Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
   4 * Copyright (C) 2018-2020 Linaro Ltd.
   5 */
   6
   7#include <linux/types.h>
   8#include <linux/bits.h>
   9#include <linux/bitfield.h>
  10#include <linux/mutex.h>
  11#include <linux/completion.h>
  12#include <linux/io.h>
  13#include <linux/bug.h>
  14#include <linux/interrupt.h>
  15#include <linux/platform_device.h>
  16#include <linux/netdevice.h>
  17
  18#include "gsi.h"
  19#include "gsi_reg.h"
  20#include "gsi_private.h"
  21#include "gsi_trans.h"
  22#include "ipa_gsi.h"
  23#include "ipa_data.h"
  24
  25/**
  26 * DOC: The IPA Generic Software Interface
  27 *
  28 * The generic software interface (GSI) is an integral component of the IPA,
  29 * providing a well-defined communication layer between the AP subsystem
  30 * and the IPA core.  The modem uses the GSI layer as well.
  31 *
  32 *	--------	     ---------
  33 *	|      |	     |	     |
  34 *	|  AP  +<---.	.----+ Modem |
  35 *	|      +--. |	| .->+	     |
  36 *	|      |  | |	| |  |	     |
  37 *	--------  | |	| |  ---------
  38 *		  v |	v |
  39 *		--+-+---+-+--
  40 *		|    GSI    |
  41 *		|-----------|
  42 *		|	    |
  43 *		|    IPA    |
  44 *		|	    |
  45 *		-------------
  46 *
  47 * In the above diagram, the AP and Modem represent "execution environments"
  48 * (EEs), which are independent operating environments that use the IPA for
  49 * data transfer.
  50 *
  51 * Each EE uses a set of unidirectional GSI "channels," which allow transfer
  52 * of data to or from the IPA.  A channel is implemented as a ring buffer,
  53 * with a DRAM-resident array of "transfer elements" (TREs) available to
  54 * describe transfers to or from other EEs through the IPA.  A transfer
  55 * element can also contain an immediate command, requesting the IPA perform
  56 * actions other than data transfer.
  57 *
  58 * Each TRE refers to a block of data--also located DRAM.  After writing one
  59 * or more TREs to a channel, the writer (either the IPA or an EE) writes a
  60 * doorbell register to inform the receiving side how many elements have
  61 * been written.
  62 *
  63 * Each channel has a GSI "event ring" associated with it.  An event ring
  64 * is implemented very much like a channel ring, but is always directed from
  65 * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
  66 * events by adding an entry to the event ring associated with the channel.
  67 * The GSI then writes its doorbell for the event ring, causing the target
  68 * EE to be interrupted.  Each entry in an event ring contains a pointer
  69 * to the channel TRE whose completion the event represents.
  70 *
  71 * Each TRE in a channel ring has a set of flags.  One flag indicates whether
  72 * the completion of the transfer operation generates an entry (and possibly
  73 * an interrupt) in the channel's event ring.  Other flags allow transfer
  74 * elements to be chained together, forming a single logical transaction.
  75 * TRE flags are used to control whether and when interrupts are generated
  76 * to signal completion of channel transfers.
  77 *
  78 * Elements in channel and event rings are completed (or consumed) strictly
  79 * in order.  Completion of one entry implies the completion of all preceding
  80 * entries.  A single completion interrupt can therefore communicate the
  81 * completion of many transfers.
  82 *
  83 * Note that all GSI registers are little-endian, which is the assumed
  84 * endianness of I/O space accesses.  The accessor functions perform byte
  85 * swapping if needed (i.e., for a big endian CPU).
  86 */
  87
  88/* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
  89#define GSI_EVT_RING_INT_MODT		(32 * 1) /* 1ms under 32KHz clock */
  90
  91#define GSI_CMD_TIMEOUT			5	/* seconds */
  92
  93#define GSI_CHANNEL_STOP_RX_RETRIES	10
  94
  95#define GSI_MHI_EVENT_ID_START		10	/* 1st reserved event id */
  96#define GSI_MHI_EVENT_ID_END		16	/* Last reserved event id */
  97
  98#define GSI_ISR_MAX_ITER		50	/* Detect interrupt storms */
  99
 100/* An entry in an event ring */
 101struct gsi_event {
 102	__le64 xfer_ptr;
 103	__le16 len;
 104	u8 reserved1;
 105	u8 code;
 106	__le16 reserved2;
 107	u8 type;
 108	u8 chid;
 109};
 110
 111/* Hardware values from the error log register error code field */
 112enum gsi_err_code {
 113	GSI_INVALID_TRE_ERR			= 0x1,
 114	GSI_OUT_OF_BUFFERS_ERR			= 0x2,
 115	GSI_OUT_OF_RESOURCES_ERR		= 0x3,
 116	GSI_UNSUPPORTED_INTER_EE_OP_ERR		= 0x4,
 117	GSI_EVT_RING_EMPTY_ERR			= 0x5,
 118	GSI_NON_ALLOCATED_EVT_ACCESS_ERR	= 0x6,
 119	GSI_HWO_1_ERR				= 0x8,
 120};
 121
 122/* Hardware values from the error log register error type field */
 123enum gsi_err_type {
 124	GSI_ERR_TYPE_GLOB	= 0x1,
 125	GSI_ERR_TYPE_CHAN	= 0x2,
 126	GSI_ERR_TYPE_EVT	= 0x3,
 127};
 128
 129/* Hardware values used when programming an event ring */
 130enum gsi_evt_chtype {
 131	GSI_EVT_CHTYPE_MHI_EV	= 0x0,
 132	GSI_EVT_CHTYPE_XHCI_EV	= 0x1,
 133	GSI_EVT_CHTYPE_GPI_EV	= 0x2,
 134	GSI_EVT_CHTYPE_XDCI_EV	= 0x3,
 135};
 136
 137/* Hardware values used when programming a channel */
 138enum gsi_channel_protocol {
 139	GSI_CHANNEL_PROTOCOL_MHI	= 0x0,
 140	GSI_CHANNEL_PROTOCOL_XHCI	= 0x1,
 141	GSI_CHANNEL_PROTOCOL_GPI	= 0x2,
 142	GSI_CHANNEL_PROTOCOL_XDCI	= 0x3,
 143};
 144
 145/* Hardware values representing an event ring immediate command opcode */
 146enum gsi_evt_cmd_opcode {
 147	GSI_EVT_ALLOCATE	= 0x0,
 148	GSI_EVT_RESET		= 0x9,
 149	GSI_EVT_DE_ALLOC	= 0xa,
 150};
 151
 152/* Hardware values representing a generic immediate command opcode */
 153enum gsi_generic_cmd_opcode {
 154	GSI_GENERIC_HALT_CHANNEL	= 0x1,
 155	GSI_GENERIC_ALLOCATE_CHANNEL	= 0x2,
 156};
 157
 158/* Hardware values representing a channel immediate command opcode */
 159enum gsi_ch_cmd_opcode {
 160	GSI_CH_ALLOCATE	= 0x0,
 161	GSI_CH_START	= 0x1,
 162	GSI_CH_STOP	= 0x2,
 163	GSI_CH_RESET	= 0x9,
 164	GSI_CH_DE_ALLOC	= 0xa,
 165};
 166
 167/** gsi_channel_scratch_gpi - GPI protocol scratch register
 168 * @max_outstanding_tre:
 169 *	Defines the maximum number of TREs allowed in a single transaction
 170 *	on a channel (in bytes).  This determines the amount of prefetch
 171 *	performed by the hardware.  We configure this to equal the size of
 172 *	the TLV FIFO for the channel.
 173 * @outstanding_threshold:
 174 *	Defines the threshold (in bytes) determining when the sequencer
 175 *	should update the channel doorbell.  We configure this to equal
 176 *	the size of two TREs.
 177 */
 178struct gsi_channel_scratch_gpi {
 179	u64 reserved1;
 180	u16 reserved2;
 181	u16 max_outstanding_tre;
 182	u16 reserved3;
 183	u16 outstanding_threshold;
 184};
 185
 186/** gsi_channel_scratch - channel scratch configuration area
 187 *
 188 * The exact interpretation of this register is protocol-specific.
