Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Keystone NetCP Core driver
   3 *
   4 * Copyright (C) 2014 Texas Instruments Incorporated
   5 * Authors:	Sandeep Nair <sandeep_n@ti.com>
   6 *		Sandeep Paulraj <s-paulraj@ti.com>
   7 *		Cyril Chemparathy <cyril@ti.com>
   8 *		Santosh Shilimkar <santosh.shilimkar@ti.com>
   9 *		Murali Karicheri <m-karicheri2@ti.com>
  10 *		Wingman Kwok <w-kwok2@ti.com>
  11 *
  12 * This program is free software; you can redistribute it and/or
  13 * modify it under the terms of the GNU General Public License as
  14 * published by the Free Software Foundation version 2.
  15 *
  16 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  17 * kind, whether express or implied; without even the implied warranty
  18 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 */
  21
  22#include <linux/io.h>
  23#include <linux/module.h>
  24#include <linux/of_net.h>
  25#include <linux/of_address.h>
  26#include <linux/if_vlan.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/platform_device.h>
  29#include <linux/soc/ti/knav_qmss.h>
  30#include <linux/soc/ti/knav_dma.h>
  31
  32#include "netcp.h"
  33
  34#define NETCP_SOP_OFFSET	(NET_IP_ALIGN + NET_SKB_PAD)
  35#define NETCP_NAPI_WEIGHT	64
  36#define NETCP_TX_TIMEOUT	(5 * HZ)
  37#define NETCP_PACKET_SIZE	(ETH_FRAME_LEN + ETH_FCS_LEN)
  38#define NETCP_MIN_PACKET_SIZE	ETH_ZLEN
  39#define NETCP_MAX_MCAST_ADDR	16
  40
  41#define NETCP_EFUSE_REG_INDEX	0
  42
  43#define NETCP_MOD_PROBE_SKIPPED	1
  44#define NETCP_MOD_PROBE_FAILED	2
  45
  46#define NETCP_DEBUG (NETIF_MSG_HW	| NETIF_MSG_WOL		|	\
  47		    NETIF_MSG_DRV	| NETIF_MSG_LINK	|	\
  48		    NETIF_MSG_IFUP	| NETIF_MSG_INTR	|	\
  49		    NETIF_MSG_PROBE	| NETIF_MSG_TIMER	|	\
  50		    NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	|	\
  51		    NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	|	\
  52		    NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	|	\
  53		    NETIF_MSG_RX_STATUS)
  54
  55#define NETCP_EFUSE_ADDR_SWAP	2
  56
  57#define knav_queue_get_id(q)	knav_queue_device_control(q, \
  58				KNAV_QUEUE_GET_ID, (unsigned long)NULL)
  59
  60#define knav_queue_enable_notify(q) knav_queue_device_control(q,	\
  61					KNAV_QUEUE_ENABLE_NOTIFY,	\
  62					(unsigned long)NULL)
  63
  64#define knav_queue_disable_notify(q) knav_queue_device_control(q,	\
  65					KNAV_QUEUE_DISABLE_NOTIFY,	\
  66					(unsigned long)NULL)
  67
  68#define knav_queue_get_count(q)	knav_queue_device_control(q, \
  69				KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
  70
  71#define for_each_netcp_module(module)			\
  72	list_for_each_entry(module, &netcp_modules, module_list)
  73
  74#define for_each_netcp_device_module(netcp_device, inst_modpriv) \
  75	list_for_each_entry(inst_modpriv, \
  76		&((netcp_device)->modpriv_head), inst_list)
  77
  78#define for_each_module(netcp, intf_modpriv)			\
  79	list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
  80
  81/* Module management structures */
  82struct netcp_device {
  83	struct list_head	device_list;
  84	struct list_head	interface_head;
  85	struct list_head	modpriv_head;
  86	struct device		*device;
  87};
  88
  89struct netcp_inst_modpriv {
  90	struct netcp_device	*netcp_device;
  91	struct netcp_module	*netcp_module;
  92	struct list_head	inst_list;
  93	void			*module_priv;
  94};
  95
  96struct netcp_intf_modpriv {
  97	struct netcp_intf	*netcp_priv;
  98	struct netcp_module	*netcp_module;
  99	struct list_head	intf_list;
 100	void			*module_priv;
 101};
 102
 103struct netcp_tx_cb {
 104	void	*ts_context;
 105	void	(*txtstamp)(void *context, struct sk_buff *skb);
 106};
 107
 108static LIST_HEAD(netcp_devices);
 109static LIST_HEAD(netcp_modules);
 110static DEFINE_MUTEX(netcp_modules_lock);
 111
 112static int netcp_debug_level = -1;
 113module_param(netcp_debug_level, int, 0);
 114MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
 115
 116/* Helper functions - Get/Set */
 117static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
 118			 struct knav_dma_desc *desc)
 119{
 120	*buff_len = le32_to_cpu(desc->buff_len);
 121	*buff = le32_to_cpu(desc->buff);
 122	*ndesc = le32_to_cpu(desc->next_desc);
 123}
 124
 125static void get_desc_info(u32 *desc_info, u32 *pkt_info,
 126			  struct knav_dma_desc *desc)
 127{
 128	*desc_info = le32_to_cpu(desc->desc_info);
 129	*pkt_info = le32_to_cpu(desc->packet_info);
 130}
 131
 132static u32 get_sw_data(int index, struct knav_dma_desc *desc)
 133{
 134	/* No Endian conversion needed as this data is untouched by hw */
 135	return desc->sw_data[index];
 136}
 137
 138/* use these macros to get sw data */
 139#define GET_SW_DATA0(desc) get_sw_data(0, desc)
 140#define GET_SW_DATA1(desc) get_sw_data(1, desc)
 141#define GET_SW_DATA2(desc) get_sw_data(2, desc)
 142#define GET_SW_DATA3(desc) get_sw_data(3, desc)
 143
 144static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
 145			     struct knav_dma_desc *desc)
 146{
 147	*buff = le32_to_cpu(desc->orig_buff);
 148	*buff_len = le32_to_cpu(desc->orig_len);
 149}
 150
 151static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
 152{
 153	int i;
 154
 155	for (i = 0; i < num_words; i++)
 156		words[i] = le32_to_cpu(desc[i]);
 157}
 158
 159static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
 160			 struct knav_dma_desc *desc)
 161{
 162	desc->buff_len = cpu_to_le32(buff_len);
 163	desc->buff = cpu_to_le32(buff);
 164	desc->next_desc = cpu_to_le32(ndesc);
 165}
 166
 167static void set_desc_info(u32 desc_info, u32 pkt_info,
 168			  struct knav_dma_desc *desc)
 169{
 170	desc->desc_info = cpu_to_le32(desc_info);
 171	desc->packet_info = cpu_to_le32(pkt_info);
 172}
 173
 174static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
 175{
 176	/* No Endian conversion needed as this data is untouched by hw */
 177	desc->sw_data[index] = data;
 178}
 179
 180/* use these macros to set sw data */
 181#define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
 182#define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
 183#define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
 184#define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
 185
 186static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
 187			     struct knav_dma_desc *desc)
 188{
 189	desc->orig_buff = cpu_to_le32(buff);
 190	desc->orig_len = cpu_to_le32(buff_len);
 191}
 192
 193static void set_words(u32 *words, int num_words, __le32 *desc)
 194{
 195	int i;
 196
 197	for (i = 0; i < num_words; i++)
 198		desc[i] = cpu_to_le32(words[i]);
 199}
 200
 201/* Read the e-fuse value as 32 bit values to be endian independent */
 202static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
 203{
 204	unsigned int addr0, addr1;
 205
 206	addr1 = readl(efuse_mac + 4);
 207	addr0 = readl(efuse_mac);
 208
 209	switch (swap) {
 210	case NETCP_EFUSE_ADDR_SWAP:
 211		addr0 = addr1;
 212		addr1 = readl(efuse_mac);
 213		break;
 214	default:
 215		break;
 216	}
 217
 218	x[0] = (addr1 & 0x0000ff00) >> 8;
 219	x[1] = addr1 & 0x000000ff;
 220	x[2] = (addr0 & 0xff000000) >> 24;
 221	x[3] = (addr0 & 0x00ff0000) >> 16;
 222	x[4] = (addr0 & 0x0000ff00) >> 8;
 223	x[5] = addr0 & 0x000000ff;
 224
 225	return 0;
 226}
 227
 228static const char *netcp_node_name(struct device_node *node)
 229{
 230	const char *name;
 231
 232	if (of_property_read_string(node, "label", &name) < 0)
 233		name = node->name;
 234	if (!name)
 235		name = "unknown";
 236	return name;
 237}
 238
 239/* Module management routines */
 240static int netcp_register_interface(struct netcp_intf *netcp)
 241{
 242	int ret;
 243
 244	ret = register_netdev(netcp->ndev);
 245	if (!ret)
 246		netcp->netdev_registered = true;
 247	return ret;
 248}
 249
 250static int netcp_module_probe(struct netcp_device *netcp_device,
 251			      struct netcp_module *module)
 252{
 253	struct device *dev = netcp_device->device;
 254	struct device_node *devices, *interface, *node = dev->of_node;
 255	struct device_node *child;
 256	struct netcp_inst_modpriv *inst_modpriv;
 257	struct netcp_intf *netcp_intf;
 258	struct netcp_module *tmp;
 259	bool primary_module_registered = false;
 260	int ret;
 261
 262	/* Find this module in the sub-tree for this device */
 263	devices = of_get_child_by_name(node, "netcp-devices");
 264	if (!devices) {
 265		dev_err(dev, "could not find netcp-devices node\n");
 266		return NETCP_MOD_PROBE_SKIPPED;
 267	}
 268
 269	for_each_available_child_of_node(devices, child) {
 270		const char *name = netcp_node_name(child);
 
 271
 
 
 
