Loading...
1/*
2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3 *
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
7 *
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
10 */
11
12#include <linux/io.h>
13#include <linux/rtc.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16#include <linux/interrupt.h>
17#include <linux/platform_device.h>
18#include <linux/clk.h>
19#include <linux/of.h>
20#include <linux/of_device.h>
21
22#define RTC_INPUT_CLK_32768HZ (0x00 << 5)
23#define RTC_INPUT_CLK_32000HZ (0x01 << 5)
24#define RTC_INPUT_CLK_38400HZ (0x02 << 5)
25
26#define RTC_SW_BIT (1 << 0)
27#define RTC_ALM_BIT (1 << 2)
28#define RTC_1HZ_BIT (1 << 4)
29#define RTC_2HZ_BIT (1 << 7)
30#define RTC_SAM0_BIT (1 << 8)
31#define RTC_SAM1_BIT (1 << 9)
32#define RTC_SAM2_BIT (1 << 10)
33#define RTC_SAM3_BIT (1 << 11)
34#define RTC_SAM4_BIT (1 << 12)
35#define RTC_SAM5_BIT (1 << 13)
36#define RTC_SAM6_BIT (1 << 14)
37#define RTC_SAM7_BIT (1 << 15)
38#define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41
42#define RTC_ENABLE_BIT (1 << 7)
43
44#define MAX_PIE_NUM 9
45#define MAX_PIE_FREQ 512
46
47#define MXC_RTC_TIME 0
48#define MXC_RTC_ALARM 1
49
50#define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
51#define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
52#define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
53#define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
54#define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
55#define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
56#define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
57#define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
58#define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
59#define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
60#define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
61#define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
62#define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
63
64enum imx_rtc_type {
65 IMX1_RTC,
66 IMX21_RTC,
67};
68
69struct rtc_plat_data {
70 struct rtc_device *rtc;
71 void __iomem *ioaddr;
72 int irq;
73 struct clk *clk_ref;
74 struct clk *clk_ipg;
75 struct rtc_time g_rtc_alarm;
76 enum imx_rtc_type devtype;
77};
78
79static const struct platform_device_id imx_rtc_devtype[] = {
80 {
81 .name = "imx1-rtc",
82 .driver_data = IMX1_RTC,
83 }, {
84 .name = "imx21-rtc",
85 .driver_data = IMX21_RTC,
86 }, {
87 /* sentinel */
88 }
89};
90MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
91
92#ifdef CONFIG_OF
93static const struct of_device_id imx_rtc_dt_ids[] = {
94 { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
95 { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
96 {}
97};
98MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
99#endif
100
101static inline int is_imx1_rtc(struct rtc_plat_data *data)
102{
103 return data->devtype == IMX1_RTC;
104}
105
106/*
107 * This function is used to obtain the RTC time or the alarm value in
108 * second.
109 */
110static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
111{
112 struct platform_device *pdev = to_platform_device(dev);
113 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
114 void __iomem *ioaddr = pdata->ioaddr;
115 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
116
117 switch (time_alarm) {
118 case MXC_RTC_TIME:
119 day = readw(ioaddr + RTC_DAYR);
120 hr_min = readw(ioaddr + RTC_HOURMIN);
121 sec = readw(ioaddr + RTC_SECOND);
122 break;
123 case MXC_RTC_ALARM:
124 day = readw(ioaddr + RTC_DAYALARM);
125 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
126 sec = readw(ioaddr + RTC_ALRM_SEC);
127 break;
128 }
129
130 hr = hr_min >> 8;
131 min = hr_min & 0xff;
132
133 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
134}
135
136/*
137 * This function sets the RTC alarm value or the time value.
138 */
139static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
140{
141 u32 tod, day, hr, min, sec, temp;
142 struct platform_device *pdev = to_platform_device(dev);
143 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
144 void __iomem *ioaddr = pdata->ioaddr;
145
146 day = div_s64_rem(time, 86400, &tod);
147
148 /* time is within a day now */
149 hr = tod / 3600;
150 tod -= hr * 3600;
151
152 /* time is within an hour now */
153 min = tod / 60;
154 sec = tod - min * 60;
155
156 temp = (hr << 8) + min;
157
158 switch (time_alarm) {
159 case MXC_RTC_TIME:
160 writew(day, ioaddr + RTC_DAYR);
161 writew(sec, ioaddr + RTC_SECOND);
162 writew(temp, ioaddr + RTC_HOURMIN);
163 break;
164 case MXC_RTC_ALARM:
165 writew(day, ioaddr + RTC_DAYALARM);
166 writew(sec, ioaddr + RTC_ALRM_SEC);
167 writew(temp, ioaddr + RTC_ALRM_HM);
168 break;
169 }
170}
171
172/*
173 * This function updates the RTC alarm registers and then clears all the
174 * interrupt status bits.