 189 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
 190 */
 191union gsi_channel_scratch {
 192	struct gsi_channel_scratch_gpi gpi;
 193	struct {
 194		u32 word1;
 195		u32 word2;
 196		u32 word3;
 197		u32 word4;
 198	} data;
 199};
 200
 201/* Check things that can be validated at build time. */
 202static void gsi_validate_build(void)
 203{
 204	/* This is used as a divisor */
 205	BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
 206
 207	/* Code assumes the size of channel and event ring element are
 208	 * the same (and fixed).  Make sure the size of an event ring
 209	 * element is what's expected.
 210	 */
 211	BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
 212
 213	/* Hardware requires a 2^n ring size.  We ensure the number of
 214	 * elements in an event ring is a power of 2 elsewhere; this
 215	 * ensure the elements themselves meet the requirement.
 216	 */
 217	BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
 218
 219	/* The channel element size must fit in this field */
 220	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
 221
 222	/* The event ring element size must fit in this field */
 223	BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
 224}
 225
 226/* Return the channel id associated with a given channel */
 227static u32 gsi_channel_id(struct gsi_channel *channel)
 228{
 229	return channel - &channel->gsi->channel[0];
 230}
 231
 232static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id)
 233{
 234	u32 val;
 235
 236	gsi->event_enable_bitmap |= BIT(evt_ring_id);
 237	val = gsi->event_enable_bitmap;
 238	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
 239}
 240
 241static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id)
 242{
 243	u32 val;
 244
 245	gsi->event_enable_bitmap &= ~BIT(evt_ring_id);
 246	val = gsi->event_enable_bitmap;
 247	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
 248}
 249
 250/* Enable all GSI_interrupt types */
 251static void gsi_irq_enable(struct gsi *gsi)
 252{
 253	u32 val;
 254
 255	/* We don't use inter-EE channel or event interrupts */
 256	val = GSI_CNTXT_TYPE_IRQ_MSK_ALL;
 257	val &= ~MSK_INTER_EE_CH_CTRL_FMASK;
 258	val &= ~MSK_INTER_EE_EV_CTRL_FMASK;
 259	iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
 260
 261	val = GENMASK(gsi->channel_count - 1, 0);
 262	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
 263
 264	val = GENMASK(gsi->evt_ring_count - 1, 0);
 265	iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
 266
 267	/* Each IEOB interrupt is enabled (later) as needed by channels */
 268	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
 269
 270	val = GSI_CNTXT_GLOB_IRQ_ALL;
 271	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
 272
 273	/* Never enable GSI_BREAK_POINT */
 274	val = GSI_CNTXT_GSI_IRQ_ALL & ~EN_BREAK_POINT_FMASK;
 275	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
 276}
 277
 278/* Disable all GSI_interrupt types */
 279static void gsi_irq_disable(struct gsi *gsi)
 280{
 281	iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
 282	iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
 283	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
 284	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
 285	iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
 286	iowrite32(0, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
 287}
 288
 289/* Return the virtual address associated with a ring index */
 290void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
 291{
 292	/* Note: index *must* be used modulo the ring count here */
 293	return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
 294}
 295
 296/* Return the 32-bit DMA address associated with a ring index */
 297static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
 298{
 299	return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE;
 300}
 301
 302/* Return the ring index of a 32-bit ring offset */
 303static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
 304{
 305	return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
 306}
 307
 308/* Issue a GSI command by writing a value to a register, then wait for
 309 * completion to be signaled.  Returns true if the command completes
 310 * or false if it times out.
 311 */
 312static bool
 313gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
 314{
 315	reinit_completion(completion);
 316
 317	iowrite32(val, gsi->virt + reg);
 318
 319	return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ);
 320}
 321
 322/* Return the hardware's notion of the current state of an event ring */
 323static enum gsi_evt_ring_state
 324gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
 325{
 326	u32 val;
 327
 328	val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
 329
 330	return u32_get_bits(val, EV_CHSTATE_FMASK);
 331}
 332
 333/* Issue an event ring command and wait for it to complete */
 334static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
 335			    enum gsi_evt_cmd_opcode opcode)
 336{
 337	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
 338	struct completion *completion = &evt_ring->completion;
 339	struct device *dev = gsi->dev;
 340	u32 val;
 341
 342	val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
 343	val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
 344
 345	if (gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion))
 346		return 0;	/* Success! */
 347
 348	dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
 349		opcode, evt_ring_id, evt_ring->state);
 350
 351	return -ETIMEDOUT;
 352}
 353
 354/* Allocate an event ring in NOT_ALLOCATED state */
 355static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
 356{
 357	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
 358	int ret;
 359
 360	/* Get initial event ring state */
 361	evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
 362	if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
 363		dev_err(gsi->dev, "bad event ring state %u before alloc\n",
 364			evt_ring->state);
 365		return -EINVAL;
 366	}
 367
 368	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
 369	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
 370		dev_err(gsi->dev, "bad event ring state %u after alloc\n",
 371			evt_ring->state);
 372		ret = -EIO;
 373	}
 374
 375	return ret;
 376}
 377
 378/* Reset a GSI event ring in ALLOCATED or ERROR state. */
 379static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
 380{
 381	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
 382	enum gsi_evt_ring_state state = evt_ring->state;
 383	int ret;
 384
 385	if (state != GSI_EVT_RING_STATE_ALLOCATED &&
 386	    state != GSI_EVT_RING_STATE_ERROR) {
 387		dev_err(gsi->dev, "bad event ring state %u before reset\n",
 388			evt_ring->state);
 389		return;
 390	}
 391
 392	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
 393	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED)
 394		dev_err(gsi->dev, "bad event ring state %u after reset\n",
 395			evt_ring->state);
 396}
 397
 398/* Issue a hardware de-allocation request for an allocated event ring */
 399static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
 400{
 401	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
 402	int ret;
 403
 404	if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
 405		dev_err(gsi->dev, "bad event ring state %u before dealloc\n",
 406			evt_ring->state);
 407		return;
 408	}
 409
 410	ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
 411	if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
 412		dev_err(gsi->dev, "bad event ring state %u after dealloc\n",
 413			evt_ring->state);
 414}
 415
 416/* Fetch the current state of a channel from hardware */
 417static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
 418{
 419	u32 channel_id = gsi_channel_id(channel);
 420	void *virt = channel->gsi->virt;
 421	u32 val;
 422
 423	val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
 424
 425	return u32_get_bits(val, CHSTATE_FMASK);
 426}
 427
 428/* Issue a channel command and wait for it to complete */
 429static int
 430gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
 431{
 432	struct completion *completion = &channel->completion;
 433	u32 channel_id = gsi_channel_id(channel);
 434	struct gsi *gsi = channel->gsi;
 435	struct device *dev = gsi->dev;
 436	u32 val;
 437
 438	val = u32_encode_bits(channel_id, CH_CHID_FMASK);
 439	val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
 440
 441	if (gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion))
 442		return 0;	/* Success! */
 443
 444	dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
 445		opcode, channel_id, gsi_channel_state(channel));
 446
 447	return -ETIMEDOUT;
 448}
 449
 450/* Allocate GSI channel in NOT_ALLOCATED state */
 451static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
 452{
 453	struct gsi_channel *channel = &gsi->channel[channel_id];
 454	struct device *dev = gsi->dev;
 455	enum gsi_channel_state state;
 456	int ret;
 457
 458	/* Get initial channel state */
 459	state = gsi_channel_state(channel);
 460	if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
 461		dev_err(dev, "bad channel state %u before alloc\n", state);
 462		return -EINVAL;
 463	}
 464
 465	ret = gsi_channel_command(channel, GSI_CH_ALLOCATE);
 466
 467	/* Channel state will normally have been updated */
 468	state = gsi_channel_state(channel);
 469	if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED) {
 470		dev_err(dev, "bad channel state %u after alloc\n", state);
 471		ret = -EIO;
 472	}
 473
 474	return ret;
 475}
 476
 477/* Start an ALLOCATED channel */
 478static int gsi_channel_start_command(struct gsi_channel *channel)
 479{
 480	struct device *dev = channel->gsi->dev;
 481	enum gsi_channel_state state;
 482	int ret;
 483
 484	state = gsi_channel_state(channel);
 485	if (state != GSI_CHANNEL_STATE_ALLOCATED &&
 486	    state != GSI_CHANNEL_STATE_STOPPED) {
 487		dev_err(dev, "bad channel state %u before start\n", state);
 488		return -EINVAL;
 489	}
 490
 491	ret = gsi_channel_command(channel, GSI_CH_START);
 492
 493	/* Channel state will normally have been updated */
 494	state = gsi_channel_state(channel);
 495	if (!ret && state != GSI_CHANNEL_STATE_STARTED) {
 496		dev_err(dev, "bad channel state %u after start\n", state);
 497		ret = -EIO;
 498	}
 499
 500	return ret;
 501}
 502
 503/* Stop a GSI channel in STARTED state */
 504static int gsi_channel_stop_command(struct gsi_channel *channel)
 505{
 506	struct device *dev = channel->gsi->dev;
 507	enum gsi_channel_state state;
 508	int ret;
 509
 510	state = gsi_channel_state(channel);
 511
 512	/* Channel could have entered STOPPED state since last call
 513	 * if it timed out.  If so, we're done.