 
 272		if (!strcasecmp(module->name, name))
 273			break;
 274	}
 275
 276	of_node_put(devices);
 277	/* If module not used for this device, skip it */
 278	if (!child) {
 279		dev_warn(dev, "module(%s) not used for device\n", module->name);
 280		return NETCP_MOD_PROBE_SKIPPED;
 281	}
 282
 283	inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
 284	if (!inst_modpriv) {
 285		of_node_put(child);
 286		return -ENOMEM;
 287	}
 288
 289	inst_modpriv->netcp_device = netcp_device;
 290	inst_modpriv->netcp_module = module;
 291	list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
 292
 293	ret = module->probe(netcp_device, dev, child,
 294			    &inst_modpriv->module_priv);
 295	of_node_put(child);
 296	if (ret) {
 297		dev_err(dev, "Probe of module(%s) failed with %d\n",
 298			module->name, ret);
 299		list_del(&inst_modpriv->inst_list);
 300		devm_kfree(dev, inst_modpriv);
 301		return NETCP_MOD_PROBE_FAILED;
 302	}
 303
 304	/* Attach modules only if the primary module is probed */
 305	for_each_netcp_module(tmp) {
 306		if (tmp->primary)
 307			primary_module_registered = true;
 308	}
 309
 310	if (!primary_module_registered)
 311		return 0;
 312
 313	/* Attach module to interfaces */
 314	list_for_each_entry(netcp_intf, &netcp_device->interface_head,
 315			    interface_list) {
 316		struct netcp_intf_modpriv *intf_modpriv;
 317
 318		intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
 319					    GFP_KERNEL);
 320		if (!intf_modpriv)
 321			return -ENOMEM;
 322
 323		interface = of_parse_phandle(netcp_intf->node_interface,
 324					     module->name, 0);
 325
 326		if (!interface) {
 327			devm_kfree(dev, intf_modpriv);
 328			continue;
 329		}
 330
 331		intf_modpriv->netcp_priv = netcp_intf;
 332		intf_modpriv->netcp_module = module;
 333		list_add_tail(&intf_modpriv->intf_list,
 334			      &netcp_intf->module_head);
 335
 336		ret = module->attach(inst_modpriv->module_priv,
 337				     netcp_intf->ndev, interface,
 338				     &intf_modpriv->module_priv);
 339		of_node_put(interface);
 340		if (ret) {
 341			dev_dbg(dev, "Attach of module %s declined with %d\n",
 342				module->name, ret);
 343			list_del(&intf_modpriv->intf_list);
 344			devm_kfree(dev, intf_modpriv);
 345			continue;
 346		}
 347	}
 348
 349	/* Now register the interface with netdev */
 350	list_for_each_entry(netcp_intf,
 351			    &netcp_device->interface_head,
 352			    interface_list) {
 353		/* If interface not registered then register now */
 354		if (!netcp_intf->netdev_registered) {
 355			ret = netcp_register_interface(netcp_intf);
 356			if (ret)
 357				return -ENODEV;
 358		}
 359	}
 360	return 0;
 361}
 362
 363int netcp_register_module(struct netcp_module *module)
 364{
 365	struct netcp_device *netcp_device;
 366	struct netcp_module *tmp;
 367	int ret;
 368
 369	if (!module->name) {
 370		WARN(1, "error registering netcp module: no name\n");
 371		return -EINVAL;
 372	}
 373
 374	if (!module->probe) {
 375		WARN(1, "error registering netcp module: no probe\n");
 376		return -EINVAL;
 377	}
 378
 379	mutex_lock(&netcp_modules_lock);
 380
 381	for_each_netcp_module(tmp) {
 382		if (!strcasecmp(tmp->name, module->name)) {
 383			mutex_unlock(&netcp_modules_lock);
 384			return -EEXIST;
 385		}
 386	}
 387	list_add_tail(&module->module_list, &netcp_modules);
 388
 389	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
 390		ret = netcp_module_probe(netcp_device, module);
 391		if (ret < 0)
 392			goto fail;
 393	}
 394	mutex_unlock(&netcp_modules_lock);
 395	return 0;
 396
 397fail:
 398	mutex_unlock(&netcp_modules_lock);
 399	netcp_unregister_module(module);
 400	return ret;
 401}
 402EXPORT_SYMBOL_GPL(netcp_register_module);
 403
 404static void netcp_release_module(struct netcp_device *netcp_device,
 405				 struct netcp_module *module)
 406{
 407	struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
 408	struct netcp_intf *netcp_intf, *netcp_tmp;
 409	struct device *dev = netcp_device->device;
 410
 411	/* Release the module from each interface */
 412	list_for_each_entry_safe(netcp_intf, netcp_tmp,
 413				 &netcp_device->interface_head,
 414				 interface_list) {
 415		struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
 416
 417		list_for_each_entry_safe(intf_modpriv, intf_tmp,
 418					 &netcp_intf->module_head,
 419					 intf_list) {
 420			if (intf_modpriv->netcp_module == module) {
 421				module->release(intf_modpriv->module_priv);
 422				list_del(&intf_modpriv->intf_list);
 423				devm_kfree(dev, intf_modpriv);
 424				break;
 425			}
 426		}
 427	}
 428
 429	/* Remove the module from each instance */
 430	list_for_each_entry_safe(inst_modpriv, inst_tmp,
 431				 &netcp_device->modpriv_head, inst_list) {
 432		if (inst_modpriv->netcp_module == module) {
 433			module->remove(netcp_device,
 434				       inst_modpriv->module_priv);
 435			list_del(&inst_modpriv->inst_list);
 436			devm_kfree(dev, inst_modpriv);
 437			break;
 438		}
 439	}
 440}
 441
 442void netcp_unregister_module(struct netcp_module *module)
 443{
 444	struct netcp_device *netcp_device;
 445	struct netcp_module *module_tmp;
 446
 447	mutex_lock(&netcp_modules_lock);
 448
 449	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
 450		netcp_release_module(netcp_device, module);
 451	}
 452
 453	/* Remove the module from the module list */
 454	for_each_netcp_module(module_tmp) {
 455		if (module == module_tmp) {
 456			list_del(&module->module_list);
 457			break;
 458		}
 459	}
 460
 461	mutex_unlock(&netcp_modules_lock);
 462}
 463EXPORT_SYMBOL_GPL(netcp_unregister_module);
 464
 465void *netcp_module_get_intf_data(struct netcp_module *module,
 466				 struct netcp_intf *intf)
 467{
 468	struct netcp_intf_modpriv *intf_modpriv;
 469
 470	list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
 471		if (intf_modpriv->netcp_module == module)
 472			return intf_modpriv->module_priv;
 473	return NULL;
 474}
 475EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
 476
 477/* Module TX and RX Hook management */
 478struct netcp_hook_list {
 479	struct list_head	 list;
 480	netcp_hook_rtn		*hook_rtn;
 481	void			*hook_data;
 482	int			 order;
 483};
 484
 485int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
 486			  netcp_hook_rtn *hook_rtn, void *hook_data)
 487{
 488	struct netcp_hook_list *entry;
 489	struct netcp_hook_list *next;
 490	unsigned long flags;
 491
 492	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
 493	if (!entry)
 494		return -ENOMEM;
 495
 496	entry->hook_rtn  = hook_rtn;
 497	entry->hook_data = hook_data;
 498	entry->order     = order;
 499
 500	spin_lock_irqsave(&netcp_priv->lock, flags);
 501	list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
 502		if (next->order > order)
 503			break;
 504	}
 505	__list_add(&entry->list, next->list.prev, &next->list);
 506	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 507
 508	return 0;
 509}
 510EXPORT_SYMBOL_GPL(netcp_register_txhook);
 511
 512int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
 513			    netcp_hook_rtn *hook_rtn, void *hook_data)
 514{
 515	struct netcp_hook_list *next, *n;
 516	unsigned long flags;
 517
 518	spin_lock_irqsave(&netcp_priv->lock, flags);
 519	list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
 520		if ((next->order     == order) &&
 521		    (next->hook_rtn  == hook_rtn) &&
 522		    (next->hook_data == hook_data)) {
 523			list_del(&next->list);
 524			spin_unlock_irqrestore(&netcp_priv->lock, flags);
 525			devm_kfree(netcp_priv->dev, next);
 526			return 0;
 527		}
 528	}
 529	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 530	return -ENOENT;
 531}
 532EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
 533
 534int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
 535			  netcp_hook_rtn *hook_rtn, void *hook_data)
 536{
 537	struct netcp_hook_list *entry;
 538	struct netcp_hook_list *next;
 539	unsigned long flags;
 540
 541	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
 542	if (!entry)
 543		return -ENOMEM;
 544
 545	entry->hook_rtn  = hook_rtn;
 546	entry->hook_data = hook_data;
 547	entry->order     = order;
 548
 549	spin_lock_irqsave(&netcp_priv->lock, flags);
 550	list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
 551		if (next->order > order)
 552			break;
 553	}
 554	__list_add(&entry->list, next->list.prev, &next->list);
 555	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 556
 557	return 0;
 558}
 559EXPORT_SYMBOL_GPL(netcp_register_rxhook);
 560
 561int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
 562			    netcp_hook_rtn *hook_rtn, void *hook_data)
 563{
 564	struct netcp_hook_list *next, *n;
 565	unsigned long flags;
 566
 567	spin_lock_irqsave(&netcp_priv->lock, flags);
 568	list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
 569		if ((next->order     == order) &&
 570		    (next->hook_rtn  == hook_rtn) &&
 571		    (next->hook_data == hook_data)) {
 572			list_del(&next->list);
 573			spin_unlock_irqrestore(&netcp_priv->lock, flags);
 574			devm_kfree(netcp_priv->dev, next);
 575			return 0;
 576		}
 577	}
 578	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 579
 580	return -ENOENT;
 581}
 582EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
 583
 584static void netcp_frag_free(bool is_frag, void *ptr)
 585{
 586	if (is_frag)
 587		skb_free_frag(ptr);
 588	else
 589		kfree(ptr);
 590}
 591
 592static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
 593				     struct knav_dma_desc *desc)
 594{
 595	struct knav_dma_desc *ndesc;
 596	dma_addr_t dma_desc, dma_buf;
 597	unsigned int buf_len, dma_sz = sizeof(*ndesc);
 598	void *buf_ptr;
 599	u32 tmp;
 600
 601	get_words(&dma_desc, 1, &desc->next_desc);
 602
 603	while (dma_desc) {
 604		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
 605		if (unlikely(!ndesc)) {
 606			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 607			break;
 608		}
 609		get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
 610		/* warning!!!! We are retrieving the virtual ptr in the sw_data
 611		 * field as a 32bit value. Will not work on 64bit machines
 612		 */
 613		buf_ptr = (void *)GET_SW_DATA0(ndesc);
 614		buf_len = (int)GET_SW_DATA1(desc);
 615		dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
 616		__free_page(buf_ptr);
 617		knav_pool_desc_put(netcp->rx_pool, desc);
 618	}
 619	/* warning!!!! We are retrieving the virtual ptr in the sw_data
 620	 * field as a 32bit value. Will not work on 64bit machines
 621	 */
 622	buf_ptr = (void *)GET_SW_DATA0(desc);
 623	buf_len = (int)GET_SW_DATA1(desc);
 624
 625	if (buf_ptr)
 626		netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
 627	knav_pool_desc_put(netcp->rx_pool, desc);
 628}
 629
 630static void netcp_empty_rx_queue(struct netcp_intf *netcp)
 631{
 632	struct netcp_stats *rx_stats = &netcp->stats;
 633	struct knav_dma_desc *desc;
 634	unsigned int dma_sz;
 635	dma_addr_t dma;
 636
 637	for (; ;) {
 638		dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
 639		if (!dma)
 640			break;
 641
 642		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
 643		if (unlikely(!desc)) {
 644			dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
 645				__func__);
 646			rx_stats->rx_errors++;
 647			continue;
 648		}
 649		netcp_free_rx_desc_chain(netcp, desc);
 650		rx_stats->rx_dropped++;
 651	}
 652}
 653
 654static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
 655{
 656	struct netcp_stats *rx_stats = &netcp->stats;
 657	unsigned int dma_sz, buf_len, org_buf_len;
 658	struct knav_dma_desc *desc, *ndesc;
 659	unsigned int pkt_sz = 0, accum_sz;
 660	struct netcp_hook_list *rx_hook;
 661	dma_addr_t dma_desc, dma_buff;
 662	struct netcp_packet p_info;
 663	struct sk_buff *skb;
 664	void *org_buf_ptr;
 665	u32 tmp;
 666
 667	dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
 668	if (!dma_desc)
 669		return -1;
 670
 671	desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
 672	if (unlikely(!desc)) {
 673		dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 674		return 0;
 675	}
 676
 677	get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
 678	/* warning!!!! We are retrieving the virtual ptr in the sw_data
 679	 * field as a 32bit value. Will not work on 64bit machines
 680	 */
 681	org_buf_ptr = (void *)GET_SW_DATA0(desc);
 682	org_buf_len = (int)GET_SW_DATA1(desc);
 683
 684	if (unlikely(!org_buf_ptr)) {
 685		dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
 686		goto free_desc;
 687	}
 688
 689	pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
 690	accum_sz = buf_len;
 691	dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
 692
 693	/* Build a new sk_buff for the primary buffer */
 694	skb = build_skb(org_buf_ptr, org_buf_len);
 695	if (unlikely(!skb)) {
 696		dev_err(netcp->ndev_dev, "build_skb() failed\n");
