Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
  4 * Copyright (C) 2019-2020 Linaro Ltd.
  5 */
  6
  7#include <linux/types.h>
  8#include <linux/bits.h>
  9#include <linux/bitfield.h>
 10#include <linux/refcount.h>
 11#include <linux/scatterlist.h>
 12#include <linux/dma-direction.h>
 13
 14#include "gsi.h"
 15#include "gsi_private.h"
 16#include "gsi_trans.h"
 17#include "ipa_gsi.h"
 18#include "ipa_data.h"
 19#include "ipa_cmd.h"
 20
 21/**
 22 * DOC: GSI Transactions
 23 *
 24 * A GSI transaction abstracts the behavior of a GSI channel by representing
 25 * everything about a related group of IPA commands in a single structure.
 26 * (A "command" in this sense is either a data transfer or an IPA immediate
 27 * command.)  Most details of interaction with the GSI hardware are managed
 28 * by the GSI transaction core, allowing users to simply describe commands
 29 * to be performed.  When a transaction has completed a callback function
 30 * (dependent on the type of endpoint associated with the channel) allows
 31 * cleanup of resources associated with the transaction.
 32 *
 33 * To perform a command (or set of them), a user of the GSI transaction
 34 * interface allocates a transaction, indicating the number of TREs required
 35 * (one per command).  If sufficient TREs are available, they are reserved
 36 * for use in the transaction and the allocation succeeds.  This way
 37 * exhaustion of the available TREs in a channel ring is detected
 38 * as early as possible.  All resources required to complete a transaction
 39 * are allocated at transaction allocation time.
 40 *
 41 * Commands performed as part of a transaction are represented in an array
 42 * of Linux scatterlist structures.  This array is allocated with the
 43 * transaction, and its entries are initialized using standard scatterlist
 44 * functions (such as sg_set_buf() or skb_to_sgvec()).
 45 *
 46 * Once a transaction's scatterlist structures have been initialized, the
 47 * transaction is committed.  The caller is responsible for mapping buffers
 48 * for DMA if necessary, and this should be done *before* allocating
 49 * the transaction.  Between a successful allocation and commit of a
 50 * transaction no errors should occur.
 51 *
 52 * Committing transfers ownership of the entire transaction to the GSI
 53 * transaction core.  The GSI transaction code formats the content of
 54 * the scatterlist array into the channel ring buffer and informs the
 55 * hardware that new TREs are available to process.
 56 *
 57 * The last TRE in each transaction is marked to interrupt the AP when the
 58 * GSI hardware has completed it.  Because transfers described by TREs are
 59 * performed strictly in order, signaling the completion of just the last
 60 * TRE in the transaction is sufficient to indicate the full transaction
 61 * is complete.
 62 *
 63 * When a transaction is complete, ipa_gsi_trans_complete() is called by the
 64 * GSI code into the IPA layer, allowing it to perform any final cleanup
 65 * required before the transaction is freed.
 66 */
 67
 68/* Hardware values representing a transfer element type */
 69enum gsi_tre_type {
 70	GSI_RE_XFER	= 0x2,
 71	GSI_RE_IMMD_CMD	= 0x3,
 72};
 73
 74/* An entry in a channel ring */
 75struct gsi_tre {
 76	__le64 addr;		/* DMA address */
 77	__le16 len_opcode;	/* length in bytes or enum IPA_CMD_* */
 78	__le16 reserved;
 79	__le32 flags;		/* TRE_FLAGS_* */
 80};
 81
 82/* gsi_tre->flags mask values (in CPU byte order) */
 83#define TRE_FLAGS_CHAIN_FMASK	GENMASK(0, 0)
 84#define TRE_FLAGS_IEOB_FMASK	GENMASK(8, 8)
 85#define TRE_FLAGS_IEOT_FMASK	GENMASK(9, 9)
 86#define TRE_FLAGS_BEI_FMASK	GENMASK(10, 10)
 87#define TRE_FLAGS_TYPE_FMASK	GENMASK(23, 16)
 88
 89int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count,
 90			u32 max_alloc)
 91{
 92	void *virt;
 93
 94#ifdef IPA_VALIDATE
 95	if (!size || size % 8)
 96		return -EINVAL;
 97	if (count < max_alloc)
 98		return -EINVAL;
 99	if (!max_alloc)
100		return -EINVAL;
101#endif /* IPA_VALIDATE */
102
103	/* By allocating a few extra entries in our pool (one less
104	 * than the maximum number that will be requested in a
105	 * single allocation), we can always satisfy requests without
106	 * ever worrying about straddling the end of the pool array.
