Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * vrf.c: device driver to encapsulate a VRF space
   3 *
   4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   7 *
   8 * Based on dummy, team and ipvlan drivers
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/kernel.h>
  18#include <linux/netdevice.h>
  19#include <linux/etherdevice.h>
  20#include <linux/ip.h>
  21#include <linux/init.h>
  22#include <linux/moduleparam.h>
  23#include <linux/netfilter.h>
  24#include <linux/rtnetlink.h>
  25#include <net/rtnetlink.h>
  26#include <linux/u64_stats_sync.h>
  27#include <linux/hashtable.h>
 
  28
  29#include <linux/inetdevice.h>
  30#include <net/arp.h>
  31#include <net/ip.h>
  32#include <net/ip_fib.h>
  33#include <net/ip6_fib.h>
  34#include <net/ip6_route.h>
  35#include <net/route.h>
  36#include <net/addrconf.h>
  37#include <net/l3mdev.h>
  38#include <net/fib_rules.h>
  39#include <net/netns/generic.h>
  40
  41#define DRV_NAME	"vrf"
  42#define DRV_VERSION	"1.0"
  43
  44#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46static unsigned int vrf_net_id;
  47
 
 
 
 
 
 
 
 
 
  48struct net_vrf {
  49	struct rtable __rcu	*rth;
  50	struct rt6_info	__rcu	*rt6;
 
 
 
  51	u32                     tb_id;
 
 
 
  52};
  53
  54struct pcpu_dstats {
  55	u64			tx_pkts;
  56	u64			tx_bytes;
  57	u64			tx_drps;
  58	u64			rx_pkts;
  59	u64			rx_bytes;
  60	u64			rx_drps;
  61	struct u64_stats_sync	syncp;
  62};
  63
  64static void vrf_rx_stats(struct net_device *dev, int len)
  65{
  66	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  67
  68	u64_stats_update_begin(&dstats->syncp);
  69	dstats->rx_pkts++;
  70	dstats->rx_bytes += len;
  71	u64_stats_update_end(&dstats->syncp);
  72}
  73
  74static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
  75{
  76	vrf_dev->stats.tx_errors++;
  77	kfree_skb(skb);
  78}
  79
  80static void vrf_get_stats64(struct net_device *dev,
  81			    struct rtnl_link_stats64 *stats)
  82{
  83	int i;
  84
  85	for_each_possible_cpu(i) {
  86		const struct pcpu_dstats *dstats;
  87		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
  88		unsigned int start;
  89
  90		dstats = per_cpu_ptr(dev->dstats, i);
  91		do {
  92			start = u64_stats_fetch_begin_irq(&dstats->syncp);
  93			tbytes = dstats->tx_bytes;
  94			tpkts = dstats->tx_pkts;
  95			tdrops = dstats->tx_drps;
  96			rbytes = dstats->rx_bytes;
  97			rpkts = dstats->rx_pkts;
  98		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
  99		stats->tx_bytes += tbytes;
 100		stats->tx_packets += tpkts;
 101		stats->tx_dropped += tdrops;
 102		stats->rx_bytes += rbytes;
 103		stats->rx_packets += rpkts;
 104	}
 105}
 106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107/* by default VRF devices do not have a qdisc and are expected
 108 * to be created with only a single queue.
 109 */
 110static bool qdisc_tx_is_default(const struct net_device *dev)
 111{
 112	struct netdev_queue *txq;
 113	struct Qdisc *qdisc;
 114
 115	if (dev->num_tx_queues > 1)
 116		return false;
 117
 118	txq = netdev_get_tx_queue(dev, 0);
 119	qdisc = rcu_access_pointer(txq->qdisc);
 120
 121	return !qdisc->enqueue;
 122}
 123
 124/* Local traffic destined to local address. Reinsert the packet to rx
 125 * path, similar to loopback handling.
 126 */
 127static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 128			  struct dst_entry *dst)
 129{
 130	int len = skb->len;
 131
 132	skb_orphan(skb);
 133
 134	skb_dst_set(skb, dst);
 135
 136	/* set pkt_type to avoid skb hitting packet taps twice -
 137	 * once on Tx and again in Rx processing
 138	 */
 139	skb->pkt_type = PACKET_LOOPBACK;
 140
 141	skb->protocol = eth_type_trans(skb, dev);
 142
 143	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
 144		vrf_rx_stats(dev, len);
 145	else
 146		this_cpu_inc(dev->dstats->rx_drps);
 147
 148	return NETDEV_TX_OK;
 149}
 150
 151#if IS_ENABLED(CONFIG_IPV6)
 152static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 153			     struct sk_buff *skb)
 154{
 155	int err;
 156
 157	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 158		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 159
 160	if (likely(err == 1))
 161		err = dst_output(net, sk, skb);
 162
 163	return err;
 164}
 165
 166static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 167					   struct net_device *dev)
 168{
 169	const struct ipv6hdr *iph = ipv6_hdr(skb);
 170	struct net *net = dev_net(skb->dev);
 171	struct flowi6 fl6 = {
 172		/* needed to match OIF rule */
 173		.flowi6_oif = dev->ifindex,
 174		.flowi6_iif = LOOPBACK_IFINDEX,
 175		.daddr = iph->daddr,
 176		.saddr = iph->saddr,
 177		.flowlabel = ip6_flowinfo(iph),
 178		.flowi6_mark = skb->mark,
 179		.flowi6_proto = iph->nexthdr,
 180		.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
 181	};
 182	int ret = NET_XMIT_DROP;
 183	struct dst_entry *dst;
 184	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 185
 186	dst = ip6_route_output(net, NULL, &fl6);
 187	if (dst == dst_null)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188		goto err;
 189
 190	skb_dst_drop(skb);
 191
 192	/* if dst.dev is loopback or the VRF device again this is locally
 193	 * originated traffic destined to a local address. Short circuit
 194	 * to Rx path
 195	 */
 196	if (dst->dev == dev)
 197		return vrf_local_xmit(skb, dev, dst);
 198
 199	skb_dst_set(skb, dst);
 200
 201	/* strip the ethernet header added for pass through VRF device */
 202	__skb_pull(skb, skb_network_offset(skb));
 203
 204	ret = vrf_ip6_local_out(net, skb->sk, skb);
 205	if (unlikely(net_xmit_eval(ret)))
 206		dev->stats.tx_errors++;
 207	else
 208		ret = NET_XMIT_SUCCESS;
 209
 210	return ret;
 211err:
 212	vrf_tx_error(dev, skb);
 213	return NET_XMIT_DROP;
 214}
 215#else
 216static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 217					   struct net_device *dev)
 218{
 219	vrf_tx_error(dev, skb);
 220	return NET_XMIT_DROP;
 221}
 222#endif
 223
 224/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 225static int vrf_ip_local_out(struct net *net, struct sock *sk,
 226			    struct sk_buff *skb)
 227{
 228	int err;
 229
 230	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 231		      skb, NULL, skb_dst(skb)->dev, dst_output);
 232	if (likely(err == 1))
 233		err = dst_output(net, sk, skb);
 234
 235	return err;
 236}
 237
 238static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 239					   struct net_device *vrf_dev)
 240{
 241	struct iphdr *ip4h = ip_hdr(skb);
 242	int ret = NET_XMIT_DROP;
 243	struct flowi4 fl4 = {
 244		/* needed to match OIF rule */
 245		.flowi4_oif = vrf_dev->ifindex,
 246		.flowi4_iif = LOOPBACK_IFINDEX,
 247		.flowi4_tos = RT_TOS(ip4h->tos),
 248		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
 249		.flowi4_proto = ip4h->protocol,
 250		.daddr = ip4h->daddr,
 251		.saddr = ip4h->saddr,
 252	};
 253	struct net *net = dev_net(vrf_dev);
 254	struct rtable *rt;
 255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 256	rt = ip_route_output_flow(net, &fl4, NULL);
 257	if (IS_ERR(rt))
 258		goto err;
 259
 260	skb_dst_drop(skb);
 261
 262	/* if dst.dev is loopback or the VRF device again this is locally
 263	 * originated traffic destined to a local address. Short circuit
 264	 * to Rx path
 265	 */
 266	if (rt->dst.dev == vrf_dev)
 267		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 268
 269	skb_dst_set(skb, &rt->dst);
 270
 271	/* strip the ethernet header added for pass through VRF device */
 272	__skb_pull(skb, skb_network_offset(skb));
 273
 274	if (!ip4h->saddr) {
 275		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 276					       RT_SCOPE_LINK);
 277	}
 278
 279	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 280	if (unlikely(net_xmit_eval(ret)))
 281		vrf_dev->stats.tx_errors++;
 282	else
 283		ret = NET_XMIT_SUCCESS;
 284
 285out:
 286	return ret;
 287err:
 288	vrf_tx_error(vrf_dev, skb);
 289	goto out;
 290}
 291
 292static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 293{
 294	switch (skb->protocol) {
 295	case htons(ETH_P_IP):
 296		return vrf_process_v4_outbound(skb, dev);
 297	case htons(ETH_P_IPV6):
 298		return vrf_process_v6_outbound(skb, dev);
 299	default:
 300		vrf_tx_error(dev, skb);
 301		return NET_XMIT_DROP;
 302	}
 303}
 304
 305static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 306{
 307	int len = skb->len;
 308	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 309
 310	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 311		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 312
 313		u64_stats_update_begin(&dstats->syncp);
 314		dstats->tx_pkts++;
 315		dstats->tx_bytes += len;
 316		u64_stats_update_end(&dstats->syncp);
 317	} else {
 318		this_cpu_inc(dev->dstats->tx_drps);
 319	}
 320
 321	return ret;
 322}
 323
 324static int vrf_finish_direct(struct net *net, struct sock *sk,
 325			     struct sk_buff *skb)
 326{
 327	struct net_device *vrf_dev = skb->dev;
 328
 329	if (!list_empty(&vrf_dev->ptype_all) &&
 330	    likely(skb_headroom(skb) >= ETH_HLEN)) {
 331		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 332
 333		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 334		eth_zero_addr(eth->h_dest);
 335		eth->h_proto = skb->protocol;
 336
 337		rcu_read_lock_bh();
 338		dev_queue_xmit_nit(skb, vrf_dev);
 339		rcu_read_unlock_bh();
 340
 341		skb_pull(skb, ETH_HLEN);
 342	}
 343
 344	return 1;
 345}
 346
 347#if IS_ENABLED(CONFIG_IPV6)
 348/* modelled after ip6_finish_output2 */
 349static int vrf_finish_output6(struct net *net, struct sock *sk,
 350			      struct sk_buff *skb)
 351{
 352	struct dst_entry *dst = skb_dst(skb);
 353	struct net_device *dev = dst->dev;
 