 697		goto free_desc;
 698	}
 699
 700	/* update data, tail and len */
 701	skb_reserve(skb, NETCP_SOP_OFFSET);
 702	__skb_put(skb, buf_len);
 703
 704	/* Fill in the page fragment list */
 705	while (dma_desc) {
 706		struct page *page;
 707
 708		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
 709		if (unlikely(!ndesc)) {
 710			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 711			goto free_desc;
 712		}
 713
 714		get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
 715		/* warning!!!! We are retrieving the virtual ptr in the sw_data
 716		 * field as a 32bit value. Will not work on 64bit machines
 717		 */
 718		page = (struct page *)GET_SW_DATA0(ndesc);
 719
 720		if (likely(dma_buff && buf_len && page)) {
 721			dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
 722				       DMA_FROM_DEVICE);
 723		} else {
 724			dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
 725				&dma_buff, buf_len, page);
 726			goto free_desc;
 727		}
 728
 729		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 730				offset_in_page(dma_buff), buf_len, PAGE_SIZE);
 731		accum_sz += buf_len;
 732
 733		/* Free the descriptor */
 734		knav_pool_desc_put(netcp->rx_pool, ndesc);
 735	}
 736
 737	/* check for packet len and warn */
 738	if (unlikely(pkt_sz != accum_sz))
 739		dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
 740			pkt_sz, accum_sz);
 741
 742	/* Newer version of the Ethernet switch can trim the Ethernet FCS
 743	 * from the packet and is indicated in hw_cap. So trim it only for
 744	 * older h/w
 745	 */
 746	if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
 747		__pskb_trim(skb, skb->len - ETH_FCS_LEN);
 748
 749	/* Call each of the RX hooks */
 750	p_info.skb = skb;
 751	skb->dev = netcp->ndev;
 752	p_info.rxtstamp_complete = false;
 753	get_desc_info(&tmp, &p_info.eflags, desc);
 754	p_info.epib = desc->epib;
 755	p_info.psdata = (u32 __force *)desc->psdata;
 756	p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
 757			 KNAV_DMA_DESC_EFLAGS_MASK);
 758	list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
 759		int ret;
 760
 761		ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
 762					&p_info);
 763		if (unlikely(ret)) {
 764			dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
 765				rx_hook->order, ret);
 766			/* Free the primary descriptor */
 767			rx_stats->rx_dropped++;
 768			knav_pool_desc_put(netcp->rx_pool, desc);
 769			dev_kfree_skb(skb);
 770			return 0;
 771		}
 772	}
 773	/* Free the primary descriptor */
 774	knav_pool_desc_put(netcp->rx_pool, desc);
 775
 776	u64_stats_update_begin(&rx_stats->syncp_rx);
 777	rx_stats->rx_packets++;
 778	rx_stats->rx_bytes += skb->len;
 779	u64_stats_update_end(&rx_stats->syncp_rx);
 780
 781	/* push skb up the stack */
 782	skb->protocol = eth_type_trans(skb, netcp->ndev);
 783	netif_receive_skb(skb);
 784	return 0;
 785
 786free_desc:
 787	netcp_free_rx_desc_chain(netcp, desc);
 788	rx_stats->rx_errors++;
 789	return 0;
 790}
 791
 792static int netcp_process_rx_packets(struct netcp_intf *netcp,
 793				    unsigned int budget)
 794{
 795	int i;
 796
 797	for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
 798		;
 799	return i;
 800}
 801
 802/* Release descriptors and attached buffers from Rx FDQ */
 803static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
 804{
 805	struct knav_dma_desc *desc;
 806	unsigned int buf_len, dma_sz;
 807	dma_addr_t dma;
 808	void *buf_ptr;
 809
 810	/* Allocate descriptor */
 811	while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
 812		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
 813		if (unlikely(!desc)) {
 814			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 815			continue;
 816		}
 817
 818		get_org_pkt_info(&dma, &buf_len, desc);
 819		/* warning!!!! We are retrieving the virtual ptr in the sw_data
 820		 * field as a 32bit value. Will not work on 64bit machines
 821		 */
 822		buf_ptr = (void *)GET_SW_DATA0(desc);
 823
 824		if (unlikely(!dma)) {
 825			dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
 826			knav_pool_desc_put(netcp->rx_pool, desc);
 827			continue;
 828		}
 829
 830		if (unlikely(!buf_ptr)) {
 831			dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
 832			knav_pool_desc_put(netcp->rx_pool, desc);
 833			continue;
 834		}
 835
 836		if (fdq == 0) {
 837			dma_unmap_single(netcp->dev, dma, buf_len,
 838					 DMA_FROM_DEVICE);
 839			netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
 840		} else {
 841			dma_unmap_page(netcp->dev, dma, buf_len,
 842				       DMA_FROM_DEVICE);
 843			__free_page(buf_ptr);
 844		}
 845
 846		knav_pool_desc_put(netcp->rx_pool, desc);
 847	}
 848}
 849
 850static void netcp_rxpool_free(struct netcp_intf *netcp)
 851{
 852	int i;
 853
 854	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
 855	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
 856		netcp_free_rx_buf(netcp, i);
 857
 858	if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
 859		dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
 860			netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
 861
 862	knav_pool_destroy(netcp->rx_pool);
 863	netcp->rx_pool = NULL;
 864}
 865
 866static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
 867{
 868	struct knav_dma_desc *hwdesc;
 869	unsigned int buf_len, dma_sz;
 870	u32 desc_info, pkt_info;
 871	struct page *page;
 872	dma_addr_t dma;
 873	void *bufptr;
 874	u32 sw_data[2];
 875
 876	/* Allocate descriptor */
 877	hwdesc = knav_pool_desc_get(netcp->rx_pool);
 878	if (IS_ERR_OR_NULL(hwdesc)) {
 879		dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
 880		return -ENOMEM;
 881	}
 882
 883	if (likely(fdq == 0)) {
 884		unsigned int primary_buf_len;
 885		/* Allocate a primary receive queue entry */
 886		buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
 887		primary_buf_len = SKB_DATA_ALIGN(buf_len) +
 888				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 889
 890		bufptr = netdev_alloc_frag(primary_buf_len);
 891		sw_data[1] = primary_buf_len;
 892
 893		if (unlikely(!bufptr)) {
 894			dev_warn_ratelimited(netcp->ndev_dev,
 895					     "Primary RX buffer alloc failed\n");
 896			goto fail;
 897		}
 898		dma = dma_map_single(netcp->dev, bufptr, buf_len,
 899				     DMA_TO_DEVICE);
 900		if (unlikely(dma_mapping_error(netcp->dev, dma)))
 901			goto fail;
 902
 903		/* warning!!!! We are saving the virtual ptr in the sw_data
 904		 * field as a 32bit value. Will not work on 64bit machines
 905		 */
 906		sw_data[0] = (u32)bufptr;
 907	} else {
 908		/* Allocate a secondary receive queue entry */
 909		page = alloc_page(GFP_ATOMIC | GFP_DMA);
 910		if (unlikely(!page)) {
 911			dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
 912			goto fail;
 913		}
 914		buf_len = PAGE_SIZE;
 915		dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
 916		/* warning!!!! We are saving the virtual ptr in the sw_data
 917		 * field as a 32bit value. Will not work on 64bit machines
 918		 */
 919		sw_data[0] = (u32)page;
 920		sw_data[1] = 0;
 921	}
 922
 923	desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
 924	desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
 925	pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
 926	pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
 927	pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
 928		    KNAV_DMA_DESC_RETQ_SHIFT;
 929	set_org_pkt_info(dma, buf_len, hwdesc);
 930	SET_SW_DATA0(sw_data[0], hwdesc);
 931	SET_SW_DATA1(sw_data[1], hwdesc);
 932	set_desc_info(desc_info, pkt_info, hwdesc);
 933
 934	/* Push to FDQs */
 935	knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
 936			   &dma_sz);
 937	knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
 938	return 0;
 939
 940fail:
 941	knav_pool_desc_put(netcp->rx_pool, hwdesc);
 942	return -ENOMEM;
 943}
 944
 945/* Refill Rx FDQ with descriptors & attached buffers */
 946static void netcp_rxpool_refill(struct netcp_intf *netcp)
 947{
 948	u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
 949	int i, ret = 0;
 950
 951	/* Calculate the FDQ deficit and refill */
 952	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
 953		fdq_deficit[i] = netcp->rx_queue_depths[i] -
 954				 knav_queue_get_count(netcp->rx_fdq[i]);
 955
 956		while (fdq_deficit[i]-- && !ret)
 957			ret = netcp_allocate_rx_buf(netcp, i);
 958	} /* end for fdqs */
 959}
 960
 961/* NAPI poll */
 962static int netcp_rx_poll(struct napi_struct *napi, int budget)
 963{
 964	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
 965						rx_napi);
 966	unsigned int packets;
 967
 968	packets = netcp_process_rx_packets(netcp, budget);
 969
 970	netcp_rxpool_refill(netcp);
 971	if (packets < budget) {
 972		napi_complete_done(&netcp->rx_napi, packets);
 973		knav_queue_enable_notify(netcp->rx_queue);
 974	}
 975
 976	return packets;
 977}
 978
 979static void netcp_rx_notify(void *arg)
 980{
 981	struct netcp_intf *netcp = arg;
 982
 983	knav_queue_disable_notify(netcp->rx_queue);
 984	napi_schedule(&netcp->rx_napi);
 985}
 986
 987static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
 988				     struct knav_dma_desc *desc,
 989				     unsigned int desc_sz)
 990{
 991	struct knav_dma_desc *ndesc = desc;
 992	dma_addr_t dma_desc, dma_buf;
 993	unsigned int buf_len;
 994
 995	while (ndesc) {
 996		get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
 997
 998		if (dma_buf && buf_len)
 999			dma_unmap_single(netcp->dev, dma_buf, buf_len,
1000					 DMA_TO_DEVICE);
1001		else
1002			dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
1003				 &dma_buf, buf_len);
1004
1005		knav_pool_desc_put(netcp->tx_pool, ndesc);
1006		ndesc = NULL;
1007		if (dma_desc) {
1008			ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
1009						     desc_sz);
1010			if (!ndesc)
1011				dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1012		}
1013	}
1014}
1015
1016static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
1017					  unsigned int budget)
1018{
1019	struct netcp_stats *tx_stats = &netcp->stats;
1020	struct knav_dma_desc *desc;
1021	struct netcp_tx_cb *tx_cb;
1022	struct sk_buff *skb;
1023	unsigned int dma_sz;
1024	dma_addr_t dma;
1025	int pkts = 0;
1026
1027	while (budget--) {
1028		dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1029		if (!dma)
1030			break;
1031		desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1032		if (unlikely(!desc)) {
1033			dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1034			tx_stats->tx_errors++;
1035			continue;
1036		}
1037
1038		/* warning!!!! We are retrieving the virtual ptr in the sw_data
1039		 * field as a 32bit value. Will not work on 64bit machines
1040		 */
1041		skb = (struct sk_buff *)GET_SW_DATA0(desc);
1042		netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1043		if (!skb) {
1044			dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1045			tx_stats->tx_errors++;
1046			continue;
1047		}
1048
1049		tx_cb = (struct netcp_tx_cb *)skb->cb;
1050		if (tx_cb->txtstamp)
1051			tx_cb->txtstamp(tx_cb->ts_context, skb);
1052
1053		if (netif_subqueue_stopped(netcp->ndev, skb) &&
1054		    netif_running(netcp->ndev) &&
1055		    (knav_pool_count(netcp->tx_pool) >
1056		    netcp->tx_resume_threshold)) {
1057			u16 subqueue = skb_get_queue_mapping(skb);
1058
1059			netif_wake_subqueue(netcp->ndev, subqueue);
1060		}
1061
1062		u64_stats_update_begin(&tx_stats->syncp_tx);
1063		tx_stats->tx_packets++;
1064		tx_stats->tx_bytes += skb->len;
1065		u64_stats_update_end(&tx_stats->syncp_tx);
1066		dev_kfree_skb(skb);
1067		pkts++;
1068	}
1069	return pkts;
1070}
1071
1072static int netcp_tx_poll(struct napi_struct *napi, int budget)
1073{
1074	int packets;
1075	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1076						tx_napi);
1077
1078	packets = netcp_process_tx_compl_packets(netcp, budget);
1079	if (packets < budget) {
1080		napi_complete(&netcp->tx_napi);
1081		knav_queue_enable_notify(netcp->tx_compl_q);
1082	}
1083
1084	return packets;
1085}
1086
1087static void netcp_tx_notify(void *arg)
1088{
1089	struct netcp_intf *netcp = arg;
1090
1091	knav_queue_disable_notify(netcp->tx_compl_q);
1092	napi_schedule(&netcp->tx_napi);
1093}
1094
1095static struct knav_dma_desc*
1096netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1097{
1098	struct knav_dma_desc *desc, *ndesc, *pdesc;
1099	unsigned int pkt_len = skb_headlen(skb);
1100	struct device *dev = netcp->dev;
1101	dma_addr_t dma_addr;
1102	unsigned int dma_sz;
1103	int i;
1104
1105	/* Map the linear buffer */
1106	dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1107	if (unlikely(dma_mapping_error(dev, dma_addr))) {
1108		dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1109		return NULL;
1110	}
1111
1112	desc = knav_pool_desc_get(netcp->tx_pool);
1113	if (IS_ERR_OR_NULL(desc)) {
