2544 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d "
2545 "tz_minuteswest %d\n",
2546 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2547 tm.tm_hour, tm.tm_min, tm.tm_sec,
2548 sys_tz.tz_minuteswest);
2549
2550 kdb_sysinfo(&val);
2551 kdb_printf("uptime ");
2552 if (val.uptime > (24*60*60)) {
2553 int days = val.uptime / (24*60*60);
2554 val.uptime %= (24*60*60);
2555 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2556 }
2557 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2558
2559 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2560
2561#define LOAD_INT(x) ((x) >> FSHIFT)
2562#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2563 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2564 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2565 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2566 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2567#undef LOAD_INT
2568#undef LOAD_FRAC
2569 /* Display in kilobytes */
2570#define K(x) ((x) << (PAGE_SHIFT - 10))
2571 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2572 "Buffers: %8lu kB\n",
2573 K(val.totalram), K(val.freeram), K(val.bufferram));
2574 return 0;
2575}
2576
2577/*
2578 * kdb_per_cpu - This function implements the 'per_cpu' command.
2579 */
2580static int kdb_per_cpu(int argc, const char **argv)
2581{
2582 char fmtstr[64];
2583 int cpu, diag, nextarg = 1;
2584 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2585
2586 if (argc < 1 || argc > 3)
2587 return KDB_ARGCOUNT;
2588
2589 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2590 if (diag)
2591 return diag;
2592
2593 if (argc >= 2) {
2594 diag = kdbgetularg(argv[2], &bytesperword);
2595 if (diag)
2596 return diag;
2597 }
2598 if (!bytesperword)
2599 bytesperword = KDB_WORD_SIZE;
2600 else if (bytesperword > KDB_WORD_SIZE)
2601 return KDB_BADWIDTH;
2602 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2603 if (argc >= 3) {
2604 diag = kdbgetularg(argv[3], &whichcpu);
2605 if (diag)
2606 return diag;
2607 if (!cpu_online(whichcpu)) {
2608 kdb_printf("cpu %ld is not online\n", whichcpu);
2609 return KDB_BADCPUNUM;
2610 }
2611 }
2612
2613 /* Most architectures use __per_cpu_offset[cpu], some use
2614 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2615 */
2616#ifdef __per_cpu_offset
2617#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2618#else
2619#ifdef CONFIG_SMP
2620#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2621#else
2622#define KDB_PCU(cpu) 0
2623#endif
2624#endif
2625 for_each_online_cpu(cpu) {
2626 if (KDB_FLAG(CMD_INTERRUPT))
2627 return 0;
2628
2629 if (whichcpu != ~0UL && whichcpu != cpu)
2630 continue;
2631 addr = symaddr + KDB_PCU(cpu);
2632 diag = kdb_getword(&val, addr, bytesperword);
2633 if (diag) {
2634 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2635 "read, diag=%d\n", cpu, addr, diag);
2636 continue;
2637 }
2638 kdb_printf("%5d ", cpu);
2639 kdb_md_line(fmtstr, addr,
2640 bytesperword == KDB_WORD_SIZE,
2641 1, bytesperword, 1, 1, 0);
2642 }
2643#undef KDB_PCU
2644 return 0;
2645}
2646
2647/*
2648 * display help for the use of cmd | grep pattern
2649 */
2650static int kdb_grep_help(int argc, const char **argv)
2651{
2652 kdb_printf("Usage of cmd args | grep pattern:\n");
2653 kdb_printf(" Any command's output may be filtered through an ");
2654 kdb_printf("emulated 'pipe'.\n");
2655 kdb_printf(" 'grep' is just a key word.\n");
2656 kdb_printf(" The pattern may include a very limited set of "
2657 "metacharacters:\n");
2658 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2659 kdb_printf(" And if there are spaces in the pattern, you may "
2660 "quote it:\n");
2661 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2662 " or \"^pat tern$\"\n");
2663 return 0;
2664}
2665
2666/*
2667 * kdb_register_flags - This function is used to register a kernel
2668 * debugger command.
2669 * Inputs:
2670 * cmd Command name
2671 * func Function to execute the command
2672 * usage A simple usage string showing arguments
2673 * help A simple help string describing command
2674 * repeat Does the command auto repeat on enter?
2675 * Returns:
2676 * zero for success, one if a duplicate command.
2677 */
2678#define kdb_command_extend 50 /* arbitrary */
2679int kdb_register_flags(char *cmd,
2680 kdb_func_t func,
2681 char *usage,
2682 char *help,
2683 short minlen,
2684 kdb_cmdflags_t flags)
2685{
2686 int i;
2687 kdbtab_t *kp;
2688
2689 /*
2690 * Brute force method to determine duplicates
2691 */
2692 for_each_kdbcmd(kp, i) {
2693 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2694 kdb_printf("Duplicate kdb command registered: "
2695 "%s, func %p help %s\n", cmd, func, help);
2696 return 1;
2697 }
2698 }
2699
2700 /*
2701 * Insert command into first available location in table
2702 */
2703 for_each_kdbcmd(kp, i) {
2704 if (kp->cmd_name == NULL)
2705 break;
2706 }
2707
2708 if (i >= kdb_max_commands) {
2709 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2710 kdb_command_extend) * sizeof(*new), GFP_KDB);
2711 if (!new) {
2712 kdb_printf("Could not allocate new kdb_command "
2713 "table\n");
2714 return 1;
2715 }
2716 if (kdb_commands) {
2717 memcpy(new, kdb_commands,
2718 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2719 kfree(kdb_commands);
2720 }
2721 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2722 kdb_command_extend * sizeof(*new));
2723 kdb_commands = new;
2724 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2725 kdb_max_commands += kdb_command_extend;
2726 }
2727
2728 kp->cmd_name = cmd;
2729 kp->cmd_func = func;
2730 kp->cmd_usage = usage;
2731 kp->cmd_help = help;
2732 kp->cmd_minlen = minlen;
2733 kp->cmd_flags = flags;
2734
2735 return 0;
2736}
2737EXPORT_SYMBOL_GPL(kdb_register_flags);
2738
2739
2740/*
2741 * kdb_register - Compatibility register function for commands that do
2742 * not need to specify a repeat state. Equivalent to
2743 * kdb_register_flags with flags set to 0.
2744 * Inputs:
2745 * cmd Command name
2746 * func Function to execute the command
2747 * usage A simple usage string showing arguments
2748 * help A simple help string describing command
2749 * Returns:
2750 * zero for success, one if a duplicate command.
2751 */
2752int kdb_register(char *cmd,
2753 kdb_func_t func,
2754 char *usage,
2755 char *help,
2756 short minlen)
2757{
2758 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2759}
2760EXPORT_SYMBOL_GPL(kdb_register);
2761
2762/*
2763 * kdb_unregister - This function is used to unregister a kernel
2764 * debugger command. It is generally called when a module which
2765 * implements kdb commands is unloaded.
2766 * Inputs:
2767 * cmd Command name
2768 * Returns:
2769 * zero for success, one command not registered.
2770 */
2771int kdb_unregister(char *cmd)
2772{
2773 int i;
2774 kdbtab_t *kp;
2775
2776 /*
2777 * find the command.
2778 */
2779 for_each_kdbcmd(kp, i) {
2780 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2781 kp->cmd_name = NULL;
2782 return 0;
2783 }
2784 }
2785
2786 /* Couldn't find it. */
2787 return 1;
2788}
2789EXPORT_SYMBOL_GPL(kdb_unregister);
2790
2791/* Initialize the kdb command table. */
2792static void __init kdb_inittab(void)
2793{
2794 int i;
2795 kdbtab_t *kp;
2796
2797 for_each_kdbcmd(kp, i)
2798 kp->cmd_name = NULL;
2799
2800 kdb_register_flags("md", kdb_md, "<vaddr>",
2801 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2802 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2803 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2804 "Display Raw Memory", 0,
2805 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2806 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2807 "Display Physical Memory", 0,
2808 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2809 kdb_register_flags("mds", kdb_md, "<vaddr>",
2810 "Display Memory Symbolically", 0,
2811 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2812 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2813 "Modify Memory Contents", 0,
2814 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2815 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2816 "Continue Execution", 1,
2817 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2818 kdb_register_flags("rd", kdb_rd, "",
2819 "Display Registers", 0,
2820 KDB_ENABLE_REG_READ);
2821 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2822 "Modify Registers", 0,
2823 KDB_ENABLE_REG_WRITE);
2824 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2825 "Display exception frame", 0,
2826 KDB_ENABLE_MEM_READ);
2827 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2828 "Stack traceback", 1,
2829 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2830 kdb_register_flags("btp", kdb_bt, "<pid>",
2831 "Display stack for process <pid>", 0,
2832 KDB_ENABLE_INSPECT);
2833 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2834 "Backtrace all processes matching state flag", 0,
2835 KDB_ENABLE_INSPECT);
2836 kdb_register_flags("btc", kdb_bt, "",
2837 "Backtrace current process on each cpu", 0,
2838 KDB_ENABLE_INSPECT);
2839 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2840 "Backtrace process given its struct task address", 0,
2841 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2842 kdb_register_flags("env", kdb_env, "",
2843 "Show environment variables", 0,
2844 KDB_ENABLE_ALWAYS_SAFE);
2845 kdb_register_flags("set", kdb_set, "",
2846 "Set environment variables", 0,
2847 KDB_ENABLE_ALWAYS_SAFE);
2848 kdb_register_flags("help", kdb_help, "",
2849 "Display Help Message", 1,
2850 KDB_ENABLE_ALWAYS_SAFE);
2851 kdb_register_flags("?", kdb_help, "",
2852 "Display Help Message", 0,
2853 KDB_ENABLE_ALWAYS_SAFE);
2854 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2855 "Switch to new cpu", 0,
2856 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2857 kdb_register_flags("kgdb", kdb_kgdb, "",
2858 "Enter kgdb mode", 0, 0);
2859 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2860 "Display active task list", 0,
2861 KDB_ENABLE_INSPECT);
2862 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2863 "Switch to another task", 0,
2864 KDB_ENABLE_INSPECT);
2865 kdb_register_flags("reboot", kdb_reboot, "",
2866 "Reboot the machine immediately", 0,
2867 KDB_ENABLE_REBOOT);
2868#if defined(CONFIG_MODULES)
2869 kdb_register_flags("lsmod", kdb_lsmod, "",
2870 "List loaded kernel modules", 0,
2871 KDB_ENABLE_INSPECT);
2872#endif
2873#if defined(CONFIG_MAGIC_SYSRQ)
2874 kdb_register_flags("sr", kdb_sr, "<key>",
2875 "Magic SysRq key", 0,
2876 KDB_ENABLE_ALWAYS_SAFE);
2877#endif
2878#if defined(CONFIG_PRINTK)
2879 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2880 "Display syslog buffer", 0,
2881 KDB_ENABLE_ALWAYS_SAFE);
2882#endif
2883 if (arch_kgdb_ops.enable_nmi) {
2884 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2885 "Disable NMI entry to KDB", 0,
2886 KDB_ENABLE_ALWAYS_SAFE);
2887 }
2888 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2889 "Define a set of commands, down to endefcmd", 0,
2890 KDB_ENABLE_ALWAYS_SAFE);
2891 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2892 "Send a signal to a process", 0,
2893 KDB_ENABLE_SIGNAL);
2894 kdb_register_flags("summary", kdb_summary, "",
2895 "Summarize the system", 4,
2896 KDB_ENABLE_ALWAYS_SAFE);
2897 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2898 "Display per_cpu variables", 3,
2899 KDB_ENABLE_MEM_READ);
2900 kdb_register_flags("grephelp", kdb_grep_help, "",
2901 "Display help on | grep", 0,
2902 KDB_ENABLE_ALWAYS_SAFE);
2903}
2904
2905/* Execute any commands defined in kdb_cmds. */
2906static void __init kdb_cmd_init(void)
2907{
2908 int i, diag;
2909 for (i = 0; kdb_cmds[i]; ++i) {
2910 diag = kdb_parse(kdb_cmds[i]);
2911 if (diag)
2912 kdb_printf("kdb command %s failed, kdb diag %d\n",
2913 kdb_cmds[i], diag);
2914 }
2915 if (defcmd_in_progress) {
2916 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2917 kdb_parse("endefcmd");
2918 }
2919}
2920
2921/* Initialize kdb_printf, breakpoint tables and kdb state */
2922void __init kdb_init(int lvl)
2923{
2924 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2925 int i;
2926
2927 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2928 return;
2929 for (i = kdb_init_lvl; i < lvl; i++) {
2930 switch (i) {
2931 case KDB_NOT_INITIALIZED:
2932 kdb_inittab(); /* Initialize Command Table */
2933 kdb_initbptab(); /* Initialize Breakpoints */
2934 break;
2935 case KDB_INIT_EARLY:
2936 kdb_cmd_init(); /* Build kdb_cmds tables */
2937 break;
2938 }
2939 }
2940 kdb_init_lvl = lvl;
2941}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/module.h>
30#include <linux/moduleparam.h>
31#include <linux/mm.h>
32#include <linux/init.h>
33#include <linux/kallsyms.h>
34#include <linux/kgdb.h>
35#include <linux/kdb.h>
36#include <linux/notifier.h>
37#include <linux/interrupt.h>
38#include <linux/delay.h>
39#include <linux/nmi.h>
40#include <linux/time.h>
41#include <linux/ptrace.h>
42#include <linux/sysctl.h>
43#include <linux/cpu.h>
44#include <linux/kdebug.h>
45#include <linux/proc_fs.h>
46#include <linux/uaccess.h>
47#include <linux/slab.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65unsigned int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_commands describes the available commands. */
88static kdbtab_t *kdb_commands;
89#define KDB_BASE_CMD_MAX 50
90static int kdb_max_commands = KDB_BASE_CMD_MAX;
91static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
92#define for_each_kdbcmd(cmd, num) \
93 for ((cmd) = kdb_base_commands, (num) = 0; \
94 num < kdb_max_commands; \
95 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
96
97typedef struct _kdbmsg {
98 int km_diag; /* kdb diagnostic */
99 char *km_msg; /* Corresponding message text */
100} kdbmsg_t;
101
102#define KDBMSG(msgnum, text) \
103 { KDB_##msgnum, text }
104
105static kdbmsg_t kdbmsgs[] = {
106 KDBMSG(NOTFOUND, "Command Not Found"),
107 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
108 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
109 "8 is only allowed on 64 bit systems"),
110 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
111 KDBMSG(NOTENV, "Cannot find environment variable"),
112 KDBMSG(NOENVVALUE, "Environment variable should have value"),
113 KDBMSG(NOTIMP, "Command not implemented"),
114 KDBMSG(ENVFULL, "Environment full"),
115 KDBMSG(ENVBUFFULL, "Environment buffer full"),
116 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
117#ifdef CONFIG_CPU_XSCALE
118 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
119#else
120 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
121#endif
122 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
123 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
124 KDBMSG(BADMODE, "Invalid IDMODE"),
125 KDBMSG(BADINT, "Illegal numeric value"),
126 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
127 KDBMSG(BADREG, "Invalid register name"),
128 KDBMSG(BADCPUNUM, "Invalid cpu number"),
129 KDBMSG(BADLENGTH, "Invalid length field"),
130 KDBMSG(NOBP, "No Breakpoint exists"),
131 KDBMSG(BADADDR, "Invalid address"),
132 KDBMSG(NOPERM, "Permission denied"),
133};
134#undef KDBMSG
135
136static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
137
138
139/*
140 * Initial environment. This is all kept static and local to
141 * this file. We don't want to rely on the memory allocation
142 * mechanisms in the kernel, so we use a very limited allocate-only
143 * heap for new and altered environment variables. The entire
144 * environment is limited to a fixed number of entries (add more
145 * to __env[] if required) and a fixed amount of heap (add more to
146 * KDB_ENVBUFSIZE if required).