 514	 */
 515	if (state == GSI_CHANNEL_STATE_STOPPED)
 516		return 0;
 517
 518	if (state != GSI_CHANNEL_STATE_STARTED &&
 519	    state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
 520		dev_err(dev, "bad channel state %u before stop\n", state);
 521		return -EINVAL;
 522	}
 523
 524	ret = gsi_channel_command(channel, GSI_CH_STOP);
 525
 526	/* Channel state will normally have been updated */
 527	state = gsi_channel_state(channel);
 528	if (ret || state == GSI_CHANNEL_STATE_STOPPED)
 529		return ret;
 530
 531	/* We may have to try again if stop is in progress */
 532	if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
 533		return -EAGAIN;
 534
 535	dev_err(dev, "bad channel state %u after stop\n", state);
 536
 537	return -EIO;
 538}
 539
 540/* Reset a GSI channel in ALLOCATED or ERROR state. */
 541static void gsi_channel_reset_command(struct gsi_channel *channel)
 542{
 543	struct device *dev = channel->gsi->dev;
 544	enum gsi_channel_state state;
 545	int ret;
 546
 547	msleep(1);	/* A short delay is required before a RESET command */
 548
 549	state = gsi_channel_state(channel);
 550	if (state != GSI_CHANNEL_STATE_STOPPED &&
 551	    state != GSI_CHANNEL_STATE_ERROR) {
 552		dev_err(dev, "bad channel state %u before reset\n", state);
 553		return;
 554	}
 555
 556	ret = gsi_channel_command(channel, GSI_CH_RESET);
 557
 558	/* Channel state will normally have been updated */
 559	state = gsi_channel_state(channel);
 560	if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED)
 561		dev_err(dev, "bad channel state %u after reset\n", state);
 562}
 563
 564/* Deallocate an ALLOCATED GSI channel */
 565static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
 566{
 567	struct gsi_channel *channel = &gsi->channel[channel_id];
 568	struct device *dev = gsi->dev;
 569	enum gsi_channel_state state;
 570	int ret;
 571
 572	state = gsi_channel_state(channel);
 573	if (state != GSI_CHANNEL_STATE_ALLOCATED) {
 574		dev_err(dev, "bad channel state %u before dealloc\n", state);
 575		return;
 576	}
 577
 578	ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC);
 579
 580	/* Channel state will normally have been updated */
 581	state = gsi_channel_state(channel);
 582	if (!ret && state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
 583		dev_err(dev, "bad channel state %u after dealloc\n", state);
 584}
 585
 586/* Ring an event ring doorbell, reporting the last entry processed by the AP.
 587 * The index argument (modulo the ring count) is the first unfilled entry, so
 588 * we supply one less than that with the doorbell.  Update the event ring
 589 * index field with the value provided.
 590 */
 591static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
 592{
 593	struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
 594	u32 val;
 595
 596	ring->index = index;	/* Next unused entry */
 597
 598	/* Note: index *must* be used modulo the ring count here */
 599	val = gsi_ring_addr(ring, (index - 1) % ring->count);
 600	iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
 601}
 602
 603/* Program an event ring for use */
 604static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
 605{
 606	struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
 607	size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
 608	u32 val;
 609
 610	val = u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK);
 611	val |= EV_INTYPE_FMASK;
 612	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
 613	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
 614
 615	val = u32_encode_bits(size, EV_R_LENGTH_FMASK);
 616	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
 617
 618	/* The context 2 and 3 registers store the low-order and
 619	 * high-order 32 bits of the address of the event ring,
 620	 * respectively.
 621	 */
 622	val = evt_ring->ring.addr & GENMASK(31, 0);
 623	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
 624
 625	val = evt_ring->ring.addr >> 32;
 626	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
 627
 628	/* Enable interrupt moderation by setting the moderation delay */
 629	val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
 630	val |= u32_encode_bits(1, MODC_FMASK);	/* comes from channel */
 631	iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
 632
 633	/* No MSI write data, and MSI address high and low address is 0 */
 634	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
 635	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
 636	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
 637
 638	/* We don't need to get event read pointer updates */
 639	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
 640	iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
 641
 642	/* Finally, tell the hardware we've completed event 0 (arbitrary) */
 643	gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
 644}
 645
 646/* Return the last (most recent) transaction completed on a channel. */
 647static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
 648{
 649	struct gsi_trans_info *trans_info = &channel->trans_info;
 650	struct gsi_trans *trans;
 651
 652	spin_lock_bh(&trans_info->spinlock);
 653
 654	if (!list_empty(&trans_info->complete))
 655		trans = list_last_entry(&trans_info->complete,
 656					struct gsi_trans, links);
 657	else if (!list_empty(&trans_info->polled))
 658		trans = list_last_entry(&trans_info->polled,
 659					struct gsi_trans, links);
 660	else
 661		trans = NULL;
 662
 663	/* Caller will wait for this, so take a reference */
 664	if (trans)
 665		refcount_inc(&trans->refcount);
 666
 667	spin_unlock_bh(&trans_info->spinlock);
 668
 669	return trans;
 670}
 671
 672/* Wait for transaction activity on a channel to complete */
 673static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
 674{
 675	struct gsi_trans *trans;
 676
 677	/* Get the last transaction, and wait for it to complete */
 678	trans = gsi_channel_trans_last(channel);
 679	if (trans) {
 680		wait_for_completion(&trans->completion);
 681		gsi_trans_free(trans);
 682	}
 683}
 684
 685/* Stop channel activity.  Transactions may not be allocated until thawed. */
 686static void gsi_channel_freeze(struct gsi_channel *channel)
 687{
 688	gsi_channel_trans_quiesce(channel);
 689
 690	napi_disable(&channel->napi);
 691
 692	gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id);
 693}
 694
 695/* Allow transactions to be used on the channel again. */
 696static void gsi_channel_thaw(struct gsi_channel *channel)
 697{
 698	gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
 699
 700	napi_enable(&channel->napi);
 701}
 702
 703/* Program a channel for use */
 704static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
 705{
 706	size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
 707	u32 channel_id = gsi_channel_id(channel);
 708	union gsi_channel_scratch scr = { };
 709	struct gsi_channel_scratch_gpi *gpi;
 710	struct gsi *gsi = channel->gsi;
 711	u32 wrr_weight = 0;
 712	u32 val;
 713
 714	/* Arbitrarily pick TRE 0 as the first channel element to use */
 715	channel->tre_ring.index = 0;
 716
 717	/* We program all channels to use GPI protocol */
 718	val = u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK);
 719	if (channel->toward_ipa)
 720		val |= CHTYPE_DIR_FMASK;
 721	val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
 722	val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
 723	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
 724
 725	val = u32_encode_bits(size, R_LENGTH_FMASK);
 726	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
 727
 728	/* The context 2 and 3 registers store the low-order and
 729	 * high-order 32 bits of the address of the channel ring,
 730	 * respectively.
 731	 */
 732	val = channel->tre_ring.addr & GENMASK(31, 0);
 733	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
 734
 735	val = channel->tre_ring.addr >> 32;
 736	iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
 737
 738	/* Command channel gets low weighted round-robin priority */
 739	if (channel->command)
 740		wrr_weight = field_max(WRR_WEIGHT_FMASK);
 741	val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
 742
 743	/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
 744
 745	/* Enable the doorbell engine if requested */
 746	if (doorbell)
 747		val |= USE_DB_ENG_FMASK;
 748
 749	if (!channel->use_prefetch)
 750		val |= USE_ESCAPE_BUF_ONLY_FMASK;
 751
 752	iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
 753
 754	/* Now update the scratch registers for GPI protocol */
 755	gpi = &scr.gpi;
 756	gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
 757					GSI_RING_ELEMENT_SIZE;
 758	gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
 759
 760	val = scr.data.word1;
 761	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
 762
 763	val = scr.data.word2;
 764	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
 765
 766	val = scr.data.word3;
 767	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
 768
 769	/* We must preserve the upper 16 bits of the last scratch register.