1114		dev_err(netcp->ndev_dev, "out of TX desc\n");
1115		dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1116		return NULL;
1117	}
1118
1119	set_pkt_info(dma_addr, pkt_len, 0, desc);
1120	if (skb_is_nonlinear(skb)) {
1121		prefetchw(skb_shinfo(skb));
1122	} else {
1123		desc->next_desc = 0;
1124		goto upd_pkt_len;
1125	}
1126
1127	pdesc = desc;
1128
1129	/* Handle the case where skb is fragmented in pages */
1130	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1131		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1132		struct page *page = skb_frag_page(frag);
1133		u32 page_offset = frag->page_offset;
1134		u32 buf_len = skb_frag_size(frag);
1135		dma_addr_t desc_dma;
1136		u32 desc_dma_32;
1137
1138		dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1139					DMA_TO_DEVICE);
1140		if (unlikely(!dma_addr)) {
1141			dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1142			goto free_descs;
1143		}
1144
1145		ndesc = knav_pool_desc_get(netcp->tx_pool);
1146		if (IS_ERR_OR_NULL(ndesc)) {
1147			dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1148			dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1149			goto free_descs;
1150		}
1151
1152		desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1153		set_pkt_info(dma_addr, buf_len, 0, ndesc);
1154		desc_dma_32 = (u32)desc_dma;
1155		set_words(&desc_dma_32, 1, &pdesc->next_desc);
1156		pkt_len += buf_len;
1157		if (pdesc != desc)
1158			knav_pool_desc_map(netcp->tx_pool, pdesc,
1159					   sizeof(*pdesc), &desc_dma, &dma_sz);
1160		pdesc = ndesc;
1161	}
1162	if (pdesc != desc)
1163		knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1164				   &dma_addr, &dma_sz);
1165
1166	/* frag list based linkage is not supported for now. */
1167	if (skb_shinfo(skb)->frag_list) {
1168		dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1169		goto free_descs;
1170	}
1171
1172upd_pkt_len:
1173	WARN_ON(pkt_len != skb->len);
1174
1175	pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1176	set_words(&pkt_len, 1, &desc->desc_info);
1177	return desc;
1178
1179free_descs:
1180	netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1181	return NULL;
1182}
1183
1184static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1185			       struct sk_buff *skb,
1186			       struct knav_dma_desc *desc)
1187{
1188	struct netcp_tx_pipe *tx_pipe = NULL;
1189	struct netcp_hook_list *tx_hook;
1190	struct netcp_packet p_info;
1191	struct netcp_tx_cb *tx_cb;
1192	unsigned int dma_sz;
1193	dma_addr_t dma;
1194	u32 tmp = 0;
1195	int ret = 0;
1196
1197	p_info.netcp = netcp;
1198	p_info.skb = skb;
1199	p_info.tx_pipe = NULL;
1200	p_info.psdata_len = 0;
1201	p_info.ts_context = NULL;
1202	p_info.txtstamp = NULL;
1203	p_info.epib = desc->epib;
1204	p_info.psdata = (u32 __force *)desc->psdata;
1205	memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1206
1207	/* Find out where to inject the packet for transmission */
1208	list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1209		ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1210					&p_info);
1211		if (unlikely(ret != 0)) {
1212			dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1213				tx_hook->order, ret);
1214			ret = (ret < 0) ? ret : NETDEV_TX_OK;
1215			goto out;
1216		}
1217	}
1218
1219	/* Make sure some TX hook claimed the packet */
1220	tx_pipe = p_info.tx_pipe;
1221	if (!tx_pipe) {
1222		dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1223		ret = -ENXIO;
1224		goto out;
1225	}
1226
1227	tx_cb = (struct netcp_tx_cb *)skb->cb;
1228	tx_cb->ts_context = p_info.ts_context;
1229	tx_cb->txtstamp = p_info.txtstamp;
1230
1231	/* update descriptor */
1232	if (p_info.psdata_len) {
1233		/* psdata points to both native-endian and device-endian data */
1234		__le32 *psdata = (void __force *)p_info.psdata;
1235
1236		set_words((u32 *)psdata +
1237			  (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
1238			  p_info.psdata_len, psdata);
1239		tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1240			KNAV_DMA_DESC_PSLEN_SHIFT;
1241	}
1242
1243	tmp |= KNAV_DMA_DESC_HAS_EPIB |
1244		((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1245		KNAV_DMA_DESC_RETQ_SHIFT);
1246
1247	if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1248		tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1249			KNAV_DMA_DESC_PSFLAG_SHIFT);
1250	}
1251
1252	set_words(&tmp, 1, &desc->packet_info);
1253	/* warning!!!! We are saving the virtual ptr in the sw_data
1254	 * field as a 32bit value. Will not work on 64bit machines
1255	 */
1256	SET_SW_DATA0((u32)skb, desc);
1257
1258	if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1259		tmp = tx_pipe->switch_to_port;
1260		set_words(&tmp, 1, &desc->tag_info);
1261	}
1262
1263	/* submit packet descriptor */
1264	ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1265				 &dma_sz);
1266	if (unlikely(ret)) {
1267		dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1268		ret = -ENOMEM;
1269		goto out;
1270	}
1271	skb_tx_timestamp(skb);
1272	knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1273
1274out:
1275	return ret;
1276}
1277
1278/* Submit the packet */
1279static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1280{
1281	struct netcp_intf *netcp = netdev_priv(ndev);
1282	struct netcp_stats *tx_stats = &netcp->stats;
1283	int subqueue = skb_get_queue_mapping(skb);
1284	struct knav_dma_desc *desc;
1285	int desc_count, ret = 0;
1286
1287	if (unlikely(skb->len <= 0)) {
1288		dev_kfree_skb(skb);
1289		return NETDEV_TX_OK;
1290	}
1291
1292	if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1293		ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1294		if (ret < 0) {
1295			/* If we get here, the skb has already been dropped */
1296			dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1297				 ret);
1298			tx_stats->tx_dropped++;
1299			return ret;
1300		}
1301		skb->len = NETCP_MIN_PACKET_SIZE;
1302	}
1303
1304	desc = netcp_tx_map_skb(skb, netcp);
1305	if (unlikely(!desc)) {
1306		netif_stop_subqueue(ndev, subqueue);
1307		ret = -ENOBUFS;
1308		goto drop;
1309	}
1310
1311	ret = netcp_tx_submit_skb(netcp, skb, desc);
1312	if (ret)
1313		goto drop;
1314
1315	/* Check Tx pool count & stop subqueue if needed */
1316	desc_count = knav_pool_count(netcp->tx_pool);
1317	if (desc_count < netcp->tx_pause_threshold) {
1318		dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1319		netif_stop_subqueue(ndev, subqueue);
1320	}
1321	return NETDEV_TX_OK;
1322
1323drop:
1324	tx_stats->tx_dropped++;
1325	if (desc)
1326		netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1327	dev_kfree_skb(skb);
1328	return ret;
1329}
1330
1331int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1332{
1333	if (tx_pipe->dma_channel) {
1334		knav_dma_close_channel(tx_pipe->dma_channel);
1335		tx_pipe->dma_channel = NULL;
1336	}
1337	return 0;
1338}
1339EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1340
1341int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1342{
1343	struct device *dev = tx_pipe->netcp_device->device;
1344	struct knav_dma_cfg config;
1345	int ret = 0;
1346	u8 name[16];
1347
1348	memset(&config, 0, sizeof(config));
1349	config.direction = DMA_MEM_TO_DEV;
1350	config.u.tx.filt_einfo = false;
1351	config.u.tx.filt_pswords = false;
1352	config.u.tx.priority = DMA_PRIO_MED_L;
1353
1354	tx_pipe->dma_channel = knav_dma_open_channel(dev,
1355				tx_pipe->dma_chan_name, &config);
1356	if (IS_ERR(tx_pipe->dma_channel)) {
1357		dev_err(dev, "failed opening tx chan(%s)\n",
1358			tx_pipe->dma_chan_name);
1359		ret = PTR_ERR(tx_pipe->dma_channel);
1360		goto err;
1361	}
1362
1363	snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1364	tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1365					     KNAV_QUEUE_SHARED);
1366	if (IS_ERR(tx_pipe->dma_queue)) {
1367		dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1368			name, ret);
1369		ret = PTR_ERR(tx_pipe->dma_queue);
1370		goto err;
1371	}
1372
1373	dev_dbg(dev, "opened tx pipe %s\n", name);
1374	return 0;
1375
1376err:
1377	if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1378		knav_dma_close_channel(tx_pipe->dma_channel);
1379	tx_pipe->dma_channel = NULL;
1380	return ret;
1381}
1382EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1383
1384int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1385		      struct netcp_device *netcp_device,
1386		      const char *dma_chan_name, unsigned int dma_queue_id)
1387{
1388	memset(tx_pipe, 0, sizeof(*tx_pipe));
1389	tx_pipe->netcp_device = netcp_device;
1390	tx_pipe->dma_chan_name = dma_chan_name;
1391	tx_pipe->dma_queue_id = dma_queue_id;
1392	return 0;
1393}
1394EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1395
1396static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1397					  const u8 *addr,
1398					  enum netcp_addr_type type)
1399{
1400	struct netcp_addr *naddr;
1401
1402	list_for_each_entry(naddr, &netcp->addr_list, node) {
1403		if (naddr->type != type)
1404			continue;
1405		if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1406			continue;
1407		return naddr;
1408	}
1409
1410	return NULL;
1411}
1412
1413static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1414					 const u8 *addr,
1415					 enum netcp_addr_type type)
1416{
1417	struct netcp_addr *naddr;
1418
1419	naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1420	if (!naddr)
1421		return NULL;
1422
1423	naddr->type = type;
1424	naddr->flags = 0;
1425	naddr->netcp = netcp;
1426	if (addr)
1427		ether_addr_copy(naddr->addr, addr);
1428	else
1429		eth_zero_addr(naddr->addr);
1430	list_add_tail(&naddr->node, &netcp->addr_list);
1431
1432	return naddr;
1433}
1434
1435static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1436{
1437	list_del(&naddr->node);
1438	devm_kfree(netcp->dev, naddr);
1439}
1440
1441static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1442{
1443	struct netcp_addr *naddr;
1444
1445	list_for_each_entry(naddr, &netcp->addr_list, node)
1446		naddr->flags = 0;
1447}
1448
1449static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1450				enum netcp_addr_type type)
1451{
1452	struct netcp_addr *naddr;
1453
1454	naddr = netcp_addr_find(netcp, addr, type);
1455	if (naddr) {
1456		naddr->flags |= ADDR_VALID;
1457		return;
1458	}
1459
1460	naddr = netcp_addr_add(netcp, addr, type);
1461	if (!WARN_ON(!naddr))
1462		naddr->flags |= ADDR_NEW;
1463}
1464
1465static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1466{
1467	struct netcp_addr *naddr, *tmp;
1468	struct netcp_intf_modpriv *priv;
1469	struct netcp_module *module;
1470	int error;
1471
1472	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1473		if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1474			continue;
1475		dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1476			naddr->addr, naddr->type);
1477		for_each_module(netcp, priv) {
1478			module = priv->netcp_module;
1479			if (!module->del_addr)
1480				continue;
1481			error = module->del_addr(priv->module_priv,
1482						 naddr);
1483			WARN_ON(error);
1484		}
1485		netcp_addr_del(netcp, naddr);
1486	}
1487}
1488
1489static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1490{
1491	struct netcp_addr *naddr, *tmp;
1492	struct netcp_intf_modpriv *priv;
1493	struct netcp_module *module;
1494	int error;
1495
1496	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1497		if (!(naddr->flags & ADDR_NEW))
1498			continue;
1499		dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1500			naddr->addr, naddr->type);
1501
1502		for_each_module(netcp, priv) {
1503			module = priv->netcp_module;
1504			if (!module->add_addr)
1505				continue;
1506			error = module->add_addr(priv->module_priv, naddr);
1507			WARN_ON(error);
1508		}
1509	}
1510}
1511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512static void netcp_set_rx_mode(struct net_device *ndev)
1513{
1514	struct netcp_intf *netcp = netdev_priv(ndev);
1515	struct netdev_hw_addr *ndev_addr;
1516	bool promisc;
1517
1518	promisc = (ndev->flags & IFF_PROMISC ||
1519		   ndev->flags & IFF_ALLMULTI ||
1520		   netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1521
1522	spin_lock(&netcp->lock);
1523	/* first clear all marks */
1524	netcp_addr_clear_mark(netcp);
1525
1526	/* next add new entries, mark existing ones */
1527	netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1528	for_each_dev_addr(ndev, ndev_addr)
1529		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1530	netdev_for_each_uc_addr(ndev_addr, ndev)
1531		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1532	netdev_for_each_mc_addr(ndev_addr, ndev)
1533		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1534
1535	if (promisc)
1536		netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1537
1538	/* finally sweep and callout into modules */
1539	netcp_addr_sweep_del(netcp);
1540	netcp_addr_sweep_add(netcp);
 