175 */
176static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
177{
178 time64_t time;
179 struct platform_device *pdev = to_platform_device(dev);
180 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
181 void __iomem *ioaddr = pdata->ioaddr;
182
183 time = rtc_tm_to_time64(alrm);
184
185 /* clear all the interrupt status bits */
186 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
187 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
188}
189
190static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
191 unsigned int enabled)
192{
193 struct platform_device *pdev = to_platform_device(dev);
194 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
195 void __iomem *ioaddr = pdata->ioaddr;
196 u32 reg;
197
198 spin_lock_irq(&pdata->rtc->irq_lock);
199 reg = readw(ioaddr + RTC_RTCIENR);
200
201 if (enabled)
202 reg |= bit;
203 else
204 reg &= ~bit;
205
206 writew(reg, ioaddr + RTC_RTCIENR);
207 spin_unlock_irq(&pdata->rtc->irq_lock);
208}
209
210/* This function is the RTC interrupt service routine. */
211static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
212{
213 struct platform_device *pdev = dev_id;
214 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
215 void __iomem *ioaddr = pdata->ioaddr;
216 unsigned long flags;
217 u32 status;
218 u32 events = 0;
219
220 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
221 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
222 /* clear interrupt sources */
223 writew(status, ioaddr + RTC_RTCISR);
224
225 /* update irq data & counter */
226 if (status & RTC_ALM_BIT) {
227 events |= (RTC_AF | RTC_IRQF);
228 /* RTC alarm should be one-shot */
229 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
230 }
231
232 if (status & PIT_ALL_ON)
233 events |= (RTC_PF | RTC_IRQF);
234
235 rtc_update_irq(pdata->rtc, 1, events);
236 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
237
238 return IRQ_HANDLED;
239}
240
241static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
242{
243 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
244 return 0;
245}
246
247/*
248 * This function reads the current RTC time into tm in Gregorian date.
249 */
250static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
251{
252 time64_t val;
253
254 /* Avoid roll-over from reading the different registers */
255 do {
256 val = get_alarm_or_time(dev, MXC_RTC_TIME);
257 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
258
259 rtc_time64_to_tm(val, tm);
260
261 return 0;
262}
263
264/*
265 * This function sets the internal RTC time based on tm in Gregorian date.
266 */
267static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
268{
269 struct platform_device *pdev = to_platform_device(dev);
270 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
271
272 /*
273 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
274 */
275 if (is_imx1_rtc(pdata)) {
276 struct rtc_time tm;
277
278 rtc_time64_to_tm(time, &tm);
279 tm.tm_year = 70;
280 time = rtc_tm_to_time64(&tm);
281 }
282
283 /* Avoid roll-over from reading the different registers */
284 do {
285 set_alarm_or_time(dev, MXC_RTC_TIME, time);
286 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
287
288 return 0;
289}
290
291/*
292 * This function reads the current alarm value into the passed in 'alrm'
293 * argument. It updates the alrm's pending field value based on the whether
294 * an alarm interrupt occurs or not.
295 */
296static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
297{
298 struct platform_device *pdev = to_platform_device(dev);
299 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
300 void __iomem *ioaddr = pdata->ioaddr;
301
302 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
303 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
304
305 return 0;
306}
307
308/*
309 * This function sets the RTC alarm based on passed in alrm.