 770	 * The next sequence assumes those bits remain unchanged between the
 771	 * read and the write.
 772	 */
 773	val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
 774	val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
 775	iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
 776
 777	/* All done! */
 778}
 779
 780static void gsi_channel_deprogram(struct gsi_channel *channel)
 781{
 782	/* Nothing to do */
 783}
 784
 785/* Start an allocated GSI channel */
 786int gsi_channel_start(struct gsi *gsi, u32 channel_id)
 787{
 788	struct gsi_channel *channel = &gsi->channel[channel_id];
 789	int ret;
 790
 791	mutex_lock(&gsi->mutex);
 792
 793	ret = gsi_channel_start_command(channel);
 794
 795	mutex_unlock(&gsi->mutex);
 796
 797	gsi_channel_thaw(channel);
 798
 799	return ret;
 800}
 801
 802/* Stop a started channel */
 803int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
 804{
 805	struct gsi_channel *channel = &gsi->channel[channel_id];
 806	u32 retries;
 807	int ret;
 808
 809	gsi_channel_freeze(channel);
 810
 811	/* RX channels might require a little time to enter STOPPED state */
 812	retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES;
 813
 814	mutex_lock(&gsi->mutex);
 815
 816	do {
 817		ret = gsi_channel_stop_command(channel);
 818		if (ret != -EAGAIN)
 819			break;
 820		msleep(1);
 821	} while (retries--);
 822
 823	mutex_unlock(&gsi->mutex);
 824
 825	/* Thaw the channel if we need to retry (or on error) */
 826	if (ret)
 827		gsi_channel_thaw(channel);
 828
 829	return ret;
 830}
 831
 832/* Reset and reconfigure a channel (possibly leaving doorbell disabled) */
 833void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool legacy)
 834{
 835	struct gsi_channel *channel = &gsi->channel[channel_id];
 836
 837	mutex_lock(&gsi->mutex);
 838
 839	gsi_channel_reset_command(channel);
 840	/* Due to a hardware quirk we may need to reset RX channels twice. */
 841	if (legacy && !channel->toward_ipa)
 842		gsi_channel_reset_command(channel);
 843
 844	gsi_channel_program(channel, legacy);
 845	gsi_channel_trans_cancel_pending(channel);
 846
 847	mutex_unlock(&gsi->mutex);
 848}
 849
 850/* Stop a STARTED channel for suspend (using stop if requested) */
 851int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
 852{
 853	struct gsi_channel *channel = &gsi->channel[channel_id];
 854
 855	if (stop)
 856		return gsi_channel_stop(gsi, channel_id);
 857
 858	gsi_channel_freeze(channel);
 859
 860	return 0;
 861}
 862
 863/* Resume a suspended channel (starting will be requested if STOPPED) */
 864int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
 865{
 866	struct gsi_channel *channel = &gsi->channel[channel_id];
 867
 868	if (start)
 869		return gsi_channel_start(gsi, channel_id);
 870
 871	gsi_channel_thaw(channel);
 872
 873	return 0;
 874}
 875
 876/**
 877 * gsi_channel_tx_queued() - Report queued TX transfers for a channel
 878 * @channel:	Channel for which to report
 879 *
 880 * Report to the network stack the number of bytes and transactions that
 881 * have been queued to hardware since last call.  This and the next function
 882 * supply information used by the network stack for throttling.
 883 *
 884 * For each channel we track the number of transactions used and bytes of
 885 * data those transactions represent.  We also track what those values are
 886 * each time this function is called.  Subtracting the two tells us
 887 * the number of bytes and transactions that have been added between
 888 * successive calls.
 889 *
 890 * Calling this each time we ring the channel doorbell allows us to
 891 * provide accurate information to the network stack about how much
 892 * work we've given the hardware at any point in time.
 893 */
 894void gsi_channel_tx_queued(struct gsi_channel *channel)
 895{
 896	u32 trans_count;
 897	u32 byte_count;
 898
 899	byte_count = channel->byte_count - channel->queued_byte_count;
 900	trans_count = channel->trans_count - channel->queued_trans_count;
 901	channel->queued_byte_count = channel->byte_count;
 902	channel->queued_trans_count = channel->trans_count;
 903
 904	ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
 905				  trans_count, byte_count);
 906}
 907
 908/**
 909 * gsi_channel_tx_update() - Report completed TX transfers
 910 * @channel:	Channel that has completed transmitting packets
 911 * @trans:	Last transation known to be complete
 912 *
 913 * Compute the number of transactions and bytes that have been transferred
 914 * over a TX channel since the given transaction was committed.  Report this
 915 * information to the network stack.
 916 *
 917 * At the time a transaction is committed, we record its channel's
 918 * committed transaction and byte counts *in the transaction*.
 919 * Completions are signaled by the hardware with an interrupt, and
 920 * we can determine the latest completed transaction at that time.
 921 *
 922 * The difference between the byte/transaction count recorded in
 923 * the transaction and the count last time we recorded a completion
 924 * tells us exactly how much data has been transferred between
 925 * completions.
 926 *
 927 * Calling this each time we learn of a newly-completed transaction
 928 * allows us to provide accurate information to the network stack
 929 * about how much work has been completed by the hardware at a given
 930 * point in time.
 931 */
 932static void
 933gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
 934{
 935	u64 byte_count = trans->byte_count + trans->len;
 936	u64 trans_count = trans->trans_count + 1;
 937
 938	byte_count -= channel->compl_byte_count;
 939	channel->compl_byte_count += byte_count;
 940	trans_count -= channel->compl_trans_count;
 941	channel->compl_trans_count += trans_count;
 942
 943	ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
 944				     trans_count, byte_count);
 945}
 946
 947/* Channel control interrupt handler */
 948static void gsi_isr_chan_ctrl(struct gsi *gsi)
 949{
 950	u32 channel_mask;
 951
 952	channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
 953	iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
 954
 955	while (channel_mask) {
 956		u32 channel_id = __ffs(channel_mask);
 957		struct gsi_channel *channel;
 958
 959		channel_mask ^= BIT(channel_id);
 960
 961		channel = &gsi->channel[channel_id];
 962
 963		complete(&channel->completion);
 964	}
 965}
 966
 967/* Event ring control interrupt handler */
 968static void gsi_isr_evt_ctrl(struct gsi *gsi)
 969{
 970	u32 event_mask;
 971
 972	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
 973	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
 974
 975	while (event_mask) {
 976		u32 evt_ring_id = __ffs(event_mask);
 977		struct gsi_evt_ring *evt_ring;
 978
 979		event_mask ^= BIT(evt_ring_id);
 980
 981		evt_ring = &gsi->evt_ring[evt_ring_id];
 982		evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
 983
 984		complete(&evt_ring->completion);
 985	}
 986}
 987
 988/* Global channel error interrupt handler */
 989static void
 990gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
 991{
 992	if (code == GSI_OUT_OF_RESOURCES_ERR) {
 993		dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
 994		complete(&gsi->channel[channel_id].completion);
 995		return;
 996	}
 997
 998	/* Report, but otherwise ignore all other error codes */
 999	dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1000		channel_id, err_ee, code);
1001}
1002
1003/* Global event error interrupt handler */
1004static void
1005gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1006{
1007	if (code == GSI_OUT_OF_RESOURCES_ERR) {
1008		struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1009		u32 channel_id = gsi_channel_id(evt_ring->channel);
1010
1011		complete(&evt_ring->completion);
1012		dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1013			channel_id);
1014		return;
1015	}
1016
1017	/* Report, but otherwise ignore all other error codes */
1018	dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1019		evt_ring_id, err_ee, code);
1020}
1021
1022/* Global error interrupt handler */
1023static void gsi_isr_glob_err(struct gsi *gsi)
1024{
1025	enum gsi_err_type type;
1026	enum gsi_err_code code;
1027	u32 which;
1028	u32 val;
1029	u32 ee;
1030
1031	/* Get the logged error, then reinitialize the log */
1032	val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1033	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1034	iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1035
1036	ee = u32_get_bits(val, ERR_EE_FMASK);
1037	which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1038	type = u32_get_bits(val, ERR_TYPE_FMASK);
1039	code = u32_get_bits(val, ERR_CODE_FMASK);
1040
1041	if (type == GSI_ERR_TYPE_CHAN)
1042		gsi_isr_glob_chan_err(gsi, ee, which, code);
1043	else if (type == GSI_ERR_TYPE_EVT)
1044		gsi_isr_glob_evt_err(gsi, ee, which, code);
1045	else	/* type GSI_ERR_TYPE_GLOB should be fatal */