107	 * If there aren't enough entries starting at the free index,
108	 * we just allocate free entries from the beginning of the pool.
109	 */
110	virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL);
111	if (!virt)
112		return -ENOMEM;
113
114	pool->base = virt;
115	/* If the allocator gave us any extra memory, use it */
116	pool->count = ksize(pool->base) / size;
117	pool->free = 0;
118	pool->max_alloc = max_alloc;
119	pool->size = size;
120	pool->addr = 0;		/* Only used for DMA pools */
121
122	return 0;
123}
124
125void gsi_trans_pool_exit(struct gsi_trans_pool *pool)
126{
127	kfree(pool->base);
128	memset(pool, 0, sizeof(*pool));
129}
130
131/* Allocate the requested number of (zeroed) entries from the pool */
132/* Home-grown DMA pool.  This way we can preallocate and use the tre_count
133 * to guarantee allocations will succeed.  Even though we specify max_alloc
134 * (and it can be more than one), we only allow allocation of a single
135 * element from a DMA pool.
136 */
137int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool,
138			    size_t size, u32 count, u32 max_alloc)
139{
140	size_t total_size;
141	dma_addr_t addr;
142	void *virt;
143
144#ifdef IPA_VALIDATE
145	if (!size || size % 8)
146		return -EINVAL;
147	if (count < max_alloc)
148		return -EINVAL;
149	if (!max_alloc)
150		return -EINVAL;
151#endif /* IPA_VALIDATE */
152
153	/* Don't let allocations cross a power-of-two boundary */
154	size = __roundup_pow_of_two(size);
155	total_size = (count + max_alloc - 1) * size;
156
157	/* The allocator will give us a power-of-2 number of pages.  But we
158	 * can't guarantee that, so request it.  That way we won't waste any
159	 * memory that would be available beyond the required space.
160	 */
161	total_size = get_order(total_size) << PAGE_SHIFT;
162
163	virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL);
164	if (!virt)
165		return -ENOMEM;
166
167	pool->base = virt;
168	pool->count = total_size / size;
169	pool->free = 0;
170	pool->size = size;
171	pool->max_alloc = max_alloc;
172	pool->addr = addr;
173
174	return 0;
175}
176
177void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool)
178{
179	dma_free_coherent(dev, pool->size, pool->base, pool->addr);
180	memset(pool, 0, sizeof(*pool));
181}
182
183/* Return the byte offset of the next free entry in the pool */
184static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count)
185{
186	u32 offset;
187
188	/* assert(count > 0); */
189	/* assert(count <= pool->max_alloc); */
190
191	/* Allocate from beginning if wrap would occur */
192	if (count > pool->count - pool->free)
193		pool->free = 0;
194
195	offset = pool->free * pool->size;
196	pool->free += count;
197	memset(pool->base + offset, 0, count * pool->size);
198
199	return offset;
200}
201
202/* Allocate a contiguous block of zeroed entries from a pool */
203void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count)
204{
205	return pool->base + gsi_trans_pool_alloc_common(pool, count);
206}
207
208/* Allocate a single zeroed entry from a DMA pool */
209void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr)
210{
211	u32 offset = gsi_trans_pool_alloc_common(pool, 1);
212
213	*addr = pool->addr + offset;
214
215	return pool->base + offset;
216}
217
218/* Return the pool element that immediately follows the one given.
219 * This only works done if elements are allocated one at a time.
220 */
221void *gsi_trans_pool_next(struct gsi_trans_pool *pool, void *element)
222{
223	void *end = pool->base + pool->count * pool->size;
224
225	/* assert(element >= pool->base); */
226	/* assert(element < end); */
227	/* assert(pool->max_alloc == 1); */
228	element += pool->size;
229
230	return element < end ? element : pool->base;
231}
232
233/* Map a given ring entry index to the transaction associated with it */
234static void gsi_channel_trans_map(struct gsi_channel *channel, u32 index,
235				  struct gsi_trans *trans)
236{
237	/* Note: index *must* be used modulo the ring count here */
238	channel->trans_info.map[index % channel->tre_ring.count] = trans;
239}
240
241/* Return the transaction mapped to a given ring entry */
242struct gsi_trans *
243gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index)
244{
245	/* Note: index *must* be used modulo the ring count here */
246	return channel->trans_info.map[index % channel->tre_ring.count];
247}
248
249/* Return the oldest completed transaction for a channel (or null) */
250struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel)
251{
252	return list_first_entry_or_null(&channel->trans_info.complete,
253					struct gsi_trans, links);
254}
255
256/* Move a transaction from the allocated list to the pending list */
257static void gsi_trans_move_pending(struct gsi_trans *trans)
258{
259	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
260	struct gsi_trans_info *trans_info = &channel->trans_info;
261
262	spin_lock_bh(&trans_info->spinlock);
263
264	list_move_tail(&trans->links, &trans_info->pending);
265
266	spin_unlock_bh(&trans_info->spinlock);
267}
268
269/* Move a transaction and all of its predecessors from the pending list
270 * to the completed list.