147 */
148
149static char *__env[] = {
150#if defined(CONFIG_SMP)
151 "PROMPT=[%d]kdb> ",
152#else
153 "PROMPT=kdb> ",
154#endif
155 "MOREPROMPT=more> ",
156 "RADIX=16",
157 "MDCOUNT=8", /* lines of md output */
158 KDB_PLATFORM_ENV,
159 "DTABCOUNT=30",
160 "NOSECT=1",
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 (char *)0,
185};
186
187static const int __nenv = ARRAY_SIZE(__env);
188
189struct task_struct *kdb_curr_task(int cpu)
190{
191 struct task_struct *p = curr_task(cpu);
192#ifdef _TIF_MCA_INIT
193 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
194 p = krp->p;
195#endif
196 return p;
197}
198
199/*
200 * Check whether the flags of the current command and the permissions
201 * of the kdb console has allow a command to be run.
202 */
203static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
204 bool no_args)
205{
206 /* permissions comes from userspace so needs massaging slightly */
207 permissions &= KDB_ENABLE_MASK;
208 permissions |= KDB_ENABLE_ALWAYS_SAFE;
209
210 /* some commands change group when launched with no arguments */
211 if (no_args)
212 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
213
214 flags |= KDB_ENABLE_ALL;
215
216 return permissions & flags;
217}
218
219/*
220 * kdbgetenv - This function will return the character string value of
221 * an environment variable.
222 * Parameters:
223 * match A character string representing an environment variable.
224 * Returns:
225 * NULL No environment variable matches 'match'
226 * char* Pointer to string value of environment variable.
227 */
228char *kdbgetenv(const char *match)
229{
230 char **ep = __env;
231 int matchlen = strlen(match);
232 int i;
233
234 for (i = 0; i < __nenv; i++) {
235 char *e = *ep++;
236
237 if (!e)
238 continue;
239
240 if ((strncmp(match, e, matchlen) == 0)
241 && ((e[matchlen] == '\0')
242 || (e[matchlen] == '='))) {
243 char *cp = strchr(e, '=');
244 return cp ? ++cp : "";
245 }
246 }
247 return NULL;
248}
249
250/*
251 * kdballocenv - This function is used to allocate bytes for
252 * environment entries.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long representation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 * Remarks:
260 * We use a static environment buffer (envbuffer) to hold the values
261 * of dynamically generated environment variables (see kdb_set). Buffer
262 * space once allocated is never free'd, so over time, the amount of space
263 * (currently 512 bytes) will be exhausted if env variables are changed
264 * frequently.
265 */
266static char *kdballocenv(size_t bytes)
267{
268#define KDB_ENVBUFSIZE 512
269 static char envbuffer[KDB_ENVBUFSIZE];
270 static int envbufsize;
271 char *ep = NULL;
272
273 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
274 ep = &envbuffer[envbufsize];
275 envbufsize += bytes;
276 }
277 return ep;
278}
279
280/*
281 * kdbgetulenv - This function will return the value of an unsigned
282 * long-valued environment variable.
283 * Parameters:
284 * match A character string representing a numeric value
285 * Outputs:
286 * *value the unsigned long represntation of the env variable 'match'
287 * Returns:
288 * Zero on success, a kdb diagnostic on failure.
289 */
290static int kdbgetulenv(const char *match, unsigned long *value)
291{
292 char *ep;
293
294 ep = kdbgetenv(match);
295 if (!ep)
296 return KDB_NOTENV;
297 if (strlen(ep) == 0)
298 return KDB_NOENVVALUE;
299
300 *value = simple_strtoul(ep, NULL, 0);
301
302 return 0;
303}
304
305/*
306 * kdbgetintenv - This function will return the value of an
307 * integer-valued environment variable.
308 * Parameters:
309 * match A character string representing an integer-valued env variable
310 * Outputs:
311 * *value the integer representation of the environment variable 'match'
312 * Returns:
313 * Zero on success, a kdb diagnostic on failure.
314 */
315int kdbgetintenv(const char *match, int *value)
316{
317 unsigned long val;
318 int diag;
319
320 diag = kdbgetulenv(match, &val);
321 if (!diag)
322 *value = (int) val;
323 return diag;
324}
325
326/*
327 * kdbgetularg - This function will convert a numeric string into an
328 * unsigned long value.
329 * Parameters:
330 * arg A character string representing a numeric value
331 * Outputs:
332 * *value the unsigned long represntation of arg.
333 * Returns:
334 * Zero on success, a kdb diagnostic on failure.
335 */
336int kdbgetularg(const char *arg, unsigned long *value)
337{
338 char *endp;
339 unsigned long val;
340
341 val = simple_strtoul(arg, &endp, 0);
342
343 if (endp == arg) {
344 /*
345 * Also try base 16, for us folks too lazy to type the
346 * leading 0x...
347 */
348 val = simple_strtoul(arg, &endp, 16);
349 if (endp == arg)
350 return KDB_BADINT;
351 }
352
353 *value = val;
354
355 return 0;
356}
357
358int kdbgetu64arg(const char *arg, u64 *value)
359{
360 char *endp;
361 u64 val;
362
363 val = simple_strtoull(arg, &endp, 0);
364
365 if (endp == arg) {
366
367 val = simple_strtoull(arg, &endp, 16);
368 if (endp == arg)
369 return KDB_BADINT;
370 }
371
372 *value = val;
373
374 return 0;
375}
376
377/*
378 * kdb_set - This function implements the 'set' command. Alter an
379 * existing environment variable or create a new one.
380 */
381int kdb_set(int argc, const char **argv)
382{
383 int i;
384 char *ep;
385 size_t varlen, vallen;
386
387 /*
388 * we can be invoked two ways:
389 * set var=value argv[1]="var", argv[2]="value"
390 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
391 * - if the latter, shift 'em down.
392 */
393 if (argc == 3) {
394 argv[2] = argv[3];
395 argc--;
396 }
397
398 if (argc != 2)
399 return KDB_ARGCOUNT;
400
401 /*
402 * Censor sensitive variables
403 */
404 if (strcmp(argv[1], "PROMPT") == 0 &&
405 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
406 return KDB_NOPERM;
407
408 /*
409 * Check for internal variables
410 */
411 if (strcmp(argv[1], "KDBDEBUG") == 0) {
412 unsigned int debugflags;
413 char *cp;
414
415 debugflags = simple_strtoul(argv[2], &cp, 0);
416 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
417 kdb_printf("kdb: illegal debug flags '%s'\n",
418 argv[2]);
419 return 0;
420 }
421 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
422 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
423
424 return 0;
425 }
426
427 /*
428 * Tokenizer squashed the '=' sign. argv[1] is variable
429 * name, argv[2] = value.
430 */
431 varlen = strlen(argv[1]);
432 vallen = strlen(argv[2]);
433 ep = kdballocenv(varlen + vallen + 2);
434 if (ep == (char *)0)
435 return KDB_ENVBUFFULL;
436
437 sprintf(ep, "%s=%s", argv[1], argv[2]);
438
439 ep[varlen+vallen+1] = '\0';
440
441 for (i = 0; i < __nenv; i++) {
442 if (__env[i]
443 && ((strncmp(__env[i], argv[1], varlen) == 0)
444 && ((__env[i][varlen] == '\0')
445 || (__env[i][varlen] == '=')))) {
446 __env[i] = ep;
447 return 0;
448 }
449 }
450
451 /*
452 * Wasn't existing variable. Fit into slot.
453 */
454 for (i = 0; i < __nenv-1; i++) {
455 if (__env[i] == (char *)0) {
456 __env[i] = ep;
457 return 0;
458 }
459 }
460
461 return KDB_ENVFULL;
462}
463
464static int kdb_check_regs(void)
465{
466 if (!kdb_current_regs) {
467 kdb_printf("No current kdb registers."
468 " You may need to select another task\n");
469 return KDB_BADREG;
470 }
471 return 0;
472}
473
474/*
475 * kdbgetaddrarg - This function is responsible for parsing an
476 * address-expression and returning the value of the expression,
477 * symbol name, and offset to the caller.
478 *
479 * The argument may consist of a numeric value (decimal or
480 * hexidecimal), a symbol name, a register name (preceded by the
481 * percent sign), an environment variable with a numeric value
482 * (preceded by a dollar sign) or a simple arithmetic expression
483 * consisting of a symbol name, +/-, and a numeric constant value
484 * (offset).
485 * Parameters:
486 * argc - count of arguments in argv
487 * argv - argument vector
488 * *nextarg - index to next unparsed argument in argv[]
489 * regs - Register state at time of KDB entry
490 * Outputs:
491 * *value - receives the value of the address-expression
492 * *offset - receives the offset specified, if any
493 * *name - receives the symbol name, if any
494 * *nextarg - index to next unparsed argument in argv[]
495 * Returns:
496 * zero is returned on success, a kdb diagnostic code is
497 * returned on error.