1046		dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1047}
1048
1049/* Generic EE interrupt handler */
1050static void gsi_isr_gp_int1(struct gsi *gsi)
1051{
1052	u32 result;
1053	u32 val;
1054
1055	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1056	result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1057	if (result != GENERIC_EE_SUCCESS_FVAL)
1058		dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1059
1060	complete(&gsi->completion);
1061}
1062
1063/* Inter-EE interrupt handler */
1064static void gsi_isr_glob_ee(struct gsi *gsi)
1065{
1066	u32 val;
1067
1068	val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1069
1070	if (val & ERROR_INT_FMASK)
1071		gsi_isr_glob_err(gsi);
1072
1073	iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1074
1075	val &= ~ERROR_INT_FMASK;
1076
1077	if (val & EN_GP_INT1_FMASK) {
1078		val ^= EN_GP_INT1_FMASK;
1079		gsi_isr_gp_int1(gsi);
1080	}
1081
1082	if (val)
1083		dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1084}
1085
1086/* I/O completion interrupt event */
1087static void gsi_isr_ieob(struct gsi *gsi)
1088{
1089	u32 event_mask;
1090
1091	event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1092	iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1093
1094	while (event_mask) {
1095		u32 evt_ring_id = __ffs(event_mask);
1096
1097		event_mask ^= BIT(evt_ring_id);
1098
1099		gsi_irq_ieob_disable(gsi, evt_ring_id);
1100		napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1101	}
1102}
1103
1104/* General event interrupts represent serious problems, so report them */
1105static void gsi_isr_general(struct gsi *gsi)
1106{
1107	struct device *dev = gsi->dev;
1108	u32 val;
1109
1110	val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1111	iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1112
1113	if (val)
1114		dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1115}
1116
1117/**
1118 * gsi_isr() - Top level GSI interrupt service routine
1119 * @irq:	Interrupt number (ignored)
1120 * @dev_id:	GSI pointer supplied to request_irq()
1121 *
1122 * This is the main handler function registered for the GSI IRQ. Each type
1123 * of interrupt has a separate handler function that is called from here.
1124 */
1125static irqreturn_t gsi_isr(int irq, void *dev_id)
1126{
1127	struct gsi *gsi = dev_id;
1128	u32 intr_mask;
1129	u32 cnt = 0;
1130
1131	while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1132		/* intr_mask contains bitmask of pending GSI interrupts */
1133		do {
1134			u32 gsi_intr = BIT(__ffs(intr_mask));
1135
1136			intr_mask ^= gsi_intr;
1137
1138			switch (gsi_intr) {
1139			case CH_CTRL_FMASK:
1140				gsi_isr_chan_ctrl(gsi);
1141				break;
1142			case EV_CTRL_FMASK:
1143				gsi_isr_evt_ctrl(gsi);
1144				break;
1145			case GLOB_EE_FMASK:
1146				gsi_isr_glob_ee(gsi);
1147				break;
1148			case IEOB_FMASK:
1149				gsi_isr_ieob(gsi);
1150				break;
1151			case GENERAL_FMASK:
1152				gsi_isr_general(gsi);
1153				break;
1154			default:
1155				dev_err(gsi->dev,
1156					"unrecognized interrupt type 0x%08x\n",
1157					gsi_intr);
1158				break;
1159			}
1160		} while (intr_mask);
1161
1162		if (++cnt > GSI_ISR_MAX_ITER) {
1163			dev_err(gsi->dev, "interrupt flood\n");
1164			break;
1165		}
1166	}
1167
1168	return IRQ_HANDLED;
1169}
1170
1171/* Return the transaction associated with a transfer completion event */
1172static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1173					 struct gsi_event *event)
1174{
1175	u32 tre_offset;
1176	u32 tre_index;
1177
1178	/* Event xfer_ptr records the TRE it's associated with */
1179	tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0);
1180	tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1181
1182	return gsi_channel_trans_mapped(channel, tre_index);
1183}
1184
1185/**
1186 * gsi_evt_ring_rx_update() - Record lengths of received data
1187 * @evt_ring:	Event ring associated with channel that received packets
1188 * @index:	Event index in ring reported by hardware
1189 *
1190 * Events for RX channels contain the actual number of bytes received into
1191 * the buffer.  Every event has a transaction associated with it, and here
1192 * we update transactions to record their actual received lengths.
1193 *
1194 * This function is called whenever we learn that the GSI hardware has filled
1195 * new events since the last time we checked.  The ring's index field tells
1196 * the first entry in need of processing.  The index provided is the
1197 * first *unfilled* event in the ring (following the last filled one).
1198 *
1199 * Events are sequential within the event ring, and transactions are
1200 * sequential within the transaction pool.
1201 *
1202 * Note that @index always refers to an element *within* the event ring.
1203 */
1204static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1205{
1206	struct gsi_channel *channel = evt_ring->channel;
1207	struct gsi_ring *ring = &evt_ring->ring;
1208	struct gsi_trans_info *trans_info;
1209	struct gsi_event *event_done;
1210	struct gsi_event *event;
1211	struct gsi_trans *trans;
1212	u32 byte_count = 0;
1213	u32 old_index;
1214	u32 event_avail;
1215
1216	trans_info = &channel->trans_info;
1217
1218	/* We'll start with the oldest un-processed event.  RX channels
1219	 * replenish receive buffers in single-TRE transactions, so we
1220	 * can just map that event to its transaction.  Transactions
1221	 * associated with completion events are consecutive.
1222	 */
1223	old_index = ring->index;
1224	event = gsi_ring_virt(ring, old_index);
1225	trans = gsi_event_trans(channel, event);
1226
1227	/* Compute the number of events to process before we wrap,
1228	 * and determine when we'll be done processing events.
1229	 */
1230	event_avail = ring->count - old_index % ring->count;
1231	event_done = gsi_ring_virt(ring, index);
1232	do {
1233		trans->len = __le16_to_cpu(event->len);
1234		byte_count += trans->len;
1235
1236		/* Move on to the next event and transaction */
1237		if (--event_avail)
1238			event++;
1239		else
1240			event = gsi_ring_virt(ring, 0);
1241		trans = gsi_trans_pool_next(&trans_info->pool, trans);
1242	} while (event != event_done);
1243
1244	/* We record RX bytes when they are received */
1245	channel->byte_count += byte_count;
1246	channel->trans_count++;
1247}
1248
1249/* Initialize a ring, including allocating DMA memory for its entries */
1250static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1251{
1252	size_t size = count * GSI_RING_ELEMENT_SIZE;
1253	struct device *dev = gsi->dev;
1254	dma_addr_t addr;
1255
1256	/* Hardware requires a 2^n ring size, with alignment equal to size */
1257	ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1258	if (ring->virt && addr % size) {
1259		dma_free_coherent(dev, size, ring->virt, ring->addr);
1260		dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n",
1261			size);
1262		return -EINVAL;	/* Not a good error value, but distinct */
1263	} else if (!ring->virt) {
1264		return -ENOMEM;
1265	}
1266	ring->addr = addr;
1267	ring->count = count;
1268
1269	return 0;
1270}
1271
1272/* Free a previously-allocated ring */
1273static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1274{
1275	size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1276
1277	dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1278}
1279
1280/* Allocate an available event ring id */
1281static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1282{
1283	u32 evt_ring_id;
1284
1285	if (gsi->event_bitmap == ~0U) {
1286		dev_err(gsi->dev, "event rings exhausted\n");
1287		return -ENOSPC;
1288	}
1289
1290	evt_ring_id = ffz(gsi->event_bitmap);
1291	gsi->event_bitmap |= BIT(evt_ring_id);
1292
1293	return (int)evt_ring_id;
1294}
1295
1296/* Free a previously-allocated event ring id */
1297static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1298{
1299	gsi->event_bitmap &= ~BIT(evt_ring_id);
1300}
1301
1302/* Ring a channel doorbell, reporting the first un-filled entry */
1303void gsi_channel_doorbell(struct gsi_channel *channel)
1304{
1305	struct gsi_ring *tre_ring = &channel->tre_ring;
1306	u32 channel_id = gsi_channel_id(channel);
1307	struct gsi *gsi = channel->gsi;
1308	u32 val;
1309
1310	/* Note: index *must* be used modulo the ring count here */
1311	val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1312	iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1313}
1314
1315/* Consult hardware, move any newly completed transactions to completed list */
1316static void gsi_channel_update(struct gsi_channel *channel)
1317{
1318	u32 evt_ring_id = channel->evt_ring_id;
1319	struct gsi *gsi = channel->gsi;
1320	struct gsi_evt_ring *evt_ring;
1321	struct gsi_trans *trans;
1322	struct gsi_ring *ring;
1323	u32 offset;
1324	u32 index;
1325
1326	evt_ring = &gsi->evt_ring[evt_ring_id];
1327	ring = &evt_ring->ring;
1328
1329	/* See if there's anything new to process; if not, we're done.  Note
1330	 * that index always refers to an entry *within* the event ring.