1541	spin_unlock(&netcp->lock);
1542}
1543
1544static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1545{
1546	int i;
1547
1548	if (netcp->rx_channel) {
1549		knav_dma_close_channel(netcp->rx_channel);
1550		netcp->rx_channel = NULL;
1551	}
1552
1553	if (!IS_ERR_OR_NULL(netcp->rx_pool))
1554		netcp_rxpool_free(netcp);
1555
1556	if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1557		knav_queue_close(netcp->rx_queue);
1558		netcp->rx_queue = NULL;
1559	}
1560
1561	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1562	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1563		knav_queue_close(netcp->rx_fdq[i]);
1564		netcp->rx_fdq[i] = NULL;
1565	}
1566
1567	if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1568		knav_queue_close(netcp->tx_compl_q);
1569		netcp->tx_compl_q = NULL;
1570	}
1571
1572	if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1573		knav_pool_destroy(netcp->tx_pool);
1574		netcp->tx_pool = NULL;
1575	}
1576}
1577
1578static int netcp_setup_navigator_resources(struct net_device *ndev)
1579{
1580	struct netcp_intf *netcp = netdev_priv(ndev);
1581	struct knav_queue_notify_config notify_cfg;
1582	struct knav_dma_cfg config;
1583	u32 last_fdq = 0;
1584	u8 name[16];
1585	int ret;
1586	int i;
1587
1588	/* Create Rx/Tx descriptor pools */
1589	snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1590	netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1591						netcp->rx_pool_region_id);
1592	if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1593		dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1594		ret = PTR_ERR(netcp->rx_pool);
1595		goto fail;
1596	}
1597
1598	snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1599	netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1600						netcp->tx_pool_region_id);
1601	if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1602		dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1603		ret = PTR_ERR(netcp->tx_pool);
1604		goto fail;
1605	}
1606
1607	/* open Tx completion queue */
1608	snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1609	netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1610	if (IS_ERR(netcp->tx_compl_q)) {
1611		ret = PTR_ERR(netcp->tx_compl_q);
1612		goto fail;
1613	}
1614	netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1615
1616	/* Set notification for Tx completion */
1617	notify_cfg.fn = netcp_tx_notify;
1618	notify_cfg.fn_arg = netcp;
1619	ret = knav_queue_device_control(netcp->tx_compl_q,
1620					KNAV_QUEUE_SET_NOTIFIER,
1621					(unsigned long)&notify_cfg);
1622	if (ret)
1623		goto fail;
1624
1625	knav_queue_disable_notify(netcp->tx_compl_q);
1626
1627	/* open Rx completion queue */
1628	snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1629	netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1630	if (IS_ERR(netcp->rx_queue)) {
1631		ret = PTR_ERR(netcp->rx_queue);
1632		goto fail;
1633	}
1634	netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1635
1636	/* Set notification for Rx completion */
1637	notify_cfg.fn = netcp_rx_notify;
1638	notify_cfg.fn_arg = netcp;
1639	ret = knav_queue_device_control(netcp->rx_queue,
1640					KNAV_QUEUE_SET_NOTIFIER,
1641					(unsigned long)&notify_cfg);
1642	if (ret)
1643		goto fail;
1644
1645	knav_queue_disable_notify(netcp->rx_queue);
1646
1647	/* open Rx FDQs */
1648	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1649	     ++i) {
1650		snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1651		netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1652		if (IS_ERR(netcp->rx_fdq[i])) {
1653			ret = PTR_ERR(netcp->rx_fdq[i]);
1654			goto fail;
1655		}
1656	}
1657
1658	memset(&config, 0, sizeof(config));
1659	config.direction		= DMA_DEV_TO_MEM;
1660	config.u.rx.einfo_present	= true;
1661	config.u.rx.psinfo_present	= true;
1662	config.u.rx.err_mode		= DMA_DROP;
1663	config.u.rx.desc_type		= DMA_DESC_HOST;
1664	config.u.rx.psinfo_at_sop	= false;
1665	config.u.rx.sop_offset		= NETCP_SOP_OFFSET;
1666	config.u.rx.dst_q		= netcp->rx_queue_id;
1667	config.u.rx.thresh		= DMA_THRESH_NONE;
1668
1669	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1670		if (netcp->rx_fdq[i])
1671			last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1672		config.u.rx.fdq[i] = last_fdq;
1673	}
1674
1675	netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1676					netcp->dma_chan_name, &config);
1677	if (IS_ERR(netcp->rx_channel)) {
1678		dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1679			netcp->dma_chan_name);
1680		ret = PTR_ERR(netcp->rx_channel);
1681		goto fail;
1682	}
1683
1684	dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1685	return 0;
1686
1687fail:
1688	netcp_free_navigator_resources(netcp);
1689	return ret;
1690}
1691
1692/* Open the device */
1693static int netcp_ndo_open(struct net_device *ndev)
1694{
1695	struct netcp_intf *netcp = netdev_priv(ndev);
1696	struct netcp_intf_modpriv *intf_modpriv;
1697	struct netcp_module *module;
1698	int ret;
1699
1700	netif_carrier_off(ndev);
1701	ret = netcp_setup_navigator_resources(ndev);
1702	if (ret) {
1703		dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1704		goto fail;
1705	}
1706
1707	for_each_module(netcp, intf_modpriv) {
1708		module = intf_modpriv->netcp_module;
1709		if (module->open) {
1710			ret = module->open(intf_modpriv->module_priv, ndev);
1711			if (ret != 0) {
1712				dev_err(netcp->ndev_dev, "module open failed\n");
1713				goto fail_open;
1714			}
1715		}
1716	}
1717
1718	napi_enable(&netcp->rx_napi);
1719	napi_enable(&netcp->tx_napi);
1720	knav_queue_enable_notify(netcp->tx_compl_q);
1721	knav_queue_enable_notify(netcp->rx_queue);
1722	netcp_rxpool_refill(netcp);
1723	netif_tx_wake_all_queues(ndev);
1724	dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1725	return 0;
1726
1727fail_open:
1728	for_each_module(netcp, intf_modpriv) {
1729		module = intf_modpriv->netcp_module;
1730		if (module->close)
1731			module->close(intf_modpriv->module_priv, ndev);
1732	}
1733
1734fail:
1735	netcp_free_navigator_resources(netcp);
1736	return ret;
1737}
1738
1739/* Close the device */
1740static int netcp_ndo_stop(struct net_device *ndev)
1741{
1742	struct netcp_intf *netcp = netdev_priv(ndev);
1743	struct netcp_intf_modpriv *intf_modpriv;
1744	struct netcp_module *module;
1745	int err = 0;
1746
1747	netif_tx_stop_all_queues(ndev);
1748	netif_carrier_off(ndev);
1749	netcp_addr_clear_mark(netcp);
1750	netcp_addr_sweep_del(netcp);
1751	knav_queue_disable_notify(netcp->rx_queue);
1752	knav_queue_disable_notify(netcp->tx_compl_q);
1753	napi_disable(&netcp->rx_napi);
1754	napi_disable(&netcp->tx_napi);
1755
1756	for_each_module(netcp, intf_modpriv) {
1757		module = intf_modpriv->netcp_module;
1758		if (module->close) {
1759			err = module->close(intf_modpriv->module_priv, ndev);
1760			if (err != 0)
1761				dev_err(netcp->ndev_dev, "Close failed\n");
1762		}
1763	}
1764
1765	/* Recycle Rx descriptors from completion queue */
1766	netcp_empty_rx_queue(netcp);
1767
1768	/* Recycle Tx descriptors from completion queue */
1769	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1770
1771	if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1772		dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1773			netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1774
1775	netcp_free_navigator_resources(netcp);
1776	dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1777	return 0;
1778}
1779
1780static int netcp_ndo_ioctl(struct net_device *ndev,
1781			   struct ifreq *req, int cmd)
1782{
1783	struct netcp_intf *netcp = netdev_priv(ndev);
1784	struct netcp_intf_modpriv *intf_modpriv;
1785	struct netcp_module *module;
1786	int ret = -1, err = -EOPNOTSUPP;
1787
1788	if (!netif_running(ndev))
1789		return -EINVAL;
1790
1791	for_each_module(netcp, intf_modpriv) {
1792		module = intf_modpriv->netcp_module;
1793		if (!module->ioctl)
1794			continue;
1795
1796		err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1797		if ((err < 0) && (err != -EOPNOTSUPP)) {
1798			ret = err;
1799			goto out;
1800		}
1801		if (err == 0)
1802			ret = err;
1803	}
1804
1805out:
1806	return (ret == 0) ? 0 : err;
1807}
1808
1809static void netcp_ndo_tx_timeout(struct net_device *ndev)
1810{
1811	struct netcp_intf *netcp = netdev_priv(ndev);
1812	unsigned int descs = knav_pool_count(netcp->tx_pool);
1813
1814	dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1815	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1816	netif_trans_update(ndev);
1817	netif_tx_wake_all_queues(ndev);
1818}
1819
1820static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1821{
1822	struct netcp_intf *netcp = netdev_priv(ndev);
1823	struct netcp_intf_modpriv *intf_modpriv;
1824	struct netcp_module *module;
1825	unsigned long flags;
1826	int err = 0;
1827
1828	dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1829
1830	spin_lock_irqsave(&netcp->lock, flags);
1831	for_each_module(netcp, intf_modpriv) {
1832		module = intf_modpriv->netcp_module;
1833		if ((module->add_vid) && (vid != 0)) {
1834			err = module->add_vid(intf_modpriv->module_priv, vid);
1835			if (err != 0) {
1836				dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1837					vid);
1838				break;
1839			}
1840		}
1841	}
1842	spin_unlock_irqrestore(&netcp->lock, flags);
1843
1844	return err;
1845}
1846
1847static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1848{
1849	struct netcp_intf *netcp = netdev_priv(ndev);
1850	struct netcp_intf_modpriv *intf_modpriv;
1851	struct netcp_module *module;
1852	unsigned long flags;
1853	int err = 0;
1854