271 */
272void gsi_trans_move_complete(struct gsi_trans *trans)
273{
274	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
275	struct gsi_trans_info *trans_info = &channel->trans_info;
276	struct list_head list;
277
278	spin_lock_bh(&trans_info->spinlock);
279
280	/* Move this transaction and all predecessors to completed list */
281	list_cut_position(&list, &trans_info->pending, &trans->links);
282	list_splice_tail(&list, &trans_info->complete);
283
284	spin_unlock_bh(&trans_info->spinlock);
285}
286
287/* Move a transaction from the completed list to the polled list */
288void gsi_trans_move_polled(struct gsi_trans *trans)
289{
290	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
291	struct gsi_trans_info *trans_info = &channel->trans_info;
292
293	spin_lock_bh(&trans_info->spinlock);
294
295	list_move_tail(&trans->links, &trans_info->polled);
296
297	spin_unlock_bh(&trans_info->spinlock);
298}
299
300/* Reserve some number of TREs on a channel.  Returns true if successful */
301static bool
302gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count)
303{
304	int avail = atomic_read(&trans_info->tre_avail);
305	int new;
306
307	do {
308		new = avail - (int)tre_count;
309		if (unlikely(new < 0))
310			return false;
311	} while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new));
312
313	return true;
314}
315
316/* Release previously-reserved TRE entries to a channel */
317static void
318gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count)
319{
320	atomic_add(tre_count, &trans_info->tre_avail);
321}
322
323/* Allocate a GSI transaction on a channel */
324struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id,
325					  u32 tre_count,
326					  enum dma_data_direction direction)
327{
328	struct gsi_channel *channel = &gsi->channel[channel_id];
329	struct gsi_trans_info *trans_info;
330	struct gsi_trans *trans;
331
332	/* assert(tre_count <= gsi_channel_trans_tre_max(gsi, channel_id)); */
333
334	trans_info = &channel->trans_info;
335
336	/* We reserve the TREs now, but consume them at commit time.
337	 * If there aren't enough available, we're done.
338	 */
339	if (!gsi_trans_tre_reserve(trans_info, tre_count))
340		return NULL;
341
342	/* Allocate and initialize non-zero fields in the the transaction */
343	trans = gsi_trans_pool_alloc(&trans_info->pool, 1);
344	trans->gsi = gsi;
345	trans->channel_id = channel_id;
346	trans->tre_count = tre_count;
347	init_completion(&trans->completion);
348
349	/* Allocate the scatterlist and (if requested) info entries. */
350	trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count);
351	sg_init_marker(trans->sgl, tre_count);
352
353	trans->direction = direction;
354
355	spin_lock_bh(&trans_info->spinlock);
356
357	list_add_tail(&trans->links, &trans_info->alloc);
358
359	spin_unlock_bh(&trans_info->spinlock);
360
361	refcount_set(&trans->refcount, 1);
362
363	return trans;
364}
365
366/* Free a previously-allocated transaction (used only in case of error) */
367void gsi_trans_free(struct gsi_trans *trans)
368{
369	struct gsi_trans_info *trans_info;
370
371	if (!refcount_dec_and_test(&trans->refcount))
372		return;
373
374	trans_info = &trans->gsi->channel[trans->channel_id].trans_info;
375
376	spin_lock_bh(&trans_info->spinlock);
377
378	list_del(&trans->links);
379
380	spin_unlock_bh(&trans_info->spinlock);
381
382	ipa_gsi_trans_release(trans);
383
384	/* Releasing the reserved TREs implicitly frees the sgl[] and
385	 * (if present) info[] arrays, plus the transaction itself.
