Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include "cgroup-internal.h"
  32
  33#include <linux/cred.h>
  34#include <linux/errno.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/magic.h>
  38#include <linux/mutex.h>
  39#include <linux/mount.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/rcupdate.h>
  43#include <linux/sched.h>
  44#include <linux/sched/task.h>
  45#include <linux/slab.h>
  46#include <linux/spinlock.h>
  47#include <linux/percpu-rwsem.h>
  48#include <linux/string.h>
  49#include <linux/hashtable.h>
  50#include <linux/idr.h>
  51#include <linux/kthread.h>
  52#include <linux/atomic.h>
  53#include <linux/cpuset.h>
  54#include <linux/proc_ns.h>
  55#include <linux/nsproxy.h>
  56#include <linux/file.h>
 
 
 
  57#include <net/sock.h>
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/cgroup.h>
  61
  62#define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
  63					 MAX_CFTYPE_NAME + 2)
 
 
  64
  65/*
  66 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  67 * hierarchy must be performed while holding it.
  68 *
  69 * css_set_lock protects task->cgroups pointer, the list of css_set
  70 * objects, and the chain of tasks off each css_set.
  71 *
  72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  73 * cgroup.h can use them for lockdep annotations.
  74 */
  75DEFINE_MUTEX(cgroup_mutex);
  76DEFINE_SPINLOCK(css_set_lock);
  77
  78#ifdef CONFIG_PROVE_RCU
  79EXPORT_SYMBOL_GPL(cgroup_mutex);
  80EXPORT_SYMBOL_GPL(css_set_lock);
  81#endif
  82
 
 
 
 
  83/*
  84 * Protects cgroup_idr and css_idr so that IDs can be released without
  85 * grabbing cgroup_mutex.
  86 */
  87static DEFINE_SPINLOCK(cgroup_idr_lock);
  88
  89/*
  90 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
  91 * against file removal/re-creation across css hiding.
  92 */
  93static DEFINE_SPINLOCK(cgroup_file_kn_lock);
  94
  95struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
  96
  97#define cgroup_assert_mutex_or_rcu_locked()				\
  98	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
  99			   !lockdep_is_held(&cgroup_mutex),		\
 100			   "cgroup_mutex or RCU read lock required");
 101
 102/*
 103 * cgroup destruction makes heavy use of work items and there can be a lot
 104 * of concurrent destructions.  Use a separate workqueue so that cgroup
 105 * destruction work items don't end up filling up max_active of system_wq
 106 * which may lead to deadlock.
 107 */
 108static struct workqueue_struct *cgroup_destroy_wq;
 109
 110/* generate an array of cgroup subsystem pointers */
 111#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 112struct cgroup_subsys *cgroup_subsys[] = {
 113#include <linux/cgroup_subsys.h>
 114};
 115#undef SUBSYS
 116
 117/* array of cgroup subsystem names */
 118#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 119static const char *cgroup_subsys_name[] = {
 120#include <linux/cgroup_subsys.h>
 121};
 122#undef SUBSYS
 123
 124/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 125#define SUBSYS(_x)								\
 126	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
 127	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
 128	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
 129	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 130#include <linux/cgroup_subsys.h>
 131#undef SUBSYS
 132
 133#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 134static struct static_key_true *cgroup_subsys_enabled_key[] = {
 135#include <linux/cgroup_subsys.h>
 136};
 137#undef SUBSYS
 138
 139#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 140static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 141#include <linux/cgroup_subsys.h>
 142};
 143#undef SUBSYS
 144
 145static DEFINE_PER_CPU(struct cgroup_cpu_stat, cgrp_dfl_root_cpu_stat);
 146
 147/*
 148 * The default hierarchy, reserved for the subsystems that are otherwise
 149 * unattached - it never has more than a single cgroup, and all tasks are
 150 * part of that cgroup.
 151 */
 152struct cgroup_root cgrp_dfl_root = { .cgrp.cpu_stat = &cgrp_dfl_root_cpu_stat };
 153EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 154
 155/*
 156 * The default hierarchy always exists but is hidden until mounted for the
 157 * first time.  This is for backward compatibility.
 158 */
 159static bool cgrp_dfl_visible;
 160
 161/* some controllers are not supported in the default hierarchy */
 162static u16 cgrp_dfl_inhibit_ss_mask;
 163
 164/* some controllers are implicitly enabled on the default hierarchy */
 165static u16 cgrp_dfl_implicit_ss_mask;
 166
 167/* some controllers can be threaded on the default hierarchy */
 168static u16 cgrp_dfl_threaded_ss_mask;
 169
 170/* The list of hierarchy roots */
 171LIST_HEAD(cgroup_roots);
 172static int cgroup_root_count;
 173
 174/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 175static DEFINE_IDR(cgroup_hierarchy_idr);
 176
 177/*
 178 * Assign a monotonically increasing serial number to csses.  It guarantees
 179 * cgroups with bigger numbers are newer than those with smaller numbers.
 180 * Also, as csses are always appended to the parent's ->children list, it
 181 * guarantees that sibling csses are always sorted in the ascending serial
 182 * number order on the list.  Protected by cgroup_mutex.
 183 */
 184static u64 css_serial_nr_next = 1;
 185
 186/*
 187 * These bitmasks identify subsystems with specific features to avoid
 188 * having to do iterative checks repeatedly.
 189 */
 190static u16 have_fork_callback __read_mostly;
 191static u16 have_exit_callback __read_mostly;
 192static u16 have_free_callback __read_mostly;
 193static u16 have_canfork_callback __read_mostly;
 194
 195/* cgroup namespace for init task */
 196struct cgroup_namespace init_cgroup_ns = {
 197	.count		= REFCOUNT_INIT(2),
 198	.user_ns	= &init_user_ns,
 199	.ns.ops		= &cgroupns_operations,
 200	.ns.inum	= PROC_CGROUP_INIT_INO,
 201	.root_cset	= &init_css_set,
 202};
 203
 204static struct file_system_type cgroup2_fs_type;
 205static struct cftype cgroup_base_files[];
 206
 207static int cgroup_apply_control(struct cgroup *cgrp);
 208static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 209static void css_task_iter_advance(struct css_task_iter *it);
 
 210static int cgroup_destroy_locked(struct cgroup *cgrp);
 211static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 212					      struct cgroup_subsys *ss);
 213static void css_release(struct percpu_ref *ref);
 214static void kill_css(struct cgroup_subsys_state *css);
 215static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 216			      struct cgroup *cgrp, struct cftype cfts[],
 217			      bool is_add);
 218
 219/**
 220 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 221 * @ssid: subsys ID of interest
 222 *
 223 * cgroup_subsys_enabled() can only be used with literal subsys names which
 224 * is fine for individual subsystems but unsuitable for cgroup core.  This
 225 * is slower static_key_enabled() based test indexed by @ssid.
 226 */
 227bool cgroup_ssid_enabled(int ssid)
 228{
 229	if (CGROUP_SUBSYS_COUNT == 0)
 230		return false;
 231
 232	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 233}
 234
 235/**
 236 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 237 * @cgrp: the cgroup of interest
 238 *
 239 * The default hierarchy is the v2 interface of cgroup and this function
 240 * can be used to test whether a cgroup is on the default hierarchy for
 241 * cases where a subsystem should behave differnetly depending on the
 242 * interface version.
 243 *
 244 * The set of behaviors which change on the default hierarchy are still
 245 * being determined and the mount option is prefixed with __DEVEL__.
 246 *
 247 * List of changed behaviors:
 248 *
 249 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 250 *   and "name" are disallowed.
 251 *
 252 * - When mounting an existing superblock, mount options should match.
 253 *
 254 * - Remount is disallowed.
 255 *
 256 * - rename(2) is disallowed.
 257 *
 258 * - "tasks" is removed.  Everything should be at process granularity.  Use
 259 *   "cgroup.procs" instead.
 260 *
 261 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 262 *   recycled inbetween reads.
 263 *
 264 * - "release_agent" and "notify_on_release" are removed.  Replacement
 265 *   notification mechanism will be implemented.
 266 *
 267 * - "cgroup.clone_children" is removed.
 268 *
 269 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 270 *   and its descendants contain no task; otherwise, 1.  The file also
 271 *   generates kernfs notification which can be monitored through poll and
 272 *   [di]notify when the value of the file changes.
 273 *
 274 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 275 *   take masks of ancestors with non-empty cpus/mems, instead of being
 276 *   moved to an ancestor.
 277 *
 278 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 279 *   masks of ancestors.
 280 *
 281 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
 282 *   is not created.
 283 *
 284 * - blkcg: blk-throttle becomes properly hierarchical.
 285 *
 286 * - debug: disallowed on the default hierarchy.
 287 */
 288bool cgroup_on_dfl(const struct cgroup *cgrp)
 289{
 290	return cgrp->root == &cgrp_dfl_root;
 291}
 292
 293/* IDR wrappers which synchronize using cgroup_idr_lock */
 294static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 295			    gfp_t gfp_mask)
 296{
 297	int ret;
 298
 299	idr_preload(gfp_mask);
 300	spin_lock_bh(&cgroup_idr_lock);
 301	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 302	spin_unlock_bh(&cgroup_idr_lock);
 303	idr_preload_end();
 304	return ret;
 305}
 306
 307static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 308{
 309	void *ret;
 310
 311	spin_lock_bh(&cgroup_idr_lock);
 312	ret = idr_replace(idr, ptr, id);
 313	spin_unlock_bh(&cgroup_idr_lock);
 314	return ret;
 315}
 316
 317static void cgroup_idr_remove(struct idr *idr, int id)
 318{
 319	spin_lock_bh(&cgroup_idr_lock);
 320	idr_remove(idr, id);
 321	spin_unlock_bh(&cgroup_idr_lock);
 322}
 323
 324static bool cgroup_has_tasks(struct cgroup *cgrp)
 325{
 326	return cgrp->nr_populated_csets;
 327}
 328
 329bool cgroup_is_threaded(struct cgroup *cgrp)
 330{
 331	return cgrp->dom_cgrp != cgrp;
 332}
 333
 334/* can @cgrp host both domain and threaded children? */
 335static bool cgroup_is_mixable(struct cgroup *cgrp)
 336{
 337	/*
 338	 * Root isn't under domain level resource control exempting it from
 339	 * the no-internal-process constraint, so it can serve as a thread
 340	 * root and a parent of resource domains at the same time.
 341	 */
 342	return !cgroup_parent(cgrp);
 343}
 344
 345/* can @cgrp become a thread root? should always be true for a thread root */
 346static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
 347{
 348	/* mixables don't care */
 349	if (cgroup_is_mixable(cgrp))
 350		return true;
 351
 352	/* domain roots can't be nested under threaded */
 353	if (cgroup_is_threaded(cgrp))
 354		return false;
 355
 356	/* can only have either domain or threaded children */
 357	if (cgrp->nr_populated_domain_children)
 358		return false;
 359
 360	/* and no domain controllers can be enabled */
 361	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 362		return false;
 363
 364	return true;
 365}
 366
 367/* is @cgrp root of a threaded subtree? */
 368bool cgroup_is_thread_root(struct cgroup *cgrp)
 369{
 370	/* thread root should be a domain */
 371	if (cgroup_is_threaded(cgrp))
 372		return false;
 373
 374	/* a domain w/ threaded children is a thread root */
 375	if (cgrp->nr_threaded_children)
 376		return true;
 377
 378	/*
 379	 * A domain which has tasks and explicit threaded controllers
 380	 * enabled is a thread root.
 381	 */
 382	if (cgroup_has_tasks(cgrp) &&
 383	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
 384		return true;
 385
 386	return false;
 387}
 388
 389/* a domain which isn't connected to the root w/o brekage can't be used */
 390static bool cgroup_is_valid_domain(struct cgroup *cgrp)
 391{
 392	/* the cgroup itself can be a thread root */
 393	if (cgroup_is_threaded(cgrp))
 394		return false;
 395
 396	/* but the ancestors can't be unless mixable */
 397	while ((cgrp = cgroup_parent(cgrp))) {
 398		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
 399			return false;
 400		if (cgroup_is_threaded(cgrp))
 401			return false;
 402	}
 403
 404	return true;
 405}
 406
 407/* subsystems visibly enabled on a cgroup */
 408static u16 cgroup_control(struct cgroup *cgrp)
 409{
 410	struct cgroup *parent = cgroup_parent(cgrp);
 411	u16 root_ss_mask = cgrp->root->subsys_mask;
 412
 413	if (parent) {
 414		u16 ss_mask = parent->subtree_control;
 415
 416		/* threaded cgroups can only have threaded controllers */
 417		if (cgroup_is_threaded(cgrp))
 418			ss_mask &= cgrp_dfl_threaded_ss_mask;
 419		return ss_mask;
 420	}
 421
 422	if (cgroup_on_dfl(cgrp))
 423		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 424				  cgrp_dfl_implicit_ss_mask);
 425	return root_ss_mask;
 426}
 427
 428/* subsystems enabled on a cgroup */
 429static u16 cgroup_ss_mask(struct cgroup *cgrp)
 430{
 431	struct cgroup *parent = cgroup_parent(cgrp);
 432
 433	if (parent) {
 434		u16 ss_mask = parent->subtree_ss_mask;
 435
 436		/* threaded cgroups can only have threaded controllers */
 437		if (cgroup_is_threaded(cgrp))
 438			ss_mask &= cgrp_dfl_threaded_ss_mask;
 439		return ss_mask;
 440	}
 441
 442	return cgrp->root->subsys_mask;
 443}
 444
 445/**
 446 * cgroup_css - obtain a cgroup's css for the specified subsystem
 447 * @cgrp: the cgroup of interest
 448 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 449 *
 450 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 451 * function must be called either under cgroup_mutex or rcu_read_lock() and
 452 * the caller is responsible for pinning the returned css if it wants to
 453 * keep accessing it outside the said locks.  This function may return
 454 * %NULL if @cgrp doesn't have @subsys_id enabled.
 455 */
 456static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 457					      struct cgroup_subsys *ss)
 458{
 459	if (ss)
 460		return rcu_dereference_check(cgrp->subsys[ss->id],
 461					lockdep_is_held(&cgroup_mutex));
 462	else
 463		return &cgrp->self;
 464}
 465
 466/**
 467 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
 468 * @cgrp: the cgroup of interest
 469 * @ss: the subsystem of interest
 470 *
 471 * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
 472 * or is offline, %NULL is returned.
 473 */
 474static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
 475						     struct cgroup_subsys *ss)
 476{
 477	struct cgroup_subsys_state *css;
 478
 479	rcu_read_lock();
 480	css = cgroup_css(cgrp, ss);
 481	if (!css || !css_tryget_online(css))
 482		css = NULL;
 483	rcu_read_unlock();
 484
 485	return css;
 486}
 487
 488/**
 489 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 490 * @cgrp: the cgroup of interest
 491 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 492 *
 493 * Similar to cgroup_css() but returns the effective css, which is defined
 494 * as the matching css of the nearest ancestor including self which has @ss
 495 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 496 * function is guaranteed to return non-NULL css.
 497 */
 498static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 499						struct cgroup_subsys *ss)
 500{
 501	lockdep_assert_held(&cgroup_mutex);
 502
 503	if (!ss)
 504		return &cgrp->self;
 505
 506	/*
 507	 * This function is used while updating css associations and thus
 508	 * can't test the csses directly.  Test ss_mask.
 509	 */
 510	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 511		cgrp = cgroup_parent(cgrp);
 512		if (!cgrp)
 513			return NULL;
 514	}
 515
 516	return cgroup_css(cgrp, ss);
 517}
 518
 519/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 521 * @cgrp: the cgroup of interest
 522 * @ss: the subsystem of interest
 523 *
 524 * Find and get the effective css of @cgrp for @ss.  The effective css is
 525 * defined as the matching css of the nearest ancestor including self which
 526 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 527 * the root css is returned, so this function always returns a valid css.
 528 * The returned css must be put using css_put().
 529 */
 530struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 531					     struct cgroup_subsys *ss)
 532{
 533	struct cgroup_subsys_state *css;
 534
 535	rcu_read_lock();
 536
 537	do {
 538		css = cgroup_css(cgrp, ss);
 539
 540		if (css && css_tryget_online(css))
 541			goto out_unlock;
 542		cgrp = cgroup_parent(cgrp);
 543	} while (cgrp);
 544
 545	css = init_css_set.subsys[ss->id];
 546	css_get(css);
 547out_unlock:
 548	rcu_read_unlock();
 549	return css;
 550}
 551
 552static void cgroup_get_live(struct cgroup *cgrp)
 553{
 554	WARN_ON_ONCE(cgroup_is_dead(cgrp));
 555	css_get(&cgrp->self);
 556}
 557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 559{
 560	struct cgroup *cgrp = of->kn->parent->priv;
 561	struct cftype *cft = of_cft(of);
 562
 563	/*
 564	 * This is open and unprotected implementation of cgroup_css().
 565	 * seq_css() is only called from a kernfs file operation which has
 566	 * an active reference on the file.  Because all the subsystem
 567	 * files are drained before a css is disassociated with a cgroup,
 568	 * the matching css from the cgroup's subsys table is guaranteed to
 569	 * be and stay valid until the enclosing operation is complete.
 570	 */
 571	if (cft->ss)
 572		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 573	else
 574		return &cgrp->self;
 575}
 576EXPORT_SYMBOL_GPL(of_css);
 577
 578/**
 579 * for_each_css - iterate all css's of a cgroup
 580 * @css: the iteration cursor
 581 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 582 * @cgrp: the target cgroup to iterate css's of
 583 *
 584 * Should be called under cgroup_[tree_]mutex.
 585 */
 586#define for_each_css(css, ssid, cgrp)					\
 587	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
 588		if (!((css) = rcu_dereference_check(			\
 589				(cgrp)->subsys[(ssid)],			\
 590				lockdep_is_held(&cgroup_mutex)))) { }	\
 591		else
 592
 593/**
 594 * for_each_e_css - iterate all effective css's of a cgroup
 595 * @css: the iteration cursor
 596 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 597 * @cgrp: the target cgroup to iterate css's of
 598 *
 599 * Should be called under cgroup_[tree_]mutex.
 600 */
 601#define for_each_e_css(css, ssid, cgrp)					\
 602	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
 603		if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
 604			;						\
 
 605		else
 606
 607/**
 608 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 609 * @ss: the iteration cursor
 610 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 611 * @ss_mask: the bitmask
 612 *
 613 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 614 * @ss_mask is set.
 615 */
 616#define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
 617	unsigned long __ss_mask = (ss_mask);				\
 618	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
 619		(ssid) = 0;						\
 620		break;							\
 621	}								\
 622	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
 623		(ss) = cgroup_subsys[ssid];				\
 624		{
 625
 626#define while_each_subsys_mask()					\
 627		}							\
 628	}								\
 629} while (false)
 630
 631/* iterate over child cgrps, lock should be held throughout iteration */
 632#define cgroup_for_each_live_child(child, cgrp)				\
 633	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 634		if (({ lockdep_assert_held(&cgroup_mutex);		\
 635		       cgroup_is_dead(child); }))			\
 636			;						\
 637		else
 638
 639/* walk live descendants in preorder */
 640#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
 641	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
 642		if (({ lockdep_assert_held(&cgroup_mutex);		\
 643		       (dsct) = (d_css)->cgroup;			\
 644		       cgroup_is_dead(dsct); }))			\
 645			;						\
 646		else
 647
 648/* walk live descendants in postorder */
 649#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
 650	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
 651		if (({ lockdep_assert_held(&cgroup_mutex);		\
 652		       (dsct) = (d_css)->cgroup;			\
 653		       cgroup_is_dead(dsct); }))			\
 654			;						\
 655		else
 656
 657/*
 658 * The default css_set - used by init and its children prior to any
 659 * hierarchies being mounted. It contains a pointer to the root state
 660 * for each subsystem. Also used to anchor the list of css_sets. Not
 661 * reference-counted, to improve performance when child cgroups
 662 * haven't been created.
 663 */
 664struct css_set init_css_set = {
 665	.refcount		= REFCOUNT_INIT(1),
 666	.dom_cset		= &init_css_set,
 667	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
 668	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
 
 669	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
 670	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
 671	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
 672	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
 673	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
 674
 675	/*
 676	 * The following field is re-initialized when this cset gets linked
 677	 * in cgroup_init().  However, let's initialize the field
 678	 * statically too so that the default cgroup can be accessed safely
 679	 * early during boot.
 680	 */
 681	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
 682};
 683
 684static int css_set_count	= 1;	/* 1 for init_css_set */
 685
 686static bool css_set_threaded(struct css_set *cset)
 687{
 688	return cset->dom_cset != cset;
 689}
 690
 691/**
 692 * css_set_populated - does a css_set contain any tasks?
 693 * @cset: target css_set
 694 *
 695 * css_set_populated() should be the same as !!cset->nr_tasks at steady
 696 * state. However, css_set_populated() can be called while a task is being
 697 * added to or removed from the linked list before the nr_tasks is
 698 * properly updated. Hence, we can't just look at ->nr_tasks here.
 699 */
 700static bool css_set_populated(struct css_set *cset)
 701{
 702	lockdep_assert_held(&css_set_lock);
 703
 704	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 705}
 706
 707/**
 708 * cgroup_update_populated - update the populated count of a cgroup
 709 * @cgrp: the target cgroup
 710 * @populated: inc or dec populated count
 711 *
 712 * One of the css_sets associated with @cgrp is either getting its first
 713 * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
 714 * count is propagated towards root so that a given cgroup's
 715 * nr_populated_children is zero iff none of its descendants contain any
 716 * tasks.
 717 *
 718 * @cgrp's interface file "cgroup.populated" is zero if both
 719 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
 720 * 1 otherwise.  When the sum changes from or to zero, userland is notified
 721 * that the content of the interface file has changed.  This can be used to
 722 * detect when @cgrp and its descendants become populated or empty.
 723 */
 724static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 725{
 726	struct cgroup *child = NULL;
 727	int adj = populated ? 1 : -1;
 728
 729	lockdep_assert_held(&css_set_lock);
 730
 731	do {
 732		bool was_populated = cgroup_is_populated(cgrp);
 733
 734		if (!child) {
 735			cgrp->nr_populated_csets += adj;
 736		} else {
 737			if (cgroup_is_threaded(child))
 738				cgrp->nr_populated_threaded_children += adj;
 739			else
 740				cgrp->nr_populated_domain_children += adj;
 741		}
 742
 743		if (was_populated == cgroup_is_populated(cgrp))
 744			break;
 745
 746		cgroup1_check_for_release(cgrp);
 
 
 747		cgroup_file_notify(&cgrp->events_file);
 748
 749		child = cgrp;
 750		cgrp = cgroup_parent(cgrp);
 751	} while (cgrp);
 752}
 753
 754/**
 755 * css_set_update_populated - update populated state of a css_set
 756 * @cset: target css_set
 757 * @populated: whether @cset is populated or depopulated
 758 *
 759 * @cset is either getting the first task or losing the last.  Update the
 760 * populated counters of all associated cgroups accordingly.
 761 */
 762static void css_set_update_populated(struct css_set *cset, bool populated)
 763{
 764	struct cgrp_cset_link *link;
 765
 766	lockdep_assert_held(&css_set_lock);
 767
 768	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 769		cgroup_update_populated(link->cgrp, populated);
 770}
 771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772/**
 773 * css_set_move_task - move a task from one css_set to another
 774 * @task: task being moved
 775 * @from_cset: css_set @task currently belongs to (may be NULL)
 776 * @to_cset: new css_set @task is being moved to (may be NULL)
 777 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 778 *
 779 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 780 * css_set, @from_cset can be NULL.  If @task is being disassociated
 781 * instead of moved, @to_cset can be NULL.
 782 *
 783 * This function automatically handles populated counter updates and
 784 * css_task_iter adjustments but the caller is responsible for managing
 785 * @from_cset and @to_cset's reference counts.
 786 */
 787static void css_set_move_task(struct task_struct *task,
 788			      struct css_set *from_cset, struct css_set *to_cset,
 789			      bool use_mg_tasks)
 790{
 791	lockdep_assert_held(&css_set_lock);
 792
 793	if (to_cset && !css_set_populated(to_cset))
 794		css_set_update_populated(to_cset, true);
 795
 796	if (from_cset) {
 797		struct css_task_iter *it, *pos;
 798
 799		WARN_ON_ONCE(list_empty(&task->cg_list));
 800
 801		/*
 802		 * @task is leaving, advance task iterators which are
 803		 * pointing to it so that they can resume at the next
 804		 * position.  Advancing an iterator might remove it from
 805		 * the list, use safe walk.  See css_task_iter_advance*()
 806		 * for details.
 807		 */
 808		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
 809					 iters_node)
 810			if (it->task_pos == &task->cg_list)
 811				css_task_iter_advance(it);
 812
 813		list_del_init(&task->cg_list);
 814		if (!css_set_populated(from_cset))
 815			css_set_update_populated(from_cset, false);
 816	} else {
 817		WARN_ON_ONCE(!list_empty(&task->cg_list));
 818	}
 819
 820	if (to_cset) {
 821		/*
 822		 * We are synchronized through cgroup_threadgroup_rwsem
 823		 * against PF_EXITING setting such that we can't race
 824		 * against cgroup_exit() changing the css_set to
 825		 * init_css_set and dropping the old one.
 826		 */
 827		WARN_ON_ONCE(task->flags & PF_EXITING);
 828
 829		rcu_assign_pointer(task->cgroups, to_cset);
 830		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 831							     &to_cset->tasks);
 832	}
 833}
 834
 835/*
 836 * hash table for cgroup groups. This improves the performance to find
 837 * an existing css_set. This hash doesn't (currently) take into
 838 * account cgroups in empty hierarchies.
 839 */
 840#define CSS_SET_HASH_BITS	7
 841static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 842
 843static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 844{
 845	unsigned long key = 0UL;
 846	struct cgroup_subsys *ss;
 847	int i;
 848
 849	for_each_subsys(ss, i)
 850		key += (unsigned long)css[i];
 851	key = (key >> 16) ^ key;
 852
 853	return key;
 854}
 855
 856void put_css_set_locked(struct css_set *cset)
 857{
 858	struct cgrp_cset_link *link, *tmp_link;
 859	struct cgroup_subsys *ss;
 860	int ssid;
 861
 862	lockdep_assert_held(&css_set_lock);
 863
 864	if (!refcount_dec_and_test(&cset->refcount))
 865		return;
 866
 867	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
 868
 869	/* This css_set is dead. unlink it and release cgroup and css refs */
 870	for_each_subsys(ss, ssid) {
 871		list_del(&cset->e_cset_node[ssid]);
 872		css_put(cset->subsys[ssid]);
 873	}
 874	hash_del(&cset->hlist);
 875	css_set_count--;
 876
 877	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 878		list_del(&link->cset_link);
 879		list_del(&link->cgrp_link);
 880		if (cgroup_parent(link->cgrp))
 881			cgroup_put(link->cgrp);
 882		kfree(link);
 883	}
 884
 885	if (css_set_threaded(cset)) {
 886		list_del(&cset->threaded_csets_node);
 887		put_css_set_locked(cset->dom_cset);
 888	}
 889
 890	kfree_rcu(cset, rcu_head);
 891}
 892
 893/**
 894 * compare_css_sets - helper function for find_existing_css_set().
 895 * @cset: candidate css_set being tested
 896 * @old_cset: existing css_set for a task
 897 * @new_cgrp: cgroup that's being entered by the task
 898 * @template: desired set of css pointers in css_set (pre-calculated)
 899 *
 900 * Returns true if "cset" matches "old_cset" except for the hierarchy
 901 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 902 */
 903static bool compare_css_sets(struct css_set *cset,
 904			     struct css_set *old_cset,
 905			     struct cgroup *new_cgrp,
 906			     struct cgroup_subsys_state *template[])
 907{
 908	struct cgroup *new_dfl_cgrp;
 909	struct list_head *l1, *l2;
 910
 911	/*
 912	 * On the default hierarchy, there can be csets which are
 913	 * associated with the same set of cgroups but different csses.
 914	 * Let's first ensure that csses match.
 915	 */
 916	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 917		return false;
 918
 919
 920	/* @cset's domain should match the default cgroup's */
 921	if (cgroup_on_dfl(new_cgrp))
 922		new_dfl_cgrp = new_cgrp;
 923	else
 924		new_dfl_cgrp = old_cset->dfl_cgrp;
 925
 926	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
 927		return false;
 928
 929	/*
 930	 * Compare cgroup pointers in order to distinguish between
 931	 * different cgroups in hierarchies.  As different cgroups may
 932	 * share the same effective css, this comparison is always
 933	 * necessary.
 934	 */
 935	l1 = &cset->cgrp_links;
 936	l2 = &old_cset->cgrp_links;
 937	while (1) {
 938		struct cgrp_cset_link *link1, *link2;
 939		struct cgroup *cgrp1, *cgrp2;
 940
 941		l1 = l1->next;
 942		l2 = l2->next;
 943		/* See if we reached the end - both lists are equal length. */
 944		if (l1 == &cset->cgrp_links) {
 945			BUG_ON(l2 != &old_cset->cgrp_links);
 946			break;
 947		} else {
 948			BUG_ON(l2 == &old_cset->cgrp_links);
 949		}
 950		/* Locate the cgroups associated with these links. */
 951		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
 952		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
 953		cgrp1 = link1->cgrp;
 954		cgrp2 = link2->cgrp;
 955		/* Hierarchies should be linked in the same order. */
 956		BUG_ON(cgrp1->root != cgrp2->root);
 957
 958		/*
 959		 * If this hierarchy is the hierarchy of the cgroup
 960		 * that's changing, then we need to check that this
 961		 * css_set points to the new cgroup; if it's any other
 962		 * hierarchy, then this css_set should point to the
 963		 * same cgroup as the old css_set.
 964		 */
 965		if (cgrp1->root == new_cgrp->root) {
 966			if (cgrp1 != new_cgrp)
 967				return false;
 968		} else {
 969			if (cgrp1 != cgrp2)
 970				return false;
 971		}
 972	}
 973	return true;
 974}
 975
 976/**
 977 * find_existing_css_set - init css array and find the matching css_set
 978 * @old_cset: the css_set that we're using before the cgroup transition
 979 * @cgrp: the cgroup that we're moving into
 980 * @template: out param for the new set of csses, should be clear on entry
 981 */
 982static struct css_set *find_existing_css_set(struct css_set *old_cset,
 983					struct cgroup *cgrp,
 984					struct cgroup_subsys_state *template[])
 985{
 986	struct cgroup_root *root = cgrp->root;
 987	struct cgroup_subsys *ss;
 988	struct css_set *cset;
 989	unsigned long key;
 990	int i;
 991
 992	/*
 993	 * Build the set of subsystem state objects that we want to see in the
 994	 * new css_set. while subsystems can change globally, the entries here
 995	 * won't change, so no need for locking.
 996	 */
 997	for_each_subsys(ss, i) {
 998		if (root->subsys_mask & (1UL << i)) {
 999			/*
1000			 * @ss is in this hierarchy, so we want the
1001			 * effective css from @cgrp.
1002			 */
1003			template[i] = cgroup_e_css(cgrp, ss);
1004		} else {
1005			/*
1006			 * @ss is not in this hierarchy, so we don't want
1007			 * to change the css.
1008			 */
1009			template[i] = old_cset->subsys[i];
1010		}
1011	}
1012
1013	key = css_set_hash(template);
1014	hash_for_each_possible(css_set_table, cset, hlist, key) {
1015		if (!compare_css_sets(cset, old_cset, cgrp, template))
1016			continue;
1017
1018		/* This css_set matches what we need */
1019		return cset;
1020	}
1021
1022	/* No existing cgroup group matched */
1023	return NULL;
1024}
1025
1026static void free_cgrp_cset_links(struct list_head *links_to_free)
1027{
1028	struct cgrp_cset_link *link, *tmp_link;
1029
1030	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1031		list_del(&link->cset_link);
1032		kfree(link);
1033	}
1034}
1035
1036/**
1037 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1038 * @count: the number of links to allocate
1039 * @tmp_links: list_head the allocated links are put on
1040 *
1041 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1042 * through ->cset_link.  Returns 0 on success or -errno.
1043 */
1044static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1045{
1046	struct cgrp_cset_link *link;
1047	int i;
1048
1049	INIT_LIST_HEAD(tmp_links);
1050
1051	for (i = 0; i < count; i++) {
1052		link = kzalloc(sizeof(*link), GFP_KERNEL);
1053		if (!link) {
1054			free_cgrp_cset_links(tmp_links);
1055			return -ENOMEM;
1056		}
1057		list_add(&link->cset_link, tmp_links);
1058	}
1059	return 0;
1060}
1061
1062/**
1063 * link_css_set - a helper function to link a css_set to a cgroup
1064 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1065 * @cset: the css_set to be linked
1066 * @cgrp: the destination cgroup
1067 */
1068static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1069			 struct cgroup *cgrp)
1070{
1071	struct cgrp_cset_link *link;
1072
1073	BUG_ON(list_empty(tmp_links));
1074
1075	if (cgroup_on_dfl(cgrp))
1076		cset->dfl_cgrp = cgrp;
1077
1078	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1079	link->cset = cset;
1080	link->cgrp = cgrp;
1081
1082	/*
1083	 * Always add links to the tail of the lists so that the lists are
1084	 * in choronological order.
1085	 */
1086	list_move_tail(&link->cset_link, &cgrp->cset_links);
1087	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1088
1089	if (cgroup_parent(cgrp))
1090		cgroup_get_live(cgrp);
1091}
1092
1093/**
1094 * find_css_set - return a new css_set with one cgroup updated
1095 * @old_cset: the baseline css_set
1096 * @cgrp: the cgroup to be updated
1097 *
1098 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1099 * substituted into the appropriate hierarchy.
1100 */
1101static struct css_set *find_css_set(struct css_set *old_cset,
1102				    struct cgroup *cgrp)
1103{
1104	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1105	struct css_set *cset;
1106	struct list_head tmp_links;
1107	struct cgrp_cset_link *link;
1108	struct cgroup_subsys *ss;
1109	unsigned long key;
1110	int ssid;
1111
1112	lockdep_assert_held(&cgroup_mutex);
1113
1114	/* First see if we already have a cgroup group that matches
1115	 * the desired set */
1116	spin_lock_irq(&css_set_lock);
1117	cset = find_existing_css_set(old_cset, cgrp, template);
1118	if (cset)
1119		get_css_set(cset);
1120	spin_unlock_irq(&css_set_lock);
1121
1122	if (cset)
1123		return cset;
1124
1125	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1126	if (!cset)
1127		return NULL;
1128
1129	/* Allocate all the cgrp_cset_link objects that we'll need */
1130	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1131		kfree(cset);
1132		return NULL;
1133	}
1134
1135	refcount_set(&cset->refcount, 1);
1136	cset->dom_cset = cset;
1137	INIT_LIST_HEAD(&cset->tasks);
1138	INIT_LIST_HEAD(&cset->mg_tasks);
 
1139	INIT_LIST_HEAD(&cset->task_iters);
1140	INIT_LIST_HEAD(&cset->threaded_csets);
1141	INIT_HLIST_NODE(&cset->hlist);
1142	INIT_LIST_HEAD(&cset->cgrp_links);
1143	INIT_LIST_HEAD(&cset->mg_preload_node);
1144	INIT_LIST_HEAD(&cset->mg_node);
1145
1146	/* Copy the set of subsystem state objects generated in
1147	 * find_existing_css_set() */
1148	memcpy(cset->subsys, template, sizeof(cset->subsys));
1149
1150	spin_lock_irq(&css_set_lock);
1151	/* Add reference counts and links from the new css_set. */
1152	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1153		struct cgroup *c = link->cgrp;
1154
1155		if (c->root == cgrp->root)
1156			c = cgrp;
1157		link_css_set(&tmp_links, cset, c);
1158	}
1159
1160	BUG_ON(!list_empty(&tmp_links));
1161
1162	css_set_count++;
1163
1164	/* Add @cset to the hash table */
1165	key = css_set_hash(cset->subsys);
1166	hash_add(css_set_table, &cset->hlist, key);
1167
1168	for_each_subsys(ss, ssid) {
1169		struct cgroup_subsys_state *css = cset->subsys[ssid];
1170
1171		list_add_tail(&cset->e_cset_node[ssid],
1172			      &css->cgroup->e_csets[ssid]);
1173		css_get(css);
1174	}
1175
1176	spin_unlock_irq(&css_set_lock);
1177
1178	/*
1179	 * If @cset should be threaded, look up the matching dom_cset and
1180	 * link them up.  We first fully initialize @cset then look for the
1181	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1182	 * to stay empty until we return.
1183	 */
1184	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1185		struct css_set *dcset;
1186
1187		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1188		if (!dcset) {
1189			put_css_set(cset);
1190			return NULL;
1191		}
1192
1193		spin_lock_irq(&css_set_lock);
1194		cset->dom_cset = dcset;
1195		list_add_tail(&cset->threaded_csets_node,
1196			      &dcset->threaded_csets);
1197		spin_unlock_irq(&css_set_lock);
1198	}
1199
1200	return cset;
1201}
1202
1203struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1204{
1205	struct cgroup *root_cgrp = kf_root->kn->priv;
1206
1207	return root_cgrp->root;
1208}
1209
1210static int cgroup_init_root_id(struct cgroup_root *root)
1211{
1212	int id;
1213
1214	lockdep_assert_held(&cgroup_mutex);
1215
1216	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1217	if (id < 0)
1218		return id;
1219
1220	root->hierarchy_id = id;
1221	return 0;
1222}
1223
1224static void cgroup_exit_root_id(struct cgroup_root *root)
1225{
1226	lockdep_assert_held(&cgroup_mutex);
1227
1228	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1229}
1230
1231void cgroup_free_root(struct cgroup_root *root)
1232{
1233	if (root) {
1234		idr_destroy(&root->cgroup_idr);
1235		kfree(root);
1236	}
1237}
1238
1239static void cgroup_destroy_root(struct cgroup_root *root)
1240{
1241	struct cgroup *cgrp = &root->cgrp;
1242	struct cgrp_cset_link *link, *tmp_link;
1243
1244	trace_cgroup_destroy_root(root);
1245
1246	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1247
1248	BUG_ON(atomic_read(&root->nr_cgrps));
1249	BUG_ON(!list_empty(&cgrp->self.children));
1250
1251	/* Rebind all subsystems back to the default hierarchy */
1252	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1253
1254	/*
1255	 * Release all the links from cset_links to this hierarchy's
1256	 * root cgroup
1257	 */
1258	spin_lock_irq(&css_set_lock);
1259
1260	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1261		list_del(&link->cset_link);
1262		list_del(&link->cgrp_link);
1263		kfree(link);
1264	}
1265
1266	spin_unlock_irq(&css_set_lock);
1267
1268	if (!list_empty(&root->root_list)) {
1269		list_del(&root->root_list);
1270		cgroup_root_count--;
1271	}
1272
1273	cgroup_exit_root_id(root);
1274
1275	mutex_unlock(&cgroup_mutex);
1276
1277	kernfs_destroy_root(root->kf_root);
1278	cgroup_free_root(root);
1279}
1280
1281/*
1282 * look up cgroup associated with current task's cgroup namespace on the
1283 * specified hierarchy
1284 */
1285static struct cgroup *
1286current_cgns_cgroup_from_root(struct cgroup_root *root)
1287{
1288	struct cgroup *res = NULL;
1289	struct css_set *cset;
1290
1291	lockdep_assert_held(&css_set_lock);
1292
1293	rcu_read_lock();
1294
1295	cset = current->nsproxy->cgroup_ns->root_cset;
1296	if (cset == &init_css_set) {
1297		res = &root->cgrp;
 
 
1298	} else {
1299		struct cgrp_cset_link *link;
1300
1301		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1302			struct cgroup *c = link->cgrp;
1303
1304			if (c->root == root) {
1305				res = c;
1306				break;
1307			}
1308		}
1309	}
1310	rcu_read_unlock();
1311
1312	BUG_ON(!res);
1313	return res;
1314}
1315
1316/* look up cgroup associated with given css_set on the specified hierarchy */
1317static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1318					    struct cgroup_root *root)
1319{
1320	struct cgroup *res = NULL;
1321
1322	lockdep_assert_held(&cgroup_mutex);
1323	lockdep_assert_held(&css_set_lock);
1324
1325	if (cset == &init_css_set) {
1326		res = &root->cgrp;
1327	} else if (root == &cgrp_dfl_root) {
1328		res = cset->dfl_cgrp;
1329	} else {
1330		struct cgrp_cset_link *link;
1331
1332		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1333			struct cgroup *c = link->cgrp;
1334
1335			if (c->root == root) {
1336				res = c;
1337				break;
1338			}
1339		}
1340	}
1341
1342	BUG_ON(!res);
1343	return res;
1344}
1345
1346/*
1347 * Return the cgroup for "task" from the given hierarchy. Must be
1348 * called with cgroup_mutex and css_set_lock held.
1349 */
1350struct cgroup *task_cgroup_from_root(struct task_struct *task,
1351				     struct cgroup_root *root)
1352{
1353	/*
1354	 * No need to lock the task - since we hold cgroup_mutex the
1355	 * task can't change groups, so the only thing that can happen
1356	 * is that it exits and its css is set back to init_css_set.
1357	 */
1358	return cset_cgroup_from_root(task_css_set(task), root);
1359}
1360
1361/*
1362 * A task must hold cgroup_mutex to modify cgroups.
1363 *
1364 * Any task can increment and decrement the count field without lock.
1365 * So in general, code holding cgroup_mutex can't rely on the count
1366 * field not changing.  However, if the count goes to zero, then only
1367 * cgroup_attach_task() can increment it again.  Because a count of zero
1368 * means that no tasks are currently attached, therefore there is no
1369 * way a task attached to that cgroup can fork (the other way to
1370 * increment the count).  So code holding cgroup_mutex can safely
1371 * assume that if the count is zero, it will stay zero. Similarly, if
1372 * a task holds cgroup_mutex on a cgroup with zero count, it
1373 * knows that the cgroup won't be removed, as cgroup_rmdir()
1374 * needs that mutex.
1375 *
1376 * A cgroup can only be deleted if both its 'count' of using tasks
1377 * is zero, and its list of 'children' cgroups is empty.  Since all
1378 * tasks in the system use _some_ cgroup, and since there is always at
1379 * least one task in the system (init, pid == 1), therefore, root cgroup
1380 * always has either children cgroups and/or using tasks.  So we don't
1381 * need a special hack to ensure that root cgroup cannot be deleted.
1382 *
1383 * P.S.  One more locking exception.  RCU is used to guard the
1384 * update of a tasks cgroup pointer by cgroup_attach_task()
1385 */
1386
1387static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1388
1389static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1390			      char *buf)
1391{
1392	struct cgroup_subsys *ss = cft->ss;
1393
1394	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1395	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1396		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1397			 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
 
 
1398			 cft->name);
1399	else
1400		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
 
1401	return buf;
1402}
1403
1404/**
1405 * cgroup_file_mode - deduce file mode of a control file
1406 * @cft: the control file in question
1407 *
1408 * S_IRUGO for read, S_IWUSR for write.
1409 */
1410static umode_t cgroup_file_mode(const struct cftype *cft)
1411{
1412	umode_t mode = 0;
1413
1414	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1415		mode |= S_IRUGO;
1416
1417	if (cft->write_u64 || cft->write_s64 || cft->write) {
1418		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1419			mode |= S_IWUGO;
1420		else
1421			mode |= S_IWUSR;
1422	}
1423
1424	return mode;
1425}
1426
1427/**
1428 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1429 * @subtree_control: the new subtree_control mask to consider
1430 * @this_ss_mask: available subsystems
1431 *
1432 * On the default hierarchy, a subsystem may request other subsystems to be
1433 * enabled together through its ->depends_on mask.  In such cases, more
1434 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1435 *
1436 * This function calculates which subsystems need to be enabled if
1437 * @subtree_control is to be applied while restricted to @this_ss_mask.
1438 */
1439static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1440{
1441	u16 cur_ss_mask = subtree_control;
1442	struct cgroup_subsys *ss;
1443	int ssid;
1444
1445	lockdep_assert_held(&cgroup_mutex);
1446
1447	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1448
1449	while (true) {
1450		u16 new_ss_mask = cur_ss_mask;
1451
1452		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1453			new_ss_mask |= ss->depends_on;
1454		} while_each_subsys_mask();
1455
1456		/*
1457		 * Mask out subsystems which aren't available.  This can
1458		 * happen only if some depended-upon subsystems were bound
1459		 * to non-default hierarchies.
1460		 */
1461		new_ss_mask &= this_ss_mask;
1462
1463		if (new_ss_mask == cur_ss_mask)
1464			break;
1465		cur_ss_mask = new_ss_mask;
1466	}
1467
1468	return cur_ss_mask;
1469}
1470
1471/**
1472 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1473 * @kn: the kernfs_node being serviced
1474 *
1475 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1476 * the method finishes if locking succeeded.  Note that once this function
1477 * returns the cgroup returned by cgroup_kn_lock_live() may become
1478 * inaccessible any time.  If the caller intends to continue to access the
1479 * cgroup, it should pin it before invoking this function.
1480 */
1481void cgroup_kn_unlock(struct kernfs_node *kn)
1482{
1483	struct cgroup *cgrp;
1484
1485	if (kernfs_type(kn) == KERNFS_DIR)
1486		cgrp = kn->priv;
1487	else
1488		cgrp = kn->parent->priv;
1489
1490	mutex_unlock(&cgroup_mutex);
1491
1492	kernfs_unbreak_active_protection(kn);
1493	cgroup_put(cgrp);
1494}
1495
1496/**
1497 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1498 * @kn: the kernfs_node being serviced
1499 * @drain_offline: perform offline draining on the cgroup
1500 *
1501 * This helper is to be used by a cgroup kernfs method currently servicing
1502 * @kn.  It breaks the active protection, performs cgroup locking and
1503 * verifies that the associated cgroup is alive.  Returns the cgroup if
1504 * alive; otherwise, %NULL.  A successful return should be undone by a
1505 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1506 * cgroup is drained of offlining csses before return.
1507 *
1508 * Any cgroup kernfs method implementation which requires locking the
1509 * associated cgroup should use this helper.  It avoids nesting cgroup
1510 * locking under kernfs active protection and allows all kernfs operations
1511 * including self-removal.
1512 */
1513struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1514{
1515	struct cgroup *cgrp;
1516
1517	if (kernfs_type(kn) == KERNFS_DIR)
1518		cgrp = kn->priv;
1519	else
1520		cgrp = kn->parent->priv;
1521
1522	/*
1523	 * We're gonna grab cgroup_mutex which nests outside kernfs
1524	 * active_ref.  cgroup liveliness check alone provides enough
1525	 * protection against removal.  Ensure @cgrp stays accessible and
1526	 * break the active_ref protection.
1527	 */
1528	if (!cgroup_tryget(cgrp))
1529		return NULL;
1530	kernfs_break_active_protection(kn);
1531
1532	if (drain_offline)
1533		cgroup_lock_and_drain_offline(cgrp);
1534	else
1535		mutex_lock(&cgroup_mutex);
1536
1537	if (!cgroup_is_dead(cgrp))
1538		return cgrp;
1539
1540	cgroup_kn_unlock(kn);
1541	return NULL;
1542}
1543
1544static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1545{
1546	char name[CGROUP_FILE_NAME_MAX];
1547
1548	lockdep_assert_held(&cgroup_mutex);
1549
1550	if (cft->file_offset) {
1551		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1552		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1553
1554		spin_lock_irq(&cgroup_file_kn_lock);
1555		cfile->kn = NULL;
1556		spin_unlock_irq(&cgroup_file_kn_lock);
 