310 */
311static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
312{
313 struct platform_device *pdev = to_platform_device(dev);
314 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
315
316 rtc_update_alarm(dev, &alrm->time);
317
318 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
319 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
320
321 return 0;
322}
323
324/* RTC layer */
325static const struct rtc_class_ops mxc_rtc_ops = {
326 .read_time = mxc_rtc_read_time,
327 .set_mmss64 = mxc_rtc_set_mmss,
328 .read_alarm = mxc_rtc_read_alarm,
329 .set_alarm = mxc_rtc_set_alarm,
330 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
331};
332
333static int mxc_rtc_probe(struct platform_device *pdev)
334{
335 struct resource *res;
336 struct rtc_device *rtc;
337 struct rtc_plat_data *pdata = NULL;
338 u32 reg;
339 unsigned long rate;
340 int ret;
341 const struct of_device_id *of_id;
342
343 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
344 if (!pdata)
345 return -ENOMEM;
346
347 of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
348 if (of_id)
349 pdata->devtype = (enum imx_rtc_type)of_id->data;
350 else
351 pdata->devtype = pdev->id_entry->driver_data;
352
353 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
354 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
355 if (IS_ERR(pdata->ioaddr))
356 return PTR_ERR(pdata->ioaddr);
357
358 pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
359 if (IS_ERR(pdata->clk_ipg)) {
360 dev_err(&pdev->dev, "unable to get ipg clock!\n");
361 return PTR_ERR(pdata->clk_ipg);
362 }
363
364 ret = clk_prepare_enable(pdata->clk_ipg);
365 if (ret)
366 return ret;
367
368 pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
369 if (IS_ERR(pdata->clk_ref)) {
370 dev_err(&pdev->dev, "unable to get ref clock!\n");
371 ret = PTR_ERR(pdata->clk_ref);
372 goto exit_put_clk_ipg;
373 }
374
375 ret = clk_prepare_enable(pdata->clk_ref);
376 if (ret)
377 goto exit_put_clk_ipg;
378
379 rate = clk_get_rate(pdata->clk_ref);
380
381 if (rate == 32768)
382 reg = RTC_INPUT_CLK_32768HZ;
383 else if (rate == 32000)
384 reg = RTC_INPUT_CLK_32000HZ;
385 else if (rate == 38400)
386 reg = RTC_INPUT_CLK_38400HZ;
387 else {
388 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
389 ret = -EINVAL;
390 goto exit_put_clk_ref;
391 }
392
393 reg |= RTC_ENABLE_BIT;
394 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
395 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
396 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
397 ret = -EIO;
398 goto exit_put_clk_ref;
399 }
400
401 platform_set_drvdata(pdev, pdata);
402
403 /* Configure and enable the RTC */
404 pdata->irq = platform_get_irq(pdev, 0);
405
406 if (pdata->irq >= 0 &&
407 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
408 IRQF_SHARED, pdev->name, pdev) < 0) {
409 dev_warn(&pdev->dev, "interrupt not available.\n");
410 pdata->irq = -1;
411 }
412
413 if (pdata->irq >= 0)
414 device_init_wakeup(&pdev->dev, 1);
415
416 rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
417 THIS_MODULE);
418 if (IS_ERR(rtc)) {
419 ret = PTR_ERR(rtc);
420 goto exit_put_clk_ref;
421 }
422
423 pdata->rtc = rtc;
424
425 return 0;
426
427exit_put_clk_ref:
428 clk_disable_unprepare(pdata->clk_ref);
429exit_put_clk_ipg:
430 clk_disable_unprepare(pdata->clk_ipg);
431
432 return ret;
433}
434
435static int mxc_rtc_remove(struct platform_device *pdev)
436{
437 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
438
439 clk_disable_unprepare(pdata->clk_ref);
440 clk_disable_unprepare(pdata->clk_ipg);
441
442 return 0;
443}
444
445#ifdef CONFIG_PM_SLEEP
446static int mxc_rtc_suspend(struct device *dev)
447{
448 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
449
450 if (device_may_wakeup(dev))
451 enable_irq_wake(pdata->irq);
452
453 return 0;
454}
455
456static int mxc_rtc_resume(struct device *dev)
457{
458 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
459
460 if (device_may_wakeup(dev))
461 disable_irq_wake(pdata->irq);
462
463 return 0;
464}
465#endif
466
467static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
468
469static struct platform_driver mxc_rtc_driver = {
470 .driver = {