498 */
499int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
500 unsigned long *value, long *offset,
501 char **name)
502{
503 unsigned long addr;
504 unsigned long off = 0;
505 int positive;
506 int diag;
507 int found = 0;
508 char *symname;
509 char symbol = '\0';
510 char *cp;
511 kdb_symtab_t symtab;
512
513 /*
514 * If the enable flags prohibit both arbitrary memory access
515 * and flow control then there are no reasonable grounds to
516 * provide symbol lookup.
517 */
518 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
519 kdb_cmd_enabled, false))
520 return KDB_NOPERM;
521
522 /*
523 * Process arguments which follow the following syntax:
524 *
525 * symbol | numeric-address [+/- numeric-offset]
526 * %register
527 * $environment-variable
528 */
529
530 if (*nextarg > argc)
531 return KDB_ARGCOUNT;
532
533 symname = (char *)argv[*nextarg];
534
535 /*
536 * If there is no whitespace between the symbol
537 * or address and the '+' or '-' symbols, we
538 * remember the character and replace it with a
539 * null so the symbol/value can be properly parsed
540 */
541 cp = strpbrk(symname, "+-");
542 if (cp != NULL) {
543 symbol = *cp;
544 *cp++ = '\0';
545 }
546
547 if (symname[0] == '$') {
548 diag = kdbgetulenv(&symname[1], &addr);
549 if (diag)
550 return diag;
551 } else if (symname[0] == '%') {
552 diag = kdb_check_regs();
553 if (diag)
554 return diag;
555 /* Implement register values with % at a later time as it is
556 * arch optional.
557 */
558 return KDB_NOTIMP;
559 } else {
560 found = kdbgetsymval(symname, &symtab);
561 if (found) {
562 addr = symtab.sym_start;
563 } else {
564 diag = kdbgetularg(argv[*nextarg], &addr);
565 if (diag)
566 return diag;
567 }
568 }
569
570 if (!found)
571 found = kdbnearsym(addr, &symtab);
572
573 (*nextarg)++;
574
575 if (name)
576 *name = symname;
577 if (value)
578 *value = addr;
579 if (offset && name && *name)
580 *offset = addr - symtab.sym_start;
581
582 if ((*nextarg > argc)
583 && (symbol == '\0'))
584 return 0;
585
586 /*
587 * check for +/- and offset
588 */
589
590 if (symbol == '\0') {
591 if ((argv[*nextarg][0] != '+')
592 && (argv[*nextarg][0] != '-')) {
593 /*
594 * Not our argument. Return.
595 */
596 return 0;
597 } else {
598 positive = (argv[*nextarg][0] == '+');
599 (*nextarg)++;
600 }
601 } else
602 positive = (symbol == '+');
603
604 /*
605 * Now there must be an offset!
606 */
607 if ((*nextarg > argc)
608 && (symbol == '\0')) {
609 return KDB_INVADDRFMT;
610 }
611
612 if (!symbol) {
613 cp = (char *)argv[*nextarg];
614 (*nextarg)++;
615 }
616
617 diag = kdbgetularg(cp, &off);
618 if (diag)
619 return diag;
620
621 if (!positive)
622 off = -off;
623
624 if (offset)
625 *offset += off;
626
627 if (value)
628 *value += off;
629
630 return 0;
631}
632
633static void kdb_cmderror(int diag)
634{
635 int i;
636
637 if (diag >= 0) {
638 kdb_printf("no error detected (diagnostic is %d)\n", diag);
639 return;
640 }
641
642 for (i = 0; i < __nkdb_err; i++) {
643 if (kdbmsgs[i].km_diag == diag) {
644 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
645 return;
646 }
647 }
648
649 kdb_printf("Unknown diag %d\n", -diag);
650}
651
652/*
653 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
654 * command which defines one command as a set of other commands,
655 * terminated by endefcmd. kdb_defcmd processes the initial
656 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
657 * the following commands until 'endefcmd'.
658 * Inputs:
659 * argc argument count
660 * argv argument vector
661 * Returns:
662 * zero for success, a kdb diagnostic if error
663 */
664struct defcmd_set {
665 int count;
666 bool usable;
667 char *name;
668 char *usage;
669 char *help;
670 char **command;
671};
672static struct defcmd_set *defcmd_set;
673static int defcmd_set_count;
674static bool defcmd_in_progress;
675
676/* Forward references */
677static int kdb_exec_defcmd(int argc, const char **argv);
678
679static int kdb_defcmd2(const char *cmdstr, const char *argv0)
680{
681 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
682 char **save_command = s->command;
683 if (strcmp(argv0, "endefcmd") == 0) {
684 defcmd_in_progress = false;
685 if (!s->count)
686 s->usable = false;
687 if (s->usable)
688 /* macros are always safe because when executed each
689 * internal command re-enters kdb_parse() and is
690 * safety checked individually.
691 */
692 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
693 s->help, 0,
694 KDB_ENABLE_ALWAYS_SAFE);
695 return 0;
696 }
697 if (!s->usable)
698 return KDB_NOTIMP;
699 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
700 if (!s->command) {
701 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
702 cmdstr);
703 s->usable = false;
704 return KDB_NOTIMP;
705 }
706 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
707 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
708 kfree(save_command);
709 return 0;
710}
711
712static int kdb_defcmd(int argc, const char **argv)
713{
714 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
715 if (defcmd_in_progress) {
716 kdb_printf("kdb: nested defcmd detected, assuming missing "
717 "endefcmd\n");
718 kdb_defcmd2("endefcmd", "endefcmd");
719 }
720 if (argc == 0) {
721 int i;
722 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
723 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
724 s->usage, s->help);
725 for (i = 0; i < s->count; ++i)
726 kdb_printf("%s", s->command[i]);
727 kdb_printf("endefcmd\n");
728 }
729 return 0;
730 }
731 if (argc != 3)
732 return KDB_ARGCOUNT;
733 if (in_dbg_master()) {
734 kdb_printf("Command only available during kdb_init()\n");
735 return KDB_NOTIMP;
736 }
737 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
738 GFP_KDB);
739 if (!defcmd_set)
740 goto fail_defcmd;
741 memcpy(defcmd_set, save_defcmd_set,
742 defcmd_set_count * sizeof(*defcmd_set));
743 s = defcmd_set + defcmd_set_count;
744 memset(s, 0, sizeof(*s));
745 s->usable = true;
746 s->name = kdb_strdup(argv[1], GFP_KDB);
747 if (!s->name)
748 goto fail_name;
749 s->usage = kdb_strdup(argv[2], GFP_KDB);
750 if (!s->usage)
751 goto fail_usage;
752 s->help = kdb_strdup(argv[3], GFP_KDB);
753 if (!s->help)
754 goto fail_help;
755 if (s->usage[0] == '"') {
756 strcpy(s->usage, argv[2]+1);
757 s->usage[strlen(s->usage)-1] = '\0';
758 }
759 if (s->help[0] == '"') {
760 strcpy(s->help, argv[3]+1);
761 s->help[strlen(s->help)-1] = '\0';
762 }
763 ++defcmd_set_count;
764 defcmd_in_progress = true;
765 kfree(save_defcmd_set);
766 return 0;
767fail_help:
768 kfree(s->usage);
769fail_usage:
770 kfree(s->name);
771fail_name:
772 kfree(defcmd_set);
773fail_defcmd:
774 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
775 defcmd_set = save_defcmd_set;
776 return KDB_NOTIMP;
777}
778
779/*
780 * kdb_exec_defcmd - Execute the set of commands associated with this
781 * defcmd name.
782 * Inputs:
783 * argc argument count
784 * argv argument vector
785 * Returns:
786 * zero for success, a kdb diagnostic if error
787 */
788static int kdb_exec_defcmd(int argc, const char **argv)
789{
790 int i, ret;
791 struct defcmd_set *s;
792 if (argc != 0)
793 return KDB_ARGCOUNT;
794 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
795 if (strcmp(s->name, argv[0]) == 0)
796 break;
797 }
798 if (i == defcmd_set_count) {
799 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
800 argv[0]);
801 return KDB_NOTIMP;
802 }
803 for (i = 0; i < s->count; ++i) {
804 /* Recursive use of kdb_parse, do not use argv after
805 * this point */
806 argv = NULL;
807 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
808 ret = kdb_parse(s->command[i]);
809 if (ret)
810 return ret;
811 }
812 return 0;
813}
814
815/* Command history */
816#define KDB_CMD_HISTORY_COUNT 32
817#define CMD_BUFLEN 200 /* kdb_printf: max printline
818 * size == 256 */
819static unsigned int cmd_head, cmd_tail;
820static unsigned int cmdptr;
821static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
822static char cmd_cur[CMD_BUFLEN];
823
824/*
825 * The "str" argument may point to something like | grep xyz
826 */
827static void parse_grep(const char *str)
828{
829 int len;
830 char *cp = (char *)str, *cp2;
831
832 /* sanity check: we should have been called with the \ first */
833 if (*cp != '|')
834 return;
835 cp++;
836 while (isspace(*cp))
837 cp++;
838 if (!str_has_prefix(cp, "grep ")) {
839 kdb_printf("invalid 'pipe', see grephelp\n");
840 return;
841 }
842 cp += 5;
843 while (isspace(*cp))
844 cp++;
845 cp2 = strchr(cp, '\n');
846 if (cp2)
847 *cp2 = '\0'; /* remove the trailing newline */
848 len = strlen(cp);
849 if (len == 0) {
850 kdb_printf("invalid 'pipe', see grephelp\n");
851 return;
852 }
853 /* now cp points to a nonzero length search string */
854 if (*cp == '"') {
855 /* allow it be "x y z" by removing the "'s - there must
856 be two of them */
857 cp++;
858 cp2 = strchr(cp, '"');
859 if (!cp2) {
860 kdb_printf("invalid quoted string, see grephelp\n");
861 return;
862 }
863 *cp2 = '\0'; /* end the string where the 2nd " was */
864 }
865 kdb_grep_leading = 0;
866 if (*cp == '^') {
867 kdb_grep_leading = 1;
868 cp++;
869 }
870 len = strlen(cp);
871 kdb_grep_trailing = 0;
872 if (*(cp+len-1) == '$') {
873 kdb_grep_trailing = 1;
874 *(cp+len-1) = '\0';
875 }
876 len = strlen(cp);
877 if (!len)
878 return;
879 if (len >= KDB_GREP_STRLEN) {
880 kdb_printf("search string too long\n");
881 return;
882 }
883 strcpy(kdb_grep_string, cp);
884 kdb_grepping_flag++;
885 return;
886}
887
888/*
889 * kdb_parse - Parse the command line, search the command table for a
890 * matching command and invoke the command function. This
891 * function may be called recursively, if it is, the second call
892 * will overwrite argv and cbuf. It is the caller's
893 * responsibility to save their argv if they recursively call
894 * kdb_parse().
895 * Parameters:
896 * cmdstr The input command line to be parsed.
897 * regs The registers at the time kdb was entered.
898 * Returns:
899 * Zero for success, a kdb diagnostic if failure.
900 * Remarks:
901 * Limited to 20 tokens.
902 *
903 * Real rudimentary tokenization. Basically only whitespace
904 * is considered a token delimeter (but special consideration
905 * is taken of the '=' sign as used by the 'set' command).
906 *
907 * The algorithm used to tokenize the input string relies on
908 * there being at least one whitespace (or otherwise useless)
909 * character between tokens as the character immediately following
910 * the token is altered in-place to a null-byte to terminate the
911 * token string.
912 */
913
914#define MAXARGC 20
915
916int kdb_parse(const char *cmdstr)
917{
918 static char *argv[MAXARGC];
919 static int argc;
920 static char cbuf[CMD_BUFLEN+2];
921 char *cp;
922 char *cpp, quoted;
923 kdbtab_t *tp;
924 int i, escaped, ignore_errors = 0, check_grep = 0;
925
926 /*
927 * First tokenize the command string.