 
1557	}
1558
1559	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1560}
1561
1562/**
1563 * css_clear_dir - remove subsys files in a cgroup directory
1564 * @css: taget css
1565 */
1566static void css_clear_dir(struct cgroup_subsys_state *css)
1567{
1568	struct cgroup *cgrp = css->cgroup;
1569	struct cftype *cfts;
1570
1571	if (!(css->flags & CSS_VISIBLE))
1572		return;
1573
1574	css->flags &= ~CSS_VISIBLE;
1575
1576	list_for_each_entry(cfts, &css->ss->cfts, node)
 
 
 
 
 
1577		cgroup_addrm_files(css, cgrp, cfts, false);
 
 
 
 
1578}
1579
1580/**
1581 * css_populate_dir - create subsys files in a cgroup directory
1582 * @css: target css
1583 *
1584 * On failure, no file is added.
1585 */
1586static int css_populate_dir(struct cgroup_subsys_state *css)
1587{
1588	struct cgroup *cgrp = css->cgroup;
1589	struct cftype *cfts, *failed_cfts;
1590	int ret;
1591
1592	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1593		return 0;
1594
1595	if (!css->ss) {
1596		if (cgroup_on_dfl(cgrp))
1597			cfts = cgroup_base_files;
1598		else
1599			cfts = cgroup1_base_files;
1600
1601		return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1602	}
1603
1604	list_for_each_entry(cfts, &css->ss->cfts, node) {
1605		ret = cgroup_addrm_files(css, cgrp, cfts, true);
1606		if (ret < 0) {
1607			failed_cfts = cfts;
1608			goto err;
 
 
1609		}
1610	}
1611
1612	css->flags |= CSS_VISIBLE;
1613
1614	return 0;
1615err:
1616	list_for_each_entry(cfts, &css->ss->cfts, node) {
1617		if (cfts == failed_cfts)
1618			break;
1619		cgroup_addrm_files(css, cgrp, cfts, false);
1620	}
1621	return ret;
1622}
1623
1624int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1625{
1626	struct cgroup *dcgrp = &dst_root->cgrp;
1627	struct cgroup_subsys *ss;
1628	int ssid, i, ret;
1629
1630	lockdep_assert_held(&cgroup_mutex);
1631
1632	do_each_subsys_mask(ss, ssid, ss_mask) {
1633		/*
1634		 * If @ss has non-root csses attached to it, can't move.
1635		 * If @ss is an implicit controller, it is exempt from this
1636		 * rule and can be stolen.
1637		 */
1638		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1639		    !ss->implicit_on_dfl)
1640			return -EBUSY;
1641
1642		/* can't move between two non-dummy roots either */
1643		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1644			return -EBUSY;
1645	} while_each_subsys_mask();
1646
1647	do_each_subsys_mask(ss, ssid, ss_mask) {
1648		struct cgroup_root *src_root = ss->root;
1649		struct cgroup *scgrp = &src_root->cgrp;
1650		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1651		struct css_set *cset;
1652
1653		WARN_ON(!css || cgroup_css(dcgrp, ss));
1654
1655		/* disable from the source */
1656		src_root->subsys_mask &= ~(1 << ssid);
1657		WARN_ON(cgroup_apply_control(scgrp));
1658		cgroup_finalize_control(scgrp, 0);
1659
1660		/* rebind */
1661		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1662		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1663		ss->root = dst_root;
1664		css->cgroup = dcgrp;
1665
1666		spin_lock_irq(&css_set_lock);
1667		hash_for_each(css_set_table, i, cset, hlist)
1668			list_move_tail(&cset->e_cset_node[ss->id],
1669				       &dcgrp->e_csets[ss->id]);
1670		spin_unlock_irq(&css_set_lock);
1671
1672		/* default hierarchy doesn't enable controllers by default */
1673		dst_root->subsys_mask |= 1 << ssid;
1674		if (dst_root == &cgrp_dfl_root) {
1675			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1676		} else {
1677			dcgrp->subtree_control |= 1 << ssid;
1678			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1679		}
1680
1681		ret = cgroup_apply_control(dcgrp);
1682		if (ret)
1683			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1684				ss->name, ret);
1685
1686		if (ss->bind)
1687			ss->bind(css);
1688	} while_each_subsys_mask();
1689
1690	kernfs_activate(dcgrp->kn);
1691	return 0;
1692}
1693
1694int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1695		     struct kernfs_root *kf_root)
1696{
1697	int len = 0;
1698	char *buf = NULL;
1699	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1700	struct cgroup *ns_cgroup;
1701
1702	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1703	if (!buf)
1704		return -ENOMEM;
1705
1706	spin_lock_irq(&css_set_lock);
1707	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1708	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1709	spin_unlock_irq(&css_set_lock);
1710
1711	if (len >= PATH_MAX)
1712		len = -ERANGE;
1713	else if (len > 0) {
1714		seq_escape(sf, buf, " \t\n\\");
1715		len = 0;
1716	}
1717	kfree(buf);
1718	return len;
1719}
1720
1721static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1722{
1723	char *token;
 
 
 
1724
1725	*root_flags = 0;
 
 
 
 
 
1726
1727	if (!data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1728		return 0;
1729
1730	while ((token = strsep(&data, ",")) != NULL) {
1731		if (!strcmp(token, "nsdelegate")) {
1732			*root_flags |= CGRP_ROOT_NS_DELEGATE;
1733			continue;
1734		}
1735
1736		pr_err("cgroup2: unknown option \"%s\"\n", token);
1737		return -EINVAL;
1738	}
1739
1740	return 0;
1741}
1742
1743static void apply_cgroup_root_flags(unsigned int root_flags)
1744{
1745	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1746		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1747			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1748		else
1749			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
 
 
 
 
 
 
 
 
 
 
1750	}
1751}
1752
1753static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1754{
1755	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1756		seq_puts(seq, ",nsdelegate");
 
 
 
 
1757	return 0;
1758}
1759
1760static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1761{
1762	unsigned int root_flags;
1763	int ret;
1764
1765	ret = parse_cgroup_root_flags(data, &root_flags);
1766	if (ret)
1767		return ret;
1768
1769	apply_cgroup_root_flags(root_flags);
1770	return 0;
1771}
1772
1773/*
1774 * To reduce the fork() overhead for systems that are not actually using
1775 * their cgroups capability, we don't maintain the lists running through
1776 * each css_set to its tasks until we see the list actually used - in other
1777 * words after the first mount.
1778 */
1779static bool use_task_css_set_links __read_mostly;
1780
1781static void cgroup_enable_task_cg_lists(void)
1782{
1783	struct task_struct *p, *g;
1784
1785	spin_lock_irq(&css_set_lock);
1786
1787	if (use_task_css_set_links)
1788		goto out_unlock;
1789
1790	use_task_css_set_links = true;
1791
1792	/*
1793	 * We need tasklist_lock because RCU is not safe against
1794	 * while_each_thread(). Besides, a forking task that has passed
1795	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1796	 * is not guaranteed to have its child immediately visible in the
1797	 * tasklist if we walk through it with RCU.
1798	 */
1799	read_lock(&tasklist_lock);
1800	do_each_thread(g, p) {
1801		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1802			     task_css_set(p) != &init_css_set);
1803
1804		/*
1805		 * We should check if the process is exiting, otherwise
1806		 * it will race with cgroup_exit() in that the list
1807		 * entry won't be deleted though the process has exited.
1808		 * Do it while holding siglock so that we don't end up
1809		 * racing against cgroup_exit().
1810		 *
1811		 * Interrupts were already disabled while acquiring
1812		 * the css_set_lock, so we do not need to disable it
1813		 * again when acquiring the sighand->siglock here.
1814		 */
1815		spin_lock(&p->sighand->siglock);
1816		if (!(p->flags & PF_EXITING)) {
1817			struct css_set *cset = task_css_set(p);
1818
1819			if (!css_set_populated(cset))
1820				css_set_update_populated(cset, true);
1821			list_add_tail(&p->cg_list, &cset->tasks);
1822			get_css_set(cset);
1823			cset->nr_tasks++;
1824		}
1825		spin_unlock(&p->sighand->siglock);
1826	} while_each_thread(g, p);
1827	read_unlock(&tasklist_lock);
1828out_unlock:
1829	spin_unlock_irq(&css_set_lock);
1830}
1831
1832static void init_cgroup_housekeeping(struct cgroup *cgrp)
1833{
1834	struct cgroup_subsys *ss;
1835	int ssid;
1836
1837	INIT_LIST_HEAD(&cgrp->self.sibling);
1838	INIT_LIST_HEAD(&cgrp->self.children);
1839	INIT_LIST_HEAD(&cgrp->cset_links);
1840	INIT_LIST_HEAD(&cgrp->pidlists);
1841	mutex_init(&cgrp->pidlist_mutex);
1842	cgrp->self.cgroup = cgrp;
1843	cgrp->self.flags |= CSS_ONLINE;
1844	cgrp->dom_cgrp = cgrp;
1845	cgrp->max_descendants = INT_MAX;
1846	cgrp->max_depth = INT_MAX;
 
 
1847
1848	for_each_subsys(ss, ssid)
1849		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1850
1851	init_waitqueue_head(&cgrp->offline_waitq);
1852	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1853}
1854
1855void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1856{
 
1857	struct cgroup *cgrp = &root->cgrp;
1858
1859	INIT_LIST_HEAD(&root->root_list);
1860	atomic_set(&root->nr_cgrps, 1);
1861	cgrp->root = root;
1862	init_cgroup_housekeeping(cgrp);
1863	idr_init(&root->cgroup_idr);
1864
1865	root->flags = opts->flags;
1866	if (opts->release_agent)
1867		strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1868	if (opts->name)
1869		strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1870	if (opts->cpuset_clone_children)
1871		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1872}
1873
1874int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1875{
1876	LIST_HEAD(tmp_links);
1877	struct cgroup *root_cgrp = &root->cgrp;
1878	struct kernfs_syscall_ops *kf_sops;
1879	struct css_set *cset;
1880	int i, ret;
1881
1882	lockdep_assert_held(&cgroup_mutex);
1883
1884	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1885	if (ret < 0)
1886		goto out;
1887	root_cgrp->id = ret;
1888	root_cgrp->ancestor_ids[0] = ret;
1889
1890	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1891			      ref_flags, GFP_KERNEL);
1892	if (ret)
1893		goto out;
1894
1895	/*
1896	 * We're accessing css_set_count without locking css_set_lock here,
1897	 * but that's OK - it can only be increased by someone holding
1898	 * cgroup_lock, and that's us.  Later rebinding may disable
1899	 * controllers on the default hierarchy and thus create new csets,
1900	 * which can't be more than the existing ones.  Allocate 2x.
1901	 */
1902	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1903	if (ret)
1904		goto cancel_ref;
1905
1906	ret = cgroup_init_root_id(root);
1907	if (ret)
1908		goto cancel_ref;
1909
1910	kf_sops = root == &cgrp_dfl_root ?
1911		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1912
1913	root->kf_root = kernfs_create_root(kf_sops,
1914					   KERNFS_ROOT_CREATE_DEACTIVATED |
1915					   KERNFS_ROOT_SUPPORT_EXPORTOP,
 
1916					   root_cgrp);
1917	if (IS_ERR(root->kf_root)) {
1918		ret = PTR_ERR(root->kf_root);
1919		goto exit_root_id;
1920	}
1921	root_cgrp->kn = root->kf_root->kn;
 
 
1922
1923	ret = css_populate_dir(&root_cgrp->self);
1924	if (ret)
1925		goto destroy_root;
1926
1927	ret = rebind_subsystems(root, ss_mask);
1928	if (ret)
1929		goto destroy_root;
1930
1931	ret = cgroup_bpf_inherit(root_cgrp);
1932	WARN_ON_ONCE(ret);
1933
1934	trace_cgroup_setup_root(root);
1935
1936	/*
1937	 * There must be no failure case after here, since rebinding takes
1938	 * care of subsystems' refcounts, which are explicitly dropped in
1939	 * the failure exit path.
1940	 */
1941	list_add(&root->root_list, &cgroup_roots);
1942	cgroup_root_count++;
1943
1944	/*
1945	 * Link the root cgroup in this hierarchy into all the css_set
1946	 * objects.
1947	 */
1948	spin_lock_irq(&css_set_lock);
1949	hash_for_each(css_set_table, i, cset, hlist) {
1950		link_css_set(&tmp_links, cset, root_cgrp);
1951		if (css_set_populated(cset))
1952			cgroup_update_populated(root_cgrp, true);
1953	}
1954	spin_unlock_irq(&css_set_lock);
1955
1956	BUG_ON(!list_empty(&root_cgrp->self.children));
1957	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1958
1959	kernfs_activate(root_cgrp->kn);
1960	ret = 0;
1961	goto out;
1962
1963destroy_root:
1964	kernfs_destroy_root(root->kf_root);
1965	root->kf_root = NULL;
1966exit_root_id:
1967	cgroup_exit_root_id(root);
1968cancel_ref:
1969	percpu_ref_exit(&root_cgrp->self.refcnt);
1970out:
1971	free_cgrp_cset_links(&tmp_links);
1972	return ret;
1973}
1974
1975struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1976			       struct cgroup_root *root, unsigned long magic,
1977			       struct cgroup_namespace *ns)
1978{
1979	struct dentry *dentry;
1980	bool new_sb;
1981
1982	dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
 
 
 
 
 
1983
1984	/*
1985	 * In non-init cgroup namespace, instead of root cgroup's dentry,
1986	 * we return the dentry corresponding to the cgroupns->root_cgrp.
1987	 */
1988	if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1989		struct dentry *nsdentry;
 
1990		struct cgroup *cgrp;
1991
1992		mutex_lock(&cgroup_mutex);
1993		spin_lock_irq(&css_set_lock);
1994
1995		cgrp = cset_cgroup_from_root(ns->root_cset, root);
1996
1997		spin_unlock_irq(&css_set_lock);
1998		mutex_unlock(&cgroup_mutex);
1999
2000		nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2001		dput(dentry);
2002		dentry = nsdentry;
 
 
 
 
 
2003	}
2004
2005	if (IS_ERR(dentry) || !new_sb)
2006		cgroup_put(&root->cgrp);
2007
2008	return dentry;
2009}
2010
2011static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2012			 int flags, const char *unused_dev_name,
2013			 void *data)
 
2014{
2015	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2016	struct dentry *dentry;
2017	int ret;
2018
2019	get_cgroup_ns(ns);
 
 
 
 
 
2020
2021	/* Check if the caller has permission to mount. */
2022	if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2023		put_cgroup_ns(ns);
2024		return ERR_PTR(-EPERM);
2025	}
2026
2027	/*
2028	 * The first time anyone tries to mount a cgroup, enable the list
2029	 * linking each css_set to its tasks and fix up all existing tasks.
2030	 */
2031	if (!use_task_css_set_links)
2032		cgroup_enable_task_cg_lists();
2033
2034	if (fs_type == &cgroup2_fs_type) {
2035		unsigned int root_flags;
 
 
 
2036
2037		ret = parse_cgroup_root_flags(data, &root_flags);
2038		if (ret) {
2039			put_cgroup_ns(ns);
2040			return ERR_PTR(ret);
2041		}
 
2042
2043		cgrp_dfl_visible = true;
2044		cgroup_get_live(&cgrp_dfl_root.cgrp);
 
 
 
 
2045
2046		dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2047					 CGROUP2_SUPER_MAGIC, ns);
2048		if (!IS_ERR(dentry))
2049			apply_cgroup_root_flags(root_flags);
2050	} else {
2051		dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2052				       CGROUP_SUPER_MAGIC, ns);
2053	}
2054
2055	put_cgroup_ns(ns);
2056	return dentry;
 
 
 
 
 
 
 
 
 
 
 
 
 
2057}
2058
2059static void cgroup_kill_sb(struct super_block *sb)
2060{
2061	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2062	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2063
2064	/*
2065	 * If @root doesn't have any mounts or children, start killing it.
2066	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2067	 * cgroup_mount() may wait for @root's release.
2068	 *
2069	 * And don't kill the default root.
2070	 */
2071	if (!list_empty(&root->cgrp.self.children) ||
2072	    root == &cgrp_dfl_root)
2073		cgroup_put(&root->cgrp);
2074	else
2075		percpu_ref_kill(&root->cgrp.self.refcnt);
2076
2077	kernfs_kill_sb(sb);
2078}
2079
2080struct file_system_type cgroup_fs_type = {
2081	.name = "cgroup",
2082	.mount = cgroup_mount,
2083	.kill_sb = cgroup_kill_sb,
2084	.fs_flags = FS_USERNS_MOUNT,
 
2085};
2086
2087static struct file_system_type cgroup2_fs_type = {
2088	.name = "cgroup2",
2089	.mount = cgroup_mount,
2090	.kill_sb = cgroup_kill_sb,
2091	.fs_flags = FS_USERNS_MOUNT,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2092};
 
2093
2094int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2095			  struct cgroup_namespace *ns)
2096{
2097	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2098
2099	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2100}
2101
2102int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2103		   struct cgroup_namespace *ns)
2104{
2105	int ret;
2106
2107	mutex_lock(&cgroup_mutex);
2108	spin_lock_irq(&css_set_lock);
2109
2110	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2111
2112	spin_unlock_irq(&css_set_lock);
2113	mutex_unlock(&cgroup_mutex);
2114
2115	return ret;
2116}
2117EXPORT_SYMBOL_GPL(cgroup_path_ns);
2118
2119/**
2120 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2121 * @task: target task
2122 * @buf: the buffer to write the path into
2123 * @buflen: the length of the buffer
2124 *
2125 * Determine @task's cgroup on the first (the one with the lowest non-zero
2126 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2127 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2128 * cgroup controller callbacks.
2129 *
2130 * Return value is the same as kernfs_path().
2131 */
2132int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2133{
2134	struct cgroup_root *root;
2135	struct cgroup *cgrp;
2136	int hierarchy_id = 1;
2137	int ret;
2138
2139	mutex_lock(&cgroup_mutex);
2140	spin_lock_irq(&css_set_lock);
2141
2142	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2143
2144	if (root) {
2145		cgrp = task_cgroup_from_root(task, root);
2146		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2147	} else {
2148		/* if no hierarchy exists, everyone is in "/" */
2149		ret = strlcpy(buf, "/", buflen);
2150	}
2151
2152	spin_unlock_irq(&css_set_lock);
2153	mutex_unlock(&cgroup_mutex);
2154	return ret;
2155}
2156EXPORT_SYMBOL_GPL(task_cgroup_path);
2157
2158/**
2159 * cgroup_migrate_add_task - add a migration target task to a migration context
2160 * @task: target task
2161 * @mgctx: target migration context
2162 *
2163 * Add @task, which is a migration target, to @mgctx->tset.  This function
2164 * becomes noop if @task doesn't need to be migrated.  @task's css_set
2165 * should have been added as a migration source and @task->cg_list will be
2166 * moved from the css_set's tasks list to mg_tasks one.
2167 */
2168static void cgroup_migrate_add_task(struct task_struct *task,
2169				    struct cgroup_mgctx *mgctx)
2170{
2171	struct css_set *cset;
2172
2173	lockdep_assert_held(&css_set_lock);
2174
2175	/* @task either already exited or can't exit until the end */
2176	if (task->flags & PF_EXITING)
2177		return;
2178
2179	/* leave @task alone if post_fork() hasn't linked it yet */
2180	if (list_empty(&task->cg_list))
2181		return;
2182
2183	cset = task_css_set(task);
2184	if (!cset->mg_src_cgrp)
2185		return;
2186
2187	mgctx->tset.nr_tasks++;
2188
2189	list_move_tail(&task->cg_list, &cset->mg_tasks);
2190	if (list_empty(&cset->mg_node))
2191		list_add_tail(&cset->mg_node,
2192			      &mgctx->tset.src_csets);
2193	if (list_empty(&cset->mg_dst_cset->mg_node))
2194		list_add_tail(&cset->mg_dst_cset->mg_node,
2195			      &mgctx->tset.dst_csets);
2196}
2197
2198/**
2199 * cgroup_taskset_first - reset taskset and return the first task
2200 * @tset: taskset of interest
2201 * @dst_cssp: output variable for the destination css
2202 *
2203 * @tset iteration is initialized and the first task is returned.
2204 */
2205struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2206					 struct cgroup_subsys_state **dst_cssp)
2207{
2208	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2209	tset->cur_task = NULL;
2210
2211	return cgroup_taskset_next(tset, dst_cssp);
2212}
2213
2214/**
2215 * cgroup_taskset_next - iterate to the next task in taskset
2216 * @tset: taskset of interest
2217 * @dst_cssp: output variable for the destination css
2218 *
2219 * Return the next task in @tset.  Iteration must have been initialized
2220 * with cgroup_taskset_first().
2221 */
2222struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2223					struct cgroup_subsys_state **dst_cssp)
2224{
2225	struct css_set *cset = tset->cur_cset;
2226	struct task_struct *task = tset->cur_task;
2227
2228	while (&cset->mg_node != tset->csets) {
2229		if (!task)
2230			task = list_first_entry(&cset->mg_tasks,
2231						struct task_struct, cg_list);
2232		else
2233			task = list_next_entry(task, cg_list);
2234
2235		if (&task->cg_list != &cset->mg_tasks) {
2236			tset->cur_cset = cset;
2237			tset->cur_task = task;
2238
2239			/*
2240			 * This function may be called both before and
2241			 * after cgroup_taskset_migrate().  The two cases
2242			 * can be distinguished by looking at whether @cset
2243			 * has its ->mg_dst_cset set.
2244			 */
2245			if (cset->mg_dst_cset)
2246				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2247			else
2248				*dst_cssp = cset->subsys[tset->ssid];
2249
2250			return task;
2251		}
2252
2253		cset = list_next_entry(cset, mg_node);
2254		task = NULL;
2255	}
2256
2257	return NULL;
2258}
2259
2260/**
2261 * cgroup_taskset_migrate - migrate a taskset
2262 * @mgctx: migration context
2263 *
2264 * Migrate tasks in @mgctx as setup by migration preparation functions.
2265 * This function fails iff one of the ->can_attach callbacks fails and
2266 * guarantees that either all or none of the tasks in @mgctx are migrated.
2267 * @mgctx is consumed regardless of success.
2268 */
2269static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2270{
2271	struct cgroup_taskset *tset = &mgctx->tset;
2272	struct cgroup_subsys *ss;
2273	struct task_struct *task, *tmp_task;
2274	struct css_set *cset, *tmp_cset;
2275	int ssid, failed_ssid, ret;
2276
2277	/* check that we can legitimately attach to the cgroup */
2278	if (tset->nr_tasks) {
2279		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2280			if (ss->can_attach) {
2281				tset->ssid = ssid;
2282				ret = ss->can_attach(tset);
2283				if (ret) {
2284					failed_ssid = ssid;
2285					goto out_cancel_attach;
2286				}
2287			}
2288		} while_each_subsys_mask();
2289	}
2290
2291	/*
2292	 * Now that we're guaranteed success, proceed to move all tasks to
2293	 * the new cgroup.  There are no failure cases after here, so this
2294	 * is the commit point.
2295	 */
2296	spin_lock_irq(&css_set_lock);
2297	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2298		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2299			struct css_set *from_cset = task_css_set(task);
2300			struct css_set *to_cset = cset->mg_dst_cset;
2301
2302			get_css_set(to_cset);
2303			to_cset->nr_tasks++;
2304			css_set_move_task(task, from_cset, to_cset, true);
2305			put_css_set_locked(from_cset);
2306			from_cset->nr_tasks--;
 
 
 
 
 
 
 
 
2307		}
2308	}
2309	spin_unlock_irq(&css_set_lock);
2310
2311	/*
2312	 * Migration is committed, all target tasks are now on dst_csets.
2313	 * Nothing is sensitive to fork() after this point.  Notify
2314	 * controllers that migration is complete.
2315	 */
2316	tset->csets = &tset->dst_csets;
2317
2318	if (tset->nr_tasks) {
2319		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2320			if (ss->attach) {
2321				tset->ssid = ssid;
2322				ss->attach(tset);
2323			}
2324		} while_each_subsys_mask();
2325	}
2326
2327	ret = 0;
2328	goto out_release_tset;
2329
2330out_cancel_attach:
2331	if (tset->nr_tasks) {
2332		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2333			if (ssid == failed_ssid)
2334				break;
2335			if (ss->cancel_attach) {
2336				tset->ssid = ssid;
2337				ss->cancel_attach(tset);
2338			}
2339		} while_each_subsys_mask();
2340	}
2341out_release_tset:
2342	spin_lock_irq(&css_set_lock);
2343	list_splice_init(&tset->dst_csets, &tset->src_csets);
2344	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2345		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2346		list_del_init(&cset->mg_node);
2347	}
2348	spin_unlock_irq(&css_set_lock);
2349
2350	/*
2351	 * Re-initialize the cgroup_taskset structure in case it is reused
2352	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2353	 * iteration.
2354	 */
2355	tset->nr_tasks = 0;
2356	tset->csets    = &tset->src_csets;
2357	return ret;
2358}
2359
2360/**
2361 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2362 * @dst_cgrp: destination cgroup to test
2363 *
2364 * On the default hierarchy, except for the mixable, (possible) thread root
2365 * and threaded cgroups, subtree_control must be zero for migration
2366 * destination cgroups with tasks so that child cgroups don't compete
2367 * against tasks.
2368 */
2369int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2370{
2371	/* v1 doesn't have any restriction */
2372	if (!cgroup_on_dfl(dst_cgrp))
2373		return 0;
2374
2375	/* verify @dst_cgrp can host resources */
2376	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2377		return -EOPNOTSUPP;
2378
2379	/* mixables don't care */
2380	if (cgroup_is_mixable(dst_cgrp))
2381		return 0;
2382
2383	/*
2384	 * If @dst_cgrp is already or can become a thread root or is
2385	 * threaded, it doesn't matter.
2386	 */
2387	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2388		return 0;
2389
2390	/* apply no-internal-process constraint */
2391	if (dst_cgrp->subtree_control)
2392		return -EBUSY;
2393
2394	return 0;
2395}
2396
2397/**
2398 * cgroup_migrate_finish - cleanup after attach
2399 * @mgctx: migration context
2400 *
2401 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2402 * those functions for details.
2403 */
2404void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2405{
2406	LIST_HEAD(preloaded);
2407	struct css_set *cset, *tmp_cset;
2408
2409	lockdep_assert_held(&cgroup_mutex);
2410
2411	spin_lock_irq(&css_set_lock);
2412
2413	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2414	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2415
2416	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2417		cset->mg_src_cgrp = NULL;
2418		cset->mg_dst_cgrp = NULL;
2419		cset->mg_dst_cset = NULL;
2420		list_del_init(&cset->mg_preload_node);
2421		put_css_set_locked(cset);
2422	}
2423
2424	spin_unlock_irq(&css_set_lock);
2425}
2426
2427/**
2428 * cgroup_migrate_add_src - add a migration source css_set
2429 * @src_cset: the source css_set to add
2430 * @dst_cgrp: the destination cgroup
2431 * @mgctx: migration context
2432 *
2433 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2434 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2435 * up by cgroup_migrate_finish().
2436 *
2437 * This function may be called without holding cgroup_threadgroup_rwsem
2438 * even if the target is a process.  Threads may be created and destroyed
2439 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2440 * into play and the preloaded css_sets are guaranteed to cover all
2441 * migrations.
2442 */
2443void cgroup_migrate_add_src(struct css_set *src_cset,
2444			    struct cgroup *dst_cgrp,
2445			    struct cgroup_mgctx *mgctx)
2446{
2447	struct cgroup *src_cgrp;
2448
2449	lockdep_assert_held(&cgroup_mutex);
2450	lockdep_assert_held(&css_set_lock);
2451
2452	/*
2453	 * If ->dead, @src_set is associated with one or more dead cgroups
2454	 * and doesn't contain any migratable tasks.  Ignore it early so
2455	 * that the rest of migration path doesn't get confused by it.
2456	 */
2457	if (src_cset->dead)
2458		return;
2459
2460	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2461
2462	if (!list_empty(&src_cset->mg_preload_node))
2463		return;
2464
2465	WARN_ON(src_cset->mg_src_cgrp);
2466	WARN_ON(src_cset->mg_dst_cgrp);
2467	WARN_ON(!list_empty(&src_cset->mg_tasks));
2468	WARN_ON(!list_empty(&src_cset->mg_node));
2469
2470	src_cset->mg_src_cgrp = src_cgrp;
2471	src_cset->mg_dst_cgrp = dst_cgrp;
2472	get_css_set(src_cset);
2473	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2474}
2475
2476/**
2477 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2478 * @mgctx: migration context
2479 *
2480 * Tasks are about to be moved and all the source css_sets have been
2481 * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2482 * pins all destination css_sets, links each to its source, and append them
2483 * to @mgctx->preloaded_dst_csets.
2484 *
2485 * This function must be called after cgroup_migrate_add_src() has been
2486 * called on each migration source css_set.  After migration is performed
2487 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2488 * @mgctx.
2489 */
2490int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2491{
2492	struct css_set *src_cset, *tmp_cset;
2493
2494	lockdep_assert_held(&cgroup_mutex);
2495
2496	/* look up the dst cset for each src cset and link it to src */
2497	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2498				 mg_preload_node) {
2499		struct css_set *dst_cset;
2500		struct cgroup_subsys *ss;
2501		int ssid;
2502
2503		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2504		if (!dst_cset)
2505			goto err;
2506
2507		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2508
2509		/*
2510		 * If src cset equals dst, it's noop.  Drop the src.
2511		 * cgroup_migrate() will skip the cset too.  Note that we
2512		 * can't handle src == dst as some nodes are used by both.
2513		 */
2514		if (src_cset == dst_cset) {
2515			src_cset->mg_src_cgrp = NULL;
2516			src_cset->mg_dst_cgrp = NULL;
2517			list_del_init(&src_cset->mg_preload_node);
2518			put_css_set(src_cset);
2519			put_css_set(dst_cset);
2520			continue;
2521		}
2522
2523		src_cset->mg_dst_cset = dst_cset;
2524
2525		if (list_empty(&dst_cset->mg_preload_node))
2526			list_add_tail(&dst_cset->mg_preload_node,
2527				      &mgctx->preloaded_dst_csets);
2528		else
2529			put_css_set(dst_cset);
2530
2531		for_each_subsys(ss, ssid)
2532			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2533				mgctx->ss_mask |= 1 << ssid;
2534	}
2535
2536	return 0;
2537err:
2538	cgroup_migrate_finish(mgctx);
2539	return -ENOMEM;
2540}
2541
2542/**
2543 * cgroup_migrate - migrate a process or task to a cgroup
2544 * @leader: the leader of the process or the task to migrate
2545 * @threadgroup: whether @leader points to the whole process or a single task
2546 * @mgctx: migration context
2547 *
2548 * Migrate a process or task denoted by @leader.  If migrating a process,
2549 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2550 * responsible for invoking cgroup_migrate_add_src() and
2551 * cgroup_migrate_prepare_dst() on the targets before invoking this
2552 * function and following up with cgroup_migrate_finish().
2553 *
2554 * As long as a controller's ->can_attach() doesn't fail, this function is
2555 * guaranteed to succeed.  This means that, excluding ->can_attach()
2556 * failure, when migrating multiple targets, the success or failure can be
2557 * decided for all targets by invoking group_migrate_prepare_dst() before
2558 * actually starting migrating.
2559 */
2560int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2561		   struct cgroup_mgctx *mgctx)
2562{
2563	struct task_struct *task;
2564
2565	/*
2566	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2567	 * already PF_EXITING could be freed from underneath us unless we
2568	 * take an rcu_read_lock.
2569	 */
2570	spin_lock_irq(&css_set_lock);
2571	rcu_read_lock();
2572	task = leader;
2573	do {
2574		cgroup_migrate_add_task(task, mgctx);
2575		if (!threadgroup)
2576			break;
2577	} while_each_thread(leader, task);
2578	rcu_read_unlock();
2579	spin_unlock_irq(&css_set_lock);
2580
2581	return cgroup_migrate_execute(mgctx);
2582}
2583
2584/**
2585 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2586 * @dst_cgrp: the cgroup to attach to
2587 * @leader: the task or the leader of the threadgroup to be attached
2588 * @threadgroup: attach the whole threadgroup?
2589 *
2590 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2591 */
2592int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2593		       bool threadgroup)
2594{
2595	DEFINE_CGROUP_MGCTX(mgctx);
2596	struct task_struct *task;
2597	int ret;
2598
2599	ret = cgroup_migrate_vet_dst(dst_cgrp);
2600	if (ret)
2601		return ret;
2602
2603	/* look up all src csets */
2604	spin_lock_irq(&css_set_lock);
2605	rcu_read_lock();
2606	task = leader;
2607	do {
2608		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2609		if (!threadgroup)
2610			break;
2611	} while_each_thread(leader, task);
2612	rcu_read_unlock();
2613	spin_unlock_irq(&css_set_lock);
2614
2615	/* prepare dst csets and commit */
2616	ret = cgroup_migrate_prepare_dst(&mgctx);
2617	if (!ret)
2618		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2619
2620	cgroup_migrate_finish(&mgctx);
2621
2622	if (!ret)
2623		trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2624
2625	return ret;
2626}
2627
2628struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
 
2629	__acquires(&cgroup_threadgroup_rwsem)
2630{
2631	struct task_struct *tsk;
2632	pid_t pid;
2633
2634	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2635		return ERR_PTR(-EINVAL);
2636
2637	percpu_down_write(&cgroup_threadgroup_rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2638
2639	rcu_read_lock();
2640	if (pid) {
2641		tsk = find_task_by_vpid(pid);
2642		if (!tsk) {
2643			tsk = ERR_PTR(-ESRCH);
2644			goto out_unlock_threadgroup;
2645		}
2646	} else {
2647		tsk = current;
2648	}
2649
2650	if (threadgroup)
2651		tsk = tsk->group_leader;
2652
2653	/*
2654	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2655	 * If userland migrates such a kthread to a non-root cgroup, it can
2656	 * become trapped in a cpuset, or RT kthread may be born in a
2657	 * cgroup with no rt_runtime allocated.  Just say no.
2658	 */
2659	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2660		tsk = ERR_PTR(-EINVAL);
2661		goto out_unlock_threadgroup;
2662	}
2663
2664	get_task_struct(tsk);
2665	goto out_unlock_rcu;
2666
2667out_unlock_threadgroup:
2668	percpu_up_write(&cgroup_threadgroup_rwsem);
 
 
 
2669out_unlock_rcu:
2670	rcu_read_unlock();
2671	return tsk;
2672}
2673
2674void cgroup_procs_write_finish(struct task_struct *task)
2675	__releases(&cgroup_threadgroup_rwsem)
2676{
2677	struct cgroup_subsys *ss;
2678	int ssid;
2679
2680	/* release reference from cgroup_procs_write_start() */
2681	put_task_struct(task);
2682
2683	percpu_up_write(&cgroup_threadgroup_rwsem);
 
2684	for_each_subsys(ss, ssid)
2685		if (ss->post_attach)
2686			ss->post_attach();
2687}
2688
2689static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2690{
2691	struct cgroup_subsys *ss;
2692	bool printed = false;
2693	int ssid;
2694
2695	do_each_subsys_mask(ss, ssid, ss_mask) {
2696		if (printed)
2697			seq_putc(seq, ' ');
2698		seq_printf(seq, "%s", ss->name);
2699		printed = true;
2700	} while_each_subsys_mask();
2701	if (printed)
2702		seq_putc(seq, '\n');
2703}
2704
2705/* show controllers which are enabled from the parent */
2706static int cgroup_controllers_show(struct seq_file *seq, void *v)
2707{
2708	struct cgroup *cgrp = seq_css(seq)->cgroup;
2709
2710	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2711	return 0;
2712}
2713
2714/* show controllers which are enabled for a given cgroup's children */
2715static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2716{
2717	struct cgroup *cgrp = seq_css(seq)->cgroup;
2718
2719	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2720	return 0;
2721}
2722
2723/**
2724 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2725 * @cgrp: root of the subtree to update csses for
2726 *
2727 * @cgrp's control masks have changed and its subtree's css associations
2728 * need to be updated accordingly.  This function looks up all css_sets
2729 * which are attached to the subtree, creates the matching updated css_sets
2730 * and migrates the tasks to the new ones.
2731 */
2732static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2733{
2734	DEFINE_CGROUP_MGCTX(mgctx);
2735	struct cgroup_subsys_state *d_css;
2736	struct cgroup *dsct;
2737	struct css_set *src_cset;
2738	int ret;
2739
2740	lockdep_assert_held(&cgroup_mutex);
2741
2742	percpu_down_write(&cgroup_threadgroup_rwsem);
2743
2744	/* look up all csses currently attached to @cgrp's subtree */
2745	spin_lock_irq(&css_set_lock);
2746	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2747		struct cgrp_cset_link *link;
2748
2749		list_for_each_entry(link, &dsct->cset_links, cset_link)
2750			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2751	}
2752	spin_unlock_irq(&css_set_lock);
2753
2754	/* NULL dst indicates self on default hierarchy */
2755	ret = cgroup_migrate_prepare_dst(&mgctx);
2756	if (ret)
2757		goto out_finish;
2758
2759	spin_lock_irq(&css_set_lock);
2760	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2761		struct task_struct *task, *ntask;
2762
2763		/* all tasks in src_csets need to be migrated */
2764		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2765			cgroup_migrate_add_task(task, &mgctx);
2766	}
2767	spin_unlock_irq(&css_set_lock);
2768
2769	ret = cgroup_migrate_execute(&mgctx);
2770out_finish:
2771	cgroup_migrate_finish(&mgctx);
2772	percpu_up_write(&cgroup_threadgroup_rwsem);
2773	return ret;
2774}
2775
2776/**
2777 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2778 * @cgrp: root of the target subtree
2779 *
2780 * Because css offlining is asynchronous, userland may try to re-enable a
2781 * controller while the previous css is still around.  This function grabs
2782 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2783 */
2784void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2785	__acquires(&cgroup_mutex)
2786{
2787	struct cgroup *dsct;
2788	struct cgroup_subsys_state *d_css;
2789	struct cgroup_subsys *ss;
2790	int ssid;
2791
2792restart:
2793	mutex_lock(&cgroup_mutex);
2794
2795	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2796		for_each_subsys(ss, ssid) {
2797			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2798			DEFINE_WAIT(wait);
2799
2800			if (!css || !percpu_ref_is_dying(&css->refcnt))
2801				continue;
2802
2803			cgroup_get_live(dsct);
2804			prepare_to_wait(&dsct->offline_waitq, &wait,
2805					TASK_UNINTERRUPTIBLE);
2806
2807			mutex_unlock(&cgroup_mutex);
2808			schedule();
2809			finish_wait(&dsct->offline_waitq, &wait);
2810
2811			cgroup_put(dsct);
2812			goto restart;
2813		}
2814	}
2815}
2816
2817/**
2818 * cgroup_save_control - save control masks of a subtree
2819 * @cgrp: root of the target subtree
2820 *
2821 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2822 * prefixed fields for @cgrp's subtree including @cgrp itself.
 
2823 */
2824static void cgroup_save_control(struct cgroup *cgrp)
2825{
2826	struct cgroup *dsct;
2827	struct cgroup_subsys_state *d_css;
2828
2829	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2830		dsct->old_subtree_control = dsct->subtree_control;
2831		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
 
2832	}
2833}
2834
2835/**
2836 * cgroup_propagate_control - refresh control masks of a subtree
2837 * @cgrp: root of the target subtree
2838 *
2839 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2840 * ->subtree_control and propagate controller availability through the
2841 * subtree so that descendants don't have unavailable controllers enabled.
2842 */
2843static void cgroup_propagate_control(struct cgroup *cgrp)
2844{
2845	struct cgroup *dsct;
2846	struct cgroup_subsys_state *d_css;
2847
2848	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2849		dsct->subtree_control &= cgroup_control(dsct);
2850		dsct->subtree_ss_mask =
2851			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2852						    cgroup_ss_mask(dsct));
2853	}
2854}
2855
2856/**
2857 * cgroup_restore_control - restore control masks of a subtree
2858 * @cgrp: root of the target subtree
2859 *
2860 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2861 * prefixed fields for @cgrp's subtree including @cgrp itself.
 
2862 */
2863static void cgroup_restore_control(struct cgroup *cgrp)
2864{
2865	struct cgroup *dsct;
2866	struct cgroup_subsys_state *d_css;
2867
2868	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2869		dsct->subtree_control = dsct->old_subtree_control;
2870		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
 
2871	}
2872}
2873
2874static bool css_visible(struct cgroup_subsys_state *css)
2875{
2876	struct cgroup_subsys *ss = css->ss;
2877	struct cgroup *cgrp = css->cgroup;
2878
2879	if (cgroup_control(cgrp) & (1 << ss->id))
2880		return true;
2881	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2882		return false;
2883	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2884}
2885
2886/**
2887 * cgroup_apply_control_enable - enable or show csses according to control
2888 * @cgrp: root of the target subtree
2889 *
2890 * Walk @cgrp's subtree and create new csses or make the existing ones
2891 * visible.  A css is created invisible if it's being implicitly enabled
2892 * through dependency.  An invisible css is made visible when the userland
2893 * explicitly enables it.
2894 *
2895 * Returns 0 on success, -errno on failure.  On failure, csses which have
2896 * been processed already aren't cleaned up.  The caller is responsible for
2897 * cleaning up with cgroup_apply_control_disable().
2898 */
2899static int cgroup_apply_control_enable(struct cgroup *cgrp)
2900{
2901	struct cgroup *dsct;
2902	struct cgroup_subsys_state *d_css;
2903	struct cgroup_subsys *ss;
2904	int ssid, ret;
2905
2906	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2907		for_each_subsys(ss, ssid) {
2908			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2909
2910			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2911
2912			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2913				continue;
2914
2915			if (!css) {
2916				css = css_create(dsct, ss);
2917				if (IS_ERR(css))
2918					return PTR_ERR(css);
2919			}
2920
 
 
2921			if (css_visible(css)) {
2922				ret = css_populate_dir(css);
2923				if (ret)
2924					return ret;
2925			}
2926		}
2927	}
2928
2929	return 0;
2930}
2931
2932/**
2933 * cgroup_apply_control_disable - kill or hide csses according to control
2934 * @cgrp: root of the target subtree
2935 *
2936 * Walk @cgrp's subtree and kill and hide csses so that they match
2937 * cgroup_ss_mask() and cgroup_visible_mask().
2938 *
2939 * A css is hidden when the userland requests it to be disabled while other
2940 * subsystems are still depending on it.  The css must not actively control
2941 * resources and be in the vanilla state if it's made visible again later.
2942 * Controllers which may be depended upon should provide ->css_reset() for
2943 * this purpose.
2944 */
2945static void cgroup_apply_control_disable(struct cgroup *cgrp)
2946{
2947	struct cgroup *dsct;
2948	struct cgroup_subsys_state *d_css;
2949	struct cgroup_subsys *ss;
2950	int ssid;
2951
2952	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2953		for_each_subsys(ss, ssid) {
2954			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2955
2956			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2957
2958			if (!css)
2959				continue;
2960
 
 
2961			if (css->parent &&
2962			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2963				kill_css(css);
2964			} else if (!css_visible(css)) {
2965				css_clear_dir(css);
2966				if (ss->css_reset)
2967					ss->css_reset(css);
2968			}
2969		}
2970	}
2971}
2972
2973/**
2974 * cgroup_apply_control - apply control mask updates to the subtree
2975 * @cgrp: root of the target subtree
2976 *
2977 * subsystems can be enabled and disabled in a subtree using the following
2978 * steps.
2979 *
2980 * 1. Call cgroup_save_control() to stash the current state.
2981 * 2. Update ->subtree_control masks in the subtree as desired.
2982 * 3. Call cgroup_apply_control() to apply the changes.
2983 * 4. Optionally perform other related operations.
2984 * 5. Call cgroup_finalize_control() to finish up.
2985 *
2986 * This function implements step 3 and propagates the mask changes
2987 * throughout @cgrp's subtree, updates csses accordingly and perform
2988 * process migrations.
2989 */
2990static int cgroup_apply_control(struct cgroup *cgrp)
2991{
2992	int ret;
2993
2994	cgroup_propagate_control(cgrp);
2995
2996	ret = cgroup_apply_control_enable(cgrp);
2997	if (ret)
2998		return ret;
2999
3000	/*
3001	 * At this point, cgroup_e_css() results reflect the new csses
3002	 * making the following cgroup_update_dfl_csses() properly update
3003	 * css associations of all tasks in the subtree.
3004	 */
3005	ret = cgroup_update_dfl_csses(cgrp);
3006	if (ret)
3007		return ret;
3008
3009	return 0;
3010}
3011
3012/**
3013 * cgroup_finalize_control - finalize control mask update
3014 * @cgrp: root of the target subtree
3015 * @ret: the result of the update
3016 *
3017 * Finalize control mask update.  See cgroup_apply_control() for more info.
3018 */
3019static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3020{
3021	if (ret) {
3022		cgroup_restore_control(cgrp);
3023		cgroup_propagate_control(cgrp);
3024	}
3025
3026	cgroup_apply_control_disable(cgrp);
3027}
3028
3029static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3030{
3031	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3032
3033	/* if nothing is getting enabled, nothing to worry about */
3034	if (!enable)
3035		return 0;
3036
3037	/* can @cgrp host any resources? */
3038	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3039		return -EOPNOTSUPP;
3040
3041	/* mixables don't care */
3042	if (cgroup_is_mixable(cgrp))
3043		return 0;
3044
3045	if (domain_enable) {
3046		/* can't enable domain controllers inside a thread subtree */
3047		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3048			return -EOPNOTSUPP;
3049	} else {
3050		/*
3051		 * Threaded controllers can handle internal competitions
3052		 * and are always allowed inside a (prospective) thread
3053		 * subtree.
3054		 */
3055		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3056			return 0;
3057	}
3058
3059	/*
3060	 * Controllers can't be enabled for a cgroup with tasks to avoid
3061	 * child cgroups competing against tasks.
3062	 */
3063	if (cgroup_has_tasks(cgrp))
3064		return -EBUSY;
3065
3066	return 0;
3067}
3068
3069/* change the enabled child controllers for a cgroup in the default hierarchy */
3070static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3071					    char *buf, size_t nbytes,
3072					    loff_t off)
3073{
3074	u16 enable = 0, disable = 0;
3075	struct cgroup *cgrp, *child;
3076	struct cgroup_subsys *ss;
3077	char *tok;
3078	int ssid, ret;
3079
3080	/*
3081	 * Parse input - space separated list of subsystem names prefixed
3082	 * with either + or -.
3083	 */
3084	buf = strstrip(buf);
3085	while ((tok = strsep(&buf, " "))) {
3086		if (tok[0] == '\0')
3087			continue;
3088		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3089			if (!cgroup_ssid_enabled(ssid) ||
3090			    strcmp(tok + 1, ss->name))
3091				continue;
3092
3093			if (*tok == '+') {
3094				enable |= 1 << ssid;
3095				disable &= ~(1 << ssid);
3096			} else if (*tok == '-') {
3097				disable |= 1 << ssid;
3098				enable &= ~(1 << ssid);
3099			} else {
3100				return -EINVAL;
3101			}
3102			break;
3103		} while_each_subsys_mask();
3104		if (ssid == CGROUP_SUBSYS_COUNT)
3105			return -EINVAL;
3106	}
3107
3108	cgrp = cgroup_kn_lock_live(of->kn, true);
3109	if (!cgrp)
3110		return -ENODEV;
3111
3112	for_each_subsys(ss, ssid) {
3113		if (enable & (1 << ssid)) {
3114			if (cgrp->subtree_control & (1 << ssid)) {
3115				enable &= ~(1 << ssid);
3116				continue;
3117			}
3118
3119			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3120				ret = -ENOENT;
3121				goto out_unlock;
3122			}
3123		} else if (disable & (1 << ssid)) {
3124			if (!(cgrp->subtree_control & (1 << ssid))) {
3125				disable &= ~(1 << ssid);
3126				continue;
3127			}
3128
3129			/* a child has it enabled? */
3130			cgroup_for_each_live_child(child, cgrp) {
3131				if (child->subtree_control & (1 << ssid)) {
3132					ret = -EBUSY;
3133					goto out_unlock;
3134				}
3135			}
3136		}
3137	}
3138
3139	if (!enable && !disable) {
3140		ret = 0;
3141		goto out_unlock;
3142	}
3143
3144	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3145	if (ret)
3146		goto out_unlock;
3147
3148	/* save and update control masks and prepare csses */
3149	cgroup_save_control(cgrp);
3150
3151	cgrp->subtree_control |= enable;
3152	cgrp->subtree_control &= ~disable;
3153
3154	ret = cgroup_apply_control(cgrp);
3155	cgroup_finalize_control(cgrp, ret);
3156	if (ret)
3157		goto out_unlock;
3158
3159	kernfs_activate(cgrp->kn);
3160out_unlock:
3161	cgroup_kn_unlock(of->kn);
3162	return ret ?: nbytes;
3163}
3164
3165/**
3166 * cgroup_enable_threaded - make @cgrp threaded
3167 * @cgrp: the target cgroup
3168 *
3169 * Called when "threaded" is written to the cgroup.type interface file and
3170 * tries to make @cgrp threaded and join the parent's resource domain.
3171 * This function is never called on the root cgroup as cgroup.type doesn't
3172 * exist on it.
3173 */
3174static int cgroup_enable_threaded(struct cgroup *cgrp)
3175{
3176	struct cgroup *parent = cgroup_parent(cgrp);
3177	struct cgroup *dom_cgrp = parent->dom_cgrp;
 