386	 */
387	gsi_trans_tre_release(trans_info, trans->tre_count);
388}
389
390/* Add an immediate command to a transaction */
391void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size,
392		       dma_addr_t addr, enum dma_data_direction direction,
393		       enum ipa_cmd_opcode opcode)
394{
395	struct ipa_cmd_info *info;
396	u32 which = trans->used++;
397	struct scatterlist *sg;
398
399	/* assert(which < trans->tre_count); */
400
401	/* Set the page information for the buffer.  We also need to fill in
402	 * the DMA address and length for the buffer (something dma_map_sg()
403	 * normally does).
404	 */
405	sg = &trans->sgl[which];
406
407	sg_set_buf(sg, buf, size);
408	sg_dma_address(sg) = addr;
409	sg_dma_len(sg) = sg->length;
410
411	info = &trans->info[which];
412	info->opcode = opcode;
413	info->direction = direction;
414}
415
416/* Add a page transfer to a transaction.  It will fill the only TRE. */
417int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size,
418		       u32 offset)
419{
420	struct scatterlist *sg = &trans->sgl[0];
421	int ret;
422
423	/* assert(trans->tre_count == 1); */
424	/* assert(!trans->used); */
425
426	sg_set_page(sg, page, size, offset);
427	ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction);
428	if (!ret)
429		return -ENOMEM;
430
431	trans->used++;	/* Transaction now owns the (DMA mapped) page */
432
433	return 0;
434}
435
436/* Add an SKB transfer to a transaction.  No other TREs will be used. */
437int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb)
438{
439	struct scatterlist *sg = &trans->sgl[0];
440	u32 used;
441	int ret;
442
443	/* assert(trans->tre_count == 1); */
444	/* assert(!trans->used); */
445
446	/* skb->len will not be 0 (checked early) */
447	ret = skb_to_sgvec(skb, sg, 0, skb->len);
448	if (ret < 0)
449		return ret;
450	used = ret;
451
452	ret = dma_map_sg(trans->gsi->dev, sg, used, trans->direction);
453	if (!ret)
454		return -ENOMEM;
455
456	trans->used += used;	/* Transaction now owns the (DMA mapped) skb */
457
458	return 0;
459}
460
461/* Compute the length/opcode value to use for a TRE */
462static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len)
463{
464	return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len)
465				      : cpu_to_le16((u16)opcode);
466}
467
468/* Compute the flags value to use for a given TRE */
469static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode)
470{
471	enum gsi_tre_type tre_type;
472	u32 tre_flags;
473
474	tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD;
475	tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK);
476
477	/* Last TRE contains interrupt flags */
478	if (last_tre) {
479		/* All transactions end in a transfer completion interrupt */
480		tre_flags |= TRE_FLAGS_IEOT_FMASK;
481		/* Don't interrupt when outbound commands are acknowledged */
482		if (bei)
483			tre_flags |= TRE_FLAGS_BEI_FMASK;
484	} else {	/* All others indicate there's more to come */
485		tre_flags |= TRE_FLAGS_CHAIN_FMASK;
486	}
487
488	return cpu_to_le32(tre_flags);
489}
490
491static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr,
492			       u32 len, bool last_tre, bool bei,
493			       enum ipa_cmd_opcode opcode)
494{
495	struct gsi_tre tre;
496
497	tre.addr = cpu_to_le64(addr);
498	tre.len_opcode = gsi_tre_len_opcode(opcode, len);
499	tre.reserved = 0;
500	tre.flags = gsi_tre_flags(last_tre, bei, opcode);
501
502	/* ARM64 can write 16 bytes as a unit with a single instruction.
503	 * Doing the assignment this way is an attempt to make that happen.
504	 */
505	*dest_tre = tre;
506}
507
508/**
509 * __gsi_trans_commit() - Common GSI transaction commit code
510 * @trans:	Transaction to commit
511 * @ring_db:	Whether to tell the hardware about these queued transfers
512 *
513 * Formats channel ring TRE entries based on the content of the scatterlist.
514 * Maps a transaction pointer to the last ring entry used for the transaction,
515 * so it can be recovered when it completes.  Moves the transaction to the
516 * pending list.  Finally, updates the channel ring pointer and optionally
517 * rings the doorbell.
518 */
519static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
520{
521	struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
522	struct gsi_ring *ring = &channel->tre_ring;
523	enum ipa_cmd_opcode opcode = IPA_CMD_NONE;
524	bool bei = channel->toward_ipa;
525	struct ipa_cmd_info *info;
526	struct gsi_tre *dest_tre;
527	struct scatterlist *sg;
528	u32 byte_count = 0;
529	u32 avail;
530	u32 i;
531
532	/* assert(trans->used > 0); */
533
534	/* Consume the entries.  If we cross the end of the ring while
535	 * filling them we'll switch to the beginning to finish.