1331	 */
1332	offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1333	index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1334	if (index == ring->index % ring->count)
1335		return;
1336
1337	/* Get the transaction for the latest completed event.  Take a
1338	 * reference to keep it from completing before we give the events
1339	 * for this and previous transactions back to the hardware.
1340	 */
1341	trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1342	refcount_inc(&trans->refcount);
1343
1344	/* For RX channels, update each completed transaction with the number
1345	 * of bytes that were actually received.  For TX channels, report
1346	 * the number of transactions and bytes this completion represents
1347	 * up the network stack.
1348	 */
1349	if (channel->toward_ipa)
1350		gsi_channel_tx_update(channel, trans);
1351	else
1352		gsi_evt_ring_rx_update(evt_ring, index);
1353
1354	gsi_trans_move_complete(trans);
1355
1356	/* Tell the hardware we've handled these events */
1357	gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1358
1359	gsi_trans_free(trans);
1360}
1361
1362/**
1363 * gsi_channel_poll_one() - Return a single completed transaction on a channel
1364 * @channel:	Channel to be polled
1365 *
1366 * Return:	Transaction pointer, or null if none are available
1367 *
1368 * This function returns the first entry on a channel's completed transaction
1369 * list.  If that list is empty, the hardware is consulted to determine
1370 * whether any new transactions have completed.  If so, they're moved to the
1371 * completed list and the new first entry is returned.  If there are no more
1372 * completed transactions, a null pointer is returned.
1373 */
1374static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1375{
1376	struct gsi_trans *trans;
1377
1378	/* Get the first transaction from the completed list */
1379	trans = gsi_channel_trans_complete(channel);
1380	if (!trans) {
1381		/* List is empty; see if there's more to do */
1382		gsi_channel_update(channel);
1383		trans = gsi_channel_trans_complete(channel);
1384	}
1385
1386	if (trans)
1387		gsi_trans_move_polled(trans);
1388
1389	return trans;
1390}
1391
1392/**
1393 * gsi_channel_poll() - NAPI poll function for a channel
1394 * @napi:	NAPI structure for the channel
1395 * @budget:	Budget supplied by NAPI core
1396 *
1397 * Return:	Number of items polled (<= budget)
1398 *
1399 * Single transactions completed by hardware are polled until either
1400 * the budget is exhausted, or there are no more.  Each transaction
1401 * polled is passed to gsi_trans_complete(), to perform remaining
1402 * completion processing and retire/free the transaction.
1403 */
1404static int gsi_channel_poll(struct napi_struct *napi, int budget)
1405{
1406	struct gsi_channel *channel;
1407	int count = 0;
1408
1409	channel = container_of(napi, struct gsi_channel, napi);
1410	while (count < budget) {
1411		struct gsi_trans *trans;
1412
1413		count++;
1414		trans = gsi_channel_poll_one(channel);
1415		if (!trans)
1416			break;
1417		gsi_trans_complete(trans);
1418	}
1419
1420	if (count < budget) {
1421		napi_complete(&channel->napi);
1422		gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
1423	}
1424
1425	return count;
1426}
1427
1428/* The event bitmap represents which event ids are available for allocation.
1429 * Set bits are not available, clear bits can be used.  This function
1430 * initializes the map so all events supported by the hardware are available,
1431 * then precludes any reserved events from being allocated.
1432 */
1433static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1434{
1435	u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1436
1437	event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1438
1439	return event_bitmap;
1440}
1441
1442/* Setup function for event rings */
1443static void gsi_evt_ring_setup(struct gsi *gsi)
1444{
1445	/* Nothing to do */
1446}
1447
1448/* Inverse of gsi_evt_ring_setup() */
1449static void gsi_evt_ring_teardown(struct gsi *gsi)
1450{
1451	/* Nothing to do */
1452}
1453
1454/* Setup function for a single channel */
1455static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id,
1456				 bool legacy)
1457{
1458	struct gsi_channel *channel = &gsi->channel[channel_id];
1459	u32 evt_ring_id = channel->evt_ring_id;
1460	int ret;
1461
1462	if (!channel->gsi)
1463		return 0;	/* Ignore uninitialized channels */
1464
1465	ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1466	if (ret)
1467		return ret;
1468
1469	gsi_evt_ring_program(gsi, evt_ring_id);
1470
1471	ret = gsi_channel_alloc_command(gsi, channel_id);
1472	if (ret)
1473		goto err_evt_ring_de_alloc;
1474
1475	gsi_channel_program(channel, legacy);
1476
1477	if (channel->toward_ipa)
1478		netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1479				  gsi_channel_poll, NAPI_POLL_WEIGHT);
1480	else
1481		netif_napi_add(&gsi->dummy_dev, &channel->napi,
1482			       gsi_channel_poll, NAPI_POLL_WEIGHT);
1483
1484	return 0;
1485
1486err_evt_ring_de_alloc:
1487	/* We've done nothing with the event ring yet so don't reset */
1488	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1489
1490	return ret;
1491}
1492
1493/* Inverse of gsi_channel_setup_one() */
1494static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1495{
1496	struct gsi_channel *channel = &gsi->channel[channel_id];
1497	u32 evt_ring_id = channel->evt_ring_id;
1498
1499	if (!channel->gsi)
1500		return;		/* Ignore uninitialized channels */
1501
1502	netif_napi_del(&channel->napi);
1503
1504	gsi_channel_deprogram(channel);
1505	gsi_channel_de_alloc_command(gsi, channel_id);
1506	gsi_evt_ring_reset_command(gsi, evt_ring_id);
1507	gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1508}
1509
1510static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1511			       enum gsi_generic_cmd_opcode opcode)
1512{
1513	struct completion *completion = &gsi->completion;
1514	u32 val;
1515
1516	/* First zero the result code field */
1517	val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1518	val &= ~GENERIC_EE_RESULT_FMASK;
1519	iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1520
1521	/* Now issue the command */
1522	val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1523	val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1524	val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1525
1526	if (gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion))
1527		return 0;	/* Success! */
1528
1529	dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1530		opcode, channel_id);
1531
1532	return -ETIMEDOUT;
1533}
1534
1535static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1536{
1537	return gsi_generic_command(gsi, channel_id,
1538				   GSI_GENERIC_ALLOCATE_CHANNEL);
1539}
1540
1541static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1542{
1543	int ret;
1544
1545	ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL);
1546	if (ret)
1547		dev_err(gsi->dev, "error %d halting modem channel %u\n",