 
3178	int ret;
3179
3180	lockdep_assert_held(&cgroup_mutex);
3181
3182	/* noop if already threaded */
3183	if (cgroup_is_threaded(cgrp))
3184		return 0;
3185
3186	/*
3187	 * If @cgroup is populated or has domain controllers enabled, it
3188	 * can't be switched.  While the below cgroup_can_be_thread_root()
3189	 * test can catch the same conditions, that's only when @parent is
3190	 * not mixable, so let's check it explicitly.
3191	 */
3192	if (cgroup_is_populated(cgrp) ||
3193	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3194		return -EOPNOTSUPP;
3195
3196	/* we're joining the parent's domain, ensure its validity */
3197	if (!cgroup_is_valid_domain(dom_cgrp) ||
3198	    !cgroup_can_be_thread_root(dom_cgrp))
3199		return -EOPNOTSUPP;
3200
3201	/*
3202	 * The following shouldn't cause actual migrations and should
3203	 * always succeed.
3204	 */
3205	cgroup_save_control(cgrp);
3206
3207	cgrp->dom_cgrp = dom_cgrp;
 
 
 
3208	ret = cgroup_apply_control(cgrp);
3209	if (!ret)
3210		parent->nr_threaded_children++;
3211	else
3212		cgrp->dom_cgrp = cgrp;
3213
3214	cgroup_finalize_control(cgrp, ret);
3215	return ret;
3216}
3217
3218static int cgroup_type_show(struct seq_file *seq, void *v)
3219{
3220	struct cgroup *cgrp = seq_css(seq)->cgroup;
3221
3222	if (cgroup_is_threaded(cgrp))
3223		seq_puts(seq, "threaded\n");
3224	else if (!cgroup_is_valid_domain(cgrp))
3225		seq_puts(seq, "domain invalid\n");
3226	else if (cgroup_is_thread_root(cgrp))
3227		seq_puts(seq, "domain threaded\n");
3228	else
3229		seq_puts(seq, "domain\n");
3230
3231	return 0;
3232}
3233
3234static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3235				 size_t nbytes, loff_t off)
3236{
3237	struct cgroup *cgrp;
3238	int ret;
3239
3240	/* only switching to threaded mode is supported */
3241	if (strcmp(strstrip(buf), "threaded"))
3242		return -EINVAL;
3243
3244	cgrp = cgroup_kn_lock_live(of->kn, false);
 
3245	if (!cgrp)
3246		return -ENOENT;
3247
3248	/* threaded can only be enabled */
3249	ret = cgroup_enable_threaded(cgrp);
3250
3251	cgroup_kn_unlock(of->kn);
3252	return ret ?: nbytes;
3253}
3254
3255static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3256{
3257	struct cgroup *cgrp = seq_css(seq)->cgroup;
3258	int descendants = READ_ONCE(cgrp->max_descendants);
3259
3260	if (descendants == INT_MAX)
3261		seq_puts(seq, "max\n");
3262	else
3263		seq_printf(seq, "%d\n", descendants);
3264
3265	return 0;
3266}
3267
3268static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3269					   char *buf, size_t nbytes, loff_t off)
3270{
3271	struct cgroup *cgrp;
3272	int descendants;
3273	ssize_t ret;
3274
3275	buf = strstrip(buf);
3276	if (!strcmp(buf, "max")) {
3277		descendants = INT_MAX;
3278	} else {
3279		ret = kstrtoint(buf, 0, &descendants);
3280		if (ret)
3281			return ret;
3282	}
3283
3284	if (descendants < 0)
3285		return -ERANGE;
3286
3287	cgrp = cgroup_kn_lock_live(of->kn, false);
3288	if (!cgrp)
3289		return -ENOENT;
3290
3291	cgrp->max_descendants = descendants;
3292
3293	cgroup_kn_unlock(of->kn);
3294
3295	return nbytes;
3296}
3297
3298static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3299{
3300	struct cgroup *cgrp = seq_css(seq)->cgroup;
3301	int depth = READ_ONCE(cgrp->max_depth);
3302
3303	if (depth == INT_MAX)
3304		seq_puts(seq, "max\n");
3305	else
3306		seq_printf(seq, "%d\n", depth);
3307
3308	return 0;
3309}
3310
3311static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3312				      char *buf, size_t nbytes, loff_t off)
3313{
3314	struct cgroup *cgrp;
3315	ssize_t ret;
3316	int depth;
3317
3318	buf = strstrip(buf);
3319	if (!strcmp(buf, "max")) {
3320		depth = INT_MAX;
3321	} else {
3322		ret = kstrtoint(buf, 0, &depth);
3323		if (ret)
3324			return ret;
3325	}
3326
3327	if (depth < 0)
3328		return -ERANGE;
3329
3330	cgrp = cgroup_kn_lock_live(of->kn, false);
3331	if (!cgrp)
3332		return -ENOENT;
3333
3334	cgrp->max_depth = depth;
3335
3336	cgroup_kn_unlock(of->kn);
3337
3338	return nbytes;
3339}
3340
3341static int cgroup_events_show(struct seq_file *seq, void *v)
3342{
3343	seq_printf(seq, "populated %d\n",
3344		   cgroup_is_populated(seq_css(seq)->cgroup));
 
 
 
3345	return 0;
3346}
3347
3348static int cgroup_stat_show(struct seq_file *seq, void *v)
3349{
3350	struct cgroup *cgroup = seq_css(seq)->cgroup;
3351
3352	seq_printf(seq, "nr_descendants %d\n",
3353		   cgroup->nr_descendants);
3354	seq_printf(seq, "nr_dying_descendants %d\n",
3355		   cgroup->nr_dying_descendants);
3356
3357	return 0;
3358}
3359
3360static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3361						 struct cgroup *cgrp, int ssid)
3362{
3363	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3364	struct cgroup_subsys_state *css;
3365	int ret;
3366
3367	if (!ss->css_extra_stat_show)
3368		return 0;
3369
3370	css = cgroup_tryget_css(cgrp, ss);
3371	if (!css)
3372		return 0;
3373
3374	ret = ss->css_extra_stat_show(seq, css);
3375	css_put(css);
3376	return ret;
3377}
3378
3379static int cpu_stat_show(struct seq_file *seq, void *v)
3380{
3381	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3382	int ret = 0;
3383
3384	cgroup_stat_show_cputime(seq);
3385#ifdef CONFIG_CGROUP_SCHED
3386	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3387#endif
3388	return ret;
3389}
3390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3391static int cgroup_file_open(struct kernfs_open_file *of)
3392{
3393	struct cftype *cft = of->kn->priv;
3394
3395	if (cft->open)
3396		return cft->open(of);
3397	return 0;
3398}
3399
3400static void cgroup_file_release(struct kernfs_open_file *of)
3401{
3402	struct cftype *cft = of->kn->priv;
3403
3404	if (cft->release)
3405		cft->release(of);
3406}
3407
3408static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3409				 size_t nbytes, loff_t off)
3410{
3411	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3412	struct cgroup *cgrp = of->kn->parent->priv;
3413	struct cftype *cft = of->kn->priv;
3414	struct cgroup_subsys_state *css;
3415	int ret;
3416
3417	/*
3418	 * If namespaces are delegation boundaries, disallow writes to
3419	 * files in an non-init namespace root from inside the namespace
3420	 * except for the files explicitly marked delegatable -
3421	 * cgroup.procs and cgroup.subtree_control.
3422	 */
3423	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3424	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3425	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3426		return -EPERM;
3427
3428	if (cft->write)
3429		return cft->write(of, buf, nbytes, off);
3430
3431	/*
3432	 * kernfs guarantees that a file isn't deleted with operations in
3433	 * flight, which means that the matching css is and stays alive and
3434	 * doesn't need to be pinned.  The RCU locking is not necessary
3435	 * either.  It's just for the convenience of using cgroup_css().
3436	 */
3437	rcu_read_lock();
3438	css = cgroup_css(cgrp, cft->ss);
3439	rcu_read_unlock();
3440
3441	if (cft->write_u64) {
3442		unsigned long long v;
3443		ret = kstrtoull(buf, 0, &v);
3444		if (!ret)
3445			ret = cft->write_u64(css, cft, v);
3446	} else if (cft->write_s64) {
3447		long long v;
3448		ret = kstrtoll(buf, 0, &v);
3449		if (!ret)
3450			ret = cft->write_s64(css, cft, v);
3451	} else {
3452		ret = -EINVAL;
3453	}
3454
3455	return ret ?: nbytes;
3456}
3457
 
 
 
 
 
 
 
 
 
 
3458static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3459{
3460	return seq_cft(seq)->seq_start(seq, ppos);
3461}
3462
3463static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3464{
3465	return seq_cft(seq)->seq_next(seq, v, ppos);
3466}
3467
3468static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3469{
3470	if (seq_cft(seq)->seq_stop)
3471		seq_cft(seq)->seq_stop(seq, v);
3472}
3473
3474static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3475{
3476	struct cftype *cft = seq_cft(m);
3477	struct cgroup_subsys_state *css = seq_css(m);
3478
3479	if (cft->seq_show)
3480		return cft->seq_show(m, arg);
3481
3482	if (cft->read_u64)
3483		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3484	else if (cft->read_s64)
3485		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3486	else
3487		return -EINVAL;
3488	return 0;
3489}
3490
3491static struct kernfs_ops cgroup_kf_single_ops = {
3492	.atomic_write_len	= PAGE_SIZE,
3493	.open			= cgroup_file_open,
3494	.release		= cgroup_file_release,
3495	.write			= cgroup_file_write,
 
3496	.seq_show		= cgroup_seqfile_show,
3497};
3498
3499static struct kernfs_ops cgroup_kf_ops = {
3500	.atomic_write_len	= PAGE_SIZE,
3501	.open			= cgroup_file_open,
3502	.release		= cgroup_file_release,
3503	.write			= cgroup_file_write,
 
3504	.seq_start		= cgroup_seqfile_start,
3505	.seq_next		= cgroup_seqfile_next,
3506	.seq_stop		= cgroup_seqfile_stop,
3507	.seq_show		= cgroup_seqfile_show,
3508};
3509
3510/* set uid and gid of cgroup dirs and files to that of the creator */
3511static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3512{
3513	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3514			       .ia_uid = current_fsuid(),
3515			       .ia_gid = current_fsgid(), };
3516
3517	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3518	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3519		return 0;
3520
3521	return kernfs_setattr(kn, &iattr);
3522}
3523
 
 
 
 
 
 
3524static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3525			   struct cftype *cft)
3526{
3527	char name[CGROUP_FILE_NAME_MAX];
3528	struct kernfs_node *kn;
3529	struct lock_class_key *key = NULL;
3530	int ret;
3531
3532#ifdef CONFIG_DEBUG_LOCK_ALLOC
3533	key = &cft->lockdep_key;
3534#endif
3535	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3536				  cgroup_file_mode(cft), 0, cft->kf_ops, cft,
 
 
3537				  NULL, key);
3538	if (IS_ERR(kn))
3539		return PTR_ERR(kn);
3540
3541	ret = cgroup_kn_set_ugid(kn);
3542	if (ret) {
3543		kernfs_remove(kn);
3544		return ret;
3545	}
3546
3547	if (cft->file_offset) {
3548		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3549
 
 
3550		spin_lock_irq(&cgroup_file_kn_lock);
3551		cfile->kn = kn;
3552		spin_unlock_irq(&cgroup_file_kn_lock);
3553	}
3554
3555	return 0;
3556}
3557
3558/**
3559 * cgroup_addrm_files - add or remove files to a cgroup directory
3560 * @css: the target css
3561 * @cgrp: the target cgroup (usually css->cgroup)
3562 * @cfts: array of cftypes to be added
3563 * @is_add: whether to add or remove
3564 *
3565 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3566 * For removals, this function never fails.
3567 */
3568static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3569			      struct cgroup *cgrp, struct cftype cfts[],
3570			      bool is_add)
3571{
3572	struct cftype *cft, *cft_end = NULL;
3573	int ret = 0;
3574
3575	lockdep_assert_held(&cgroup_mutex);
3576
3577restart:
3578	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3579		/* does cft->flags tell us to skip this file on @cgrp? */
3580		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3581			continue;
3582		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3583			continue;
3584		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3585			continue;
3586		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3587			continue;
3588
 
3589		if (is_add) {
3590			ret = cgroup_add_file(css, cgrp, cft);
3591			if (ret) {
3592				pr_warn("%s: failed to add %s, err=%d\n",
3593					__func__, cft->name, ret);
3594				cft_end = cft;
3595				is_add = false;
3596				goto restart;
3597			}
3598		} else {
3599			cgroup_rm_file(cgrp, cft);
3600		}
3601	}
3602	return ret;
3603}
3604
3605static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3606{
3607	struct cgroup_subsys *ss = cfts[0].ss;
3608	struct cgroup *root = &ss->root->cgrp;
3609	struct cgroup_subsys_state *css;
3610	int ret = 0;
3611
3612	lockdep_assert_held(&cgroup_mutex);
3613
3614	/* add/rm files for all cgroups created before */
3615	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3616		struct cgroup *cgrp = css->cgroup;
3617
3618		if (!(css->flags & CSS_VISIBLE))
3619			continue;
3620
3621		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3622		if (ret)
3623			break;
3624	}
3625
3626	if (is_add && !ret)
3627		kernfs_activate(root->kn);
3628	return ret;
3629}
3630
3631static void cgroup_exit_cftypes(struct cftype *cfts)
3632{
3633	struct cftype *cft;
3634
3635	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3636		/* free copy for custom atomic_write_len, see init_cftypes() */
3637		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3638			kfree(cft->kf_ops);
3639		cft->kf_ops = NULL;
3640		cft->ss = NULL;
3641
3642		/* revert flags set by cgroup core while adding @cfts */
3643		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3644	}
3645}
3646
3647static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3648{
3649	struct cftype *cft;
3650
3651	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3652		struct kernfs_ops *kf_ops;
3653
3654		WARN_ON(cft->ss || cft->kf_ops);
3655
3656		if (cft->seq_start)
3657			kf_ops = &cgroup_kf_ops;
3658		else
3659			kf_ops = &cgroup_kf_single_ops;
3660
3661		/*
3662		 * Ugh... if @cft wants a custom max_write_len, we need to
3663		 * make a copy of kf_ops to set its atomic_write_len.
3664		 */
3665		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3666			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3667			if (!kf_ops) {
3668				cgroup_exit_cftypes(cfts);
3669				return -ENOMEM;
3670			}
3671			kf_ops->atomic_write_len = cft->max_write_len;
3672		}
3673
3674		cft->kf_ops = kf_ops;
3675		cft->ss = ss;
3676	}
3677
3678	return 0;
3679}
3680
3681static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3682{
3683	lockdep_assert_held(&cgroup_mutex);
3684
3685	if (!cfts || !cfts[0].ss)
3686		return -ENOENT;
3687
3688	list_del(&cfts->node);
3689	cgroup_apply_cftypes(cfts, false);
3690	cgroup_exit_cftypes(cfts);
3691	return 0;
3692}
3693
3694/**
3695 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3696 * @cfts: zero-length name terminated array of cftypes
3697 *
3698 * Unregister @cfts.  Files described by @cfts are removed from all
3699 * existing cgroups and all future cgroups won't have them either.  This
3700 * function can be called anytime whether @cfts' subsys is attached or not.
3701 *
3702 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3703 * registered.
3704 */
3705int cgroup_rm_cftypes(struct cftype *cfts)
3706{
3707	int ret;
3708
3709	mutex_lock(&cgroup_mutex);
3710	ret = cgroup_rm_cftypes_locked(cfts);
3711	mutex_unlock(&cgroup_mutex);
3712	return ret;
3713}
3714
3715/**
3716 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3717 * @ss: target cgroup subsystem
3718 * @cfts: zero-length name terminated array of cftypes
3719 *
3720 * Register @cfts to @ss.  Files described by @cfts are created for all
3721 * existing cgroups to which @ss is attached and all future cgroups will
3722 * have them too.  This function can be called anytime whether @ss is
3723 * attached or not.
3724 *
3725 * Returns 0 on successful registration, -errno on failure.  Note that this
3726 * function currently returns 0 as long as @cfts registration is successful
3727 * even if some file creation attempts on existing cgroups fail.
3728 */
3729static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3730{
3731	int ret;
3732
3733	if (!cgroup_ssid_enabled(ss->id))
3734		return 0;
3735
3736	if (!cfts || cfts[0].name[0] == '\0')
3737		return 0;
3738
3739	ret = cgroup_init_cftypes(ss, cfts);
3740	if (ret)
3741		return ret;
3742
3743	mutex_lock(&cgroup_mutex);
3744
3745	list_add_tail(&cfts->node, &ss->cfts);
3746	ret = cgroup_apply_cftypes(cfts, true);
3747	if (ret)
3748		cgroup_rm_cftypes_locked(cfts);
3749
3750	mutex_unlock(&cgroup_mutex);
3751	return ret;
3752}
3753
3754/**
3755 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3756 * @ss: target cgroup subsystem
3757 * @cfts: zero-length name terminated array of cftypes
3758 *
3759 * Similar to cgroup_add_cftypes() but the added files are only used for
3760 * the default hierarchy.
3761 */
3762int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3763{
3764	struct cftype *cft;
3765
3766	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3767		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3768	return cgroup_add_cftypes(ss, cfts);
3769}
3770
3771/**
3772 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3773 * @ss: target cgroup subsystem
3774 * @cfts: zero-length name terminated array of cftypes
3775 *
3776 * Similar to cgroup_add_cftypes() but the added files are only used for
3777 * the legacy hierarchies.
3778 */
3779int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3780{
3781	struct cftype *cft;
3782
3783	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3784		cft->flags |= __CFTYPE_NOT_ON_DFL;
3785	return cgroup_add_cftypes(ss, cfts);
3786}
3787
3788/**
3789 * cgroup_file_notify - generate a file modified event for a cgroup_file
3790 * @cfile: target cgroup_file
3791 *
3792 * @cfile must have been obtained by setting cftype->file_offset.
3793 */
3794void cgroup_file_notify(struct cgroup_file *cfile)
3795{
3796	unsigned long flags;
3797
3798	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3799	if (cfile->kn)
3800		kernfs_notify(cfile->kn);
 
 
 
 
 
 
 
 
 
3801	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3802}
3803
3804/**
3805 * css_next_child - find the next child of a given css
3806 * @pos: the current position (%NULL to initiate traversal)
3807 * @parent: css whose children to walk
3808 *
3809 * This function returns the next child of @parent and should be called
3810 * under either cgroup_mutex or RCU read lock.  The only requirement is
3811 * that @parent and @pos are accessible.  The next sibling is guaranteed to
3812 * be returned regardless of their states.
3813 *
3814 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3815 * css which finished ->css_online() is guaranteed to be visible in the
3816 * future iterations and will stay visible until the last reference is put.
3817 * A css which hasn't finished ->css_online() or already finished
3818 * ->css_offline() may show up during traversal.  It's each subsystem's
3819 * responsibility to synchronize against on/offlining.
3820 */
3821struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3822					   struct cgroup_subsys_state *parent)
3823{
3824	struct cgroup_subsys_state *next;
3825
3826	cgroup_assert_mutex_or_rcu_locked();
3827
3828	/*
3829	 * @pos could already have been unlinked from the sibling list.
3830	 * Once a cgroup is removed, its ->sibling.next is no longer
3831	 * updated when its next sibling changes.  CSS_RELEASED is set when
3832	 * @pos is taken off list, at which time its next pointer is valid,
3833	 * and, as releases are serialized, the one pointed to by the next
3834	 * pointer is guaranteed to not have started release yet.  This
3835	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3836	 * critical section, the one pointed to by its next pointer is
3837	 * guaranteed to not have finished its RCU grace period even if we
3838	 * have dropped rcu_read_lock() inbetween iterations.
3839	 *
3840	 * If @pos has CSS_RELEASED set, its next pointer can't be
3841	 * dereferenced; however, as each css is given a monotonically
3842	 * increasing unique serial number and always appended to the
3843	 * sibling list, the next one can be found by walking the parent's
3844	 * children until the first css with higher serial number than
3845	 * @pos's.  While this path can be slower, it happens iff iteration
3846	 * races against release and the race window is very small.
3847	 */
3848	if (!pos) {
3849		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3850	} else if (likely(!(pos->flags & CSS_RELEASED))) {
3851		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3852	} else {
3853		list_for_each_entry_rcu(next, &parent->children, sibling)
 
3854			if (next->serial_nr > pos->serial_nr)
3855				break;
3856	}
3857
3858	/*
3859	 * @next, if not pointing to the head, can be dereferenced and is
3860	 * the next sibling.
3861	 */
3862	if (&next->sibling != &parent->children)
3863		return next;
3864	return NULL;
3865}
3866
3867/**
3868 * css_next_descendant_pre - find the next descendant for pre-order walk
3869 * @pos: the current position (%NULL to initiate traversal)
3870 * @root: css whose descendants to walk
3871 *
3872 * To be used by css_for_each_descendant_pre().  Find the next descendant
3873 * to visit for pre-order traversal of @root's descendants.  @root is
3874 * included in the iteration and the first node to be visited.
3875 *
3876 * While this function requires cgroup_mutex or RCU read locking, it
3877 * doesn't require the whole traversal to be contained in a single critical
3878 * section.  This function will return the correct next descendant as long
3879 * as both @pos and @root are accessible and @pos is a descendant of @root.
3880 *
3881 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3882 * css which finished ->css_online() is guaranteed to be visible in the
3883 * future iterations and will stay visible until the last reference is put.
3884 * A css which hasn't finished ->css_online() or already finished
3885 * ->css_offline() may show up during traversal.  It's each subsystem's
3886 * responsibility to synchronize against on/offlining.
3887 */
3888struct cgroup_subsys_state *
3889css_next_descendant_pre(struct cgroup_subsys_state *pos,
3890			struct cgroup_subsys_state *root)
3891{
3892	struct cgroup_subsys_state *next;
3893
3894	cgroup_assert_mutex_or_rcu_locked();
3895
3896	/* if first iteration, visit @root */
3897	if (!pos)
3898		return root;
3899
3900	/* visit the first child if exists */
3901	next = css_next_child(NULL, pos);
3902	if (next)
3903		return next;
3904
3905	/* no child, visit my or the closest ancestor's next sibling */
3906	while (pos != root) {
3907		next = css_next_child(pos, pos->parent);
3908		if (next)
3909			return next;
3910		pos = pos->parent;
3911	}
3912
3913	return NULL;
3914}
 
3915
3916/**
3917 * css_rightmost_descendant - return the rightmost descendant of a css
3918 * @pos: css of interest
3919 *
3920 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
3921 * is returned.  This can be used during pre-order traversal to skip
3922 * subtree of @pos.
3923 *
3924 * While this function requires cgroup_mutex or RCU read locking, it
3925 * doesn't require the whole traversal to be contained in a single critical
3926 * section.  This function will return the correct rightmost descendant as
3927 * long as @pos is accessible.
3928 */
3929struct cgroup_subsys_state *
3930css_rightmost_descendant(struct cgroup_subsys_state *pos)
3931{
3932	struct cgroup_subsys_state *last, *tmp;
3933
3934	cgroup_assert_mutex_or_rcu_locked();
3935
3936	do {
3937		last = pos;
3938		/* ->prev isn't RCU safe, walk ->next till the end */
3939		pos = NULL;
3940		css_for_each_child(tmp, last)
3941			pos = tmp;
3942	} while (pos);
3943
3944	return last;
3945}
3946
3947static struct cgroup_subsys_state *
3948css_leftmost_descendant(struct cgroup_subsys_state *pos)
3949{
3950	struct cgroup_subsys_state *last;
3951
3952	do {
3953		last = pos;
3954		pos = css_next_child(NULL, pos);
3955	} while (pos);
3956
3957	return last;
3958}
3959
3960/**
3961 * css_next_descendant_post - find the next descendant for post-order walk
3962 * @pos: the current position (%NULL to initiate traversal)
3963 * @root: css whose descendants to walk
3964 *
3965 * To be used by css_for_each_descendant_post().  Find the next descendant
3966 * to visit for post-order traversal of @root's descendants.  @root is
3967 * included in the iteration and the last node to be visited.
3968 *
3969 * While this function requires cgroup_mutex or RCU read locking, it
3970 * doesn't require the whole traversal to be contained in a single critical
3971 * section.  This function will return the correct next descendant as long
3972 * as both @pos and @cgroup are accessible and @pos is a descendant of
3973 * @cgroup.
3974 *
3975 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3976 * css which finished ->css_online() is guaranteed to be visible in the
3977 * future iterations and will stay visible until the last reference is put.
3978 * A css which hasn't finished ->css_online() or already finished
3979 * ->css_offline() may show up during traversal.  It's each subsystem's
3980 * responsibility to synchronize against on/offlining.
3981 */
3982struct cgroup_subsys_state *
3983css_next_descendant_post(struct cgroup_subsys_state *pos,
3984			 struct cgroup_subsys_state *root)
3985{
3986	struct cgroup_subsys_state *next;
3987
3988	cgroup_assert_mutex_or_rcu_locked();
3989
3990	/* if first iteration, visit leftmost descendant which may be @root */
3991	if (!pos)
3992		return css_leftmost_descendant(root);
3993
3994	/* if we visited @root, we're done */
3995	if (pos == root)
3996		return NULL;
3997
3998	/* if there's an unvisited sibling, visit its leftmost descendant */
3999	next = css_next_child(pos, pos->parent);
4000	if (next)
4001		return css_leftmost_descendant(next);
4002
4003	/* no sibling left, visit parent */
4004	return pos->parent;
4005}
4006
4007/**
4008 * css_has_online_children - does a css have online children
4009 * @css: the target css
4010 *
4011 * Returns %true if @css has any online children; otherwise, %false.  This
4012 * function can be called from any context but the caller is responsible
4013 * for synchronizing against on/offlining as necessary.
4014 */
4015bool css_has_online_children(struct cgroup_subsys_state *css)
4016{
4017	struct cgroup_subsys_state *child;
4018	bool ret = false;
4019
4020	rcu_read_lock();
4021	css_for_each_child(child, css) {
4022		if (child->flags & CSS_ONLINE) {
4023			ret = true;
4024			break;
4025		}
4026	}
4027	rcu_read_unlock();
4028	return ret;
4029}
4030
4031static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4032{
4033	struct list_head *l;
4034	struct cgrp_cset_link *link;
4035	struct css_set *cset;
4036
4037	lockdep_assert_held(&css_set_lock);
4038
4039	/* find the next threaded cset */
4040	if (it->tcset_pos) {
4041		l = it->tcset_pos->next;
4042
4043		if (l != it->tcset_head) {
4044			it->tcset_pos = l;
4045			return container_of(l, struct css_set,
4046					    threaded_csets_node);
4047		}
4048
4049		it->tcset_pos = NULL;
4050	}
4051
4052	/* find the next cset */
4053	l = it->cset_pos;
4054	l = l->next;
4055	if (l == it->cset_head) {
4056		it->cset_pos = NULL;
4057		return NULL;
4058	}
4059
4060	if (it->ss) {
4061		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4062	} else {
4063		link = list_entry(l, struct cgrp_cset_link, cset_link);
4064		cset = link->cset;
4065	}
4066
4067	it->cset_pos = l;
4068
4069	/* initialize threaded css_set walking */
4070	if (it->flags & CSS_TASK_ITER_THREADED) {
4071		if (it->cur_dcset)
4072			put_css_set_locked(it->cur_dcset);
4073		it->cur_dcset = cset;
4074		get_css_set(cset);
4075
4076		it->tcset_head = &cset->threaded_csets;
4077		it->tcset_pos = &cset->threaded_csets;
4078	}
4079
4080	return cset;
4081}
4082
4083/**
4084 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4085 * @it: the iterator to advance
4086 *
4087 * Advance @it to the next css_set to walk.
4088 */
4089static void css_task_iter_advance_css_set(struct css_task_iter *it)
4090{
4091	struct css_set *cset;
4092
4093	lockdep_assert_held(&css_set_lock);
4094
4095	/* Advance to the next non-empty css_set */
4096	do {
4097		cset = css_task_iter_next_css_set(it);
4098		if (!cset) {
4099			it->task_pos = NULL;
4100			return;
 
 
 
 
 
4101		}
4102	} while (!css_set_populated(cset));
4103
4104	if (!list_empty(&cset->tasks))
4105		it->task_pos = cset->tasks.next;
4106	else
4107		it->task_pos = cset->mg_tasks.next;
4108
4109	it->tasks_head = &cset->tasks;
4110	it->mg_tasks_head = &cset->mg_tasks;
4111
4112	/*
4113	 * We don't keep css_sets locked across iteration steps and thus
4114	 * need to take steps to ensure that iteration can be resumed after
4115	 * the lock is re-acquired.  Iteration is performed at two levels -
4116	 * css_sets and tasks in them.
4117	 *
4118	 * Once created, a css_set never leaves its cgroup lists, so a
4119	 * pinned css_set is guaranteed to stay put and we can resume
4120	 * iteration afterwards.
4121	 *
4122	 * Tasks may leave @cset across iteration steps.  This is resolved
4123	 * by registering each iterator with the css_set currently being
4124	 * walked and making css_set_move_task() advance iterators whose
4125	 * next task is leaving.
4126	 */
4127	if (it->cur_cset) {
4128		list_del(&it->iters_node);
4129		put_css_set_locked(it->cur_cset);
4130	}
4131	get_css_set(cset);
4132	it->cur_cset = cset;
4133	list_add(&it->iters_node, &cset->task_iters);
4134}
4135
 
 
 
 
 
 
 
 
 
 
 
4136static void css_task_iter_advance(struct css_task_iter *it)
4137{
4138	struct list_head *next;
4139
4140	lockdep_assert_held(&css_set_lock);
4141repeat:
4142	/*
4143	 * Advance iterator to find next entry.  cset->tasks is consumed
4144	 * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
4145	 * next cset.
4146	 */
4147	next = it->task_pos->next;
4148
4149	if (next == it->tasks_head)
4150		next = it->mg_tasks_head->next;
 
4151
4152	if (next == it->mg_tasks_head)
 
 
 
 
 
 
 
 
 
 
 
4153		css_task_iter_advance_css_set(it);
4154	else
4155		it->task_pos = next;
4156
4157	/* if PROCS, skip over tasks which aren't group leaders */
4158	if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4159	    !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4160					    cg_list)))
4161		goto repeat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4162}
4163
4164/**
4165 * css_task_iter_start - initiate task iteration
4166 * @css: the css to walk tasks of
4167 * @flags: CSS_TASK_ITER_* flags
4168 * @it: the task iterator to use
4169 *
4170 * Initiate iteration through the tasks of @css.  The caller can call
4171 * css_task_iter_next() to walk through the tasks until the function
4172 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4173 * called.
4174 */
4175void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4176			 struct css_task_iter *it)
4177{
4178	/* no one should try to iterate before mounting cgroups */
4179	WARN_ON_ONCE(!use_task_css_set_links);
4180
4181	memset(it, 0, sizeof(*it));
4182
4183	spin_lock_irq(&css_set_lock);
4184
4185	it->ss = css->ss;
4186	it->flags = flags;
4187
4188	if (it->ss)
4189		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4190	else
4191		it->cset_pos = &css->cgroup->cset_links;
4192
4193	it->cset_head = it->cset_pos;
4194
4195	css_task_iter_advance_css_set(it);
4196
4197	spin_unlock_irq(&css_set_lock);
4198}
4199
4200/**
4201 * css_task_iter_next - return the next task for the iterator
4202 * @it: the task iterator being iterated
4203 *
4204 * The "next" function for task iteration.  @it should have been
4205 * initialized via css_task_iter_start().  Returns NULL when the iteration
4206 * reaches the end.
4207 */
4208struct task_struct *css_task_iter_next(struct css_task_iter *it)
4209{
4210	if (it->cur_task) {
4211		put_task_struct(it->cur_task);
4212		it->cur_task = NULL;
4213	}
4214
4215	spin_lock_irq(&css_set_lock);
4216
 
 
 
 
4217	if (it->task_pos) {
4218		it->cur_task = list_entry(it->task_pos, struct task_struct,
4219					  cg_list);
4220		get_task_struct(it->cur_task);
4221		css_task_iter_advance(it);
4222	}
4223
4224	spin_unlock_irq(&css_set_lock);
4225
4226	return it->cur_task;
4227}
4228
4229/**
4230 * css_task_iter_end - finish task iteration
4231 * @it: the task iterator to finish
4232 *
4233 * Finish task iteration started by css_task_iter_start().
4234 */
4235void css_task_iter_end(struct css_task_iter *it)
4236{
4237	if (it->cur_cset) {
4238		spin_lock_irq(&css_set_lock);
4239		list_del(&it->iters_node);
4240		put_css_set_locked(it->cur_cset);
4241		spin_unlock_irq(&css_set_lock);
4242	}
4243
4244	if (it->cur_dcset)
4245		put_css_set(it->cur_dcset);
4246
4247	if (it->cur_task)
4248		put_task_struct(it->cur_task);
4249}
4250
4251static void cgroup_procs_release(struct kernfs_open_file *of)
4252{
4253	if (of->priv) {
4254		css_task_iter_end(of->priv);
4255		kfree(of->priv);
4256	}
4257}
4258
4259static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4260{
4261	struct kernfs_open_file *of = s->private;
4262	struct css_task_iter *it = of->priv;
4263
 
 
 
4264	return css_task_iter_next(it);
4265}
4266
4267static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4268				  unsigned int iter_flags)
4269{
4270	struct kernfs_open_file *of = s->private;
4271	struct cgroup *cgrp = seq_css(s)->cgroup;
4272	struct css_task_iter *it = of->priv;
4273
4274	/*
4275	 * When a seq_file is seeked, it's always traversed sequentially
4276	 * from position 0, so we can simply keep iterating on !0 *pos.
4277	 */
4278	if (!it) {
4279		if (WARN_ON_ONCE((*pos)++))
4280			return ERR_PTR(-EINVAL);
4281
4282		it = kzalloc(sizeof(*it), GFP_KERNEL);
4283		if (!it)
4284			return ERR_PTR(-ENOMEM);
4285		of->priv = it;
4286		css_task_iter_start(&cgrp->self, iter_flags, it);
4287	} else if (!(*pos)++) {
4288		css_task_iter_end(it);
4289		css_task_iter_start(&cgrp->self, iter_flags, it);
4290	}
 
4291
4292	return cgroup_procs_next(s, NULL, NULL);
4293}
4294
4295static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4296{
4297	struct cgroup *cgrp = seq_css(s)->cgroup;
4298
4299	/*
4300	 * All processes of a threaded subtree belong to the domain cgroup
4301	 * of the subtree.  Only threads can be distributed across the
4302	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4303	 * They're always empty anyway.
4304	 */
4305	if (cgroup_is_threaded(cgrp))
4306		return ERR_PTR(-EOPNOTSUPP);
4307
4308	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4309					    CSS_TASK_ITER_THREADED);
4310}
4311
4312static int cgroup_procs_show(struct seq_file *s, void *v)
4313{
4314	seq_printf(s, "%d\n", task_pid_vnr(v));
4315	return 0;
4316}
4317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4318static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4319					 struct cgroup *dst_cgrp,
4320					 struct super_block *sb)
4321{
4322	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4323	struct cgroup *com_cgrp = src_cgrp;
4324	struct inode *inode;
4325	int ret;
4326
4327	lockdep_assert_held(&cgroup_mutex);
4328
4329	/* find the common ancestor */
4330	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4331		com_cgrp = cgroup_parent(com_cgrp);
4332
4333	/* %current should be authorized to migrate to the common ancestor */
4334	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4335	if (!inode)
4336		return -ENOMEM;
4337
4338	ret = inode_permission(inode, MAY_WRITE);
4339	iput(inode);
4340	if (ret)
4341		return ret;
4342
4343	/*
4344	 * If namespaces are delegation boundaries, %current must be able
4345	 * to see both source and destination cgroups from its namespace.
4346	 */
4347	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4348	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4349	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4350		return -ENOENT;
4351
4352	return 0;
4353}
4354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4355static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4356				  char *buf, size_t nbytes, loff_t off)
4357{
4358	struct cgroup *src_cgrp, *dst_cgrp;
4359	struct task_struct *task;
4360	ssize_t ret;
 
4361
4362	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4363	if (!dst_cgrp)
4364		return -ENODEV;
4365
4366	task = cgroup_procs_write_start(buf, true);
4367	ret = PTR_ERR_OR_ZERO(task);
4368	if (ret)
4369		goto out_unlock;
4370
4371	/* find the source cgroup */
4372	spin_lock_irq(&css_set_lock);
4373	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4374	spin_unlock_irq(&css_set_lock);
4375
4376	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4377					    of->file->f_path.dentry->d_sb);
4378	if (ret)
4379		goto out_finish;
4380
4381	ret = cgroup_attach_task(dst_cgrp, task, true);
4382
4383out_finish:
4384	cgroup_procs_write_finish(task);
4385out_unlock:
4386	cgroup_kn_unlock(of->kn);
4387
4388	return ret ?: nbytes;
4389}
4390
4391static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4392{
4393	return __cgroup_procs_start(s, pos, 0);
4394}
4395
4396static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4397				    char *buf, size_t nbytes, loff_t off)
4398{
4399	struct cgroup *src_cgrp, *dst_cgrp;
4400	struct task_struct *task;
4401	ssize_t ret;
 
4402
4403	buf = strstrip(buf);
4404
4405	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4406	if (!dst_cgrp)
4407		return -ENODEV;
4408
4409	task = cgroup_procs_write_start(buf, false);
4410	ret = PTR_ERR_OR_ZERO(task);
4411	if (ret)
4412		goto out_unlock;
4413
4414	/* find the source cgroup */
4415	spin_lock_irq(&css_set_lock);
4416	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4417	spin_unlock_irq(&css_set_lock);
4418
4419	/* thread migrations follow the cgroup.procs delegation rule */
4420	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4421					    of->file->f_path.dentry->d_sb);
4422	if (ret)
4423		goto out_finish;
4424
4425	/* and must be contained in the same domain */
4426	ret = -EOPNOTSUPP;
4427	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4428		goto out_finish;
4429
4430	ret = cgroup_attach_task(dst_cgrp, task, false);
4431
4432out_finish:
4433	cgroup_procs_write_finish(task);
4434out_unlock:
4435	cgroup_kn_unlock(of->kn);
4436
4437	return ret ?: nbytes;
4438}
4439
4440/* cgroup core interface files for the default hierarchy */
4441static struct cftype cgroup_base_files[] = {
4442	{
4443		.name = "cgroup.type",
4444		.flags = CFTYPE_NOT_ON_ROOT,
4445		.seq_show = cgroup_type_show,
4446		.write = cgroup_type_write,
4447	},
4448	{
4449		.name = "cgroup.procs",
4450		.flags = CFTYPE_NS_DELEGATABLE,
4451		.file_offset = offsetof(struct cgroup, procs_file),
4452		.release = cgroup_procs_release,
4453		.seq_start = cgroup_procs_start,
4454		.seq_next = cgroup_procs_next,
4455		.seq_show = cgroup_procs_show,
4456		.write = cgroup_procs_write,
4457	},
4458	{
4459		.name = "cgroup.threads",
4460		.flags = CFTYPE_NS_DELEGATABLE,
4461		.release = cgroup_procs_release,
4462		.seq_start = cgroup_threads_start,
4463		.seq_next = cgroup_procs_next,
4464		.seq_show = cgroup_procs_show,
4465		.write = cgroup_threads_write,
4466	},
4467	{
4468		.name = "cgroup.controllers",
4469		.seq_show = cgroup_controllers_show,
4470	},
4471	{
4472		.name = "cgroup.subtree_control",
4473		.flags = CFTYPE_NS_DELEGATABLE,
4474		.seq_show = cgroup_subtree_control_show,
4475		.write = cgroup_subtree_control_write,
4476	},
4477	{
4478		.name = "cgroup.events",
4479		.flags = CFTYPE_NOT_ON_ROOT,
4480		.file_offset = offsetof(struct cgroup, events_file),
4481		.seq_show = cgroup_events_show,
4482	},
4483	{
4484		.name = "cgroup.max.descendants",
4485		.seq_show = cgroup_max_descendants_show,
4486		.write = cgroup_max_descendants_write,
4487	},
4488	{
4489		.name = "cgroup.max.depth",
4490		.seq_show = cgroup_max_depth_show,
4491		.write = cgroup_max_depth_write,
4492	},
4493	{
4494		.name = "cgroup.stat",
4495		.seq_show = cgroup_stat_show,
4496	},
4497	{
4498		.name = "cpu.stat",
4499		.flags = CFTYPE_NOT_ON_ROOT,
 
 
 
 
 
4500		.seq_show = cpu_stat_show,
4501	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4502	{ }	/* terminate */
4503};
4504
4505/*
4506 * css destruction is four-stage process.
4507 *
4508 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4509 *    Implemented in kill_css().
4510 *
4511 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4512 *    and thus css_tryget_online() is guaranteed to fail, the css can be
4513 *    offlined by invoking offline_css().  After offlining, the base ref is
4514 *    put.  Implemented in css_killed_work_fn().
4515 *
4516 * 3. When the percpu_ref reaches zero, the only possible remaining
4517 *    accessors are inside RCU read sections.  css_release() schedules the
4518 *    RCU callback.
4519 *
4520 * 4. After the grace period, the css can be freed.  Implemented in
4521 *    css_free_work_fn().
4522 *
4523 * It is actually hairier because both step 2 and 4 require process context
4524 * and thus involve punting to css->destroy_work adding two additional
4525 * steps to the already complex sequence.
4526 */
4527static void css_free_rwork_fn(struct work_struct *work)
4528{
4529	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4530				struct cgroup_subsys_state, destroy_rwork);
4531	struct cgroup_subsys *ss = css->ss;
4532	struct cgroup *cgrp = css->cgroup;
4533
4534	percpu_ref_exit(&css->refcnt);
4535
4536	if (ss) {
4537		/* css free path */
4538		struct cgroup_subsys_state *parent = css->parent;
4539		int id = css->id;
4540
4541		ss->css_free(css);
4542		cgroup_idr_remove(&ss->css_idr, id);
4543		cgroup_put(cgrp);
4544
4545		if (parent)
4546			css_put(parent);
4547	} else {
4548		/* cgroup free path */
4549		atomic_dec(&cgrp->root->nr_cgrps);
4550		cgroup1_pidlist_destroy_all(cgrp);
4551		cancel_work_sync(&cgrp->release_agent_work);
4552
4553		if (cgroup_parent(cgrp)) {
4554			/*
4555			 * We get a ref to the parent, and put the ref when
4556			 * this cgroup is being freed, so it's guaranteed
4557			 * that the parent won't be destroyed before its
4558			 * children.
4559			 */
4560			cgroup_put(cgroup_parent(cgrp));
4561			kernfs_put(cgrp->kn);
 
4562			if (cgroup_on_dfl(cgrp))
4563				cgroup_stat_exit(cgrp);
4564			kfree(cgrp);
4565		} else {
4566			/*
4567			 * This is root cgroup's refcnt reaching zero,
4568			 * which indicates that the root should be
4569			 * released.
4570			 */
4571			cgroup_destroy_root(cgrp->root);
4572		}
4573	}
4574}
4575
4576static void css_release_work_fn(struct work_struct *work)
4577{
4578	struct cgroup_subsys_state *css =
4579		container_of(work, struct cgroup_subsys_state, destroy_work);
4580	struct cgroup_subsys *ss = css->ss;
4581	struct cgroup *cgrp = css->cgroup;
4582
4583	mutex_lock(&cgroup_mutex);
4584
4585	css->flags |= CSS_RELEASED;
4586	list_del_rcu(&css->sibling);
4587
4588	if (ss) {
4589		/* css release path */
 
 
 
 
 
4590		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4591		if (ss->css_released)
4592			ss->css_released(css);
4593	} else {
4594		struct cgroup *tcgrp;
4595
4596		/* cgroup release path */
4597		trace_cgroup_release(cgrp);
4598
4599		if (cgroup_on_dfl(cgrp))
4600			cgroup_stat_flush(cgrp);
4601
 
4602		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4603		     tcgrp = cgroup_parent(tcgrp))
4604			tcgrp->nr_dying_descendants--;
4605
4606		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4607		cgrp->id = -1;
4608
4609		/*
4610		 * There are two control paths which try to determine
4611		 * cgroup from dentry without going through kernfs -
4612		 * cgroupstats_build() and css_tryget_online_from_dir().
4613		 * Those are supported by RCU protecting clearing of
4614		 * cgrp->kn->priv backpointer.
4615		 */
4616		if (cgrp->kn)
4617			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4618					 NULL);
4619
4620		cgroup_bpf_put(cgrp);
4621	}
4622
4623	mutex_unlock(&cgroup_mutex);
4624
4625	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4626	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4627}
4628
4629static void css_release(struct percpu_ref *ref)
4630{
4631	struct cgroup_subsys_state *css =
4632		container_of(ref, struct cgroup_subsys_state, refcnt);
4633
4634	INIT_WORK(&css->destroy_work, css_release_work_fn);
4635	queue_work(cgroup_destroy_wq, &css->destroy_work);
4636}
4637
4638static void init_and_link_css(struct cgroup_subsys_state *css,
4639			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4640{
4641	lockdep_assert_held(&cgroup_mutex);
4642
4643	cgroup_get_live(cgrp);
4644
4645	memset(css, 0, sizeof(*css));
4646	css->cgroup = cgrp;
4647	css->ss = ss;
4648	css->id = -1;
4649	INIT_LIST_HEAD(&css->sibling);
4650	INIT_LIST_HEAD(&css->children);
 