928 */
929 cp = (char *)cmdstr;
930
931 if (KDB_FLAG(CMD_INTERRUPT)) {
932 /* Previous command was interrupted, newline must not
933 * repeat the command */
934 KDB_FLAG_CLEAR(CMD_INTERRUPT);
935 KDB_STATE_SET(PAGER);
936 argc = 0; /* no repeat */
937 }
938
939 if (*cp != '\n' && *cp != '\0') {
940 argc = 0;
941 cpp = cbuf;
942 while (*cp) {
943 /* skip whitespace */
944 while (isspace(*cp))
945 cp++;
946 if ((*cp == '\0') || (*cp == '\n') ||
947 (*cp == '#' && !defcmd_in_progress))
948 break;
949 /* special case: check for | grep pattern */
950 if (*cp == '|') {
951 check_grep++;
952 break;
953 }
954 if (cpp >= cbuf + CMD_BUFLEN) {
955 kdb_printf("kdb_parse: command buffer "
956 "overflow, command ignored\n%s\n",
957 cmdstr);
958 return KDB_NOTFOUND;
959 }
960 if (argc >= MAXARGC - 1) {
961 kdb_printf("kdb_parse: too many arguments, "
962 "command ignored\n%s\n", cmdstr);
963 return KDB_NOTFOUND;
964 }
965 argv[argc++] = cpp;
966 escaped = 0;
967 quoted = '\0';
968 /* Copy to next unquoted and unescaped
969 * whitespace or '=' */
970 while (*cp && *cp != '\n' &&
971 (escaped || quoted || !isspace(*cp))) {
972 if (cpp >= cbuf + CMD_BUFLEN)
973 break;
974 if (escaped) {
975 escaped = 0;
976 *cpp++ = *cp++;
977 continue;
978 }
979 if (*cp == '\\') {
980 escaped = 1;
981 ++cp;
982 continue;
983 }
984 if (*cp == quoted)
985 quoted = '\0';
986 else if (*cp == '\'' || *cp == '"')
987 quoted = *cp;
988 *cpp = *cp++;
989 if (*cpp == '=' && !quoted)
990 break;
991 ++cpp;
992 }
993 *cpp++ = '\0'; /* Squash a ws or '=' character */
994 }
995 }
996 if (!argc)
997 return 0;
998 if (check_grep)
999 parse_grep(cp);
1000 if (defcmd_in_progress) {
1001 int result = kdb_defcmd2(cmdstr, argv[0]);
1002 if (!defcmd_in_progress) {
1003 argc = 0; /* avoid repeat on endefcmd */
1004 *(argv[0]) = '\0';
1005 }
1006 return result;
1007 }
1008 if (argv[0][0] == '-' && argv[0][1] &&
1009 (argv[0][1] < '0' || argv[0][1] > '9')) {
1010 ignore_errors = 1;
1011 ++argv[0];
1012 }
1013
1014 for_each_kdbcmd(tp, i) {
1015 if (tp->cmd_name) {
1016 /*
1017 * If this command is allowed to be abbreviated,
1018 * check to see if this is it.
1019 */
1020
1021 if (tp->cmd_minlen
1022 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1023 if (strncmp(argv[0],
1024 tp->cmd_name,
1025 tp->cmd_minlen) == 0) {
1026 break;
1027 }
1028 }
1029
1030 if (strcmp(argv[0], tp->cmd_name) == 0)
1031 break;
1032 }
1033 }
1034
1035 /*
1036 * If we don't find a command by this name, see if the first
1037 * few characters of this match any of the known commands.
1038 * e.g., md1c20 should match md.
1039 */
1040 if (i == kdb_max_commands) {
1041 for_each_kdbcmd(tp, i) {
1042 if (tp->cmd_name) {
1043 if (strncmp(argv[0],
1044 tp->cmd_name,
1045 strlen(tp->cmd_name)) == 0) {
1046 break;
1047 }
1048 }
1049 }
1050 }
1051
1052 if (i < kdb_max_commands) {
1053 int result;
1054
1055 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1056 return KDB_NOPERM;
1057
1058 KDB_STATE_SET(CMD);
1059 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1060 if (result && ignore_errors && result > KDB_CMD_GO)
1061 result = 0;
1062 KDB_STATE_CLEAR(CMD);
1063
1064 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1065 return result;
1066
1067 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1068 if (argv[argc])
1069 *(argv[argc]) = '\0';
1070 return result;
1071 }
1072
1073 /*
1074 * If the input with which we were presented does not
1075 * map to an existing command, attempt to parse it as an
1076 * address argument and display the result. Useful for
1077 * obtaining the address of a variable, or the nearest symbol
1078 * to an address contained in a register.
1079 */
1080 {
1081 unsigned long value;
1082 char *name = NULL;
1083 long offset;
1084 int nextarg = 0;
1085
1086 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1087 &value, &offset, &name)) {
1088 return KDB_NOTFOUND;
1089 }
1090
1091 kdb_printf("%s = ", argv[0]);
1092 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1093 kdb_printf("\n");
1094 return 0;
1095 }
1096}
1097
1098
1099static int handle_ctrl_cmd(char *cmd)
1100{
1101#define CTRL_P 16
1102#define CTRL_N 14
1103
1104 /* initial situation */
1105 if (cmd_head == cmd_tail)
1106 return 0;
1107 switch (*cmd) {
1108 case CTRL_P:
1109 if (cmdptr != cmd_tail)
1110 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1111 KDB_CMD_HISTORY_COUNT;
1112 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1113 return 1;
1114 case CTRL_N:
1115 if (cmdptr != cmd_head)
1116 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1117 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118 return 1;
1119 }
1120 return 0;
1121}
1122
1123/*
1124 * kdb_reboot - This function implements the 'reboot' command. Reboot
1125 * the system immediately, or loop for ever on failure.
1126 */
1127static int kdb_reboot(int argc, const char **argv)
1128{
1129 emergency_restart();
1130 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131 while (1)
1132 cpu_relax();
1133 /* NOTREACHED */
1134 return 0;
1135}
1136
1137static void kdb_dumpregs(struct pt_regs *regs)
1138{
1139 int old_lvl = console_loglevel;
1140 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1141 kdb_trap_printk++;
1142 show_regs(regs);
1143 kdb_trap_printk--;
1144 kdb_printf("\n");
1145 console_loglevel = old_lvl;
1146}
1147
1148static void kdb_set_current_task(struct task_struct *p)
1149{
1150 kdb_current_task = p;
1151
1152 if (kdb_task_has_cpu(p)) {
1153 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1154 return;
1155 }
1156 kdb_current_regs = NULL;
1157}
1158
1159static void drop_newline(char *buf)
1160{
1161 size_t len = strlen(buf);
1162
1163 if (len == 0)
1164 return;
1165 if (*(buf + len - 1) == '\n')
1166 *(buf + len - 1) = '\0';
1167}
1168
1169/*
1170 * kdb_local - The main code for kdb. This routine is invoked on a
1171 * specific processor, it is not global. The main kdb() routine
1172 * ensures that only one processor at a time is in this routine.
1173 * This code is called with the real reason code on the first
1174 * entry to a kdb session, thereafter it is called with reason
1175 * SWITCH, even if the user goes back to the original cpu.
1176 * Inputs:
1177 * reason The reason KDB was invoked
1178 * error The hardware-defined error code
1179 * regs The exception frame at time of fault/breakpoint.
1180 * db_result Result code from the break or debug point.
1181 * Returns:
1182 * 0 KDB was invoked for an event which it wasn't responsible
1183 * 1 KDB handled the event for which it was invoked.
1184 * KDB_CMD_GO User typed 'go'.
1185 * KDB_CMD_CPU User switched to another cpu.
1186 * KDB_CMD_SS Single step.
1187 */
1188static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1189 kdb_dbtrap_t db_result)
1190{
1191 char *cmdbuf;
1192 int diag;
1193 struct task_struct *kdb_current =
1194 kdb_curr_task(raw_smp_processor_id());
1195
1196 KDB_DEBUG_STATE("kdb_local 1", reason);
1197 kdb_go_count = 0;
1198 if (reason == KDB_REASON_DEBUG) {
1199 /* special case below */
1200 } else {
1201 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1202 kdb_current, kdb_current ? kdb_current->pid : 0);
1203#if defined(CONFIG_SMP)
1204 kdb_printf("on processor %d ", raw_smp_processor_id());
1205#endif
1206 }
1207
1208 switch (reason) {
1209 case KDB_REASON_DEBUG:
1210 {
1211 /*
1212 * If re-entering kdb after a single step
1213 * command, don't print the message.
1214 */
1215 switch (db_result) {
1216 case KDB_DB_BPT:
1217 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1218 kdb_current, kdb_current->pid);
1219#if defined(CONFIG_SMP)
1220 kdb_printf("on processor %d ", raw_smp_processor_id());
1221#endif
1222 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1223 instruction_pointer(regs));
1224 break;
1225 case KDB_DB_SS:
1226 break;
1227 case KDB_DB_SSBPT:
1228 KDB_DEBUG_STATE("kdb_local 4", reason);
1229 return 1; /* kdba_db_trap did the work */
1230 default:
1231 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1232 db_result);
1233 break;
1234 }
1235
1236 }
1237 break;
1238 case KDB_REASON_ENTER:
1239 if (KDB_STATE(KEYBOARD))
1240 kdb_printf("due to Keyboard Entry\n");
1241 else
1242 kdb_printf("due to KDB_ENTER()\n");
1243 break;
1244 case KDB_REASON_KEYBOARD:
1245 KDB_STATE_SET(KEYBOARD);
1246 kdb_printf("due to Keyboard Entry\n");
1247 break;
1248 case KDB_REASON_ENTER_SLAVE:
1249 /* drop through, slaves only get released via cpu switch */
1250 case KDB_REASON_SWITCH:
1251 kdb_printf("due to cpu switch\n");
1252 break;
1253 case KDB_REASON_OOPS:
1254 kdb_printf("Oops: %s\n", kdb_diemsg);
1255 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1256 instruction_pointer(regs));
1257 kdb_dumpregs(regs);
1258 break;
1259 case KDB_REASON_SYSTEM_NMI:
1260 kdb_printf("due to System NonMaskable Interrupt\n");
1261 break;
1262 case KDB_REASON_NMI:
1263 kdb_printf("due to NonMaskable Interrupt @ "
1264 kdb_machreg_fmt "\n",
1265 instruction_pointer(regs));
1266 break;
1267 case KDB_REASON_SSTEP:
1268 case KDB_REASON_BREAK:
1269 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1270 reason == KDB_REASON_BREAK ?
1271 "Breakpoint" : "SS trap", instruction_pointer(regs));
1272 /*
1273 * Determine if this breakpoint is one that we
1274 * are interested in.
1275 */
1276 if (db_result != KDB_DB_BPT) {
1277 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1278 db_result);
1279 KDB_DEBUG_STATE("kdb_local 6", reason);
1280 return 0; /* Not for us, dismiss it */
1281 }
1282 break;
1283 case KDB_REASON_RECURSE:
1284 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1285 instruction_pointer(regs));
1286 break;
1287 default:
1288 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1289 KDB_DEBUG_STATE("kdb_local 8", reason);
1290 return 0; /* Not for us, dismiss it */
1291 }
1292
1293 while (1) {
1294 /*
1295 * Initialize pager context.
1296 */
1297 kdb_nextline = 1;
1298 KDB_STATE_CLEAR(SUPPRESS);
1299 kdb_grepping_flag = 0;
1300 /* ensure the old search does not leak into '/' commands */
1301 kdb_grep_string[0] = '\0';
1302
1303 cmdbuf = cmd_cur;
1304 *cmdbuf = '\0';
1305 *(cmd_hist[cmd_head]) = '\0';
1306
1307do_full_getstr:
1308 /* PROMPT can only be set if we have MEM_READ permission. */
1309 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1310 raw_smp_processor_id());
1311 if (defcmd_in_progress)
1312 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1313
1314 /*
1315 * Fetch command from keyboard
1316 */
1317 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1318 if (*cmdbuf != '\n') {
1319 if (*cmdbuf < 32) {
1320 if (cmdptr == cmd_head) {
1321 strscpy(cmd_hist[cmd_head], cmd_cur,
1322 CMD_BUFLEN);
1323 *(cmd_hist[cmd_head] +
1324 strlen(cmd_hist[cmd_head])-1) = '\0';
1325 }
1326 if (!handle_ctrl_cmd(cmdbuf))
1327 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1328 cmdbuf = cmd_cur;
1329 goto do_full_getstr;
1330 } else {
1331 strscpy(cmd_hist[cmd_head], cmd_cur,
1332 CMD_BUFLEN);
1333 }
1334
1335 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1336 if (cmd_head == cmd_tail)
1337 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1338 }
1339
1340 cmdptr = cmd_head;
1341 diag = kdb_parse(cmdbuf);
1342 if (diag == KDB_NOTFOUND) {
1343 drop_newline(cmdbuf);
1344 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1345 diag = 0;
1346 }
1347 if (diag == KDB_CMD_GO
1348 || diag == KDB_CMD_CPU
1349 || diag == KDB_CMD_SS
1350 || diag == KDB_CMD_KGDB)
1351 break;
1352
1353 if (diag)
1354 kdb_cmderror(diag);
1355 }
1356 KDB_DEBUG_STATE("kdb_local 9", diag);
1357 return diag;
1358}
1359
1360
1361/*
1362 * kdb_print_state - Print the state data for the current processor
1363 * for debugging.
