Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * PHY drivers for the sungem ethernet driver.
   3 *
   4 * This file could be shared with other drivers.
   5 *
   6 * (c) 2002-2007, Benjamin Herrenscmidt (benh@kernel.crashing.org)
   7 *
   8 * TODO:
   9 *  - Add support for PHYs that provide an IRQ line
  10 *  - Eventually moved the entire polling state machine in
  11 *    there (out of the eth driver), so that it can easily be
  12 *    skipped on PHYs that implement it in hardware.
  13 *  - On LXT971 & BCM5201, Apple uses some chip specific regs
  14 *    to read the link status. Figure out why and if it makes
  15 *    sense to do the same (magic aneg ?)
  16 *  - Apple has some additional power management code for some
  17 *    Broadcom PHYs that they "hide" from the OpenSource version
  18 *    of darwin, still need to reverse engineer that
  19 */
  20
  21
  22#include <linux/module.h>
  23
  24#include <linux/kernel.h>
  25#include <linux/types.h>
  26#include <linux/netdevice.h>
  27#include <linux/etherdevice.h>
  28#include <linux/mii.h>
  29#include <linux/ethtool.h>
  30#include <linux/delay.h>
  31
  32#ifdef CONFIG_PPC_PMAC
  33#include <asm/prom.h>
  34#endif
  35
  36#include <linux/sungem_phy.h>
  37
  38/* Link modes of the BCM5400 PHY */
  39static const int phy_BCM5400_link_table[8][3] = {
  40	{ 0, 0, 0 },	/* No link */
  41	{ 0, 0, 0 },	/* 10BT Half Duplex */
  42	{ 1, 0, 0 },	/* 10BT Full Duplex */
  43	{ 0, 1, 0 },	/* 100BT Half Duplex */
  44	{ 0, 1, 0 },	/* 100BT Half Duplex */
  45	{ 1, 1, 0 },	/* 100BT Full Duplex*/
  46	{ 1, 0, 1 },	/* 1000BT */
  47	{ 1, 0, 1 },	/* 1000BT */
  48};
  49
  50static inline int __sungem_phy_read(struct mii_phy* phy, int id, int reg)
  51{
  52	return phy->mdio_read(phy->dev, id, reg);
  53}
  54
  55static inline void __sungem_phy_write(struct mii_phy* phy, int id, int reg, int val)
  56{
  57	phy->mdio_write(phy->dev, id, reg, val);
  58}
  59
  60static inline int sungem_phy_read(struct mii_phy* phy, int reg)
  61{
  62	return phy->mdio_read(phy->dev, phy->mii_id, reg);
  63}
  64
  65static inline void sungem_phy_write(struct mii_phy* phy, int reg, int val)
  66{
  67	phy->mdio_write(phy->dev, phy->mii_id, reg, val);
  68}
  69
  70static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
  71{
  72	u16 val;
  73	int limit = 10000;
  74
  75	val = __sungem_phy_read(phy, phy_id, MII_BMCR);
  76	val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
  77	val |= BMCR_RESET;
  78	__sungem_phy_write(phy, phy_id, MII_BMCR, val);
  79
  80	udelay(100);
  81
  82	while (--limit) {
  83		val = __sungem_phy_read(phy, phy_id, MII_BMCR);
  84		if ((val & BMCR_RESET) == 0)
  85			break;
  86		udelay(10);
  87	}
  88	if ((val & BMCR_ISOLATE) && limit > 0)
  89		__sungem_phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
  90
  91	return limit <= 0;
  92}
  93
  94static int bcm5201_init(struct mii_phy* phy)
  95{
  96	u16 data;
  97
  98	data = sungem_phy_read(phy, MII_BCM5201_MULTIPHY);
  99	data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
 100	sungem_phy_write(phy, MII_BCM5201_MULTIPHY, data);
 101
 102	sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
 103
 104	return 0;
 105}
 106
 107static int bcm5201_suspend(struct mii_phy* phy)
 108{
 109	sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
 110	sungem_phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
 111
 112	return 0;
 113}
 114
 115static int bcm5221_init(struct mii_phy* phy)
 116{
 117	u16 data;
 118
 119	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 120	sungem_phy_write(phy, MII_BCM5221_TEST,
 121		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 122
 123	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
 124	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
 125		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
 126
 127	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 128	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 129		data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
 130
 131	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 132	sungem_phy_write(phy, MII_BCM5221_TEST,
 133		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
 134
 135	return 0;
 136}
 137
 138static int bcm5221_suspend(struct mii_phy* phy)
 139{
 140	u16 data;
 141
 142	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 143	sungem_phy_write(phy, MII_BCM5221_TEST,
 144		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 145
 146	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 147	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 148		  data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
 149
 150	return 0;
 151}
 152
 153static int bcm5241_init(struct mii_phy* phy)
 154{
 155	u16 data;
 156
 157	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 158	sungem_phy_write(phy, MII_BCM5221_TEST,
 159		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 160
 161	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
 162	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
 163		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
 164
 165	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 166	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 167		data & ~MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
 168
 169	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 170	sungem_phy_write(phy, MII_BCM5221_TEST,
 171		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
 172
 173	return 0;
 174}
 175
 176static int bcm5241_suspend(struct mii_phy* phy)
 177{
 178	u16 data;
 179
 180	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 181	sungem_phy_write(phy, MII_BCM5221_TEST,
 182		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 183
 184	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 185	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 186		  data | MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
 187
 188	return 0;
 189}
 190
 191static int bcm5400_init(struct mii_phy* phy)
 192{
 193	u16 data;
 194
 195	/* Configure for gigabit full duplex */
 196	data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
 197	data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
 198	sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
 199
 200	data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
 201	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
 202	sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
 203
 204	udelay(100);
 205
 206	/* Reset and configure cascaded 10/100 PHY */
 207	(void)reset_one_mii_phy(phy, 0x1f);
 208
 209	data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
 210	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
 211	__sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
 212
 213	data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
 214	data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
 215	sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
 216
 217	return 0;
 218}
 219
 220static int bcm5400_suspend(struct mii_phy* phy)
 221{
 222#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
 223	sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
 224#endif
 225	return 0;
 226}
 227
 228static int bcm5401_init(struct mii_phy* phy)
 229{
 230	u16 data;
 231	int rev;
 232
 233	rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
 234	if (rev == 0 || rev == 3) {
 235		/* Some revisions of 5401 appear to need this
 236		 * initialisation sequence to disable, according
 237		 * to OF, "tap power management"
 238		 *
 239		 * WARNING ! OF and Darwin don't agree on the
 240		 * register addresses. OF seem to interpret the
 241		 * register numbers below as decimal
 242		 *
 243		 * Note: This should (and does) match tg3_init_5401phy_dsp
 244		 *       in the tg3.c driver. -DaveM
 245		 */
 246		sungem_phy_write(phy, 0x18, 0x0c20);
 247		sungem_phy_write(phy, 0x17, 0x0012);
 248		sungem_phy_write(phy, 0x15, 0x1804);
 249		sungem_phy_write(phy, 0x17, 0x0013);
 250		sungem_phy_write(phy, 0x15, 0x1204);
 251		sungem_phy_write(phy, 0x17, 0x8006);
 252		sungem_phy_write(phy, 0x15, 0x0132);
 253		sungem_phy_write(phy, 0x17, 0x8006);
 254		sungem_phy_write(phy, 0x15, 0x0232);
 255		sungem_phy_write(phy, 0x17, 0x201f);
 256		sungem_phy_write(phy, 0x15, 0x0a20);
 257	}
 258
 259	/* Configure for gigabit full duplex */
 260	data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
 261	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
 262	sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
 263
 264	udelay(10);
 265
 266	/* Reset and configure cascaded 10/100 PHY */
 267	(void)reset_one_mii_phy(phy, 0x1f);
 268
 269	data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
 270	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
 271	__sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
 272
 273	return 0;
 274}
 275
 276static int bcm5401_suspend(struct mii_phy* phy)
 277{
 278#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
 279	sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
 280#endif
 281	return 0;
 282}
 283
 284static int bcm5411_init(struct mii_phy* phy)
 285{
 286	u16 data;
 287
 288	/* Here's some more Apple black magic to setup
 289	 * some voltage stuffs.