4651	css->serial_nr = css_serial_nr_next++;
4652	atomic_set(&css->online_cnt, 0);
4653
4654	if (cgroup_parent(cgrp)) {
4655		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4656		css_get(css->parent);
4657	}
4658
 
 
 
4659	BUG_ON(cgroup_css(cgrp, ss));
4660}
4661
4662/* invoke ->css_online() on a new CSS and mark it online if successful */
4663static int online_css(struct cgroup_subsys_state *css)
4664{
4665	struct cgroup_subsys *ss = css->ss;
4666	int ret = 0;
4667
4668	lockdep_assert_held(&cgroup_mutex);
4669
4670	if (ss->css_online)
4671		ret = ss->css_online(css);
4672	if (!ret) {
4673		css->flags |= CSS_ONLINE;
4674		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4675
4676		atomic_inc(&css->online_cnt);
4677		if (css->parent)
4678			atomic_inc(&css->parent->online_cnt);
4679	}
4680	return ret;
4681}
4682
4683/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4684static void offline_css(struct cgroup_subsys_state *css)
4685{
4686	struct cgroup_subsys *ss = css->ss;
4687
4688	lockdep_assert_held(&cgroup_mutex);
4689
4690	if (!(css->flags & CSS_ONLINE))
4691		return;
4692
4693	if (ss->css_offline)
4694		ss->css_offline(css);
4695
4696	css->flags &= ~CSS_ONLINE;
4697	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4698
4699	wake_up_all(&css->cgroup->offline_waitq);
4700}
4701
4702/**
4703 * css_create - create a cgroup_subsys_state
4704 * @cgrp: the cgroup new css will be associated with
4705 * @ss: the subsys of new css
4706 *
4707 * Create a new css associated with @cgrp - @ss pair.  On success, the new
4708 * css is online and installed in @cgrp.  This function doesn't create the
4709 * interface files.  Returns 0 on success, -errno on failure.
4710 */
4711static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4712					      struct cgroup_subsys *ss)
4713{
4714	struct cgroup *parent = cgroup_parent(cgrp);
4715	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4716	struct cgroup_subsys_state *css;
4717	int err;
4718
4719	lockdep_assert_held(&cgroup_mutex);
4720
4721	css = ss->css_alloc(parent_css);
4722	if (!css)
4723		css = ERR_PTR(-ENOMEM);
4724	if (IS_ERR(css))
4725		return css;
4726
4727	init_and_link_css(css, ss, cgrp);
4728
4729	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4730	if (err)
4731		goto err_free_css;
4732
4733	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4734	if (err < 0)
4735		goto err_free_css;
4736	css->id = err;
4737
4738	/* @css is ready to be brought online now, make it visible */
4739	list_add_tail_rcu(&css->sibling, &parent_css->children);
4740	cgroup_idr_replace(&ss->css_idr, css, css->id);
4741
4742	err = online_css(css);
4743	if (err)
4744		goto err_list_del;
4745
4746	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4747	    cgroup_parent(parent)) {
4748		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4749			current->comm, current->pid, ss->name);
4750		if (!strcmp(ss->name, "memory"))
4751			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4752		ss->warned_broken_hierarchy = true;
4753	}
4754
4755	return css;
4756
4757err_list_del:
4758	list_del_rcu(&css->sibling);
4759err_free_css:
 
4760	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4761	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4762	return ERR_PTR(err);
4763}
4764
4765/*
4766 * The returned cgroup is fully initialized including its control mask, but
4767 * it isn't associated with its kernfs_node and doesn't have the control
4768 * mask applied.
4769 */
4770static struct cgroup *cgroup_create(struct cgroup *parent)
 
4771{
4772	struct cgroup_root *root = parent->root;
4773	struct cgroup *cgrp, *tcgrp;
 
4774	int level = parent->level + 1;
4775	int ret;
4776
4777	/* allocate the cgroup and its ID, 0 is reserved for the root */
4778	cgrp = kzalloc(sizeof(*cgrp) +
4779		       sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4780	if (!cgrp)
4781		return ERR_PTR(-ENOMEM);
4782
4783	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4784	if (ret)
4785		goto out_free_cgrp;
4786
4787	if (cgroup_on_dfl(parent)) {
4788		ret = cgroup_stat_init(cgrp);
4789		if (ret)
4790			goto out_cancel_ref;
4791	}
4792
4793	/*
4794	 * Temporarily set the pointer to NULL, so idr_find() won't return
4795	 * a half-baked cgroup.
4796	 */
4797	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4798	if (cgrp->id < 0) {
4799		ret = -ENOMEM;
4800		goto out_stat_exit;
4801	}
 
4802
4803	init_cgroup_housekeeping(cgrp);
4804
4805	cgrp->self.parent = &parent->self;
4806	cgrp->root = root;
4807	cgrp->level = level;
 
 
 
 
 
4808	ret = cgroup_bpf_inherit(cgrp);
4809	if (ret)
4810		goto out_idr_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4811
 
4812	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4813		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4814
4815		if (tcgrp != cgrp)
4816			tcgrp->nr_descendants++;
 
 
 
 
 
 
 
 
 
4817	}
 
4818
4819	if (notify_on_release(parent))
4820		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4821
4822	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4823		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4824
4825	cgrp->self.serial_nr = css_serial_nr_next++;
4826
4827	/* allocation complete, commit to creation */
4828	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4829	atomic_inc(&root->nr_cgrps);
4830	cgroup_get_live(parent);
4831
4832	/*
4833	 * @cgrp is now fully operational.  If something fails after this
4834	 * point, it'll be released via the normal destruction path.
4835	 */
4836	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4837
4838	/*
4839	 * On the default hierarchy, a child doesn't automatically inherit
4840	 * subtree_control from the parent.  Each is configured manually.
4841	 */
4842	if (!cgroup_on_dfl(cgrp))
4843		cgrp->subtree_control = cgroup_control(cgrp);
4844
4845	cgroup_propagate_control(cgrp);
4846
4847	return cgrp;
4848
4849out_idr_free:
4850	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
 
 
4851out_stat_exit:
4852	if (cgroup_on_dfl(parent))
4853		cgroup_stat_exit(cgrp);
4854out_cancel_ref:
4855	percpu_ref_exit(&cgrp->self.refcnt);
4856out_free_cgrp:
4857	kfree(cgrp);
4858	return ERR_PTR(ret);
4859}
4860
4861static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4862{
4863	struct cgroup *cgroup;
4864	int ret = false;
4865	int level = 1;
4866
4867	lockdep_assert_held(&cgroup_mutex);
4868
4869	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4870		if (cgroup->nr_descendants >= cgroup->max_descendants)
4871			goto fail;
4872
4873		if (level > cgroup->max_depth)
4874			goto fail;
4875
4876		level++;
4877	}
4878
4879	ret = true;
4880fail:
4881	return ret;
4882}
4883
4884int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4885{
4886	struct cgroup *parent, *cgrp;
4887	struct kernfs_node *kn;
4888	int ret;
4889
4890	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4891	if (strchr(name, '\n'))
4892		return -EINVAL;
4893
4894	parent = cgroup_kn_lock_live(parent_kn, false);
4895	if (!parent)
4896		return -ENODEV;
4897
4898	if (!cgroup_check_hierarchy_limits(parent)) {
4899		ret = -EAGAIN;
4900		goto out_unlock;
4901	}
4902
4903	cgrp = cgroup_create(parent);
4904	if (IS_ERR(cgrp)) {
4905		ret = PTR_ERR(cgrp);
4906		goto out_unlock;
4907	}
4908
4909	/* create the directory */
4910	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4911	if (IS_ERR(kn)) {
4912		ret = PTR_ERR(kn);
4913		goto out_destroy;
4914	}
4915	cgrp->kn = kn;
4916
4917	/*
4918	 * This extra ref will be put in cgroup_free_fn() and guarantees
4919	 * that @cgrp->kn is always accessible.
4920	 */
4921	kernfs_get(kn);
4922
4923	ret = cgroup_kn_set_ugid(kn);
4924	if (ret)
4925		goto out_destroy;
4926
4927	ret = css_populate_dir(&cgrp->self);
4928	if (ret)
4929		goto out_destroy;
4930
4931	ret = cgroup_apply_control_enable(cgrp);
4932	if (ret)
4933		goto out_destroy;
4934
4935	trace_cgroup_mkdir(cgrp);
4936
4937	/* let's create and online css's */
4938	kernfs_activate(kn);
4939
4940	ret = 0;
4941	goto out_unlock;
4942
4943out_destroy:
4944	cgroup_destroy_locked(cgrp);
4945out_unlock:
4946	cgroup_kn_unlock(parent_kn);
4947	return ret;
4948}
4949
4950/*
4951 * This is called when the refcnt of a css is confirmed to be killed.
4952 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
4953 * initate destruction and put the css ref from kill_css().
4954 */
4955static void css_killed_work_fn(struct work_struct *work)
4956{
4957	struct cgroup_subsys_state *css =
4958		container_of(work, struct cgroup_subsys_state, destroy_work);
4959
4960	mutex_lock(&cgroup_mutex);
4961
4962	do {
4963		offline_css(css);
4964		css_put(css);
4965		/* @css can't go away while we're holding cgroup_mutex */
4966		css = css->parent;
4967	} while (css && atomic_dec_and_test(&css->online_cnt));
4968
4969	mutex_unlock(&cgroup_mutex);
4970}
4971
4972/* css kill confirmation processing requires process context, bounce */
4973static void css_killed_ref_fn(struct percpu_ref *ref)
4974{
4975	struct cgroup_subsys_state *css =
4976		container_of(ref, struct cgroup_subsys_state, refcnt);
4977
4978	if (atomic_dec_and_test(&css->online_cnt)) {
4979		INIT_WORK(&css->destroy_work, css_killed_work_fn);
4980		queue_work(cgroup_destroy_wq, &css->destroy_work);
4981	}
4982}
4983
4984/**
4985 * kill_css - destroy a css
4986 * @css: css to destroy
4987 *
4988 * This function initiates destruction of @css by removing cgroup interface
4989 * files and putting its base reference.  ->css_offline() will be invoked
4990 * asynchronously once css_tryget_online() is guaranteed to fail and when
4991 * the reference count reaches zero, @css will be released.
4992 */
4993static void kill_css(struct cgroup_subsys_state *css)
4994{
4995	lockdep_assert_held(&cgroup_mutex);
4996
4997	if (css->flags & CSS_DYING)
4998		return;
4999
5000	css->flags |= CSS_DYING;
5001
5002	/*
5003	 * This must happen before css is disassociated with its cgroup.
5004	 * See seq_css() for details.
5005	 */
5006	css_clear_dir(css);
5007
5008	/*
5009	 * Killing would put the base ref, but we need to keep it alive
5010	 * until after ->css_offline().
5011	 */
5012	css_get(css);
5013
5014	/*
5015	 * cgroup core guarantees that, by the time ->css_offline() is
5016	 * invoked, no new css reference will be given out via
5017	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5018	 * proceed to offlining css's because percpu_ref_kill() doesn't
5019	 * guarantee that the ref is seen as killed on all CPUs on return.
5020	 *
5021	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5022	 * css is confirmed to be seen as killed on all CPUs.
5023	 */
5024	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5025}
5026
5027/**
5028 * cgroup_destroy_locked - the first stage of cgroup destruction
5029 * @cgrp: cgroup to be destroyed
5030 *
5031 * css's make use of percpu refcnts whose killing latency shouldn't be
5032 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5033 * guarantee that css_tryget_online() won't succeed by the time
5034 * ->css_offline() is invoked.  To satisfy all the requirements,
5035 * destruction is implemented in the following two steps.
5036 *
5037 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5038 *     userland visible parts and start killing the percpu refcnts of
5039 *     css's.  Set up so that the next stage will be kicked off once all
5040 *     the percpu refcnts are confirmed to be killed.
5041 *
5042 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5043 *     rest of destruction.  Once all cgroup references are gone, the
5044 *     cgroup is RCU-freed.
5045 *
5046 * This function implements s1.  After this step, @cgrp is gone as far as
5047 * the userland is concerned and a new cgroup with the same name may be
5048 * created.  As cgroup doesn't care about the names internally, this
5049 * doesn't cause any problem.
5050 */
5051static int cgroup_destroy_locked(struct cgroup *cgrp)
5052	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5053{
5054	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5055	struct cgroup_subsys_state *css;
5056	struct cgrp_cset_link *link;
5057	int ssid;
5058
5059	lockdep_assert_held(&cgroup_mutex);
5060
5061	/*
5062	 * Only migration can raise populated from zero and we're already
5063	 * holding cgroup_mutex.
5064	 */
5065	if (cgroup_is_populated(cgrp))
5066		return -EBUSY;
5067
5068	/*
5069	 * Make sure there's no live children.  We can't test emptiness of
5070	 * ->self.children as dead children linger on it while being
5071	 * drained; otherwise, "rmdir parent/child parent" may fail.
5072	 */
5073	if (css_has_online_children(&cgrp->self))
5074		return -EBUSY;
5075
5076	/*
5077	 * Mark @cgrp and the associated csets dead.  The former prevents
5078	 * further task migration and child creation by disabling
5079	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5080	 * the migration path.
5081	 */
5082	cgrp->self.flags &= ~CSS_ONLINE;
5083
5084	spin_lock_irq(&css_set_lock);
5085	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5086		link->cset->dead = true;
5087	spin_unlock_irq(&css_set_lock);
5088
5089	/* initiate massacre of all css's */
5090	for_each_css(css, ssid, cgrp)
5091		kill_css(css);
5092
5093	/*
5094	 * Remove @cgrp directory along with the base files.  @cgrp has an
5095	 * extra ref on its kn.
5096	 */
5097	kernfs_remove(cgrp->kn);
5098
5099	if (parent && cgroup_is_threaded(cgrp))
5100		parent->nr_threaded_children--;
5101
 
5102	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5103		tcgrp->nr_descendants--;
5104		tcgrp->nr_dying_descendants++;
 
 
 
 
 
 
5105	}
 
5106
5107	cgroup1_check_for_release(parent);
5108
 
 
5109	/* put the base reference */
5110	percpu_ref_kill(&cgrp->self.refcnt);
5111
5112	return 0;
5113};
5114
5115int cgroup_rmdir(struct kernfs_node *kn)
5116{
5117	struct cgroup *cgrp;
5118	int ret = 0;
5119
5120	cgrp = cgroup_kn_lock_live(kn, false);
5121	if (!cgrp)
5122		return 0;
5123
5124	ret = cgroup_destroy_locked(cgrp);
5125
5126	if (!ret)
5127		trace_cgroup_rmdir(cgrp);
5128
5129	cgroup_kn_unlock(kn);
5130	return ret;
5131}
5132
5133static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5134	.show_options		= cgroup_show_options,
5135	.remount_fs		= cgroup_remount,
5136	.mkdir			= cgroup_mkdir,
5137	.rmdir			= cgroup_rmdir,
5138	.show_path		= cgroup_show_path,
5139};
5140
5141static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5142{
5143	struct cgroup_subsys_state *css;
5144
5145	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5146
5147	mutex_lock(&cgroup_mutex);
5148
5149	idr_init(&ss->css_idr);
5150	INIT_LIST_HEAD(&ss->cfts);
5151
5152	/* Create the root cgroup state for this subsystem */
5153	ss->root = &cgrp_dfl_root;
5154	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5155	/* We don't handle early failures gracefully */
5156	BUG_ON(IS_ERR(css));
5157	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5158
5159	/*
5160	 * Root csses are never destroyed and we can't initialize
5161	 * percpu_ref during early init.  Disable refcnting.
5162	 */
5163	css->flags |= CSS_NO_REF;
5164
5165	if (early) {
5166		/* allocation can't be done safely during early init */
5167		css->id = 1;
5168	} else {
5169		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5170		BUG_ON(css->id < 0);
5171	}
5172
5173	/* Update the init_css_set to contain a subsys
5174	 * pointer to this state - since the subsystem is
5175	 * newly registered, all tasks and hence the
5176	 * init_css_set is in the subsystem's root cgroup. */
5177	init_css_set.subsys[ss->id] = css;
5178
5179	have_fork_callback |= (bool)ss->fork << ss->id;
5180	have_exit_callback |= (bool)ss->exit << ss->id;
5181	have_free_callback |= (bool)ss->free << ss->id;
5182	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5183
5184	/* At system boot, before all subsystems have been
5185	 * registered, no tasks have been forked, so we don't
5186	 * need to invoke fork callbacks here. */
5187	BUG_ON(!list_empty(&init_task.tasks));
5188
5189	BUG_ON(online_css(css));
5190
5191	mutex_unlock(&cgroup_mutex);
5192}
5193
5194/**
5195 * cgroup_init_early - cgroup initialization at system boot
5196 *
5197 * Initialize cgroups at system boot, and initialize any
5198 * subsystems that request early init.
5199 */
5200int __init cgroup_init_early(void)
5201{
5202	static struct cgroup_sb_opts __initdata opts;
5203	struct cgroup_subsys *ss;
5204	int i;
5205
5206	init_cgroup_root(&cgrp_dfl_root, &opts);
 
5207	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5208
5209	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5210
5211	for_each_subsys(ss, i) {
5212		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5213		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5214		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5215		     ss->id, ss->name);
5216		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5217		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5218
5219		ss->id = i;
5220		ss->name = cgroup_subsys_name[i];
5221		if (!ss->legacy_name)
5222			ss->legacy_name = cgroup_subsys_name[i];
5223
5224		if (ss->early_init)
5225			cgroup_init_subsys(ss, true);
5226	}
5227	return 0;
5228}
5229
5230static u16 cgroup_disable_mask __initdata;
5231
5232/**
5233 * cgroup_init - cgroup initialization
5234 *
5235 * Register cgroup filesystem and /proc file, and initialize
5236 * any subsystems that didn't request early init.
5237 */
5238int __init cgroup_init(void)
5239{
5240	struct cgroup_subsys *ss;
5241	int ssid;
5242
5243	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5244	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5245	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5246	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5247
5248	cgroup_stat_boot();
5249
5250	/*
5251	 * The latency of the synchronize_sched() is too high for cgroups,
5252	 * avoid it at the cost of forcing all readers into the slow path.
5253	 */
5254	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5255
5256	get_user_ns(init_cgroup_ns.user_ns);
5257
5258	mutex_lock(&cgroup_mutex);
5259
5260	/*
5261	 * Add init_css_set to the hash table so that dfl_root can link to
5262	 * it during init.
5263	 */
5264	hash_add(css_set_table, &init_css_set.hlist,
5265		 css_set_hash(init_css_set.subsys));
5266
5267	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5268
5269	mutex_unlock(&cgroup_mutex);
5270
5271	for_each_subsys(ss, ssid) {
5272		if (ss->early_init) {
5273			struct cgroup_subsys_state *css =
5274				init_css_set.subsys[ss->id];
5275
5276			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5277						   GFP_KERNEL);
5278			BUG_ON(css->id < 0);
5279		} else {
5280			cgroup_init_subsys(ss, false);
5281		}
5282
5283		list_add_tail(&init_css_set.e_cset_node[ssid],
5284			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5285
5286		/*
5287		 * Setting dfl_root subsys_mask needs to consider the
5288		 * disabled flag and cftype registration needs kmalloc,
5289		 * both of which aren't available during early_init.
5290		 */
5291		if (cgroup_disable_mask & (1 << ssid)) {
5292			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5293			printk(KERN_INFO "Disabling %s control group subsystem\n",
5294			       ss->name);
5295			continue;
5296		}
5297
5298		if (cgroup1_ssid_disabled(ssid))
5299			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5300			       ss->name);
5301
5302		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5303
5304		/* implicit controllers must be threaded too */
5305		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5306
5307		if (ss->implicit_on_dfl)
5308			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5309		else if (!ss->dfl_cftypes)
5310			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5311
5312		if (ss->threaded)
5313			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5314
5315		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5316			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5317		} else {
5318			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5319			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5320		}
5321
5322		if (ss->bind)
5323			ss->bind(init_css_set.subsys[ssid]);
5324
5325		mutex_lock(&cgroup_mutex);
5326		css_populate_dir(init_css_set.subsys[ssid]);
5327		mutex_unlock(&cgroup_mutex);
5328	}
5329
5330	/* init_css_set.subsys[] has been updated, re-hash */
5331	hash_del(&init_css_set.hlist);
5332	hash_add(css_set_table, &init_css_set.hlist,
5333		 css_set_hash(init_css_set.subsys));
5334
5335	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5336	WARN_ON(register_filesystem(&cgroup_fs_type));
5337	WARN_ON(register_filesystem(&cgroup2_fs_type));
5338	WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
 
 
 
5339
5340	return 0;
5341}
5342
5343static int __init cgroup_wq_init(void)
5344{
5345	/*
5346	 * There isn't much point in executing destruction path in
5347	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5348	 * Use 1 for @max_active.
5349	 *
5350	 * We would prefer to do this in cgroup_init() above, but that
5351	 * is called before init_workqueues(): so leave this until after.
5352	 */
5353	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5354	BUG_ON(!cgroup_destroy_wq);
5355	return 0;
5356}
5357core_initcall(cgroup_wq_init);
5358
5359void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5360					char *buf, size_t buflen)
5361{
5362	struct kernfs_node *kn;
5363
5364	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5365	if (!kn)
5366		return;
5367	kernfs_path(kn, buf, buflen);
5368	kernfs_put(kn);
5369}
5370
5371/*
5372 * proc_cgroup_show()
5373 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5374 *  - Used for /proc/<pid>/cgroup.
5375 */
5376int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5377		     struct pid *pid, struct task_struct *tsk)
5378{
5379	char *buf;
5380	int retval;
5381	struct cgroup_root *root;
5382
5383	retval = -ENOMEM;
5384	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5385	if (!buf)
5386		goto out;
5387
5388	mutex_lock(&cgroup_mutex);
5389	spin_lock_irq(&css_set_lock);
5390
5391	for_each_root(root) {
5392		struct cgroup_subsys *ss;
5393		struct cgroup *cgrp;
5394		int ssid, count = 0;
5395
5396		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5397			continue;
5398
5399		seq_printf(m, "%d:", root->hierarchy_id);
5400		if (root != &cgrp_dfl_root)
5401			for_each_subsys(ss, ssid)
5402				if (root->subsys_mask & (1 << ssid))
5403					seq_printf(m, "%s%s", count++ ? "," : "",
5404						   ss->legacy_name);
5405		if (strlen(root->name))
5406			seq_printf(m, "%sname=%s", count ? "," : "",
5407				   root->name);
5408		seq_putc(m, ':');
5409
5410		cgrp = task_cgroup_from_root(tsk, root);
5411
5412		/*
5413		 * On traditional hierarchies, all zombie tasks show up as
5414		 * belonging to the root cgroup.  On the default hierarchy,
5415		 * while a zombie doesn't show up in "cgroup.procs" and
5416		 * thus can't be migrated, its /proc/PID/cgroup keeps
5417		 * reporting the cgroup it belonged to before exiting.  If
5418		 * the cgroup is removed before the zombie is reaped,
5419		 * " (deleted)" is appended to the cgroup path.
5420		 */
5421		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5422			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5423						current->nsproxy->cgroup_ns);
5424			if (retval >= PATH_MAX)
5425				retval = -ENAMETOOLONG;
5426			if (retval < 0)
5427				goto out_unlock;
5428
5429			seq_puts(m, buf);
5430		} else {
5431			seq_puts(m, "/");
5432		}
5433
5434		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5435			seq_puts(m, " (deleted)\n");
5436		else
5437			seq_putc(m, '\n');
5438	}
5439
5440	retval = 0;
5441out_unlock:
5442	spin_unlock_irq(&css_set_lock);
5443	mutex_unlock(&cgroup_mutex);
5444	kfree(buf);
5445out:
5446	return retval;
5447}
5448
5449/**
5450 * cgroup_fork - initialize cgroup related fields during copy_process()
5451 * @child: pointer to task_struct of forking parent process.
5452 *
5453 * A task is associated with the init_css_set until cgroup_post_fork()
5454 * attaches it to the parent's css_set.  Empty cg_list indicates that
5455 * @child isn't holding reference to its css_set.
5456 */
5457void cgroup_fork(struct task_struct *child)
5458{
5459	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5460	INIT_LIST_HEAD(&child->cg_list);
5461}
5462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5463/**
5464 * cgroup_can_fork - called on a new task before the process is exposed
5465 * @child: the task in question.
5466 *
5467 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5468 * returns an error, the fork aborts with that error code. This allows for
5469 * a cgroup subsystem to conditionally allow or deny new forks.
 
 
5470 */
5471int cgroup_can_fork(struct task_struct *child)
5472{
5473	struct cgroup_subsys *ss;
5474	int i, j, ret;
5475
 
 
 
 
5476	do_each_subsys_mask(ss, i, have_canfork_callback) {
5477		ret = ss->can_fork(child);
5478		if (ret)
5479			goto out_revert;
5480	} while_each_subsys_mask();
5481
5482	return 0;
5483
5484out_revert:
5485	for_each_subsys(ss, j) {
5486		if (j >= i)
5487			break;
5488		if (ss->cancel_fork)
5489			ss->cancel_fork(child);
5490	}
5491
 
 
5492	return ret;
5493}
5494
5495/**
5496 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5497 * @child: the task in question
 
5498 *
5499 * This calls the cancel_fork() callbacks if a fork failed *after*
5500 * cgroup_can_fork() succeded.
 
5501 */
5502void cgroup_cancel_fork(struct task_struct *child)
 
5503{
5504	struct cgroup_subsys *ss;
5505	int i;
5506
5507	for_each_subsys(ss, i)
5508		if (ss->cancel_fork)
5509			ss->cancel_fork(child);
 
 
5510}
5511
5512/**
5513 * cgroup_post_fork - called on a new task after adding it to the task list
5514 * @child: the task in question
5515 *
5516 * Adds the task to the list running through its css_set if necessary and
5517 * call the subsystem fork() callbacks.  Has to be after the task is
5518 * visible on the task list in case we race with the first call to
5519 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5520 * list.
5521 */
5522void cgroup_post_fork(struct task_struct *child)
 
 
5523{
5524	struct cgroup_subsys *ss;
 
5525	int i;
5526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5527	/*
5528	 * This may race against cgroup_enable_task_cg_lists().  As that
5529	 * function sets use_task_css_set_links before grabbing
5530	 * tasklist_lock and we just went through tasklist_lock to add
5531	 * @child, it's guaranteed that either we see the set
5532	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5533	 * @child during its iteration.
5534	 *
5535	 * If we won the race, @child is associated with %current's
5536	 * css_set.  Grabbing css_set_lock guarantees both that the
5537	 * association is stable, and, on completion of the parent's
5538	 * migration, @child is visible in the source of migration or
5539	 * already in the destination cgroup.  This guarantee is necessary
5540	 * when implementing operations which need to migrate all tasks of
5541	 * a cgroup to another.
5542	 *
5543	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5544	 * will remain in init_css_set.  This is safe because all tasks are
5545	 * in the init_css_set before cg_links is enabled and there's no
5546	 * operation which transfers all tasks out of init_css_set.
5547	 */
5548	if (use_task_css_set_links) {
5549		struct css_set *cset;
 
 
 
5550
5551		spin_lock_irq(&css_set_lock);
5552		cset = task_css_set(current);
5553		if (list_empty(&child->cg_list)) {
5554			get_css_set(cset);
5555			cset->nr_tasks++;
5556			css_set_move_task(child, NULL, cset, false);
5557		}
5558		spin_unlock_irq(&css_set_lock);
5559	}
5560
 
 
5561	/*
5562	 * Call ss->fork().  This must happen after @child is linked on
5563	 * css_set; otherwise, @child might change state between ->fork()
5564	 * and addition to css_set.
5565	 */
5566	do_each_subsys_mask(ss, i, have_fork_callback) {
5567		ss->fork(child);
5568	} while_each_subsys_mask();
 
 
 
 
 
 
 
 
 
 
 
5569}
5570
5571/**
5572 * cgroup_exit - detach cgroup from exiting task
5573 * @tsk: pointer to task_struct of exiting process
5574 *
5575 * Description: Detach cgroup from @tsk and release it.
5576 *
5577 * Note that cgroups marked notify_on_release force every task in
5578 * them to take the global cgroup_mutex mutex when exiting.
5579 * This could impact scaling on very large systems.  Be reluctant to
5580 * use notify_on_release cgroups where very high task exit scaling
5581 * is required on large systems.
5582 *
5583 * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5584 * call cgroup_exit() while the task is still competent to handle
5585 * notify_on_release(), then leave the task attached to the root cgroup in
5586 * each hierarchy for the remainder of its exit.  No need to bother with
5587 * init_css_set refcnting.  init_css_set never goes away and we can't race
5588 * with migration path - PF_EXITING is visible to migration path.
5589 */
5590void cgroup_exit(struct task_struct *tsk)
5591{
5592	struct cgroup_subsys *ss;
5593	struct css_set *cset;
5594	int i;
5595
5596	/*
5597	 * Unlink from @tsk from its css_set.  As migration path can't race
5598	 * with us, we can check css_set and cg_list without synchronization.
5599	 */
5600	cset = task_css_set(tsk);
 
 
 
 
 
 
 
5601
5602	if (!list_empty(&tsk->cg_list)) {
5603		spin_lock_irq(&css_set_lock);
5604		css_set_move_task(tsk, cset, NULL, false);
5605		cset->nr_tasks--;
5606		spin_unlock_irq(&css_set_lock);
5607	} else {
5608		get_css_set(cset);
5609	}
5610
5611	/* see cgroup_post_fork() for details */
5612	do_each_subsys_mask(ss, i, have_exit_callback) {
5613		ss->exit(tsk);
5614	} while_each_subsys_mask();
5615}
5616
5617void cgroup_free(struct task_struct *task)
5618{
5619	struct css_set *cset = task_css_set(task);
5620	struct cgroup_subsys *ss;
5621	int ssid;
5622
5623	do_each_subsys_mask(ss, ssid, have_free_callback) {
5624		ss->free(task);
5625	} while_each_subsys_mask();
5626
 
 
 
 
 
 
 
 
 
5627	put_css_set(cset);
5628}
5629
5630static int __init cgroup_disable(char *str)
5631{
5632	struct cgroup_subsys *ss;
5633	char *token;
5634	int i;
5635
5636	while ((token = strsep(&str, ",")) != NULL) {
5637		if (!*token)
5638			continue;
5639
5640		for_each_subsys(ss, i) {
5641			if (strcmp(token, ss->name) &&
5642			    strcmp(token, ss->legacy_name))
5643				continue;
5644			cgroup_disable_mask |= 1 << i;
5645		}
5646	}
5647	return 1;
5648}
5649__setup("cgroup_disable=", cgroup_disable);
5650
 
 
 
 
 
 
 
 
 
 
5651/**
5652 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5653 * @dentry: directory dentry of interest
5654 * @ss: subsystem of interest
5655 *
5656 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5657 * to get the corresponding css and return it.  If such css doesn't exist
5658 * or can't be pinned, an ERR_PTR value is returned.
5659 */
5660struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5661						       struct cgroup_subsys *ss)
5662{
5663	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5664	struct file_system_type *s_type = dentry->d_sb->s_type;
5665	struct cgroup_subsys_state *css = NULL;
5666	struct cgroup *cgrp;
5667
5668	/* is @dentry a cgroup dir? */
5669	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5670	    !kn || kernfs_type(kn) != KERNFS_DIR)
5671		return ERR_PTR(-EBADF);
5672
5673	rcu_read_lock();
5674
5675	/*
5676	 * This path doesn't originate from kernfs and @kn could already
5677	 * have been or be removed at any point.  @kn->priv is RCU
5678	 * protected for this access.  See css_release_work_fn() for details.
5679	 */
5680	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5681	if (cgrp)
5682		css = cgroup_css(cgrp, ss);
5683
5684	if (!css || !css_tryget_online(css))
5685		css = ERR_PTR(-ENOENT);
5686
5687	rcu_read_unlock();
5688	return css;
5689}
5690
5691/**
5692 * css_from_id - lookup css by id
5693 * @id: the cgroup id
5694 * @ss: cgroup subsys to be looked into
5695 *
5696 * Returns the css if there's valid one with @id, otherwise returns NULL.
5697 * Should be called under rcu_read_lock().
5698 */
5699struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5700{
5701	WARN_ON_ONCE(!rcu_read_lock_held());
5702	return idr_find(&ss->css_idr, id);
5703}
5704
5705/**
5706 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5707 * @path: path on the default hierarchy
5708 *
5709 * Find the cgroup at @path on the default hierarchy, increment its
5710 * reference count and return it.  Returns pointer to the found cgroup on
5711 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5712 * if @path points to a non-directory.
5713 */
5714struct cgroup *cgroup_get_from_path(const char *path)
5715{
5716	struct kernfs_node *kn;
5717	struct cgroup *cgrp;
5718
5719	mutex_lock(&cgroup_mutex);
5720
5721	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5722	if (kn) {
5723		if (kernfs_type(kn) == KERNFS_DIR) {
5724			cgrp = kn->priv;
5725			cgroup_get_live(cgrp);
5726		} else {
5727			cgrp = ERR_PTR(-ENOTDIR);
5728		}
5729		kernfs_put(kn);
5730	} else {
5731		cgrp = ERR_PTR(-ENOENT);
5732	}
5733
5734	mutex_unlock(&cgroup_mutex);
5735	return cgrp;
5736}
5737EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5738
5739/**
5740 * cgroup_get_from_fd - get a cgroup pointer from a fd
5741 * @fd: fd obtained by open(cgroup2_dir)
5742 *
5743 * Find the cgroup from a fd which should be obtained
5744 * by opening a cgroup directory.  Returns a pointer to the
5745 * cgroup on success. ERR_PTR is returned if the cgroup
5746 * cannot be found.
5747 */
5748struct cgroup *cgroup_get_from_fd(int fd)
5749{
5750	struct cgroup_subsys_state *css;
5751	struct cgroup *cgrp;
5752	struct file *f;
5753
5754	f = fget_raw(fd);
5755	if (!f)
5756		return ERR_PTR(-EBADF);
5757
5758	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5759	fput(f);
5760	if (IS_ERR(css))
5761		return ERR_CAST(css);
5762
5763	cgrp = css->cgroup;
5764	if (!cgroup_on_dfl(cgrp)) {
5765		cgroup_put(cgrp);
5766		return ERR_PTR(-EBADF);
5767	}
5768
5769	return cgrp;
5770}
5771EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5773/*
5774 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
5775 * definition in cgroup-defs.h.
5776 */
5777#ifdef CONFIG_SOCK_CGROUP_DATA
5778
5779#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5780
5781DEFINE_SPINLOCK(cgroup_sk_update_lock);
5782static bool cgroup_sk_alloc_disabled __read_mostly;
5783
5784void cgroup_sk_alloc_disable(void)
5785{
5786	if (cgroup_sk_alloc_disabled)
5787		return;
5788	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5789	cgroup_sk_alloc_disabled = true;
5790}
5791
5792#else
5793
5794#define cgroup_sk_alloc_disabled	false
5795
5796#endif
5797
5798void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5799{
5800	if (cgroup_sk_alloc_disabled)
 
5801		return;
 
5802
5803	/* Socket clone path */
5804	if (skcd->val) {
5805		/*
5806		 * We might be cloning a socket which is left in an empty
5807		 * cgroup and the cgroup might have already been rmdir'd.
5808		 * Don't use cgroup_get_live().
5809		 */
5810		cgroup_get(sock_cgroup_ptr(skcd));
5811		return;
5812	}
5813
5814	rcu_read_lock();
5815
5816	while (true) {
5817		struct css_set *cset;
5818
5819		cset = task_css_set(current);
5820		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5821			skcd->val = (unsigned long)cset->dfl_cgrp;
 
5822			break;
5823		}
5824		cpu_relax();
5825	}
5826
5827	rcu_read_unlock();
5828}
5829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5830void cgroup_sk_free(struct sock_cgroup_data *skcd)
5831{
5832	cgroup_put(sock_cgroup_ptr(skcd));
 
 
 
 
 
5833}
5834
5835#endif	/* CONFIG_SOCK_CGROUP_DATA */
5836
5837#ifdef CONFIG_CGROUP_BPF
5838int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5839		      enum bpf_attach_type type, u32 flags)
 
 
 
5840{
5841	int ret;
5842
5843	mutex_lock(&cgroup_mutex);
5844	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5845	mutex_unlock(&cgroup_mutex);
5846	return ret;
5847}
 
5848int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5849		      enum bpf_attach_type type, u32 flags)
5850{
5851	int ret;
5852
5853	mutex_lock(&cgroup_mutex);
5854	ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5855	mutex_unlock(&cgroup_mutex);
5856	return ret;
5857}
 
5858int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5859		     union bpf_attr __user *uattr)
5860{
5861	int ret;
5862
5863	mutex_lock(&cgroup_mutex);
5864	ret = __cgroup_bpf_query(cgrp, attr, uattr);
5865	mutex_unlock(&cgroup_mutex);
5866	return ret;
5867}
5868#endif /* CONFIG_CGROUP_BPF */
5869
5870#ifdef CONFIG_SYSFS
5871static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5872				      ssize_t size, const char *prefix)
5873{
5874	struct cftype *cft;
5875	ssize_t ret = 0;
5876
5877	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5878		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5879			continue;
5880
5881		if (prefix)
5882			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5883
5884		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5885
5886		if (unlikely(ret >= size)) {
5887			WARN_ON(1);
5888			break;
5889		}
5890	}
5891
5892	return ret;
5893}
5894
5895static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5896			      char *buf)
5897{
5898	struct cgroup_subsys *ss;
5899	int ssid;
5900	ssize_t ret = 0;
5901
5902	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5903				     NULL);
5904
5905	for_each_subsys(ss, ssid)
5906		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
5907					      PAGE_SIZE - ret,
5908					      cgroup_subsys_name[ssid]);
5909
5910	return ret;
5911}
5912static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
5913
5914static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
5915			     char *buf)
5916{
5917	return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
 
 
 
5918}
5919static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
5920
5921static struct attribute *cgroup_sysfs_attrs[] = {
5922	&cgroup_delegate_attr.attr,
5923	&cgroup_features_attr.attr,
5924	NULL,
5925};
5926
5927static const struct attribute_group cgroup_sysfs_attr_group = {
5928	.attrs = cgroup_sysfs_attrs,
5929	.name = "cgroup",
5930};
5931
5932static int __init cgroup_sysfs_init(void)
5933{
5934	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
5935}
5936subsys_initcall(cgroup_sysfs_init);
 
5937#endif /* CONFIG_SYSFS */
v5.9
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include "cgroup-internal.h"
  32
  33#include <linux/cred.h>
  34#include <linux/errno.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/magic.h>
  38#include <linux/mutex.h>
  39#include <linux/mount.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/rcupdate.h>
  43#include <linux/sched.h>
  44#include <linux/sched/task.h>
  45#include <linux/slab.h>
  46#include <linux/spinlock.h>
  47#include <linux/percpu-rwsem.h>
  48#include <linux/string.h>
  49#include <linux/hashtable.h>
  50#include <linux/idr.h>
  51#include <linux/kthread.h>
  52#include <linux/atomic.h>
  53#include <linux/cpuset.h>
  54#include <linux/proc_ns.h>
  55#include <linux/nsproxy.h>
  56#include <linux/file.h>
  57#include <linux/fs_parser.h>
  58#include <linux/sched/cputime.h>
  59#include <linux/psi.h>
  60#include <net/sock.h>
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/cgroup.h>
  64
  65#define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
  66					 MAX_CFTYPE_NAME + 2)
  67/* let's not notify more than 100 times per second */
  68#define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
  69
  70/*
  71 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  72 * hierarchy must be performed while holding it.
  73 *
  74 * css_set_lock protects task->cgroups pointer, the list of css_set
  75 * objects, and the chain of tasks off each css_set.
  76 *
  77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  78 * cgroup.h can use them for lockdep annotations.
  79 */
  80DEFINE_MUTEX(cgroup_mutex);
  81DEFINE_SPINLOCK(css_set_lock);
  82
  83#ifdef CONFIG_PROVE_RCU
  84EXPORT_SYMBOL_GPL(cgroup_mutex);
  85EXPORT_SYMBOL_GPL(css_set_lock);
  86#endif
  87
  88DEFINE_SPINLOCK(trace_cgroup_path_lock);
  89char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
  90bool cgroup_debug __read_mostly;
  91
  92/*
  93 * Protects cgroup_idr and css_idr so that IDs can be released without
  94 * grabbing cgroup_mutex.
  95 */
  96static DEFINE_SPINLOCK(cgroup_idr_lock);
  97
  98/*
  99 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
 100 * against file removal/re-creation across css hiding.
 101 */
 102static DEFINE_SPINLOCK(cgroup_file_kn_lock);
 103
 104DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
 105
 106#define cgroup_assert_mutex_or_rcu_locked()				\
 107	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 108			   !lockdep_is_held(&cgroup_mutex),		\
 109			   "cgroup_mutex or RCU read lock required");
 110
 111/*
 112 * cgroup destruction makes heavy use of work items and there can be a lot
 113 * of concurrent destructions.  Use a separate workqueue so that cgroup
 114 * destruction work items don't end up filling up max_active of system_wq
 115 * which may lead to deadlock.
 116 */
 117static struct workqueue_struct *cgroup_destroy_wq;
 118
 119/* generate an array of cgroup subsystem pointers */
 120#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 121struct cgroup_subsys *cgroup_subsys[] = {
 122#include <linux/cgroup_subsys.h>
 123};
 124#undef SUBSYS
 125
 126/* array of cgroup subsystem names */
 127#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 128static const char *cgroup_subsys_name[] = {
 129#include <linux/cgroup_subsys.h>
 130};
 131#undef SUBSYS
 132
 133/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 134#define SUBSYS(_x)								\
 135	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
 136	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
 137	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
 138	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 139#include <linux/cgroup_subsys.h>
 140#undef SUBSYS
 141
 142#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 143static struct static_key_true *cgroup_subsys_enabled_key[] = {
 144#include <linux/cgroup_subsys.h>
 145};
 146#undef SUBSYS
 147
 148#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 149static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 150#include <linux/cgroup_subsys.h>
 151};
 152#undef SUBSYS
 153
 154static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
 155
 156/* the default hierarchy */
 157struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
 
 
 
 
 158EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 159
 160/*
 161 * The default hierarchy always exists but is hidden until mounted for the
 162 * first time.  This is for backward compatibility.
 163 */
 164static bool cgrp_dfl_visible;
 165
 166/* some controllers are not supported in the default hierarchy */
 167static u16 cgrp_dfl_inhibit_ss_mask;
 168
 169/* some controllers are implicitly enabled on the default hierarchy */
 170static u16 cgrp_dfl_implicit_ss_mask;
 171
 172/* some controllers can be threaded on the default hierarchy */
 173static u16 cgrp_dfl_threaded_ss_mask;
 174
 175/* The list of hierarchy roots */
 176LIST_HEAD(cgroup_roots);
 177static int cgroup_root_count;
 178
 179/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 180static DEFINE_IDR(cgroup_hierarchy_idr);
 181
 182/*
 183 * Assign a monotonically increasing serial number to csses.  It guarantees
 184 * cgroups with bigger numbers are newer than those with smaller numbers.
 185 * Also, as csses are always appended to the parent's ->children list, it
 186 * guarantees that sibling csses are always sorted in the ascending serial
 187 * number order on the list.  Protected by cgroup_mutex.
 188 */
 189static u64 css_serial_nr_next = 1;
 190
 191/*
 192 * These bitmasks identify subsystems with specific features to avoid
 193 * having to do iterative checks repeatedly.
 194 */
 195static u16 have_fork_callback __read_mostly;
 196static u16 have_exit_callback __read_mostly;
 197static u16 have_release_callback __read_mostly;
 198static u16 have_canfork_callback __read_mostly;
 199
 200/* cgroup namespace for init task */
 201struct cgroup_namespace init_cgroup_ns = {
 202	.count		= REFCOUNT_INIT(2),
 203	.user_ns	= &init_user_ns,
 204	.ns.ops		= &cgroupns_operations,
 205	.ns.inum	= PROC_CGROUP_INIT_INO,
 206	.root_cset	= &init_css_set,
 207};
 208
 209static struct file_system_type cgroup2_fs_type;
 210static struct cftype cgroup_base_files[];
 211
 212static int cgroup_apply_control(struct cgroup *cgrp);
 213static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 214static void css_task_iter_skip(struct css_task_iter *it,
 215			       struct task_struct *task);
 216static int cgroup_destroy_locked(struct cgroup *cgrp);
 217static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 218					      struct cgroup_subsys *ss);
 219static void css_release(struct percpu_ref *ref);
 220static void kill_css(struct cgroup_subsys_state *css);
 221static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 222			      struct cgroup *cgrp, struct cftype cfts[],
 223			      bool is_add);
 224
 225/**
 226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 227 * @ssid: subsys ID of interest
 228 *
 229 * cgroup_subsys_enabled() can only be used with literal subsys names which
 230 * is fine for individual subsystems but unsuitable for cgroup core.  This
 231 * is slower static_key_enabled() based test indexed by @ssid.
 232 */
 233bool cgroup_ssid_enabled(int ssid)
 234{
 235	if (CGROUP_SUBSYS_COUNT == 0)
 236		return false;
 237
 238	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 239}
 240
 241/**
 242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 243 * @cgrp: the cgroup of interest
 244 *
 245 * The default hierarchy is the v2 interface of cgroup and this function
 246 * can be used to test whether a cgroup is on the default hierarchy for
 247 * cases where a subsystem should behave differnetly depending on the
 248 * interface version.
 249 *
 
 
 