 354	struct neighbour *neigh;
 355	struct in6_addr *nexthop;
 356	int ret;
 357
 358	nf_reset(skb);
 359
 360	skb->protocol = htons(ETH_P_IPV6);
 361	skb->dev = dev;
 362
 363	rcu_read_lock_bh();
 364	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 365	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 366	if (unlikely(!neigh))
 367		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 368	if (!IS_ERR(neigh)) {
 369		sock_confirm_neigh(skb, neigh);
 370		ret = neigh_output(neigh, skb);
 371		rcu_read_unlock_bh();
 372		return ret;
 373	}
 374	rcu_read_unlock_bh();
 375
 376	IP6_INC_STATS(dev_net(dst->dev),
 377		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 378	kfree_skb(skb);
 379	return -EINVAL;
 380}
 381
 382/* modelled after ip6_output */
 383static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 384{
 385	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 386			    net, sk, skb, NULL, skb_dst(skb)->dev,
 387			    vrf_finish_output6,
 388			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 389}
 390
 391/* set dst on skb to send packet to us via dev_xmit path. Allows
 392 * packet to go through device based features such as qdisc, netfilter
 393 * hooks and packet sockets with skb->dev set to vrf device.
 394 */
 395static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 396					    struct sk_buff *skb)
 397{
 398	struct net_vrf *vrf = netdev_priv(vrf_dev);
 399	struct dst_entry *dst = NULL;
 400	struct rt6_info *rt6;
 401
 402	rcu_read_lock();
 403
 404	rt6 = rcu_dereference(vrf->rt6);
 405	if (likely(rt6)) {
 406		dst = &rt6->dst;
 407		dst_hold(dst);
 408	}
 409
 410	rcu_read_unlock();
 411
 412	if (unlikely(!dst)) {
 413		vrf_tx_error(vrf_dev, skb);
 414		return NULL;
 415	}
 416
 417	skb_dst_drop(skb);
 418	skb_dst_set(skb, dst);
 419
 420	return skb;
 421}
 422
 423static int vrf_output6_direct(struct net *net, struct sock *sk,
 424			      struct sk_buff *skb)
 425{
 426	skb->protocol = htons(ETH_P_IPV6);
 427
 428	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 429			    net, sk, skb, NULL, skb->dev,
 430			    vrf_finish_direct,
 431			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 432}
 433
 434static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 435					  struct sock *sk,
 436					  struct sk_buff *skb)
 437{
 438	struct net *net = dev_net(vrf_dev);
 439	int err;
 440
 441	skb->dev = vrf_dev;
 442
 443	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 444		      skb, NULL, vrf_dev, vrf_output6_direct);
 445
 446	if (likely(err == 1))
 447		err = vrf_output6_direct(net, sk, skb);
 448
 449	/* reset skb device */
 450	if (likely(err == 1))
 451		nf_reset(skb);
 452	else
 453		skb = NULL;
 454
 455	return skb;
 456}
 457
 458static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 459				   struct sock *sk,
 460				   struct sk_buff *skb)
 461{
 462	/* don't divert link scope packets */
 463	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 464		return skb;
 465
 466	if (qdisc_tx_is_default(vrf_dev))
 
 467		return vrf_ip6_out_direct(vrf_dev, sk, skb);
 468
 469	return vrf_ip6_out_redirect(vrf_dev, skb);
 470}
 471
 472/* holding rtnl */
 473static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 474{
 475	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 476	struct net *net = dev_net(dev);
 477	struct dst_entry *dst;
 478
 479	RCU_INIT_POINTER(vrf->rt6, NULL);
 480	synchronize_rcu();
 481
 482	/* move dev in dst's to loopback so this VRF device can be deleted
 483	 * - based on dst_ifdown
 484	 */
 485	if (rt6) {
 486		dst = &rt6->dst;
 487		dev_put(dst->dev);
 488		dst->dev = net->loopback_dev;
 489		dev_hold(dst->dev);
 490		dst_release(dst);
 491	}
 492}
 493
 494static int vrf_rt6_create(struct net_device *dev)
 495{
 496	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
 497	struct net_vrf *vrf = netdev_priv(dev);
 498	struct net *net = dev_net(dev);
 499	struct fib6_table *rt6i_table;
 500	struct rt6_info *rt6;
 501	int rc = -ENOMEM;
 502
 503	/* IPv6 can be CONFIG enabled and then disabled runtime */
 504	if (!ipv6_mod_enabled())
 505		return 0;
 506
 507	rt6i_table = fib6_new_table(net, vrf->tb_id);
 508	if (!rt6i_table)
 509		goto out;
 510
 511	/* create a dst for routing packets out a VRF device */
 512	rt6 = ip6_dst_alloc(net, dev, flags);
 513	if (!rt6)
 514		goto out;
 515
 516	rt6->rt6i_table = rt6i_table;
 517	rt6->dst.output	= vrf_output6;
 518
 519	rcu_assign_pointer(vrf->rt6, rt6);
 520
 521	rc = 0;
 522out:
 523	return rc;
 524}
 525#else
 526static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 527				   struct sock *sk,
 528				   struct sk_buff *skb)
 529{
 530	return skb;
 531}
 532
 533static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 534{
 535}
 536
 537static int vrf_rt6_create(struct net_device *dev)
 538{
 539	return 0;
 540}
 541#endif
 542
 543/* modelled after ip_finish_output2 */
 544static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 545{
 546	struct dst_entry *dst = skb_dst(skb);
 547	struct rtable *rt = (struct rtable *)dst;
 548	struct net_device *dev = dst->dev;
 549	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 550	struct neighbour *neigh;
 551	u32 nexthop;
 552	int ret = -EINVAL;
 553
 554	nf_reset(skb);
 555
 556	/* Be paranoid, rather than too clever. */
 557	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 558		struct sk_buff *skb2;
 559
 560		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 561		if (!skb2) {
 562			ret = -ENOMEM;
 563			goto err;
 564		}
 565		if (skb->sk)
 566			skb_set_owner_w(skb2, skb->sk);
 567
 568		consume_skb(skb);
 569		skb = skb2;
 570	}
 571
 572	rcu_read_lock_bh();
 573
 574	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
 575	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
 576	if (unlikely(!neigh))
 577		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
 578	if (!IS_ERR(neigh)) {
 579		sock_confirm_neigh(skb, neigh);
 580		ret = neigh_output(neigh, skb);
 
 581		rcu_read_unlock_bh();
 582		return ret;
 583	}
 584
 585	rcu_read_unlock_bh();
 586err:
 587	vrf_tx_error(skb->dev, skb);
 588	return ret;
 589}
 590
 591static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 592{
 593	struct net_device *dev = skb_dst(skb)->dev;
 594
 595	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 596
 597	skb->dev = dev;
 598	skb->protocol = htons(ETH_P_IP);
 599
 600	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 601			    net, sk, skb, NULL, dev,
 602			    vrf_finish_output,
 603			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 604}
 605
 606/* set dst on skb to send packet to us via dev_xmit path. Allows
 607 * packet to go through device based features such as qdisc, netfilter
 608 * hooks and packet sockets with skb->dev set to vrf device.
 609 */
 610static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 611					   struct sk_buff *skb)
 612{
 613	struct net_vrf *vrf = netdev_priv(vrf_dev);
 614	struct dst_entry *dst = NULL;
 615	struct rtable *rth;
 616
 617	rcu_read_lock();
 618
 619	rth = rcu_dereference(vrf->rth);
 620	if (likely(rth)) {
 621		dst = &rth->dst;
 622		dst_hold(dst);
 623	}
 624
 625	rcu_read_unlock();
 626
 627	if (unlikely(!dst)) {
 628		vrf_tx_error(vrf_dev, skb);
 629		return NULL;
 630	}
 631
 632	skb_dst_drop(skb);
 633	skb_dst_set(skb, dst);
 634
 635	return skb;
 636}
 637
 638static int vrf_output_direct(struct net *net, struct sock *sk,
 639			     struct sk_buff *skb)
 640{
 641	skb->protocol = htons(ETH_P_IP);
 642
 643	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 644			    net, sk, skb, NULL, skb->dev,
 645			    vrf_finish_direct,
 646			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 647}
 648
 649static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 650					 struct sock *sk,
 651					 struct sk_buff *skb)
 652{
 653	struct net *net = dev_net(vrf_dev);
 654	int err;
 655
 656	skb->dev = vrf_dev;
 657
 658	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 659		      skb, NULL, vrf_dev, vrf_output_direct);
 660
 661	if (likely(err == 1))
 662		err = vrf_output_direct(net, sk, skb);
 663
 664	/* reset skb device */
 665	if (likely(err == 1))
 666		nf_reset(skb);
 667	else
 668		skb = NULL;
 669
 670	return skb;
 671}
 672
 673static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
 674				  struct sock *sk,
 675				  struct sk_buff *skb)
 676{
 677	/* don't divert multicast or local broadcast */
 678	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
 679	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
 680		return skb;
 681
 682	if (qdisc_tx_is_default(vrf_dev))
 
 683		return vrf_ip_out_direct(vrf_dev, sk, skb);
 684
 685	return vrf_ip_out_redirect(vrf_dev, skb);
 686}
 687
 688/* called with rcu lock held */
 689static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
 690				  struct sock *sk,
 691				  struct sk_buff *skb,
 692				  u16 proto)
 693{
 694	switch (proto) {
 695	case AF_INET:
 696		return vrf_ip_out(vrf_dev, sk, skb);
 697	case AF_INET6:
 698		return vrf_ip6_out(vrf_dev, sk, skb);
 699	}
 700
 701	return skb;
 702}
 703
 704/* holding rtnl */
 705static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
 706{
 707	struct rtable *rth = rtnl_dereference(vrf->rth);
 708	struct net *net = dev_net(dev);
 709	struct dst_entry *dst;
 710
 711	RCU_INIT_POINTER(vrf->rth, NULL);
 712	synchronize_rcu();
 713
 714	/* move dev in dst's to loopback so this VRF device can be deleted
 715	 * - based on dst_ifdown
 716	 */
 717	if (rth) {
 718		dst = &rth->dst;
 719		dev_put(dst->dev);
 720		dst->dev = net->loopback_dev;
 721		dev_hold(dst->dev);
 722		dst_release(dst);
 723	}
 724}
 725
 726static int vrf_rtable_create(struct net_device *dev)
 727{
 728	struct net_vrf *vrf = netdev_priv(dev);
 729	struct rtable *rth;
 730
 731	if (!fib_new_table(dev_net(dev), vrf->tb_id))
 732		return -ENOMEM;
 733
 734	/* create a dst for routing packets out through a VRF device */
 735	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
 736	if (!rth)
 737		return -ENOMEM;
 738
 739	rth->dst.output	= vrf_output;
 740
 741	rcu_assign_pointer(vrf->rth, rth);
 742
 743	return 0;
 744}
 745
 746/**************************** device handling ********************/
 747
 748/* cycle interface to flush neighbor cache and move routes across tables */
 749static void cycle_netdev(struct net_device *dev)
 
 750{
 751	unsigned int flags = dev->flags;
 752	int ret;
 753
 754	if (!netif_running(dev))
 755		return;
 756
 757	ret = dev_change_flags(dev, flags & ~IFF_UP);
 758	if (ret >= 0)
 759		ret = dev_change_flags(dev, flags);
 760
 761	if (ret < 0) {
 762		netdev_err(dev,
 763			   "Failed to cycle device %s; route tables might be wrong!\n",
 764			   dev->name);
 765	}
 766}
 767
 768static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
 769			    struct netlink_ext_ack *extack)
 770{
 771	int ret;
 772
 773	/* do not allow loopback device to be enslaved to a VRF.
 774	 * The vrf device acts as the loopback for the vrf.
 775	 */
 776	if (port_dev == dev_net(dev)->loopback_dev) {
 777		NL_SET_ERR_MSG(extack,
 778			       "Can not enslave loopback device to a VRF");
 779		return -EOPNOTSUPP;
 780	}
 781
 782	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
 783	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
 784	if (ret < 0)
 785		goto err;
 786
 787	cycle_netdev(port_dev);
 788
 789	return 0;
 790
 791err:
 792	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
 793	return ret;
 794}
 795
 796static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
 797			 struct netlink_ext_ack *extack)
 798{
 799	if (netif_is_l3_master(port_dev)) {
 800		NL_SET_ERR_MSG(extack,
 801			       "Can not enslave an L3 master device to a VRF");
 802		return -EINVAL;
 803	}
 804
 805	if (netif_is_l3_slave(port_dev))
 806		return -EINVAL;
 807
 808	return do_vrf_add_slave(dev, port_dev, extack);
 809}
 810
 811/* inverse of do_vrf_add_slave */
 812static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
 813{
 814	netdev_upper_dev_unlink(port_dev, dev);
 815	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
 816
 817	cycle_netdev(port_dev);
 818
 819	return 0;
 820}
 821
 822static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
 823{
 824	return do_vrf_del_slave(dev, port_dev);
 825}
 826
 827static void vrf_dev_uninit(struct net_device *dev)
 828{
 829	struct net_vrf *vrf = netdev_priv(dev);
 830
 831	vrf_rtable_release(dev, vrf);
 832	vrf_rt6_release(dev, vrf);
 833
 834	free_percpu(dev->dstats);
 835	dev->dstats = NULL;
 836}
 837
 838static int vrf_dev_init(struct net_device *dev)
 839{
 840	struct net_vrf *vrf = netdev_priv(dev);
 841
 842	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
 843	if (!dev->dstats)
 844		goto out_nomem;
 845
 846	/* create the default dst which points back to us */
 847	if (vrf_rtable_create(dev) != 0)
 848		goto out_stats;
 849
 850	if (vrf_rt6_create(dev) != 0)
 851		goto out_rth;
 852
 853	dev->flags = IFF_MASTER | IFF_NOARP;
 854
 855	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
 856	dev->mtu = 64 * 1024;
 857
 858	/* similarly, oper state is irrelevant; set to up to avoid confusion */
 859	dev->operstate = IF_OPER_UP;
 860	netdev_lockdep_set_classes(dev);
 861	return 0;
 862
 863out_rth:
 864	vrf_rtable_release(dev, vrf);
 865out_stats:
 866	free_percpu(dev->dstats);
 867	dev->dstats = NULL;
 868out_nomem:
 869	return -ENOMEM;
 870}
 871
 872static const struct net_device_ops vrf_netdev_ops = {
 873	.ndo_init		= vrf_dev_init,
 874	.ndo_uninit		= vrf_dev_uninit,
 875	.ndo_start_xmit		= vrf_xmit,
 