 290	 */
 291	sungem_phy_write(phy, 0x1c, 0x8c23);
 292	sungem_phy_write(phy, 0x1c, 0x8ca3);
 293	sungem_phy_write(phy, 0x1c, 0x8c23);
 294
 295	/* Here, Apple seems to want to reset it, do
 296	 * it as well
 297	 */
 298	sungem_phy_write(phy, MII_BMCR, BMCR_RESET);
 299	sungem_phy_write(phy, MII_BMCR, 0x1340);
 300
 301	data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
 302	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
 303	sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
 304
 305	udelay(10);
 306
 307	/* Reset and configure cascaded 10/100 PHY */
 308	(void)reset_one_mii_phy(phy, 0x1f);
 309
 310	return 0;
 311}
 312
 313static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
 314{
 315	u16 ctl, adv;
 316
 317	phy->autoneg = 1;
 318	phy->speed = SPEED_10;
 319	phy->duplex = DUPLEX_HALF;
 320	phy->pause = 0;
 321	phy->advertising = advertise;
 322
 323	/* Setup standard advertise */
 324	adv = sungem_phy_read(phy, MII_ADVERTISE);
 325	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
 326	if (advertise & ADVERTISED_10baseT_Half)
 327		adv |= ADVERTISE_10HALF;
 328	if (advertise & ADVERTISED_10baseT_Full)
 329		adv |= ADVERTISE_10FULL;
 330	if (advertise & ADVERTISED_100baseT_Half)
 331		adv |= ADVERTISE_100HALF;
 332	if (advertise & ADVERTISED_100baseT_Full)
 333		adv |= ADVERTISE_100FULL;
 334	sungem_phy_write(phy, MII_ADVERTISE, adv);
 335
 336	/* Start/Restart aneg */
 337	ctl = sungem_phy_read(phy, MII_BMCR);
 338	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
 339	sungem_phy_write(phy, MII_BMCR, ctl);
 340
 341	return 0;
 342}
 343
 344static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
 345{
 346	u16 ctl;
 347
 348	phy->autoneg = 0;
 349	phy->speed = speed;
 350	phy->duplex = fd;
 351	phy->pause = 0;
 352
 353	ctl = sungem_phy_read(phy, MII_BMCR);
 354	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
 355
 356	/* First reset the PHY */
 357	sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
 358
 359	/* Select speed & duplex */
 360	switch(speed) {
 361	case SPEED_10:
 362		break;
 363	case SPEED_100:
 364		ctl |= BMCR_SPEED100;
 365		break;
 366	case SPEED_1000:
 367	default:
 368		return -EINVAL;
 369	}
 370	if (fd == DUPLEX_FULL)
 371		ctl |= BMCR_FULLDPLX;
 372	sungem_phy_write(phy, MII_BMCR, ctl);
 373
 374	return 0;
 375}
 376
 377static int genmii_poll_link(struct mii_phy *phy)
 378{
 379	u16 status;
 380
 381	(void)sungem_phy_read(phy, MII_BMSR);
 382	status = sungem_phy_read(phy, MII_BMSR);
 383	if ((status & BMSR_LSTATUS) == 0)
 384		return 0;
 385	if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
 386		return 0;
 387	return 1;
 388}
 389
 390static int genmii_read_link(struct mii_phy *phy)
 391{
 392	u16 lpa;
 393
 394	if (phy->autoneg) {
 395		lpa = sungem_phy_read(phy, MII_LPA);
 396
 397		if (lpa & (LPA_10FULL | LPA_100FULL))
 398			phy->duplex = DUPLEX_FULL;
 399		else
 400			phy->duplex = DUPLEX_HALF;
 401		if (lpa & (LPA_100FULL | LPA_100HALF))
 402			phy->speed = SPEED_100;
 403		else
 404			phy->speed = SPEED_10;
 405		phy->pause = 0;
 406	}
 407	/* On non-aneg, we assume what we put in BMCR is the speed,
 408	 * though magic-aneg shouldn't prevent this case from occurring
 409	 */
 410
 411	 return 0;
 412}
 413
 414static int generic_suspend(struct mii_phy* phy)
 415{
 416	sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
 417
 418	return 0;
 419}
 420
 421static int bcm5421_init(struct mii_phy* phy)
 422{
 423	u16 data;
 424	unsigned int id;
 425
 426	id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
 427
 428	/* Revision 0 of 5421 needs some fixups */
 429	if (id == 0x002060e0) {
 430		/* This is borrowed from MacOS
 431		 */
 432		sungem_phy_write(phy, 0x18, 0x1007);
 433		data = sungem_phy_read(phy, 0x18);
 434		sungem_phy_write(phy, 0x18, data | 0x0400);
 435		sungem_phy_write(phy, 0x18, 0x0007);
 436		data = sungem_phy_read(phy, 0x18);
 437		sungem_phy_write(phy, 0x18, data | 0x0800);
 438		sungem_phy_write(phy, 0x17, 0x000a);
 439		data = sungem_phy_read(phy, 0x15);
 440		sungem_phy_write(phy, 0x15, data | 0x0200);
 441	}
 442
 443	/* Pick up some init code from OF for K2 version */
 444	if ((id & 0xfffffff0) == 0x002062e0) {
 445		sungem_phy_write(phy, 4, 0x01e1);
 446		sungem_phy_write(phy, 9, 0x0300);
 447	}
 448
 449	/* Check if we can enable automatic low power */
 450#ifdef CONFIG_PPC_PMAC
 451	if (phy->platform_data) {
 452		struct device_node *np = of_get_parent(phy->platform_data);
 453		int can_low_power = 1;
 454		if (np == NULL || of_get_property(np, "no-autolowpower", NULL))
 455			can_low_power = 0;
 456		if (can_low_power) {
 457			/* Enable automatic low-power */
 458			sungem_phy_write(phy, 0x1c, 0x9002);
 459			sungem_phy_write(phy, 0x1c, 0xa821);
 460			sungem_phy_write(phy, 0x1c, 0x941d);
 461		}
 462	}
 463#endif /* CONFIG_PPC_PMAC */
 464
 465	return 0;
 466}
 467
 468static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
 469{
 470	u16 ctl, adv;
 471
 472	phy->autoneg = 1;
 473	phy->speed = SPEED_10;
 474	phy->duplex = DUPLEX_HALF;
 475	phy->pause = 0;
 476	phy->advertising = advertise;
 477
 478	/* Setup standard advertise */
 479	adv = sungem_phy_read(phy, MII_ADVERTISE);
 480	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
 481	if (advertise & ADVERTISED_10baseT_Half)
 482		adv |= ADVERTISE_10HALF;
 483	if (advertise & ADVERTISED_10baseT_Full)
 484		adv |= ADVERTISE_10FULL;
 485	if (advertise & ADVERTISED_100baseT_Half)
 486		adv |= ADVERTISE_100HALF;
 487	if (advertise & ADVERTISED_100baseT_Full)
 488		adv |= ADVERTISE_100FULL;
 489	if (advertise & ADVERTISED_Pause)
 490		adv |= ADVERTISE_PAUSE_CAP;
 491	if (advertise & ADVERTISED_Asym_Pause)
 492		adv |= ADVERTISE_PAUSE_ASYM;
 493	sungem_phy_write(phy, MII_ADVERTISE, adv);
 494
 495	/* Setup 1000BT advertise */
 496	adv = sungem_phy_read(phy, MII_1000BASETCONTROL);
 497	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
 498	if (advertise & SUPPORTED_1000baseT_Half)
 499		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
 500	if (advertise & SUPPORTED_1000baseT_Full)
 501		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
 502	sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
 503
 504	/* Start/Restart aneg */
 505	ctl = sungem_phy_read(phy, MII_BMCR);
 506	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
 507	sungem_phy_write(phy, MII_BMCR, ctl);
 508
 509	return 0;
 510}
 511
 512static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
 513{
 514	u16 ctl;
 515
 516	phy->autoneg = 0;
 517	phy->speed = speed;
 518	phy->duplex = fd;
 519	phy->pause = 0;
 520
 521	ctl = sungem_phy_read(phy, MII_BMCR);
 522	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
 523
 524	/* First reset the PHY */
 525	sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
 526
 527	/* Select speed & duplex */
 528	switch(speed) {
 529	case SPEED_10:
 530		break;
 531	case SPEED_100:
 532		ctl |= BMCR_SPEED100;
 533		break;
 534	case SPEED_1000:
 535		ctl |= BMCR_SPD2;
 536	}
 537	if (fd == DUPLEX_FULL)
 538		ctl |= BMCR_FULLDPLX;
 539
 540	// XXX Should we set the sungem to GII now on 1000BT ?
 541
 542	sungem_phy_write(phy, MII_BMCR, ctl);
 543
 544	return 0;
 545}
 546
 547static int bcm54xx_read_link(struct mii_phy *phy)
 548{
 549	int link_mode;
 550	u16 val;
 551
 552	if (phy->autoneg) {
 553	    	val = sungem_phy_read(phy, MII_BCM5400_AUXSTATUS);
 554		link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
 555			     MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
 556		phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
 557			DUPLEX_FULL : DUPLEX_HALF;
 558		phy->speed = phy_BCM5400_link_table[link_mode][2] ?
 559				SPEED_1000 :
 560				(phy_BCM5400_link_table[link_mode][1] ?
 561				 SPEED_100 : SPEED_10);
 562		val = sungem_phy_read(phy, MII_LPA);
 563		phy->pause = (phy->duplex == DUPLEX_FULL) &&
 564			((val & LPA_PAUSE) != 0);
 565	}
 566	/* On non-aneg, we assume what we put in BMCR is the speed,
 567	 * though magic-aneg shouldn't prevent this case from occurring
 568	 */
 569
 570	return 0;
 571}
 572
 573static int marvell88e1111_init(struct mii_phy* phy)
 574{
 575	u16 rev;
 576
 577	/* magic init sequence for rev 0 */
 578	rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
 579	if (rev == 0) {
 580		sungem_phy_write(phy, 0x1d, 0x000a);
 581		sungem_phy_write(phy, 0x1e, 0x0821);
 582
 583		sungem_phy_write(phy, 0x1d, 0x0006);
 584		sungem_phy_write(phy, 0x1e, 0x8600);
 585
 586		sungem_phy_write(phy, 0x1d, 0x000b);
 587		sungem_phy_write(phy, 0x1e, 0x0100);
 588
 589		sungem_phy_write(phy, 0x1d, 0x0004);
 590		sungem_phy_write(phy, 0x1e, 0x4850);
 591	}
 592	return 0;
 593}
 594