 250 * List of changed behaviors:
 251 *
 252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 253 *   and "name" are disallowed.
 254 *
 255 * - When mounting an existing superblock, mount options should match.
 256 *
 257 * - Remount is disallowed.
 258 *
 259 * - rename(2) is disallowed.
 260 *
 261 * - "tasks" is removed.  Everything should be at process granularity.  Use
 262 *   "cgroup.procs" instead.
 263 *
 264 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 265 *   recycled inbetween reads.
 266 *
 267 * - "release_agent" and "notify_on_release" are removed.  Replacement
 268 *   notification mechanism will be implemented.
 269 *
 270 * - "cgroup.clone_children" is removed.
 271 *
 272 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 273 *   and its descendants contain no task; otherwise, 1.  The file also
 274 *   generates kernfs notification which can be monitored through poll and
 275 *   [di]notify when the value of the file changes.
 276 *
 277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 278 *   take masks of ancestors with non-empty cpus/mems, instead of being
 279 *   moved to an ancestor.
 280 *
 281 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 282 *   masks of ancestors.
 283 *
 284 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
 285 *   is not created.
 286 *
 287 * - blkcg: blk-throttle becomes properly hierarchical.
 288 *
 289 * - debug: disallowed on the default hierarchy.
 290 */
 291bool cgroup_on_dfl(const struct cgroup *cgrp)
 292{
 293	return cgrp->root == &cgrp_dfl_root;
 294}
 295
 296/* IDR wrappers which synchronize using cgroup_idr_lock */
 297static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 298			    gfp_t gfp_mask)
 299{
 300	int ret;
 301
 302	idr_preload(gfp_mask);
 303	spin_lock_bh(&cgroup_idr_lock);
 304	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 305	spin_unlock_bh(&cgroup_idr_lock);
 306	idr_preload_end();
 307	return ret;
 308}
 309
 310static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 311{
 312	void *ret;
 313
 314	spin_lock_bh(&cgroup_idr_lock);
 315	ret = idr_replace(idr, ptr, id);
 316	spin_unlock_bh(&cgroup_idr_lock);
 317	return ret;
 318}
 319
 320static void cgroup_idr_remove(struct idr *idr, int id)
 321{
 322	spin_lock_bh(&cgroup_idr_lock);
 323	idr_remove(idr, id);
 324	spin_unlock_bh(&cgroup_idr_lock);
 325}
 326
 327static bool cgroup_has_tasks(struct cgroup *cgrp)
 328{
 329	return cgrp->nr_populated_csets;
 330}
 331
 332bool cgroup_is_threaded(struct cgroup *cgrp)
 333{
 334	return cgrp->dom_cgrp != cgrp;
 335}
 336
 337/* can @cgrp host both domain and threaded children? */
 338static bool cgroup_is_mixable(struct cgroup *cgrp)
 339{
 340	/*
 341	 * Root isn't under domain level resource control exempting it from
 342	 * the no-internal-process constraint, so it can serve as a thread
 343	 * root and a parent of resource domains at the same time.
 344	 */
 345	return !cgroup_parent(cgrp);
 346}
 347
 348/* can @cgrp become a thread root? should always be true for a thread root */
 349static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
 350{
 351	/* mixables don't care */
 352	if (cgroup_is_mixable(cgrp))
 353		return true;
 354
 355	/* domain roots can't be nested under threaded */
 356	if (cgroup_is_threaded(cgrp))
 357		return false;
 358
 359	/* can only have either domain or threaded children */
 360	if (cgrp->nr_populated_domain_children)
 361		return false;
 362
 363	/* and no domain controllers can be enabled */
 364	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 365		return false;
 366
 367	return true;
 368}
 369
 370/* is @cgrp root of a threaded subtree? */
 371bool cgroup_is_thread_root(struct cgroup *cgrp)
 372{
 373	/* thread root should be a domain */
 374	if (cgroup_is_threaded(cgrp))
 375		return false;
 376
 377	/* a domain w/ threaded children is a thread root */
 378	if (cgrp->nr_threaded_children)
 379		return true;
 380
 381	/*
 382	 * A domain which has tasks and explicit threaded controllers
 383	 * enabled is a thread root.
 384	 */
 385	if (cgroup_has_tasks(cgrp) &&
 386	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
 387		return true;
 388
 389	return false;
 390}
 391
 392/* a domain which isn't connected to the root w/o brekage can't be used */
 393static bool cgroup_is_valid_domain(struct cgroup *cgrp)
 394{
 395	/* the cgroup itself can be a thread root */
 396	if (cgroup_is_threaded(cgrp))
 397		return false;
 398
 399	/* but the ancestors can't be unless mixable */
 400	while ((cgrp = cgroup_parent(cgrp))) {
 401		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
 402			return false;
 403		if (cgroup_is_threaded(cgrp))
 404			return false;
 405	}
 406
 407	return true;
 408}
 409
 410/* subsystems visibly enabled on a cgroup */
 411static u16 cgroup_control(struct cgroup *cgrp)
 412{
 413	struct cgroup *parent = cgroup_parent(cgrp);
 414	u16 root_ss_mask = cgrp->root->subsys_mask;
 415
 416	if (parent) {
 417		u16 ss_mask = parent->subtree_control;
 418
 419		/* threaded cgroups can only have threaded controllers */
 420		if (cgroup_is_threaded(cgrp))
 421			ss_mask &= cgrp_dfl_threaded_ss_mask;
 422		return ss_mask;
 423	}
 424
 425	if (cgroup_on_dfl(cgrp))
 426		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 427				  cgrp_dfl_implicit_ss_mask);
 428	return root_ss_mask;
 429}
 430
 431/* subsystems enabled on a cgroup */
 432static u16 cgroup_ss_mask(struct cgroup *cgrp)
 433{
 434	struct cgroup *parent = cgroup_parent(cgrp);
 435
 436	if (parent) {
 437		u16 ss_mask = parent->subtree_ss_mask;
 438
 439		/* threaded cgroups can only have threaded controllers */
 440		if (cgroup_is_threaded(cgrp))
 441			ss_mask &= cgrp_dfl_threaded_ss_mask;
 442		return ss_mask;
 443	}
 444
 445	return cgrp->root->subsys_mask;
 446}
 447
 448/**
 449 * cgroup_css - obtain a cgroup's css for the specified subsystem
 450 * @cgrp: the cgroup of interest
 451 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 452 *
 453 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 454 * function must be called either under cgroup_mutex or rcu_read_lock() and
 455 * the caller is responsible for pinning the returned css if it wants to
 456 * keep accessing it outside the said locks.  This function may return
 457 * %NULL if @cgrp doesn't have @subsys_id enabled.
 458 */
 459static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 460					      struct cgroup_subsys *ss)
 461{
 462	if (ss)
 463		return rcu_dereference_check(cgrp->subsys[ss->id],
 464					lockdep_is_held(&cgroup_mutex));
 465	else
 466		return &cgrp->self;
 467}
 468
 469/**
 470 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
 471 * @cgrp: the cgroup of interest
 472 * @ss: the subsystem of interest
 473 *
 474 * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
 475 * or is offline, %NULL is returned.
 476 */
 477static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
 478						     struct cgroup_subsys *ss)
 479{
 480	struct cgroup_subsys_state *css;
 481
 482	rcu_read_lock();
 483	css = cgroup_css(cgrp, ss);
 484	if (css && !css_tryget_online(css))
 485		css = NULL;
 486	rcu_read_unlock();
 487
 488	return css;
 489}
 490
 491/**
 492 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
 493 * @cgrp: the cgroup of interest
 494 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 495 *
 496 * Similar to cgroup_css() but returns the effective css, which is defined
 497 * as the matching css of the nearest ancestor including self which has @ss
 498 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 499 * function is guaranteed to return non-NULL css.
 500 */
 501static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
 502							struct cgroup_subsys *ss)
 503{
 504	lockdep_assert_held(&cgroup_mutex);
 505
 506	if (!ss)
 507		return &cgrp->self;
 508
 509	/*
 510	 * This function is used while updating css associations and thus
 511	 * can't test the csses directly.  Test ss_mask.
 512	 */
 513	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 514		cgrp = cgroup_parent(cgrp);
 515		if (!cgrp)
 516			return NULL;
 517	}
 518
 519	return cgroup_css(cgrp, ss);
 520}
 521
 522/**
 523 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 524 * @cgrp: the cgroup of interest
 525 * @ss: the subsystem of interest
 526 *
 527 * Find and get the effective css of @cgrp for @ss.  The effective css is
 528 * defined as the matching css of the nearest ancestor including self which
 529 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 530 * the root css is returned, so this function always returns a valid css.
 531 *
 532 * The returned css is not guaranteed to be online, and therefore it is the
 533 * callers responsiblity to tryget a reference for it.
 534 */
 535struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 536					 struct cgroup_subsys *ss)
 537{
 538	struct cgroup_subsys_state *css;
 539
 540	do {
 541		css = cgroup_css(cgrp, ss);
 542
 543		if (css)
 544			return css;
 545		cgrp = cgroup_parent(cgrp);
 546	} while (cgrp);
 547
 548	return init_css_set.subsys[ss->id];
 549}
 550
 551/**
 552 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 553 * @cgrp: the cgroup of interest
 554 * @ss: the subsystem of interest
 555 *
 556 * Find and get the effective css of @cgrp for @ss.  The effective css is
 557 * defined as the matching css of the nearest ancestor including self which
 558 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 559 * the root css is returned, so this function always returns a valid css.
 560 * The returned css must be put using css_put().
 561 */
 562struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 563					     struct cgroup_subsys *ss)
 564{
 565	struct cgroup_subsys_state *css;
 566
 567	rcu_read_lock();
 568
 569	do {
 570		css = cgroup_css(cgrp, ss);
 571
 572		if (css && css_tryget_online(css))
 573			goto out_unlock;
 574		cgrp = cgroup_parent(cgrp);
 575	} while (cgrp);
 576
 577	css = init_css_set.subsys[ss->id];
 578	css_get(css);
 579out_unlock:
 580	rcu_read_unlock();
 581	return css;
 582}
 583
 584static void cgroup_get_live(struct cgroup *cgrp)
 585{
 586	WARN_ON_ONCE(cgroup_is_dead(cgrp));
 587	css_get(&cgrp->self);
 588}
 589
 590/**
 591 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
 592 * is responsible for taking the css_set_lock.
 593 * @cgrp: the cgroup in question
 594 */
 595int __cgroup_task_count(const struct cgroup *cgrp)
 596{
 597	int count = 0;
 598	struct cgrp_cset_link *link;
 599
 600	lockdep_assert_held(&css_set_lock);
 601
 602	list_for_each_entry(link, &cgrp->cset_links, cset_link)
 603		count += link->cset->nr_tasks;
 604
 605	return count;
 606}
 607
 608/**
 609 * cgroup_task_count - count the number of tasks in a cgroup.
 610 * @cgrp: the cgroup in question
 611 */
 612int cgroup_task_count(const struct cgroup *cgrp)
 613{
 614	int count;
 615
 616	spin_lock_irq(&css_set_lock);
 617	count = __cgroup_task_count(cgrp);
 618	spin_unlock_irq(&css_set_lock);
 619
 620	return count;
 621}
 622
 623struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 624{
 625	struct cgroup *cgrp = of->kn->parent->priv;
 626	struct cftype *cft = of_cft(of);
 627
 628	/*
 629	 * This is open and unprotected implementation of cgroup_css().
 630	 * seq_css() is only called from a kernfs file operation which has
 631	 * an active reference on the file.  Because all the subsystem
 632	 * files are drained before a css is disassociated with a cgroup,
 633	 * the matching css from the cgroup's subsys table is guaranteed to
 634	 * be and stay valid until the enclosing operation is complete.
 635	 */
 636	if (cft->ss)
 637		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 638	else
 639		return &cgrp->self;
 640}
 641EXPORT_SYMBOL_GPL(of_css);
 642
 643/**
 644 * for_each_css - iterate all css's of a cgroup
 645 * @css: the iteration cursor
 646 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 647 * @cgrp: the target cgroup to iterate css's of
 648 *
 649 * Should be called under cgroup_[tree_]mutex.
 650 */
 651#define for_each_css(css, ssid, cgrp)					\
 652	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
 653		if (!((css) = rcu_dereference_check(			\
 654				(cgrp)->subsys[(ssid)],			\
 655				lockdep_is_held(&cgroup_mutex)))) { }	\
 656		else
 657
 658/**
 659 * for_each_e_css - iterate all effective css's of a cgroup
 660 * @css: the iteration cursor
 661 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 662 * @cgrp: the target cgroup to iterate css's of
 663 *
 664 * Should be called under cgroup_[tree_]mutex.
 665 */
 666#define for_each_e_css(css, ssid, cgrp)					    \
 667	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
 668		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
 669						   cgroup_subsys[(ssid)]))) \
 670			;						    \
 671		else
 672
 673/**
 674 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 675 * @ss: the iteration cursor
 676 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 677 * @ss_mask: the bitmask
 678 *
 679 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 680 * @ss_mask is set.
 681 */
 682#define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
 683	unsigned long __ss_mask = (ss_mask);				\
 684	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
 685		(ssid) = 0;						\
 686		break;							\
 687	}								\
 688	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
 689		(ss) = cgroup_subsys[ssid];				\
 690		{
 691
 692#define while_each_subsys_mask()					\
 693		}							\
 694	}								\
 695} while (false)
 696
 697/* iterate over child cgrps, lock should be held throughout iteration */
 698#define cgroup_for_each_live_child(child, cgrp)				\
 699	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 700		if (({ lockdep_assert_held(&cgroup_mutex);		\
 701		       cgroup_is_dead(child); }))			\
 702			;						\
 703		else
 704
 705/* walk live descendants in preorder */
 706#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
 707	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
 708		if (({ lockdep_assert_held(&cgroup_mutex);		\
 709		       (dsct) = (d_css)->cgroup;			\
 710		       cgroup_is_dead(dsct); }))			\
 711			;						\
 712		else
 713
 714/* walk live descendants in postorder */
 715#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
 716	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
 717		if (({ lockdep_assert_held(&cgroup_mutex);		\
 718		       (dsct) = (d_css)->cgroup;			\
 719		       cgroup_is_dead(dsct); }))			\
 720			;						\
 721		else
 722
 723/*
 724 * The default css_set - used by init and its children prior to any
 725 * hierarchies being mounted. It contains a pointer to the root state
 726 * for each subsystem. Also used to anchor the list of css_sets. Not
 727 * reference-counted, to improve performance when child cgroups
 728 * haven't been created.
 729 */
 730struct css_set init_css_set = {
 731	.refcount		= REFCOUNT_INIT(1),
 732	.dom_cset		= &init_css_set,
 733	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
 734	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
 735	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
 736	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
 737	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
 738	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
 739	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
 740	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
 741
 742	/*
 743	 * The following field is re-initialized when this cset gets linked
 744	 * in cgroup_init().  However, let's initialize the field
 745	 * statically too so that the default cgroup can be accessed safely
 746	 * early during boot.
 747	 */
 748	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
 749};
 750
 751static int css_set_count	= 1;	/* 1 for init_css_set */
 752
 753static bool css_set_threaded(struct css_set *cset)
 754{
 755	return cset->dom_cset != cset;
 756}
 757
 758/**
 759 * css_set_populated - does a css_set contain any tasks?
 760 * @cset: target css_set
 761 *
 762 * css_set_populated() should be the same as !!cset->nr_tasks at steady
 763 * state. However, css_set_populated() can be called while a task is being
 764 * added to or removed from the linked list before the nr_tasks is
 765 * properly updated. Hence, we can't just look at ->nr_tasks here.
 766 */
 767static bool css_set_populated(struct css_set *cset)
 768{
 769	lockdep_assert_held(&css_set_lock);
 770
 771	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 772}
 773
 774/**
 775 * cgroup_update_populated - update the populated count of a cgroup
 776 * @cgrp: the target cgroup
 777 * @populated: inc or dec populated count
 778 *
 779 * One of the css_sets associated with @cgrp is either getting its first
 780 * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
 781 * count is propagated towards root so that a given cgroup's
 782 * nr_populated_children is zero iff none of its descendants contain any
 783 * tasks.
 784 *
 785 * @cgrp's interface file "cgroup.populated" is zero if both
 786 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
 787 * 1 otherwise.  When the sum changes from or to zero, userland is notified
 788 * that the content of the interface file has changed.  This can be used to
 789 * detect when @cgrp and its descendants become populated or empty.
 790 */
 791static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 792{
 793	struct cgroup *child = NULL;
 794	int adj = populated ? 1 : -1;
 795
 796	lockdep_assert_held(&css_set_lock);
 797
 798	do {
 799		bool was_populated = cgroup_is_populated(cgrp);
 800
 801		if (!child) {
 802			cgrp->nr_populated_csets += adj;
 803		} else {
 804			if (cgroup_is_threaded(child))
 805				cgrp->nr_populated_threaded_children += adj;
 806			else
 807				cgrp->nr_populated_domain_children += adj;
 808		}
 809
 810		if (was_populated == cgroup_is_populated(cgrp))
 811			break;
 812
 813		cgroup1_check_for_release(cgrp);
 814		TRACE_CGROUP_PATH(notify_populated, cgrp,
 815				  cgroup_is_populated(cgrp));
 816		cgroup_file_notify(&cgrp->events_file);
 817
 818		child = cgrp;
 819		cgrp = cgroup_parent(cgrp);
 820	} while (cgrp);
 821}
 822
 823/**
 824 * css_set_update_populated - update populated state of a css_set
 825 * @cset: target css_set
 826 * @populated: whether @cset is populated or depopulated
 827 *
 828 * @cset is either getting the first task or losing the last.  Update the
 829 * populated counters of all associated cgroups accordingly.
 830 */
 831static void css_set_update_populated(struct css_set *cset, bool populated)
 832{
 833	struct cgrp_cset_link *link;
 834
 835	lockdep_assert_held(&css_set_lock);
 836
 837	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 838		cgroup_update_populated(link->cgrp, populated);
 839}
 840
 841/*
 842 * @task is leaving, advance task iterators which are pointing to it so
 843 * that they can resume at the next position.  Advancing an iterator might
 844 * remove it from the list, use safe walk.  See css_task_iter_skip() for
 845 * details.
 846 */
 847static void css_set_skip_task_iters(struct css_set *cset,
 848				    struct task_struct *task)
 849{
 850	struct css_task_iter *it, *pos;
 851
 852	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
 853		css_task_iter_skip(it, task);
 854}
 855
 856/**
 857 * css_set_move_task - move a task from one css_set to another
 858 * @task: task being moved
 859 * @from_cset: css_set @task currently belongs to (may be NULL)
 860 * @to_cset: new css_set @task is being moved to (may be NULL)
 861 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 862 *
 863 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 864 * css_set, @from_cset can be NULL.  If @task is being disassociated
 865 * instead of moved, @to_cset can be NULL.
 866 *
 867 * This function automatically handles populated counter updates and
 868 * css_task_iter adjustments but the caller is responsible for managing
 869 * @from_cset and @to_cset's reference counts.
 870 */
 871static void css_set_move_task(struct task_struct *task,
 872			      struct css_set *from_cset, struct css_set *to_cset,
 873			      bool use_mg_tasks)
 874{
 875	lockdep_assert_held(&css_set_lock);
 876
 877	if (to_cset && !css_set_populated(to_cset))
 878		css_set_update_populated(to_cset, true);
 879
 880	if (from_cset) {
 
 
 881		WARN_ON_ONCE(list_empty(&task->cg_list));
 882
 883		css_set_skip_task_iters(from_cset, task);
 
 
 
 
 
 
 
 
 
 
 
 884		list_del_init(&task->cg_list);
 885		if (!css_set_populated(from_cset))
 886			css_set_update_populated(from_cset, false);
 887	} else {
 888		WARN_ON_ONCE(!list_empty(&task->cg_list));
 889	}
 890
 891	if (to_cset) {
 892		/*
 893		 * We are synchronized through cgroup_threadgroup_rwsem
 894		 * against PF_EXITING setting such that we can't race
 895		 * against cgroup_exit()/cgroup_free() dropping the css_set.
 
 896		 */
 897		WARN_ON_ONCE(task->flags & PF_EXITING);
 898
 899		cgroup_move_task(task, to_cset);
 900		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 901							     &to_cset->tasks);
 902	}
 903}
 904
 905/*
 906 * hash table for cgroup groups. This improves the performance to find
 907 * an existing css_set. This hash doesn't (currently) take into
 908 * account cgroups in empty hierarchies.
 909 */
 910#define CSS_SET_HASH_BITS	7
 911static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 912
 913static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 914{
 915	unsigned long key = 0UL;
 916	struct cgroup_subsys *ss;
 917	int i;
 918
 919	for_each_subsys(ss, i)
 920		key += (unsigned long)css[i];
 921	key = (key >> 16) ^ key;
 922
 923	return key;
 924}
 925
 926void put_css_set_locked(struct css_set *cset)
 927{
 928	struct cgrp_cset_link *link, *tmp_link;
 929	struct cgroup_subsys *ss;
 930	int ssid;
 931
 932	lockdep_assert_held(&css_set_lock);
 933
 934	if (!refcount_dec_and_test(&cset->refcount))
 935		return;
 936
 937	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
 938
 939	/* This css_set is dead. unlink it and release cgroup and css refs */
 940	for_each_subsys(ss, ssid) {
 941		list_del(&cset->e_cset_node[ssid]);
 942		css_put(cset->subsys[ssid]);
 943	}
 944	hash_del(&cset->hlist);
 945	css_set_count--;
 946
 947	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 948		list_del(&link->cset_link);
 949		list_del(&link->cgrp_link);
 950		if (cgroup_parent(link->cgrp))
 951			cgroup_put(link->cgrp);
 952		kfree(link);
 953	}
 954
 955	if (css_set_threaded(cset)) {
 956		list_del(&cset->threaded_csets_node);
 957		put_css_set_locked(cset->dom_cset);
 958	}
 959
 960	kfree_rcu(cset, rcu_head);
 961}
 962
 963/**
 964 * compare_css_sets - helper function for find_existing_css_set().
 965 * @cset: candidate css_set being tested
 966 * @old_cset: existing css_set for a task
 967 * @new_cgrp: cgroup that's being entered by the task
 968 * @template: desired set of css pointers in css_set (pre-calculated)
 969 *
 970 * Returns true if "cset" matches "old_cset" except for the hierarchy
 971 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 972 */
 973static bool compare_css_sets(struct css_set *cset,
 974			     struct css_set *old_cset,
 975			     struct cgroup *new_cgrp,
 976			     struct cgroup_subsys_state *template[])
 977{
 978	struct cgroup *new_dfl_cgrp;
 979	struct list_head *l1, *l2;
 980
 981	/*
 982	 * On the default hierarchy, there can be csets which are
 983	 * associated with the same set of cgroups but different csses.
 984	 * Let's first ensure that csses match.
 985	 */
 986	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 987		return false;
 988
 989
 990	/* @cset's domain should match the default cgroup's */
 991	if (cgroup_on_dfl(new_cgrp))
 992		new_dfl_cgrp = new_cgrp;
 993	else
 994		new_dfl_cgrp = old_cset->dfl_cgrp;
 995
 996	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
 997		return false;
 998
 999	/*
1000	 * Compare cgroup pointers in order to distinguish between
1001	 * different cgroups in hierarchies.  As different cgroups may
1002	 * share the same effective css, this comparison is always
1003	 * necessary.
1004	 */
1005	l1 = &cset->cgrp_links;
1006	l2 = &old_cset->cgrp_links;
1007	while (1) {
1008		struct cgrp_cset_link *link1, *link2;
1009		struct cgroup *cgrp1, *cgrp2;
1010
1011		l1 = l1->next;
1012		l2 = l2->next;
1013		/* See if we reached the end - both lists are equal length. */
1014		if (l1 == &cset->cgrp_links) {
1015			BUG_ON(l2 != &old_cset->cgrp_links);
1016			break;
1017		} else {
1018			BUG_ON(l2 == &old_cset->cgrp_links);
1019		}
1020		/* Locate the cgroups associated with these links. */
1021		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1022		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1023		cgrp1 = link1->cgrp;
1024		cgrp2 = link2->cgrp;
1025		/* Hierarchies should be linked in the same order. */
1026		BUG_ON(cgrp1->root != cgrp2->root);
1027
1028		/*
1029		 * If this hierarchy is the hierarchy of the cgroup
1030		 * that's changing, then we need to check that this
1031		 * css_set points to the new cgroup; if it's any other
1032		 * hierarchy, then this css_set should point to the
1033		 * same cgroup as the old css_set.
1034		 */
1035		if (cgrp1->root == new_cgrp->root) {
1036			if (cgrp1 != new_cgrp)
1037				return false;
1038		} else {
1039			if (cgrp1 != cgrp2)
1040				return false;
1041		}
1042	}
1043	return true;
1044}
1045
1046/**
1047 * find_existing_css_set - init css array and find the matching css_set
1048 * @old_cset: the css_set that we're using before the cgroup transition
1049 * @cgrp: the cgroup that we're moving into
1050 * @template: out param for the new set of csses, should be clear on entry
1051 */
1052static struct css_set *find_existing_css_set(struct css_set *old_cset,
1053					struct cgroup *cgrp,
1054					struct cgroup_subsys_state *template[])
1055{
1056	struct cgroup_root *root = cgrp->root;
1057	struct cgroup_subsys *ss;
1058	struct css_set *cset;
1059	unsigned long key;
1060	int i;
1061
1062	/*
1063	 * Build the set of subsystem state objects that we want to see in the
1064	 * new css_set. while subsystems can change globally, the entries here
1065	 * won't change, so no need for locking.
1066	 */
1067	for_each_subsys(ss, i) {
1068		if (root->subsys_mask & (1UL << i)) {
1069			/*
1070			 * @ss is in this hierarchy, so we want the
1071			 * effective css from @cgrp.
1072			 */
1073			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1074		} else {
1075			/*
1076			 * @ss is not in this hierarchy, so we don't want
1077			 * to change the css.
1078			 */
1079			template[i] = old_cset->subsys[i];
1080		}
1081	}
1082
1083	key = css_set_hash(template);
1084	hash_for_each_possible(css_set_table, cset, hlist, key) {
1085		if (!compare_css_sets(cset, old_cset, cgrp, template))
1086			continue;
1087
1088		/* This css_set matches what we need */
1089		return cset;
1090	}
1091
1092	/* No existing cgroup group matched */
1093	return NULL;
1094}
1095
1096static void free_cgrp_cset_links(struct list_head *links_to_free)
1097{
1098	struct cgrp_cset_link *link, *tmp_link;
1099
1100	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1101		list_del(&link->cset_link);
1102		kfree(link);
1103	}
1104}
1105
1106/**
1107 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1108 * @count: the number of links to allocate
1109 * @tmp_links: list_head the allocated links are put on
1110 *
1111 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1112 * through ->cset_link.  Returns 0 on success or -errno.
1113 */
1114static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1115{
1116	struct cgrp_cset_link *link;
1117	int i;
1118
1119	INIT_LIST_HEAD(tmp_links);
1120
1121	for (i = 0; i < count; i++) {
1122		link = kzalloc(sizeof(*link), GFP_KERNEL);
1123		if (!link) {
1124			free_cgrp_cset_links(tmp_links);
1125			return -ENOMEM;
1126		}
1127		list_add(&link->cset_link, tmp_links);
1128	}
1129	return 0;
1130}
1131
1132/**
1133 * link_css_set - a helper function to link a css_set to a cgroup
1134 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1135 * @cset: the css_set to be linked
1136 * @cgrp: the destination cgroup
1137 */
1138static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1139			 struct cgroup *cgrp)
1140{
1141	struct cgrp_cset_link *link;
1142
1143	BUG_ON(list_empty(tmp_links));
1144
1145	if (cgroup_on_dfl(cgrp))
1146		cset->dfl_cgrp = cgrp;
1147
1148	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1149	link->cset = cset;
1150	link->cgrp = cgrp;
1151
1152	/*
1153	 * Always add links to the tail of the lists so that the lists are
1154	 * in choronological order.
1155	 */
1156	list_move_tail(&link->cset_link, &cgrp->cset_links);
1157	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1158
1159	if (cgroup_parent(cgrp))
1160		cgroup_get_live(cgrp);
1161}
1162
1163/**
1164 * find_css_set - return a new css_set with one cgroup updated
1165 * @old_cset: the baseline css_set
1166 * @cgrp: the cgroup to be updated
1167 *
1168 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1169 * substituted into the appropriate hierarchy.
1170 */
1171static struct css_set *find_css_set(struct css_set *old_cset,
1172				    struct cgroup *cgrp)
1173{
1174	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1175	struct css_set *cset;
1176	struct list_head tmp_links;
1177	struct cgrp_cset_link *link;
1178	struct cgroup_subsys *ss;
1179	unsigned long key;
1180	int ssid;
1181
1182	lockdep_assert_held(&cgroup_mutex);
1183
1184	/* First see if we already have a cgroup group that matches
1185	 * the desired set */
1186	spin_lock_irq(&css_set_lock);
1187	cset = find_existing_css_set(old_cset, cgrp, template);
1188	if (cset)
1189		get_css_set(cset);
1190	spin_unlock_irq(&css_set_lock);
1191
1192	if (cset)
1193		return cset;
1194
1195	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1196	if (!cset)
1197		return NULL;
1198
1199	/* Allocate all the cgrp_cset_link objects that we'll need */
1200	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1201		kfree(cset);
1202		return NULL;
1203	}
1204
1205	refcount_set(&cset->refcount, 1);
1206	cset->dom_cset = cset;
1207	INIT_LIST_HEAD(&cset->tasks);
1208	INIT_LIST_HEAD(&cset->mg_tasks);
1209	INIT_LIST_HEAD(&cset->dying_tasks);
1210	INIT_LIST_HEAD(&cset->task_iters);
1211	INIT_LIST_HEAD(&cset->threaded_csets);
1212	INIT_HLIST_NODE(&cset->hlist);
1213	INIT_LIST_HEAD(&cset->cgrp_links);
1214	INIT_LIST_HEAD(&cset->mg_preload_node);
1215	INIT_LIST_HEAD(&cset->mg_node);
1216
1217	/* Copy the set of subsystem state objects generated in
1218	 * find_existing_css_set() */
1219	memcpy(cset->subsys, template, sizeof(cset->subsys));
1220
1221	spin_lock_irq(&css_set_lock);
1222	/* Add reference counts and links from the new css_set. */
1223	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224		struct cgroup *c = link->cgrp;
1225
1226		if (c->root == cgrp->root)
1227			c = cgrp;
1228		link_css_set(&tmp_links, cset, c);
1229	}
1230
1231	BUG_ON(!list_empty(&tmp_links));
1232
1233	css_set_count++;
1234
1235	/* Add @cset to the hash table */
1236	key = css_set_hash(cset->subsys);
1237	hash_add(css_set_table, &cset->hlist, key);
1238
1239	for_each_subsys(ss, ssid) {
1240		struct cgroup_subsys_state *css = cset->subsys[ssid];
1241
1242		list_add_tail(&cset->e_cset_node[ssid],
1243			      &css->cgroup->e_csets[ssid]);
1244		css_get(css);
1245	}
1246
1247	spin_unlock_irq(&css_set_lock);
1248
1249	/*
1250	 * If @cset should be threaded, look up the matching dom_cset and
1251	 * link them up.  We first fully initialize @cset then look for the
1252	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253	 * to stay empty until we return.
1254	 */
1255	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256		struct css_set *dcset;
1257
1258		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259		if (!dcset) {
1260			put_css_set(cset);
1261			return NULL;
1262		}
1263
1264		spin_lock_irq(&css_set_lock);
1265		cset->dom_cset = dcset;
1266		list_add_tail(&cset->threaded_csets_node,
1267			      &dcset->threaded_csets);
1268		spin_unlock_irq(&css_set_lock);
1269	}
1270
1271	return cset;
1272}
1273
1274struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275{
1276	struct cgroup *root_cgrp = kf_root->kn->priv;
1277
1278	return root_cgrp->root;
1279}
1280
1281static int cgroup_init_root_id(struct cgroup_root *root)
1282{
1283	int id;
1284
1285	lockdep_assert_held(&cgroup_mutex);
1286
1287	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1288	if (id < 0)
1289		return id;
1290
1291	root->hierarchy_id = id;
1292	return 0;
1293}
1294
1295static void cgroup_exit_root_id(struct cgroup_root *root)
1296{
1297	lockdep_assert_held(&cgroup_mutex);
1298
1299	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1300}
1301
1302void cgroup_free_root(struct cgroup_root *root)
1303{
1304	kfree(root);
 
 
 
1305}
1306
1307static void cgroup_destroy_root(struct cgroup_root *root)
1308{
1309	struct cgroup *cgrp = &root->cgrp;
1310	struct cgrp_cset_link *link, *tmp_link;
1311
1312	trace_cgroup_destroy_root(root);
1313
1314	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1315
1316	BUG_ON(atomic_read(&root->nr_cgrps));
1317	BUG_ON(!list_empty(&cgrp->self.children));
1318
1319	/* Rebind all subsystems back to the default hierarchy */
1320	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1321
1322	/*
1323	 * Release all the links from cset_links to this hierarchy's
1324	 * root cgroup
1325	 */
1326	spin_lock_irq(&css_set_lock);
1327
1328	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1329		list_del(&link->cset_link);
1330		list_del(&link->cgrp_link);
1331		kfree(link);
1332	}
1333
1334	spin_unlock_irq(&css_set_lock);
1335
1336	if (!list_empty(&root->root_list)) {
1337		list_del(&root->root_list);
1338		cgroup_root_count--;
1339	}
1340
1341	cgroup_exit_root_id(root);
1342
1343	mutex_unlock(&cgroup_mutex);
1344
1345	kernfs_destroy_root(root->kf_root);
1346	cgroup_free_root(root);
1347}
1348
1349/*
1350 * look up cgroup associated with current task's cgroup namespace on the
1351 * specified hierarchy
1352 */
1353static struct cgroup *
1354current_cgns_cgroup_from_root(struct cgroup_root *root)
1355{
1356	struct cgroup *res = NULL;
1357	struct css_set *cset;
1358
1359	lockdep_assert_held(&css_set_lock);
1360
1361	rcu_read_lock();
1362
1363	cset = current->nsproxy->cgroup_ns->root_cset;
1364	if (cset == &init_css_set) {
1365		res = &root->cgrp;
1366	} else if (root == &cgrp_dfl_root) {
1367		res = cset->dfl_cgrp;
1368	} else {
1369		struct cgrp_cset_link *link;
1370
1371		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1372			struct cgroup *c = link->cgrp;
1373
1374			if (c->root == root) {
1375				res = c;
1376				break;
1377			}
1378		}
1379	}
1380	rcu_read_unlock();
1381
1382	BUG_ON(!res);
1383	return res;
1384}
1385
1386/* look up cgroup associated with given css_set on the specified hierarchy */
1387static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1388					    struct cgroup_root *root)
1389{
1390	struct cgroup *res = NULL;
1391
1392	lockdep_assert_held(&cgroup_mutex);
1393	lockdep_assert_held(&css_set_lock);
1394
1395	if (cset == &init_css_set) {
1396		res = &root->cgrp;
1397	} else if (root == &cgrp_dfl_root) {
1398		res = cset->dfl_cgrp;
1399	} else {
1400		struct cgrp_cset_link *link;
1401
1402		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1403			struct cgroup *c = link->cgrp;
1404
1405			if (c->root == root) {
1406				res = c;
1407				break;
1408			}
1409		}
1410	}
1411
1412	BUG_ON(!res);
1413	return res;
1414}
1415
1416/*
1417 * Return the cgroup for "task" from the given hierarchy. Must be
1418 * called with cgroup_mutex and css_set_lock held.
1419 */
1420struct cgroup *task_cgroup_from_root(struct task_struct *task,
1421				     struct cgroup_root *root)
1422{
1423	/*
1424	 * No need to lock the task - since we hold css_set_lock the
1425	 * task can't change groups.
 
1426	 */
1427	return cset_cgroup_from_root(task_css_set(task), root);
1428}
1429
1430/*
1431 * A task must hold cgroup_mutex to modify cgroups.
1432 *
1433 * Any task can increment and decrement the count field without lock.
1434 * So in general, code holding cgroup_mutex can't rely on the count
1435 * field not changing.  However, if the count goes to zero, then only
1436 * cgroup_attach_task() can increment it again.  Because a count of zero
1437 * means that no tasks are currently attached, therefore there is no
1438 * way a task attached to that cgroup can fork (the other way to
1439 * increment the count).  So code holding cgroup_mutex can safely
1440 * assume that if the count is zero, it will stay zero. Similarly, if
1441 * a task holds cgroup_mutex on a cgroup with zero count, it
1442 * knows that the cgroup won't be removed, as cgroup_rmdir()
1443 * needs that mutex.
1444 *
1445 * A cgroup can only be deleted if both its 'count' of using tasks
1446 * is zero, and its list of 'children' cgroups is empty.  Since all
1447 * tasks in the system use _some_ cgroup, and since there is always at
1448 * least one task in the system (init, pid == 1), therefore, root cgroup
1449 * always has either children cgroups and/or using tasks.  So we don't
1450 * need a special hack to ensure that root cgroup cannot be deleted.
1451 *
1452 * P.S.  One more locking exception.  RCU is used to guard the
1453 * update of a tasks cgroup pointer by cgroup_attach_task()
1454 */
1455
1456static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1457
1458static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1459			      char *buf)
1460{
1461	struct cgroup_subsys *ss = cft->ss;
1462
1463	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1464	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1465		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1466
1467		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1468			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1469			 cft->name);
1470	} else {
1471		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1472	}
1473	return buf;
1474}
1475
1476/**
1477 * cgroup_file_mode - deduce file mode of a control file
1478 * @cft: the control file in question
1479 *
1480 * S_IRUGO for read, S_IWUSR for write.
1481 */
1482static umode_t cgroup_file_mode(const struct cftype *cft)
1483{
1484	umode_t mode = 0;
1485
1486	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1487		mode |= S_IRUGO;
1488
1489	if (cft->write_u64 || cft->write_s64 || cft->write) {
1490		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1491			mode |= S_IWUGO;
1492		else
1493			mode |= S_IWUSR;
1494	}
1495
1496	return mode;
1497}
1498
1499/**
1500 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1501 * @subtree_control: the new subtree_control mask to consider
1502 * @this_ss_mask: available subsystems
1503 *
1504 * On the default hierarchy, a subsystem may request other subsystems to be
1505 * enabled together through its ->depends_on mask.  In such cases, more
1506 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1507 *
1508 * This function calculates which subsystems need to be enabled if
1509 * @subtree_control is to be applied while restricted to @this_ss_mask.
1510 */
1511static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1512{
1513	u16 cur_ss_mask = subtree_control;
1514	struct cgroup_subsys *ss;
1515	int ssid;
1516
1517	lockdep_assert_held(&cgroup_mutex);
1518
1519	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1520
1521	while (true) {
1522		u16 new_ss_mask = cur_ss_mask;
1523
1524		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1525			new_ss_mask |= ss->depends_on;
1526		} while_each_subsys_mask();
1527
1528		/*
1529		 * Mask out subsystems which aren't available.  This can
1530		 * happen only if some depended-upon subsystems were bound
1531		 * to non-default hierarchies.
1532		 */
1533		new_ss_mask &= this_ss_mask;
1534
1535		if (new_ss_mask == cur_ss_mask)
1536			break;
1537		cur_ss_mask = new_ss_mask;
1538	}
1539
1540	return cur_ss_mask;
1541}
1542
1543/**
1544 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1545 * @kn: the kernfs_node being serviced
1546 *
1547 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1548 * the method finishes if locking succeeded.  Note that once this function
1549 * returns the cgroup returned by cgroup_kn_lock_live() may become
1550 * inaccessible any time.  If the caller intends to continue to access the
1551 * cgroup, it should pin it before invoking this function.
1552 */
1553void cgroup_kn_unlock(struct kernfs_node *kn)
1554{
1555	struct cgroup *cgrp;
1556
1557	if (kernfs_type(kn) == KERNFS_DIR)
1558		cgrp = kn->priv;
1559	else
1560		cgrp = kn->parent->priv;
1561
1562	mutex_unlock(&cgroup_mutex);
1563
1564	kernfs_unbreak_active_protection(kn);
1565	cgroup_put(cgrp);
1566}
1567
1568/**
1569 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1570 * @kn: the kernfs_node being serviced
1571 * @drain_offline: perform offline draining on the cgroup
1572 *
1573 * This helper is to be used by a cgroup kernfs method currently servicing
1574 * @kn.  It breaks the active protection, performs cgroup locking and
1575 * verifies that the associated cgroup is alive.  Returns the cgroup if
1576 * alive; otherwise, %NULL.  A successful return should be undone by a
1577 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1578 * cgroup is drained of offlining csses before return.
1579 *
1580 * Any cgroup kernfs method implementation which requires locking the
1581 * associated cgroup should use this helper.  It avoids nesting cgroup
1582 * locking under kernfs active protection and allows all kernfs operations
1583 * including self-removal.
1584 */
1585struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1586{
1587	struct cgroup *cgrp;
1588
1589	if (kernfs_type(kn) == KERNFS_DIR)
1590		cgrp = kn->priv;
1591	else
1592		cgrp = kn->parent->priv;
1593
1594	/*
1595	 * We're gonna grab cgroup_mutex which nests outside kernfs
1596	 * active_ref.  cgroup liveliness check alone provides enough
1597	 * protection against removal.  Ensure @cgrp stays accessible and
1598	 * break the active_ref protection.
1599	 */
1600	if (!cgroup_tryget(cgrp))
1601		return NULL;
1602	kernfs_break_active_protection(kn);
1603
1604	if (drain_offline)
1605		cgroup_lock_and_drain_offline(cgrp);
1606	else
1607		mutex_lock(&cgroup_mutex);
1608
1609	if (!cgroup_is_dead(cgrp))
1610		return cgrp;
1611
1612	cgroup_kn_unlock(kn);
1613	return NULL;
1614}
1615
1616static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1617{
1618	char name[CGROUP_FILE_NAME_MAX];
1619
1620	lockdep_assert_held(&cgroup_mutex);
1621
1622	if (cft->file_offset) {
1623		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1624		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1625
1626		spin_lock_irq(&cgroup_file_kn_lock);
1627		cfile->kn = NULL;
1628		spin_unlock_irq(&cgroup_file_kn_lock);
1629
1630		del_timer_sync(&cfile->notify_timer);
1631	}
1632
1633	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1634}
1635
1636/**
1637 * css_clear_dir - remove subsys files in a cgroup directory
1638 * @css: taget css
1639 */
1640static void css_clear_dir(struct cgroup_subsys_state *css)
1641{
1642	struct cgroup *cgrp = css->cgroup;
1643	struct cftype *cfts;
1644
1645	if (!(css->flags & CSS_VISIBLE))
1646		return;
1647
1648	css->flags &= ~CSS_VISIBLE;
1649
1650	if (!css->ss) {
1651		if (cgroup_on_dfl(cgrp))
1652			cfts = cgroup_base_files;
1653		else
1654			cfts = cgroup1_base_files;
1655
1656		cgroup_addrm_files(css, cgrp, cfts, false);
1657	} else {
1658		list_for_each_entry(cfts, &css->ss->cfts, node)
1659			cgroup_addrm_files(css, cgrp, cfts, false);
1660	}
1661}
1662
1663/**
1664 * css_populate_dir - create subsys files in a cgroup directory
1665 * @css: target css
1666 *
1667 * On failure, no file is added.
1668 */
1669static int css_populate_dir(struct cgroup_subsys_state *css)
1670{
1671	struct cgroup *cgrp = css->cgroup;
1672	struct cftype *cfts, *failed_cfts;
1673	int ret;
1674
1675	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1676		return 0;
1677
1678	if (!css->ss) {
1679		if (cgroup_on_dfl(cgrp))
1680			cfts = cgroup_base_files;
1681		else
1682			cfts = cgroup1_base_files;
1683
1684		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1685		if (ret < 0)
1686			return ret;
1687	} else {
1688		list_for_each_entry(cfts, &css->ss->cfts, node) {
1689			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1690			if (ret < 0) {
1691				failed_cfts = cfts;
1692				goto err;
1693			}
1694		}
1695	}
1696
1697	css->flags |= CSS_VISIBLE;
1698
1699	return 0;
1700err:
1701	list_for_each_entry(cfts, &css->ss->cfts, node) {
1702		if (cfts == failed_cfts)
1703			break;
1704		cgroup_addrm_files(css, cgrp, cfts, false);
1705	}
1706	return ret;
1707}
1708
1709int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1710{
1711	struct cgroup *dcgrp = &dst_root->cgrp;
1712	struct cgroup_subsys *ss;
1713	int ssid, i, ret;
1714
1715	lockdep_assert_held(&cgroup_mutex);
1716
1717	do_each_subsys_mask(ss, ssid, ss_mask) {
1718		/*
1719		 * If @ss has non-root csses attached to it, can't move.
1720		 * If @ss is an implicit controller, it is exempt from this
1721		 * rule and can be stolen.
1722		 */
1723		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1724		    !ss->implicit_on_dfl)
1725			return -EBUSY;
1726
1727		/* can't move between two non-dummy roots either */
1728		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1729			return -EBUSY;
1730	} while_each_subsys_mask();
1731
1732	do_each_subsys_mask(ss, ssid, ss_mask) {
1733		struct cgroup_root *src_root = ss->root;
1734		struct cgroup *scgrp = &src_root->cgrp;
1735		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1736		struct css_set *cset;
1737
1738		WARN_ON(!css || cgroup_css(dcgrp, ss));
1739
1740		/* disable from the source */
1741		src_root->subsys_mask &= ~(1 << ssid);
1742		WARN_ON(cgroup_apply_control(scgrp));
1743		cgroup_finalize_control(scgrp, 0);
1744
1745		/* rebind */
1746		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1747		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1748		ss->root = dst_root;
1749		css->cgroup = dcgrp;
1750
1751		spin_lock_irq(&css_set_lock);
1752		hash_for_each(css_set_table, i, cset, hlist)
1753			list_move_tail(&cset->e_cset_node[ss->id],
1754				       &dcgrp->e_csets[ss->id]);
1755		spin_unlock_irq(&css_set_lock);
1756
1757		/* default hierarchy doesn't enable controllers by default */
1758		dst_root->subsys_mask |= 1 << ssid;
1759		if (dst_root == &cgrp_dfl_root) {
1760			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1761		} else {
1762			dcgrp->subtree_control |= 1 << ssid;
1763			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1764		}
1765
1766		ret = cgroup_apply_control(dcgrp);
1767		if (ret)
1768			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1769				ss->name, ret);
1770
1771		if (ss->bind)
1772			ss->bind(css);
1773	} while_each_subsys_mask();
1774
1775	kernfs_activate(dcgrp->kn);
1776	return 0;
1777}
1778
1779int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1780		     struct kernfs_root *kf_root)
1781{
1782	int len = 0;
1783	char *buf = NULL;
1784	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1785	struct cgroup *ns_cgroup;
1786
1787	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1788	if (!buf)
1789		return -ENOMEM;
1790
1791	spin_lock_irq(&css_set_lock);
1792	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1793	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1794	spin_unlock_irq(&css_set_lock);
1795
1796	if (len >= PATH_MAX)
1797		len = -ERANGE;
1798	else if (len > 0) {
1799		seq_escape(sf, buf, " \t\n\\");
1800		len = 0;
1801	}
1802	kfree(buf);
1803	return len;
1804}
1805
1806enum cgroup2_param {
1807	Opt_nsdelegate,
1808	Opt_memory_localevents,
1809	Opt_memory_recursiveprot,
1810	nr__cgroup2_params
1811};
1812
1813static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1814	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1815	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1816	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1817	{}
1818};
1819
1820static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1821{
1822	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1823	struct fs_parse_result result;
1824	int opt;
1825
1826	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1827	if (opt < 0)
1828		return opt;
1829
1830	switch (opt) {
1831	case Opt_nsdelegate:
1832		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1833		return 0;
1834	case Opt_memory_localevents:
1835		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1836		return 0;
1837	case Opt_memory_recursiveprot:
1838		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1839		return 0;
 
 
 
 
 
 
 
 
 
1840	}
1841	return -EINVAL;
 
1842}
1843
1844static void apply_cgroup_root_flags(unsigned int root_flags)
1845{
1846	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1847		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1848			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1849		else
1850			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1851
1852		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1853			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1854		else
1855			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1856
1857		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1858			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1859		else
1860			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1861	}
1862}
1863
1864static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1865{
1866	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1867		seq_puts(seq, ",nsdelegate");
1868	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1869		seq_puts(seq, ",memory_localevents");
1870	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1871		seq_puts(seq, ",memory_recursiveprot");
1872	return 0;
1873}
1874
1875static int cgroup_reconfigure(struct fs_context *fc)
1876{
1877	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 
 
 
 