471 .name = "mxc_rtc",
472 .of_match_table = of_match_ptr(imx_rtc_dt_ids),
473 .pm = &mxc_rtc_pm_ops,
474 },
475 .id_table = imx_rtc_devtype,
476 .probe = mxc_rtc_probe,
477 .remove = mxc_rtc_remove,
478};
479
480module_platform_driver(mxc_rtc_driver)
481
482MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
483MODULE_DESCRIPTION("RTC driver for Freescale MXC");
484MODULE_LICENSE("GPL");
485
1// SPDX-License-Identifier: GPL-2.0+
2//
3// Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4
5#include <linux/io.h>
6#include <linux/rtc.h>
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/platform_device.h>
11#include <linux/pm_wakeirq.h>
12#include <linux/clk.h>
13#include <linux/of.h>
14#include <linux/of_device.h>
15
16#define RTC_INPUT_CLK_32768HZ (0x00 << 5)
17#define RTC_INPUT_CLK_32000HZ (0x01 << 5)
18#define RTC_INPUT_CLK_38400HZ (0x02 << 5)
19
20#define RTC_SW_BIT (1 << 0)
21#define RTC_ALM_BIT (1 << 2)
22#define RTC_1HZ_BIT (1 << 4)
23#define RTC_2HZ_BIT (1 << 7)
24#define RTC_SAM0_BIT (1 << 8)
25#define RTC_SAM1_BIT (1 << 9)
26#define RTC_SAM2_BIT (1 << 10)
27#define RTC_SAM3_BIT (1 << 11)
28#define RTC_SAM4_BIT (1 << 12)
29#define RTC_SAM5_BIT (1 << 13)
30#define RTC_SAM6_BIT (1 << 14)
31#define RTC_SAM7_BIT (1 << 15)
32#define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
33 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
34 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
35
36#define RTC_ENABLE_BIT (1 << 7)
37
38#define MAX_PIE_NUM 9
39#define MAX_PIE_FREQ 512
40
41#define MXC_RTC_TIME 0
42#define MXC_RTC_ALARM 1
43
44#define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
45#define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
46#define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
47#define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
48#define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
49#define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
50#define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
51#define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
52#define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
53#define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
54#define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
55#define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
56#define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
57
58enum imx_rtc_type {
59 IMX1_RTC,
60 IMX21_RTC,
61};
62
63struct rtc_plat_data {
64 struct rtc_device *rtc;
65 void __iomem *ioaddr;
66 int irq;
67 struct clk *clk_ref;
68 struct clk *clk_ipg;
69 struct rtc_time g_rtc_alarm;
70 enum imx_rtc_type devtype;
71};
72
73static const struct platform_device_id imx_rtc_devtype[] = {
74 {
75 .name = "imx1-rtc",
76 .driver_data = IMX1_RTC,
77 }, {
78 .name = "imx21-rtc",
79 .driver_data = IMX21_RTC,
80 }, {
81 /* sentinel */
82 }
83};
84MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
85
86#ifdef CONFIG_OF
87static const struct of_device_id imx_rtc_dt_ids[] = {
88 { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
89 { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
90 {}
91};
92MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
93#endif
94
95static inline int is_imx1_rtc(struct rtc_plat_data *data)
96{
97 return data->devtype == IMX1_RTC;
98}
99
100/*
101 * This function is used to obtain the RTC time or the alarm value in
102 * second.
103 */
104static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
105{
106 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
107 void __iomem *ioaddr = pdata->ioaddr;
108 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
109
110 switch (time_alarm) {
111 case MXC_RTC_TIME:
112 day = readw(ioaddr + RTC_DAYR);
113 hr_min = readw(ioaddr + RTC_HOURMIN);
114 sec = readw(ioaddr + RTC_SECOND);
115 break;
116 case MXC_RTC_ALARM:
117 day = readw(ioaddr + RTC_DAYALARM);
118 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
119 sec = readw(ioaddr + RTC_ALRM_SEC);
120 break;
121 }
122
123 hr = hr_min >> 8;
124 min = hr_min & 0xff;
125
126 return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
127}
128
129/*
130 * This function sets the RTC alarm value or the time value.