1548			ret, channel_id);
1549}
1550
1551/* Setup function for channels */
1552static int gsi_channel_setup(struct gsi *gsi, bool legacy)
1553{
1554	u32 channel_id = 0;
1555	u32 mask;
1556	int ret;
1557
1558	gsi_evt_ring_setup(gsi);
1559	gsi_irq_enable(gsi);
1560
1561	mutex_lock(&gsi->mutex);
1562
1563	do {
1564		ret = gsi_channel_setup_one(gsi, channel_id, legacy);
1565		if (ret)
1566			goto err_unwind;
1567	} while (++channel_id < gsi->channel_count);
1568
1569	/* Make sure no channels were defined that hardware does not support */
1570	while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1571		struct gsi_channel *channel = &gsi->channel[channel_id++];
1572
1573		if (!channel->gsi)
1574			continue;	/* Ignore uninitialized channels */
1575
1576		dev_err(gsi->dev, "channel %u not supported by hardware\n",
1577			channel_id - 1);
1578		channel_id = gsi->channel_count;
1579		goto err_unwind;
1580	}
1581
1582	/* Allocate modem channels if necessary */
1583	mask = gsi->modem_channel_bitmap;
1584	while (mask) {
1585		u32 modem_channel_id = __ffs(mask);
1586
1587		ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1588		if (ret)
1589			goto err_unwind_modem;
1590
1591		/* Clear bit from mask only after success (for unwind) */
1592		mask ^= BIT(modem_channel_id);
1593	}
1594
1595	mutex_unlock(&gsi->mutex);
1596
1597	return 0;
1598
1599err_unwind_modem:
1600	/* Compute which modem channels need to be deallocated */
1601	mask ^= gsi->modem_channel_bitmap;
1602	while (mask) {
1603		u32 channel_id = __fls(mask);
1604
1605		mask ^= BIT(channel_id);
1606
1607		gsi_modem_channel_halt(gsi, channel_id);
1608	}
1609
1610err_unwind:
1611	while (channel_id--)
1612		gsi_channel_teardown_one(gsi, channel_id);
1613
1614	mutex_unlock(&gsi->mutex);
1615
1616	gsi_irq_disable(gsi);
1617	gsi_evt_ring_teardown(gsi);
1618
1619	return ret;
1620}
1621
1622/* Inverse of gsi_channel_setup() */
1623static void gsi_channel_teardown(struct gsi *gsi)
1624{
1625	u32 mask = gsi->modem_channel_bitmap;
1626	u32 channel_id;
1627
1628	mutex_lock(&gsi->mutex);
1629
1630	while (mask) {
1631		u32 channel_id = __fls(mask);
1632
1633		mask ^= BIT(channel_id);
1634
1635		gsi_modem_channel_halt(gsi, channel_id);
1636	}
1637
1638	channel_id = gsi->channel_count - 1;
1639	do
1640		gsi_channel_teardown_one(gsi, channel_id);
1641	while (channel_id--);
1642
1643	mutex_unlock(&gsi->mutex);
1644
1645	gsi_irq_disable(gsi);
1646	gsi_evt_ring_teardown(gsi);
1647}
1648
1649/* Setup function for GSI.  GSI firmware must be loaded and initialized */
1650int gsi_setup(struct gsi *gsi, bool legacy)
1651{
1652	struct device *dev = gsi->dev;
1653	u32 val;
1654
1655	/* Here is where we first touch the GSI hardware */
1656	val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1657	if (!(val & ENABLED_FMASK)) {
1658		dev_err(dev, "GSI has not been enabled\n");
1659		return -EIO;
1660	}
1661
1662	val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1663
1664	gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1665	if (!gsi->channel_count) {
1666		dev_err(dev, "GSI reports zero channels supported\n");
1667		return -EINVAL;
1668	}
1669	if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
1670		dev_warn(dev,
1671			 "limiting to %u channels; hardware supports %u\n",
1672			 GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
1673		gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1674	}
1675
1676	gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1677	if (!gsi->evt_ring_count) {
1678		dev_err(dev, "GSI reports zero event rings supported\n");
1679		return -EINVAL;
1680	}
1681	if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
1682		dev_warn(dev,
1683			 "limiting to %u event rings; hardware supports %u\n",
1684			 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
1685		gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1686	}
1687
1688	/* Initialize the error log */
1689	iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1690
1691	/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1692	iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1693
1694	return gsi_channel_setup(gsi, legacy);
1695}
1696
1697/* Inverse of gsi_setup() */
1698void gsi_teardown(struct gsi *gsi)
1699{
1700	gsi_channel_teardown(gsi);
1701}
1702
1703/* Initialize a channel's event ring */
1704static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1705{
1706	struct gsi *gsi = channel->gsi;
1707	struct gsi_evt_ring *evt_ring;
1708	int ret;
1709
1710	ret = gsi_evt_ring_id_alloc(gsi);
1711	if (ret < 0)
1712		return ret;
1713	channel->evt_ring_id = ret;
1714
1715	evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1716	evt_ring->channel = channel;
1717
1718	ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1719	if (!ret)
1720		return 0;	/* Success! */
1721
1722	dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1723		ret, gsi_channel_id(channel));
1724
1725	gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1726
1727	return ret;
1728}
1729
1730/* Inverse of gsi_channel_evt_ring_init() */
1731static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1732{
1733	u32 evt_ring_id = channel->evt_ring_id;
1734	struct gsi *gsi = channel->gsi;
1735	struct gsi_evt_ring *evt_ring;
1736
1737	evt_ring = &gsi->evt_ring[evt_ring_id];
1738	gsi_ring_free(gsi, &evt_ring->ring);
1739	gsi_evt_ring_id_free(gsi, evt_ring_id);
1740}
1741
1742/* Init function for event rings */
1743static void gsi_evt_ring_init(struct gsi *gsi)
1744{
1745	u32 evt_ring_id = 0;
1746
1747	gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1748	gsi->event_enable_bitmap = 0;
1749	do
1750		init_completion(&gsi->evt_ring[evt_ring_id].completion);
1751	while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1752}
1753
1754/* Inverse of gsi_evt_ring_init() */
1755static void gsi_evt_ring_exit(struct gsi *gsi)
1756{
1757	/* Nothing to do */
1758}
1759
1760static bool gsi_channel_data_valid(struct gsi *gsi,
1761				   const struct ipa_gsi_endpoint_data *data)
1762{
1763#ifdef IPA_VALIDATION
1764	u32 channel_id = data->channel_id;
1765	struct device *dev = gsi->dev;
1766
1767	/* Make sure channel ids are in the range driver supports */
1768	if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1769		dev_err(dev, "bad channel id %u; must be less than %u\n",
1770			channel_id, GSI_CHANNEL_COUNT_MAX);
1771		return false;
1772	}
1773
1774	if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
1775		dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
1776		return false;
1777	}
1778
1779	if (!data->channel.tlv_count ||
1780	    data->channel.tlv_count > GSI_TLV_MAX) {
1781		dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
1782			channel_id, data->channel.tlv_count, GSI_TLV_MAX);
1783		return false;
1784	}
1785
1786	/* We have to allow at least one maximally-sized transaction to
1787	 * be outstanding (which would use tlv_count TREs).  Given how
1788	 * gsi_channel_tre_max() is computed, tre_count has to be almost
1789	 * twice the TLV FIFO size to satisfy this requirement.