 
1878
1879	apply_cgroup_root_flags(ctx->flags);
1880	return 0;
1881}
1882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1883static void init_cgroup_housekeeping(struct cgroup *cgrp)
1884{
1885	struct cgroup_subsys *ss;
1886	int ssid;
1887
1888	INIT_LIST_HEAD(&cgrp->self.sibling);
1889	INIT_LIST_HEAD(&cgrp->self.children);
1890	INIT_LIST_HEAD(&cgrp->cset_links);
1891	INIT_LIST_HEAD(&cgrp->pidlists);
1892	mutex_init(&cgrp->pidlist_mutex);
1893	cgrp->self.cgroup = cgrp;
1894	cgrp->self.flags |= CSS_ONLINE;
1895	cgrp->dom_cgrp = cgrp;
1896	cgrp->max_descendants = INT_MAX;
1897	cgrp->max_depth = INT_MAX;
1898	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1899	prev_cputime_init(&cgrp->prev_cputime);
1900
1901	for_each_subsys(ss, ssid)
1902		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1903
1904	init_waitqueue_head(&cgrp->offline_waitq);
1905	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1906}
1907
1908void init_cgroup_root(struct cgroup_fs_context *ctx)
1909{
1910	struct cgroup_root *root = ctx->root;
1911	struct cgroup *cgrp = &root->cgrp;
1912
1913	INIT_LIST_HEAD(&root->root_list);
1914	atomic_set(&root->nr_cgrps, 1);
1915	cgrp->root = root;
1916	init_cgroup_housekeeping(cgrp);
 
1917
1918	root->flags = ctx->flags;
1919	if (ctx->release_agent)
1920		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1921	if (ctx->name)
1922		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1923	if (ctx->cpuset_clone_children)
1924		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1925}
1926
1927int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1928{
1929	LIST_HEAD(tmp_links);
1930	struct cgroup *root_cgrp = &root->cgrp;
1931	struct kernfs_syscall_ops *kf_sops;
1932	struct css_set *cset;
1933	int i, ret;
1934
1935	lockdep_assert_held(&cgroup_mutex);
1936
 
 
 
 
 
 
1937	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1938			      0, GFP_KERNEL);
1939	if (ret)
1940		goto out;
1941
1942	/*
1943	 * We're accessing css_set_count without locking css_set_lock here,
1944	 * but that's OK - it can only be increased by someone holding
1945	 * cgroup_lock, and that's us.  Later rebinding may disable
1946	 * controllers on the default hierarchy and thus create new csets,
1947	 * which can't be more than the existing ones.  Allocate 2x.
1948	 */
1949	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1950	if (ret)
1951		goto cancel_ref;
1952
1953	ret = cgroup_init_root_id(root);
1954	if (ret)
1955		goto cancel_ref;
1956
1957	kf_sops = root == &cgrp_dfl_root ?
1958		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1959
1960	root->kf_root = kernfs_create_root(kf_sops,
1961					   KERNFS_ROOT_CREATE_DEACTIVATED |
1962					   KERNFS_ROOT_SUPPORT_EXPORTOP |
1963					   KERNFS_ROOT_SUPPORT_USER_XATTR,
1964					   root_cgrp);
1965	if (IS_ERR(root->kf_root)) {
1966		ret = PTR_ERR(root->kf_root);
1967		goto exit_root_id;
1968	}
1969	root_cgrp->kn = root->kf_root->kn;
1970	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1971	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1972
1973	ret = css_populate_dir(&root_cgrp->self);
1974	if (ret)
1975		goto destroy_root;
1976
1977	ret = rebind_subsystems(root, ss_mask);
1978	if (ret)
1979		goto destroy_root;
1980
1981	ret = cgroup_bpf_inherit(root_cgrp);
1982	WARN_ON_ONCE(ret);
1983
1984	trace_cgroup_setup_root(root);
1985
1986	/*
1987	 * There must be no failure case after here, since rebinding takes
1988	 * care of subsystems' refcounts, which are explicitly dropped in
1989	 * the failure exit path.
1990	 */
1991	list_add(&root->root_list, &cgroup_roots);
1992	cgroup_root_count++;
1993
1994	/*
1995	 * Link the root cgroup in this hierarchy into all the css_set
1996	 * objects.
1997	 */
1998	spin_lock_irq(&css_set_lock);
1999	hash_for_each(css_set_table, i, cset, hlist) {
2000		link_css_set(&tmp_links, cset, root_cgrp);
2001		if (css_set_populated(cset))
2002			cgroup_update_populated(root_cgrp, true);
2003	}
2004	spin_unlock_irq(&css_set_lock);
2005
2006	BUG_ON(!list_empty(&root_cgrp->self.children));
2007	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2008
2009	kernfs_activate(root_cgrp->kn);
2010	ret = 0;
2011	goto out;
2012
2013destroy_root:
2014	kernfs_destroy_root(root->kf_root);
2015	root->kf_root = NULL;
2016exit_root_id:
2017	cgroup_exit_root_id(root);
2018cancel_ref:
2019	percpu_ref_exit(&root_cgrp->self.refcnt);
2020out:
2021	free_cgrp_cset_links(&tmp_links);
2022	return ret;
2023}
2024
2025int cgroup_do_get_tree(struct fs_context *fc)
 
 
2026{
2027	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2028	int ret;
2029
2030	ctx->kfc.root = ctx->root->kf_root;
2031	if (fc->fs_type == &cgroup2_fs_type)
2032		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2033	else
2034		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2035	ret = kernfs_get_tree(fc);
2036
2037	/*
2038	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2039	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2040	 */
2041	if (!ret && ctx->ns != &init_cgroup_ns) {
2042		struct dentry *nsdentry;
2043		struct super_block *sb = fc->root->d_sb;
2044		struct cgroup *cgrp;
2045
2046		mutex_lock(&cgroup_mutex);
2047		spin_lock_irq(&css_set_lock);
2048
2049		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2050
2051		spin_unlock_irq(&css_set_lock);
2052		mutex_unlock(&cgroup_mutex);
2053
2054		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2055		dput(fc->root);
2056		if (IS_ERR(nsdentry)) {
2057			deactivate_locked_super(sb);
2058			ret = PTR_ERR(nsdentry);
2059			nsdentry = NULL;
2060		}
2061		fc->root = nsdentry;
2062	}
2063
2064	if (!ctx->kfc.new_sb_created)
2065		cgroup_put(&ctx->root->cgrp);
2066
2067	return ret;
2068}
2069
2070/*
2071 * Destroy a cgroup filesystem context.
2072 */
2073static void cgroup_fs_context_free(struct fs_context *fc)
2074{
2075	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 
 
2076
2077	kfree(ctx->name);
2078	kfree(ctx->release_agent);
2079	put_cgroup_ns(ctx->ns);
2080	kernfs_free_fs_context(fc);
2081	kfree(ctx);
2082}
2083
2084static int cgroup_get_tree(struct fs_context *fc)
2085{
2086	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2087	int ret;
 
2088
2089	cgrp_dfl_visible = true;
2090	cgroup_get_live(&cgrp_dfl_root.cgrp);
2091	ctx->root = &cgrp_dfl_root;
 
 
 
2092
2093	ret = cgroup_do_get_tree(fc);
2094	if (!ret)
2095		apply_cgroup_root_flags(ctx->flags);
2096	return ret;
2097}
2098
2099static const struct fs_context_operations cgroup_fs_context_ops = {
2100	.free		= cgroup_fs_context_free,
2101	.parse_param	= cgroup2_parse_param,
2102	.get_tree	= cgroup_get_tree,
2103	.reconfigure	= cgroup_reconfigure,
2104};
2105
2106static const struct fs_context_operations cgroup1_fs_context_ops = {
2107	.free		= cgroup_fs_context_free,
2108	.parse_param	= cgroup1_parse_param,
2109	.get_tree	= cgroup1_get_tree,
2110	.reconfigure	= cgroup1_reconfigure,
2111};
2112
2113/*
2114 * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2115 * we select the namespace we're going to use.
2116 */
2117static int cgroup_init_fs_context(struct fs_context *fc)
2118{
2119	struct cgroup_fs_context *ctx;
 
2120
2121	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2122	if (!ctx)
2123		return -ENOMEM;
2124
2125	ctx->ns = current->nsproxy->cgroup_ns;
2126	get_cgroup_ns(ctx->ns);
2127	fc->fs_private = &ctx->kfc;
2128	if (fc->fs_type == &cgroup2_fs_type)
2129		fc->ops = &cgroup_fs_context_ops;
2130	else
2131		fc->ops = &cgroup1_fs_context_ops;
2132	put_user_ns(fc->user_ns);
2133	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2134	fc->global = true;
2135	return 0;
2136}
2137
2138static void cgroup_kill_sb(struct super_block *sb)
2139{
2140	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2141	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2142
2143	/*
2144	 * If @root doesn't have any children, start killing it.
2145	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2146	 * cgroup_mount() may wait for @root's release.
2147	 *
2148	 * And don't kill the default root.
2149	 */
2150	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2151	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
 
 
2152		percpu_ref_kill(&root->cgrp.self.refcnt);
2153	cgroup_put(&root->cgrp);
2154	kernfs_kill_sb(sb);
2155}
2156
2157struct file_system_type cgroup_fs_type = {
2158	.name			= "cgroup",
2159	.init_fs_context	= cgroup_init_fs_context,
2160	.parameters		= cgroup1_fs_parameters,
2161	.kill_sb		= cgroup_kill_sb,
2162	.fs_flags		= FS_USERNS_MOUNT,
2163};
2164
2165static struct file_system_type cgroup2_fs_type = {
2166	.name			= "cgroup2",
2167	.init_fs_context	= cgroup_init_fs_context,
2168	.parameters		= cgroup2_fs_parameters,
2169	.kill_sb		= cgroup_kill_sb,
2170	.fs_flags		= FS_USERNS_MOUNT,
2171};
2172
2173#ifdef CONFIG_CPUSETS
2174static const struct fs_context_operations cpuset_fs_context_ops = {
2175	.get_tree	= cgroup1_get_tree,
2176	.free		= cgroup_fs_context_free,
2177};
2178
2179/*
2180 * This is ugly, but preserves the userspace API for existing cpuset
2181 * users. If someone tries to mount the "cpuset" filesystem, we
2182 * silently switch it to mount "cgroup" instead
2183 */
2184static int cpuset_init_fs_context(struct fs_context *fc)
2185{
2186	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2187	struct cgroup_fs_context *ctx;
2188	int err;
2189
2190	err = cgroup_init_fs_context(fc);
2191	if (err) {
2192		kfree(agent);
2193		return err;
2194	}
2195
2196	fc->ops = &cpuset_fs_context_ops;
2197
2198	ctx = cgroup_fc2context(fc);
2199	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2200	ctx->flags |= CGRP_ROOT_NOPREFIX;
2201	ctx->release_agent = agent;
2202
2203	get_filesystem(&cgroup_fs_type);
2204	put_filesystem(fc->fs_type);
2205	fc->fs_type = &cgroup_fs_type;
2206
2207	return 0;
2208}
2209
2210static struct file_system_type cpuset_fs_type = {
2211	.name			= "cpuset",
2212	.init_fs_context	= cpuset_init_fs_context,
2213	.fs_flags		= FS_USERNS_MOUNT,
2214};
2215#endif
2216
2217int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2218			  struct cgroup_namespace *ns)
2219{
2220	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2221
2222	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2223}
2224
2225int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2226		   struct cgroup_namespace *ns)
2227{
2228	int ret;
2229
2230	mutex_lock(&cgroup_mutex);
2231	spin_lock_irq(&css_set_lock);
2232
2233	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2234
2235	spin_unlock_irq(&css_set_lock);
2236	mutex_unlock(&cgroup_mutex);
2237
2238	return ret;
2239}
2240EXPORT_SYMBOL_GPL(cgroup_path_ns);
2241
2242/**
2243 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2244 * @task: target task
2245 * @buf: the buffer to write the path into
2246 * @buflen: the length of the buffer
2247 *
2248 * Determine @task's cgroup on the first (the one with the lowest non-zero
2249 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2250 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2251 * cgroup controller callbacks.
2252 *
2253 * Return value is the same as kernfs_path().
2254 */
2255int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2256{
2257	struct cgroup_root *root;
2258	struct cgroup *cgrp;
2259	int hierarchy_id = 1;
2260	int ret;
2261
2262	mutex_lock(&cgroup_mutex);
2263	spin_lock_irq(&css_set_lock);
2264
2265	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2266
2267	if (root) {
2268		cgrp = task_cgroup_from_root(task, root);
2269		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2270	} else {
2271		/* if no hierarchy exists, everyone is in "/" */
2272		ret = strlcpy(buf, "/", buflen);
2273	}
2274
2275	spin_unlock_irq(&css_set_lock);
2276	mutex_unlock(&cgroup_mutex);
2277	return ret;
2278}
2279EXPORT_SYMBOL_GPL(task_cgroup_path);
2280
2281/**
2282 * cgroup_migrate_add_task - add a migration target task to a migration context
2283 * @task: target task
2284 * @mgctx: target migration context
2285 *
2286 * Add @task, which is a migration target, to @mgctx->tset.  This function
2287 * becomes noop if @task doesn't need to be migrated.  @task's css_set
2288 * should have been added as a migration source and @task->cg_list will be
2289 * moved from the css_set's tasks list to mg_tasks one.
2290 */
2291static void cgroup_migrate_add_task(struct task_struct *task,
2292				    struct cgroup_mgctx *mgctx)
2293{
2294	struct css_set *cset;
2295
2296	lockdep_assert_held(&css_set_lock);
2297
2298	/* @task either already exited or can't exit until the end */
2299	if (task->flags & PF_EXITING)
2300		return;
2301
2302	/* cgroup_threadgroup_rwsem protects racing against forks */
2303	WARN_ON_ONCE(list_empty(&task->cg_list));
 
2304
2305	cset = task_css_set(task);
2306	if (!cset->mg_src_cgrp)
2307		return;
2308
2309	mgctx->tset.nr_tasks++;
2310
2311	list_move_tail(&task->cg_list, &cset->mg_tasks);
2312	if (list_empty(&cset->mg_node))
2313		list_add_tail(&cset->mg_node,
2314			      &mgctx->tset.src_csets);
2315	if (list_empty(&cset->mg_dst_cset->mg_node))
2316		list_add_tail(&cset->mg_dst_cset->mg_node,
2317			      &mgctx->tset.dst_csets);
2318}
2319
2320/**
2321 * cgroup_taskset_first - reset taskset and return the first task
2322 * @tset: taskset of interest
2323 * @dst_cssp: output variable for the destination css
2324 *
2325 * @tset iteration is initialized and the first task is returned.
2326 */
2327struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2328					 struct cgroup_subsys_state **dst_cssp)
2329{
2330	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2331	tset->cur_task = NULL;
2332
2333	return cgroup_taskset_next(tset, dst_cssp);
2334}
2335
2336/**
2337 * cgroup_taskset_next - iterate to the next task in taskset
2338 * @tset: taskset of interest
2339 * @dst_cssp: output variable for the destination css
2340 *
2341 * Return the next task in @tset.  Iteration must have been initialized
2342 * with cgroup_taskset_first().
2343 */
2344struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2345					struct cgroup_subsys_state **dst_cssp)
2346{
2347	struct css_set *cset = tset->cur_cset;
2348	struct task_struct *task = tset->cur_task;
2349
2350	while (&cset->mg_node != tset->csets) {
2351		if (!task)
2352			task = list_first_entry(&cset->mg_tasks,
2353						struct task_struct, cg_list);
2354		else
2355			task = list_next_entry(task, cg_list);
2356
2357		if (&task->cg_list != &cset->mg_tasks) {
2358			tset->cur_cset = cset;
2359			tset->cur_task = task;
2360
2361			/*
2362			 * This function may be called both before and
2363			 * after cgroup_taskset_migrate().  The two cases
2364			 * can be distinguished by looking at whether @cset
2365			 * has its ->mg_dst_cset set.
2366			 */
2367			if (cset->mg_dst_cset)
2368				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2369			else
2370				*dst_cssp = cset->subsys[tset->ssid];
2371
2372			return task;
2373		}
2374
2375		cset = list_next_entry(cset, mg_node);
2376		task = NULL;
2377	}
2378
2379	return NULL;
2380}
2381
2382/**
2383 * cgroup_taskset_migrate - migrate a taskset
2384 * @mgctx: migration context
2385 *
2386 * Migrate tasks in @mgctx as setup by migration preparation functions.
2387 * This function fails iff one of the ->can_attach callbacks fails and
2388 * guarantees that either all or none of the tasks in @mgctx are migrated.
2389 * @mgctx is consumed regardless of success.
2390 */
2391static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2392{
2393	struct cgroup_taskset *tset = &mgctx->tset;
2394	struct cgroup_subsys *ss;
2395	struct task_struct *task, *tmp_task;
2396	struct css_set *cset, *tmp_cset;
2397	int ssid, failed_ssid, ret;
2398
2399	/* check that we can legitimately attach to the cgroup */
2400	if (tset->nr_tasks) {
2401		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2402			if (ss->can_attach) {
2403				tset->ssid = ssid;
2404				ret = ss->can_attach(tset);
2405				if (ret) {
2406					failed_ssid = ssid;
2407					goto out_cancel_attach;
2408				}
2409			}
2410		} while_each_subsys_mask();
2411	}
2412
2413	/*
2414	 * Now that we're guaranteed success, proceed to move all tasks to
2415	 * the new cgroup.  There are no failure cases after here, so this
2416	 * is the commit point.
2417	 */
2418	spin_lock_irq(&css_set_lock);
2419	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2420		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2421			struct css_set *from_cset = task_css_set(task);
2422			struct css_set *to_cset = cset->mg_dst_cset;
2423
2424			get_css_set(to_cset);
2425			to_cset->nr_tasks++;
2426			css_set_move_task(task, from_cset, to_cset, true);
 
2427			from_cset->nr_tasks--;
2428			/*
2429			 * If the source or destination cgroup is frozen,
2430			 * the task might require to change its state.
2431			 */
2432			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2433						    to_cset->dfl_cgrp);
2434			put_css_set_locked(from_cset);
2435
2436		}
2437	}
2438	spin_unlock_irq(&css_set_lock);
2439
2440	/*
2441	 * Migration is committed, all target tasks are now on dst_csets.
2442	 * Nothing is sensitive to fork() after this point.  Notify
2443	 * controllers that migration is complete.
2444	 */
2445	tset->csets = &tset->dst_csets;
2446
2447	if (tset->nr_tasks) {
2448		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2449			if (ss->attach) {
2450				tset->ssid = ssid;
2451				ss->attach(tset);
2452			}
2453		} while_each_subsys_mask();
2454	}
2455
2456	ret = 0;
2457	goto out_release_tset;
2458
2459out_cancel_attach:
2460	if (tset->nr_tasks) {
2461		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2462			if (ssid == failed_ssid)
2463				break;
2464			if (ss->cancel_attach) {
2465				tset->ssid = ssid;
2466				ss->cancel_attach(tset);
2467			}
2468		} while_each_subsys_mask();
2469	}
2470out_release_tset:
2471	spin_lock_irq(&css_set_lock);
2472	list_splice_init(&tset->dst_csets, &tset->src_csets);
2473	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2474		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2475		list_del_init(&cset->mg_node);
2476	}
2477	spin_unlock_irq(&css_set_lock);
2478
2479	/*
2480	 * Re-initialize the cgroup_taskset structure in case it is reused
2481	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2482	 * iteration.
2483	 */
2484	tset->nr_tasks = 0;
2485	tset->csets    = &tset->src_csets;
2486	return ret;
2487}
2488
2489/**
2490 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2491 * @dst_cgrp: destination cgroup to test
2492 *
2493 * On the default hierarchy, except for the mixable, (possible) thread root
2494 * and threaded cgroups, subtree_control must be zero for migration
2495 * destination cgroups with tasks so that child cgroups don't compete
2496 * against tasks.
2497 */
2498int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2499{
2500	/* v1 doesn't have any restriction */
2501	if (!cgroup_on_dfl(dst_cgrp))
2502		return 0;
2503
2504	/* verify @dst_cgrp can host resources */
2505	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2506		return -EOPNOTSUPP;
2507
2508	/* mixables don't care */
2509	if (cgroup_is_mixable(dst_cgrp))
2510		return 0;
2511
2512	/*
2513	 * If @dst_cgrp is already or can become a thread root or is
2514	 * threaded, it doesn't matter.
2515	 */
2516	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2517		return 0;
2518
2519	/* apply no-internal-process constraint */
2520	if (dst_cgrp->subtree_control)
2521		return -EBUSY;
2522
2523	return 0;
2524}
2525
2526/**
2527 * cgroup_migrate_finish - cleanup after attach
2528 * @mgctx: migration context
2529 *
2530 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2531 * those functions for details.
2532 */
2533void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2534{
2535	LIST_HEAD(preloaded);
2536	struct css_set *cset, *tmp_cset;
2537
2538	lockdep_assert_held(&cgroup_mutex);
2539
2540	spin_lock_irq(&css_set_lock);
2541
2542	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2543	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2544
2545	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2546		cset->mg_src_cgrp = NULL;
2547		cset->mg_dst_cgrp = NULL;
2548		cset->mg_dst_cset = NULL;
2549		list_del_init(&cset->mg_preload_node);
2550		put_css_set_locked(cset);
2551	}
2552
2553	spin_unlock_irq(&css_set_lock);
2554}
2555
2556/**
2557 * cgroup_migrate_add_src - add a migration source css_set
2558 * @src_cset: the source css_set to add
2559 * @dst_cgrp: the destination cgroup
2560 * @mgctx: migration context
2561 *
2562 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2563 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2564 * up by cgroup_migrate_finish().
2565 *
2566 * This function may be called without holding cgroup_threadgroup_rwsem
2567 * even if the target is a process.  Threads may be created and destroyed
2568 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2569 * into play and the preloaded css_sets are guaranteed to cover all
2570 * migrations.
2571 */
2572void cgroup_migrate_add_src(struct css_set *src_cset,
2573			    struct cgroup *dst_cgrp,
2574			    struct cgroup_mgctx *mgctx)
2575{
2576	struct cgroup *src_cgrp;
2577
2578	lockdep_assert_held(&cgroup_mutex);
2579	lockdep_assert_held(&css_set_lock);
2580
2581	/*
2582	 * If ->dead, @src_set is associated with one or more dead cgroups
2583	 * and doesn't contain any migratable tasks.  Ignore it early so
2584	 * that the rest of migration path doesn't get confused by it.
2585	 */
2586	if (src_cset->dead)
2587		return;
2588
2589	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2590
2591	if (!list_empty(&src_cset->mg_preload_node))
2592		return;
2593
2594	WARN_ON(src_cset->mg_src_cgrp);
2595	WARN_ON(src_cset->mg_dst_cgrp);
2596	WARN_ON(!list_empty(&src_cset->mg_tasks));
2597	WARN_ON(!list_empty(&src_cset->mg_node));
2598
2599	src_cset->mg_src_cgrp = src_cgrp;
2600	src_cset->mg_dst_cgrp = dst_cgrp;
2601	get_css_set(src_cset);
2602	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2603}
2604
2605/**
2606 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2607 * @mgctx: migration context
2608 *
2609 * Tasks are about to be moved and all the source css_sets have been
2610 * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2611 * pins all destination css_sets, links each to its source, and append them
2612 * to @mgctx->preloaded_dst_csets.
2613 *
2614 * This function must be called after cgroup_migrate_add_src() has been
2615 * called on each migration source css_set.  After migration is performed
2616 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2617 * @mgctx.
2618 */
2619int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2620{
2621	struct css_set *src_cset, *tmp_cset;
2622
2623	lockdep_assert_held(&cgroup_mutex);
2624
2625	/* look up the dst cset for each src cset and link it to src */
2626	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2627				 mg_preload_node) {
2628		struct css_set *dst_cset;
2629		struct cgroup_subsys *ss;
2630		int ssid;
2631
2632		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2633		if (!dst_cset)
2634			return -ENOMEM;
2635
2636		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2637
2638		/*
2639		 * If src cset equals dst, it's noop.  Drop the src.
2640		 * cgroup_migrate() will skip the cset too.  Note that we
2641		 * can't handle src == dst as some nodes are used by both.
2642		 */
2643		if (src_cset == dst_cset) {
2644			src_cset->mg_src_cgrp = NULL;
2645			src_cset->mg_dst_cgrp = NULL;
2646			list_del_init(&src_cset->mg_preload_node);
2647			put_css_set(src_cset);
2648			put_css_set(dst_cset);
2649			continue;
2650		}
2651
2652		src_cset->mg_dst_cset = dst_cset;
2653
2654		if (list_empty(&dst_cset->mg_preload_node))
2655			list_add_tail(&dst_cset->mg_preload_node,
2656				      &mgctx->preloaded_dst_csets);
2657		else
2658			put_css_set(dst_cset);
2659
2660		for_each_subsys(ss, ssid)
2661			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2662				mgctx->ss_mask |= 1 << ssid;
2663	}
2664
2665	return 0;
 
 
 
2666}
2667
2668/**
2669 * cgroup_migrate - migrate a process or task to a cgroup
2670 * @leader: the leader of the process or the task to migrate
2671 * @threadgroup: whether @leader points to the whole process or a single task
2672 * @mgctx: migration context
2673 *
2674 * Migrate a process or task denoted by @leader.  If migrating a process,
2675 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2676 * responsible for invoking cgroup_migrate_add_src() and
2677 * cgroup_migrate_prepare_dst() on the targets before invoking this
2678 * function and following up with cgroup_migrate_finish().
2679 *
2680 * As long as a controller's ->can_attach() doesn't fail, this function is
2681 * guaranteed to succeed.  This means that, excluding ->can_attach()
2682 * failure, when migrating multiple targets, the success or failure can be
2683 * decided for all targets by invoking group_migrate_prepare_dst() before
2684 * actually starting migrating.
2685 */
2686int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2687		   struct cgroup_mgctx *mgctx)
2688{
2689	struct task_struct *task;
2690
2691	/*
2692	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2693	 * already PF_EXITING could be freed from underneath us unless we
2694	 * take an rcu_read_lock.
2695	 */
2696	spin_lock_irq(&css_set_lock);
2697	rcu_read_lock();
2698	task = leader;
2699	do {
2700		cgroup_migrate_add_task(task, mgctx);
2701		if (!threadgroup)
2702			break;
2703	} while_each_thread(leader, task);
2704	rcu_read_unlock();
2705	spin_unlock_irq(&css_set_lock);
2706
2707	return cgroup_migrate_execute(mgctx);
2708}
2709
2710/**
2711 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2712 * @dst_cgrp: the cgroup to attach to
2713 * @leader: the task or the leader of the threadgroup to be attached
2714 * @threadgroup: attach the whole threadgroup?
2715 *
2716 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2717 */
2718int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2719		       bool threadgroup)
2720{
2721	DEFINE_CGROUP_MGCTX(mgctx);
2722	struct task_struct *task;
2723	int ret = 0;
 
 
 
 
2724
2725	/* look up all src csets */
2726	spin_lock_irq(&css_set_lock);
2727	rcu_read_lock();
2728	task = leader;
2729	do {
2730		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2731		if (!threadgroup)
2732			break;
2733	} while_each_thread(leader, task);
2734	rcu_read_unlock();
2735	spin_unlock_irq(&css_set_lock);
2736
2737	/* prepare dst csets and commit */
2738	ret = cgroup_migrate_prepare_dst(&mgctx);
2739	if (!ret)
2740		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2741
2742	cgroup_migrate_finish(&mgctx);
2743
2744	if (!ret)
2745		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2746
2747	return ret;
2748}
2749
2750struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2751					     bool *locked)
2752	__acquires(&cgroup_threadgroup_rwsem)
2753{
2754	struct task_struct *tsk;
2755	pid_t pid;
2756
2757	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2758		return ERR_PTR(-EINVAL);
2759
2760	/*
2761	 * If we migrate a single thread, we don't care about threadgroup
2762	 * stability. If the thread is `current`, it won't exit(2) under our
2763	 * hands or change PID through exec(2). We exclude
2764	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2765	 * callers by cgroup_mutex.
2766	 * Therefore, we can skip the global lock.
2767	 */
2768	lockdep_assert_held(&cgroup_mutex);
2769	if (pid || threadgroup) {
2770		percpu_down_write(&cgroup_threadgroup_rwsem);
2771		*locked = true;
2772	} else {
2773		*locked = false;
2774	}
2775
2776	rcu_read_lock();
2777	if (pid) {
2778		tsk = find_task_by_vpid(pid);
2779		if (!tsk) {
2780			tsk = ERR_PTR(-ESRCH);
2781			goto out_unlock_threadgroup;
2782		}
2783	} else {
2784		tsk = current;
2785	}
2786
2787	if (threadgroup)
2788		tsk = tsk->group_leader;
2789
2790	/*
2791	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2792	 * If userland migrates such a kthread to a non-root cgroup, it can
2793	 * become trapped in a cpuset, or RT kthread may be born in a
2794	 * cgroup with no rt_runtime allocated.  Just say no.
2795	 */
2796	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2797		tsk = ERR_PTR(-EINVAL);
2798		goto out_unlock_threadgroup;
2799	}
2800
2801	get_task_struct(tsk);
2802	goto out_unlock_rcu;
2803
2804out_unlock_threadgroup:
2805	if (*locked) {
2806		percpu_up_write(&cgroup_threadgroup_rwsem);
2807		*locked = false;
2808	}
2809out_unlock_rcu:
2810	rcu_read_unlock();
2811	return tsk;
2812}
2813
2814void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2815	__releases(&cgroup_threadgroup_rwsem)
2816{
2817	struct cgroup_subsys *ss;
2818	int ssid;
2819
2820	/* release reference from cgroup_procs_write_start() */
2821	put_task_struct(task);
2822
2823	if (locked)
2824		percpu_up_write(&cgroup_threadgroup_rwsem);
2825	for_each_subsys(ss, ssid)
2826		if (ss->post_attach)
2827			ss->post_attach();
2828}
2829
2830static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2831{
2832	struct cgroup_subsys *ss;
2833	bool printed = false;
2834	int ssid;
2835
2836	do_each_subsys_mask(ss, ssid, ss_mask) {
2837		if (printed)
2838			seq_putc(seq, ' ');
2839		seq_puts(seq, ss->name);
2840		printed = true;
2841	} while_each_subsys_mask();
2842	if (printed)
2843		seq_putc(seq, '\n');
2844}
2845
2846/* show controllers which are enabled from the parent */
2847static int cgroup_controllers_show(struct seq_file *seq, void *v)
2848{
2849	struct cgroup *cgrp = seq_css(seq)->cgroup;
2850
2851	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2852	return 0;
2853}
2854
2855/* show controllers which are enabled for a given cgroup's children */
2856static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2857{
2858	struct cgroup *cgrp = seq_css(seq)->cgroup;
2859
2860	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2861	return 0;
2862}
2863
2864/**
2865 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2866 * @cgrp: root of the subtree to update csses for
2867 *
2868 * @cgrp's control masks have changed and its subtree's css associations
2869 * need to be updated accordingly.  This function looks up all css_sets
2870 * which are attached to the subtree, creates the matching updated css_sets
2871 * and migrates the tasks to the new ones.
2872 */
2873static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2874{
2875	DEFINE_CGROUP_MGCTX(mgctx);
2876	struct cgroup_subsys_state *d_css;
2877	struct cgroup *dsct;
2878	struct css_set *src_cset;
2879	int ret;
2880
2881	lockdep_assert_held(&cgroup_mutex);
2882
2883	percpu_down_write(&cgroup_threadgroup_rwsem);
2884
2885	/* look up all csses currently attached to @cgrp's subtree */
2886	spin_lock_irq(&css_set_lock);
2887	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2888		struct cgrp_cset_link *link;
2889
2890		list_for_each_entry(link, &dsct->cset_links, cset_link)
2891			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2892	}
2893	spin_unlock_irq(&css_set_lock);
2894
2895	/* NULL dst indicates self on default hierarchy */
2896	ret = cgroup_migrate_prepare_dst(&mgctx);
2897	if (ret)
2898		goto out_finish;
2899
2900	spin_lock_irq(&css_set_lock);
2901	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2902		struct task_struct *task, *ntask;
2903
2904		/* all tasks in src_csets need to be migrated */
2905		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2906			cgroup_migrate_add_task(task, &mgctx);
2907	}
2908	spin_unlock_irq(&css_set_lock);
2909
2910	ret = cgroup_migrate_execute(&mgctx);
2911out_finish:
2912	cgroup_migrate_finish(&mgctx);
2913	percpu_up_write(&cgroup_threadgroup_rwsem);
2914	return ret;
2915}
2916
2917/**
2918 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2919 * @cgrp: root of the target subtree
2920 *
2921 * Because css offlining is asynchronous, userland may try to re-enable a
2922 * controller while the previous css is still around.  This function grabs
2923 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2924 */
2925void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2926	__acquires(&cgroup_mutex)
2927{
2928	struct cgroup *dsct;
2929	struct cgroup_subsys_state *d_css;
2930	struct cgroup_subsys *ss;
2931	int ssid;
2932
2933restart:
2934	mutex_lock(&cgroup_mutex);
2935
2936	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2937		for_each_subsys(ss, ssid) {
2938			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2939			DEFINE_WAIT(wait);
2940
2941			if (!css || !percpu_ref_is_dying(&css->refcnt))
2942				continue;
2943
2944			cgroup_get_live(dsct);
2945			prepare_to_wait(&dsct->offline_waitq, &wait,
2946					TASK_UNINTERRUPTIBLE);
2947
2948			mutex_unlock(&cgroup_mutex);
2949			schedule();
2950			finish_wait(&dsct->offline_waitq, &wait);
2951
2952			cgroup_put(dsct);
2953			goto restart;
2954		}
2955	}
2956}
2957
2958/**
2959 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2960 * @cgrp: root of the target subtree
2961 *
2962 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2963 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2964 * itself.
2965 */
2966static void cgroup_save_control(struct cgroup *cgrp)
2967{
2968	struct cgroup *dsct;
2969	struct cgroup_subsys_state *d_css;
2970
2971	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2972		dsct->old_subtree_control = dsct->subtree_control;
2973		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2974		dsct->old_dom_cgrp = dsct->dom_cgrp;
2975	}
2976}
2977
2978/**
2979 * cgroup_propagate_control - refresh control masks of a subtree
2980 * @cgrp: root of the target subtree
2981 *
2982 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2983 * ->subtree_control and propagate controller availability through the
2984 * subtree so that descendants don't have unavailable controllers enabled.
2985 */
2986static void cgroup_propagate_control(struct cgroup *cgrp)
2987{
2988	struct cgroup *dsct;
2989	struct cgroup_subsys_state *d_css;
2990
2991	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2992		dsct->subtree_control &= cgroup_control(dsct);
2993		dsct->subtree_ss_mask =
2994			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2995						    cgroup_ss_mask(dsct));
2996	}
2997}
2998
2999/**
3000 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3001 * @cgrp: root of the target subtree
3002 *
3003 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3004 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3005 * itself.
3006 */
3007static void cgroup_restore_control(struct cgroup *cgrp)
3008{
3009	struct cgroup *dsct;
3010	struct cgroup_subsys_state *d_css;
3011
3012	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3013		dsct->subtree_control = dsct->old_subtree_control;
3014		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3015		dsct->dom_cgrp = dsct->old_dom_cgrp;
3016	}
3017}
3018
3019static bool css_visible(struct cgroup_subsys_state *css)
3020{
3021	struct cgroup_subsys *ss = css->ss;
3022	struct cgroup *cgrp = css->cgroup;
3023
3024	if (cgroup_control(cgrp) & (1 << ss->id))
3025		return true;
3026	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3027		return false;
3028	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3029}
3030
3031/**
3032 * cgroup_apply_control_enable - enable or show csses according to control
3033 * @cgrp: root of the target subtree
3034 *
3035 * Walk @cgrp's subtree and create new csses or make the existing ones
3036 * visible.  A css is created invisible if it's being implicitly enabled
3037 * through dependency.  An invisible css is made visible when the userland
3038 * explicitly enables it.
3039 *
3040 * Returns 0 on success, -errno on failure.  On failure, csses which have
3041 * been processed already aren't cleaned up.  The caller is responsible for
3042 * cleaning up with cgroup_apply_control_disable().
3043 */
3044static int cgroup_apply_control_enable(struct cgroup *cgrp)
3045{
3046	struct cgroup *dsct;
3047	struct cgroup_subsys_state *d_css;
3048	struct cgroup_subsys *ss;
3049	int ssid, ret;
3050
3051	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3052		for_each_subsys(ss, ssid) {
3053			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3054
 
 
3055			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3056				continue;
3057
3058			if (!css) {
3059				css = css_create(dsct, ss);
3060				if (IS_ERR(css))
3061					return PTR_ERR(css);
3062			}
3063
3064			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3065
3066			if (css_visible(css)) {
3067				ret = css_populate_dir(css);
3068				if (ret)
3069					return ret;
3070			}
3071		}
3072	}
3073
3074	return 0;
3075}
3076
3077/**
3078 * cgroup_apply_control_disable - kill or hide csses according to control
3079 * @cgrp: root of the target subtree
3080 *
3081 * Walk @cgrp's subtree and kill and hide csses so that they match
3082 * cgroup_ss_mask() and cgroup_visible_mask().
3083 *
3084 * A css is hidden when the userland requests it to be disabled while other
3085 * subsystems are still depending on it.  The css must not actively control
3086 * resources and be in the vanilla state if it's made visible again later.
3087 * Controllers which may be depended upon should provide ->css_reset() for
3088 * this purpose.
3089 */
3090static void cgroup_apply_control_disable(struct cgroup *cgrp)
3091{
3092	struct cgroup *dsct;
3093	struct cgroup_subsys_state *d_css;
3094	struct cgroup_subsys *ss;
3095	int ssid;
3096
3097	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3098		for_each_subsys(ss, ssid) {
3099			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3100
 
 
3101			if (!css)
3102				continue;
3103
3104			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3105
3106			if (css->parent &&
3107			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3108				kill_css(css);
3109			} else if (!css_visible(css)) {
3110				css_clear_dir(css);
3111				if (ss->css_reset)
3112					ss->css_reset(css);
3113			}
3114		}
3115	}
3116}
3117
3118/**
3119 * cgroup_apply_control - apply control mask updates to the subtree
3120 * @cgrp: root of the target subtree
3121 *
3122 * subsystems can be enabled and disabled in a subtree using the following
3123 * steps.
3124 *
3125 * 1. Call cgroup_save_control() to stash the current state.
3126 * 2. Update ->subtree_control masks in the subtree as desired.
3127 * 3. Call cgroup_apply_control() to apply the changes.
3128 * 4. Optionally perform other related operations.
3129 * 5. Call cgroup_finalize_control() to finish up.
3130 *
3131 * This function implements step 3 and propagates the mask changes
3132 * throughout @cgrp's subtree, updates csses accordingly and perform
3133 * process migrations.
3134 */
3135static int cgroup_apply_control(struct cgroup *cgrp)
3136{
3137	int ret;
3138
3139	cgroup_propagate_control(cgrp);
3140
3141	ret = cgroup_apply_control_enable(cgrp);
3142	if (ret)
3143		return ret;
3144
3145	/*
3146	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3147	 * making the following cgroup_update_dfl_csses() properly update
3148	 * css associations of all tasks in the subtree.
3149	 */
3150	ret = cgroup_update_dfl_csses(cgrp);
3151	if (ret)
3152		return ret;
3153
3154	return 0;
3155}
3156
3157/**
3158 * cgroup_finalize_control - finalize control mask update
3159 * @cgrp: root of the target subtree
3160 * @ret: the result of the update
3161 *
3162 * Finalize control mask update.  See cgroup_apply_control() for more info.
3163 */
3164static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3165{
3166	if (ret) {
3167		cgroup_restore_control(cgrp);
3168		cgroup_propagate_control(cgrp);
3169	}
3170
3171	cgroup_apply_control_disable(cgrp);
3172}
3173
3174static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3175{
3176	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3177
3178	/* if nothing is getting enabled, nothing to worry about */
3179	if (!enable)
3180		return 0;
3181
3182	/* can @cgrp host any resources? */
3183	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3184		return -EOPNOTSUPP;
3185
3186	/* mixables don't care */
3187	if (cgroup_is_mixable(cgrp))
3188		return 0;
3189
3190	if (domain_enable) {
3191		/* can't enable domain controllers inside a thread subtree */
3192		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3193			return -EOPNOTSUPP;
3194	} else {
3195		/*
3196		 * Threaded controllers can handle internal competitions
3197		 * and are always allowed inside a (prospective) thread
3198		 * subtree.
3199		 */
3200		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3201			return 0;
3202	}
3203
3204	/*
3205	 * Controllers can't be enabled for a cgroup with tasks to avoid
3206	 * child cgroups competing against tasks.
3207	 */
3208	if (cgroup_has_tasks(cgrp))
3209		return -EBUSY;
3210
3211	return 0;
3212}
3213
3214/* change the enabled child controllers for a cgroup in the default hierarchy */
3215static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3216					    char *buf, size_t nbytes,
3217					    loff_t off)
3218{
3219	u16 enable = 0, disable = 0;
3220	struct cgroup *cgrp, *child;
3221	struct cgroup_subsys *ss;
3222	char *tok;
3223	int ssid, ret;
3224
3225	/*
3226	 * Parse input - space separated list of subsystem names prefixed
3227	 * with either + or -.
3228	 */
3229	buf = strstrip(buf);
3230	while ((tok = strsep(&buf, " "))) {
3231		if (tok[0] == '\0')
3232			continue;
3233		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3234			if (!cgroup_ssid_enabled(ssid) ||
3235			    strcmp(tok + 1, ss->name))
3236				continue;
3237
3238			if (*tok == '+') {
3239				enable |= 1 << ssid;
3240				disable &= ~(1 << ssid);
3241			} else if (*tok == '-') {
3242				disable |= 1 << ssid;
3243				enable &= ~(1 << ssid);
3244			} else {
3245				return -EINVAL;
3246			}
3247			break;
3248		} while_each_subsys_mask();
3249		if (ssid == CGROUP_SUBSYS_COUNT)
3250			return -EINVAL;
3251	}
3252
3253	cgrp = cgroup_kn_lock_live(of->kn, true);
3254	if (!cgrp)
3255		return -ENODEV;
3256
3257	for_each_subsys(ss, ssid) {
3258		if (enable & (1 << ssid)) {
3259			if (cgrp->subtree_control & (1 << ssid)) {
3260				enable &= ~(1 << ssid);
3261				continue;
3262			}
3263
3264			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3265				ret = -ENOENT;
3266				goto out_unlock;
3267			}
3268		} else if (disable & (1 << ssid)) {
3269			if (!(cgrp->subtree_control & (1 << ssid))) {
3270				disable &= ~(1 << ssid);
3271				continue;
3272			}
3273
3274			/* a child has it enabled? */
3275			cgroup_for_each_live_child(child, cgrp) {
3276				if (child->subtree_control & (1 << ssid)) {
3277					ret = -EBUSY;
3278					goto out_unlock;
3279				}
3280			}
3281		}
3282	}
3283
3284	if (!enable && !disable) {
3285		ret = 0;
3286		goto out_unlock;
3287	}
3288
3289	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3290	if (ret)
3291		goto out_unlock;
3292
3293	/* save and update control masks and prepare csses */
3294	cgroup_save_control(cgrp);
3295
3296	cgrp->subtree_control |= enable;
3297	cgrp->subtree_control &= ~disable;
3298
3299	ret = cgroup_apply_control(cgrp);
3300	cgroup_finalize_control(cgrp, ret);
3301	if (ret)
3302		goto out_unlock;
3303
3304	kernfs_activate(cgrp->kn);
3305out_unlock:
3306	cgroup_kn_unlock(of->kn);
3307	return ret ?: nbytes;
3308}
3309
3310/**
3311 * cgroup_enable_threaded - make @cgrp threaded
3312 * @cgrp: the target cgroup
3313 *
3314 * Called when "threaded" is written to the cgroup.type interface file and
3315 * tries to make @cgrp threaded and join the parent's resource domain.
3316 * This function is never called on the root cgroup as cgroup.type doesn't
3317 * exist on it.
3318 */
3319static int cgroup_enable_threaded(struct cgroup *cgrp)
3320{
3321	struct cgroup *parent = cgroup_parent(cgrp);
3322	struct cgroup *dom_cgrp = parent->dom_cgrp;
3323	struct cgroup *dsct;
3324	struct cgroup_subsys_state *d_css;
3325	int ret;
3326
3327	lockdep_assert_held(&cgroup_mutex);
3328
3329	/* noop if already threaded */
3330	if (cgroup_is_threaded(cgrp))
3331		return 0;
3332
3333	/*
3334	 * If @cgroup is populated or has domain controllers enabled, it
3335	 * can't be switched.  While the below cgroup_can_be_thread_root()
3336	 * test can catch the same conditions, that's only when @parent is
3337	 * not mixable, so let's check it explicitly.
3338	 */
3339	if (cgroup_is_populated(cgrp) ||
3340	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3341		return -EOPNOTSUPP;
3342
3343	/* we're joining the parent's domain, ensure its validity */
3344	if (!cgroup_is_valid_domain(dom_cgrp) ||
3345	    !cgroup_can_be_thread_root(dom_cgrp))
3346		return -EOPNOTSUPP;
3347
3348	/*
3349	 * The following shouldn't cause actual migrations and should
3350	 * always succeed.
3351	 */
3352	cgroup_save_control(cgrp);
3353
3354	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3355		if (dsct == cgrp || cgroup_is_threaded(dsct))
3356			dsct->dom_cgrp = dom_cgrp;
3357
3358	ret = cgroup_apply_control(cgrp);
3359	if (!ret)
3360		parent->nr_threaded_children++;
 