 595#define BCM5421_MODE_MASK	(1 << 5)
 596
 597static int bcm5421_poll_link(struct mii_phy* phy)
 598{
 599	u32 phy_reg;
 600	int mode;
 601
 602	/* find out in what mode we are */
 603	sungem_phy_write(phy, MII_NCONFIG, 0x1000);
 604	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 605
 606	mode = (phy_reg & BCM5421_MODE_MASK) >> 5;
 607
 608	if ( mode == BCM54XX_COPPER)
 609		return genmii_poll_link(phy);
 610
 611	/* try to find out whether we have a link */
 612	sungem_phy_write(phy, MII_NCONFIG, 0x2000);
 613	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 614
 615	if (phy_reg & 0x0020)
 616		return 0;
 617	else
 618		return 1;
 619}
 620
 621static int bcm5421_read_link(struct mii_phy* phy)
 622{
 623	u32 phy_reg;
 624	int mode;
 625
 626	/* find out in what mode we are */
 627	sungem_phy_write(phy, MII_NCONFIG, 0x1000);
 628	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 629
 630	mode = (phy_reg & BCM5421_MODE_MASK ) >> 5;
 631
 632	if ( mode == BCM54XX_COPPER)
 633		return bcm54xx_read_link(phy);
 634
 635	phy->speed = SPEED_1000;
 636
 637	/* find out whether we are running half- or full duplex */
 638	sungem_phy_write(phy, MII_NCONFIG, 0x2000);
 639	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 640
 641	if ( (phy_reg & 0x0080) >> 7)
 642		phy->duplex |=  DUPLEX_HALF;
 643	else
 644		phy->duplex |=  DUPLEX_FULL;
 645
 646	return 0;
 647}
 648
 649static int bcm5421_enable_fiber(struct mii_phy* phy, int autoneg)
 650{
 651	/* enable fiber mode */
 652	sungem_phy_write(phy, MII_NCONFIG, 0x9020);
 653	/* LEDs active in both modes, autosense prio = fiber */
 654	sungem_phy_write(phy, MII_NCONFIG, 0x945f);
 655
 656	if (!autoneg) {
 657		/* switch off fibre autoneg */
 658		sungem_phy_write(phy, MII_NCONFIG, 0xfc01);
 659		sungem_phy_write(phy, 0x0b, 0x0004);
 660	}
 661
 662	phy->autoneg = autoneg;
 663
 664	return 0;
 665}
 666
 667#define BCM5461_FIBER_LINK	(1 << 2)
 668#define BCM5461_MODE_MASK	(3 << 1)
 669
 670static int bcm5461_poll_link(struct mii_phy* phy)
 671{
 672	u32 phy_reg;
 673	int mode;
 674
 675	/* find out in what mode we are */
 676	sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
 677	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 678
 679	mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
 680
 681	if ( mode == BCM54XX_COPPER)
 682		return genmii_poll_link(phy);
 683
 684	/* find out whether we have a link */
 685	sungem_phy_write(phy, MII_NCONFIG, 0x7000);
 686	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 687
 688	if (phy_reg & BCM5461_FIBER_LINK)
 689		return 1;
 690	else
 691		return 0;
 692}
 693
 694#define BCM5461_FIBER_DUPLEX	(1 << 3)
 695
 696static int bcm5461_read_link(struct mii_phy* phy)
 697{
 698	u32 phy_reg;
 699	int mode;
 700
 701	/* find out in what mode we are */
 702	sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
 703	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 704
 705	mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
 706
 707	if ( mode == BCM54XX_COPPER) {
 708		return bcm54xx_read_link(phy);
 709	}
 710
 711	phy->speed = SPEED_1000;
 712
 713	/* find out whether we are running half- or full duplex */
 714	sungem_phy_write(phy, MII_NCONFIG, 0x7000);
 715	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 716
 717	if (phy_reg & BCM5461_FIBER_DUPLEX)
 718		phy->duplex |=  DUPLEX_FULL;
 719	else
 720		phy->duplex |=  DUPLEX_HALF;
 721
 722	return 0;
 723}
 724
 725static int bcm5461_enable_fiber(struct mii_phy* phy, int autoneg)
 726{
 727	/* select fiber mode, enable 1000 base-X registers */
 728	sungem_phy_write(phy, MII_NCONFIG, 0xfc0b);
 729
 730	if (autoneg) {
 731		/* enable fiber with no autonegotiation */
 732		sungem_phy_write(phy, MII_ADVERTISE, 0x01e0);
 733		sungem_phy_write(phy, MII_BMCR, 0x1140);
 734	} else {
 735		/* enable fiber with autonegotiation */
 736		sungem_phy_write(phy, MII_BMCR, 0x0140);
 737	}
 738
 739	phy->autoneg = autoneg;
 740
 741	return 0;
 742}
 743
 744static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
 745{
 746	u16 ctl, adv;
 747
 748	phy->autoneg = 1;
 749	phy->speed = SPEED_10;
 750	phy->duplex = DUPLEX_HALF;
 751	phy->pause = 0;
 752	phy->advertising = advertise;
 753
 754	/* Setup standard advertise */
 755	adv = sungem_phy_read(phy, MII_ADVERTISE);
 756	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
 757	if (advertise & ADVERTISED_10baseT_Half)
 758		adv |= ADVERTISE_10HALF;
 759	if (advertise & ADVERTISED_10baseT_Full)
 760		adv |= ADVERTISE_10FULL;
 761	if (advertise & ADVERTISED_100baseT_Half)
 762		adv |= ADVERTISE_100HALF;
 763	if (advertise & ADVERTISED_100baseT_Full)
 764		adv |= ADVERTISE_100FULL;
 765	if (advertise & ADVERTISED_Pause)
 766		adv |= ADVERTISE_PAUSE_CAP;
 767	if (advertise & ADVERTISED_Asym_Pause)
 768		adv |= ADVERTISE_PAUSE_ASYM;
 769	sungem_phy_write(phy, MII_ADVERTISE, adv);
 770
 771	/* Setup 1000BT advertise & enable crossover detect
 772	 * XXX How do we advertise 1000BT ? Darwin source is
 773	 * confusing here, they read from specific control and
 774	 * write to control... Someone has specs for those
 775	 * beasts ?
 776	 */
 777	adv = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
 778	adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
 779	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
 780			MII_1000BASETCONTROL_HALFDUPLEXCAP);
 781	if (advertise & SUPPORTED_1000baseT_Half)
 782		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
 783	if (advertise & SUPPORTED_1000baseT_Full)
 784		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
 785	sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
 786
 787	/* Start/Restart aneg */
 788	ctl = sungem_phy_read(phy, MII_BMCR);
 789	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
 790	sungem_phy_write(phy, MII_BMCR, ctl);
 791
 792	return 0;
 793}
 794
 795static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
 796{
 797	u16 ctl, ctl2;
 798
 799	phy->autoneg = 0;
 800	phy->speed = speed;
 801	phy->duplex = fd;
 802	phy->pause = 0;
 803
 804	ctl = sungem_phy_read(phy, MII_BMCR);
 805	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
 806	ctl |= BMCR_RESET;
 807
 808	/* Select speed & duplex */
 809	switch(speed) {
 810	case SPEED_10:
 811		break;
 812	case SPEED_100:
 813		ctl |= BMCR_SPEED100;
 814		break;
 815	/* I'm not sure about the one below, again, Darwin source is
 816	 * quite confusing and I lack chip specs
 817	 */
 818	case SPEED_1000:
 819		ctl |= BMCR_SPD2;
 820	}
 821	if (fd == DUPLEX_FULL)
 822		ctl |= BMCR_FULLDPLX;
 823
 824	/* Disable crossover. Again, the way Apple does it is strange,
 825	 * though I don't assume they are wrong ;)
 826	 */
 827	ctl2 = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
 828	ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
 829		MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
 830		MII_1000BASETCONTROL_FULLDUPLEXCAP |
 831		MII_1000BASETCONTROL_HALFDUPLEXCAP);
 832	if (speed == SPEED_1000)
 833		ctl2 |= (fd == DUPLEX_FULL) ?
 834			MII_1000BASETCONTROL_FULLDUPLEXCAP :
 835			MII_1000BASETCONTROL_HALFDUPLEXCAP;
 836	sungem_phy_write(phy, MII_1000BASETCONTROL, ctl2);
 837
 838	// XXX Should we set the sungem to GII now on 1000BT ?
 839
 840	sungem_phy_write(phy, MII_BMCR, ctl);
 841
 842	return 0;
 843}
 844
 845static int marvell_read_link(struct mii_phy *phy)
 846{
 847	u16 status, pmask;
 848
 849	if (phy->autoneg) {
 850		status = sungem_phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
 851		if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
 852			return -EAGAIN;
 853		if (status & MII_M1011_PHY_SPEC_STATUS_1000)
 854			phy->speed = SPEED_1000;
 855		else if (status & MII_M1011_PHY_SPEC_STATUS_100)
 856			phy->speed = SPEED_100;
 857		else
 858			phy->speed = SPEED_10;
 859		if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
 860			phy->duplex = DUPLEX_FULL;
 861		else
 862			phy->duplex = DUPLEX_HALF;
 863		pmask = MII_M1011_PHY_SPEC_STATUS_TX_PAUSE |
 864			MII_M1011_PHY_SPEC_STATUS_RX_PAUSE;
 865		phy->pause = (status & pmask) == pmask;
 866	}
 867	/* On non-aneg, we assume what we put in BMCR is the speed,
 868	 * though magic-aneg shouldn't prevent this case from occurring
 869	 */
 870
 871	return 0;
 872}
 873
 874#define MII_BASIC_FEATURES \
 875	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |	\
 876	 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |	\
 877	 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII |	\
 878	 SUPPORTED_Pause)
 879
 880/* On gigabit capable PHYs, we advertise Pause support but not asym pause
 881 * support for now as I'm not sure it's supported and Darwin doesn't do
 882 * it neither. --BenH.