 876	.ndo_get_stats64	= vrf_get_stats64,
 877	.ndo_add_slave		= vrf_add_slave,
 878	.ndo_del_slave		= vrf_del_slave,
 879};
 880
 881static u32 vrf_fib_table(const struct net_device *dev)
 882{
 883	struct net_vrf *vrf = netdev_priv(dev);
 884
 885	return vrf->tb_id;
 886}
 887
 888static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 889{
 890	kfree_skb(skb);
 891	return 0;
 892}
 893
 894static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
 895				      struct sk_buff *skb,
 896				      struct net_device *dev)
 897{
 898	struct net *net = dev_net(dev);
 899
 900	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
 901		skb = NULL;    /* kfree_skb(skb) handled by nf code */
 902
 903	return skb;
 904}
 905
 906#if IS_ENABLED(CONFIG_IPV6)
 907/* neighbor handling is done with actual device; do not want
 908 * to flip skb->dev for those ndisc packets. This really fails
 909 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
 910 * a start.
 911 */
 912static bool ipv6_ndisc_frame(const struct sk_buff *skb)
 913{
 914	const struct ipv6hdr *iph = ipv6_hdr(skb);
 915	bool rc = false;
 916
 917	if (iph->nexthdr == NEXTHDR_ICMP) {
 918		const struct icmp6hdr *icmph;
 919		struct icmp6hdr _icmph;
 920
 921		icmph = skb_header_pointer(skb, sizeof(*iph),
 922					   sizeof(_icmph), &_icmph);
 923		if (!icmph)
 924			goto out;
 925
 926		switch (icmph->icmp6_type) {
 927		case NDISC_ROUTER_SOLICITATION:
 928		case NDISC_ROUTER_ADVERTISEMENT:
 929		case NDISC_NEIGHBOUR_SOLICITATION:
 930		case NDISC_NEIGHBOUR_ADVERTISEMENT:
 931		case NDISC_REDIRECT:
 932			rc = true;
 933			break;
 934		}
 935	}
 936
 937out:
 938	return rc;
 939}
 940
 941static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
 942					     const struct net_device *dev,
 943					     struct flowi6 *fl6,
 944					     int ifindex,
 945					     const struct sk_buff *skb,
 946					     int flags)
 947{
 948	struct net_vrf *vrf = netdev_priv(dev);
 949	struct fib6_table *table = NULL;
 950	struct rt6_info *rt6;
 951
 952	rcu_read_lock();
 953
 954	/* fib6_table does not have a refcnt and can not be freed */
 955	rt6 = rcu_dereference(vrf->rt6);
 956	if (likely(rt6))
 957		table = rt6->rt6i_table;
 958
 959	rcu_read_unlock();
 960
 961	if (!table)
 962		return NULL;
 963
 964	return ip6_pol_route(net, table, ifindex, fl6, skb, flags);
 965}
 966
 967static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
 968			      int ifindex)
 969{
 970	const struct ipv6hdr *iph = ipv6_hdr(skb);
 971	struct flowi6 fl6 = {
 972		.flowi6_iif     = ifindex,
 973		.flowi6_mark    = skb->mark,
 974		.flowi6_proto   = iph->nexthdr,
 975		.daddr          = iph->daddr,
 976		.saddr          = iph->saddr,
 977		.flowlabel      = ip6_flowinfo(iph),
 978	};
 979	struct net *net = dev_net(vrf_dev);
 980	struct rt6_info *rt6;
 981
 982	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
 983				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
 984	if (unlikely(!rt6))
 985		return;
 986
 987	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
 988		return;
 989
 990	skb_dst_set(skb, &rt6->dst);
 991}
 992
 993static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
 994				   struct sk_buff *skb)
 995{
 996	int orig_iif = skb->skb_iif;
 997	bool need_strict;
 
 998
 999	/* loopback traffic; do not push through packet taps again.
1000	 * Reset pkt_type for upper layers to process skb
1001	 */
1002	if (skb->pkt_type == PACKET_LOOPBACK) {
1003		skb->dev = vrf_dev;
1004		skb->skb_iif = vrf_dev->ifindex;
1005		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1006		skb->pkt_type = PACKET_HOST;
 
1007		goto out;
1008	}
1009
1010	/* if packet is NDISC or addressed to multicast or link-local
1011	 * then keep the ingress interface
1012	 */
1013	need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1014	if (!ipv6_ndisc_frame(skb) && !need_strict) {
1015		vrf_rx_stats(vrf_dev, skb->len);
1016		skb->dev = vrf_dev;
1017		skb->skb_iif = vrf_dev->ifindex;
1018
1019		if (!list_empty(&vrf_dev->ptype_all)) {
1020			skb_push(skb, skb->mac_len);
1021			dev_queue_xmit_nit(skb, vrf_dev);
1022			skb_pull(skb, skb->mac_len);
1023		}
1024
1025		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1026	}
1027
1028	if (need_strict)
1029		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1030
1031	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1032out:
1033	return skb;
1034}
1035
1036#else
1037static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1038				   struct sk_buff *skb)
1039{
1040	return skb;
1041}
1042#endif
1043
1044static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1045				  struct sk_buff *skb)
1046{
1047	skb->dev = vrf_dev;
1048	skb->skb_iif = vrf_dev->ifindex;
1049	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1050
1051	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1052		goto out;
1053
1054	/* loopback traffic; do not push through packet taps again.
1055	 * Reset pkt_type for upper layers to process skb
1056	 */
1057	if (skb->pkt_type == PACKET_LOOPBACK) {
1058		skb->pkt_type = PACKET_HOST;
1059		goto out;
1060	}
1061
1062	vrf_rx_stats(vrf_dev, skb->len);
1063
1064	if (!list_empty(&vrf_dev->ptype_all)) {
1065		skb_push(skb, skb->mac_len);
1066		dev_queue_xmit_nit(skb, vrf_dev);
1067		skb_pull(skb, skb->mac_len);
1068	}
1069
1070	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1071out:
1072	return skb;
1073}
1074
1075/* called with rcu lock held */
1076static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1077				  struct sk_buff *skb,
1078				  u16 proto)
1079{
1080	switch (proto) {
1081	case AF_INET:
1082		return vrf_ip_rcv(vrf_dev, skb);
1083	case AF_INET6:
1084		return vrf_ip6_rcv(vrf_dev, skb);
1085	}
1086
1087	return skb;
1088}
1089
1090#if IS_ENABLED(CONFIG_IPV6)
1091/* send to link-local or multicast address via interface enslaved to
1092 * VRF device. Force lookup to VRF table without changing flow struct
 
 
1093 */
1094static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1095					      struct flowi6 *fl6)
1096{
1097	struct net *net = dev_net(dev);
1098	int flags = RT6_LOOKUP_F_IFACE;
1099	struct dst_entry *dst = NULL;
1100	struct rt6_info *rt;
1101
1102	/* VRF device does not have a link-local address and
1103	 * sending packets to link-local or mcast addresses over
1104	 * a VRF device does not make sense
1105	 */
1106	if (fl6->flowi6_oif == dev->ifindex) {
1107		dst = &net->ipv6.ip6_null_entry->dst;
1108		dst_hold(dst);
1109		return dst;
1110	}
1111
1112	if (!ipv6_addr_any(&fl6->saddr))
1113		flags |= RT6_LOOKUP_F_HAS_SADDR;
1114
1115	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1116	if (rt)
1117		dst = &rt->dst;
1118
1119	return dst;
1120}
1121#endif
1122
1123static const struct l3mdev_ops vrf_l3mdev_ops = {
1124	.l3mdev_fib_table	= vrf_fib_table,
1125	.l3mdev_l3_rcv		= vrf_l3_rcv,
1126	.l3mdev_l3_out		= vrf_l3_out,
1127#if IS_ENABLED(CONFIG_IPV6)
1128	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1129#endif
1130};
1131
1132static void vrf_get_drvinfo(struct net_device *dev,
1133			    struct ethtool_drvinfo *info)
1134{
1135	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1136	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1137}
1138
1139static const struct ethtool_ops vrf_ethtool_ops = {
1140	.get_drvinfo	= vrf_get_drvinfo,
1141};
1142
1143static inline size_t vrf_fib_rule_nl_size(void)
1144{
1145	size_t sz;
1146
1147	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1148	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1149	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1150	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1151
1152	return sz;
1153}
1154
1155static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1156{
1157	struct fib_rule_hdr *frh;
1158	struct nlmsghdr *nlh;
1159	struct sk_buff *skb;
1160	int err;
1161
1162	if (family == AF_INET6 && !ipv6_mod_enabled())
 
1163		return 0;
1164
1165	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1166	if (!skb)
1167		return -ENOMEM;
1168
1169	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1170	if (!nlh)
1171		goto nla_put_failure;
1172
1173	/* rule only needs to appear once */
1174	nlh->nlmsg_flags |= NLM_F_EXCL;
1175
1176	frh = nlmsg_data(nlh);
1177	memset(frh, 0, sizeof(*frh));
1178	frh->family = family;
1179	frh->action = FR_ACT_TO_TBL;
1180
1181	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1182		goto nla_put_failure;
1183
1184	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1185		goto nla_put_failure;
1186
1187	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1188		goto nla_put_failure;
1189
1190	nlmsg_end(skb, nlh);
1191
1192	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1193	skb->sk = dev_net(dev)->rtnl;
1194	if (add_it) {
1195		err = fib_nl_newrule(skb, nlh, NULL);
1196		if (err == -EEXIST)
1197			err = 0;
1198	} else {
1199		err = fib_nl_delrule(skb, nlh, NULL);
1200		if (err == -ENOENT)
1201			err = 0;
1202	}
1203	nlmsg_free(skb);
1204
1205	return err;
1206
1207nla_put_failure:
1208	nlmsg_free(skb);
1209
1210	return -EMSGSIZE;
1211}
1212
1213static int vrf_add_fib_rules(const struct net_device *dev)
1214{
1215	int err;
1216
1217	err = vrf_fib_rule(dev, AF_INET,  true);
1218	if (err < 0)
1219		goto out_err;
1220
1221	err = vrf_fib_rule(dev, AF_INET6, true);
1222	if (err < 0)
1223		goto ipv6_err;
1224
1225#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1226	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1227	if (err < 0)
1228		goto ipmr_err;
1229#endif
1230
 
 
 
 
 
 
1231	return 0;
1232
 
 
 
 
 
1233#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1234ipmr_err:
1235	vrf_fib_rule(dev, AF_INET6,  false);
1236#endif
1237
1238ipv6_err:
1239	vrf_fib_rule(dev, AF_INET,  false);
1240
1241out_err:
1242	netdev_err(dev, "Failed to add FIB rules.\n");
1243	return err;
1244}
1245
1246static void vrf_setup(struct net_device *dev)
1247{
1248	ether_setup(dev);
1249
1250	/* Initialize the device structure. */
1251	dev->netdev_ops = &vrf_netdev_ops;
1252	dev->l3mdev_ops = &vrf_l3mdev_ops;
1253	dev->ethtool_ops = &vrf_ethtool_ops;
1254	dev->needs_free_netdev = true;
1255
1256	/* Fill in device structure with ethernet-generic values. */
1257	eth_hw_addr_random(dev);
1258
1259	/* don't acquire vrf device's netif_tx_lock when transmitting */
1260	dev->features |= NETIF_F_LLTX;
1261
1262	/* don't allow vrf devices to change network namespaces. */
1263	dev->features |= NETIF_F_NETNS_LOCAL;
1264
1265	/* does not make sense for a VLAN to be added to a vrf device */
1266	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1267
1268	/* enable offload features */
1269	dev->features   |= NETIF_F_GSO_SOFTWARE;
1270	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1271	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1272
1273	dev->hw_features = dev->features;
1274	dev->hw_enc_features = dev->features;
1275
1276	/* default to no qdisc; user can add if desired */
1277	dev->priv_flags |= IFF_NO_QUEUE;
 