 
3361
3362	cgroup_finalize_control(cgrp, ret);
3363	return ret;
3364}
3365
3366static int cgroup_type_show(struct seq_file *seq, void *v)
3367{
3368	struct cgroup *cgrp = seq_css(seq)->cgroup;
3369
3370	if (cgroup_is_threaded(cgrp))
3371		seq_puts(seq, "threaded\n");
3372	else if (!cgroup_is_valid_domain(cgrp))
3373		seq_puts(seq, "domain invalid\n");
3374	else if (cgroup_is_thread_root(cgrp))
3375		seq_puts(seq, "domain threaded\n");
3376	else
3377		seq_puts(seq, "domain\n");
3378
3379	return 0;
3380}
3381
3382static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3383				 size_t nbytes, loff_t off)
3384{
3385	struct cgroup *cgrp;
3386	int ret;
3387
3388	/* only switching to threaded mode is supported */
3389	if (strcmp(strstrip(buf), "threaded"))
3390		return -EINVAL;
3391
3392	/* drain dying csses before we re-apply (threaded) subtree control */
3393	cgrp = cgroup_kn_lock_live(of->kn, true);
3394	if (!cgrp)
3395		return -ENOENT;
3396
3397	/* threaded can only be enabled */
3398	ret = cgroup_enable_threaded(cgrp);
3399
3400	cgroup_kn_unlock(of->kn);
3401	return ret ?: nbytes;
3402}
3403
3404static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3405{
3406	struct cgroup *cgrp = seq_css(seq)->cgroup;
3407	int descendants = READ_ONCE(cgrp->max_descendants);
3408
3409	if (descendants == INT_MAX)
3410		seq_puts(seq, "max\n");
3411	else
3412		seq_printf(seq, "%d\n", descendants);
3413
3414	return 0;
3415}
3416
3417static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3418					   char *buf, size_t nbytes, loff_t off)
3419{
3420	struct cgroup *cgrp;
3421	int descendants;
3422	ssize_t ret;
3423
3424	buf = strstrip(buf);
3425	if (!strcmp(buf, "max")) {
3426		descendants = INT_MAX;
3427	} else {
3428		ret = kstrtoint(buf, 0, &descendants);
3429		if (ret)
3430			return ret;
3431	}
3432
3433	if (descendants < 0)
3434		return -ERANGE;
3435
3436	cgrp = cgroup_kn_lock_live(of->kn, false);
3437	if (!cgrp)
3438		return -ENOENT;
3439
3440	cgrp->max_descendants = descendants;
3441
3442	cgroup_kn_unlock(of->kn);
3443
3444	return nbytes;
3445}
3446
3447static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3448{
3449	struct cgroup *cgrp = seq_css(seq)->cgroup;
3450	int depth = READ_ONCE(cgrp->max_depth);
3451
3452	if (depth == INT_MAX)
3453		seq_puts(seq, "max\n");
3454	else
3455		seq_printf(seq, "%d\n", depth);
3456
3457	return 0;
3458}
3459
3460static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3461				      char *buf, size_t nbytes, loff_t off)
3462{
3463	struct cgroup *cgrp;
3464	ssize_t ret;
3465	int depth;
3466
3467	buf = strstrip(buf);
3468	if (!strcmp(buf, "max")) {
3469		depth = INT_MAX;
3470	} else {
3471		ret = kstrtoint(buf, 0, &depth);
3472		if (ret)
3473			return ret;
3474	}
3475
3476	if (depth < 0)
3477		return -ERANGE;
3478
3479	cgrp = cgroup_kn_lock_live(of->kn, false);
3480	if (!cgrp)
3481		return -ENOENT;
3482
3483	cgrp->max_depth = depth;
3484
3485	cgroup_kn_unlock(of->kn);
3486
3487	return nbytes;
3488}
3489
3490static int cgroup_events_show(struct seq_file *seq, void *v)
3491{
3492	struct cgroup *cgrp = seq_css(seq)->cgroup;
3493
3494	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3495	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3496
3497	return 0;
3498}
3499
3500static int cgroup_stat_show(struct seq_file *seq, void *v)
3501{
3502	struct cgroup *cgroup = seq_css(seq)->cgroup;
3503
3504	seq_printf(seq, "nr_descendants %d\n",
3505		   cgroup->nr_descendants);
3506	seq_printf(seq, "nr_dying_descendants %d\n",
3507		   cgroup->nr_dying_descendants);
3508
3509	return 0;
3510}
3511
3512static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3513						 struct cgroup *cgrp, int ssid)
3514{
3515	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3516	struct cgroup_subsys_state *css;
3517	int ret;
3518
3519	if (!ss->css_extra_stat_show)
3520		return 0;
3521
3522	css = cgroup_tryget_css(cgrp, ss);
3523	if (!css)
3524		return 0;
3525
3526	ret = ss->css_extra_stat_show(seq, css);
3527	css_put(css);
3528	return ret;
3529}
3530
3531static int cpu_stat_show(struct seq_file *seq, void *v)
3532{
3533	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3534	int ret = 0;
3535
3536	cgroup_base_stat_cputime_show(seq);
3537#ifdef CONFIG_CGROUP_SCHED
3538	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3539#endif
3540	return ret;
3541}
3542
3543#ifdef CONFIG_PSI
3544static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3545{
3546	struct cgroup *cgrp = seq_css(seq)->cgroup;
3547	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3548
3549	return psi_show(seq, psi, PSI_IO);
3550}
3551static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3552{
3553	struct cgroup *cgrp = seq_css(seq)->cgroup;
3554	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3555
3556	return psi_show(seq, psi, PSI_MEM);
3557}
3558static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3559{
3560	struct cgroup *cgrp = seq_css(seq)->cgroup;
3561	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3562
3563	return psi_show(seq, psi, PSI_CPU);
3564}
3565
3566static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3567					  size_t nbytes, enum psi_res res)
3568{
3569	struct psi_trigger *new;
3570	struct cgroup *cgrp;
3571
3572	cgrp = cgroup_kn_lock_live(of->kn, false);
3573	if (!cgrp)
3574		return -ENODEV;
3575
3576	cgroup_get(cgrp);
3577	cgroup_kn_unlock(of->kn);
3578
3579	new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3580	if (IS_ERR(new)) {
3581		cgroup_put(cgrp);
3582		return PTR_ERR(new);
3583	}
3584
3585	psi_trigger_replace(&of->priv, new);
3586
3587	cgroup_put(cgrp);
3588
3589	return nbytes;
3590}
3591
3592static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3593					  char *buf, size_t nbytes,
3594					  loff_t off)
3595{
3596	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3597}
3598
3599static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3600					  char *buf, size_t nbytes,
3601					  loff_t off)
3602{
3603	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3604}
3605
3606static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3607					  char *buf, size_t nbytes,
3608					  loff_t off)
3609{
3610	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3611}
3612
3613static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3614					  poll_table *pt)
3615{
3616	return psi_trigger_poll(&of->priv, of->file, pt);
3617}
3618
3619static void cgroup_pressure_release(struct kernfs_open_file *of)
3620{
3621	psi_trigger_replace(&of->priv, NULL);
3622}
3623#endif /* CONFIG_PSI */
3624
3625static int cgroup_freeze_show(struct seq_file *seq, void *v)
3626{
3627	struct cgroup *cgrp = seq_css(seq)->cgroup;
3628
3629	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3630
3631	return 0;
3632}
3633
3634static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3635				   char *buf, size_t nbytes, loff_t off)
3636{
3637	struct cgroup *cgrp;
3638	ssize_t ret;
3639	int freeze;
3640
3641	ret = kstrtoint(strstrip(buf), 0, &freeze);
3642	if (ret)
3643		return ret;
3644
3645	if (freeze < 0 || freeze > 1)
3646		return -ERANGE;
3647
3648	cgrp = cgroup_kn_lock_live(of->kn, false);
3649	if (!cgrp)
3650		return -ENOENT;
3651
3652	cgroup_freeze(cgrp, freeze);
3653
3654	cgroup_kn_unlock(of->kn);
3655
3656	return nbytes;
3657}
3658
3659static int cgroup_file_open(struct kernfs_open_file *of)
3660{
3661	struct cftype *cft = of->kn->priv;
3662
3663	if (cft->open)
3664		return cft->open(of);
3665	return 0;
3666}
3667
3668static void cgroup_file_release(struct kernfs_open_file *of)
3669{
3670	struct cftype *cft = of->kn->priv;
3671
3672	if (cft->release)
3673		cft->release(of);
3674}
3675
3676static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3677				 size_t nbytes, loff_t off)
3678{
3679	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3680	struct cgroup *cgrp = of->kn->parent->priv;
3681	struct cftype *cft = of->kn->priv;
3682	struct cgroup_subsys_state *css;
3683	int ret;
3684
3685	/*
3686	 * If namespaces are delegation boundaries, disallow writes to
3687	 * files in an non-init namespace root from inside the namespace
3688	 * except for the files explicitly marked delegatable -
3689	 * cgroup.procs and cgroup.subtree_control.
3690	 */
3691	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3692	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3693	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3694		return -EPERM;
3695
3696	if (cft->write)
3697		return cft->write(of, buf, nbytes, off);
3698
3699	/*
3700	 * kernfs guarantees that a file isn't deleted with operations in
3701	 * flight, which means that the matching css is and stays alive and
3702	 * doesn't need to be pinned.  The RCU locking is not necessary
3703	 * either.  It's just for the convenience of using cgroup_css().
3704	 */
3705	rcu_read_lock();
3706	css = cgroup_css(cgrp, cft->ss);
3707	rcu_read_unlock();
3708
3709	if (cft->write_u64) {
3710		unsigned long long v;
3711		ret = kstrtoull(buf, 0, &v);
3712		if (!ret)
3713			ret = cft->write_u64(css, cft, v);
3714	} else if (cft->write_s64) {
3715		long long v;
3716		ret = kstrtoll(buf, 0, &v);
3717		if (!ret)
3718			ret = cft->write_s64(css, cft, v);
3719	} else {
3720		ret = -EINVAL;
3721	}
3722
3723	return ret ?: nbytes;
3724}
3725
3726static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3727{
3728	struct cftype *cft = of->kn->priv;
3729
3730	if (cft->poll)
3731		return cft->poll(of, pt);
3732
3733	return kernfs_generic_poll(of, pt);
3734}
3735
3736static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3737{
3738	return seq_cft(seq)->seq_start(seq, ppos);
3739}
3740
3741static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3742{
3743	return seq_cft(seq)->seq_next(seq, v, ppos);
3744}
3745
3746static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3747{
3748	if (seq_cft(seq)->seq_stop)
3749		seq_cft(seq)->seq_stop(seq, v);
3750}
3751
3752static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3753{
3754	struct cftype *cft = seq_cft(m);
3755	struct cgroup_subsys_state *css = seq_css(m);
3756
3757	if (cft->seq_show)
3758		return cft->seq_show(m, arg);
3759
3760	if (cft->read_u64)
3761		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3762	else if (cft->read_s64)
3763		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3764	else
3765		return -EINVAL;
3766	return 0;
3767}
3768
3769static struct kernfs_ops cgroup_kf_single_ops = {
3770	.atomic_write_len	= PAGE_SIZE,
3771	.open			= cgroup_file_open,
3772	.release		= cgroup_file_release,
3773	.write			= cgroup_file_write,
3774	.poll			= cgroup_file_poll,
3775	.seq_show		= cgroup_seqfile_show,
3776};
3777
3778static struct kernfs_ops cgroup_kf_ops = {
3779	.atomic_write_len	= PAGE_SIZE,
3780	.open			= cgroup_file_open,
3781	.release		= cgroup_file_release,
3782	.write			= cgroup_file_write,
3783	.poll			= cgroup_file_poll,
3784	.seq_start		= cgroup_seqfile_start,
3785	.seq_next		= cgroup_seqfile_next,
3786	.seq_stop		= cgroup_seqfile_stop,
3787	.seq_show		= cgroup_seqfile_show,
3788};
3789
3790/* set uid and gid of cgroup dirs and files to that of the creator */
3791static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3792{
3793	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3794			       .ia_uid = current_fsuid(),
3795			       .ia_gid = current_fsgid(), };
3796
3797	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3798	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3799		return 0;
3800
3801	return kernfs_setattr(kn, &iattr);
3802}
3803
3804static void cgroup_file_notify_timer(struct timer_list *timer)
3805{
3806	cgroup_file_notify(container_of(timer, struct cgroup_file,
3807					notify_timer));
3808}
3809
3810static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3811			   struct cftype *cft)
3812{
3813	char name[CGROUP_FILE_NAME_MAX];
3814	struct kernfs_node *kn;
3815	struct lock_class_key *key = NULL;
3816	int ret;
3817
3818#ifdef CONFIG_DEBUG_LOCK_ALLOC
3819	key = &cft->lockdep_key;
3820#endif
3821	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3822				  cgroup_file_mode(cft),
3823				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3824				  0, cft->kf_ops, cft,
3825				  NULL, key);
3826	if (IS_ERR(kn))
3827		return PTR_ERR(kn);
3828
3829	ret = cgroup_kn_set_ugid(kn);
3830	if (ret) {
3831		kernfs_remove(kn);
3832		return ret;
3833	}
3834
3835	if (cft->file_offset) {
3836		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3837
3838		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3839
3840		spin_lock_irq(&cgroup_file_kn_lock);
3841		cfile->kn = kn;
3842		spin_unlock_irq(&cgroup_file_kn_lock);
3843	}
3844
3845	return 0;
3846}
3847
3848/**
3849 * cgroup_addrm_files - add or remove files to a cgroup directory
3850 * @css: the target css
3851 * @cgrp: the target cgroup (usually css->cgroup)
3852 * @cfts: array of cftypes to be added
3853 * @is_add: whether to add or remove
3854 *
3855 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3856 * For removals, this function never fails.
3857 */
3858static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3859			      struct cgroup *cgrp, struct cftype cfts[],
3860			      bool is_add)
3861{
3862	struct cftype *cft, *cft_end = NULL;
3863	int ret = 0;
3864
3865	lockdep_assert_held(&cgroup_mutex);
3866
3867restart:
3868	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3869		/* does cft->flags tell us to skip this file on @cgrp? */
3870		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3871			continue;
3872		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3873			continue;
3874		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3875			continue;
3876		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3877			continue;
3878		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3879			continue;
3880		if (is_add) {
3881			ret = cgroup_add_file(css, cgrp, cft);
3882			if (ret) {
3883				pr_warn("%s: failed to add %s, err=%d\n",
3884					__func__, cft->name, ret);
3885				cft_end = cft;
3886				is_add = false;
3887				goto restart;
3888			}
3889		} else {
3890			cgroup_rm_file(cgrp, cft);
3891		}
3892	}
3893	return ret;
3894}
3895
3896static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3897{
3898	struct cgroup_subsys *ss = cfts[0].ss;
3899	struct cgroup *root = &ss->root->cgrp;
3900	struct cgroup_subsys_state *css;
3901	int ret = 0;
3902
3903	lockdep_assert_held(&cgroup_mutex);
3904
3905	/* add/rm files for all cgroups created before */
3906	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3907		struct cgroup *cgrp = css->cgroup;
3908
3909		if (!(css->flags & CSS_VISIBLE))
3910			continue;
3911
3912		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3913		if (ret)
3914			break;
3915	}
3916
3917	if (is_add && !ret)
3918		kernfs_activate(root->kn);
3919	return ret;
3920}
3921
3922static void cgroup_exit_cftypes(struct cftype *cfts)
3923{
3924	struct cftype *cft;
3925
3926	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3927		/* free copy for custom atomic_write_len, see init_cftypes() */
3928		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3929			kfree(cft->kf_ops);
3930		cft->kf_ops = NULL;
3931		cft->ss = NULL;
3932
3933		/* revert flags set by cgroup core while adding @cfts */
3934		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3935	}
3936}
3937
3938static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3939{
3940	struct cftype *cft;
3941
3942	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3943		struct kernfs_ops *kf_ops;
3944
3945		WARN_ON(cft->ss || cft->kf_ops);
3946
3947		if (cft->seq_start)
3948			kf_ops = &cgroup_kf_ops;
3949		else
3950			kf_ops = &cgroup_kf_single_ops;
3951
3952		/*
3953		 * Ugh... if @cft wants a custom max_write_len, we need to
3954		 * make a copy of kf_ops to set its atomic_write_len.
3955		 */
3956		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3957			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3958			if (!kf_ops) {
3959				cgroup_exit_cftypes(cfts);
3960				return -ENOMEM;
3961			}
3962			kf_ops->atomic_write_len = cft->max_write_len;
3963		}
3964
3965		cft->kf_ops = kf_ops;
3966		cft->ss = ss;
3967	}
3968
3969	return 0;
3970}
3971
3972static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3973{
3974	lockdep_assert_held(&cgroup_mutex);
3975
3976	if (!cfts || !cfts[0].ss)
3977		return -ENOENT;
3978
3979	list_del(&cfts->node);
3980	cgroup_apply_cftypes(cfts, false);
3981	cgroup_exit_cftypes(cfts);
3982	return 0;
3983}
3984
3985/**
3986 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3987 * @cfts: zero-length name terminated array of cftypes
3988 *
3989 * Unregister @cfts.  Files described by @cfts are removed from all
3990 * existing cgroups and all future cgroups won't have them either.  This
3991 * function can be called anytime whether @cfts' subsys is attached or not.
3992 *
3993 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3994 * registered.
3995 */
3996int cgroup_rm_cftypes(struct cftype *cfts)
3997{
3998	int ret;
3999
4000	mutex_lock(&cgroup_mutex);
4001	ret = cgroup_rm_cftypes_locked(cfts);
4002	mutex_unlock(&cgroup_mutex);
4003	return ret;
4004}
4005
4006/**
4007 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4008 * @ss: target cgroup subsystem
4009 * @cfts: zero-length name terminated array of cftypes
4010 *
4011 * Register @cfts to @ss.  Files described by @cfts are created for all
4012 * existing cgroups to which @ss is attached and all future cgroups will
4013 * have them too.  This function can be called anytime whether @ss is
4014 * attached or not.
4015 *
4016 * Returns 0 on successful registration, -errno on failure.  Note that this
4017 * function currently returns 0 as long as @cfts registration is successful
4018 * even if some file creation attempts on existing cgroups fail.
4019 */
4020static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4021{
4022	int ret;
4023
4024	if (!cgroup_ssid_enabled(ss->id))
4025		return 0;
4026
4027	if (!cfts || cfts[0].name[0] == '\0')
4028		return 0;
4029
4030	ret = cgroup_init_cftypes(ss, cfts);
4031	if (ret)
4032		return ret;
4033
4034	mutex_lock(&cgroup_mutex);
4035
4036	list_add_tail(&cfts->node, &ss->cfts);
4037	ret = cgroup_apply_cftypes(cfts, true);
4038	if (ret)
4039		cgroup_rm_cftypes_locked(cfts);
4040
4041	mutex_unlock(&cgroup_mutex);
4042	return ret;
4043}
4044
4045/**
4046 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4047 * @ss: target cgroup subsystem
4048 * @cfts: zero-length name terminated array of cftypes
4049 *
4050 * Similar to cgroup_add_cftypes() but the added files are only used for
4051 * the default hierarchy.
4052 */
4053int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4054{
4055	struct cftype *cft;
4056
4057	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4058		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4059	return cgroup_add_cftypes(ss, cfts);
4060}
4061
4062/**
4063 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4064 * @ss: target cgroup subsystem
4065 * @cfts: zero-length name terminated array of cftypes
4066 *
4067 * Similar to cgroup_add_cftypes() but the added files are only used for
4068 * the legacy hierarchies.
4069 */
4070int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4071{
4072	struct cftype *cft;
4073
4074	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4075		cft->flags |= __CFTYPE_NOT_ON_DFL;
4076	return cgroup_add_cftypes(ss, cfts);
4077}
4078
4079/**
4080 * cgroup_file_notify - generate a file modified event for a cgroup_file
4081 * @cfile: target cgroup_file
4082 *
4083 * @cfile must have been obtained by setting cftype->file_offset.
4084 */
4085void cgroup_file_notify(struct cgroup_file *cfile)
4086{
4087	unsigned long flags;
4088
4089	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4090	if (cfile->kn) {
4091		unsigned long last = cfile->notified_at;
4092		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4093
4094		if (time_in_range(jiffies, last, next)) {
4095			timer_reduce(&cfile->notify_timer, next);
4096		} else {
4097			kernfs_notify(cfile->kn);
4098			cfile->notified_at = jiffies;
4099		}
4100	}
4101	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4102}
4103
4104/**
4105 * css_next_child - find the next child of a given css
4106 * @pos: the current position (%NULL to initiate traversal)
4107 * @parent: css whose children to walk
4108 *
4109 * This function returns the next child of @parent and should be called
4110 * under either cgroup_mutex or RCU read lock.  The only requirement is
4111 * that @parent and @pos are accessible.  The next sibling is guaranteed to
4112 * be returned regardless of their states.
4113 *
4114 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4115 * css which finished ->css_online() is guaranteed to be visible in the
4116 * future iterations and will stay visible until the last reference is put.
4117 * A css which hasn't finished ->css_online() or already finished
4118 * ->css_offline() may show up during traversal.  It's each subsystem's
4119 * responsibility to synchronize against on/offlining.
4120 */
4121struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4122					   struct cgroup_subsys_state *parent)
4123{
4124	struct cgroup_subsys_state *next;
4125
4126	cgroup_assert_mutex_or_rcu_locked();
4127
4128	/*
4129	 * @pos could already have been unlinked from the sibling list.
4130	 * Once a cgroup is removed, its ->sibling.next is no longer
4131	 * updated when its next sibling changes.  CSS_RELEASED is set when
4132	 * @pos is taken off list, at which time its next pointer is valid,
4133	 * and, as releases are serialized, the one pointed to by the next
4134	 * pointer is guaranteed to not have started release yet.  This
4135	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4136	 * critical section, the one pointed to by its next pointer is
4137	 * guaranteed to not have finished its RCU grace period even if we
4138	 * have dropped rcu_read_lock() inbetween iterations.
4139	 *
4140	 * If @pos has CSS_RELEASED set, its next pointer can't be
4141	 * dereferenced; however, as each css is given a monotonically
4142	 * increasing unique serial number and always appended to the
4143	 * sibling list, the next one can be found by walking the parent's
4144	 * children until the first css with higher serial number than
4145	 * @pos's.  While this path can be slower, it happens iff iteration
4146	 * races against release and the race window is very small.
4147	 */
4148	if (!pos) {
4149		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4150	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4151		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4152	} else {
4153		list_for_each_entry_rcu(next, &parent->children, sibling,
4154					lockdep_is_held(&cgroup_mutex))
4155			if (next->serial_nr > pos->serial_nr)
4156				break;
4157	}
4158
4159	/*
4160	 * @next, if not pointing to the head, can be dereferenced and is
4161	 * the next sibling.
4162	 */
4163	if (&next->sibling != &parent->children)
4164		return next;
4165	return NULL;
4166}
4167
4168/**
4169 * css_next_descendant_pre - find the next descendant for pre-order walk
4170 * @pos: the current position (%NULL to initiate traversal)
4171 * @root: css whose descendants to walk
4172 *
4173 * To be used by css_for_each_descendant_pre().  Find the next descendant
4174 * to visit for pre-order traversal of @root's descendants.  @root is
4175 * included in the iteration and the first node to be visited.
4176 *
4177 * While this function requires cgroup_mutex or RCU read locking, it
4178 * doesn't require the whole traversal to be contained in a single critical
4179 * section.  This function will return the correct next descendant as long
4180 * as both @pos and @root are accessible and @pos is a descendant of @root.
4181 *
4182 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4183 * css which finished ->css_online() is guaranteed to be visible in the
4184 * future iterations and will stay visible until the last reference is put.
4185 * A css which hasn't finished ->css_online() or already finished
4186 * ->css_offline() may show up during traversal.  It's each subsystem's
4187 * responsibility to synchronize against on/offlining.
4188 */
4189struct cgroup_subsys_state *
4190css_next_descendant_pre(struct cgroup_subsys_state *pos,
4191			struct cgroup_subsys_state *root)
4192{
4193	struct cgroup_subsys_state *next;
4194
4195	cgroup_assert_mutex_or_rcu_locked();
4196
4197	/* if first iteration, visit @root */
4198	if (!pos)
4199		return root;
4200
4201	/* visit the first child if exists */
4202	next = css_next_child(NULL, pos);
4203	if (next)
4204		return next;
4205
4206	/* no child, visit my or the closest ancestor's next sibling */
4207	while (pos != root) {
4208		next = css_next_child(pos, pos->parent);
4209		if (next)
4210			return next;
4211		pos = pos->parent;
4212	}
4213
4214	return NULL;
4215}
4216EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4217
4218/**
4219 * css_rightmost_descendant - return the rightmost descendant of a css
4220 * @pos: css of interest
4221 *
4222 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4223 * is returned.  This can be used during pre-order traversal to skip
4224 * subtree of @pos.
4225 *
4226 * While this function requires cgroup_mutex or RCU read locking, it
4227 * doesn't require the whole traversal to be contained in a single critical
4228 * section.  This function will return the correct rightmost descendant as
4229 * long as @pos is accessible.
4230 */
4231struct cgroup_subsys_state *
4232css_rightmost_descendant(struct cgroup_subsys_state *pos)
4233{
4234	struct cgroup_subsys_state *last, *tmp;
4235
4236	cgroup_assert_mutex_or_rcu_locked();
4237
4238	do {
4239		last = pos;
4240		/* ->prev isn't RCU safe, walk ->next till the end */
4241		pos = NULL;
4242		css_for_each_child(tmp, last)
4243			pos = tmp;
4244	} while (pos);
4245
4246	return last;
4247}
4248
4249static struct cgroup_subsys_state *
4250css_leftmost_descendant(struct cgroup_subsys_state *pos)
4251{
4252	struct cgroup_subsys_state *last;
4253
4254	do {
4255		last = pos;
4256		pos = css_next_child(NULL, pos);
4257	} while (pos);
4258
4259	return last;
4260}
4261
4262/**
4263 * css_next_descendant_post - find the next descendant for post-order walk
4264 * @pos: the current position (%NULL to initiate traversal)
4265 * @root: css whose descendants to walk
4266 *
4267 * To be used by css_for_each_descendant_post().  Find the next descendant
4268 * to visit for post-order traversal of @root's descendants.  @root is
4269 * included in the iteration and the last node to be visited.
4270 *
4271 * While this function requires cgroup_mutex or RCU read locking, it
4272 * doesn't require the whole traversal to be contained in a single critical
4273 * section.  This function will return the correct next descendant as long
4274 * as both @pos and @cgroup are accessible and @pos is a descendant of
4275 * @cgroup.
4276 *
4277 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4278 * css which finished ->css_online() is guaranteed to be visible in the
4279 * future iterations and will stay visible until the last reference is put.
4280 * A css which hasn't finished ->css_online() or already finished
4281 * ->css_offline() may show up during traversal.  It's each subsystem's
4282 * responsibility to synchronize against on/offlining.
4283 */
4284struct cgroup_subsys_state *
4285css_next_descendant_post(struct cgroup_subsys_state *pos,
4286			 struct cgroup_subsys_state *root)
4287{
4288	struct cgroup_subsys_state *next;
4289
4290	cgroup_assert_mutex_or_rcu_locked();
4291
4292	/* if first iteration, visit leftmost descendant which may be @root */
4293	if (!pos)
4294		return css_leftmost_descendant(root);
4295
4296	/* if we visited @root, we're done */
4297	if (pos == root)
4298		return NULL;
4299
4300	/* if there's an unvisited sibling, visit its leftmost descendant */
4301	next = css_next_child(pos, pos->parent);
4302	if (next)
4303		return css_leftmost_descendant(next);
4304
4305	/* no sibling left, visit parent */
4306	return pos->parent;
4307}
4308
4309/**
4310 * css_has_online_children - does a css have online children
4311 * @css: the target css
4312 *
4313 * Returns %true if @css has any online children; otherwise, %false.  This
4314 * function can be called from any context but the caller is responsible
4315 * for synchronizing against on/offlining as necessary.
4316 */
4317bool css_has_online_children(struct cgroup_subsys_state *css)
4318{
4319	struct cgroup_subsys_state *child;
4320	bool ret = false;
4321
4322	rcu_read_lock();
4323	css_for_each_child(child, css) {
4324		if (child->flags & CSS_ONLINE) {
4325			ret = true;
4326			break;
4327		}
4328	}
4329	rcu_read_unlock();
4330	return ret;
4331}
4332
4333static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4334{
4335	struct list_head *l;
4336	struct cgrp_cset_link *link;
4337	struct css_set *cset;
4338
4339	lockdep_assert_held(&css_set_lock);
4340
4341	/* find the next threaded cset */
4342	if (it->tcset_pos) {
4343		l = it->tcset_pos->next;
4344
4345		if (l != it->tcset_head) {
4346			it->tcset_pos = l;
4347			return container_of(l, struct css_set,
4348					    threaded_csets_node);
4349		}
4350
4351		it->tcset_pos = NULL;
4352	}
4353
4354	/* find the next cset */
4355	l = it->cset_pos;
4356	l = l->next;
4357	if (l == it->cset_head) {
4358		it->cset_pos = NULL;
4359		return NULL;
4360	}
4361
4362	if (it->ss) {
4363		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4364	} else {
4365		link = list_entry(l, struct cgrp_cset_link, cset_link);
4366		cset = link->cset;
4367	}
4368
4369	it->cset_pos = l;
4370
4371	/* initialize threaded css_set walking */
4372	if (it->flags & CSS_TASK_ITER_THREADED) {
4373		if (it->cur_dcset)
4374			put_css_set_locked(it->cur_dcset);
4375		it->cur_dcset = cset;
4376		get_css_set(cset);
4377
4378		it->tcset_head = &cset->threaded_csets;
4379		it->tcset_pos = &cset->threaded_csets;
4380	}
4381
4382	return cset;
4383}
4384
4385/**
4386 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4387 * @it: the iterator to advance
4388 *
4389 * Advance @it to the next css_set to walk.
4390 */
4391static void css_task_iter_advance_css_set(struct css_task_iter *it)
4392{
4393	struct css_set *cset;
4394
4395	lockdep_assert_held(&css_set_lock);
4396
4397	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4398	while ((cset = css_task_iter_next_css_set(it))) {
4399		if (!list_empty(&cset->tasks)) {
4400			it->cur_tasks_head = &cset->tasks;
4401			break;
4402		} else if (!list_empty(&cset->mg_tasks)) {
4403			it->cur_tasks_head = &cset->mg_tasks;
4404			break;
4405		} else if (!list_empty(&cset->dying_tasks)) {
4406			it->cur_tasks_head = &cset->dying_tasks;
4407			break;
4408		}
4409	}
4410	if (!cset) {
4411		it->task_pos = NULL;
4412		return;
4413	}
4414	it->task_pos = it->cur_tasks_head->next;
 
 
 
4415
4416	/*
4417	 * We don't keep css_sets locked across iteration steps and thus
4418	 * need to take steps to ensure that iteration can be resumed after
4419	 * the lock is re-acquired.  Iteration is performed at two levels -
4420	 * css_sets and tasks in them.
4421	 *
4422	 * Once created, a css_set never leaves its cgroup lists, so a
4423	 * pinned css_set is guaranteed to stay put and we can resume
4424	 * iteration afterwards.
4425	 *
4426	 * Tasks may leave @cset across iteration steps.  This is resolved
4427	 * by registering each iterator with the css_set currently being
4428	 * walked and making css_set_move_task() advance iterators whose
4429	 * next task is leaving.
4430	 */
4431	if (it->cur_cset) {
4432		list_del(&it->iters_node);
4433		put_css_set_locked(it->cur_cset);
4434	}
4435	get_css_set(cset);
4436	it->cur_cset = cset;
4437	list_add(&it->iters_node, &cset->task_iters);
4438}
4439
4440static void css_task_iter_skip(struct css_task_iter *it,
4441			       struct task_struct *task)
4442{
4443	lockdep_assert_held(&css_set_lock);
4444
4445	if (it->task_pos == &task->cg_list) {
4446		it->task_pos = it->task_pos->next;
4447		it->flags |= CSS_TASK_ITER_SKIPPED;
4448	}
4449}
4450
4451static void css_task_iter_advance(struct css_task_iter *it)
4452{
4453	struct task_struct *task;
4454
4455	lockdep_assert_held(&css_set_lock);
4456repeat:
4457	if (it->task_pos) {
4458		/*
4459		 * Advance iterator to find next entry. We go through cset
4460		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4461		 * the next cset.
4462		 */
4463		if (it->flags & CSS_TASK_ITER_SKIPPED)
4464			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4465		else
4466			it->task_pos = it->task_pos->next;
4467
4468		if (it->task_pos == &it->cur_cset->tasks) {
4469			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4470			it->task_pos = it->cur_tasks_head->next;
4471		}
4472		if (it->task_pos == &it->cur_cset->mg_tasks) {
4473			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4474			it->task_pos = it->cur_tasks_head->next;
4475		}
4476		if (it->task_pos == &it->cur_cset->dying_tasks)
4477			css_task_iter_advance_css_set(it);
4478	} else {
4479		/* called from start, proceed to the first cset */
4480		css_task_iter_advance_css_set(it);
4481	}
 
4482
4483	if (!it->task_pos)
4484		return;
4485
4486	task = list_entry(it->task_pos, struct task_struct, cg_list);
4487
4488	if (it->flags & CSS_TASK_ITER_PROCS) {
4489		/* if PROCS, skip over tasks which aren't group leaders */
4490		if (!thread_group_leader(task))
4491			goto repeat;
4492
4493		/* and dying leaders w/o live member threads */
4494		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4495		    !atomic_read(&task->signal->live))
4496			goto repeat;
4497	} else {
4498		/* skip all dying ones */
4499		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4500			goto repeat;
4501	}
4502}
4503
4504/**
4505 * css_task_iter_start - initiate task iteration
4506 * @css: the css to walk tasks of
4507 * @flags: CSS_TASK_ITER_* flags
4508 * @it: the task iterator to use
4509 *
4510 * Initiate iteration through the tasks of @css.  The caller can call
4511 * css_task_iter_next() to walk through the tasks until the function
4512 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4513 * called.
4514 */
4515void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4516			 struct css_task_iter *it)
4517{
 
 
 
4518	memset(it, 0, sizeof(*it));
4519
4520	spin_lock_irq(&css_set_lock);
4521
4522	it->ss = css->ss;
4523	it->flags = flags;
4524
4525	if (it->ss)
4526		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4527	else
4528		it->cset_pos = &css->cgroup->cset_links;
4529
4530	it->cset_head = it->cset_pos;
4531
4532	css_task_iter_advance(it);
4533
4534	spin_unlock_irq(&css_set_lock);
4535}
4536
4537/**
4538 * css_task_iter_next - return the next task for the iterator
4539 * @it: the task iterator being iterated
4540 *
4541 * The "next" function for task iteration.  @it should have been
4542 * initialized via css_task_iter_start().  Returns NULL when the iteration
4543 * reaches the end.
4544 */
4545struct task_struct *css_task_iter_next(struct css_task_iter *it)
4546{
4547	if (it->cur_task) {
4548		put_task_struct(it->cur_task);
4549		it->cur_task = NULL;
4550	}
4551
4552	spin_lock_irq(&css_set_lock);
4553
4554	/* @it may be half-advanced by skips, finish advancing */
4555	if (it->flags & CSS_TASK_ITER_SKIPPED)
4556		css_task_iter_advance(it);
4557
4558	if (it->task_pos) {
4559		it->cur_task = list_entry(it->task_pos, struct task_struct,
4560					  cg_list);
4561		get_task_struct(it->cur_task);
4562		css_task_iter_advance(it);
4563	}
4564
4565	spin_unlock_irq(&css_set_lock);
4566
4567	return it->cur_task;
4568}
4569
4570/**
4571 * css_task_iter_end - finish task iteration
4572 * @it: the task iterator to finish
4573 *
4574 * Finish task iteration started by css_task_iter_start().
4575 */
4576void css_task_iter_end(struct css_task_iter *it)
4577{
4578	if (it->cur_cset) {
4579		spin_lock_irq(&css_set_lock);
4580		list_del(&it->iters_node);
4581		put_css_set_locked(it->cur_cset);
4582		spin_unlock_irq(&css_set_lock);
4583	}
4584
4585	if (it->cur_dcset)
4586		put_css_set(it->cur_dcset);
4587
4588	if (it->cur_task)
4589		put_task_struct(it->cur_task);
4590}
4591
4592static void cgroup_procs_release(struct kernfs_open_file *of)
4593{
4594	if (of->priv) {
4595		css_task_iter_end(of->priv);
4596		kfree(of->priv);
4597	}
4598}
4599
4600static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4601{
4602	struct kernfs_open_file *of = s->private;
4603	struct css_task_iter *it = of->priv;
4604
4605	if (pos)
4606		(*pos)++;
4607
4608	return css_task_iter_next(it);
4609}
4610
4611static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4612				  unsigned int iter_flags)
4613{
4614	struct kernfs_open_file *of = s->private;
4615	struct cgroup *cgrp = seq_css(s)->cgroup;
4616	struct css_task_iter *it = of->priv;
4617
4618	/*
4619	 * When a seq_file is seeked, it's always traversed sequentially
4620	 * from position 0, so we can simply keep iterating on !0 *pos.
4621	 */
4622	if (!it) {
4623		if (WARN_ON_ONCE((*pos)))
4624			return ERR_PTR(-EINVAL);
4625
4626		it = kzalloc(sizeof(*it), GFP_KERNEL);
4627		if (!it)
4628			return ERR_PTR(-ENOMEM);
4629		of->priv = it;
4630		css_task_iter_start(&cgrp->self, iter_flags, it);
4631	} else if (!(*pos)) {
4632		css_task_iter_end(it);
4633		css_task_iter_start(&cgrp->self, iter_flags, it);
4634	} else
4635		return it->cur_task;
4636
4637	return cgroup_procs_next(s, NULL, NULL);
4638}
4639
4640static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4641{
4642	struct cgroup *cgrp = seq_css(s)->cgroup;
4643
4644	/*
4645	 * All processes of a threaded subtree belong to the domain cgroup
4646	 * of the subtree.  Only threads can be distributed across the
4647	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4648	 * They're always empty anyway.
4649	 */
4650	if (cgroup_is_threaded(cgrp))
4651		return ERR_PTR(-EOPNOTSUPP);
4652
4653	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4654					    CSS_TASK_ITER_THREADED);
4655}
4656
4657static int cgroup_procs_show(struct seq_file *s, void *v)
4658{
4659	seq_printf(s, "%d\n", task_pid_vnr(v));
4660	return 0;
4661}
4662
4663static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4664{
4665	int ret;
4666	struct inode *inode;
4667
4668	lockdep_assert_held(&cgroup_mutex);
4669
4670	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4671	if (!inode)
4672		return -ENOMEM;
4673
4674	ret = inode_permission(inode, MAY_WRITE);
4675	iput(inode);
4676	return ret;
4677}
4678
4679static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4680					 struct cgroup *dst_cgrp,
4681					 struct super_block *sb)
4682{
4683	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4684	struct cgroup *com_cgrp = src_cgrp;
 
4685	int ret;
4686
4687	lockdep_assert_held(&cgroup_mutex);
4688
4689	/* find the common ancestor */
4690	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4691		com_cgrp = cgroup_parent(com_cgrp);
4692
4693	/* %current should be authorized to migrate to the common ancestor */
4694	ret = cgroup_may_write(com_cgrp, sb);
 
 
 
 
 
4695	if (ret)
4696		return ret;
4697
4698	/*
4699	 * If namespaces are delegation boundaries, %current must be able
4700	 * to see both source and destination cgroups from its namespace.
4701	 */
4702	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4703	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4704	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4705		return -ENOENT;
4706
4707	return 0;
4708}
4709
4710static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4711				     struct cgroup *dst_cgrp,
4712				     struct super_block *sb, bool threadgroup)
4713{
4714	int ret = 0;
4715
4716	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4717	if (ret)
4718		return ret;
4719
4720	ret = cgroup_migrate_vet_dst(dst_cgrp);
4721	if (ret)
4722		return ret;
4723
4724	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4725		ret = -EOPNOTSUPP;
4726
4727	return ret;
4728}
4729
4730static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4731				  char *buf, size_t nbytes, loff_t off)
4732{
4733	struct cgroup *src_cgrp, *dst_cgrp;
4734	struct task_struct *task;
4735	ssize_t ret;
4736	bool locked;
4737
4738	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4739	if (!dst_cgrp)
4740		return -ENODEV;
4741
4742	task = cgroup_procs_write_start(buf, true, &locked);
4743	ret = PTR_ERR_OR_ZERO(task);
4744	if (ret)
4745		goto out_unlock;
4746
4747	/* find the source cgroup */
4748	spin_lock_irq(&css_set_lock);
4749	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4750	spin_unlock_irq(&css_set_lock);
4751
4752	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4753					of->file->f_path.dentry->d_sb, true);
4754	if (ret)
4755		goto out_finish;
4756
4757	ret = cgroup_attach_task(dst_cgrp, task, true);
4758
4759out_finish:
4760	cgroup_procs_write_finish(task, locked);
4761out_unlock:
4762	cgroup_kn_unlock(of->kn);
4763
4764	return ret ?: nbytes;
4765}
4766
4767static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4768{
4769	return __cgroup_procs_start(s, pos, 0);
4770}
4771
4772static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4773				    char *buf, size_t nbytes, loff_t off)
4774{
4775	struct cgroup *src_cgrp, *dst_cgrp;
4776	struct task_struct *task;
4777	ssize_t ret;
4778	bool locked;
4779
4780	buf = strstrip(buf);
4781
4782	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4783	if (!dst_cgrp)
4784		return -ENODEV;
4785
4786	task = cgroup_procs_write_start(buf, false, &locked);
4787	ret = PTR_ERR_OR_ZERO(task);
4788	if (ret)
4789		goto out_unlock;
4790
4791	/* find the source cgroup */
4792	spin_lock_irq(&css_set_lock);
4793	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4794	spin_unlock_irq(&css_set_lock);
4795
4796	/* thread migrations follow the cgroup.procs delegation rule */
4797	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4798					of->file->f_path.dentry->d_sb, false);
4799	if (ret)
4800		goto out_finish;
4801
 
 
 
 
 
4802	ret = cgroup_attach_task(dst_cgrp, task, false);
4803
4804out_finish:
4805	cgroup_procs_write_finish(task, locked);
4806out_unlock:
4807	cgroup_kn_unlock(of->kn);
4808
4809	return ret ?: nbytes;
4810}
4811
4812/* cgroup core interface files for the default hierarchy */
4813static struct cftype cgroup_base_files[] = {
4814	{
4815		.name = "cgroup.type",
4816		.flags = CFTYPE_NOT_ON_ROOT,
4817		.seq_show = cgroup_type_show,
4818		.write = cgroup_type_write,
4819	},
4820	{
4821		.name = "cgroup.procs",
4822		.flags = CFTYPE_NS_DELEGATABLE,
4823		.file_offset = offsetof(struct cgroup, procs_file),
4824		.release = cgroup_procs_release,
4825		.seq_start = cgroup_procs_start,
4826		.seq_next = cgroup_procs_next,
4827		.seq_show = cgroup_procs_show,
4828		.write = cgroup_procs_write,
4829	},
4830	{
4831		.name = "cgroup.threads",
4832		.flags = CFTYPE_NS_DELEGATABLE,
4833		.release = cgroup_procs_release,
4834		.seq_start = cgroup_threads_start,
4835		.seq_next = cgroup_procs_next,
4836		.seq_show = cgroup_procs_show,
4837		.write = cgroup_threads_write,
4838	},
4839	{
4840		.name = "cgroup.controllers",
4841		.seq_show = cgroup_controllers_show,
4842	},
4843	{
4844		.name = "cgroup.subtree_control",
4845		.flags = CFTYPE_NS_DELEGATABLE,
4846		.seq_show = cgroup_subtree_control_show,
4847		.write = cgroup_subtree_control_write,
4848	},
4849	{
4850		.name = "cgroup.events",
4851		.flags = CFTYPE_NOT_ON_ROOT,
4852		.file_offset = offsetof(struct cgroup, events_file),
4853		.seq_show = cgroup_events_show,
4854	},
4855	{
4856		.name = "cgroup.max.descendants",
4857		.seq_show = cgroup_max_descendants_show,
4858		.write = cgroup_max_descendants_write,
4859	},
4860	{
4861		.name = "cgroup.max.depth",
4862		.seq_show = cgroup_max_depth_show,
4863		.write = cgroup_max_depth_write,
4864	},
4865	{
4866		.name = "cgroup.stat",
4867		.seq_show = cgroup_stat_show,
4868	},
4869	{
4870		.name = "cgroup.freeze",
4871		.flags = CFTYPE_NOT_ON_ROOT,
4872		.seq_show = cgroup_freeze_show,
4873		.write = cgroup_freeze_write,
4874	},
4875	{
4876		.name = "cpu.stat",
4877		.seq_show = cpu_stat_show,
4878	},
4879#ifdef CONFIG_PSI
4880	{
4881		.name = "io.pressure",
4882		.seq_show = cgroup_io_pressure_show,
4883		.write = cgroup_io_pressure_write,
4884		.poll = cgroup_pressure_poll,
4885		.release = cgroup_pressure_release,
4886	},
4887	{
4888		.name = "memory.pressure",
4889		.seq_show = cgroup_memory_pressure_show,
4890		.write = cgroup_memory_pressure_write,
4891		.poll = cgroup_pressure_poll,
4892		.release = cgroup_pressure_release,
4893	},
4894	{
4895		.name = "cpu.pressure",
4896		.seq_show = cgroup_cpu_pressure_show,
4897		.write = cgroup_cpu_pressure_write,
4898		.poll = cgroup_pressure_poll,
4899		.release = cgroup_pressure_release,
4900	},
4901#endif /* CONFIG_PSI */
4902	{ }	/* terminate */
4903};
4904
4905/*
4906 * css destruction is four-stage process.
4907 *
4908 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4909 *    Implemented in kill_css().
4910 *
4911 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4912 *    and thus css_tryget_online() is guaranteed to fail, the css can be
4913 *    offlined by invoking offline_css().  After offlining, the base ref is
4914 *    put.  Implemented in css_killed_work_fn().
4915 *
4916 * 3. When the percpu_ref reaches zero, the only possible remaining
4917 *    accessors are inside RCU read sections.  css_release() schedules the
4918 *    RCU callback.
4919 *
4920 * 4. After the grace period, the css can be freed.  Implemented in
4921 *    css_free_work_fn().
4922 *
4923 * It is actually hairier because both step 2 and 4 require process context
4924 * and thus involve punting to css->destroy_work adding two additional
4925 * steps to the already complex sequence.
4926 */
4927static void css_free_rwork_fn(struct work_struct *work)
4928{
4929	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4930				struct cgroup_subsys_state, destroy_rwork);
4931	struct cgroup_subsys *ss = css->ss;
4932	struct cgroup *cgrp = css->cgroup;
4933
4934	percpu_ref_exit(&css->refcnt);
4935
4936	if (ss) {
4937		/* css free path */
4938		struct cgroup_subsys_state *parent = css->parent;
4939		int id = css->id;
4940
4941		ss->css_free(css);
4942		cgroup_idr_remove(&ss->css_idr, id);
4943		cgroup_put(cgrp);
4944
4945		if (parent)
4946			css_put(parent);
4947	} else {
4948		/* cgroup free path */
4949		atomic_dec(&cgrp->root->nr_cgrps);
4950		cgroup1_pidlist_destroy_all(cgrp);
4951		cancel_work_sync(&cgrp->release_agent_work);
4952
4953		if (cgroup_parent(cgrp)) {
4954			/*
4955			 * We get a ref to the parent, and put the ref when
4956			 * this cgroup is being freed, so it's guaranteed
4957			 * that the parent won't be destroyed before its
4958			 * children.
4959			 */
4960			cgroup_put(cgroup_parent(cgrp));
4961			kernfs_put(cgrp->kn);
4962			psi_cgroup_free(cgrp);
4963			if (cgroup_on_dfl(cgrp))
4964				cgroup_rstat_exit(cgrp);
4965			kfree(cgrp);
4966		} else {
4967			/*
4968			 * This is root cgroup's refcnt reaching zero,
4969			 * which indicates that the root should be
4970			 * released.
4971			 */
4972			cgroup_destroy_root(cgrp->root);
4973		}
4974	}
4975}
4976
4977static void css_release_work_fn(struct work_struct *work)
4978{
4979	struct cgroup_subsys_state *css =
4980		container_of(work, struct cgroup_subsys_state, destroy_work);
4981	struct cgroup_subsys *ss = css->ss;
4982	struct cgroup *cgrp = css->cgroup;
4983
4984	mutex_lock(&cgroup_mutex);
4985
4986	css->flags |= CSS_RELEASED;
4987	list_del_rcu(&css->sibling);
4988
4989	if (ss) {
4990		/* css release path */
4991		if (!list_empty(&css->rstat_css_node)) {
4992			cgroup_rstat_flush(cgrp);
4993			list_del_rcu(&css->rstat_css_node);
4994		}
4995
4996		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4997		if (ss->css_released)
4998			ss->css_released(css);
4999	} else {
5000		struct cgroup *tcgrp;
5001
5002		/* cgroup release path */
5003		TRACE_CGROUP_PATH(release, cgrp);
5004
5005		if (cgroup_on_dfl(cgrp))
5006			cgroup_rstat_flush(cgrp);
5007
5008		spin_lock_irq(&css_set_lock);
5009		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5010		     tcgrp = cgroup_parent(tcgrp))
5011			tcgrp->nr_dying_descendants--;
5012		spin_unlock_irq(&css_set_lock);
 