 883 */
 884#define MII_GBIT_FEATURES \
 885	(MII_BASIC_FEATURES |	\
 886	 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
 887
 888/* Broadcom BCM 5201 */
 889static const struct mii_phy_ops bcm5201_phy_ops = {
 890	.init		= bcm5201_init,
 891	.suspend	= bcm5201_suspend,
 892	.setup_aneg	= genmii_setup_aneg,
 893	.setup_forced	= genmii_setup_forced,
 894	.poll_link	= genmii_poll_link,
 895	.read_link	= genmii_read_link,
 896};
 897
 898static struct mii_phy_def bcm5201_phy_def = {
 899	.phy_id		= 0x00406210,
 900	.phy_id_mask	= 0xfffffff0,
 901	.name		= "BCM5201",
 902	.features	= MII_BASIC_FEATURES,
 903	.magic_aneg	= 1,
 904	.ops		= &bcm5201_phy_ops
 905};
 906
 907/* Broadcom BCM 5221 */
 908static const struct mii_phy_ops bcm5221_phy_ops = {
 909	.suspend	= bcm5221_suspend,
 910	.init		= bcm5221_init,
 911	.setup_aneg	= genmii_setup_aneg,
 912	.setup_forced	= genmii_setup_forced,
 913	.poll_link	= genmii_poll_link,
 914	.read_link	= genmii_read_link,
 915};
 916
 917static struct mii_phy_def bcm5221_phy_def = {
 918	.phy_id		= 0x004061e0,
 919	.phy_id_mask	= 0xfffffff0,
 920	.name		= "BCM5221",
 921	.features	= MII_BASIC_FEATURES,
 922	.magic_aneg	= 1,
 923	.ops		= &bcm5221_phy_ops
 924};
 925
 926/* Broadcom BCM 5241 */
 927static const struct mii_phy_ops bcm5241_phy_ops = {
 928	.suspend	= bcm5241_suspend,
 929	.init		= bcm5241_init,
 930	.setup_aneg	= genmii_setup_aneg,
 931	.setup_forced	= genmii_setup_forced,
 932	.poll_link	= genmii_poll_link,
 933	.read_link	= genmii_read_link,
 934};
 935static struct mii_phy_def bcm5241_phy_def = {
 936	.phy_id		= 0x0143bc30,
 937	.phy_id_mask	= 0xfffffff0,
 938	.name		= "BCM5241",
 939	.features	= MII_BASIC_FEATURES,
 940	.magic_aneg	= 1,
 941	.ops		= &bcm5241_phy_ops
 942};
 943
 944/* Broadcom BCM 5400 */
 945static const struct mii_phy_ops bcm5400_phy_ops = {
 946	.init		= bcm5400_init,
 947	.suspend	= bcm5400_suspend,
 948	.setup_aneg	= bcm54xx_setup_aneg,
 949	.setup_forced	= bcm54xx_setup_forced,
 950	.poll_link	= genmii_poll_link,
 951	.read_link	= bcm54xx_read_link,
 952};
 953
 954static struct mii_phy_def bcm5400_phy_def = {
 955	.phy_id		= 0x00206040,
 956	.phy_id_mask	= 0xfffffff0,
 957	.name		= "BCM5400",
 958	.features	= MII_GBIT_FEATURES,
 959	.magic_aneg	= 1,
 960	.ops		= &bcm5400_phy_ops
 961};
 962
 963/* Broadcom BCM 5401 */
 964static const struct mii_phy_ops bcm5401_phy_ops = {
 965	.init		= bcm5401_init,
 966	.suspend	= bcm5401_suspend,
 967	.setup_aneg	= bcm54xx_setup_aneg,
 968	.setup_forced	= bcm54xx_setup_forced,
 969	.poll_link	= genmii_poll_link,
 970	.read_link	= bcm54xx_read_link,
 971};
 972
 973static struct mii_phy_def bcm5401_phy_def = {
 974	.phy_id		= 0x00206050,
 975	.phy_id_mask	= 0xfffffff0,
 976	.name		= "BCM5401",
 977	.features	= MII_GBIT_FEATURES,
 978	.magic_aneg	= 1,
 979	.ops		= &bcm5401_phy_ops
 980};
 981
 982/* Broadcom BCM 5411 */
 983static const struct mii_phy_ops bcm5411_phy_ops = {
 984	.init		= bcm5411_init,
 985	.suspend	= generic_suspend,
 986	.setup_aneg	= bcm54xx_setup_aneg,
 987	.setup_forced	= bcm54xx_setup_forced,
 988	.poll_link	= genmii_poll_link,
 989	.read_link	= bcm54xx_read_link,
 990};
 991
 992static struct mii_phy_def bcm5411_phy_def = {
 993	.phy_id		= 0x00206070,
 994	.phy_id_mask	= 0xfffffff0,
 995	.name		= "BCM5411",
 996	.features	= MII_GBIT_FEATURES,
 997	.magic_aneg	= 1,
 998	.ops		= &bcm5411_phy_ops
 999};
1000
1001/* Broadcom BCM 5421 */
1002static const struct mii_phy_ops bcm5421_phy_ops = {
1003	.init		= bcm5421_init,
1004	.suspend	= generic_suspend,
1005	.setup_aneg	= bcm54xx_setup_aneg,
1006	.setup_forced	= bcm54xx_setup_forced,
1007	.poll_link	= bcm5421_poll_link,
1008	.read_link	= bcm5421_read_link,
1009	.enable_fiber   = bcm5421_enable_fiber,
1010};
1011
1012static struct mii_phy_def bcm5421_phy_def = {
1013	.phy_id		= 0x002060e0,
1014	.phy_id_mask	= 0xfffffff0,
1015	.name		= "BCM5421",
1016	.features	= MII_GBIT_FEATURES,
1017	.magic_aneg	= 1,
1018	.ops		= &bcm5421_phy_ops
1019};
1020
1021/* Broadcom BCM 5421 built-in K2 */
1022static const struct mii_phy_ops bcm5421k2_phy_ops = {
1023	.init		= bcm5421_init,
1024	.suspend	= generic_suspend,
1025	.setup_aneg	= bcm54xx_setup_aneg,
1026	.setup_forced	= bcm54xx_setup_forced,
1027	.poll_link	= genmii_poll_link,
1028	.read_link	= bcm54xx_read_link,
1029};
1030
1031static struct mii_phy_def bcm5421k2_phy_def = {
1032	.phy_id		= 0x002062e0,
1033	.phy_id_mask	= 0xfffffff0,
1034	.name		= "BCM5421-K2",
1035	.features	= MII_GBIT_FEATURES,
1036	.magic_aneg	= 1,
1037	.ops		= &bcm5421k2_phy_ops
1038};
1039
1040static const struct mii_phy_ops bcm5461_phy_ops = {
1041	.init		= bcm5421_init,
1042	.suspend	= generic_suspend,
1043	.setup_aneg	= bcm54xx_setup_aneg,
1044	.setup_forced	= bcm54xx_setup_forced,
1045	.poll_link	= bcm5461_poll_link,
1046	.read_link	= bcm5461_read_link,
1047	.enable_fiber   = bcm5461_enable_fiber,
1048};
1049
1050static struct mii_phy_def bcm5461_phy_def = {
1051	.phy_id		= 0x002060c0,
1052	.phy_id_mask	= 0xfffffff0,
1053	.name		= "BCM5461",
1054	.features	= MII_GBIT_FEATURES,
1055	.magic_aneg	= 1,
1056	.ops		= &bcm5461_phy_ops
1057};
1058
1059/* Broadcom BCM 5462 built-in Vesta */
1060static const struct mii_phy_ops bcm5462V_phy_ops = {
1061	.init		= bcm5421_init,
1062	.suspend	= generic_suspend,
1063	.setup_aneg	= bcm54xx_setup_aneg,
1064	.setup_forced	= bcm54xx_setup_forced,
1065	.poll_link	= genmii_poll_link,
1066	.read_link	= bcm54xx_read_link,
1067};
1068
1069static struct mii_phy_def bcm5462V_phy_def = {
1070	.phy_id		= 0x002060d0,
1071	.phy_id_mask	= 0xfffffff0,
1072	.name		= "BCM5462-Vesta",
1073	.features	= MII_GBIT_FEATURES,
1074	.magic_aneg	= 1,
1075	.ops		= &bcm5462V_phy_ops
1076};
1077
1078/* Marvell 88E1101 amd 88E1111 */
1079static const struct mii_phy_ops marvell88e1101_phy_ops = {
1080	.suspend	= generic_suspend,
1081	.setup_aneg	= marvell_setup_aneg,
1082	.setup_forced	= marvell_setup_forced,
1083	.poll_link	= genmii_poll_link,
1084	.read_link	= marvell_read_link
1085};
1086
1087static const struct mii_phy_ops marvell88e1111_phy_ops = {
1088	.init		= marvell88e1111_init,
1089	.suspend	= generic_suspend,
1090	.setup_aneg	= marvell_setup_aneg,
1091	.setup_forced	= marvell_setup_forced,
1092	.poll_link	= genmii_poll_link,
1093	.read_link	= marvell_read_link
1094};
1095
1096/* two revs in darwin for the 88e1101 ... I could use a datasheet
1097 * to get the proper names...
1098 */
1099static struct mii_phy_def marvell88e1101v1_phy_def = {
1100	.phy_id		= 0x01410c20,
1101	.phy_id_mask	= 0xfffffff0,
1102	.name		= "Marvell 88E1101v1",
1103	.features	= MII_GBIT_FEATURES,
1104	.magic_aneg	= 1,
1105	.ops		= &marvell88e1101_phy_ops
1106};
1107static struct mii_phy_def marvell88e1101v2_phy_def = {
1108	.phy_id		= 0x01410c60,
1109	.phy_id_mask	= 0xfffffff0,
1110	.name		= "Marvell 88E1101v2",
1111	.features	= MII_GBIT_FEATURES,
1112	.magic_aneg	= 1,
1113	.ops		= &marvell88e1101_phy_ops
1114};
1115static struct mii_phy_def marvell88e1111_phy_def = {
1116	.phy_id		= 0x01410cc0,
1117	.phy_id_mask	= 0xfffffff0,
1118	.name		= "Marvell 88E1111",
1119	.features	= MII_GBIT_FEATURES,
1120	.magic_aneg	= 1,
1121	.ops		= &marvell88e1111_phy_ops
1122};
1123
1124/* Generic implementation for most 10/100 PHYs */
1125static const struct mii_phy_ops generic_phy_ops = {
1126	.setup_aneg	= genmii_setup_aneg,
1127	.setup_forced	= genmii_setup_forced,
1128	.poll_link	= genmii_poll_link,
1129	.read_link	= genmii_read_link
1130};
1131
1132static struct mii_phy_def genmii_phy_def = {
1133	.phy_id		= 0x00000000,
1134	.phy_id_mask	= 0x00000000,
1135	.name		= "Generic MII",
1136	.features	= MII_BASIC_FEATURES,
1137	.magic_aneg	= 0,
1138	.ops		= &generic_phy_ops
1139};
1140
1141static struct mii_phy_def* mii_phy_table[] = {
1142	&bcm5201_phy_def,
1143	&bcm5221_phy_def,
1144	&bcm5241_phy_def,
1145	&bcm5400_phy_def,
1146	&bcm5401_phy_def,
1147	&bcm5411_phy_def,
1148	&bcm5421_phy_def,
1149	&bcm5421k2_phy_def,
1150	&bcm5461_phy_def,
1151	&bcm5462V_phy_def,
1152	&marvell88e1101v1_phy_def,
1153	&marvell88e1101v2_phy_def,
1154	&marvell88e1111_phy_def,
1155	&genmii_phy_def,
1156	NULL
1157};
1158
1159int sungem_phy_probe(struct mii_phy *phy, int mii_id)
1160{
1161	int rc;
1162	u32 id;
1163	struct mii_phy_def* def;
1164	int i;
1165
1166	/* We do not reset the mii_phy structure as the driver
1167	 * may re-probe the PHY regulary
1168	 */
1169	phy->mii_id = mii_id;
1170
1171	/* Take PHY out of isloate mode and reset it. */
1172	rc = reset_one_mii_phy(phy, mii_id);
1173	if (rc)
1174		goto fail;
1175
1176	/* Read ID and find matching entry */
1177	id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
1178	printk(KERN_DEBUG KBUILD_MODNAME ": " "PHY ID: %x, addr: %x\n",
1179	       id, mii_id);
1180	for (i=0; (def = mii_phy_table[i]) != NULL; i++)
1181		if ((id & def->phy_id_mask) == def->phy_id)
1182			break;
1183	/* Should never be NULL (we have a generic entry), but... */
1184	if (def == NULL)
1185		goto fail;
1186
1187	phy->def = def;
1188
1189	return 0;
1190fail:
1191	phy->speed = 0;
1192	phy->duplex = 0;
1193	phy->pause = 0;
1194	phy->advertising = 0;
1195	return -ENODEV;
1196}
1197
1198EXPORT_SYMBOL(sungem_phy_probe);
1199MODULE_LICENSE("GPL");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * PHY drivers for the sungem ethernet driver.