1855	dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1856
1857	spin_lock_irqsave(&netcp->lock, flags);
1858	for_each_module(netcp, intf_modpriv) {
1859		module = intf_modpriv->netcp_module;
1860		if (module->del_vid) {
1861			err = module->del_vid(intf_modpriv->module_priv, vid);
1862			if (err != 0) {
1863				dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1864					vid);
1865				break;
1866			}
1867		}
1868	}
1869	spin_unlock_irqrestore(&netcp->lock, flags);
1870	return err;
1871}
1872
1873static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1874			      void *accel_priv,
1875			      select_queue_fallback_t fallback)
1876{
1877	return 0;
1878}
1879
1880static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type,
1881			  void *type_data)
1882{
1883	struct tc_mqprio_qopt *mqprio = type_data;
1884	u8 num_tc;
1885	int i;
1886
1887	/* setup tc must be called under rtnl lock */
1888	ASSERT_RTNL();
1889
1890	if (type != TC_SETUP_QDISC_MQPRIO)
1891		return -EOPNOTSUPP;
1892
1893	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1894	num_tc = mqprio->num_tc;
1895
1896	/* Sanity-check the number of traffic classes requested */
1897	if ((dev->real_num_tx_queues <= 1) ||
1898	    (dev->real_num_tx_queues < num_tc))
1899		return -EINVAL;
1900
1901	/* Configure traffic class to queue mappings */
1902	if (num_tc) {
1903		netdev_set_num_tc(dev, num_tc);
1904		for (i = 0; i < num_tc; i++)
1905			netdev_set_tc_queue(dev, i, 1, i);
1906	} else {
1907		netdev_reset_tc(dev);
1908	}
1909
1910	return 0;
1911}
1912
1913static void
1914netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
1915{
1916	struct netcp_intf *netcp = netdev_priv(ndev);
1917	struct netcp_stats *p = &netcp->stats;
1918	u64 rxpackets, rxbytes, txpackets, txbytes;
1919	unsigned int start;
1920
1921	do {
1922		start = u64_stats_fetch_begin_irq(&p->syncp_rx);
1923		rxpackets       = p->rx_packets;
1924		rxbytes         = p->rx_bytes;
1925	} while (u64_stats_fetch_retry_irq(&p->syncp_rx, start));
1926
1927	do {
1928		start = u64_stats_fetch_begin_irq(&p->syncp_tx);
1929		txpackets       = p->tx_packets;
1930		txbytes         = p->tx_bytes;
1931	} while (u64_stats_fetch_retry_irq(&p->syncp_tx, start));
1932
1933	stats->rx_packets = rxpackets;
1934	stats->rx_bytes = rxbytes;
1935	stats->tx_packets = txpackets;
1936	stats->tx_bytes = txbytes;
1937
1938	/* The following are stored as 32 bit */
1939	stats->rx_errors = p->rx_errors;
1940	stats->rx_dropped = p->rx_dropped;
1941	stats->tx_dropped = p->tx_dropped;
1942}
1943
1944static const struct net_device_ops netcp_netdev_ops = {
1945	.ndo_open		= netcp_ndo_open,
1946	.ndo_stop		= netcp_ndo_stop,
1947	.ndo_start_xmit		= netcp_ndo_start_xmit,
1948	.ndo_set_rx_mode	= netcp_set_rx_mode,
1949	.ndo_do_ioctl           = netcp_ndo_ioctl,
1950	.ndo_get_stats64        = netcp_get_stats,
1951	.ndo_set_mac_address	= eth_mac_addr,
1952	.ndo_validate_addr	= eth_validate_addr,
1953	.ndo_vlan_rx_add_vid	= netcp_rx_add_vid,
1954	.ndo_vlan_rx_kill_vid	= netcp_rx_kill_vid,
1955	.ndo_tx_timeout		= netcp_ndo_tx_timeout,
1956	.ndo_select_queue	= netcp_select_queue,
1957	.ndo_setup_tc		= netcp_setup_tc,
1958};
1959
1960static int netcp_create_interface(struct netcp_device *netcp_device,
1961				  struct device_node *node_interface)
1962{
1963	struct device *dev = netcp_device->device;
1964	struct device_node *node = dev->of_node;
1965	struct netcp_intf *netcp;
1966	struct net_device *ndev;
1967	resource_size_t size;
1968	struct resource res;
1969	void __iomem *efuse = NULL;
1970	u32 efuse_mac = 0;
1971	const void *mac_addr;
1972	u8 efuse_mac_addr[6];
1973	u32 temp[2];
1974	int ret = 0;
1975
1976	ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1977	if (!ndev) {
1978		dev_err(dev, "Error allocating netdev\n");
1979		return -ENOMEM;
1980	}
1981
1982	ndev->features |= NETIF_F_SG;
1983	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1984	ndev->hw_features = ndev->features;
1985	ndev->vlan_features |=  NETIF_F_SG;
1986
1987	/* MTU range: 68 - 9486 */
1988	ndev->min_mtu = ETH_MIN_MTU;
1989	ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1990
1991	netcp = netdev_priv(ndev);
1992	spin_lock_init(&netcp->lock);
1993	INIT_LIST_HEAD(&netcp->module_head);
1994	INIT_LIST_HEAD(&netcp->txhook_list_head);
1995	INIT_LIST_HEAD(&netcp->rxhook_list_head);
1996	INIT_LIST_HEAD(&netcp->addr_list);
1997	u64_stats_init(&netcp->stats.syncp_rx);
1998	u64_stats_init(&netcp->stats.syncp_tx);
1999	netcp->netcp_device = netcp_device;
2000	netcp->dev = netcp_device->device;
2001	netcp->ndev = ndev;
2002	netcp->ndev_dev  = &ndev->dev;
2003	netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
2004	netcp->tx_pause_threshold = MAX_SKB_FRAGS;
2005	netcp->tx_resume_threshold = netcp->tx_pause_threshold;
2006	netcp->node_interface = node_interface;
2007
2008	ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
2009	if (efuse_mac) {
2010		if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
2011			dev_err(dev, "could not find efuse-mac reg resource\n");
2012			ret = -ENODEV;
2013			goto quit;
2014		}
2015		size = resource_size(&res);
2016
2017		if (!devm_request_mem_region(dev, res.start, size,
2018					     dev_name(dev))) {
2019			dev_err(dev, "could not reserve resource\n");
2020			ret = -ENOMEM;
2021			goto quit;
2022		}
2023
2024		efuse = devm_ioremap_nocache(dev, res.start, size);
2025		if (!efuse) {
2026			dev_err(dev, "could not map resource\n");
2027			devm_release_mem_region(dev, res.start, size);
2028			ret = -ENOMEM;
2029			goto quit;
2030		}
2031
2032		emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
2033		if (is_valid_ether_addr(efuse_mac_addr))
2034			ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
2035		else
2036			random_ether_addr(ndev->dev_addr);
2037
2038		devm_iounmap(dev, efuse);
2039		devm_release_mem_region(dev, res.start, size);
2040	} else {
2041		mac_addr = of_get_mac_address(node_interface);
2042		if (mac_addr)
2043			ether_addr_copy(ndev->dev_addr, mac_addr);
2044		else
2045			random_ether_addr(ndev->dev_addr);
2046	}
2047
2048	ret = of_property_read_string(node_interface, "rx-channel",
2049				      &netcp->dma_chan_name);
2050	if (ret < 0) {
2051		dev_err(dev, "missing \"rx-channel\" parameter\n");
2052		ret = -ENODEV;
2053		goto quit;
2054	}
2055
2056	ret = of_property_read_u32(node_interface, "rx-queue",
2057				   &netcp->rx_queue_id);
2058	if (ret < 0) {
2059		dev_warn(dev, "missing \"rx-queue\" parameter\n");
2060		netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2061	}
2062
2063	ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2064					 netcp->rx_queue_depths,
2065					 KNAV_DMA_FDQ_PER_CHAN);
2066	if (ret < 0) {
2067		dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2068		netcp->rx_queue_depths[0] = 128;
2069	}
2070
2071	ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2072	if (ret < 0) {
2073		dev_err(dev, "missing \"rx-pool\" parameter\n");
2074		ret = -ENODEV;
2075		goto quit;
2076	}
2077	netcp->rx_pool_size = temp[0];
2078	netcp->rx_pool_region_id = temp[1];
2079
2080	ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2081	if (ret < 0) {
2082		dev_err(dev, "missing \"tx-pool\" parameter\n");
2083		ret = -ENODEV;
2084		goto quit;
2085	}
2086	netcp->tx_pool_size = temp[0];
2087	netcp->tx_pool_region_id = temp[1];
2088
2089	if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2090		dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2091			MAX_SKB_FRAGS);
2092		ret = -ENODEV;
2093		goto quit;
2094	}
2095
2096	ret = of_property_read_u32(node_interface, "tx-completion-queue",
2097				   &netcp->tx_compl_qid);
2098	if (ret < 0) {
2099		dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2100		netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2101	}
2102
2103	/* NAPI register */
2104	netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2105	netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2106
2107	/* Register the network device */
2108	ndev->dev_id		= 0;
2109	ndev->watchdog_timeo	= NETCP_TX_TIMEOUT;
2110	ndev->netdev_ops	= &netcp_netdev_ops;
2111	SET_NETDEV_DEV(ndev, dev);
2112
2113	list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2114	return 0;
2115
2116quit:
2117	free_netdev(ndev);
2118	return ret;
2119}
2120
2121static void netcp_delete_interface(struct netcp_device *netcp_device,
2122				   struct net_device *ndev)
2123{
2124	struct netcp_intf_modpriv *intf_modpriv, *tmp;
2125	struct netcp_intf *netcp = netdev_priv(ndev);
2126	struct netcp_module *module;
2127
2128	dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2129		ndev->name);
2130
2131	/* Notify each of the modules that the interface is going away */
2132	list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2133				 intf_list) {
2134		module = intf_modpriv->netcp_module;
2135		dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2136			module->name);
2137		if (module->release)
2138			module->release(intf_modpriv->module_priv);
2139		list_del(&intf_modpriv->intf_list);
2140	}
2141	WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2142	     ndev->name);
2143
2144	list_del(&netcp->interface_list);
2145
2146	of_node_put(netcp->node_interface);
2147	unregister_netdev(ndev);
2148	free_netdev(ndev);
2149}
2150
2151static int netcp_probe(struct platform_device *pdev)
2152{
2153	struct device_node *node = pdev->dev.of_node;
2154	struct netcp_intf *netcp_intf, *netcp_tmp;
2155	struct device_node *child, *interfaces;
2156	struct netcp_device *netcp_device;
2157	struct device *dev = &pdev->dev;
 