536	 * If there is no info array we're doing a simple data
537	 * transfer request, whose opcode is IPA_CMD_NONE.
538	 */
539	info = trans->info ? &trans->info[0] : NULL;
540	avail = ring->count - ring->index % ring->count;
541	dest_tre = gsi_ring_virt(ring, ring->index);
542	for_each_sg(trans->sgl, sg, trans->used, i) {
543		bool last_tre = i == trans->used - 1;
544		dma_addr_t addr = sg_dma_address(sg);
545		u32 len = sg_dma_len(sg);
546
547		byte_count += len;
548		if (!avail--)
549			dest_tre = gsi_ring_virt(ring, 0);
550		if (info)
551			opcode = info++->opcode;
552
553		gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode);
554		dest_tre++;
555	}
556	ring->index += trans->used;
557
558	if (channel->toward_ipa) {
559		/* We record TX bytes when they are sent */
560		trans->len = byte_count;
561		trans->trans_count = channel->trans_count;
562		trans->byte_count = channel->byte_count;
563		channel->trans_count++;
564		channel->byte_count += byte_count;
565	}
566
567	/* Associate the last TRE with the transaction */
568	gsi_channel_trans_map(channel, ring->index - 1, trans);
569
570	gsi_trans_move_pending(trans);
571
572	/* Ring doorbell if requested, or if all TREs are allocated */
573	if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) {
574		/* Report what we're handing off to hardware for TX channels */
575		if (channel->toward_ipa)
576			gsi_channel_tx_queued(channel);
577		gsi_channel_doorbell(channel);
578	}
579}
580
581/* Commit a GSI transaction */
582void gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
583{
584	if (trans->used)
585		__gsi_trans_commit(trans, ring_db);
586	else
587		gsi_trans_free(trans);
588}
589
590/* Commit a GSI transaction and wait for it to complete */
591void gsi_trans_commit_wait(struct gsi_trans *trans)
592{
593	if (!trans->used)
594		goto out_trans_free;
595
596	refcount_inc(&trans->refcount);
597
598	__gsi_trans_commit(trans, true);
599
600	wait_for_completion(&trans->completion);
601
602out_trans_free:
603	gsi_trans_free(trans);
604}
605
606/* Commit a GSI transaction and wait for it to complete, with timeout */
607int gsi_trans_commit_wait_timeout(struct gsi_trans *trans,
608				  unsigned long timeout)
609{
610	unsigned long timeout_jiffies = msecs_to_jiffies(timeout);
611	unsigned long remaining = 1;	/* In case of empty transaction */
612
613	if (!trans->used)
614		goto out_trans_free;
615
616	refcount_inc(&trans->refcount);
617
618	__gsi_trans_commit(trans, true);
619
620	remaining = wait_for_completion_timeout(&trans->completion,
621						timeout_jiffies);
622out_trans_free:
623	gsi_trans_free(trans);
624
625	return remaining ? 0 : -ETIMEDOUT;
626}
627
628/* Process the completion of a transaction; called while polling */
629void gsi_trans_complete(struct gsi_trans *trans)
630{
631	/* If the entire SGL was mapped when added, unmap it now */
632	if (trans->direction != DMA_NONE)
633		dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used,
634			     trans->direction);
635
636	ipa_gsi_trans_complete(trans);
637
638	complete(&trans->completion);
639
640	gsi_trans_free(trans);
641}
642
643/* Cancel a channel's pending transactions */
644void gsi_channel_trans_cancel_pending(struct gsi_channel *channel)
645{
646	struct gsi_trans_info *trans_info = &channel->trans_info;
647	struct gsi_trans *trans;
648	bool cancelled;
649
650	/* channel->gsi->mutex is held by caller */
651	spin_lock_bh(&trans_info->spinlock);
652
653	cancelled = !list_empty(&trans_info->pending);
654	list_for_each_entry(trans, &trans_info->pending, links)
655		trans->cancelled = true;
656
657	list_splice_tail_init(&trans_info->pending, &trans_info->complete);
658
659	spin_unlock_bh(&trans_info->spinlock);
660
661	/* Schedule NAPI polling to complete the cancelled transactions */
662	if (cancelled)
663		napi_schedule(&channel->napi);
664}
665
666/* Issue a command to read a single byte from a channel */
667int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr)
668{
669	struct gsi_channel *channel = &gsi->channel[channel_id];
670	struct gsi_ring *ring = &channel->tre_ring;