 
 
 
 
 
 
 
 
1278}
1279
1280static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1281			struct netlink_ext_ack *extack)
1282{
1283	if (tb[IFLA_ADDRESS]) {
1284		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1285			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1286			return -EINVAL;
1287		}
1288		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1289			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1290			return -EADDRNOTAVAIL;
1291		}
1292	}
1293	return 0;
1294}
1295
1296static void vrf_dellink(struct net_device *dev, struct list_head *head)
1297{
1298	struct net_device *port_dev;
1299	struct list_head *iter;
1300
1301	netdev_for_each_lower_dev(dev, port_dev, iter)
1302		vrf_del_slave(dev, port_dev);
1303
 
 
1304	unregister_netdevice_queue(dev, head);
1305}
1306
1307static int vrf_newlink(struct net *src_net, struct net_device *dev,
1308		       struct nlattr *tb[], struct nlattr *data[],
1309		       struct netlink_ext_ack *extack)
1310{
1311	struct net_vrf *vrf = netdev_priv(dev);
 
1312	bool *add_fib_rules;
1313	struct net *net;
1314	int err;
1315
1316	if (!data || !data[IFLA_VRF_TABLE]) {
1317		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1318		return -EINVAL;
1319	}
1320
1321	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1322	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1323		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1324				    "Invalid VRF table id");
1325		return -EINVAL;
1326	}
1327
1328	dev->priv_flags |= IFF_L3MDEV_MASTER;
1329
1330	err = register_netdevice(dev);
1331	if (err)
1332		goto out;
1333
 
 
 
 
 
 
 
 
 
 
 
 
1334	net = dev_net(dev);
1335	add_fib_rules = net_generic(net, vrf_net_id);
 
 
1336	if (*add_fib_rules) {
1337		err = vrf_add_fib_rules(dev);
1338		if (err) {
 
1339			unregister_netdevice(dev);
1340			goto out;
1341		}
1342		*add_fib_rules = false;
1343	}
1344
1345out:
1346	return err;
1347}
1348
1349static size_t vrf_nl_getsize(const struct net_device *dev)
1350{
1351	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1352}
1353
1354static int vrf_fillinfo(struct sk_buff *skb,
1355			const struct net_device *dev)
1356{
1357	struct net_vrf *vrf = netdev_priv(dev);
1358
1359	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1360}
1361
1362static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1363				 const struct net_device *slave_dev)
1364{
1365	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1366}
1367
1368static int vrf_fill_slave_info(struct sk_buff *skb,
1369			       const struct net_device *vrf_dev,
1370			       const struct net_device *slave_dev)
1371{
1372	struct net_vrf *vrf = netdev_priv(vrf_dev);
1373
1374	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1375		return -EMSGSIZE;
1376
1377	return 0;
1378}
1379
1380static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1381	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1382};
1383
1384static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1385	.kind		= DRV_NAME,
1386	.priv_size	= sizeof(struct net_vrf),
1387
1388	.get_size	= vrf_nl_getsize,
1389	.policy		= vrf_nl_policy,
1390	.validate	= vrf_validate,
1391	.fill_info	= vrf_fillinfo,
1392
1393	.get_slave_size  = vrf_get_slave_size,
1394	.fill_slave_info = vrf_fill_slave_info,
1395
1396	.newlink	= vrf_newlink,
1397	.dellink	= vrf_dellink,
1398	.setup		= vrf_setup,
1399	.maxtype	= IFLA_VRF_MAX,
1400};
1401
1402static int vrf_device_event(struct notifier_block *unused,
1403			    unsigned long event, void *ptr)
1404{
1405	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1406
1407	/* only care about unregister events to drop slave references */
1408	if (event == NETDEV_UNREGISTER) {
1409		struct net_device *vrf_dev;
1410
1411		if (!netif_is_l3_slave(dev))
1412			goto out;
1413
1414		vrf_dev = netdev_master_upper_dev_get(dev);
1415		vrf_del_slave(vrf_dev, dev);
1416	}
1417out:
1418	return NOTIFY_DONE;
1419}
1420
1421static struct notifier_block vrf_notifier_block __read_mostly = {
1422	.notifier_call = vrf_device_event,
1423};
1424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425/* Initialize per network namespace state */
1426static int __net_init vrf_netns_init(struct net *net)
1427{
1428	bool *add_fib_rules = net_generic(net, vrf_net_id);
1429
1430	*add_fib_rules = true;
 
1431
1432	return 0;
 
 
 
 
 
1433}
1434
1435static struct pernet_operations vrf_net_ops __net_initdata = {
1436	.init = vrf_netns_init,
 
1437	.id   = &vrf_net_id,
1438	.size = sizeof(bool),
1439};
1440
1441static int __init vrf_init_module(void)
1442{
1443	int rc;
1444
1445	register_netdevice_notifier(&vrf_notifier_block);
1446
1447	rc = register_pernet_subsys(&vrf_net_ops);
1448	if (rc < 0)
1449		goto error;
1450
 
 
 
 
 
1451	rc = rtnl_link_register(&vrf_link_ops);
1452	if (rc < 0) {
1453		unregister_pernet_subsys(&vrf_net_ops);
1454		goto error;
1455	}
1456
1457	return 0;
 
 
 
 
 
 
 
1458
1459error:
1460	unregister_netdevice_notifier(&vrf_notifier_block);
1461	return rc;
1462}
1463
1464module_init(vrf_init_module);
1465MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1466MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1467MODULE_LICENSE("GPL");
1468MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1469MODULE_VERSION(DRV_VERSION);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * vrf.c: device driver to encapsulate a VRF space
   4 *
   5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8 *
   9 * Based on dummy, team and ipvlan drivers
 
 
 
 
 