2158	int ret;
2159
 
 
 
 
2160	if (!node) {
2161		dev_err(dev, "could not find device info\n");
2162		return -ENODEV;
2163	}
2164
2165	/* Allocate a new NETCP device instance */
2166	netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2167	if (!netcp_device)
2168		return -ENOMEM;
2169
2170	pm_runtime_enable(&pdev->dev);
2171	ret = pm_runtime_get_sync(&pdev->dev);
2172	if (ret < 0) {
2173		dev_err(dev, "Failed to enable NETCP power-domain\n");
2174		pm_runtime_disable(&pdev->dev);
2175		return ret;
2176	}
2177
2178	/* Initialize the NETCP device instance */
2179	INIT_LIST_HEAD(&netcp_device->interface_head);
2180	INIT_LIST_HEAD(&netcp_device->modpriv_head);
2181	netcp_device->device = dev;
2182	platform_set_drvdata(pdev, netcp_device);
2183
2184	/* create interfaces */
2185	interfaces = of_get_child_by_name(node, "netcp-interfaces");
2186	if (!interfaces) {
2187		dev_err(dev, "could not find netcp-interfaces node\n");
2188		ret = -ENODEV;
2189		goto probe_quit;
2190	}
2191
2192	for_each_available_child_of_node(interfaces, child) {
2193		ret = netcp_create_interface(netcp_device, child);
2194		if (ret) {
2195			dev_err(dev, "could not create interface(%s)\n",
2196				child->name);
2197			goto probe_quit_interface;
2198		}
2199	}
2200
2201	of_node_put(interfaces);
2202
2203	/* Add the device instance to the list */
2204	list_add_tail(&netcp_device->device_list, &netcp_devices);
2205
 
 
 
 
 
 
 
 
2206	return 0;
2207
2208probe_quit_interface:
2209	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2210				 &netcp_device->interface_head,
2211				 interface_list) {
2212		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2213	}
2214
2215	of_node_put(interfaces);
2216
2217probe_quit:
2218	pm_runtime_put_sync(&pdev->dev);
2219	pm_runtime_disable(&pdev->dev);
2220	platform_set_drvdata(pdev, NULL);
2221	return ret;
2222}
2223
2224static int netcp_remove(struct platform_device *pdev)
2225{
2226	struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2227	struct netcp_intf *netcp_intf, *netcp_tmp;
2228	struct netcp_inst_modpriv *inst_modpriv, *tmp;
2229	struct netcp_module *module;
2230
2231	list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2232				 inst_list) {
2233		module = inst_modpriv->netcp_module;
2234		dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2235		module->remove(netcp_device, inst_modpriv->module_priv);
2236		list_del(&inst_modpriv->inst_list);
2237	}
2238
2239	/* now that all modules are removed, clean up the interfaces */
2240	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2241				 &netcp_device->interface_head,
2242				 interface_list) {
2243		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2244	}
2245
2246	WARN(!list_empty(&netcp_device->interface_head),
2247	     "%s interface list not empty!\n", pdev->name);
2248
2249	pm_runtime_put_sync(&pdev->dev);
2250	pm_runtime_disable(&pdev->dev);
2251	platform_set_drvdata(pdev, NULL);
2252	return 0;
2253}
2254
2255static const struct of_device_id of_match[] = {
2256	{ .compatible = "ti,netcp-1.0", },
2257	{},
2258};
2259MODULE_DEVICE_TABLE(of, of_match);
2260
2261static struct platform_driver netcp_driver = {
2262	.driver = {
2263		.name		= "netcp-1.0",
2264		.of_match_table	= of_match,
2265	},
2266	.probe = netcp_probe,
2267	.remove = netcp_remove,
2268};
2269module_platform_driver(netcp_driver);
2270
2271MODULE_LICENSE("GPL v2");
2272MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2273MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Keystone NetCP Core driver
   4 *
   5 * Copyright (C) 2014 Texas Instruments Incorporated
   6 * Authors:	Sandeep Nair <sandeep_n@ti.com>
   7 *		Sandeep Paulraj <s-paulraj@ti.com>
   8 *		Cyril Chemparathy <cyril@ti.com>
   9 *		Santosh Shilimkar <santosh.shilimkar@ti.com>
  10 *		Murali Karicheri <m-karicheri2@ti.com>
  11 *		Wingman Kwok <w-kwok2@ti.com>
 