   4 *
   5 * This file could be shared with other drivers.
   6 *
   7 * (c) 2002-2007, Benjamin Herrenscmidt (benh@kernel.crashing.org)
   8 *
   9 * TODO:
  10 *  - Add support for PHYs that provide an IRQ line
  11 *  - Eventually moved the entire polling state machine in
  12 *    there (out of the eth driver), so that it can easily be
  13 *    skipped on PHYs that implement it in hardware.
  14 *  - On LXT971 & BCM5201, Apple uses some chip specific regs
  15 *    to read the link status. Figure out why and if it makes
  16 *    sense to do the same (magic aneg ?)
  17 *  - Apple has some additional power management code for some
  18 *    Broadcom PHYs that they "hide" from the OpenSource version
  19 *    of darwin, still need to reverse engineer that
  20 */
  21
  22
  23#include <linux/module.h>
  24
  25#include <linux/kernel.h>
  26#include <linux/types.h>
  27#include <linux/netdevice.h>
  28#include <linux/etherdevice.h>
  29#include <linux/mii.h>
  30#include <linux/ethtool.h>
  31#include <linux/delay.h>
  32
  33#ifdef CONFIG_PPC_PMAC
  34#include <asm/prom.h>
  35#endif
  36
  37#include <linux/sungem_phy.h>
  38
  39/* Link modes of the BCM5400 PHY */
  40static const int phy_BCM5400_link_table[8][3] = {
  41	{ 0, 0, 0 },	/* No link */
  42	{ 0, 0, 0 },	/* 10BT Half Duplex */
  43	{ 1, 0, 0 },	/* 10BT Full Duplex */
  44	{ 0, 1, 0 },	/* 100BT Half Duplex */
  45	{ 0, 1, 0 },	/* 100BT Half Duplex */
  46	{ 1, 1, 0 },	/* 100BT Full Duplex*/
  47	{ 1, 0, 1 },	/* 1000BT */
  48	{ 1, 0, 1 },	/* 1000BT */
  49};
  50
  51static inline int __sungem_phy_read(struct mii_phy* phy, int id, int reg)
  52{
  53	return phy->mdio_read(phy->dev, id, reg);
  54}
  55
  56static inline void __sungem_phy_write(struct mii_phy* phy, int id, int reg, int val)
  57{
  58	phy->mdio_write(phy->dev, id, reg, val);
  59}
  60
  61static inline int sungem_phy_read(struct mii_phy* phy, int reg)
  62{
  63	return phy->mdio_read(phy->dev, phy->mii_id, reg);
  64}
  65
  66static inline void sungem_phy_write(struct mii_phy* phy, int reg, int val)
  67{
  68	phy->mdio_write(phy->dev, phy->mii_id, reg, val);
  69}
  70
  71static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
  72{
  73	u16 val;
  74	int limit = 10000;
  75
  76	val = __sungem_phy_read(phy, phy_id, MII_BMCR);
  77	val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
  78	val |= BMCR_RESET;
  79	__sungem_phy_write(phy, phy_id, MII_BMCR, val);
  80
  81	udelay(100);
  82
  83	while (--limit) {
  84		val = __sungem_phy_read(phy, phy_id, MII_BMCR);
  85		if ((val & BMCR_RESET) == 0)
  86			break;
  87		udelay(10);
  88	}
  89	if ((val & BMCR_ISOLATE) && limit > 0)
  90		__sungem_phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
  91
  92	return limit <= 0;
  93}
  94
  95static int bcm5201_init(struct mii_phy* phy)
  96{
  97	u16 data;
  98
  99	data = sungem_phy_read(phy, MII_BCM5201_MULTIPHY);
 100	data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
 101	sungem_phy_write(phy, MII_BCM5201_MULTIPHY, data);
 102
 103	sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
 104
 105	return 0;
 106}
 107
 108static int bcm5201_suspend(struct mii_phy* phy)
 109{
 110	sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
 111	sungem_phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
 112
 113	return 0;
 114}
 115
 116static int bcm5221_init(struct mii_phy* phy)
 117{
 118	u16 data;
 119
 120	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 121	sungem_phy_write(phy, MII_BCM5221_TEST,
 122		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 123
 124	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
 125	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
 126		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
 127
 128	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 129	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 130		data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
 131
 132	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 133	sungem_phy_write(phy, MII_BCM5221_TEST,
 134		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
 135
 136	return 0;
 137}
 138
 139static int bcm5221_suspend(struct mii_phy* phy)
 140{
 141	u16 data;
 142
 143	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 144	sungem_phy_write(phy, MII_BCM5221_TEST,
 145		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 146
 147	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 148	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 149		  data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
 150
 151	return 0;
 152}
 153
 154static int bcm5241_init(struct mii_phy* phy)
 155{
 156	u16 data;
 157
 158	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 159	sungem_phy_write(phy, MII_BCM5221_TEST,
 160		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 161
 162	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
 163	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
 164		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
 165
 166	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 167	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 168		data & ~MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
 169
 170	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 171	sungem_phy_write(phy, MII_BCM5221_TEST,
 172		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
 173
 174	return 0;
 175}
 176
 177static int bcm5241_suspend(struct mii_phy* phy)
 178{
 179	u16 data;
 180
 181	data = sungem_phy_read(phy, MII_BCM5221_TEST);
 182	sungem_phy_write(phy, MII_BCM5221_TEST,
 183		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
 184
 185	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
 186	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
 187		  data | MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
 188
 189	return 0;
 190}
 191
 192static int bcm5400_init(struct mii_phy* phy)
 193{
 194	u16 data;
 195
 196	/* Configure for gigabit full duplex */
 197	data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
 198	data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
 199	sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
 200
 201	data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
 202	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
 203	sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
 204
 205	udelay(100);
 206
 207	/* Reset and configure cascaded 10/100 PHY */
 208	(void)reset_one_mii_phy(phy, 0x1f);
 209
 210	data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
 211	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
 212	__sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
 213
 214	data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
 215	data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
 216	sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
 217
 218	return 0;
 219}
 220
 221static int bcm5400_suspend(struct mii_phy* phy)
 222{
 223#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
 224	sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
 225#endif
 226	return 0;
 227}
 228
 229static int bcm5401_init(struct mii_phy* phy)
 230{
 231	u16 data;
 232	int rev;
 233
 234	rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
 235	if (rev == 0 || rev == 3) {
 236		/* Some revisions of 5401 appear to need this
 237		 * initialisation sequence to disable, according
 238		 * to OF, "tap power management"
 239		 *
 240		 * WARNING ! OF and Darwin don't agree on the
 241		 * register addresses. OF seem to interpret the
 242		 * register numbers below as decimal
 243		 *
 244		 * Note: This should (and does) match tg3_init_5401phy_dsp
 245		 *       in the tg3.c driver. -DaveM
 246		 */
 247		sungem_phy_write(phy, 0x18, 0x0c20);
 248		sungem_phy_write(phy, 0x17, 0x0012);
 249		sungem_phy_write(phy, 0x15, 0x1804);
 250		sungem_phy_write(phy, 0x17, 0x0013);
 251		sungem_phy_write(phy, 0x15, 0x1204);
 252		sungem_phy_write(phy, 0x17, 0x8006);
 253		sungem_phy_write(phy, 0x15, 0x0132);
 254		sungem_phy_write(phy, 0x17, 0x8006);
 255		sungem_phy_write(phy, 0x15, 0x0232);
 256		sungem_phy_write(phy, 0x17, 0x201f);
 257		sungem_phy_write(phy, 0x15, 0x0a20);
 258	}
 259
 260	/* Configure for gigabit full duplex */
 261	data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
 262	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
 263	sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
 264
 265	udelay(10);
 266
 267	/* Reset and configure cascaded 10/100 PHY */
 268	(void)reset_one_mii_phy(phy, 0x1f);
 269
 270	data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
 271	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
 272	__sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
 273
 274	return 0;
 275}
 276
 277static int bcm5401_suspend(struct mii_phy* phy)
 278{
 279#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
 280	sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
 281#endif
 282	return 0;
 283}
 284
 285static int bcm5411_init(struct mii_phy* phy)
 286{
 287	u16 data;
 288
 289	/* Here's some more Apple black magic to setup
 290	 * some voltage stuffs.