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/netdevice.h>
  15#include <linux/etherdevice.h>
  16#include <linux/ip.h>
  17#include <linux/init.h>
  18#include <linux/moduleparam.h>
  19#include <linux/netfilter.h>
  20#include <linux/rtnetlink.h>
  21#include <net/rtnetlink.h>
  22#include <linux/u64_stats_sync.h>
  23#include <linux/hashtable.h>
  24#include <linux/spinlock_types.h>
  25
  26#include <linux/inetdevice.h>
  27#include <net/arp.h>
  28#include <net/ip.h>
  29#include <net/ip_fib.h>
  30#include <net/ip6_fib.h>
  31#include <net/ip6_route.h>
  32#include <net/route.h>
  33#include <net/addrconf.h>
  34#include <net/l3mdev.h>
  35#include <net/fib_rules.h>
  36#include <net/netns/generic.h>
  37
  38#define DRV_NAME	"vrf"
  39#define DRV_VERSION	"1.1"
  40
  41#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  42
  43#define HT_MAP_BITS	4
  44#define HASH_INITVAL	((u32)0xcafef00d)
  45
  46struct  vrf_map {
  47	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
  48	spinlock_t vmap_lock;
  49
  50	/* shared_tables:
  51	 * count how many distinct tables do not comply with the strict mode
  52	 * requirement.
  53	 * shared_tables value must be 0 in order to enable the strict mode.
  54	 *
  55	 * example of the evolution of shared_tables:
  56	 *                                                        | time
  57	 * add  vrf0 --> table 100        shared_tables = 0       | t0
  58	 * add  vrf1 --> table 101        shared_tables = 0       | t1
  59	 * add  vrf2 --> table 100        shared_tables = 1       | t2
  60	 * add  vrf3 --> table 100        shared_tables = 1       | t3
  61	 * add  vrf4 --> table 101        shared_tables = 2       v t4
  62	 *
  63	 * shared_tables is a "step function" (or "staircase function")
  64	 * and it is increased by one when the second vrf is associated to a
  65	 * table.
  66	 *
  67	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
  68	 *
  69	 * at t3, another dev (vrf3) is bound to the same table 100 but the
  70	 * value of shared_tables is still 1.
  71	 * This means that no matter how many new vrfs will register on the
  72	 * table 100, the shared_tables will not increase (considering only
  73	 * table 100).
  74	 *
  75	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
  76	 *
  77	 * Looking at the value of shared_tables we can immediately know if
  78	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
  79	 * can be enforced iff shared_tables = 0.
  80	 *
  81	 * Conversely, shared_tables is decreased when a vrf is de-associated
  82	 * from a table with exactly two associated vrfs.
  83	 */
  84	u32 shared_tables;
  85
  86	bool strict_mode;
  87};
  88
  89struct vrf_map_elem {
  90	struct hlist_node hnode;
  91	struct list_head vrf_list;  /* VRFs registered to this table */
  92
  93	u32 table_id;
  94	int users;
  95	int ifindex;
  96};
  97
  98static unsigned int vrf_net_id;
  99
 100/* per netns vrf data */
 101struct netns_vrf {
 102	/* protected by rtnl lock */
 103	bool add_fib_rules;
 104
 105	struct vrf_map vmap;
 106	struct ctl_table_header	*ctl_hdr;
 107};
 108
 109struct net_vrf {
 110	struct rtable __rcu	*rth;
 111	struct rt6_info	__rcu	*rt6;
 112#if IS_ENABLED(CONFIG_IPV6)
 113	struct fib6_table	*fib6_table;
 114#endif
 115	u32                     tb_id;
 116
 117	struct list_head	me_list;   /* entry in vrf_map_elem */
 118	int			ifindex;
 119};
 120
 121struct pcpu_dstats {
 122	u64			tx_pkts;
 123	u64			tx_bytes;
 124	u64			tx_drps;
 125	u64			rx_pkts;
 126	u64			rx_bytes;
 127	u64			rx_drps;
 128	struct u64_stats_sync	syncp;
 129};
 130
 131static void vrf_rx_stats(struct net_device *dev, int len)
 132{
 133	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 134
 135	u64_stats_update_begin(&dstats->syncp);
 136	dstats->rx_pkts++;
 137	dstats->rx_bytes += len;
 138	u64_stats_update_end(&dstats->syncp);
 139}
 140
 141static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
 142{
 143	vrf_dev->stats.tx_errors++;
 144	kfree_skb(skb);
 145}
 146
 147static void vrf_get_stats64(struct net_device *dev,
 148			    struct rtnl_link_stats64 *stats)
 149{
 150	int i;
 151
 152	for_each_possible_cpu(i) {
 153		const struct pcpu_dstats *dstats;
 154		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
 155		unsigned int start;
 156
 157		dstats = per_cpu_ptr(dev->dstats, i);
 158		do {
 159			start = u64_stats_fetch_begin_irq(&dstats->syncp);
 160			tbytes = dstats->tx_bytes;
 161			tpkts = dstats->tx_pkts;
 162			tdrops = dstats->tx_drps;
 163			rbytes = dstats->rx_bytes;
 164			rpkts = dstats->rx_pkts;
 165		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
 166		stats->tx_bytes += tbytes;
 167		stats->tx_packets += tpkts;
 168		stats->tx_dropped += tdrops;
 169		stats->rx_bytes += rbytes;
 170		stats->rx_packets += rpkts;
 171	}
 172}
 173
 174static struct vrf_map *netns_vrf_map(struct net *net)
 175{
 176	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
 177
 178	return &nn_vrf->vmap;
 179}
 180
 181static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
 182{
 183	return netns_vrf_map(dev_net(dev));
 184}
 185
 186static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
 187{
 188	struct list_head *me_head = &me->vrf_list;
 189	struct net_vrf *vrf;
 190
 191	if (list_empty(me_head))
 192		return -ENODEV;
 193
 194	vrf = list_first_entry(me_head, struct net_vrf, me_list);
 195
 196	return vrf->ifindex;
 197}
 198
 199static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
 200{
 201	struct vrf_map_elem *me;
 202
 203	me = kmalloc(sizeof(*me), flags);
 204	if (!me)
 205		return NULL;
 206
 207	return me;
 208}
 209
 210static void vrf_map_elem_free(struct vrf_map_elem *me)
 211{
 212	kfree(me);
 213}
 214
 215static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
 216			      int ifindex, int users)
 217{
 218	me->table_id = table_id;
 219	me->ifindex = ifindex;
 220	me->users = users;
 221	INIT_LIST_HEAD(&me->vrf_list);
 222}
 223
 224static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
 225						u32 table_id)
 226{
 227	struct vrf_map_elem *me;
 228	u32 key;
 229
 230	key = jhash_1word(table_id, HASH_INITVAL);
 231	hash_for_each_possible(vmap->ht, me, hnode, key) {
 232		if (me->table_id == table_id)
 233			return me;
 234	}
 235
 236	return NULL;
 237}
 238
 239static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
 240{
 241	u32 table_id = me->table_id;
 242	u32 key;
 243
 244	key = jhash_1word(table_id, HASH_INITVAL);
 245	hash_add(vmap->ht, &me->hnode, key);
 246}
 247
 248static void vrf_map_del_elem(struct vrf_map_elem *me)
 249{
 250	hash_del(&me->hnode);
 251}
 252
 253static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
 254{
 255	spin_lock(&vmap->vmap_lock);
 256}
 257
 258static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
 259{
 260	spin_unlock(&vmap->vmap_lock);
 261}
 262
 263/* called with rtnl lock held */
 264static int
 265vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
 266{
 267	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 268	struct net_vrf *vrf = netdev_priv(dev);
 269	struct vrf_map_elem *new_me, *me;
 270	u32 table_id = vrf->tb_id;
 271	bool free_new_me = false;
 272	int users;
 273	int res;
 274
 275	/* we pre-allocate elements used in the spin-locked section (so that we
 276	 * keep the spinlock as short as possibile).
 277	 */
 278	new_me = vrf_map_elem_alloc(GFP_KERNEL);
 279	if (!new_me)
 280		return -ENOMEM;
 281
 282	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
 283
 284	vrf_map_lock(vmap);
 285
 286	me = vrf_map_lookup_elem(vmap, table_id);
 287	if (!me) {
 288		me = new_me;
 289		vrf_map_add_elem(vmap, me);
 290		goto link_vrf;
 291	}
 292
 293	/* we already have an entry in the vrf_map, so it means there is (at
 294	 * least) a vrf registered on the specific table.
 295	 */
 296	free_new_me = true;
 297	if (vmap->strict_mode) {
 298		/* vrfs cannot share the same table */
 299		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
 300		res = -EBUSY;
 301		goto unlock;
 302	}
 303
 304link_vrf:
 305	users = ++me->users;
 306	if (users == 2)
 307		++vmap->shared_tables;
 308
 309	list_add(&vrf->me_list, &me->vrf_list);
 310
 311	res = 0;
 312
 313unlock:
 314	vrf_map_unlock(vmap);
 315
 316	/* clean-up, if needed */
 317	if (free_new_me)
 318		vrf_map_elem_free(new_me);
 319
 320	return res;
 321}
 322
 323/* called with rtnl lock held */
 324static void vrf_map_unregister_dev(struct net_device *dev)
 325{
 326	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 327	struct net_vrf *vrf = netdev_priv(dev);
 328	u32 table_id = vrf->tb_id;
 329	struct vrf_map_elem *me;
 330	int users;
 331
 332	vrf_map_lock(vmap);
 333
 334	me = vrf_map_lookup_elem(vmap, table_id);
 335	if (!me)
 336		goto unlock;
 337
 338	list_del(&vrf->me_list);
 339
 340	users = --me->users;
 341	if (users == 1) {
 342		--vmap->shared_tables;
 343	} else if (users == 0) {
 344		vrf_map_del_elem(me);
 345
 346		/* no one will refer to this element anymore */
 347		vrf_map_elem_free(me);
 348	}
 349
 350unlock:
 351	vrf_map_unlock(vmap);
 352}
 353
 354/* return the vrf device index associated with the table_id */
 355static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
 356{
 357	struct vrf_map *vmap = netns_vrf_map(net);
 358	struct vrf_map_elem *me;
 359	int ifindex;
 360
 361	vrf_map_lock(vmap);
 362
 363	if (!vmap->strict_mode) {
 364		ifindex = -EPERM;
 365		goto unlock;
 366	}
 367
 368	me = vrf_map_lookup_elem(vmap, table_id);
 369	if (!me) {
 370		ifindex = -ENODEV;
 371		goto unlock;
 372	}
 373
 374	ifindex = vrf_map_elem_get_vrf_ifindex(me);
 375
 376unlock:
 377	vrf_map_unlock(vmap);
 378
 379	return ifindex;
 380}
 381
 382/* by default VRF devices do not have a qdisc and are expected
 383 * to be created with only a single queue.
 384 */
 385static bool qdisc_tx_is_default(const struct net_device *dev)
 386{
 387	struct netdev_queue *txq;
 388	struct Qdisc *qdisc;
 389
 390	if (dev->num_tx_queues > 1)
 391		return false;
 392
 393	txq = netdev_get_tx_queue(dev, 0);
 394	qdisc = rcu_access_pointer(txq->qdisc);
 395
 396	return !qdisc->enqueue;
 397}
 398
 399/* Local traffic destined to local address. Reinsert the packet to rx
 400 * path, similar to loopback handling.
 401 */
 402static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 403			  struct dst_entry *dst)
 404{
 405	int len = skb->len;
 406
 407	skb_orphan(skb);
 408
 409	skb_dst_set(skb, dst);
 410
 411	/* set pkt_type to avoid skb hitting packet taps twice -
 412	 * once on Tx and again in Rx processing
 413	 */
 414	skb->pkt_type = PACKET_LOOPBACK;
 415
 416	skb->protocol = eth_type_trans(skb, dev);
 417
 418	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
 419		vrf_rx_stats(dev, len);
 420	else
 421		this_cpu_inc(dev->dstats->rx_drps);
 422
 423	return NETDEV_TX_OK;
 424}
 425
 426#if IS_ENABLED(CONFIG_IPV6)
 427static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 428			     struct sk_buff *skb)
 429{
 430	int err;
 431
 432	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 433		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 434
 435	if (likely(err == 1))
 436		err = dst_output(net, sk, skb);
 437
 438	return err;
 439}
 440
 441static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 442					   struct net_device *dev)
 443{
 444	const struct ipv6hdr *iph;
 445	struct net *net = dev_net(skb->dev);
 446	struct flowi6 fl6;
 
 
 
 
 
 
 
 
 
 
 447	int ret = NET_XMIT_DROP;
 448	struct dst_entry *dst;
 449	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 450
 451	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 452		goto err;
 453
 454	iph = ipv6_hdr(skb);
 455
 456	memset(&fl6, 0, sizeof(fl6));
 457	/* needed to match OIF rule */
 458	fl6.flowi6_oif = dev->ifindex;
 459	fl6.flowi6_iif = LOOPBACK_IFINDEX;
 460	fl6.daddr = iph->daddr;
 461	fl6.saddr = iph->saddr;
 462	fl6.flowlabel = ip6_flowinfo(iph);
 463	fl6.flowi6_mark = skb->mark;
 464	fl6.flowi6_proto = iph->nexthdr;
 465	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
 466
 467	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
 468	if (IS_ERR(dst) || dst == dst_null)
 469		goto err;
 470
 471	skb_dst_drop(skb);
 472
 473	/* if dst.dev is loopback or the VRF device again this is locally
 474	 * originated traffic destined to a local address. Short circuit
 475	 * to Rx path
 476	 */
 477	if (dst->dev == dev)
 478		return vrf_local_xmit(skb, dev, dst);
 479
 480	skb_dst_set(skb, dst);
 481
 482	/* strip the ethernet header added for pass through VRF device */
 483	__skb_pull(skb, skb_network_offset(skb));
 484
 485	ret = vrf_ip6_local_out(net, skb->sk, skb);
 486	if (unlikely(net_xmit_eval(ret)))
 487		dev->stats.tx_errors++;
 488	else
 489		ret = NET_XMIT_SUCCESS;
 490
 491	return ret;
 492err:
 493	vrf_tx_error(dev, skb);
 494	return NET_XMIT_DROP;
 495}
 496#else
 497static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 498					   struct net_device *dev)
 499{
 500	vrf_tx_error(dev, skb);
 501	return NET_XMIT_DROP;
 502}
 503#endif
 504
 505/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 506static int vrf_ip_local_out(struct net *net, struct sock *sk,
 507			    struct sk_buff *skb)
 508{
 509	int err;
 510
 511	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 512		      skb, NULL, skb_dst(skb)->dev, dst_output);
 513	if (likely(err == 1))
 514		err = dst_output(net, sk, skb);
 515
 516	return err;
 517}
 518
 519static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 520					   struct net_device *vrf_dev)
 521{
 522	struct iphdr *ip4h;
 523	int ret = NET_XMIT_DROP;
 524	struct flowi4 fl4;
 
 
 
 
 
 
 
 
 
 525	struct net *net = dev_net(vrf_dev);
 526	struct rtable *rt;
 527
 528	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 529		goto err;
 530
 531	ip4h = ip_hdr(skb);
 532
 533	memset(&fl4, 0, sizeof(fl4));
 534	/* needed to match OIF rule */
 535	fl4.flowi4_oif = vrf_dev->ifindex;
 536	fl4.flowi4_iif = LOOPBACK_IFINDEX;
 537	fl4.flowi4_tos = RT_TOS(ip4h->tos);
 538	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
 539	fl4.flowi4_proto = ip4h->protocol;
 540	fl4.daddr = ip4h->daddr;
 541	fl4.saddr = ip4h->saddr;
 542
 543	rt = ip_route_output_flow(net, &fl4, NULL);
 544	if (IS_ERR(rt))
 545		goto err;
 546
 547	skb_dst_drop(skb);
 548
 549	/* if dst.dev is loopback or the VRF device again this is locally
 550	 * originated traffic destined to a local address. Short circuit
 551	 * to Rx path
 552	 */
 553	if (rt->dst.dev == vrf_dev)
 554		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 555
 556	skb_dst_set(skb, &rt->dst);
 557
 558	/* strip the ethernet header added for pass through VRF device */
 559	__skb_pull(skb, skb_network_offset(skb));
 560
 561	if (!ip4h->saddr) {
 562		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 563					       RT_SCOPE_LINK);
 564	}
 565
 566	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 567	if (unlikely(net_xmit_eval(ret)))
 568		vrf_dev->stats.tx_errors++;
 569	else
 570		ret = NET_XMIT_SUCCESS;
 571
 572out:
 573	return ret;
 574err:
 575	vrf_tx_error(vrf_dev, skb);
 576	goto out;
 577}
 578
 579static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 580{
 581	switch (skb->protocol) {
 582	case htons(ETH_P_IP):
 583		return vrf_process_v4_outbound(skb, dev);
 584	case htons(ETH_P_IPV6):
 585		return vrf_process_v6_outbound(skb, dev);
 586	default:
 587		vrf_tx_error(dev, skb);
 588		return NET_XMIT_DROP;
 589	}
 590}
 591
 592static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 593{
 594	int len = skb->len;
 595	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 596
 597	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 598		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 599
 600		u64_stats_update_begin(&dstats->syncp);
 601		dstats->tx_pkts++;
 602		dstats->tx_bytes += len;
 603		u64_stats_update_end(&dstats->syncp);
 604	} else {
 605		this_cpu_inc(dev->dstats->tx_drps);
 606	}
 607
 608	return ret;
 609}
 610
 611static int vrf_finish_direct(struct net *net, struct sock *sk,
 612			     struct sk_buff *skb)
 613{
 614	struct net_device *vrf_dev = skb->dev;
 615
 616	if (!list_empty(&vrf_dev->ptype_all) &&
 617	    likely(skb_headroom(skb) >= ETH_HLEN)) {
 618		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 619
 620		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 621		eth_zero_addr(eth->h_dest);
 622		eth->h_proto = skb->protocol;
 623
 624		rcu_read_lock_bh();
 625		dev_queue_xmit_nit(skb, vrf_dev);
 626		rcu_read_unlock_bh();
 627
 628		skb_pull(skb, ETH_HLEN);
 629	}
 630
 631	return 1;
 632}
 633
 634#if IS_ENABLED(CONFIG_IPV6)
 635/* modelled after ip6_finish_output2 */
 636static int vrf_finish_output6(struct net *net, struct sock *sk,
 637			      struct sk_buff *skb)
 638{
 639	struct dst_entry *dst = skb_dst(skb);
 640	struct net_device *dev = dst->dev;
 641	const struct in6_addr *nexthop;
 642	struct neighbour *neigh;
 