671	struct gsi_trans_info *trans_info;
672	struct gsi_tre *dest_tre;
673
674	trans_info = &channel->trans_info;
675
676	/* First reserve the TRE, if possible */
677	if (!gsi_trans_tre_reserve(trans_info, 1))
678		return -EBUSY;
679
680	/* Now fill the the reserved TRE and tell the hardware */
681
682	dest_tre = gsi_ring_virt(ring, ring->index);
683	gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE);
684
685	ring->index++;
686	gsi_channel_doorbell(channel);
687
688	return 0;
689}
690
691/* Mark a gsi_trans_read_byte() request done */
692void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id)
693{
694	struct gsi_channel *channel = &gsi->channel[channel_id];
695
696	gsi_trans_tre_release(&channel->trans_info, 1);
697}
698
699/* Initialize a channel's GSI transaction info */
700int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id)
701{
702	struct gsi_channel *channel = &gsi->channel[channel_id];
703	struct gsi_trans_info *trans_info;
704	u32 tre_max;
705	int ret;
706
707	/* Ensure the size of a channel element is what's expected */
708	BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE);
709
710	/* The map array is used to determine what transaction is associated
711	 * with a TRE that the hardware reports has completed.  We need one
712	 * map entry per TRE.
713	 */
714	trans_info = &channel->trans_info;
715	trans_info->map = kcalloc(channel->tre_count, sizeof(*trans_info->map),
716				  GFP_KERNEL);
717	if (!trans_info->map)
718		return -ENOMEM;
719
720	/* We can't use more TREs than there are available in the ring.
721	 * This limits the number of transactions that can be oustanding.
722	 * Worst case is one TRE per transaction (but we actually limit
723	 * it to something a little less than that).  We allocate resources
724	 * for transactions (including transaction structures) based on
725	 * this maximum number.
726	 */
727	tre_max = gsi_channel_tre_max(channel->gsi, channel_id);
728
729	/* Transactions are allocated one at a time. */
730	ret = gsi_trans_pool_init(&trans_info->pool, sizeof(struct gsi_trans),
731				  tre_max, 1);
732	if (ret)
733		goto err_kfree;
734
735	/* A transaction uses a scatterlist array to represent the data
736	 * transfers implemented by the transaction.  Each scatterlist
737	 * element is used to fill a single TRE when the transaction is
738	 * committed.  So we need as many scatterlist elements as the
739	 * maximum number of TREs that can be outstanding.
740	 *
741	 * All TREs in a transaction must fit within the channel's TLV FIFO.
742	 * A transaction on a channel can allocate as many TREs as that but
743	 * no more.
744	 */
745	ret = gsi_trans_pool_init(&trans_info->sg_pool,
746				  sizeof(struct scatterlist),
747				  tre_max, channel->tlv_count);
748	if (ret)
749		goto err_trans_pool_exit;
750
751	/* Finally, the tre_avail field is what ultimately limits the number
752	 * of outstanding transactions and their resources.  A transaction
753	 * allocation succeeds only if the TREs available are sufficient for
754	 * what the transaction might need.  Transaction resource pools are
755	 * sized based on the maximum number of outstanding TREs, so there
756	 * will always be resources available if there are TREs available.
757	 */
758	atomic_set(&trans_info->tre_avail, tre_max);
759
760	spin_lock_init(&trans_info->spinlock);
761	INIT_LIST_HEAD(&trans_info->alloc);
762	INIT_LIST_HEAD(&trans_info->pending);
763	INIT_LIST_HEAD(&trans_info->complete);
764	INIT_LIST_HEAD(&trans_info->polled);
765
766	return 0;
767
768err_trans_pool_exit:
769	gsi_trans_pool_exit(&trans_info->pool);
770err_kfree:
771	kfree(trans_info->map);
772
773	dev_err(gsi->dev, "error %d initializing channel %u transactions\n",
774		ret, channel_id);
775
776	return ret;
777}
778
779/* Inverse of gsi_channel_trans_init() */
780void gsi_channel_trans_exit(struct gsi_channel *channel)
781{
782	struct gsi_trans_info *trans_info = &channel->trans_info;
783
784	gsi_trans_pool_exit(&trans_info->sg_pool);
785	gsi_trans_pool_exit(&trans_info->pool);
786	kfree(trans_info->map);
787}