1790	 */
1791	if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
1792		dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
1793			channel_id, data->channel.tlv_count,
1794			data->channel.tre_count);
1795		return false;
1796	}
1797
1798	if (!is_power_of_2(data->channel.tre_count)) {
1799		dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
1800			channel_id, data->channel.tre_count);
1801		return false;
1802	}
1803
1804	if (!is_power_of_2(data->channel.event_count)) {
1805		dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
1806			channel_id, data->channel.event_count);
1807		return false;
1808	}
1809#endif /* IPA_VALIDATION */
1810
1811	return true;
1812}
1813
1814/* Init function for a single channel */
1815static int gsi_channel_init_one(struct gsi *gsi,
1816				const struct ipa_gsi_endpoint_data *data,
1817				bool command, bool prefetch)
1818{
1819	struct gsi_channel *channel;
1820	u32 tre_count;
1821	int ret;
1822
1823	if (!gsi_channel_data_valid(gsi, data))
1824		return -EINVAL;
1825
1826	/* Worst case we need an event for every outstanding TRE */
1827	if (data->channel.tre_count > data->channel.event_count) {
1828		tre_count = data->channel.event_count;
1829		dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
1830			 data->channel_id, tre_count);
1831	} else {
1832		tre_count = data->channel.tre_count;
1833	}
1834
1835	channel = &gsi->channel[data->channel_id];
1836	memset(channel, 0, sizeof(*channel));
1837
1838	channel->gsi = gsi;
1839	channel->toward_ipa = data->toward_ipa;
1840	channel->command = command;
1841	channel->use_prefetch = command && prefetch;
1842	channel->tlv_count = data->channel.tlv_count;
1843	channel->tre_count = tre_count;
1844	channel->event_count = data->channel.event_count;
1845	init_completion(&channel->completion);
1846
1847	ret = gsi_channel_evt_ring_init(channel);
1848	if (ret)
1849		goto err_clear_gsi;
1850
1851	ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
1852	if (ret) {
1853		dev_err(gsi->dev, "error %d allocating channel %u ring\n",
1854			ret, data->channel_id);
1855		goto err_channel_evt_ring_exit;
1856	}
1857
1858	ret = gsi_channel_trans_init(gsi, data->channel_id);
1859	if (ret)
1860		goto err_ring_free;
1861
1862	if (command) {
1863		u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
1864
1865		ret = ipa_cmd_pool_init(channel, tre_max);
1866	}
1867	if (!ret)
1868		return 0;	/* Success! */
1869
1870	gsi_channel_trans_exit(channel);
1871err_ring_free:
1872	gsi_ring_free(gsi, &channel->tre_ring);
1873err_channel_evt_ring_exit:
1874	gsi_channel_evt_ring_exit(channel);
1875err_clear_gsi:
1876	channel->gsi = NULL;	/* Mark it not (fully) initialized */
1877
1878	return ret;
1879}
1880
1881/* Inverse of gsi_channel_init_one() */
1882static void gsi_channel_exit_one(struct gsi_channel *channel)
1883{
1884	if (!channel->gsi)
1885		return;		/* Ignore uninitialized channels */
1886
1887	if (channel->command)
1888		ipa_cmd_pool_exit(channel);
1889	gsi_channel_trans_exit(channel);
1890	gsi_ring_free(channel->gsi, &channel->tre_ring);
1891	gsi_channel_evt_ring_exit(channel);
1892}
1893
1894/* Init function for channels */
1895static int gsi_channel_init(struct gsi *gsi, bool prefetch, u32 count,
1896			    const struct ipa_gsi_endpoint_data *data,
1897			    bool modem_alloc)
1898{
1899	int ret = 0;
1900	u32 i;
1901
1902	gsi_evt_ring_init(gsi);
1903
1904	/* The endpoint data array is indexed by endpoint name */
1905	for (i = 0; i < count; i++) {
1906		bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
1907
1908		if (ipa_gsi_endpoint_data_empty(&data[i]))
1909			continue;	/* Skip over empty slots */
1910
1911		/* Mark modem channels to be allocated (hardware workaround) */
1912		if (data[i].ee_id == GSI_EE_MODEM) {
1913			if (modem_alloc)
1914				gsi->modem_channel_bitmap |=
1915						BIT(data[i].channel_id);
1916			continue;
1917		}
1918
1919		ret = gsi_channel_init_one(gsi, &data[i], command, prefetch);
1920		if (ret)
1921			goto err_unwind;
1922	}
1923
1924	return ret;
1925
1926err_unwind:
1927	while (i--) {
1928		if (ipa_gsi_endpoint_data_empty(&data[i]))
1929			continue;
1930		if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
1931			gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
1932			continue;
1933		}
1934		gsi_channel_exit_one(&gsi->channel[data->channel_id]);
1935	}
1936	gsi_evt_ring_exit(gsi);
1937
1938	return ret;
1939}
1940
1941/* Inverse of gsi_channel_init() */
1942static void gsi_channel_exit(struct gsi *gsi)
1943{
1944	u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
1945
1946	do
1947		gsi_channel_exit_one(&gsi->channel[channel_id]);
1948	while (channel_id--);
1949	gsi->modem_channel_bitmap = 0;
1950
1951	gsi_evt_ring_exit(gsi);
1952}
1953
1954/* Init function for GSI.  GSI hardware does not need to be "ready" */
1955int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch,
1956	     u32 count, const struct ipa_gsi_endpoint_data *data,
1957	     bool modem_alloc)
1958{
1959	struct device *dev = &pdev->dev;
1960	struct resource *res;
1961	resource_size_t size;
1962	unsigned int irq;
1963	int ret;
1964
1965	gsi_validate_build();
1966
1967	gsi->dev = dev;
1968
1969	/* The GSI layer performs NAPI on all endpoints.  NAPI requires a
1970	 * network device structure, but the GSI layer does not have one,
1971	 * so we must create a dummy network device for this purpose.
1972	 */
1973	init_dummy_netdev(&gsi->dummy_dev);
1974
1975	/* Get the GSI IRQ and request for it to wake the system */
1976	ret = platform_get_irq_byname(pdev, "gsi");
1977	if (ret <= 0) {
1978		dev_err(dev, "DT error %d getting \"gsi\" IRQ property\n", ret);
1979		return ret ? : -EINVAL;
1980	}
1981	irq = ret;
1982
1983	ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
1984	if (ret) {
1985		dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret);
1986		return ret;
1987	}
1988	gsi->irq = irq;
1989
1990	ret = enable_irq_wake(gsi->irq);
1991	if (ret)
1992		dev_warn(dev, "error %d enabling gsi wake irq\n", ret);
1993	gsi->irq_wake_enabled = !ret;
1994
1995	/* Get GSI memory range and map it */
1996	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
1997	if (!res) {
1998		dev_err(dev, "DT error getting \"gsi\" memory property\n");
1999		ret = -ENODEV;
2000		goto err_disable_irq_wake;
2001	}
2002
2003	size = resource_size(res);
2004	if (res->start > U32_MAX || size > U32_MAX - res->start) {
2005		dev_err(dev, "DT memory resource \"gsi\" out of range\n");
2006		ret = -EINVAL;
2007		goto err_disable_irq_wake;
2008	}
2009
2010	gsi->virt = ioremap(res->start, size);
2011	if (!gsi->virt) {
2012		dev_err(dev, "unable to remap \"gsi\" memory\n");
2013		ret = -ENOMEM;
2014		goto err_disable_irq_wake;
2015	}
2016
2017	ret = gsi_channel_init(gsi, prefetch, count, data, modem_alloc);
2018	if (ret)
2019		goto err_iounmap;
2020
2021	mutex_init(&gsi->mutex);
2022	init_completion(&gsi->completion);
2023
2024	return 0;
2025
2026err_iounmap:
2027	iounmap(gsi->virt);
2028err_disable_irq_wake:
2029	if (gsi->irq_wake_enabled)
2030		(void)disable_irq_wake(gsi->irq);
2031	free_irq(gsi->irq, gsi);
2032
2033	return ret;
2034}
2035
2036/* Inverse of gsi_init() */
2037void gsi_exit(struct gsi *gsi)
2038{
2039	mutex_destroy(&gsi->mutex);
2040	gsi_channel_exit(gsi);
2041	if (gsi->irq_wake_enabled)
2042		(void)disable_irq_wake(gsi->irq);
2043	free_irq(gsi->irq, gsi);
2044	iounmap(gsi->virt);
2045}
2046
2047/* The maximum number of outstanding TREs on a channel.  This limits
2048 * a channel's maximum number of transactions outstanding (worst case
2049 * is one TRE per transaction).
2050 *
2051 * The absolute limit is the number of TREs in the channel's TRE ring,
2052 * and in theory we should be able use all of them.  But in practice,
2053 * doing that led to the hardware reporting exhaustion of event ring
2054 * slots for writing completion information.  So the hardware limit
2055 * would be (tre_count - 1).
2056 *
2057 * We reduce it a bit further though.  Transaction resource pools are
2058 * sized to be a little larger than this maximum, to allow resource
2059 * allocations to always be contiguous.  The number of entries in a
2060 * TRE ring buffer is a power of 2, and the extra resources in a pool
2061 * tends to nearly double the memory allocated for it.  Reducing the
2062 * maximum number of outstanding TREs allows the number of entries in
2063 * a pool to avoid crossing that power-of-2 boundary, and this can
2064 * substantially reduce pool memory requirements.  The number we
2065 * reduce it by matches the number added in gsi_trans_pool_init().
2066 */
2067u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2068{
2069	struct gsi_channel *channel = &gsi->channel[channel_id];
2070
2071	/* Hardware limit is channel->tre_count - 1 */
2072	return channel->tre_count - (channel->tlv_count - 1);
2073}
2074
2075/* Returns the maximum number of TREs in a single transaction for a channel */
2076u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2077{
2078	struct gsi_channel *channel = &gsi->channel[channel_id];
2079
2080	return channel->tlv_count;
2081}