 643	int ret;
 644
 645	nf_reset_ct(skb);
 646
 647	skb->protocol = htons(ETH_P_IPV6);
 648	skb->dev = dev;
 649
 650	rcu_read_lock_bh();
 651	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 652	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 653	if (unlikely(!neigh))
 654		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 655	if (!IS_ERR(neigh)) {
 656		sock_confirm_neigh(skb, neigh);
 657		ret = neigh_output(neigh, skb, false);
 658		rcu_read_unlock_bh();
 659		return ret;
 660	}
 661	rcu_read_unlock_bh();
 662
 663	IP6_INC_STATS(dev_net(dst->dev),
 664		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 665	kfree_skb(skb);
 666	return -EINVAL;
 667}
 668
 669/* modelled after ip6_output */
 670static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 671{
 672	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 673			    net, sk, skb, NULL, skb_dst(skb)->dev,
 674			    vrf_finish_output6,
 675			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 676}
 677
 678/* set dst on skb to send packet to us via dev_xmit path. Allows
 679 * packet to go through device based features such as qdisc, netfilter
 680 * hooks and packet sockets with skb->dev set to vrf device.
 681 */
 682static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 683					    struct sk_buff *skb)
 684{
 685	struct net_vrf *vrf = netdev_priv(vrf_dev);
 686	struct dst_entry *dst = NULL;
 687	struct rt6_info *rt6;
 688
 689	rcu_read_lock();
 690
 691	rt6 = rcu_dereference(vrf->rt6);
 692	if (likely(rt6)) {
 693		dst = &rt6->dst;
 694		dst_hold(dst);
 695	}
 696
 697	rcu_read_unlock();
 698
 699	if (unlikely(!dst)) {
 700		vrf_tx_error(vrf_dev, skb);
 701		return NULL;
 702	}
 703
 704	skb_dst_drop(skb);
 705	skb_dst_set(skb, dst);
 706
 707	return skb;
 708}
 709
 710static int vrf_output6_direct(struct net *net, struct sock *sk,
 711			      struct sk_buff *skb)
 712{
 713	skb->protocol = htons(ETH_P_IPV6);
 714
 715	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 716			    net, sk, skb, NULL, skb->dev,
 717			    vrf_finish_direct,
 718			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 719}
 720
 721static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 722					  struct sock *sk,
 723					  struct sk_buff *skb)
 724{
 725	struct net *net = dev_net(vrf_dev);
 726	int err;
 727
 728	skb->dev = vrf_dev;
 729
 730	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 731		      skb, NULL, vrf_dev, vrf_output6_direct);
 732
 733	if (likely(err == 1))
 734		err = vrf_output6_direct(net, sk, skb);
 735
 736	/* reset skb device */
 737	if (likely(err == 1))
 738		nf_reset_ct(skb);
 739	else
 740		skb = NULL;
 741
 742	return skb;
 743}
 744
 745static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 746				   struct sock *sk,
 747				   struct sk_buff *skb)
 748{
 749	/* don't divert link scope packets */
 750	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 751		return skb;
 752
 753	if (qdisc_tx_is_default(vrf_dev) ||
 754	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
 755		return vrf_ip6_out_direct(vrf_dev, sk, skb);
 756
 757	return vrf_ip6_out_redirect(vrf_dev, skb);
 758}
 759
 760/* holding rtnl */
 761static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 762{
 763	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 764	struct net *net = dev_net(dev);
 765	struct dst_entry *dst;
 766
 767	RCU_INIT_POINTER(vrf->rt6, NULL);
 768	synchronize_rcu();
 769
 770	/* move dev in dst's to loopback so this VRF device can be deleted
 771	 * - based on dst_ifdown
 772	 */
 773	if (rt6) {
 774		dst = &rt6->dst;
 775		dev_put(dst->dev);
 776		dst->dev = net->loopback_dev;
 777		dev_hold(dst->dev);
 778		dst_release(dst);
 779	}
 780}
 781
 782static int vrf_rt6_create(struct net_device *dev)
 783{
 784	int flags = DST_NOPOLICY | DST_NOXFRM;
 785	struct net_vrf *vrf = netdev_priv(dev);
 786	struct net *net = dev_net(dev);
 
 787	struct rt6_info *rt6;
 788	int rc = -ENOMEM;
 789
 790	/* IPv6 can be CONFIG enabled and then disabled runtime */
 791	if (!ipv6_mod_enabled())
 792		return 0;
 793
 794	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 795	if (!vrf->fib6_table)
 796		goto out;
 797
 798	/* create a dst for routing packets out a VRF device */
 799	rt6 = ip6_dst_alloc(net, dev, flags);
 800	if (!rt6)
 801		goto out;
 802
 
 803	rt6->dst.output	= vrf_output6;
 804
 805	rcu_assign_pointer(vrf->rt6, rt6);
 806
 807	rc = 0;
 808out:
 809	return rc;
 810}
 811#else
 812static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 813				   struct sock *sk,
 814				   struct sk_buff *skb)
 815{
 816	return skb;
 817}
 818
 819static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 820{
 821}
 822
 823static int vrf_rt6_create(struct net_device *dev)
 824{
 825	return 0;
 826}
 827#endif
 828
 829/* modelled after ip_finish_output2 */
 830static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 831{
 832	struct dst_entry *dst = skb_dst(skb);
 833	struct rtable *rt = (struct rtable *)dst;
 834	struct net_device *dev = dst->dev;
 835	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 836	struct neighbour *neigh;
 837	bool is_v6gw = false;
 838	int ret = -EINVAL;
 839
 840	nf_reset_ct(skb);
 841
 842	/* Be paranoid, rather than too clever. */
 843	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 844		struct sk_buff *skb2;
 845
 846		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 847		if (!skb2) {
 848			ret = -ENOMEM;
 849			goto err;
 850		}
 851		if (skb->sk)
 852			skb_set_owner_w(skb2, skb->sk);
 853
 854		consume_skb(skb);
 855		skb = skb2;
 856	}
 857
 858	rcu_read_lock_bh();
 859
 860	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 
 
 
 861	if (!IS_ERR(neigh)) {
 862		sock_confirm_neigh(skb, neigh);
 863		/* if crossing protocols, can not use the cached header */
 864		ret = neigh_output(neigh, skb, is_v6gw);
 865		rcu_read_unlock_bh();
 866		return ret;
 867	}
 868
 869	rcu_read_unlock_bh();
 870err:
 871	vrf_tx_error(skb->dev, skb);
 872	return ret;
 873}
 874
 875static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 876{
 877	struct net_device *dev = skb_dst(skb)->dev;
 878
 879	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 880
 881	skb->dev = dev;
 882	skb->protocol = htons(ETH_P_IP);
 883
 884	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 885			    net, sk, skb, NULL, dev,
 886			    vrf_finish_output,
 887			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 888}
 889
 890/* set dst on skb to send packet to us via dev_xmit path. Allows
 891 * packet to go through device based features such as qdisc, netfilter
 892 * hooks and packet sockets with skb->dev set to vrf device.
 893 */
 894static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 895					   struct sk_buff *skb)
 896{
 897	struct net_vrf *vrf = netdev_priv(vrf_dev);
 898	struct dst_entry *dst = NULL;
 899	struct rtable *rth;
 900
 901	rcu_read_lock();
 902
 903	rth = rcu_dereference(vrf->rth);
 904	if (likely(rth)) {
 905		dst = &rth->dst;
 906		dst_hold(dst);
 907	}
 908
 909	rcu_read_unlock();
 910
 911	if (unlikely(!dst)) {
 912		vrf_tx_error(vrf_dev, skb);
 913		return NULL;
 914	}
 915
 916	skb_dst_drop(skb);
 917	skb_dst_set(skb, dst);
 918
 919	return skb;
 920}
 921
 922static int vrf_output_direct(struct net *net, struct sock *sk,
 923			     struct sk_buff *skb)
 924{
 925	skb->protocol = htons(ETH_P_IP);
 926
 927	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 928			    net, sk, skb, NULL, skb->dev,
 929			    vrf_finish_direct,
 930			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 931}
 932
 933static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 934					 struct sock *sk,
 935					 struct sk_buff *skb)
 936{
 937	struct net *net = dev_net(vrf_dev);
 938	int err;
 939
 940	skb->dev = vrf_dev;
 941
 942	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 943		      skb, NULL, vrf_dev, vrf_output_direct);
 944
 945	if (likely(err == 1))
 946		err = vrf_output_direct(net, sk, skb);
 947
 948	/* reset skb device */
 949	if (likely(err == 1))
 950		nf_reset_ct(skb);
 951	else
 952		skb = NULL;
 953
 954	return skb;
 955}
 956
 957static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
 958				  struct sock *sk,
 959				  struct sk_buff *skb)
 960{
 961	/* don't divert multicast or local broadcast */
 962	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
 963	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
 964		return skb;
 965
 966	if (qdisc_tx_is_default(vrf_dev) ||
 967	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
 968		return vrf_ip_out_direct(vrf_dev, sk, skb);
 969
 970	return vrf_ip_out_redirect(vrf_dev, skb);
 971}
 972
 973/* called with rcu lock held */
 974static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
 975				  struct sock *sk,
 976				  struct sk_buff *skb,
 977				  u16 proto)
 978{
 979	switch (proto) {
 980	case AF_INET:
 981		return vrf_ip_out(vrf_dev, sk, skb);
 982	case AF_INET6:
 983		return vrf_ip6_out(vrf_dev, sk, skb);
 984	}
 985
 986	return skb;
 987}
 988
 989/* holding rtnl */
 990static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
 991{
 992	struct rtable *rth = rtnl_dereference(vrf->rth);
 993	struct net *net = dev_net(dev);
 994	struct dst_entry *dst;
 995
 996	RCU_INIT_POINTER(vrf->rth, NULL);
 997	synchronize_rcu();
 998
 999	/* move dev in dst's to loopback so this VRF device can be deleted
1000	 * - based on dst_ifdown
1001	 */
1002	if (rth) {
1003		dst = &rth->dst;
1004		dev_put(dst->dev);
1005		dst->dev = net->loopback_dev;
1006		dev_hold(dst->dev);
1007		dst_release(dst);
1008	}
1009}
1010
1011static int vrf_rtable_create(struct net_device *dev)
1012{
1013	struct net_vrf *vrf = netdev_priv(dev);
1014	struct rtable *rth;
1015
1016	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1017		return -ENOMEM;
1018
1019	/* create a dst for routing packets out through a VRF device */
1020	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1021	if (!rth)
1022		return -ENOMEM;
1023
1024	rth->dst.output	= vrf_output;
1025
1026	rcu_assign_pointer(vrf->rth, rth);
1027
1028	return 0;
1029}
1030
1031/**************************** device handling ********************/
1032
1033/* cycle interface to flush neighbor cache and move routes across tables */
1034static void cycle_netdev(struct net_device *dev,
1035			 struct netlink_ext_ack *extack)
1036{
1037	unsigned int flags = dev->flags;
1038	int ret;
1039
1040	if (!netif_running(dev))
1041		return;
1042
1043	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1044	if (ret >= 0)
1045		ret = dev_change_flags(dev, flags, extack);
1046
1047	if (ret < 0) {
1048		netdev_err(dev,
1049			   "Failed to cycle device %s; route tables might be wrong!\n",
1050			   dev->name);
1051	}
1052}
1053
1054static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1055			    struct netlink_ext_ack *extack)
1056{
1057	int ret;
1058
1059	/* do not allow loopback device to be enslaved to a VRF.
1060	 * The vrf device acts as the loopback for the vrf.
1061	 */
1062	if (port_dev == dev_net(dev)->loopback_dev) {
1063		NL_SET_ERR_MSG(extack,
1064			       "Can not enslave loopback device to a VRF");
1065		return -EOPNOTSUPP;
1066	}
1067
1068	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1069	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1070	if (ret < 0)
1071		goto err;
1072
1073	cycle_netdev(port_dev, extack);
1074
1075	return 0;
1076
1077err:
1078	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1079	return ret;
1080}
1081
1082static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1083			 struct netlink_ext_ack *extack)
1084{
1085	if (netif_is_l3_master(port_dev)) {
1086		NL_SET_ERR_MSG(extack,
1087			       "Can not enslave an L3 master device to a VRF");
1088		return -EINVAL;
1089	}
1090
1091	if (netif_is_l3_slave(port_dev))
1092		return -EINVAL;
1093
1094	return do_vrf_add_slave(dev, port_dev, extack);
1095}
1096
1097/* inverse of do_vrf_add_slave */
1098static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1099{
1100	netdev_upper_dev_unlink(port_dev, dev);
1101	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1102
1103	cycle_netdev(port_dev, NULL);
1104
1105	return 0;
1106}
1107
1108static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1109{
1110	return do_vrf_del_slave(dev, port_dev);
1111}
1112
1113static void vrf_dev_uninit(struct net_device *dev)
1114{
1115	struct net_vrf *vrf = netdev_priv(dev);
1116
1117	vrf_rtable_release(dev, vrf);
1118	vrf_rt6_release(dev, vrf);
1119
1120	free_percpu(dev->dstats);
1121	dev->dstats = NULL;
1122}
1123
1124static int vrf_dev_init(struct net_device *dev)
1125{
1126	struct net_vrf *vrf = netdev_priv(dev);
1127
1128	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1129	if (!dev->dstats)
1130		goto out_nomem;
1131
1132	/* create the default dst which points back to us */
1133	if (vrf_rtable_create(dev) != 0)
1134		goto out_stats;
1135
1136	if (vrf_rt6_create(dev) != 0)
1137		goto out_rth;
1138
1139	dev->flags = IFF_MASTER | IFF_NOARP;
1140
1141	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
1142	dev->mtu = 64 * 1024;
1143
1144	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1145	dev->operstate = IF_OPER_UP;
1146	netdev_lockdep_set_classes(dev);
1147	return 0;
1148
1149out_rth:
1150	vrf_rtable_release(dev, vrf);
1151out_stats:
1152	free_percpu(dev->dstats);
1153	dev->dstats = NULL;
1154out_nomem:
1155	return -ENOMEM;
1156}
1157
1158static const struct net_device_ops vrf_netdev_ops = {
1159	.ndo_init		= vrf_dev_init,
1160	.ndo_uninit		= vrf_dev_uninit,
1161	.ndo_start_xmit		= vrf_xmit,
1162	.ndo_set_mac_address	= eth_mac_addr,
1163	.ndo_get_stats64	= vrf_get_stats64,
1164	.ndo_add_slave		= vrf_add_slave,
1165	.ndo_del_slave		= vrf_del_slave,
1166};
1167
1168static u32 vrf_fib_table(const struct net_device *dev)
1169{
1170	struct net_vrf *vrf = netdev_priv(dev);
1171
1172	return vrf->tb_id;
1173}
1174
1175static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1176{
1177	kfree_skb(skb);
1178	return 0;
1179}
1180
1181static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1182				      struct sk_buff *skb,
1183				      struct net_device *dev)
1184{
1185	struct net *net = dev_net(dev);
1186
1187	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1188		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1189
1190	return skb;
1191}
1192
1193#if IS_ENABLED(CONFIG_IPV6)
1194/* neighbor handling is done with actual device; do not want
1195 * to flip skb->dev for those ndisc packets. This really fails
1196 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1197 * a start.
1198 */
1199static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1200{
1201	const struct ipv6hdr *iph = ipv6_hdr(skb);
1202	bool rc = false;
1203
1204	if (iph->nexthdr == NEXTHDR_ICMP) {
1205		const struct icmp6hdr *icmph;
1206		struct icmp6hdr _icmph;
1207
1208		icmph = skb_header_pointer(skb, sizeof(*iph),
1209					   sizeof(_icmph), &_icmph);
1210		if (!icmph)
1211			goto out;
1212
1213		switch (icmph->icmp6_type) {
1214		case NDISC_ROUTER_SOLICITATION:
1215		case NDISC_ROUTER_ADVERTISEMENT:
1216		case NDISC_NEIGHBOUR_SOLICITATION:
1217		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1218		case NDISC_REDIRECT:
1219			rc = true;
1220			break;
1221		}
1222	}
1223
1224out:
1225	return rc;
1226}
1227
1228static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1229					     const struct net_device *dev,
1230					     struct flowi6 *fl6,
1231					     int ifindex,
1232					     const struct sk_buff *skb,
1233					     int flags)
1234{
1235	struct net_vrf *vrf = netdev_priv(dev);
 