131 */
132static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
133{
134 u32 tod, day, hr, min, sec, temp;
135 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
136 void __iomem *ioaddr = pdata->ioaddr;
137
138 day = div_s64_rem(time, 86400, &tod);
139
140 /* time is within a day now */
141 hr = tod / 3600;
142 tod -= hr * 3600;
143
144 /* time is within an hour now */
145 min = tod / 60;
146 sec = tod - min * 60;
147
148 temp = (hr << 8) + min;
149
150 switch (time_alarm) {
151 case MXC_RTC_TIME:
152 writew(day, ioaddr + RTC_DAYR);
153 writew(sec, ioaddr + RTC_SECOND);
154 writew(temp, ioaddr + RTC_HOURMIN);
155 break;
156 case MXC_RTC_ALARM:
157 writew(day, ioaddr + RTC_DAYALARM);
158 writew(sec, ioaddr + RTC_ALRM_SEC);
159 writew(temp, ioaddr + RTC_ALRM_HM);
160 break;
161 }
162}
163
164/*
165 * This function updates the RTC alarm registers and then clears all the
166 * interrupt status bits.
167 */
168static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
169{
170 time64_t time;
171 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
172 void __iomem *ioaddr = pdata->ioaddr;
173
174 time = rtc_tm_to_time64(alrm);
175
176 /* clear all the interrupt status bits */
177 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
178 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
179}
180
181static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
182 unsigned int enabled)
183{
184 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
185 void __iomem *ioaddr = pdata->ioaddr;
186 u32 reg;
187 unsigned long flags;
188
189 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
190 reg = readw(ioaddr + RTC_RTCIENR);
191
192 if (enabled)
193 reg |= bit;
194 else
195 reg &= ~bit;
196
197 writew(reg, ioaddr + RTC_RTCIENR);
198 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
199}
200
201/* This function is the RTC interrupt service routine. */
202static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
203{
204 struct platform_device *pdev = dev_id;
205 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
206 void __iomem *ioaddr = pdata->ioaddr;
207 unsigned long flags;
208 u32 status;
209 u32 events = 0;
210
211 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
212 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
213 /* clear interrupt sources */
214 writew(status, ioaddr + RTC_RTCISR);
215
216 /* update irq data & counter */
217 if (status & RTC_ALM_BIT) {
218 events |= (RTC_AF | RTC_IRQF);
219 /* RTC alarm should be one-shot */
220 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
221 }
222
223 if (status & PIT_ALL_ON)
224 events |= (RTC_PF | RTC_IRQF);
225
226 rtc_update_irq(pdata->rtc, 1, events);
227 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
228
229 return IRQ_HANDLED;
230}
231
232static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
233{
234 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
235 return 0;
236}
237
238/*
239 * This function reads the current RTC time into tm in Gregorian date.
240 */
241static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
242{
243 time64_t val;
244
245 /* Avoid roll-over from reading the different registers */
246 do {
247 val = get_alarm_or_time(dev, MXC_RTC_TIME);
248 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
249
250 rtc_time64_to_tm(val, tm);
251
252 return 0;
253}
254
255/*
256 * This function sets the internal RTC time based on tm in Gregorian date.
257 */
258static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
259{
260 time64_t time = rtc_tm_to_time64(tm);
261
262 /* Avoid roll-over from reading the different registers */
263 do {
264 set_alarm_or_time(dev, MXC_RTC_TIME, time);
265 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
266
267 return 0;
268}
269
270/*
271 * This function reads the current alarm value into the passed in 'alrm'
272 * argument. It updates the alrm's pending field value based on the whether
273 * an alarm interrupt occurs or not.
274 */
275static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
276{
277 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
278 void __iomem *ioaddr = pdata->ioaddr;
279
280 rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
281 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
282
283 return 0;
284}
285
286/*
287 * This function sets the RTC alarm based on passed in alrm.