1364 * Inputs:
1365 * text Identifies the debug point
1366 * value Any integer value to be printed, e.g. reason code.
1367 */
1368void kdb_print_state(const char *text, int value)
1369{
1370 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1371 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1372 kdb_state);
1373}
1374
1375/*
1376 * kdb_main_loop - After initial setup and assignment of the
1377 * controlling cpu, all cpus are in this loop. One cpu is in
1378 * control and will issue the kdb prompt, the others will spin
1379 * until 'go' or cpu switch.
1380 *
1381 * To get a consistent view of the kernel stacks for all
1382 * processes, this routine is invoked from the main kdb code via
1383 * an architecture specific routine. kdba_main_loop is
1384 * responsible for making the kernel stacks consistent for all
1385 * processes, there should be no difference between a blocked
1386 * process and a running process as far as kdb is concerned.
1387 * Inputs:
1388 * reason The reason KDB was invoked
1389 * error The hardware-defined error code
1390 * reason2 kdb's current reason code.
1391 * Initially error but can change
1392 * according to kdb state.
1393 * db_result Result code from break or debug point.
1394 * regs The exception frame at time of fault/breakpoint.
1395 * should always be valid.
1396 * Returns:
1397 * 0 KDB was invoked for an event which it wasn't responsible
1398 * 1 KDB handled the event for which it was invoked.
1399 */
1400int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1401 kdb_dbtrap_t db_result, struct pt_regs *regs)
1402{
1403 int result = 1;
1404 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1405 while (1) {
1406 /*
1407 * All processors except the one that is in control
1408 * will spin here.
1409 */
1410 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1411 while (KDB_STATE(HOLD_CPU)) {
1412 /* state KDB is turned off by kdb_cpu to see if the
1413 * other cpus are still live, each cpu in this loop
1414 * turns it back on.
1415 */
1416 if (!KDB_STATE(KDB))
1417 KDB_STATE_SET(KDB);
1418 }
1419
1420 KDB_STATE_CLEAR(SUPPRESS);
1421 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1422 if (KDB_STATE(LEAVING))
1423 break; /* Another cpu said 'go' */
1424 /* Still using kdb, this processor is in control */
1425 result = kdb_local(reason2, error, regs, db_result);
1426 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1427
1428 if (result == KDB_CMD_CPU)
1429 break;
1430
1431 if (result == KDB_CMD_SS) {
1432 KDB_STATE_SET(DOING_SS);
1433 break;
1434 }
1435
1436 if (result == KDB_CMD_KGDB) {
1437 if (!KDB_STATE(DOING_KGDB))
1438 kdb_printf("Entering please attach debugger "
1439 "or use $D#44+ or $3#33\n");
1440 break;
1441 }
1442 if (result && result != 1 && result != KDB_CMD_GO)
1443 kdb_printf("\nUnexpected kdb_local return code %d\n",
1444 result);
1445 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1446 break;
1447 }
1448 if (KDB_STATE(DOING_SS))
1449 KDB_STATE_CLEAR(SSBPT);
1450
1451 /* Clean up any keyboard devices before leaving */
1452 kdb_kbd_cleanup_state();
1453
1454 return result;
1455}
1456
1457/*
1458 * kdb_mdr - This function implements the guts of the 'mdr', memory
1459 * read command.
1460 * mdr <addr arg>,<byte count>
1461 * Inputs:
1462 * addr Start address
1463 * count Number of bytes
1464 * Returns:
1465 * Always 0. Any errors are detected and printed by kdb_getarea.
1466 */
1467static int kdb_mdr(unsigned long addr, unsigned int count)
1468{
1469 unsigned char c;
1470 while (count--) {
1471 if (kdb_getarea(c, addr))
1472 return 0;
1473 kdb_printf("%02x", c);
1474 addr++;
1475 }
1476 kdb_printf("\n");
1477 return 0;
1478}
1479
1480/*
1481 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1482 * 'md8' 'mdr' and 'mds' commands.
1483 *
1484 * md|mds [<addr arg> [<line count> [<radix>]]]
1485 * mdWcN [<addr arg> [<line count> [<radix>]]]
1486 * where W = is the width (1, 2, 4 or 8) and N is the count.
1487 * for eg., md1c20 reads 20 bytes, 1 at a time.
1488 * mdr <addr arg>,<byte count>
1489 */
1490static void kdb_md_line(const char *fmtstr, unsigned long addr,
1491 int symbolic, int nosect, int bytesperword,
1492 int num, int repeat, int phys)
1493{
1494 /* print just one line of data */
1495 kdb_symtab_t symtab;
1496 char cbuf[32];
1497 char *c = cbuf;
1498 int i;
1499 int j;
1500 unsigned long word;
1501
1502 memset(cbuf, '\0', sizeof(cbuf));
1503 if (phys)
1504 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1505 else
1506 kdb_printf(kdb_machreg_fmt0 " ", addr);
1507
1508 for (i = 0; i < num && repeat--; i++) {
1509 if (phys) {
1510 if (kdb_getphysword(&word, addr, bytesperword))
1511 break;
1512 } else if (kdb_getword(&word, addr, bytesperword))
1513 break;
1514 kdb_printf(fmtstr, word);
1515 if (symbolic)
1516 kdbnearsym(word, &symtab);
1517 else
1518 memset(&symtab, 0, sizeof(symtab));
1519 if (symtab.sym_name) {
1520 kdb_symbol_print(word, &symtab, 0);
1521 if (!nosect) {
1522 kdb_printf("\n");
1523 kdb_printf(" %s %s "
1524 kdb_machreg_fmt " "
1525 kdb_machreg_fmt " "
1526 kdb_machreg_fmt, symtab.mod_name,
1527 symtab.sec_name, symtab.sec_start,
1528 symtab.sym_start, symtab.sym_end);
1529 }
1530 addr += bytesperword;
1531 } else {
1532 union {
1533 u64 word;
1534 unsigned char c[8];
1535 } wc;
1536 unsigned char *cp;
1537#ifdef __BIG_ENDIAN
1538 cp = wc.c + 8 - bytesperword;
1539#else
1540 cp = wc.c;
1541#endif
1542 wc.word = word;
1543#define printable_char(c) \
1544 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1545 for (j = 0; j < bytesperword; j++)
1546 *c++ = printable_char(*cp++);
1547 addr += bytesperword;
1548#undef printable_char
1549 }
1550 }
1551 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1552 " ", cbuf);
1553}
1554
1555static int kdb_md(int argc, const char **argv)
1556{
1557 static unsigned long last_addr;
1558 static int last_radix, last_bytesperword, last_repeat;
1559 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1560 int nosect = 0;
1561 char fmtchar, fmtstr[64];
1562 unsigned long addr;
1563 unsigned long word;
1564 long offset = 0;
1565 int symbolic = 0;
1566 int valid = 0;
1567 int phys = 0;
1568 int raw = 0;
1569
1570 kdbgetintenv("MDCOUNT", &mdcount);
1571 kdbgetintenv("RADIX", &radix);
1572 kdbgetintenv("BYTESPERWORD", &bytesperword);
1573
1574 /* Assume 'md <addr>' and start with environment values */
1575 repeat = mdcount * 16 / bytesperword;
1576
1577 if (strcmp(argv[0], "mdr") == 0) {
1578 if (argc == 2 || (argc == 0 && last_addr != 0))
1579 valid = raw = 1;
1580 else
1581 return KDB_ARGCOUNT;
1582 } else if (isdigit(argv[0][2])) {
1583 bytesperword = (int)(argv[0][2] - '0');
1584 if (bytesperword == 0) {
1585 bytesperword = last_bytesperword;
1586 if (bytesperword == 0)
1587 bytesperword = 4;
1588 }
1589 last_bytesperword = bytesperword;
1590 repeat = mdcount * 16 / bytesperword;
1591 if (!argv[0][3])
1592 valid = 1;
1593 else if (argv[0][3] == 'c' && argv[0][4]) {
1594 char *p;
1595 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1596 mdcount = ((repeat * bytesperword) + 15) / 16;
1597 valid = !*p;
1598 }
1599 last_repeat = repeat;
1600 } else if (strcmp(argv[0], "md") == 0)
1601 valid = 1;
1602 else if (strcmp(argv[0], "mds") == 0)
1603 valid = 1;
1604 else if (strcmp(argv[0], "mdp") == 0) {
1605 phys = valid = 1;
1606 }
1607 if (!valid)
1608 return KDB_NOTFOUND;
1609
1610 if (argc == 0) {
1611 if (last_addr == 0)
1612 return KDB_ARGCOUNT;
1613 addr = last_addr;
1614 radix = last_radix;
1615 bytesperword = last_bytesperword;
1616 repeat = last_repeat;
1617 if (raw)
1618 mdcount = repeat;
1619 else
1620 mdcount = ((repeat * bytesperword) + 15) / 16;
1621 }
1622
1623 if (argc) {
1624 unsigned long val;
1625 int diag, nextarg = 1;
1626 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1627 &offset, NULL);
1628 if (diag)
1629 return diag;
1630 if (argc > nextarg+2)
1631 return KDB_ARGCOUNT;
1632
1633 if (argc >= nextarg) {
1634 diag = kdbgetularg(argv[nextarg], &val);
1635 if (!diag) {
1636 mdcount = (int) val;
1637 if (raw)
1638 repeat = mdcount;
1639 else
1640 repeat = mdcount * 16 / bytesperword;
1641 }
1642 }
1643 if (argc >= nextarg+1) {
1644 diag = kdbgetularg(argv[nextarg+1], &val);
1645 if (!diag)
1646 radix = (int) val;
1647 }
1648 }
1649
1650 if (strcmp(argv[0], "mdr") == 0) {
1651 int ret;
1652 last_addr = addr;
1653 ret = kdb_mdr(addr, mdcount);
1654 last_addr += mdcount;
1655 last_repeat = mdcount;
1656 last_bytesperword = bytesperword; // to make REPEAT happy
1657 return ret;
1658 }
1659
1660 switch (radix) {
1661 case 10:
1662 fmtchar = 'd';
1663 break;
1664 case 16:
1665 fmtchar = 'x';
1666 break;
1667 case 8:
1668 fmtchar = 'o';
1669 break;
1670 default:
1671 return KDB_BADRADIX;
1672 }
1673
1674 last_radix = radix;
1675
1676 if (bytesperword > KDB_WORD_SIZE)
1677 return KDB_BADWIDTH;
1678
1679 switch (bytesperword) {
1680 case 8:
1681 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1682 break;
1683 case 4:
1684 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1685 break;
1686 case 2:
1687 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1688 break;
1689 case 1:
1690 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1691 break;
1692 default:
1693 return KDB_BADWIDTH;
1694 }
1695
1696 last_repeat = repeat;
1697 last_bytesperword = bytesperword;
1698
1699 if (strcmp(argv[0], "mds") == 0) {
1700 symbolic = 1;
1701 /* Do not save these changes as last_*, they are temporary mds
1702 * overrides.