 
 
 
1236
1237	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
 
 
 
 
 
 
 
 
 
 
1238}
1239
1240static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1241			      int ifindex)
1242{
1243	const struct ipv6hdr *iph = ipv6_hdr(skb);
1244	struct flowi6 fl6 = {
1245		.flowi6_iif     = ifindex,
1246		.flowi6_mark    = skb->mark,
1247		.flowi6_proto   = iph->nexthdr,
1248		.daddr          = iph->daddr,
1249		.saddr          = iph->saddr,
1250		.flowlabel      = ip6_flowinfo(iph),
1251	};
1252	struct net *net = dev_net(vrf_dev);
1253	struct rt6_info *rt6;
1254
1255	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1256				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1257	if (unlikely(!rt6))
1258		return;
1259
1260	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1261		return;
1262
1263	skb_dst_set(skb, &rt6->dst);
1264}
1265
1266static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1267				   struct sk_buff *skb)
1268{
1269	int orig_iif = skb->skb_iif;
1270	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1271	bool is_ndisc = ipv6_ndisc_frame(skb);
1272
1273	/* loopback, multicast & non-ND link-local traffic; do not push through
1274	 * packet taps again. Reset pkt_type for upper layers to process skb
1275	 */
1276	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1277		skb->dev = vrf_dev;
1278		skb->skb_iif = vrf_dev->ifindex;
1279		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1280		if (skb->pkt_type == PACKET_LOOPBACK)
1281			skb->pkt_type = PACKET_HOST;
1282		goto out;
1283	}
1284
1285	/* if packet is NDISC then keep the ingress interface */
1286	if (!is_ndisc) {
 
 
 
1287		vrf_rx_stats(vrf_dev, skb->len);
1288		skb->dev = vrf_dev;
1289		skb->skb_iif = vrf_dev->ifindex;
1290
1291		if (!list_empty(&vrf_dev->ptype_all)) {
1292			skb_push(skb, skb->mac_len);
1293			dev_queue_xmit_nit(skb, vrf_dev);
1294			skb_pull(skb, skb->mac_len);
1295		}
1296
1297		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1298	}
1299
1300	if (need_strict)
1301		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1302
1303	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1304out:
1305	return skb;
1306}
1307
1308#else
1309static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1310				   struct sk_buff *skb)
1311{
1312	return skb;
1313}
1314#endif
1315
1316static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1317				  struct sk_buff *skb)
1318{
1319	skb->dev = vrf_dev;
1320	skb->skb_iif = vrf_dev->ifindex;
1321	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1322
1323	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1324		goto out;
1325
1326	/* loopback traffic; do not push through packet taps again.
1327	 * Reset pkt_type for upper layers to process skb
1328	 */
1329	if (skb->pkt_type == PACKET_LOOPBACK) {
1330		skb->pkt_type = PACKET_HOST;
1331		goto out;
1332	}
1333
1334	vrf_rx_stats(vrf_dev, skb->len);
1335
1336	if (!list_empty(&vrf_dev->ptype_all)) {
1337		skb_push(skb, skb->mac_len);
1338		dev_queue_xmit_nit(skb, vrf_dev);
1339		skb_pull(skb, skb->mac_len);
1340	}
1341
1342	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1343out:
1344	return skb;
1345}
1346
1347/* called with rcu lock held */
1348static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1349				  struct sk_buff *skb,
1350				  u16 proto)
1351{
1352	switch (proto) {
1353	case AF_INET:
1354		return vrf_ip_rcv(vrf_dev, skb);
1355	case AF_INET6:
1356		return vrf_ip6_rcv(vrf_dev, skb);
1357	}
1358
1359	return skb;
1360}
1361
1362#if IS_ENABLED(CONFIG_IPV6)
1363/* send to link-local or multicast address via interface enslaved to
1364 * VRF device. Force lookup to VRF table without changing flow struct
1365 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1366 * is taken on the dst by this function.
1367 */
1368static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1369					      struct flowi6 *fl6)
1370{
1371	struct net *net = dev_net(dev);
1372	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1373	struct dst_entry *dst = NULL;
1374	struct rt6_info *rt;
1375
1376	/* VRF device does not have a link-local address and
1377	 * sending packets to link-local or mcast addresses over
1378	 * a VRF device does not make sense
1379	 */
1380	if (fl6->flowi6_oif == dev->ifindex) {
1381		dst = &net->ipv6.ip6_null_entry->dst;
 