 
5013
5014		/*
5015		 * There are two control paths which try to determine
5016		 * cgroup from dentry without going through kernfs -
5017		 * cgroupstats_build() and css_tryget_online_from_dir().
5018		 * Those are supported by RCU protecting clearing of
5019		 * cgrp->kn->priv backpointer.
5020		 */
5021		if (cgrp->kn)
5022			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5023					 NULL);
 
 
5024	}
5025
5026	mutex_unlock(&cgroup_mutex);
5027
5028	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5029	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5030}
5031
5032static void css_release(struct percpu_ref *ref)
5033{
5034	struct cgroup_subsys_state *css =
5035		container_of(ref, struct cgroup_subsys_state, refcnt);
5036
5037	INIT_WORK(&css->destroy_work, css_release_work_fn);
5038	queue_work(cgroup_destroy_wq, &css->destroy_work);
5039}
5040
5041static void init_and_link_css(struct cgroup_subsys_state *css,
5042			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5043{
5044	lockdep_assert_held(&cgroup_mutex);
5045
5046	cgroup_get_live(cgrp);
5047
5048	memset(css, 0, sizeof(*css));
5049	css->cgroup = cgrp;
5050	css->ss = ss;
5051	css->id = -1;
5052	INIT_LIST_HEAD(&css->sibling);
5053	INIT_LIST_HEAD(&css->children);
5054	INIT_LIST_HEAD(&css->rstat_css_node);
5055	css->serial_nr = css_serial_nr_next++;
5056	atomic_set(&css->online_cnt, 0);
5057
5058	if (cgroup_parent(cgrp)) {
5059		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5060		css_get(css->parent);
5061	}
5062
5063	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5064		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5065
5066	BUG_ON(cgroup_css(cgrp, ss));
5067}
5068
5069/* invoke ->css_online() on a new CSS and mark it online if successful */
5070static int online_css(struct cgroup_subsys_state *css)
5071{
5072	struct cgroup_subsys *ss = css->ss;
5073	int ret = 0;
5074
5075	lockdep_assert_held(&cgroup_mutex);
5076
5077	if (ss->css_online)
5078		ret = ss->css_online(css);
5079	if (!ret) {
5080		css->flags |= CSS_ONLINE;
5081		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5082
5083		atomic_inc(&css->online_cnt);
5084		if (css->parent)
5085			atomic_inc(&css->parent->online_cnt);
5086	}
5087	return ret;
5088}
5089
5090/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5091static void offline_css(struct cgroup_subsys_state *css)
5092{
5093	struct cgroup_subsys *ss = css->ss;
5094
5095	lockdep_assert_held(&cgroup_mutex);
5096
5097	if (!(css->flags & CSS_ONLINE))
5098		return;
5099
5100	if (ss->css_offline)
5101		ss->css_offline(css);
5102
5103	css->flags &= ~CSS_ONLINE;
5104	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5105
5106	wake_up_all(&css->cgroup->offline_waitq);
5107}
5108
5109/**
5110 * css_create - create a cgroup_subsys_state
5111 * @cgrp: the cgroup new css will be associated with
5112 * @ss: the subsys of new css
5113 *
5114 * Create a new css associated with @cgrp - @ss pair.  On success, the new
5115 * css is online and installed in @cgrp.  This function doesn't create the
5116 * interface files.  Returns 0 on success, -errno on failure.
5117 */
5118static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5119					      struct cgroup_subsys *ss)
5120{
5121	struct cgroup *parent = cgroup_parent(cgrp);
5122	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5123	struct cgroup_subsys_state *css;
5124	int err;
5125
5126	lockdep_assert_held(&cgroup_mutex);
5127
5128	css = ss->css_alloc(parent_css);
5129	if (!css)
5130		css = ERR_PTR(-ENOMEM);
5131	if (IS_ERR(css))
5132		return css;
5133
5134	init_and_link_css(css, ss, cgrp);
5135
5136	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5137	if (err)
5138		goto err_free_css;
5139
5140	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5141	if (err < 0)
5142		goto err_free_css;
5143	css->id = err;
5144
5145	/* @css is ready to be brought online now, make it visible */
5146	list_add_tail_rcu(&css->sibling, &parent_css->children);
5147	cgroup_idr_replace(&ss->css_idr, css, css->id);
5148
5149	err = online_css(css);
5150	if (err)
5151		goto err_list_del;
5152
5153	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5154	    cgroup_parent(parent)) {
5155		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5156			current->comm, current->pid, ss->name);
5157		if (!strcmp(ss->name, "memory"))
5158			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5159		ss->warned_broken_hierarchy = true;
5160	}
5161
5162	return css;
5163
5164err_list_del:
5165	list_del_rcu(&css->sibling);
5166err_free_css:
5167	list_del_rcu(&css->rstat_css_node);
5168	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5169	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5170	return ERR_PTR(err);
5171}
5172
5173/*
5174 * The returned cgroup is fully initialized including its control mask, but
5175 * it isn't associated with its kernfs_node and doesn't have the control
5176 * mask applied.
5177 */
5178static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5179				    umode_t mode)
5180{
5181	struct cgroup_root *root = parent->root;
5182	struct cgroup *cgrp, *tcgrp;
5183	struct kernfs_node *kn;
5184	int level = parent->level + 1;
5185	int ret;
5186
5187	/* allocate the cgroup and its ID, 0 is reserved for the root */
5188	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5189		       GFP_KERNEL);
5190	if (!cgrp)
5191		return ERR_PTR(-ENOMEM);
5192
5193	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5194	if (ret)
5195		goto out_free_cgrp;
5196
5197	if (cgroup_on_dfl(parent)) {
5198		ret = cgroup_rstat_init(cgrp);
5199		if (ret)
5200			goto out_cancel_ref;
5201	}
5202
5203	/* create the directory */
5204	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5205	if (IS_ERR(kn)) {
5206		ret = PTR_ERR(kn);
 
 
 
5207		goto out_stat_exit;
5208	}
5209	cgrp->kn = kn;
5210
5211	init_cgroup_housekeeping(cgrp);
5212
5213	cgrp->self.parent = &parent->self;
5214	cgrp->root = root;
5215	cgrp->level = level;
5216
5217	ret = psi_cgroup_alloc(cgrp);
5218	if (ret)
5219		goto out_kernfs_remove;
5220
5221	ret = cgroup_bpf_inherit(cgrp);
5222	if (ret)
5223		goto out_psi_free;
5224
5225	/*
5226	 * New cgroup inherits effective freeze counter, and
5227	 * if the parent has to be frozen, the child has too.
5228	 */
5229	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5230	if (cgrp->freezer.e_freeze) {
5231		/*
5232		 * Set the CGRP_FREEZE flag, so when a process will be
5233		 * attached to the child cgroup, it will become frozen.
5234		 * At this point the new cgroup is unpopulated, so we can
5235		 * consider it frozen immediately.
5236		 */
5237		set_bit(CGRP_FREEZE, &cgrp->flags);
5238		set_bit(CGRP_FROZEN, &cgrp->flags);
5239	}
5240
5241	spin_lock_irq(&css_set_lock);
5242	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5243		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5244
5245		if (tcgrp != cgrp) {
5246			tcgrp->nr_descendants++;
5247
5248			/*
5249			 * If the new cgroup is frozen, all ancestor cgroups
5250			 * get a new frozen descendant, but their state can't
5251			 * change because of this.
5252			 */
5253			if (cgrp->freezer.e_freeze)
5254				tcgrp->freezer.nr_frozen_descendants++;
5255		}
5256	}
5257	spin_unlock_irq(&css_set_lock);
5258
5259	if (notify_on_release(parent))
5260		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5261
5262	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5263		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5264
5265	cgrp->self.serial_nr = css_serial_nr_next++;
5266
5267	/* allocation complete, commit to creation */
5268	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5269	atomic_inc(&root->nr_cgrps);
5270	cgroup_get_live(parent);
5271
5272	/*
 
 
 
 
 
 
5273	 * On the default hierarchy, a child doesn't automatically inherit
5274	 * subtree_control from the parent.  Each is configured manually.
5275	 */
5276	if (!cgroup_on_dfl(cgrp))
5277		cgrp->subtree_control = cgroup_control(cgrp);
5278
5279	cgroup_propagate_control(cgrp);
5280
5281	return cgrp;
5282
5283out_psi_free:
5284	psi_cgroup_free(cgrp);
5285out_kernfs_remove:
5286	kernfs_remove(cgrp->kn);
5287out_stat_exit:
5288	if (cgroup_on_dfl(parent))
5289		cgroup_rstat_exit(cgrp);
5290out_cancel_ref:
5291	percpu_ref_exit(&cgrp->self.refcnt);
5292out_free_cgrp:
5293	kfree(cgrp);
5294	return ERR_PTR(ret);
5295}
5296
5297static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5298{
5299	struct cgroup *cgroup;
5300	int ret = false;
5301	int level = 1;
5302
5303	lockdep_assert_held(&cgroup_mutex);
5304
5305	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5306		if (cgroup->nr_descendants >= cgroup->max_descendants)
5307			goto fail;
5308
5309		if (level > cgroup->max_depth)
5310			goto fail;
5311
5312		level++;
5313	}
5314
5315	ret = true;
5316fail:
5317	return ret;
5318}
5319
5320int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5321{
5322	struct cgroup *parent, *cgrp;
 
5323	int ret;
5324
5325	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5326	if (strchr(name, '\n'))
5327		return -EINVAL;
5328
5329	parent = cgroup_kn_lock_live(parent_kn, false);
5330	if (!parent)
5331		return -ENODEV;
5332
5333	if (!cgroup_check_hierarchy_limits(parent)) {
5334		ret = -EAGAIN;
5335		goto out_unlock;
5336	}
5337
5338	cgrp = cgroup_create(parent, name, mode);
5339	if (IS_ERR(cgrp)) {
5340		ret = PTR_ERR(cgrp);
5341		goto out_unlock;
5342	}
5343
 
 
 
 
 
 
 
 
5344	/*
5345	 * This extra ref will be put in cgroup_free_fn() and guarantees
5346	 * that @cgrp->kn is always accessible.
5347	 */
5348	kernfs_get(cgrp->kn);
5349
5350	ret = cgroup_kn_set_ugid(cgrp->kn);
5351	if (ret)
5352		goto out_destroy;
5353
5354	ret = css_populate_dir(&cgrp->self);
5355	if (ret)
5356		goto out_destroy;
5357
5358	ret = cgroup_apply_control_enable(cgrp);
5359	if (ret)
5360		goto out_destroy;
5361
5362	TRACE_CGROUP_PATH(mkdir, cgrp);
5363
5364	/* let's create and online css's */
5365	kernfs_activate(cgrp->kn);
5366
5367	ret = 0;
5368	goto out_unlock;
5369
5370out_destroy:
5371	cgroup_destroy_locked(cgrp);
5372out_unlock:
5373	cgroup_kn_unlock(parent_kn);
5374	return ret;
5375}
5376
5377/*
5378 * This is called when the refcnt of a css is confirmed to be killed.
5379 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5380 * initate destruction and put the css ref from kill_css().
5381 */
5382static void css_killed_work_fn(struct work_struct *work)
5383{
5384	struct cgroup_subsys_state *css =
5385		container_of(work, struct cgroup_subsys_state, destroy_work);
5386
5387	mutex_lock(&cgroup_mutex);
5388
5389	do {
5390		offline_css(css);
5391		css_put(css);
5392		/* @css can't go away while we're holding cgroup_mutex */
5393		css = css->parent;
5394	} while (css && atomic_dec_and_test(&css->online_cnt));
5395
5396	mutex_unlock(&cgroup_mutex);
5397}
5398
5399/* css kill confirmation processing requires process context, bounce */
5400static void css_killed_ref_fn(struct percpu_ref *ref)
5401{
5402	struct cgroup_subsys_state *css =
5403		container_of(ref, struct cgroup_subsys_state, refcnt);
5404
5405	if (atomic_dec_and_test(&css->online_cnt)) {
5406		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5407		queue_work(cgroup_destroy_wq, &css->destroy_work);
5408	}
5409}
5410
5411/**
5412 * kill_css - destroy a css
5413 * @css: css to destroy
5414 *
5415 * This function initiates destruction of @css by removing cgroup interface
5416 * files and putting its base reference.  ->css_offline() will be invoked
5417 * asynchronously once css_tryget_online() is guaranteed to fail and when
5418 * the reference count reaches zero, @css will be released.
5419 */
5420static void kill_css(struct cgroup_subsys_state *css)
5421{
5422	lockdep_assert_held(&cgroup_mutex);
5423
5424	if (css->flags & CSS_DYING)
5425		return;
5426
5427	css->flags |= CSS_DYING;
5428
5429	/*
5430	 * This must happen before css is disassociated with its cgroup.
5431	 * See seq_css() for details.
5432	 */
5433	css_clear_dir(css);
5434
5435	/*
5436	 * Killing would put the base ref, but we need to keep it alive
5437	 * until after ->css_offline().
5438	 */
5439	css_get(css);
5440
5441	/*
5442	 * cgroup core guarantees that, by the time ->css_offline() is
5443	 * invoked, no new css reference will be given out via
5444	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5445	 * proceed to offlining css's because percpu_ref_kill() doesn't
5446	 * guarantee that the ref is seen as killed on all CPUs on return.
5447	 *
5448	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5449	 * css is confirmed to be seen as killed on all CPUs.
5450	 */
5451	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5452}
5453
5454/**
5455 * cgroup_destroy_locked - the first stage of cgroup destruction
5456 * @cgrp: cgroup to be destroyed
5457 *
5458 * css's make use of percpu refcnts whose killing latency shouldn't be
5459 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5460 * guarantee that css_tryget_online() won't succeed by the time
5461 * ->css_offline() is invoked.  To satisfy all the requirements,
5462 * destruction is implemented in the following two steps.
5463 *
5464 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5465 *     userland visible parts and start killing the percpu refcnts of
5466 *     css's.  Set up so that the next stage will be kicked off once all
5467 *     the percpu refcnts are confirmed to be killed.
5468 *
5469 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5470 *     rest of destruction.  Once all cgroup references are gone, the
5471 *     cgroup is RCU-freed.
5472 *
5473 * This function implements s1.  After this step, @cgrp is gone as far as
5474 * the userland is concerned and a new cgroup with the same name may be
5475 * created.  As cgroup doesn't care about the names internally, this
5476 * doesn't cause any problem.
5477 */
5478static int cgroup_destroy_locked(struct cgroup *cgrp)
5479	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5480{
5481	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5482	struct cgroup_subsys_state *css;
5483	struct cgrp_cset_link *link;
5484	int ssid;
5485
5486	lockdep_assert_held(&cgroup_mutex);
5487
5488	/*
5489	 * Only migration can raise populated from zero and we're already
5490	 * holding cgroup_mutex.
5491	 */
5492	if (cgroup_is_populated(cgrp))
5493		return -EBUSY;
5494
5495	/*
5496	 * Make sure there's no live children.  We can't test emptiness of
5497	 * ->self.children as dead children linger on it while being
5498	 * drained; otherwise, "rmdir parent/child parent" may fail.
5499	 */
5500	if (css_has_online_children(&cgrp->self))
5501		return -EBUSY;
5502
5503	/*
5504	 * Mark @cgrp and the associated csets dead.  The former prevents
5505	 * further task migration and child creation by disabling
5506	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5507	 * the migration path.
5508	 */
5509	cgrp->self.flags &= ~CSS_ONLINE;
5510
5511	spin_lock_irq(&css_set_lock);
5512	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5513		link->cset->dead = true;
5514	spin_unlock_irq(&css_set_lock);
5515
5516	/* initiate massacre of all css's */
5517	for_each_css(css, ssid, cgrp)
5518		kill_css(css);
5519
5520	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5521	css_clear_dir(&cgrp->self);
 
 
5522	kernfs_remove(cgrp->kn);
5523
5524	if (parent && cgroup_is_threaded(cgrp))
5525		parent->nr_threaded_children--;
5526
5527	spin_lock_irq(&css_set_lock);
5528	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5529		tcgrp->nr_descendants--;
5530		tcgrp->nr_dying_descendants++;
5531		/*
5532		 * If the dying cgroup is frozen, decrease frozen descendants
5533		 * counters of ancestor cgroups.
5534		 */
5535		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5536			tcgrp->freezer.nr_frozen_descendants--;
5537	}
5538	spin_unlock_irq(&css_set_lock);
5539
5540	cgroup1_check_for_release(parent);
5541
5542	cgroup_bpf_offline(cgrp);
5543
5544	/* put the base reference */
5545	percpu_ref_kill(&cgrp->self.refcnt);
5546
5547	return 0;
5548};
5549
5550int cgroup_rmdir(struct kernfs_node *kn)
5551{
5552	struct cgroup *cgrp;
5553	int ret = 0;
5554
5555	cgrp = cgroup_kn_lock_live(kn, false);
5556	if (!cgrp)
5557		return 0;
5558
5559	ret = cgroup_destroy_locked(cgrp);
 
5560	if (!ret)
5561		TRACE_CGROUP_PATH(rmdir, cgrp);
5562
5563	cgroup_kn_unlock(kn);
5564	return ret;
5565}
5566
5567static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5568	.show_options		= cgroup_show_options,
 
5569	.mkdir			= cgroup_mkdir,
5570	.rmdir			= cgroup_rmdir,
5571	.show_path		= cgroup_show_path,
5572};
5573
5574static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5575{
5576	struct cgroup_subsys_state *css;
5577
5578	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5579
5580	mutex_lock(&cgroup_mutex);
5581
5582	idr_init(&ss->css_idr);
5583	INIT_LIST_HEAD(&ss->cfts);
5584
5585	/* Create the root cgroup state for this subsystem */
5586	ss->root = &cgrp_dfl_root;
5587	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5588	/* We don't handle early failures gracefully */
5589	BUG_ON(IS_ERR(css));
5590	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5591
5592	/*
5593	 * Root csses are never destroyed and we can't initialize
5594	 * percpu_ref during early init.  Disable refcnting.
5595	 */
5596	css->flags |= CSS_NO_REF;
5597
5598	if (early) {
5599		/* allocation can't be done safely during early init */
5600		css->id = 1;
5601	} else {
5602		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5603		BUG_ON(css->id < 0);
5604	}
5605
5606	/* Update the init_css_set to contain a subsys
5607	 * pointer to this state - since the subsystem is
5608	 * newly registered, all tasks and hence the
5609	 * init_css_set is in the subsystem's root cgroup. */
5610	init_css_set.subsys[ss->id] = css;
5611
5612	have_fork_callback |= (bool)ss->fork << ss->id;
5613	have_exit_callback |= (bool)ss->exit << ss->id;
5614	have_release_callback |= (bool)ss->release << ss->id;
5615	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5616
5617	/* At system boot, before all subsystems have been
5618	 * registered, no tasks have been forked, so we don't
5619	 * need to invoke fork callbacks here. */
5620	BUG_ON(!list_empty(&init_task.tasks));
5621
5622	BUG_ON(online_css(css));
5623
5624	mutex_unlock(&cgroup_mutex);
5625}
5626
5627/**
5628 * cgroup_init_early - cgroup initialization at system boot
5629 *
5630 * Initialize cgroups at system boot, and initialize any
5631 * subsystems that request early init.
5632 */
5633int __init cgroup_init_early(void)
5634{
5635	static struct cgroup_fs_context __initdata ctx;
5636	struct cgroup_subsys *ss;
5637	int i;
5638
5639	ctx.root = &cgrp_dfl_root;
5640	init_cgroup_root(&ctx);
5641	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5642
5643	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5644
5645	for_each_subsys(ss, i) {
5646		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5647		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5648		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5649		     ss->id, ss->name);
5650		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5651		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5652
5653		ss->id = i;
5654		ss->name = cgroup_subsys_name[i];
5655		if (!ss->legacy_name)
5656			ss->legacy_name = cgroup_subsys_name[i];
5657
5658		if (ss->early_init)
5659			cgroup_init_subsys(ss, true);
5660	}
5661	return 0;
5662}
5663
5664static u16 cgroup_disable_mask __initdata;
5665
5666/**
5667 * cgroup_init - cgroup initialization
5668 *
5669 * Register cgroup filesystem and /proc file, and initialize
5670 * any subsystems that didn't request early init.
5671 */
5672int __init cgroup_init(void)
5673{
5674	struct cgroup_subsys *ss;
5675	int ssid;
5676
5677	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
 
5678	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5679	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5680
5681	cgroup_rstat_boot();
5682
5683	/*
5684	 * The latency of the synchronize_rcu() is too high for cgroups,
5685	 * avoid it at the cost of forcing all readers into the slow path.
5686	 */
5687	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5688
5689	get_user_ns(init_cgroup_ns.user_ns);
5690
5691	mutex_lock(&cgroup_mutex);
5692
5693	/*
5694	 * Add init_css_set to the hash table so that dfl_root can link to
5695	 * it during init.
5696	 */
5697	hash_add(css_set_table, &init_css_set.hlist,
5698		 css_set_hash(init_css_set.subsys));
5699
5700	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5701
5702	mutex_unlock(&cgroup_mutex);
5703
5704	for_each_subsys(ss, ssid) {
5705		if (ss->early_init) {
5706			struct cgroup_subsys_state *css =
5707				init_css_set.subsys[ss->id];
5708
5709			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5710						   GFP_KERNEL);
5711			BUG_ON(css->id < 0);
5712		} else {
5713			cgroup_init_subsys(ss, false);
5714		}
5715
5716		list_add_tail(&init_css_set.e_cset_node[ssid],
5717			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5718
5719		/*
5720		 * Setting dfl_root subsys_mask needs to consider the
5721		 * disabled flag and cftype registration needs kmalloc,
5722		 * both of which aren't available during early_init.
5723		 */
5724		if (cgroup_disable_mask & (1 << ssid)) {
5725			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5726			printk(KERN_INFO "Disabling %s control group subsystem\n",
5727			       ss->name);
5728			continue;
5729		}
5730
5731		if (cgroup1_ssid_disabled(ssid))
5732			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5733			       ss->name);
5734
5735		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5736
5737		/* implicit controllers must be threaded too */
5738		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5739
5740		if (ss->implicit_on_dfl)
5741			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5742		else if (!ss->dfl_cftypes)
5743			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5744
5745		if (ss->threaded)
5746			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5747
5748		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5749			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5750		} else {
5751			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5752			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5753		}
5754
5755		if (ss->bind)
5756			ss->bind(init_css_set.subsys[ssid]);
5757
5758		mutex_lock(&cgroup_mutex);
5759		css_populate_dir(init_css_set.subsys[ssid]);
5760		mutex_unlock(&cgroup_mutex);
5761	}
5762
5763	/* init_css_set.subsys[] has been updated, re-hash */
5764	hash_del(&init_css_set.hlist);
5765	hash_add(css_set_table, &init_css_set.hlist,
5766		 css_set_hash(init_css_set.subsys));
5767
5768	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5769	WARN_ON(register_filesystem(&cgroup_fs_type));
5770	WARN_ON(register_filesystem(&cgroup2_fs_type));
5771	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5772#ifdef CONFIG_CPUSETS
5773	WARN_ON(register_filesystem(&cpuset_fs_type));
5774#endif
5775
5776	return 0;
5777}
5778
5779static int __init cgroup_wq_init(void)
5780{
5781	/*
5782	 * There isn't much point in executing destruction path in
5783	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5784	 * Use 1 for @max_active.
5785	 *
5786	 * We would prefer to do this in cgroup_init() above, but that
5787	 * is called before init_workqueues(): so leave this until after.
5788	 */
5789	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5790	BUG_ON(!cgroup_destroy_wq);
5791	return 0;
5792}
5793core_initcall(cgroup_wq_init);
5794
5795void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
 
5796{
5797	struct kernfs_node *kn;
5798
5799	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5800	if (!kn)
5801		return;
5802	kernfs_path(kn, buf, buflen);
5803	kernfs_put(kn);
5804}
5805
5806/*
5807 * proc_cgroup_show()
5808 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5809 *  - Used for /proc/<pid>/cgroup.
5810 */
5811int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5812		     struct pid *pid, struct task_struct *tsk)
5813{
5814	char *buf;
5815	int retval;
5816	struct cgroup_root *root;
5817
5818	retval = -ENOMEM;
5819	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5820	if (!buf)
5821		goto out;
5822
5823	mutex_lock(&cgroup_mutex);
5824	spin_lock_irq(&css_set_lock);
5825
5826	for_each_root(root) {
5827		struct cgroup_subsys *ss;
5828		struct cgroup *cgrp;
5829		int ssid, count = 0;
5830
5831		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5832			continue;
5833
5834		seq_printf(m, "%d:", root->hierarchy_id);
5835		if (root != &cgrp_dfl_root)
5836			for_each_subsys(ss, ssid)
5837				if (root->subsys_mask & (1 << ssid))
5838					seq_printf(m, "%s%s", count++ ? "," : "",
5839						   ss->legacy_name);
5840		if (strlen(root->name))
5841			seq_printf(m, "%sname=%s", count ? "," : "",
5842				   root->name);
5843		seq_putc(m, ':');
5844
5845		cgrp = task_cgroup_from_root(tsk, root);
5846
5847		/*
5848		 * On traditional hierarchies, all zombie tasks show up as
5849		 * belonging to the root cgroup.  On the default hierarchy,
5850		 * while a zombie doesn't show up in "cgroup.procs" and
5851		 * thus can't be migrated, its /proc/PID/cgroup keeps
5852		 * reporting the cgroup it belonged to before exiting.  If
5853		 * the cgroup is removed before the zombie is reaped,
5854		 * " (deleted)" is appended to the cgroup path.
5855		 */
5856		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5857			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5858						current->nsproxy->cgroup_ns);
5859			if (retval >= PATH_MAX)
5860				retval = -ENAMETOOLONG;
5861			if (retval < 0)
5862				goto out_unlock;
5863
5864			seq_puts(m, buf);
5865		} else {
5866			seq_puts(m, "/");
5867		}
5868
5869		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5870			seq_puts(m, " (deleted)\n");
5871		else
5872			seq_putc(m, '\n');
5873	}
5874
5875	retval = 0;
5876out_unlock:
5877	spin_unlock_irq(&css_set_lock);
5878	mutex_unlock(&cgroup_mutex);
5879	kfree(buf);
5880out:
5881	return retval;
5882}
5883
5884/**
5885 * cgroup_fork - initialize cgroup related fields during copy_process()
5886 * @child: pointer to task_struct of forking parent process.
5887 *
5888 * A task is associated with the init_css_set until cgroup_post_fork()
5889 * attaches it to the target css_set.
 
5890 */
5891void cgroup_fork(struct task_struct *child)
5892{
5893	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5894	INIT_LIST_HEAD(&child->cg_list);
5895}
5896
5897static struct cgroup *cgroup_get_from_file(struct file *f)
5898{
5899	struct cgroup_subsys_state *css;
5900	struct cgroup *cgrp;
5901
5902	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5903	if (IS_ERR(css))
5904		return ERR_CAST(css);
5905
5906	cgrp = css->cgroup;
5907	if (!cgroup_on_dfl(cgrp)) {
5908		cgroup_put(cgrp);
5909		return ERR_PTR(-EBADF);
5910	}
5911
5912	return cgrp;
5913}
5914
5915/**
5916 * cgroup_css_set_fork - find or create a css_set for a child process
5917 * @kargs: the arguments passed to create the child process
5918 *
5919 * This functions finds or creates a new css_set which the child
5920 * process will be attached to in cgroup_post_fork(). By default,
5921 * the child process will be given the same css_set as its parent.
5922 *
5923 * If CLONE_INTO_CGROUP is specified this function will try to find an
5924 * existing css_set which includes the requested cgroup and if not create
5925 * a new css_set that the child will be attached to later. If this function
5926 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5927 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5928 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5929 * to the target cgroup.
5930 */
5931static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5932	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5933{
5934	int ret;
5935	struct cgroup *dst_cgrp = NULL;
5936	struct css_set *cset;
5937	struct super_block *sb;
5938	struct file *f;
5939
5940	if (kargs->flags & CLONE_INTO_CGROUP)
5941		mutex_lock(&cgroup_mutex);
5942
5943	cgroup_threadgroup_change_begin(current);
5944
5945	spin_lock_irq(&css_set_lock);
5946	cset = task_css_set(current);
5947	get_css_set(cset);
5948	spin_unlock_irq(&css_set_lock);
5949
5950	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5951		kargs->cset = cset;
5952		return 0;
5953	}
5954
5955	f = fget_raw(kargs->cgroup);
5956	if (!f) {
5957		ret = -EBADF;
5958		goto err;
5959	}
5960	sb = f->f_path.dentry->d_sb;
5961
5962	dst_cgrp = cgroup_get_from_file(f);
5963	if (IS_ERR(dst_cgrp)) {
5964		ret = PTR_ERR(dst_cgrp);
5965		dst_cgrp = NULL;
5966		goto err;
5967	}
5968
5969	if (cgroup_is_dead(dst_cgrp)) {
5970		ret = -ENODEV;
5971		goto err;
5972	}
5973
5974	/*
5975	 * Verify that we the target cgroup is writable for us. This is
5976	 * usually done by the vfs layer but since we're not going through
5977	 * the vfs layer here we need to do it "manually".
5978	 */
5979	ret = cgroup_may_write(dst_cgrp, sb);
5980	if (ret)
5981		goto err;
5982
5983	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
5984					!(kargs->flags & CLONE_THREAD));
5985	if (ret)
5986		goto err;
5987
5988	kargs->cset = find_css_set(cset, dst_cgrp);
5989	if (!kargs->cset) {
5990		ret = -ENOMEM;
5991		goto err;
5992	}
5993
5994	put_css_set(cset);
5995	fput(f);
5996	kargs->cgrp = dst_cgrp;
5997	return ret;
5998
5999err:
6000	cgroup_threadgroup_change_end(current);
6001	mutex_unlock(&cgroup_mutex);
6002	if (f)
6003		fput(f);
6004	if (dst_cgrp)
6005		cgroup_put(dst_cgrp);
6006	put_css_set(cset);
6007	if (kargs->cset)
6008		put_css_set(kargs->cset);
6009	return ret;
6010}
6011
6012/**
6013 * cgroup_css_set_put_fork - drop references we took during fork
6014 * @kargs: the arguments passed to create the child process
6015 *
6016 * Drop references to the prepared css_set and target cgroup if
6017 * CLONE_INTO_CGROUP was requested.
6018 */
6019static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6020	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6021{
6022	cgroup_threadgroup_change_end(current);
6023
6024	if (kargs->flags & CLONE_INTO_CGROUP) {
6025		struct cgroup *cgrp = kargs->cgrp;
6026		struct css_set *cset = kargs->cset;
6027
6028		mutex_unlock(&cgroup_mutex);
6029
6030		if (cset) {
6031			put_css_set(cset);
6032			kargs->cset = NULL;
6033		}
6034
6035		if (cgrp) {
6036			cgroup_put(cgrp);
6037			kargs->cgrp = NULL;
6038		}
6039	}
6040}
6041
6042/**
6043 * cgroup_can_fork - called on a new task before the process is exposed
6044 * @child: the child process
6045 *
6046 * This prepares a new css_set for the child process which the child will
6047 * be attached to in cgroup_post_fork().
6048 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6049 * callback returns an error, the fork aborts with that error code. This
6050 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6051 */
6052int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6053{
6054	struct cgroup_subsys *ss;
6055	int i, j, ret;
6056
6057	ret = cgroup_css_set_fork(kargs);
6058	if (ret)
6059		return ret;
6060
6061	do_each_subsys_mask(ss, i, have_canfork_callback) {
6062		ret = ss->can_fork(child, kargs->cset);
6063		if (ret)
6064			goto out_revert;
6065	} while_each_subsys_mask();
6066
6067	return 0;
6068
6069out_revert:
6070	for_each_subsys(ss, j) {
6071		if (j >= i)
6072			break;
6073		if (ss->cancel_fork)
6074			ss->cancel_fork(child, kargs->cset);
6075	}
6076
6077	cgroup_css_set_put_fork(kargs);
6078
6079	return ret;
6080}
6081
6082/**
6083 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6084 * @child: the child process
6085 * @kargs: the arguments passed to create the child process
6086 *
6087 * This calls the cancel_fork() callbacks if a fork failed *after*
6088 * cgroup_can_fork() succeded and cleans up references we took to
6089 * prepare a new css_set for the child process in cgroup_can_fork().
6090 */
6091void cgroup_cancel_fork(struct task_struct *child,
6092			struct kernel_clone_args *kargs)
6093{
6094	struct cgroup_subsys *ss;
6095	int i;
6096
6097	for_each_subsys(ss, i)
6098		if (ss->cancel_fork)
6099			ss->cancel_fork(child, kargs->cset);
6100
6101	cgroup_css_set_put_fork(kargs);
6102}
6103
6104/**
6105 * cgroup_post_fork - finalize cgroup setup for the child process
6106 * @child: the child process
6107 *
6108 * Attach the child process to its css_set calling the subsystem fork()
6109 * callbacks.
 
 
 
6110 */
6111void cgroup_post_fork(struct task_struct *child,
6112		      struct kernel_clone_args *kargs)
6113	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6114{
6115	struct cgroup_subsys *ss;
6116	struct css_set *cset;
6117	int i;
6118
6119	cset = kargs->cset;
6120	kargs->cset = NULL;
6121
6122	spin_lock_irq(&css_set_lock);
6123
6124	/* init tasks are special, only link regular threads */
6125	if (likely(child->pid)) {
6126		WARN_ON_ONCE(!list_empty(&child->cg_list));
6127		cset->nr_tasks++;
6128		css_set_move_task(child, NULL, cset, false);
6129	} else {
6130		put_css_set(cset);
6131		cset = NULL;
6132	}
6133
6134	/*
6135	 * If the cgroup has to be frozen, the new task has too.  Let's set
6136	 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6137	 * frozen state.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6138	 */
6139	if (unlikely(cgroup_task_freeze(child))) {
6140		spin_lock(&child->sighand->siglock);
6141		WARN_ON_ONCE(child->frozen);
6142		child->jobctl |= JOBCTL_TRAP_FREEZE;
6143		spin_unlock(&child->sighand->siglock);
6144
6145		/*
6146		 * Calling cgroup_update_frozen() isn't required here,
6147		 * because it will be called anyway a bit later from
6148		 * do_freezer_trap(). So we avoid cgroup's transient switch
6149		 * from the frozen state and back.
6150		 */
 
 
6151	}
6152
6153	spin_unlock_irq(&css_set_lock);
6154
6155	/*
6156	 * Call ss->fork().  This must happen after @child is linked on
6157	 * css_set; otherwise, @child might change state between ->fork()
6158	 * and addition to css_set.
6159	 */
6160	do_each_subsys_mask(ss, i, have_fork_callback) {
6161		ss->fork(child);
6162	} while_each_subsys_mask();
6163
6164	/* Make the new cset the root_cset of the new cgroup namespace. */
6165	if (kargs->flags & CLONE_NEWCGROUP) {
6166		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6167
6168		get_css_set(cset);
6169		child->nsproxy->cgroup_ns->root_cset = cset;
6170		put_css_set(rcset);
6171	}
6172
6173	cgroup_css_set_put_fork(kargs);
6174}
6175
6176/**
6177 * cgroup_exit - detach cgroup from exiting task
6178 * @tsk: pointer to task_struct of exiting process
6179 *
6180 * Description: Detach cgroup from @tsk.
6181 *
 
 
 
 
 
 
 
 
 
 
 
 
6182 */
6183void cgroup_exit(struct task_struct *tsk)
6184{
6185	struct cgroup_subsys *ss;
6186	struct css_set *cset;
6187	int i;
6188
6189	spin_lock_irq(&css_set_lock);
6190
6191	WARN_ON_ONCE(list_empty(&tsk->cg_list));
 
6192	cset = task_css_set(tsk);
6193	css_set_move_task(tsk, cset, NULL, false);
6194	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6195	cset->nr_tasks--;
6196
6197	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6198	if (unlikely(cgroup_task_freeze(tsk)))
6199		cgroup_update_frozen(task_dfl_cgroup(tsk));
6200
6201	spin_unlock_irq(&css_set_lock);
 
 
 
 
 
 
 
6202
6203	/* see cgroup_post_fork() for details */
6204	do_each_subsys_mask(ss, i, have_exit_callback) {
6205		ss->exit(tsk);
6206	} while_each_subsys_mask();
6207}
6208
6209void cgroup_release(struct task_struct *task)
6210{
 
6211	struct cgroup_subsys *ss;
6212	int ssid;
6213
6214	do_each_subsys_mask(ss, ssid, have_release_callback) {
6215		ss->release(task);
6216	} while_each_subsys_mask();
6217
6218	spin_lock_irq(&css_set_lock);
6219	css_set_skip_task_iters(task_css_set(task), task);
6220	list_del_init(&task->cg_list);
6221	spin_unlock_irq(&css_set_lock);
6222}
6223
6224void cgroup_free(struct task_struct *task)
6225{
6226	struct css_set *cset = task_css_set(task);
6227	put_css_set(cset);
6228}
6229
6230static int __init cgroup_disable(char *str)
6231{
6232	struct cgroup_subsys *ss;
6233	char *token;
6234	int i;
6235
6236	while ((token = strsep(&str, ",")) != NULL) {
6237		if (!*token)
6238			continue;
6239
6240		for_each_subsys(ss, i) {
6241			if (strcmp(token, ss->name) &&
6242			    strcmp(token, ss->legacy_name))
6243				continue;
6244			cgroup_disable_mask |= 1 << i;
6245		}
6246	}
6247	return 1;
6248}
6249__setup("cgroup_disable=", cgroup_disable);
6250
6251void __init __weak enable_debug_cgroup(void) { }
6252
6253static int __init enable_cgroup_debug(char *str)
6254{
6255	cgroup_debug = true;
6256	enable_debug_cgroup();
6257	return 1;
6258}
6259__setup("cgroup_debug", enable_cgroup_debug);
6260
6261/**
6262 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6263 * @dentry: directory dentry of interest
6264 * @ss: subsystem of interest
6265 *
6266 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6267 * to get the corresponding css and return it.  If such css doesn't exist
6268 * or can't be pinned, an ERR_PTR value is returned.
6269 */
6270struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6271						       struct cgroup_subsys *ss)
6272{
6273	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6274	struct file_system_type *s_type = dentry->d_sb->s_type;
6275	struct cgroup_subsys_state *css = NULL;
6276	struct cgroup *cgrp;
6277
6278	/* is @dentry a cgroup dir? */
6279	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6280	    !kn || kernfs_type(kn) != KERNFS_DIR)
6281		return ERR_PTR(-EBADF);
6282
6283	rcu_read_lock();
6284
6285	/*
6286	 * This path doesn't originate from kernfs and @kn could already
6287	 * have been or be removed at any point.  @kn->priv is RCU
6288	 * protected for this access.  See css_release_work_fn() for details.
6289	 */
6290	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6291	if (cgrp)
6292		css = cgroup_css(cgrp, ss);
6293
6294	if (!css || !css_tryget_online(css))
6295		css = ERR_PTR(-ENOENT);
6296
6297	rcu_read_unlock();
6298	return css;
6299}
6300
6301/**
6302 * css_from_id - lookup css by id
6303 * @id: the cgroup id
6304 * @ss: cgroup subsys to be looked into
6305 *
6306 * Returns the css if there's valid one with @id, otherwise returns NULL.
6307 * Should be called under rcu_read_lock().
6308 */
6309struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6310{
6311	WARN_ON_ONCE(!rcu_read_lock_held());
6312	return idr_find(&ss->css_idr, id);
6313}
6314
6315/**
6316 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6317 * @path: path on the default hierarchy
6318 *
6319 * Find the cgroup at @path on the default hierarchy, increment its
6320 * reference count and return it.  Returns pointer to the found cgroup on
6321 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6322 * if @path points to a non-directory.
6323 */
6324struct cgroup *cgroup_get_from_path(const char *path)
6325{
6326	struct kernfs_node *kn;
6327	struct cgroup *cgrp;
6328
6329	mutex_lock(&cgroup_mutex);
6330
6331	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6332	if (kn) {
6333		if (kernfs_type(kn) == KERNFS_DIR) {
6334			cgrp = kn->priv;
6335			cgroup_get_live(cgrp);
6336		} else {
6337			cgrp = ERR_PTR(-ENOTDIR);
6338		}
6339		kernfs_put(kn);
6340	} else {
6341		cgrp = ERR_PTR(-ENOENT);
6342	}
6343
6344	mutex_unlock(&cgroup_mutex);
6345	return cgrp;
6346}
6347EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6348
6349/**
6350 * cgroup_get_from_fd - get a cgroup pointer from a fd
6351 * @fd: fd obtained by open(cgroup2_dir)
6352 *
6353 * Find the cgroup from a fd which should be obtained
6354 * by opening a cgroup directory.  Returns a pointer to the
6355 * cgroup on success. ERR_PTR is returned if the cgroup
6356 * cannot be found.
6357 */
6358struct cgroup *cgroup_get_from_fd(int fd)
6359{
 
6360	struct cgroup *cgrp;
6361	struct file *f;
6362
6363	f = fget_raw(fd);
6364	if (!f)
6365		return ERR_PTR(-EBADF);
6366
6367	cgrp = cgroup_get_from_file(f);
6368	fput(f);
 
 
 
 
 
 
 
 
 
6369	return cgrp;
6370}
6371EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6372
6373static u64 power_of_ten(int power)
6374{
6375	u64 v = 1;
6376	while (power--)
6377		v *= 10;
6378	return v;
6379}
6380
6381/**
6382 * cgroup_parse_float - parse a floating number
6383 * @input: input string
6384 * @dec_shift: number of decimal digits to shift
6385 * @v: output
6386 *
6387 * Parse a decimal floating point number in @input and store the result in
6388 * @v with decimal point right shifted @dec_shift times.  For example, if
6389 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6390 * Returns 0 on success, -errno otherwise.
6391 *
6392 * There's nothing cgroup specific about this function except that it's
6393 * currently the only user.
6394 */
6395int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6396{
6397	s64 whole, frac = 0;
6398	int fstart = 0, fend = 0, flen;
6399
6400	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6401		return -EINVAL;
6402	if (frac < 0)
6403		return -EINVAL;
6404
6405	flen = fend > fstart ? fend - fstart : 0;
6406	if (flen < dec_shift)
6407		frac *= power_of_ten(dec_shift - flen);
6408	else
6409		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6410
6411	*v = whole * power_of_ten(dec_shift) + frac;
6412	return 0;
6413}
6414
6415/*
6416 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6417 * definition in cgroup-defs.h.
6418 */
6419#ifdef CONFIG_SOCK_CGROUP_DATA
6420
6421#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6422
6423DEFINE_SPINLOCK(cgroup_sk_update_lock);
6424static bool cgroup_sk_alloc_disabled __read_mostly;
6425
6426void cgroup_sk_alloc_disable(void)
6427{
6428	if (cgroup_sk_alloc_disabled)
6429		return;
6430	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6431	cgroup_sk_alloc_disabled = true;
6432}
6433
6434#else
6435
6436#define cgroup_sk_alloc_disabled	false
6437
6438#endif
6439
6440void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6441{
6442	if (cgroup_sk_alloc_disabled) {
6443		skcd->no_refcnt = 1;
6444		return;
6445	}
6446
6447	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6448	if (in_interrupt())
 
 
 
 
 
 
6449		return;
 
6450
6451	rcu_read_lock();
6452
6453	while (true) {
6454		struct css_set *cset;
6455
6456		cset = task_css_set(current);
6457		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6458			skcd->val = (unsigned long)cset->dfl_cgrp;
6459			cgroup_bpf_get(cset->dfl_cgrp);
6460			break;
6461		}
6462		cpu_relax();
6463	}
6464
6465	rcu_read_unlock();
6466}
6467
6468void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6469{
6470	if (skcd->val) {
6471		if (skcd->no_refcnt)
6472			return;
6473		/*
6474		 * We might be cloning a socket which is left in an empty
6475		 * cgroup and the cgroup might have already been rmdir'd.
6476		 * Don't use cgroup_get_live().
6477		 */
6478		cgroup_get(sock_cgroup_ptr(skcd));
6479		cgroup_bpf_get(sock_cgroup_ptr(skcd));
6480	}
6481}
6482
6483void cgroup_sk_free(struct sock_cgroup_data *skcd)
6484{
6485	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6486
6487	if (skcd->no_refcnt)
6488		return;
6489	cgroup_bpf_put(cgrp);
6490	cgroup_put(cgrp);
6491}
6492
6493#endif	/* CONFIG_SOCK_CGROUP_DATA */
6494
6495#ifdef CONFIG_CGROUP_BPF
6496int cgroup_bpf_attach(struct cgroup *cgrp,
6497		      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6498		      struct bpf_cgroup_link *link,
6499		      enum bpf_attach_type type,
6500		      u32 flags)
6501{
6502	int ret;
6503
6504	mutex_lock(&cgroup_mutex);
6505	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6506	mutex_unlock(&cgroup_mutex);
6507	return ret;
6508}
6509
6510int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6511		      enum bpf_attach_type type)
6512{
6513	int ret;
6514
6515	mutex_lock(&cgroup_mutex);
6516	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6517	mutex_unlock(&cgroup_mutex);
6518	return ret;
6519}
6520
6521int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6522		     union bpf_attr __user *uattr)
6523{
6524	int ret;
6525
6526	mutex_lock(&cgroup_mutex);
6527	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6528	mutex_unlock(&cgroup_mutex);
6529	return ret;
6530}
6531#endif /* CONFIG_CGROUP_BPF */
6532
6533#ifdef CONFIG_SYSFS
6534static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6535				      ssize_t size, const char *prefix)
6536{
6537	struct cftype *cft;
6538	ssize_t ret = 0;
6539
6540	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6541		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6542			continue;
6543
6544		if (prefix)
6545			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6546
6547		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6548
6549		if (WARN_ON(ret >= size))
 
6550			break;
 
6551	}
6552
6553	return ret;
6554}
6555
6556static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6557			      char *buf)
6558{
6559	struct cgroup_subsys *ss;
6560	int ssid;
6561	ssize_t ret = 0;
6562
6563	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6564				     NULL);
6565
6566	for_each_subsys(ss, ssid)
6567		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6568					      PAGE_SIZE - ret,
6569					      cgroup_subsys_name[ssid]);
6570
6571	return ret;
6572}
6573static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6574
6575static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6576			     char *buf)
6577{
6578	return snprintf(buf, PAGE_SIZE,
6579			"nsdelegate\n"
6580			"memory_localevents\n"
6581			"memory_recursiveprot\n");
6582}
6583static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6584
6585static struct attribute *cgroup_sysfs_attrs[] = {
6586	&cgroup_delegate_attr.attr,
6587	&cgroup_features_attr.attr,
6588	NULL,
6589};
6590
6591static const struct attribute_group cgroup_sysfs_attr_group = {
6592	.attrs = cgroup_sysfs_attrs,
6593	.name = "cgroup",
6594};
6595
6596static int __init cgroup_sysfs_init(void)
6597{
6598	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6599}
6600subsys_initcall(cgroup_sysfs_init);
6601
6602#endif /* CONFIG_SYSFS */