1703 */
1704 bytesperword = KDB_WORD_SIZE;
1705 repeat = mdcount;
1706 kdbgetintenv("NOSECT", &nosect);
1707 }
1708
1709 /* Round address down modulo BYTESPERWORD */
1710
1711 addr &= ~(bytesperword-1);
1712
1713 while (repeat > 0) {
1714 unsigned long a;
1715 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1716
1717 if (KDB_FLAG(CMD_INTERRUPT))
1718 return 0;
1719 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1720 if (phys) {
1721 if (kdb_getphysword(&word, a, bytesperword)
1722 || word)
1723 break;
1724 } else if (kdb_getword(&word, a, bytesperword) || word)
1725 break;
1726 }
1727 n = min(num, repeat);
1728 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1729 num, repeat, phys);
1730 addr += bytesperword * n;
1731 repeat -= n;
1732 z = (z + num - 1) / num;
1733 if (z > 2) {
1734 int s = num * (z-2);
1735 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1736 " zero suppressed\n",
1737 addr, addr + bytesperword * s - 1);
1738 addr += bytesperword * s;
1739 repeat -= s;
1740 }
1741 }
1742 last_addr = addr;
1743
1744 return 0;
1745}
1746
1747/*
1748 * kdb_mm - This function implements the 'mm' command.
1749 * mm address-expression new-value
1750 * Remarks:
1751 * mm works on machine words, mmW works on bytes.
1752 */
1753static int kdb_mm(int argc, const char **argv)
1754{
1755 int diag;
1756 unsigned long addr;
1757 long offset = 0;
1758 unsigned long contents;
1759 int nextarg;
1760 int width;
1761
1762 if (argv[0][2] && !isdigit(argv[0][2]))
1763 return KDB_NOTFOUND;
1764
1765 if (argc < 2)
1766 return KDB_ARGCOUNT;
1767
1768 nextarg = 1;
1769 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1770 if (diag)
1771 return diag;
1772
1773 if (nextarg > argc)
1774 return KDB_ARGCOUNT;
1775 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1776 if (diag)
1777 return diag;
1778
1779 if (nextarg != argc + 1)
1780 return KDB_ARGCOUNT;
1781
1782 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1783 diag = kdb_putword(addr, contents, width);
1784 if (diag)
1785 return diag;
1786
1787 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1788
1789 return 0;
1790}
1791
1792/*
1793 * kdb_go - This function implements the 'go' command.
1794 * go [address-expression]
1795 */
1796static int kdb_go(int argc, const char **argv)
1797{
1798 unsigned long addr;
1799 int diag;
1800 int nextarg;
1801 long offset;
1802
1803 if (raw_smp_processor_id() != kdb_initial_cpu) {
1804 kdb_printf("go must execute on the entry cpu, "
1805 "please use \"cpu %d\" and then execute go\n",
1806 kdb_initial_cpu);
1807 return KDB_BADCPUNUM;
1808 }
1809 if (argc == 1) {
1810 nextarg = 1;
1811 diag = kdbgetaddrarg(argc, argv, &nextarg,
1812 &addr, &offset, NULL);
1813 if (diag)
1814 return diag;
1815 } else if (argc) {
1816 return KDB_ARGCOUNT;
1817 }
1818
1819 diag = KDB_CMD_GO;
1820 if (KDB_FLAG(CATASTROPHIC)) {
1821 kdb_printf("Catastrophic error detected\n");
1822 kdb_printf("kdb_continue_catastrophic=%d, ",
1823 kdb_continue_catastrophic);
1824 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1825 kdb_printf("type go a second time if you really want "
1826 "to continue\n");
1827 return 0;
1828 }
1829 if (kdb_continue_catastrophic == 2) {
1830 kdb_printf("forcing reboot\n");
1831 kdb_reboot(0, NULL);
1832 }
1833 kdb_printf("attempting to continue\n");
1834 }
1835 return diag;
1836}
1837
1838/*
1839 * kdb_rd - This function implements the 'rd' command.
1840 */
1841static int kdb_rd(int argc, const char **argv)
1842{
1843 int len = kdb_check_regs();
1844#if DBG_MAX_REG_NUM > 0
1845 int i;
1846 char *rname;
1847 int rsize;
1848 u64 reg64;
1849 u32 reg32;
1850 u16 reg16;
1851 u8 reg8;
1852
1853 if (len)
1854 return len;
1855
1856 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1857 rsize = dbg_reg_def[i].size * 2;
1858 if (rsize > 16)
1859 rsize = 2;
1860 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1861 len = 0;
1862 kdb_printf("\n");
1863 }
1864 if (len)
1865 len += kdb_printf(" ");
1866 switch(dbg_reg_def[i].size * 8) {
1867 case 8:
1868 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1869 if (!rname)
1870 break;
1871 len += kdb_printf("%s: %02x", rname, reg8);
1872 break;
1873 case 16:
1874 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1875 if (!rname)
1876 break;
1877 len += kdb_printf("%s: %04x", rname, reg16);
1878 break;
1879 case 32:
1880 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1881 if (!rname)
1882 break;
1883 len += kdb_printf("%s: %08x", rname, reg32);
1884 break;
1885 case 64:
1886 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1887 if (!rname)
1888 break;
1889 len += kdb_printf("%s: %016llx", rname, reg64);
1890 break;
1891 default:
1892 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1893 }
1894 }
1895 kdb_printf("\n");
1896#else
1897 if (len)
1898 return len;
1899
1900 kdb_dumpregs(kdb_current_regs);
1901#endif
1902 return 0;
1903}
1904
1905/*
1906 * kdb_rm - This function implements the 'rm' (register modify) command.
1907 * rm register-name new-contents
1908 * Remarks:
1909 * Allows register modification with the same restrictions as gdb
1910 */
1911static int kdb_rm(int argc, const char **argv)
1912{
1913#if DBG_MAX_REG_NUM > 0
1914 int diag;
1915 const char *rname;
1916 int i;
1917 u64 reg64;
1918 u32 reg32;
1919 u16 reg16;
1920 u8 reg8;
1921
1922 if (argc != 2)
1923 return KDB_ARGCOUNT;
1924 /*
1925 * Allow presence or absence of leading '%' symbol.
1926 */
1927 rname = argv[1];
1928 if (*rname == '%')
1929 rname++;
1930
1931 diag = kdbgetu64arg(argv[2], ®64);
1932 if (diag)
1933 return diag;
1934
1935 diag = kdb_check_regs();
1936 if (diag)
1937 return diag;
1938
1939 diag = KDB_BADREG;
1940 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1941 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1942 diag = 0;
1943 break;
1944 }
1945 }
1946 if (!diag) {
1947 switch(dbg_reg_def[i].size * 8) {
1948 case 8:
1949 reg8 = reg64;
1950 dbg_set_reg(i, ®8, kdb_current_regs);
1951 break;
1952 case 16:
1953 reg16 = reg64;
1954 dbg_set_reg(i, ®16, kdb_current_regs);
1955 break;
1956 case 32:
1957 reg32 = reg64;
1958 dbg_set_reg(i, ®32, kdb_current_regs);
1959 break;
1960 case 64:
1961 dbg_set_reg(i, ®64, kdb_current_regs);
1962 break;
1963 }
1964 }
1965 return diag;
1966#else
1967 kdb_printf("ERROR: Register set currently not implemented\n");
1968 return 0;
1969#endif
1970}
1971
1972#if defined(CONFIG_MAGIC_SYSRQ)
1973/*
1974 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1975 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1976 * sr <magic-sysrq-code>
1977 */
1978static int kdb_sr(int argc, const char **argv)
1979{
1980 bool check_mask =
1981 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1982
1983 if (argc != 1)
1984 return KDB_ARGCOUNT;
1985
1986 kdb_trap_printk++;
1987 __handle_sysrq(*argv[1], check_mask);
1988 kdb_trap_printk--;
1989
1990 return 0;
1991}
1992#endif /* CONFIG_MAGIC_SYSRQ */
1993
1994/*
1995 * kdb_ef - This function implements the 'regs' (display exception
1996 * frame) command. This command takes an address and expects to
1997 * find an exception frame at that address, formats and prints
1998 * it.
1999 * regs address-expression
2000 * Remarks:
2001 * Not done yet.
2002 */
2003static int kdb_ef(int argc, const char **argv)
2004{
2005 int diag;
2006 unsigned long addr;
2007 long offset;
2008 int nextarg;
2009
2010 if (argc != 1)
2011 return KDB_ARGCOUNT;
2012
2013 nextarg = 1;
2014 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2015 if (diag)
2016 return diag;
2017 show_regs((struct pt_regs *)addr);
2018 return 0;
2019}
2020
2021#if defined(CONFIG_MODULES)
2022/*
2023 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2024 * currently loaded kernel modules.
2025 * Mostly taken from userland lsmod.
2026 */
2027static int kdb_lsmod(int argc, const char **argv)
2028{
2029 struct module *mod;
2030
2031 if (argc != 0)
2032 return KDB_ARGCOUNT;
2033
2034 kdb_printf("Module Size modstruct Used by\n");
2035 list_for_each_entry(mod, kdb_modules, list) {
2036 if (mod->state == MODULE_STATE_UNFORMED)
2037 continue;
2038
2039 kdb_printf("%-20s%8u 0x%px ", mod->name,
2040 mod->core_layout.size, (void *)mod);
2041#ifdef CONFIG_MODULE_UNLOAD
2042 kdb_printf("%4d ", module_refcount(mod));
2043#endif
2044 if (mod->state == MODULE_STATE_GOING)
2045 kdb_printf(" (Unloading)");
2046 else if (mod->state == MODULE_STATE_COMING)
2047 kdb_printf(" (Loading)");
2048 else
2049 kdb_printf(" (Live)");
2050 kdb_printf(" 0x%px", mod->core_layout.base);
2051
2052#ifdef CONFIG_MODULE_UNLOAD
2053 {
2054 struct module_use *use;
2055 kdb_printf(" [ ");
2056 list_for_each_entry(use, &mod->source_list,
2057 source_list)
2058 kdb_printf("%s ", use->target->name);
2059 kdb_printf("]\n");
2060 }
2061#endif
2062 }
2063
2064 return 0;
2065}
2066
2067#endif /* CONFIG_MODULES */
2068
2069/*
2070 * kdb_env - This function implements the 'env' command. Display the
2071 * current environment variables.
2072 */
2073
2074static int kdb_env(int argc, const char **argv)
2075{
2076 int i;
2077
2078 for (i = 0; i < __nenv; i++) {
2079 if (__env[i])
2080 kdb_printf("%s\n", __env[i]);
2081 }
2082
2083 if (KDB_DEBUG(MASK))
2084 kdb_printf("KDBDEBUG=0x%x\n",
2085 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2086
2087 return 0;
2088}
2089
2090#ifdef CONFIG_PRINTK
2091/*
2092 * kdb_dmesg - This function implements the 'dmesg' command to display
2093 * the contents of the syslog buffer.
2094 * dmesg [lines] [adjust]
2095 */
2096static int kdb_dmesg(int argc, const char **argv)
2097{
2098 int diag;
2099 int logging;
2100 int lines = 0;
2101 int adjust = 0;
2102 int n = 0;
2103 int skip = 0;
2104 struct kmsg_dumper dumper = { .active = 1 };
2105 size_t len;
2106 char buf[201];
2107
2108 if (argc > 2)
2109 return KDB_ARGCOUNT;
2110 if (argc) {
2111 char *cp;
2112 lines = simple_strtol(argv[1], &cp, 0);
2113 if (*cp)
2114 lines = 0;
2115 if (argc > 1) {
2116 adjust = simple_strtoul(argv[2], &cp, 0);
2117 if (*cp || adjust < 0)
2118 adjust = 0;
2119 }
2120 }
2121
2122 /* disable LOGGING if set */
2123 diag = kdbgetintenv("LOGGING", &logging);
2124 if (!diag && logging) {
2125 const char *setargs[] = { "set", "LOGGING", "0" };
2126 kdb_set(2, setargs);
2127 }
2128
2129 kmsg_dump_rewind_nolock(&dumper);
2130 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2131 n++;
2132
2133 if (lines < 0) {
2134 if (adjust >= n)
2135 kdb_printf("buffer only contains %d lines, nothing "
2136 "printed\n", n);
2137 else if (adjust - lines >= n)
2138 kdb_printf("buffer only contains %d lines, last %d "
2139 "lines printed\n", n, n - adjust);
2140 skip = adjust;
2141 lines = abs(lines);
2142 } else if (lines > 0) {
2143 skip = n - lines - adjust;
2144 lines = abs(lines);
2145 if (adjust >= n) {
2146 kdb_printf("buffer only contains %d lines, "
2147 "nothing printed\n", n);
2148 skip = n;
2149 } else if (skip < 0) {
2150 lines += skip;
2151 skip = 0;
2152 kdb_printf("buffer only contains %d lines, first "
2153 "%d lines printed\n", n, lines);
2154 }
2155 } else {
2156 lines = n;
2157 }
2158
2159 if (skip >= n || skip < 0)
2160 return 0;
2161
2162 kmsg_dump_rewind_nolock(&dumper);
2163 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2164 if (skip) {
2165 skip--;
2166 continue;
2167 }
2168 if (!lines--)
2169 break;
2170 if (KDB_FLAG(CMD_INTERRUPT))
2171 return 0;
2172
2173 kdb_printf("%.*s\n", (int)len - 1, buf);
2174 }
2175
2176 return 0;
2177}
2178#endif /* CONFIG_PRINTK */
2179
2180/* Make sure we balance enable/disable calls, must disable first. */
2181static atomic_t kdb_nmi_disabled;
2182
2183static int kdb_disable_nmi(int argc, const char *argv[])
2184{
2185 if (atomic_read(&kdb_nmi_disabled))
2186 return 0;
2187 atomic_set(&kdb_nmi_disabled, 1);
2188 arch_kgdb_ops.enable_nmi(0);
2189 return 0;
2190}
2191
2192static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2193{
2194 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2195 return -EINVAL;
2196 arch_kgdb_ops.enable_nmi(1);
2197 return 0;
2198}
2199
2200static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2201 .set = kdb_param_enable_nmi,
2202};
2203module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2204
2205/*
2206 * kdb_cpu - This function implements the 'cpu' command.