 291	 */
 292	sungem_phy_write(phy, 0x1c, 0x8c23);
 293	sungem_phy_write(phy, 0x1c, 0x8ca3);
 294	sungem_phy_write(phy, 0x1c, 0x8c23);
 295
 296	/* Here, Apple seems to want to reset it, do
 297	 * it as well
 298	 */
 299	sungem_phy_write(phy, MII_BMCR, BMCR_RESET);
 300	sungem_phy_write(phy, MII_BMCR, 0x1340);
 301
 302	data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
 303	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
 304	sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
 305
 306	udelay(10);
 307
 308	/* Reset and configure cascaded 10/100 PHY */
 309	(void)reset_one_mii_phy(phy, 0x1f);
 310
 311	return 0;
 312}
 313
 314static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
 315{
 316	u16 ctl, adv;
 317
 318	phy->autoneg = 1;
 319	phy->speed = SPEED_10;
 320	phy->duplex = DUPLEX_HALF;
 321	phy->pause = 0;
 322	phy->advertising = advertise;
 323
 324	/* Setup standard advertise */
 325	adv = sungem_phy_read(phy, MII_ADVERTISE);
 326	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
 327	if (advertise & ADVERTISED_10baseT_Half)
 328		adv |= ADVERTISE_10HALF;
 329	if (advertise & ADVERTISED_10baseT_Full)
 330		adv |= ADVERTISE_10FULL;
 331	if (advertise & ADVERTISED_100baseT_Half)
 332		adv |= ADVERTISE_100HALF;
 333	if (advertise & ADVERTISED_100baseT_Full)
 334		adv |= ADVERTISE_100FULL;
 335	sungem_phy_write(phy, MII_ADVERTISE, adv);
 336
 337	/* Start/Restart aneg */
 338	ctl = sungem_phy_read(phy, MII_BMCR);
 339	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
 340	sungem_phy_write(phy, MII_BMCR, ctl);
 341
 342	return 0;
 343}
 344
 345static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
 346{
 347	u16 ctl;
 348
 349	phy->autoneg = 0;
 350	phy->speed = speed;
 351	phy->duplex = fd;
 352	phy->pause = 0;
 353
 354	ctl = sungem_phy_read(phy, MII_BMCR);
 355	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
 356
 357	/* First reset the PHY */
 358	sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
 359
 360	/* Select speed & duplex */
 361	switch(speed) {
 362	case SPEED_10:
 363		break;
 364	case SPEED_100:
 365		ctl |= BMCR_SPEED100;
 366		break;
 367	case SPEED_1000:
 368	default:
 369		return -EINVAL;
 370	}
 371	if (fd == DUPLEX_FULL)
 372		ctl |= BMCR_FULLDPLX;
 373	sungem_phy_write(phy, MII_BMCR, ctl);
 374
 375	return 0;
 376}
 377
 378static int genmii_poll_link(struct mii_phy *phy)
 379{
 380	u16 status;
 381
 382	(void)sungem_phy_read(phy, MII_BMSR);
 383	status = sungem_phy_read(phy, MII_BMSR);
 384	if ((status & BMSR_LSTATUS) == 0)
 385		return 0;
 386	if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
 387		return 0;
 388	return 1;
 389}
 390
 391static int genmii_read_link(struct mii_phy *phy)
 392{
 393	u16 lpa;
 394
 395	if (phy->autoneg) {
 396		lpa = sungem_phy_read(phy, MII_LPA);
 397
 398		if (lpa & (LPA_10FULL | LPA_100FULL))
 399			phy->duplex = DUPLEX_FULL;
 400		else
 401			phy->duplex = DUPLEX_HALF;
 402		if (lpa & (LPA_100FULL | LPA_100HALF))
 403			phy->speed = SPEED_100;
 404		else
 405			phy->speed = SPEED_10;
 406		phy->pause = 0;
 407	}
 408	/* On non-aneg, we assume what we put in BMCR is the speed,
 409	 * though magic-aneg shouldn't prevent this case from occurring
 410	 */
 411
 412	 return 0;
 413}
 414
 415static int generic_suspend(struct mii_phy* phy)
 416{
 417	sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
 418
 419	return 0;
 420}
 421
 422static int bcm5421_init(struct mii_phy* phy)
 423{
 424	u16 data;
 425	unsigned int id;
 426
 427	id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
 428
 429	/* Revision 0 of 5421 needs some fixups */
 430	if (id == 0x002060e0) {
 431		/* This is borrowed from MacOS
 432		 */
 433		sungem_phy_write(phy, 0x18, 0x1007);
 434		data = sungem_phy_read(phy, 0x18);
 435		sungem_phy_write(phy, 0x18, data | 0x0400);
 436		sungem_phy_write(phy, 0x18, 0x0007);
 437		data = sungem_phy_read(phy, 0x18);
 438		sungem_phy_write(phy, 0x18, data | 0x0800);
 439		sungem_phy_write(phy, 0x17, 0x000a);
 440		data = sungem_phy_read(phy, 0x15);
 441		sungem_phy_write(phy, 0x15, data | 0x0200);
 442	}
 443
 444	/* Pick up some init code from OF for K2 version */
 445	if ((id & 0xfffffff0) == 0x002062e0) {
 446		sungem_phy_write(phy, 4, 0x01e1);
 447		sungem_phy_write(phy, 9, 0x0300);
 448	}
 449
 450	/* Check if we can enable automatic low power */
 451#ifdef CONFIG_PPC_PMAC
 452	if (phy->platform_data) {
 453		struct device_node *np = of_get_parent(phy->platform_data);
 454		int can_low_power = 1;
 455		if (np == NULL || of_get_property(np, "no-autolowpower", NULL))
 456			can_low_power = 0;
 457		if (can_low_power) {
 458			/* Enable automatic low-power */
 459			sungem_phy_write(phy, 0x1c, 0x9002);
 460			sungem_phy_write(phy, 0x1c, 0xa821);
 461			sungem_phy_write(phy, 0x1c, 0x941d);
 462		}
 463	}
 464#endif /* CONFIG_PPC_PMAC */
 465
 466	return 0;
 467}
 468
 469static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
 470{
 471	u16 ctl, adv;
 472
 473	phy->autoneg = 1;
 474	phy->speed = SPEED_10;
 475	phy->duplex = DUPLEX_HALF;
 476	phy->pause = 0;
 477	phy->advertising = advertise;
 478
 479	/* Setup standard advertise */
 480	adv = sungem_phy_read(phy, MII_ADVERTISE);
 481	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
 482	if (advertise & ADVERTISED_10baseT_Half)
 483		adv |= ADVERTISE_10HALF;
 484	if (advertise & ADVERTISED_10baseT_Full)
 485		adv |= ADVERTISE_10FULL;
 486	if (advertise & ADVERTISED_100baseT_Half)
 487		adv |= ADVERTISE_100HALF;
 488	if (advertise & ADVERTISED_100baseT_Full)
 489		adv |= ADVERTISE_100FULL;
 490	if (advertise & ADVERTISED_Pause)
 491		adv |= ADVERTISE_PAUSE_CAP;
 492	if (advertise & ADVERTISED_Asym_Pause)
 493		adv |= ADVERTISE_PAUSE_ASYM;
 494	sungem_phy_write(phy, MII_ADVERTISE, adv);
 495
 496	/* Setup 1000BT advertise */
 497	adv = sungem_phy_read(phy, MII_1000BASETCONTROL);
 498	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
 499	if (advertise & SUPPORTED_1000baseT_Half)
 500		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
 501	if (advertise & SUPPORTED_1000baseT_Full)
 502		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
 503	sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
 504
 505	/* Start/Restart aneg */
 506	ctl = sungem_phy_read(phy, MII_BMCR);
 507	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
 508	sungem_phy_write(phy, MII_BMCR, ctl);
 509
 510	return 0;
 511}
 512
 513static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
 514{
 515	u16 ctl;
 516
 517	phy->autoneg = 0;
 518	phy->speed = speed;
 519	phy->duplex = fd;
 520	phy->pause = 0;
 521
 522	ctl = sungem_phy_read(phy, MII_BMCR);
 523	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
 524
 525	/* First reset the PHY */
 526	sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
 527
 528	/* Select speed & duplex */
 529	switch(speed) {
 530	case SPEED_10:
 531		break;
 532	case SPEED_100:
 533		ctl |= BMCR_SPEED100;
 534		break;
 535	case SPEED_1000:
 536		ctl |= BMCR_SPD2;
 537	}
 538	if (fd == DUPLEX_FULL)
 539		ctl |= BMCR_FULLDPLX;
 540
 541	// XXX Should we set the sungem to GII now on 1000BT ?
 542
 543	sungem_phy_write(phy, MII_BMCR, ctl);
 544
 545	return 0;
 546}
 547
 548static int bcm54xx_read_link(struct mii_phy *phy)
 549{
 550	int link_mode;
 551	u16 val;
 552
 553	if (phy->autoneg) {
 554	    	val = sungem_phy_read(phy, MII_BCM5400_AUXSTATUS);
 555		link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
 556			     MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
 557		phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
 558			DUPLEX_FULL : DUPLEX_HALF;
 559		phy->speed = phy_BCM5400_link_table[link_mode][2] ?
 560				SPEED_1000 :
 561				(phy_BCM5400_link_table[link_mode][1] ?
 562				 SPEED_100 : SPEED_10);
 563		val = sungem_phy_read(phy, MII_LPA);
 564		phy->pause = (phy->duplex == DUPLEX_FULL) &&
 565			((val & LPA_PAUSE) != 0);
 566	}
 567	/* On non-aneg, we assume what we put in BMCR is the speed,
 568	 * though magic-aneg shouldn't prevent this case from occurring
 569	 */
 570
 571	return 0;
 572}
 573
 574static int marvell88e1111_init(struct mii_phy* phy)
 575{
 576	u16 rev;
 577
 578	/* magic init sequence for rev 0 */
 579	rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
 580	if (rev == 0) {
 581		sungem_phy_write(phy, 0x1d, 0x000a);
 582		sungem_phy_write(phy, 0x1e, 0x0821);
 583
 584		sungem_phy_write(phy, 0x1d, 0x0006);
 585		sungem_phy_write(phy, 0x1e, 0x8600);
 586
 587		sungem_phy_write(phy, 0x1d, 0x000b);
 588		sungem_phy_write(phy, 0x1e, 0x0100);
 589
 590		sungem_phy_write(phy, 0x1d, 0x0004);
 591		sungem_phy_write(phy, 0x1e, 0x4850);
 592	}
 593	return 0;
 594}
 595