288 */
289static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
290{
291 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
292
293 rtc_update_alarm(dev, &alrm->time);
294
295 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
296 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
297
298 return 0;
299}
300
301/* RTC layer */
302static const struct rtc_class_ops mxc_rtc_ops = {
303 .read_time = mxc_rtc_read_time,
304 .set_time = mxc_rtc_set_time,
305 .read_alarm = mxc_rtc_read_alarm,
306 .set_alarm = mxc_rtc_set_alarm,
307 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
308};
309
310static void mxc_rtc_action(void *p)
311{
312 struct rtc_plat_data *pdata = p;
313
314 clk_disable_unprepare(pdata->clk_ref);
315 clk_disable_unprepare(pdata->clk_ipg);
316}
317
318static int mxc_rtc_probe(struct platform_device *pdev)
319{
320 struct rtc_device *rtc;
321 struct rtc_plat_data *pdata = NULL;
322 u32 reg;
323 unsigned long rate;
324 int ret;
325 const struct of_device_id *of_id;
326
327 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
328 if (!pdata)
329 return -ENOMEM;
330
331 of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
332 if (of_id)
333 pdata->devtype = (enum imx_rtc_type)of_id->data;
334 else
335 pdata->devtype = pdev->id_entry->driver_data;
336
337 pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
338 if (IS_ERR(pdata->ioaddr))
339 return PTR_ERR(pdata->ioaddr);
340
341 rtc = devm_rtc_allocate_device(&pdev->dev);
342 if (IS_ERR(rtc))
343 return PTR_ERR(rtc);
344
345 pdata->rtc = rtc;
346 rtc->ops = &mxc_rtc_ops;
347 if (is_imx1_rtc(pdata)) {
348 struct rtc_time tm;
349
350 /* 9bit days + hours minutes seconds */
351 rtc->range_max = (1 << 9) * 86400 - 1;
352
353 /*
354 * Set the start date as beginning of the current year. This can
355 * be overridden using device tree.
356 */
357 rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
358 rtc->start_secs = mktime64(tm.tm_year, 1, 1, 0, 0, 0);
359 rtc->set_start_time = true;
360 } else {
361 /* 16bit days + hours minutes seconds */
362 rtc->range_max = (1 << 16) * 86400ULL - 1;
363 }
364
365 pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
366 if (IS_ERR(pdata->clk_ipg)) {
367 dev_err(&pdev->dev, "unable to get ipg clock!\n");
368 return PTR_ERR(pdata->clk_ipg);
369 }
370
371 ret = clk_prepare_enable(pdata->clk_ipg);
372 if (ret)
373 return ret;
374
375 pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
376 if (IS_ERR(pdata->clk_ref)) {
377 clk_disable_unprepare(pdata->clk_ipg);
378 dev_err(&pdev->dev, "unable to get ref clock!\n");
379 return PTR_ERR(pdata->clk_ref);
380 }
381
382 ret = clk_prepare_enable(pdata->clk_ref);
383 if (ret) {
384 clk_disable_unprepare(pdata->clk_ipg);
385 return ret;
386 }
387
388 ret = devm_add_action_or_reset(&pdev->dev, mxc_rtc_action, pdata);
389 if (ret)
390 return ret;
391
392 rate = clk_get_rate(pdata->clk_ref);
393
394 if (rate == 32768)
395 reg = RTC_INPUT_CLK_32768HZ;
396 else if (rate == 32000)
397 reg = RTC_INPUT_CLK_32000HZ;
398 else if (rate == 38400)
399 reg = RTC_INPUT_CLK_38400HZ;
400 else {
401 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
402 return -EINVAL;
403 }
404
405 reg |= RTC_ENABLE_BIT;
406 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
407 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
408 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
409 return -EIO;
410 }
411
412 platform_set_drvdata(pdev, pdata);
413
414 /* Configure and enable the RTC */
415 pdata->irq = platform_get_irq(pdev, 0);
416
417 if (pdata->irq >= 0 &&
418 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
419 IRQF_SHARED, pdev->name, pdev) < 0) {
420 dev_warn(&pdev->dev, "interrupt not available.\n");
421 pdata->irq = -1;
422 }
423
424 if (pdata->irq >= 0) {
425 device_init_wakeup(&pdev->dev, 1);
426 ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
427 if (ret)
428 dev_err(&pdev->dev, "failed to enable irq wake\n");
429 }
430
431 ret = rtc_register_device(rtc);
432
433 return ret;
434}
435
436static struct platform_driver mxc_rtc_driver = {
437 .driver = {
438 .name = "mxc_rtc",
439 .of_match_table = of_match_ptr(imx_rtc_dt_ids),
440 },
441 .id_table = imx_rtc_devtype,
442 .probe = mxc_rtc_probe,
443};
444
445module_platform_driver(mxc_rtc_driver)
446
447MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
448MODULE_DESCRIPTION("RTC driver for Freescale MXC");
449MODULE_LICENSE("GPL");
450