2207 * cpu [<cpunum>]
2208 * Returns:
2209 * KDB_CMD_CPU for success, a kdb diagnostic if error
2210 */
2211static void kdb_cpu_status(void)
2212{
2213 int i, start_cpu, first_print = 1;
2214 char state, prev_state = '?';
2215
2216 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2217 kdb_printf("Available cpus: ");
2218 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2219 if (!cpu_online(i)) {
2220 state = 'F'; /* cpu is offline */
2221 } else if (!kgdb_info[i].enter_kgdb) {
2222 state = 'D'; /* cpu is online but unresponsive */
2223 } else {
2224 state = ' '; /* cpu is responding to kdb */
2225 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2226 state = 'I'; /* idle task */
2227 }
2228 if (state != prev_state) {
2229 if (prev_state != '?') {
2230 if (!first_print)
2231 kdb_printf(", ");
2232 first_print = 0;
2233 kdb_printf("%d", start_cpu);
2234 if (start_cpu < i-1)
2235 kdb_printf("-%d", i-1);
2236 if (prev_state != ' ')
2237 kdb_printf("(%c)", prev_state);
2238 }
2239 prev_state = state;
2240 start_cpu = i;
2241 }
2242 }
2243 /* print the trailing cpus, ignoring them if they are all offline */
2244 if (prev_state != 'F') {
2245 if (!first_print)
2246 kdb_printf(", ");
2247 kdb_printf("%d", start_cpu);
2248 if (start_cpu < i-1)
2249 kdb_printf("-%d", i-1);
2250 if (prev_state != ' ')
2251 kdb_printf("(%c)", prev_state);
2252 }
2253 kdb_printf("\n");
2254}
2255
2256static int kdb_cpu(int argc, const char **argv)
2257{
2258 unsigned long cpunum;
2259 int diag;
2260
2261 if (argc == 0) {
2262 kdb_cpu_status();
2263 return 0;
2264 }
2265
2266 if (argc != 1)
2267 return KDB_ARGCOUNT;
2268
2269 diag = kdbgetularg(argv[1], &cpunum);
2270 if (diag)
2271 return diag;
2272
2273 /*
2274 * Validate cpunum
2275 */
2276 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2277 return KDB_BADCPUNUM;
2278
2279 dbg_switch_cpu = cpunum;
2280
2281 /*
2282 * Switch to other cpu
2283 */
2284 return KDB_CMD_CPU;
2285}
2286
2287/* The user may not realize that ps/bta with no parameters does not print idle
2288 * or sleeping system daemon processes, so tell them how many were suppressed.
2289 */
2290void kdb_ps_suppressed(void)
2291{
2292 int idle = 0, daemon = 0;
2293 unsigned long mask_I = kdb_task_state_string("I"),
2294 mask_M = kdb_task_state_string("M");
2295 unsigned long cpu;
2296 const struct task_struct *p, *g;
2297 for_each_online_cpu(cpu) {
2298 p = kdb_curr_task(cpu);
2299 if (kdb_task_state(p, mask_I))
2300 ++idle;
2301 }
2302 kdb_do_each_thread(g, p) {
2303 if (kdb_task_state(p, mask_M))
2304 ++daemon;
2305 } kdb_while_each_thread(g, p);
2306 if (idle || daemon) {
2307 if (idle)
2308 kdb_printf("%d idle process%s (state I)%s\n",
2309 idle, idle == 1 ? "" : "es",
2310 daemon ? " and " : "");
2311 if (daemon)
2312 kdb_printf("%d sleeping system daemon (state M) "
2313 "process%s", daemon,
2314 daemon == 1 ? "" : "es");
2315 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2316 }
2317}
2318
2319/*
2320 * kdb_ps - This function implements the 'ps' command which shows a
2321 * list of the active processes.
2322 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2323 */
2324void kdb_ps1(const struct task_struct *p)
2325{
2326 int cpu;
2327 unsigned long tmp;
2328
2329 if (!p ||
2330 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2331 return;
2332
2333 cpu = kdb_process_cpu(p);
2334 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2335 (void *)p, p->pid, p->parent->pid,
2336 kdb_task_has_cpu(p), kdb_process_cpu(p),
2337 kdb_task_state_char(p),
2338 (void *)(&p->thread),
2339 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2340 p->comm);
2341 if (kdb_task_has_cpu(p)) {
2342 if (!KDB_TSK(cpu)) {
2343 kdb_printf(" Error: no saved data for this cpu\n");
2344 } else {
2345 if (KDB_TSK(cpu) != p)
2346 kdb_printf(" Error: does not match running "
2347 "process table (0x%px)\n", KDB_TSK(cpu));
2348 }
2349 }
2350}
2351
2352static int kdb_ps(int argc, const char **argv)
2353{
2354 struct task_struct *g, *p;
2355 unsigned long mask, cpu;
2356
2357 if (argc == 0)
2358 kdb_ps_suppressed();
2359 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2360 (int)(2*sizeof(void *))+2, "Task Addr",
2361 (int)(2*sizeof(void *))+2, "Thread");
2362 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2363 /* Run the active tasks first */
2364 for_each_online_cpu(cpu) {
2365 if (KDB_FLAG(CMD_INTERRUPT))
2366 return 0;
2367 p = kdb_curr_task(cpu);
2368 if (kdb_task_state(p, mask))
2369 kdb_ps1(p);
2370 }
2371 kdb_printf("\n");
2372 /* Now the real tasks */
2373 kdb_do_each_thread(g, p) {
2374 if (KDB_FLAG(CMD_INTERRUPT))
2375 return 0;
2376 if (kdb_task_state(p, mask))
2377 kdb_ps1(p);
2378 } kdb_while_each_thread(g, p);
2379
2380 return 0;
2381}
2382
2383/*
2384 * kdb_pid - This function implements the 'pid' command which switches
2385 * the currently active process.
2386 * pid [<pid> | R]
2387 */
2388static int kdb_pid(int argc, const char **argv)
2389{
2390 struct task_struct *p;
2391 unsigned long val;
2392 int diag;
2393
2394 if (argc > 1)
2395 return KDB_ARGCOUNT;
2396
2397 if (argc) {
2398 if (strcmp(argv[1], "R") == 0) {
2399 p = KDB_TSK(kdb_initial_cpu);
2400 } else {
2401 diag = kdbgetularg(argv[1], &val);
2402 if (diag)
2403 return KDB_BADINT;
2404
2405 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2406 if (!p) {
2407 kdb_printf("No task with pid=%d\n", (pid_t)val);
2408 return 0;
2409 }
2410 }
2411 kdb_set_current_task(p);
2412 }
2413 kdb_printf("KDB current process is %s(pid=%d)\n",
2414 kdb_current_task->comm,
2415 kdb_current_task->pid);
2416
2417 return 0;
2418}
2419
2420static int kdb_kgdb(int argc, const char **argv)
2421{
2422 return KDB_CMD_KGDB;
2423}
2424
2425/*
2426 * kdb_help - This function implements the 'help' and '?' commands.
2427 */
2428static int kdb_help(int argc, const char **argv)
2429{
2430 kdbtab_t *kt;
2431 int i;
2432
2433 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434 kdb_printf("-----------------------------"
2435 "-----------------------------\n");
2436 for_each_kdbcmd(kt, i) {
2437 char *space = "";
2438 if (KDB_FLAG(CMD_INTERRUPT))
2439 return 0;
2440 if (!kt->cmd_name)
2441 continue;
2442 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2443 continue;
2444 if (strlen(kt->cmd_usage) > 20)
2445 space = "\n ";
2446 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2447 kt->cmd_usage, space, kt->cmd_help);
2448 }
2449 return 0;
2450}
2451
2452/*
2453 * kdb_kill - This function implements the 'kill' commands.
2454 */
2455static int kdb_kill(int argc, const char **argv)
2456{
2457 long sig, pid;
2458 char *endp;
2459 struct task_struct *p;
2460
2461 if (argc != 2)
2462 return KDB_ARGCOUNT;
2463
2464 sig = simple_strtol(argv[1], &endp, 0);
2465 if (*endp)
2466 return KDB_BADINT;
2467 if ((sig >= 0) || !valid_signal(-sig)) {
2468 kdb_printf("Invalid signal parameter.<-signal>\n");
2469 return 0;
2470 }
2471 sig = -sig;
2472
2473 pid = simple_strtol(argv[2], &endp, 0);
2474 if (*endp)
2475 return KDB_BADINT;
2476 if (pid <= 0) {
2477 kdb_printf("Process ID must be large than 0.\n");
2478 return 0;
2479 }
2480
2481 /* Find the process. */
2482 p = find_task_by_pid_ns(pid, &init_pid_ns);
2483 if (!p) {
2484 kdb_printf("The specified process isn't found.\n");
2485 return 0;
2486 }
2487 p = p->group_leader;
2488 kdb_send_sig(p, sig);
2489 return 0;
2490}
2491
2492/*
2493 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2494 * I cannot call that code directly from kdb, it has an unconditional
2495 * cli()/sti() and calls routines that take locks which can stop the debugger.
2496 */
2497static void kdb_sysinfo(struct sysinfo *val)
2498{
2499 u64 uptime = ktime_get_mono_fast_ns();
2500
2501 memset(val, 0, sizeof(*val));
2502 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2503 val->loads[0] = avenrun[0];
2504 val->loads[1] = avenrun[1];
2505 val->loads[2] = avenrun[2];
2506 val->procs = nr_threads-1;
2507 si_meminfo(val);
2508
2509 return;
2510}
2511
2512/*
2513 * kdb_summary - This function implements the 'summary' command.
2514 */
2515static int kdb_summary(int argc, const char **argv)
2516{
2517 time64_t now;
2518 struct tm tm;
2519 struct sysinfo val;
2520
2521 if (argc)
2522 return KDB_ARGCOUNT;
2523
2524 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2525 kdb_printf("release %s\n", init_uts_ns.name.release);
2526 kdb_printf("version %s\n", init_uts_ns.name.version);
2527 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2528 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2529 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2530
2531 now = __ktime_get_real_seconds();
2532 time64_to_tm(now, 0, &tm);
2533 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d "
2534 "tz_minuteswest %d\n",
2535 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2536 tm.tm_hour, tm.tm_min, tm.tm_sec,
2537 sys_tz.tz_minuteswest);
2538
2539 kdb_sysinfo(&val);
2540 kdb_printf("uptime ");
2541 if (val.uptime > (24*60*60)) {
2542 int days = val.uptime / (24*60*60);
2543 val.uptime %= (24*60*60);
2544 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2545 }
2546 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2547
2548 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2549 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2550 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2551 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2552
2553 /* Display in kilobytes */
2554#define K(x) ((x) << (PAGE_SHIFT - 10))
2555 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2556 "Buffers: %8lu kB\n",
2557 K(val.totalram), K(val.freeram), K(val.bufferram));
2558 return 0;
2559}
2560
2561/*
2562 * kdb_per_cpu - This function implements the 'per_cpu' command.