 596#define BCM5421_MODE_MASK	(1 << 5)
 597
 598static int bcm5421_poll_link(struct mii_phy* phy)
 599{
 600	u32 phy_reg;
 601	int mode;
 602
 603	/* find out in what mode we are */
 604	sungem_phy_write(phy, MII_NCONFIG, 0x1000);
 605	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 606
 607	mode = (phy_reg & BCM5421_MODE_MASK) >> 5;
 608
 609	if ( mode == BCM54XX_COPPER)
 610		return genmii_poll_link(phy);
 611
 612	/* try to find out whether we have a link */
 613	sungem_phy_write(phy, MII_NCONFIG, 0x2000);
 614	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 615
 616	if (phy_reg & 0x0020)
 617		return 0;
 618	else
 619		return 1;
 620}
 621
 622static int bcm5421_read_link(struct mii_phy* phy)
 623{
 624	u32 phy_reg;
 625	int mode;
 626
 627	/* find out in what mode we are */
 628	sungem_phy_write(phy, MII_NCONFIG, 0x1000);
 629	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 630
 631	mode = (phy_reg & BCM5421_MODE_MASK ) >> 5;
 632
 633	if ( mode == BCM54XX_COPPER)
 634		return bcm54xx_read_link(phy);
 635
 636	phy->speed = SPEED_1000;
 637
 638	/* find out whether we are running half- or full duplex */
 639	sungem_phy_write(phy, MII_NCONFIG, 0x2000);
 640	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 641
 642	if ( (phy_reg & 0x0080) >> 7)
 643		phy->duplex |=  DUPLEX_HALF;
 644	else
 645		phy->duplex |=  DUPLEX_FULL;
 646
 647	return 0;
 648}
 649
 650static int bcm5421_enable_fiber(struct mii_phy* phy, int autoneg)
 651{
 652	/* enable fiber mode */
 653	sungem_phy_write(phy, MII_NCONFIG, 0x9020);
 654	/* LEDs active in both modes, autosense prio = fiber */
 655	sungem_phy_write(phy, MII_NCONFIG, 0x945f);
 656
 657	if (!autoneg) {
 658		/* switch off fibre autoneg */
 659		sungem_phy_write(phy, MII_NCONFIG, 0xfc01);
 660		sungem_phy_write(phy, 0x0b, 0x0004);
 661	}
 662
 663	phy->autoneg = autoneg;
 664
 665	return 0;
 666}
 667
 668#define BCM5461_FIBER_LINK	(1 << 2)
 669#define BCM5461_MODE_MASK	(3 << 1)
 670
 671static int bcm5461_poll_link(struct mii_phy* phy)
 672{
 673	u32 phy_reg;
 674	int mode;
 675
 676	/* find out in what mode we are */
 677	sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
 678	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 679
 680	mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
 681
 682	if ( mode == BCM54XX_COPPER)
 683		return genmii_poll_link(phy);
 684
 685	/* find out whether we have a link */
 686	sungem_phy_write(phy, MII_NCONFIG, 0x7000);
 687	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 688
 689	if (phy_reg & BCM5461_FIBER_LINK)
 690		return 1;
 691	else
 692		return 0;
 693}
 694
 695#define BCM5461_FIBER_DUPLEX	(1 << 3)
 696
 697static int bcm5461_read_link(struct mii_phy* phy)
 698{
 699	u32 phy_reg;
 700	int mode;
 701
 702	/* find out in what mode we are */
 703	sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
 704	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 705
 706	mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
 707
 708	if ( mode == BCM54XX_COPPER) {
 709		return bcm54xx_read_link(phy);
 710	}
 711
 712	phy->speed = SPEED_1000;
 713
 714	/* find out whether we are running half- or full duplex */
 715	sungem_phy_write(phy, MII_NCONFIG, 0x7000);
 716	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
 717
 718	if (phy_reg & BCM5461_FIBER_DUPLEX)
 719		phy->duplex |=  DUPLEX_FULL;
 720	else
 721		phy->duplex |=  DUPLEX_HALF;
 722
 723	return 0;
 724}
 725
 726static int bcm5461_enable_fiber(struct mii_phy* phy, int autoneg)
 727{
 728	/* select fiber mode, enable 1000 base-X registers */
 729	sungem_phy_write(phy, MII_NCONFIG, 0xfc0b);
 730
 731	if (autoneg) {
 732		/* enable fiber with no autonegotiation */
 733		sungem_phy_write(phy, MII_ADVERTISE, 0x01e0);
 734		sungem_phy_write(phy, MII_BMCR, 0x1140);
 735	} else {
 736		/* enable fiber with autonegotiation */
 737		sungem_phy_write(phy, MII_BMCR, 0x0140);
 738	}
 739
 740	phy->autoneg = autoneg;
 741
 742	return 0;
 743}
 744
 745static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
 746{
 747	u16 ctl, adv;
 748
 749	phy->autoneg = 1;
 750	phy->speed = SPEED_10;
 751	phy->duplex = DUPLEX_HALF;
 752	phy->pause = 0;
 753	phy->advertising = advertise;
 754
 755	/* Setup standard advertise */
 756	adv = sungem_phy_read(phy, MII_ADVERTISE);
 757	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
 758	if (advertise & ADVERTISED_10baseT_Half)
 759		adv |= ADVERTISE_10HALF;
 760	if (advertise & ADVERTISED_10baseT_Full)
 761		adv |= ADVERTISE_10FULL;
 762	if (advertise & ADVERTISED_100baseT_Half)
 763		adv |= ADVERTISE_100HALF;
 764	if (advertise & ADVERTISED_100baseT_Full)
 765		adv |= ADVERTISE_100FULL;
 766	if (advertise & ADVERTISED_Pause)
 767		adv |= ADVERTISE_PAUSE_CAP;
 768	if (advertise & ADVERTISED_Asym_Pause)
 769		adv |= ADVERTISE_PAUSE_ASYM;
 770	sungem_phy_write(phy, MII_ADVERTISE, adv);
 771
 772	/* Setup 1000BT advertise & enable crossover detect
 773	 * XXX How do we advertise 1000BT ? Darwin source is
 774	 * confusing here, they read from specific control and
 775	 * write to control... Someone has specs for those
 776	 * beasts ?
 777	 */
 778	adv = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
 779	adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
 780	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
 781			MII_1000BASETCONTROL_HALFDUPLEXCAP);
 782	if (advertise & SUPPORTED_1000baseT_Half)
 783		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
 784	if (advertise & SUPPORTED_1000baseT_Full)
 785		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
 786	sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
 787
 788	/* Start/Restart aneg */
 789	ctl = sungem_phy_read(phy, MII_BMCR);
 790	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
 791	sungem_phy_write(phy, MII_BMCR, ctl);
 792
 793	return 0;
 794}
 795
 796static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
 797{
 798	u16 ctl, ctl2;
 799
 800	phy->autoneg = 0;
 801	phy->speed = speed;
 802	phy->duplex = fd;
 803	phy->pause = 0;
 804
 805	ctl = sungem_phy_read(phy, MII_BMCR);
 806	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
 807	ctl |= BMCR_RESET;
 808
 809	/* Select speed & duplex */
 810	switch(speed) {
 811	case SPEED_10:
 812		break;
 813	case SPEED_100:
 814		ctl |= BMCR_SPEED100;
 815		break;
 816	/* I'm not sure about the one below, again, Darwin source is
 817	 * quite confusing and I lack chip specs
 818	 */
 819	case SPEED_1000:
 820		ctl |= BMCR_SPD2;
 821	}
 822	if (fd == DUPLEX_FULL)
 823		ctl |= BMCR_FULLDPLX;
 824
 825	/* Disable crossover. Again, the way Apple does it is strange,
 826	 * though I don't assume they are wrong ;)
 827	 */
 828	ctl2 = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
 829	ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
 830		MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
 831		MII_1000BASETCONTROL_FULLDUPLEXCAP |
 832		MII_1000BASETCONTROL_HALFDUPLEXCAP);
 833	if (speed == SPEED_1000)
 834		ctl2 |= (fd == DUPLEX_FULL) ?
 835			MII_1000BASETCONTROL_FULLDUPLEXCAP :
 836			MII_1000BASETCONTROL_HALFDUPLEXCAP;
 837	sungem_phy_write(phy, MII_1000BASETCONTROL, ctl2);
 838
 839	// XXX Should we set the sungem to GII now on 1000BT ?
 840
 841	sungem_phy_write(phy, MII_BMCR, ctl);
 842
 843	return 0;
 844}
 845
 846static int marvell_read_link(struct mii_phy *phy)
 847{
 848	u16 status, pmask;
 849
 850	if (phy->autoneg) {
 851		status = sungem_phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
 852		if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
 853			return -EAGAIN;
 854		if (status & MII_M1011_PHY_SPEC_STATUS_1000)
 855			phy->speed = SPEED_1000;
 856		else if (status & MII_M1011_PHY_SPEC_STATUS_100)
 857			phy->speed = SPEED_100;
 858		else
 859			phy->speed = SPEED_10;
 860		if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
 861			phy->duplex = DUPLEX_FULL;
 862		else
 863			phy->duplex = DUPLEX_HALF;
 864		pmask = MII_M1011_PHY_SPEC_STATUS_TX_PAUSE |
 865			MII_M1011_PHY_SPEC_STATUS_RX_PAUSE;
 866		phy->pause = (status & pmask) == pmask;
 867	}
 868	/* On non-aneg, we assume what we put in BMCR is the speed,
 869	 * though magic-aneg shouldn't prevent this case from occurring
 870	 */
 871
 872	return 0;
 873}
 874
 875#define MII_BASIC_FEATURES \
 876	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |	\
 877	 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |	\
 878	 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII |	\
 879	 SUPPORTED_Pause)
 880
 881/* On gigabit capable PHYs, we advertise Pause support but not asym pause
 882 * support for now as I'm not sure it's supported and Darwin doesn't do
 883 * it neither. --BenH.