1382		return dst;
1383	}
1384
1385	if (!ipv6_addr_any(&fl6->saddr))
1386		flags |= RT6_LOOKUP_F_HAS_SADDR;
1387
1388	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1389	if (rt)
1390		dst = &rt->dst;
1391
1392	return dst;
1393}
1394#endif
1395
1396static const struct l3mdev_ops vrf_l3mdev_ops = {
1397	.l3mdev_fib_table	= vrf_fib_table,
1398	.l3mdev_l3_rcv		= vrf_l3_rcv,
1399	.l3mdev_l3_out		= vrf_l3_out,
1400#if IS_ENABLED(CONFIG_IPV6)
1401	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1402#endif
1403};
1404
1405static void vrf_get_drvinfo(struct net_device *dev,
1406			    struct ethtool_drvinfo *info)
1407{
1408	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1409	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1410}
1411
1412static const struct ethtool_ops vrf_ethtool_ops = {
1413	.get_drvinfo	= vrf_get_drvinfo,
1414};
1415
1416static inline size_t vrf_fib_rule_nl_size(void)
1417{
1418	size_t sz;
1419
1420	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1421	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1422	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1423	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1424
1425	return sz;
1426}
1427
1428static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1429{
1430	struct fib_rule_hdr *frh;
1431	struct nlmsghdr *nlh;
1432	struct sk_buff *skb;
1433	int err;
1434
1435	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1436	    !ipv6_mod_enabled())
1437		return 0;
1438
1439	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1440	if (!skb)
1441		return -ENOMEM;
1442
1443	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1444	if (!nlh)
1445		goto nla_put_failure;
1446
1447	/* rule only needs to appear once */
1448	nlh->nlmsg_flags |= NLM_F_EXCL;
1449
1450	frh = nlmsg_data(nlh);
1451	memset(frh, 0, sizeof(*frh));
1452	frh->family = family;
1453	frh->action = FR_ACT_TO_TBL;
1454
1455	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1456		goto nla_put_failure;
1457
1458	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1459		goto nla_put_failure;
1460
1461	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1462		goto nla_put_failure;
1463
1464	nlmsg_end(skb, nlh);
1465
1466	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1467	skb->sk = dev_net(dev)->rtnl;
1468	if (add_it) {
1469		err = fib_nl_newrule(skb, nlh, NULL);
1470		if (err == -EEXIST)
1471			err = 0;
1472	} else {
1473		err = fib_nl_delrule(skb, nlh, NULL);
1474		if (err == -ENOENT)
1475			err = 0;
1476	}
1477	nlmsg_free(skb);
1478
1479	return err;
1480
1481nla_put_failure:
1482	nlmsg_free(skb);
1483
1484	return -EMSGSIZE;
1485}
1486
1487static int vrf_add_fib_rules(const struct net_device *dev)
1488{
1489	int err;
1490
1491	err = vrf_fib_rule(dev, AF_INET,  true);
1492	if (err < 0)
1493		goto out_err;
1494
1495	err = vrf_fib_rule(dev, AF_INET6, true);
1496	if (err < 0)
1497		goto ipv6_err;
1498
1499#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1500	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1501	if (err < 0)
1502		goto ipmr_err;
1503#endif
1504
1505#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1506	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1507	if (err < 0)
1508		goto ip6mr_err;
1509#endif
1510
1511	return 0;
1512
1513#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1514ip6mr_err:
1515	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1516#endif
1517
1518#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1519ipmr_err:
1520	vrf_fib_rule(dev, AF_INET6,  false);
1521#endif
1522
1523ipv6_err:
1524	vrf_fib_rule(dev, AF_INET,  false);
1525
1526out_err:
1527	netdev_err(dev, "Failed to add FIB rules.\n");
1528	return err;
1529}
1530
1531static void vrf_setup(struct net_device *dev)
1532{
1533	ether_setup(dev);
1534
1535	/* Initialize the device structure. */
1536	dev->netdev_ops = &vrf_netdev_ops;
1537	dev->l3mdev_ops = &vrf_l3mdev_ops;
1538	dev->ethtool_ops = &vrf_ethtool_ops;
1539	dev->needs_free_netdev = true;
1540
1541	/* Fill in device structure with ethernet-generic values. */
1542	eth_hw_addr_random(dev);
1543
1544	/* don't acquire vrf device's netif_tx_lock when transmitting */
1545	dev->features |= NETIF_F_LLTX;
1546
1547	/* don't allow vrf devices to change network namespaces. */
1548	dev->features |= NETIF_F_NETNS_LOCAL;
1549
1550	/* does not make sense for a VLAN to be added to a vrf device */
1551	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1552
1553	/* enable offload features */
1554	dev->features   |= NETIF_F_GSO_SOFTWARE;
1555	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1556	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1557
1558	dev->hw_features = dev->features;
1559	dev->hw_enc_features = dev->features;
1560
1561	/* default to no qdisc; user can add if desired */
1562	dev->priv_flags |= IFF_NO_QUEUE;
1563	dev->priv_flags |= IFF_NO_RX_HANDLER;
1564	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1565
1566	/* VRF devices do not care about MTU, but if the MTU is set
1567	 * too low then the ipv4 and ipv6 protocols are disabled
1568	 * which breaks networking.
1569	 */
1570	dev->min_mtu = IPV6_MIN_MTU;
1571	dev->max_mtu = ETH_MAX_MTU;
1572}
1573
1574static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1575			struct netlink_ext_ack *extack)
1576{
1577	if (tb[IFLA_ADDRESS]) {
1578		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1579			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1580			return -EINVAL;
1581		}
1582		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1583			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1584			return -EADDRNOTAVAIL;
1585		}
1586	}
1587	return 0;
1588}
1589
1590static void vrf_dellink(struct net_device *dev, struct list_head *head)
1591{
1592	struct net_device *port_dev;
1593	struct list_head *iter;
1594
1595	netdev_for_each_lower_dev(dev, port_dev, iter)
1596		vrf_del_slave(dev, port_dev);
1597
1598	vrf_map_unregister_dev(dev);
1599
1600	unregister_netdevice_queue(dev, head);
1601}
1602
1603static int vrf_newlink(struct net *src_net, struct net_device *dev,
1604		       struct nlattr *tb[], struct nlattr *data[],
1605		       struct netlink_ext_ack *extack)
1606{
1607	struct net_vrf *vrf = netdev_priv(dev);
1608	struct netns_vrf *nn_vrf;
1609	bool *add_fib_rules;
1610	struct net *net;
1611	int err;
1612
1613	if (!data || !data[IFLA_VRF_TABLE]) {
1614		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1615		return -EINVAL;
1616	}
1617
1618	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1619	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1620		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1621				    "Invalid VRF table id");
1622		return -EINVAL;
1623	}
1624
1625	dev->priv_flags |= IFF_L3MDEV_MASTER;
1626
1627	err = register_netdevice(dev);
1628	if (err)
1629		goto out;
1630
1631	/* mapping between table_id and vrf;
1632	 * note: such binding could not be done in the dev init function
1633	 * because dev->ifindex id is not available yet.
1634	 */
1635	vrf->ifindex = dev->ifindex;
1636
1637	err = vrf_map_register_dev(dev, extack);
1638	if (err) {
1639		unregister_netdevice(dev);
1640		goto out;
1641	}
1642
1643	net = dev_net(dev);
1644	nn_vrf = net_generic(net, vrf_net_id);
1645
1646	add_fib_rules = &nn_vrf->add_fib_rules;
1647	if (*add_fib_rules) {
1648		err = vrf_add_fib_rules(dev);
1649		if (err) {
1650			vrf_map_unregister_dev(dev);
1651			unregister_netdevice(dev);
1652			goto out;
1653		}
1654		*add_fib_rules = false;
1655	}
1656
1657out:
1658	return err;
1659}
1660
1661static size_t vrf_nl_getsize(const struct net_device *dev)
1662{
1663	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1664}
1665
1666static int vrf_fillinfo(struct sk_buff *skb,
1667			const struct net_device *dev)
1668{
1669	struct net_vrf *vrf = netdev_priv(dev);
1670
1671	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1672}
1673
1674static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1675				 const struct net_device *slave_dev)
1676{
1677	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1678}
1679
1680static int vrf_fill_slave_info(struct sk_buff *skb,
1681			       const struct net_device *vrf_dev,
1682			       const struct net_device *slave_dev)
1683{
1684	struct net_vrf *vrf = netdev_priv(vrf_dev);
1685
1686	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1687		return -EMSGSIZE;
1688
1689	return 0;
1690}
1691
1692static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1693	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1694};
1695
1696static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1697	.kind		= DRV_NAME,
1698	.priv_size	= sizeof(struct net_vrf),
1699
1700	.get_size	= vrf_nl_getsize,
1701	.policy		= vrf_nl_policy,
1702	.validate	= vrf_validate,
1703	.fill_info	= vrf_fillinfo,
1704
1705	.get_slave_size  = vrf_get_slave_size,
1706	.fill_slave_info = vrf_fill_slave_info,
1707
1708	.newlink	= vrf_newlink,
1709	.dellink	= vrf_dellink,
1710	.setup		= vrf_setup,
1711	.maxtype	= IFLA_VRF_MAX,
1712};
1713
1714static int vrf_device_event(struct notifier_block *unused,
1715			    unsigned long event, void *ptr)
1716{
1717	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1718
1719	/* only care about unregister events to drop slave references */
1720	if (event == NETDEV_UNREGISTER) {
1721		struct net_device *vrf_dev;
1722
1723		if (!netif_is_l3_slave(dev))
1724			goto out;
1725
1726		vrf_dev = netdev_master_upper_dev_get(dev);
1727		vrf_del_slave(vrf_dev, dev);
1728	}
1729out:
1730	return NOTIFY_DONE;
1731}
1732
1733static struct notifier_block vrf_notifier_block __read_mostly = {
1734	.notifier_call = vrf_device_event,
1735};
1736
1737static int vrf_map_init(struct vrf_map *vmap)
1738{
1739	spin_lock_init(&vmap->vmap_lock);
1740	hash_init(vmap->ht);
1741
1742	vmap->strict_mode = false;
1743
1744	return 0;
1745}
1746
1747#ifdef CONFIG_SYSCTL
1748static bool vrf_strict_mode(struct vrf_map *vmap)
1749{
1750	bool strict_mode;
1751
1752	vrf_map_lock(vmap);
1753	strict_mode = vmap->strict_mode;
1754	vrf_map_unlock(vmap);
1755
1756	return strict_mode;
1757}
1758
1759static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1760{
1761	bool *cur_mode;
1762	int res = 0;
1763
1764	vrf_map_lock(vmap);
1765
1766	cur_mode = &vmap->strict_mode;
1767	if (*cur_mode == new_mode)
1768		goto unlock;
1769
1770	if (*cur_mode) {
1771		/* disable strict mode */
1772		*cur_mode = false;
1773	} else {
1774		if (vmap->shared_tables) {
1775			/* we cannot allow strict_mode because there are some
1776			 * vrfs that share one or more tables.
1777			 */
1778			res = -EBUSY;
1779			goto unlock;
1780		}
1781
1782		/* no tables are shared among vrfs, so we can go back
1783		 * to 1:1 association between a vrf with its table.
1784		 */
1785		*cur_mode = true;
1786	}
1787
1788unlock:
1789	vrf_map_unlock(vmap);
1790
1791	return res;
1792}
1793
1794static int vrf_shared_table_handler(struct ctl_table *table, int write,
1795				    void *buffer, size_t *lenp, loff_t *ppos)
1796{
1797	struct net *net = (struct net *)table->extra1;
1798	struct vrf_map *vmap = netns_vrf_map(net);
1799	int proc_strict_mode = 0;
1800	struct ctl_table tmp = {
1801		.procname	= table->procname,
1802		.data		= &proc_strict_mode,
1803		.maxlen		= sizeof(int),
1804		.mode		= table->mode,
1805		.extra1		= SYSCTL_ZERO,
1806		.extra2		= SYSCTL_ONE,
1807	};
1808	int ret;
1809
1810	if (!write)
1811		proc_strict_mode = vrf_strict_mode(vmap);
1812
1813	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1814
1815	if (write && ret == 0)
1816		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1817
1818	return ret;
1819}
1820
1821static const struct ctl_table vrf_table[] = {
1822	{
1823		.procname	= "strict_mode",
1824		.data		= NULL,
1825		.maxlen		= sizeof(int),
1826		.mode		= 0644,
1827		.proc_handler	= vrf_shared_table_handler,
1828		/* set by the vrf_netns_init */
1829		.extra1		= NULL,
1830	},
1831	{ },
1832};
1833
1834static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1835{
1836	struct ctl_table *table;
1837
1838	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1839	if (!table)
1840		return -ENOMEM;
1841
1842	/* init the extra1 parameter with the reference to current netns */
1843	table[0].extra1 = net;
1844
1845	nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1846	if (!nn_vrf->ctl_hdr) {
1847		kfree(table);
1848		return -ENOMEM;
1849	}
1850
1851	return 0;
1852}
1853
1854static void vrf_netns_exit_sysctl(struct net *net)
1855{
1856	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1857	struct ctl_table *table;
1858
1859	table = nn_vrf->ctl_hdr->ctl_table_arg;
1860	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1861	kfree(table);
1862}
1863#else
1864static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1865{
1866	return 0;
1867}
1868
1869static void vrf_netns_exit_sysctl(struct net *net)
1870{
1871}
1872#endif
1873
1874/* Initialize per network namespace state */
1875static int __net_init vrf_netns_init(struct net *net)
1876{
1877	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1878
1879	nn_vrf->add_fib_rules = true;
1880	vrf_map_init(&nn_vrf->vmap);
1881
1882	return vrf_netns_init_sysctl(net, nn_vrf);
1883}
1884
1885static void __net_exit vrf_netns_exit(struct net *net)
1886{
1887	vrf_netns_exit_sysctl(net);
1888}
1889
1890static struct pernet_operations vrf_net_ops __net_initdata = {
1891	.init = vrf_netns_init,
1892	.exit = vrf_netns_exit,
1893	.id   = &vrf_net_id,
1894	.size = sizeof(struct netns_vrf),
1895};
1896
1897static int __init vrf_init_module(void)
1898{
1899	int rc;
1900
1901	register_netdevice_notifier(&vrf_notifier_block);
1902
1903	rc = register_pernet_subsys(&vrf_net_ops);
1904	if (rc < 0)
1905		goto error;
1906
1907	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1908					  vrf_ifindex_lookup_by_table_id);
1909	if (rc < 0)
1910		goto unreg_pernet;
1911
1912	rc = rtnl_link_register(&vrf_link_ops);
1913	if (rc < 0)
1914		goto table_lookup_unreg;
 
 
1915
1916	return 0;
1917
1918table_lookup_unreg:
1919	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1920				       vrf_ifindex_lookup_by_table_id);
1921
1922unreg_pernet:
1923	unregister_pernet_subsys(&vrf_net_ops);
1924
1925error:
1926	unregister_netdevice_notifier(&vrf_notifier_block);
1927	return rc;
1928}
1929
1930module_init(vrf_init_module);
1931MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1932MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1933MODULE_LICENSE("GPL");
1934MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1935MODULE_VERSION(DRV_VERSION);