2563 */
2564static int kdb_per_cpu(int argc, const char **argv)
2565{
2566 char fmtstr[64];
2567 int cpu, diag, nextarg = 1;
2568 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2569
2570 if (argc < 1 || argc > 3)
2571 return KDB_ARGCOUNT;
2572
2573 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2574 if (diag)
2575 return diag;
2576
2577 if (argc >= 2) {
2578 diag = kdbgetularg(argv[2], &bytesperword);
2579 if (diag)
2580 return diag;
2581 }
2582 if (!bytesperword)
2583 bytesperword = KDB_WORD_SIZE;
2584 else if (bytesperword > KDB_WORD_SIZE)
2585 return KDB_BADWIDTH;
2586 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2587 if (argc >= 3) {
2588 diag = kdbgetularg(argv[3], &whichcpu);
2589 if (diag)
2590 return diag;
2591 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2592 kdb_printf("cpu %ld is not online\n", whichcpu);
2593 return KDB_BADCPUNUM;
2594 }
2595 }
2596
2597 /* Most architectures use __per_cpu_offset[cpu], some use
2598 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2599 */
2600#ifdef __per_cpu_offset
2601#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2602#else
2603#ifdef CONFIG_SMP
2604#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2605#else
2606#define KDB_PCU(cpu) 0
2607#endif
2608#endif
2609 for_each_online_cpu(cpu) {
2610 if (KDB_FLAG(CMD_INTERRUPT))
2611 return 0;
2612
2613 if (whichcpu != ~0UL && whichcpu != cpu)
2614 continue;
2615 addr = symaddr + KDB_PCU(cpu);
2616 diag = kdb_getword(&val, addr, bytesperword);
2617 if (diag) {
2618 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2619 "read, diag=%d\n", cpu, addr, diag);
2620 continue;
2621 }
2622 kdb_printf("%5d ", cpu);
2623 kdb_md_line(fmtstr, addr,
2624 bytesperword == KDB_WORD_SIZE,
2625 1, bytesperword, 1, 1, 0);
2626 }
2627#undef KDB_PCU
2628 return 0;
2629}
2630
2631/*
2632 * display help for the use of cmd | grep pattern
2633 */
2634static int kdb_grep_help(int argc, const char **argv)
2635{
2636 kdb_printf("Usage of cmd args | grep pattern:\n");
2637 kdb_printf(" Any command's output may be filtered through an ");
2638 kdb_printf("emulated 'pipe'.\n");
2639 kdb_printf(" 'grep' is just a key word.\n");
2640 kdb_printf(" The pattern may include a very limited set of "
2641 "metacharacters:\n");
2642 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2643 kdb_printf(" And if there are spaces in the pattern, you may "
2644 "quote it:\n");
2645 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2646 " or \"^pat tern$\"\n");
2647 return 0;
2648}
2649
2650/*
2651 * kdb_register_flags - This function is used to register a kernel
2652 * debugger command.
2653 * Inputs:
2654 * cmd Command name
2655 * func Function to execute the command
2656 * usage A simple usage string showing arguments
2657 * help A simple help string describing command
2658 * repeat Does the command auto repeat on enter?
2659 * Returns:
2660 * zero for success, one if a duplicate command.
2661 */
2662#define kdb_command_extend 50 /* arbitrary */
2663int kdb_register_flags(char *cmd,
2664 kdb_func_t func,
2665 char *usage,
2666 char *help,
2667 short minlen,
2668 kdb_cmdflags_t flags)
2669{
2670 int i;
2671 kdbtab_t *kp;
2672
2673 /*
2674 * Brute force method to determine duplicates
2675 */
2676 for_each_kdbcmd(kp, i) {
2677 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2678 kdb_printf("Duplicate kdb command registered: "
2679 "%s, func %px help %s\n", cmd, func, help);
2680 return 1;
2681 }
2682 }
2683
2684 /*
2685 * Insert command into first available location in table
2686 */
2687 for_each_kdbcmd(kp, i) {
2688 if (kp->cmd_name == NULL)
2689 break;
2690 }
2691
2692 if (i >= kdb_max_commands) {
2693 kdbtab_t *new = kmalloc_array(kdb_max_commands -
2694 KDB_BASE_CMD_MAX +
2695 kdb_command_extend,
2696 sizeof(*new),
2697 GFP_KDB);
2698 if (!new) {
2699 kdb_printf("Could not allocate new kdb_command "
2700 "table\n");
2701 return 1;
2702 }
2703 if (kdb_commands) {
2704 memcpy(new, kdb_commands,
2705 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2706 kfree(kdb_commands);
2707 }
2708 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2709 kdb_command_extend * sizeof(*new));
2710 kdb_commands = new;
2711 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2712 kdb_max_commands += kdb_command_extend;
2713 }
2714
2715 kp->cmd_name = cmd;
2716 kp->cmd_func = func;
2717 kp->cmd_usage = usage;
2718 kp->cmd_help = help;
2719 kp->cmd_minlen = minlen;
2720 kp->cmd_flags = flags;
2721
2722 return 0;
2723}
2724EXPORT_SYMBOL_GPL(kdb_register_flags);
2725
2726
2727/*
2728 * kdb_register - Compatibility register function for commands that do
2729 * not need to specify a repeat state. Equivalent to
2730 * kdb_register_flags with flags set to 0.
2731 * Inputs:
2732 * cmd Command name
2733 * func Function to execute the command
2734 * usage A simple usage string showing arguments
2735 * help A simple help string describing command
2736 * Returns:
2737 * zero for success, one if a duplicate command.
2738 */
2739int kdb_register(char *cmd,
2740 kdb_func_t func,
2741 char *usage,
2742 char *help,
2743 short minlen)
2744{
2745 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2746}
2747EXPORT_SYMBOL_GPL(kdb_register);
2748
2749/*
2750 * kdb_unregister - This function is used to unregister a kernel
2751 * debugger command. It is generally called when a module which
2752 * implements kdb commands is unloaded.
2753 * Inputs:
2754 * cmd Command name
2755 * Returns:
2756 * zero for success, one command not registered.
2757 */
2758int kdb_unregister(char *cmd)
2759{
2760 int i;
2761 kdbtab_t *kp;
2762
2763 /*
2764 * find the command.
2765 */
2766 for_each_kdbcmd(kp, i) {
2767 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2768 kp->cmd_name = NULL;
2769 return 0;
2770 }
2771 }
2772
2773 /* Couldn't find it. */
2774 return 1;
2775}
2776EXPORT_SYMBOL_GPL(kdb_unregister);
2777
2778/* Initialize the kdb command table. */
2779static void __init kdb_inittab(void)
2780{
2781 int i;
2782 kdbtab_t *kp;
2783
2784 for_each_kdbcmd(kp, i)
2785 kp->cmd_name = NULL;
2786
2787 kdb_register_flags("md", kdb_md, "<vaddr>",
2788 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2789 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2790 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2791 "Display Raw Memory", 0,
2792 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2793 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2794 "Display Physical Memory", 0,
2795 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2796 kdb_register_flags("mds", kdb_md, "<vaddr>",
2797 "Display Memory Symbolically", 0,
2798 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2799 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2800 "Modify Memory Contents", 0,
2801 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2802 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2803 "Continue Execution", 1,
2804 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2805 kdb_register_flags("rd", kdb_rd, "",
2806 "Display Registers", 0,
2807 KDB_ENABLE_REG_READ);
2808 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2809 "Modify Registers", 0,
2810 KDB_ENABLE_REG_WRITE);
2811 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2812 "Display exception frame", 0,
2813 KDB_ENABLE_MEM_READ);
2814 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2815 "Stack traceback", 1,
2816 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2817 kdb_register_flags("btp", kdb_bt, "<pid>",
2818 "Display stack for process <pid>", 0,
2819 KDB_ENABLE_INSPECT);
2820 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2821 "Backtrace all processes matching state flag", 0,
2822 KDB_ENABLE_INSPECT);
2823 kdb_register_flags("btc", kdb_bt, "",
2824 "Backtrace current process on each cpu", 0,
2825 KDB_ENABLE_INSPECT);
2826 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2827 "Backtrace process given its struct task address", 0,
2828 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2829 kdb_register_flags("env", kdb_env, "",
2830 "Show environment variables", 0,
2831 KDB_ENABLE_ALWAYS_SAFE);
2832 kdb_register_flags("set", kdb_set, "",
2833 "Set environment variables", 0,
2834 KDB_ENABLE_ALWAYS_SAFE);
2835 kdb_register_flags("help", kdb_help, "",
2836 "Display Help Message", 1,
2837 KDB_ENABLE_ALWAYS_SAFE);
2838 kdb_register_flags("?", kdb_help, "",
2839 "Display Help Message", 0,
2840 KDB_ENABLE_ALWAYS_SAFE);
2841 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2842 "Switch to new cpu", 0,
2843 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2844 kdb_register_flags("kgdb", kdb_kgdb, "",
2845 "Enter kgdb mode", 0, 0);
2846 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2847 "Display active task list", 0,
2848 KDB_ENABLE_INSPECT);
2849 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2850 "Switch to another task", 0,
2851 KDB_ENABLE_INSPECT);
2852 kdb_register_flags("reboot", kdb_reboot, "",
2853 "Reboot the machine immediately", 0,
2854 KDB_ENABLE_REBOOT);
2855#if defined(CONFIG_MODULES)
2856 kdb_register_flags("lsmod", kdb_lsmod, "",
2857 "List loaded kernel modules", 0,
2858 KDB_ENABLE_INSPECT);
2859#endif
2860#if defined(CONFIG_MAGIC_SYSRQ)
2861 kdb_register_flags("sr", kdb_sr, "<key>",
2862 "Magic SysRq key", 0,
2863 KDB_ENABLE_ALWAYS_SAFE);
2864#endif
2865#if defined(CONFIG_PRINTK)
2866 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2867 "Display syslog buffer", 0,
2868 KDB_ENABLE_ALWAYS_SAFE);
2869#endif
2870 if (arch_kgdb_ops.enable_nmi) {
2871 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2872 "Disable NMI entry to KDB", 0,
2873 KDB_ENABLE_ALWAYS_SAFE);
2874 }
2875 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2876 "Define a set of commands, down to endefcmd", 0,
2877 KDB_ENABLE_ALWAYS_SAFE);
2878 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2879 "Send a signal to a process", 0,
2880 KDB_ENABLE_SIGNAL);
2881 kdb_register_flags("summary", kdb_summary, "",
2882 "Summarize the system", 4,
2883 KDB_ENABLE_ALWAYS_SAFE);
2884 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2885 "Display per_cpu variables", 3,
2886 KDB_ENABLE_MEM_READ);
2887 kdb_register_flags("grephelp", kdb_grep_help, "",
2888 "Display help on | grep", 0,
2889 KDB_ENABLE_ALWAYS_SAFE);
2890}
2891
2892/* Execute any commands defined in kdb_cmds. */
2893static void __init kdb_cmd_init(void)
2894{
2895 int i, diag;
2896 for (i = 0; kdb_cmds[i]; ++i) {
2897 diag = kdb_parse(kdb_cmds[i]);
2898 if (diag)
2899 kdb_printf("kdb command %s failed, kdb diag %d\n",
2900 kdb_cmds[i], diag);
2901 }
2902 if (defcmd_in_progress) {
2903 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2904 kdb_parse("endefcmd");
2905 }
2906}
2907
2908/* Initialize kdb_printf, breakpoint tables and kdb state */
2909void __init kdb_init(int lvl)
2910{
2911 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2912 int i;
2913
2914 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2915 return;
2916 for (i = kdb_init_lvl; i < lvl; i++) {
2917 switch (i) {
2918 case KDB_NOT_INITIALIZED:
2919 kdb_inittab(); /* Initialize Command Table */
2920 kdb_initbptab(); /* Initialize Breakpoints */
2921 break;
2922 case KDB_INIT_EARLY:
2923 kdb_cmd_init(); /* Build kdb_cmds tables */
2924 break;
2925 }
2926 }
2927 kdb_init_lvl = lvl;
2928}