 884 */
 885#define MII_GBIT_FEATURES \
 886	(MII_BASIC_FEATURES |	\
 887	 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
 888
 889/* Broadcom BCM 5201 */
 890static const struct mii_phy_ops bcm5201_phy_ops = {
 891	.init		= bcm5201_init,
 892	.suspend	= bcm5201_suspend,
 893	.setup_aneg	= genmii_setup_aneg,
 894	.setup_forced	= genmii_setup_forced,
 895	.poll_link	= genmii_poll_link,
 896	.read_link	= genmii_read_link,
 897};
 898
 899static struct mii_phy_def bcm5201_phy_def = {
 900	.phy_id		= 0x00406210,
 901	.phy_id_mask	= 0xfffffff0,
 902	.name		= "BCM5201",
 903	.features	= MII_BASIC_FEATURES,
 904	.magic_aneg	= 1,
 905	.ops		= &bcm5201_phy_ops
 906};
 907
 908/* Broadcom BCM 5221 */
 909static const struct mii_phy_ops bcm5221_phy_ops = {
 910	.suspend	= bcm5221_suspend,
 911	.init		= bcm5221_init,
 912	.setup_aneg	= genmii_setup_aneg,
 913	.setup_forced	= genmii_setup_forced,
 914	.poll_link	= genmii_poll_link,
 915	.read_link	= genmii_read_link,
 916};
 917
 918static struct mii_phy_def bcm5221_phy_def = {
 919	.phy_id		= 0x004061e0,
 920	.phy_id_mask	= 0xfffffff0,
 921	.name		= "BCM5221",
 922	.features	= MII_BASIC_FEATURES,
 923	.magic_aneg	= 1,
 924	.ops		= &bcm5221_phy_ops
 925};
 926
 927/* Broadcom BCM 5241 */
 928static const struct mii_phy_ops bcm5241_phy_ops = {
 929	.suspend	= bcm5241_suspend,
 930	.init		= bcm5241_init,
 931	.setup_aneg	= genmii_setup_aneg,
 932	.setup_forced	= genmii_setup_forced,
 933	.poll_link	= genmii_poll_link,
 934	.read_link	= genmii_read_link,
 935};
 936static struct mii_phy_def bcm5241_phy_def = {
 937	.phy_id		= 0x0143bc30,
 938	.phy_id_mask	= 0xfffffff0,
 939	.name		= "BCM5241",
 940	.features	= MII_BASIC_FEATURES,
 941	.magic_aneg	= 1,
 942	.ops		= &bcm5241_phy_ops
 943};
 944
 945/* Broadcom BCM 5400 */
 946static const struct mii_phy_ops bcm5400_phy_ops = {
 947	.init		= bcm5400_init,
 948	.suspend	= bcm5400_suspend,
 949	.setup_aneg	= bcm54xx_setup_aneg,
 950	.setup_forced	= bcm54xx_setup_forced,
 951	.poll_link	= genmii_poll_link,
 952	.read_link	= bcm54xx_read_link,
 953};
 954
 955static struct mii_phy_def bcm5400_phy_def = {
 956	.phy_id		= 0x00206040,
 957	.phy_id_mask	= 0xfffffff0,
 958	.name		= "BCM5400",
 959	.features	= MII_GBIT_FEATURES,
 960	.magic_aneg	= 1,
 961	.ops		= &bcm5400_phy_ops
 962};
 963
 964/* Broadcom BCM 5401 */
 965static const struct mii_phy_ops bcm5401_phy_ops = {
 966	.init		= bcm5401_init,
 967	.suspend	= bcm5401_suspend,
 968	.setup_aneg	= bcm54xx_setup_aneg,
 969	.setup_forced	= bcm54xx_setup_forced,
 970	.poll_link	= genmii_poll_link,
 971	.read_link	= bcm54xx_read_link,
 972};
 973
 974static struct mii_phy_def bcm5401_phy_def = {
 975	.phy_id		= 0x00206050,
 976	.phy_id_mask	= 0xfffffff0,
 977	.name		= "BCM5401",
 978	.features	= MII_GBIT_FEATURES,
 979	.magic_aneg	= 1,
 980	.ops		= &bcm5401_phy_ops
 981};
 982
 983/* Broadcom BCM 5411 */
 984static const struct mii_phy_ops bcm5411_phy_ops = {
 985	.init		= bcm5411_init,
 986	.suspend	= generic_suspend,
 987	.setup_aneg	= bcm54xx_setup_aneg,
 988	.setup_forced	= bcm54xx_setup_forced,
 989	.poll_link	= genmii_poll_link,
 990	.read_link	= bcm54xx_read_link,
 991};
 992
 993static struct mii_phy_def bcm5411_phy_def = {
 994	.phy_id		= 0x00206070,
 995	.phy_id_mask	= 0xfffffff0,
 996	.name		= "BCM5411",
 997	.features	= MII_GBIT_FEATURES,
 998	.magic_aneg	= 1,
 999	.ops		= &bcm5411_phy_ops
1000};
1001
1002/* Broadcom BCM 5421 */
1003static const struct mii_phy_ops bcm5421_phy_ops = {
1004	.init		= bcm5421_init,
1005	.suspend	= generic_suspend,
1006	.setup_aneg	= bcm54xx_setup_aneg,
1007	.setup_forced	= bcm54xx_setup_forced,
1008	.poll_link	= bcm5421_poll_link,
1009	.read_link	= bcm5421_read_link,
1010	.enable_fiber   = bcm5421_enable_fiber,
1011};
1012
1013static struct mii_phy_def bcm5421_phy_def = {
1014	.phy_id		= 0x002060e0,
1015	.phy_id_mask	= 0xfffffff0,
1016	.name		= "BCM5421",
1017	.features	= MII_GBIT_FEATURES,
1018	.magic_aneg	= 1,
1019	.ops		= &bcm5421_phy_ops
1020};
1021
1022/* Broadcom BCM 5421 built-in K2 */
1023static const struct mii_phy_ops bcm5421k2_phy_ops = {
1024	.init		= bcm5421_init,
1025	.suspend	= generic_suspend,
1026	.setup_aneg	= bcm54xx_setup_aneg,
1027	.setup_forced	= bcm54xx_setup_forced,
1028	.poll_link	= genmii_poll_link,
1029	.read_link	= bcm54xx_read_link,
1030};
1031
1032static struct mii_phy_def bcm5421k2_phy_def = {
1033	.phy_id		= 0x002062e0,
1034	.phy_id_mask	= 0xfffffff0,
1035	.name		= "BCM5421-K2",
1036	.features	= MII_GBIT_FEATURES,
1037	.magic_aneg	= 1,
1038	.ops		= &bcm5421k2_phy_ops
1039};
1040
1041static const struct mii_phy_ops bcm5461_phy_ops = {
1042	.init		= bcm5421_init,
1043	.suspend	= generic_suspend,
1044	.setup_aneg	= bcm54xx_setup_aneg,
1045	.setup_forced	= bcm54xx_setup_forced,
1046	.poll_link	= bcm5461_poll_link,
1047	.read_link	= bcm5461_read_link,
1048	.enable_fiber   = bcm5461_enable_fiber,
1049};
1050
1051static struct mii_phy_def bcm5461_phy_def = {
1052	.phy_id		= 0x002060c0,
1053	.phy_id_mask	= 0xfffffff0,
1054	.name		= "BCM5461",
1055	.features	= MII_GBIT_FEATURES,
1056	.magic_aneg	= 1,
1057	.ops		= &bcm5461_phy_ops
1058};
1059
1060/* Broadcom BCM 5462 built-in Vesta */
1061static const struct mii_phy_ops bcm5462V_phy_ops = {
1062	.init		= bcm5421_init,
1063	.suspend	= generic_suspend,
1064	.setup_aneg	= bcm54xx_setup_aneg,
1065	.setup_forced	= bcm54xx_setup_forced,
1066	.poll_link	= genmii_poll_link,
1067	.read_link	= bcm54xx_read_link,
1068};
1069
1070static struct mii_phy_def bcm5462V_phy_def = {
1071	.phy_id		= 0x002060d0,
1072	.phy_id_mask	= 0xfffffff0,
1073	.name		= "BCM5462-Vesta",
1074	.features	= MII_GBIT_FEATURES,
1075	.magic_aneg	= 1,
1076	.ops		= &bcm5462V_phy_ops
1077};
1078
1079/* Marvell 88E1101 amd 88E1111 */
1080static const struct mii_phy_ops marvell88e1101_phy_ops = {
1081	.suspend	= generic_suspend,
1082	.setup_aneg	= marvell_setup_aneg,
1083	.setup_forced	= marvell_setup_forced,
1084	.poll_link	= genmii_poll_link,
1085	.read_link	= marvell_read_link
1086};
1087
1088static const struct mii_phy_ops marvell88e1111_phy_ops = {
1089	.init		= marvell88e1111_init,
1090	.suspend	= generic_suspend,
1091	.setup_aneg	= marvell_setup_aneg,
1092	.setup_forced	= marvell_setup_forced,
1093	.poll_link	= genmii_poll_link,
1094	.read_link	= marvell_read_link
1095};
1096
1097/* two revs in darwin for the 88e1101 ... I could use a datasheet
1098 * to get the proper names...
1099 */
1100static struct mii_phy_def marvell88e1101v1_phy_def = {
1101	.phy_id		= 0x01410c20,
1102	.phy_id_mask	= 0xfffffff0,
1103	.name		= "Marvell 88E1101v1",
1104	.features	= MII_GBIT_FEATURES,
1105	.magic_aneg	= 1,
1106	.ops		= &marvell88e1101_phy_ops
1107};
1108static struct mii_phy_def marvell88e1101v2_phy_def = {
1109	.phy_id		= 0x01410c60,
1110	.phy_id_mask	= 0xfffffff0,
1111	.name		= "Marvell 88E1101v2",
1112	.features	= MII_GBIT_FEATURES,
1113	.magic_aneg	= 1,
1114	.ops		= &marvell88e1101_phy_ops
1115};
1116static struct mii_phy_def marvell88e1111_phy_def = {
1117	.phy_id		= 0x01410cc0,
1118	.phy_id_mask	= 0xfffffff0,
1119	.name		= "Marvell 88E1111",
1120	.features	= MII_GBIT_FEATURES,
1121	.magic_aneg	= 1,
1122	.ops		= &marvell88e1111_phy_ops
1123};
1124
1125/* Generic implementation for most 10/100 PHYs */
1126static const struct mii_phy_ops generic_phy_ops = {
1127	.setup_aneg	= genmii_setup_aneg,
1128	.setup_forced	= genmii_setup_forced,
1129	.poll_link	= genmii_poll_link,
1130	.read_link	= genmii_read_link
1131};
1132
1133static struct mii_phy_def genmii_phy_def = {
1134	.phy_id		= 0x00000000,
1135	.phy_id_mask	= 0x00000000,
1136	.name		= "Generic MII",
1137	.features	= MII_BASIC_FEATURES,
1138	.magic_aneg	= 0,
1139	.ops		= &generic_phy_ops
1140};
1141
1142static struct mii_phy_def* mii_phy_table[] = {
1143	&bcm5201_phy_def,
1144	&bcm5221_phy_def,
1145	&bcm5241_phy_def,
1146	&bcm5400_phy_def,
1147	&bcm5401_phy_def,
1148	&bcm5411_phy_def,
1149	&bcm5421_phy_def,
1150	&bcm5421k2_phy_def,
1151	&bcm5461_phy_def,
1152	&bcm5462V_phy_def,
1153	&marvell88e1101v1_phy_def,
1154	&marvell88e1101v2_phy_def,
1155	&marvell88e1111_phy_def,
1156	&genmii_phy_def,
1157	NULL
1158};
1159
1160int sungem_phy_probe(struct mii_phy *phy, int mii_id)
1161{
1162	int rc;
1163	u32 id;
1164	struct mii_phy_def* def;
1165	int i;
1166
1167	/* We do not reset the mii_phy structure as the driver
1168	 * may re-probe the PHY regulary
1169	 */
1170	phy->mii_id = mii_id;
1171
1172	/* Take PHY out of isloate mode and reset it. */
1173	rc = reset_one_mii_phy(phy, mii_id);
1174	if (rc)
1175		goto fail;
1176
1177	/* Read ID and find matching entry */
1178	id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
1179	printk(KERN_DEBUG KBUILD_MODNAME ": " "PHY ID: %x, addr: %x\n",
1180	       id, mii_id);
1181	for (i=0; (def = mii_phy_table[i]) != NULL; i++)
1182		if ((id & def->phy_id_mask) == def->phy_id)
1183			break;
1184	/* Should never be NULL (we have a generic entry), but... */
1185	if (def == NULL)
1186		goto fail;
1187
1188	phy->def = def;
1189
1190	return 0;
1191fail:
1192	phy->speed = 0;
1193	phy->duplex = 0;
1194	phy->pause = 0;
1195	phy->advertising = 0;
1196	return -ENODEV;
1197}
1198
1199EXPORT_SYMBOL(sungem_phy_probe);
1200MODULE_LICENSE("GPL");