 
 
 
 
 
 
 
 
  12 */
  13
  14#include <linux/io.h>
  15#include <linux/module.h>
  16#include <linux/of_net.h>
  17#include <linux/of_address.h>
  18#include <linux/if_vlan.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/platform_device.h>
  21#include <linux/soc/ti/knav_qmss.h>
  22#include <linux/soc/ti/knav_dma.h>
  23
  24#include "netcp.h"
  25
  26#define NETCP_SOP_OFFSET	(NET_IP_ALIGN + NET_SKB_PAD)
  27#define NETCP_NAPI_WEIGHT	64
  28#define NETCP_TX_TIMEOUT	(5 * HZ)
  29#define NETCP_PACKET_SIZE	(ETH_FRAME_LEN + ETH_FCS_LEN)
  30#define NETCP_MIN_PACKET_SIZE	ETH_ZLEN
  31#define NETCP_MAX_MCAST_ADDR	16
  32
  33#define NETCP_EFUSE_REG_INDEX	0
  34
  35#define NETCP_MOD_PROBE_SKIPPED	1
  36#define NETCP_MOD_PROBE_FAILED	2
  37
  38#define NETCP_DEBUG (NETIF_MSG_HW	| NETIF_MSG_WOL		|	\
  39		    NETIF_MSG_DRV	| NETIF_MSG_LINK	|	\
  40		    NETIF_MSG_IFUP	| NETIF_MSG_INTR	|	\
  41		    NETIF_MSG_PROBE	| NETIF_MSG_TIMER	|	\
  42		    NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	|	\
  43		    NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	|	\
  44		    NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	|	\
  45		    NETIF_MSG_RX_STATUS)
  46
  47#define NETCP_EFUSE_ADDR_SWAP	2
  48
  49#define knav_queue_get_id(q)	knav_queue_device_control(q, \
  50				KNAV_QUEUE_GET_ID, (unsigned long)NULL)
  51
  52#define knav_queue_enable_notify(q) knav_queue_device_control(q,	\
  53					KNAV_QUEUE_ENABLE_NOTIFY,	\
  54					(unsigned long)NULL)
  55
  56#define knav_queue_disable_notify(q) knav_queue_device_control(q,	\
  57					KNAV_QUEUE_DISABLE_NOTIFY,	\
  58					(unsigned long)NULL)
  59
  60#define knav_queue_get_count(q)	knav_queue_device_control(q, \
  61				KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
  62
  63#define for_each_netcp_module(module)			\
  64	list_for_each_entry(module, &netcp_modules, module_list)
  65
  66#define for_each_netcp_device_module(netcp_device, inst_modpriv) \
  67	list_for_each_entry(inst_modpriv, \
  68		&((netcp_device)->modpriv_head), inst_list)
  69
  70#define for_each_module(netcp, intf_modpriv)			\
  71	list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
  72
  73/* Module management structures */
  74struct netcp_device {
  75	struct list_head	device_list;
  76	struct list_head	interface_head;
  77	struct list_head	modpriv_head;
  78	struct device		*device;
  79};
  80
  81struct netcp_inst_modpriv {
  82	struct netcp_device	*netcp_device;
  83	struct netcp_module	*netcp_module;
  84	struct list_head	inst_list;
  85	void			*module_priv;
  86};
  87
  88struct netcp_intf_modpriv {
  89	struct netcp_intf	*netcp_priv;
  90	struct netcp_module	*netcp_module;
  91	struct list_head	intf_list;
  92	void			*module_priv;
  93};
  94
  95struct netcp_tx_cb {
  96	void	*ts_context;
  97	void	(*txtstamp)(void *context, struct sk_buff *skb);
  98};
  99
 100static LIST_HEAD(netcp_devices);
 101static LIST_HEAD(netcp_modules);
 102static DEFINE_MUTEX(netcp_modules_lock);
 103
 104static int netcp_debug_level = -1;
 105module_param(netcp_debug_level, int, 0);
 106MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
 107
 108/* Helper functions - Get/Set */
 109static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
 110			 struct knav_dma_desc *desc)
 111{
 112	*buff_len = le32_to_cpu(desc->buff_len);
 113	*buff = le32_to_cpu(desc->buff);
 114	*ndesc = le32_to_cpu(desc->next_desc);
 115}
 116
 117static void get_desc_info(u32 *desc_info, u32 *pkt_info,
 118			  struct knav_dma_desc *desc)
 119{
 120	*desc_info = le32_to_cpu(desc->desc_info);
 121	*pkt_info = le32_to_cpu(desc->packet_info);
 122}
 123
 124static u32 get_sw_data(int index, struct knav_dma_desc *desc)
 125{
 126	/* No Endian conversion needed as this data is untouched by hw */
 127	return desc->sw_data[index];
 128}
 129
 130/* use these macros to get sw data */
 131#define GET_SW_DATA0(desc) get_sw_data(0, desc)
 132#define GET_SW_DATA1(desc) get_sw_data(1, desc)
 133#define GET_SW_DATA2(desc) get_sw_data(2, desc)
 134#define GET_SW_DATA3(desc) get_sw_data(3, desc)
 135
 136static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
 137			     struct knav_dma_desc *desc)
 138{
 139	*buff = le32_to_cpu(desc->orig_buff);
 140	*buff_len = le32_to_cpu(desc->orig_len);
 141}
 142
 143static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
 144{
 145	int i;
 146
 147	for (i = 0; i < num_words; i++)
 148		words[i] = le32_to_cpu(desc[i]);
 149}
 150
 151static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
 152			 struct knav_dma_desc *desc)
 153{
 154	desc->buff_len = cpu_to_le32(buff_len);
 155	desc->buff = cpu_to_le32(buff);
 156	desc->next_desc = cpu_to_le32(ndesc);
 157}
 158
 159static void set_desc_info(u32 desc_info, u32 pkt_info,
 160			  struct knav_dma_desc *desc)
 161{
 162	desc->desc_info = cpu_to_le32(desc_info);
 163	desc->packet_info = cpu_to_le32(pkt_info);
 164}
 165
 166static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
 167{
 168	/* No Endian conversion needed as this data is untouched by hw */
 169	desc->sw_data[index] = data;
 170}
 171
 172/* use these macros to set sw data */
 173#define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
 174#define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
 175#define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
 176#define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
 177
 178static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
 179			     struct knav_dma_desc *desc)
 180{
 181	desc->orig_buff = cpu_to_le32(buff);
 182	desc->orig_len = cpu_to_le32(buff_len);
 183}
 184
 185static void set_words(u32 *words, int num_words, __le32 *desc)
 186{
 187	int i;
 188
 189	for (i = 0; i < num_words; i++)
 190		desc[i] = cpu_to_le32(words[i]);
 191}
 192
 193/* Read the e-fuse value as 32 bit values to be endian independent */
 194static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
 195{
 196	unsigned int addr0, addr1;
 197
 198	addr1 = readl(efuse_mac + 4);
 199	addr0 = readl(efuse_mac);
 200
 201	switch (swap) {
 202	case NETCP_EFUSE_ADDR_SWAP:
 203		addr0 = addr1;
 204		addr1 = readl(efuse_mac);
 205		break;
 206	default:
 207		break;
 208	}
 209
 210	x[0] = (addr1 & 0x0000ff00) >> 8;
 211	x[1] = addr1 & 0x000000ff;
 212	x[2] = (addr0 & 0xff000000) >> 24;
 213	x[3] = (addr0 & 0x00ff0000) >> 16;
 214	x[4] = (addr0 & 0x0000ff00) >> 8;
 215	x[5] = addr0 & 0x000000ff;
 216
 217	return 0;
 218}
 219
 
 
 
 
 
 
 
 
 
 
 
 220/* Module management routines */
 221static int netcp_register_interface(struct netcp_intf *netcp)
 222{
 223	int ret;
 224
 225	ret = register_netdev(netcp->ndev);
 226	if (!ret)
 227		netcp->netdev_registered = true;
 228	return ret;
 229}
 230
 231static int netcp_module_probe(struct netcp_device *netcp_device,
 232			      struct netcp_module *module)
 233{
 234	struct device *dev = netcp_device->device;
 235	struct device_node *devices, *interface, *node = dev->of_node;
 236	struct device_node *child;
 237	struct netcp_inst_modpriv *inst_modpriv;
 238	struct netcp_intf *netcp_intf;
 239	struct netcp_module *tmp;
 240	bool primary_module_registered = false;
 241	int ret;
 242
 243	/* Find this module in the sub-tree for this device */
 244	devices = of_get_child_by_name(node, "netcp-devices");
 245	if (!devices) {
 246		dev_err(dev, "could not find netcp-devices node\n");
 247		return NETCP_MOD_PROBE_SKIPPED;
 248	}
 249
 250	for_each_available_child_of_node(devices, child) {
 251		const char *name;
 252		char node_name[32];
 253
 254		if (of_property_read_string(child, "label", &name) < 0) {
 255			snprintf(node_name, sizeof(node_name), "%pOFn", child);
 256			name = node_name;
 257		}
 258		if (!strcasecmp(module->name, name))
 259			break;
 260	}
 261
 262	of_node_put(devices);
 263	/* If module not used for this device, skip it */
 264	if (!child) {
 265		dev_warn(dev, "module(%s) not used for device\n", module->name);
 266		return NETCP_MOD_PROBE_SKIPPED;
 267	}
 268
 269	inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
 270	if (!inst_modpriv) {
 271		of_node_put(child);
 272		return -ENOMEM;
 273	}
 274
 275	inst_modpriv->netcp_device = netcp_device;
 276	inst_modpriv->netcp_module = module;
 277	list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
 278
 279	ret = module->probe(netcp_device, dev, child,
 280			    &inst_modpriv->module_priv);
 281	of_node_put(child);
 282	if (ret) {
 283		dev_err(dev, "Probe of module(%s) failed with %d\n",
 284			module->name, ret);
 285		list_del(&inst_modpriv->inst_list);
 286		devm_kfree(dev, inst_modpriv);
 287		return NETCP_MOD_PROBE_FAILED;
 288	}
 289
 290	/* Attach modules only if the primary module is probed */
 291	for_each_netcp_module(tmp) {
 292		if (tmp->primary)
 293			primary_module_registered = true;
 294	}
 295
 296	if (!primary_module_registered)
 297		return 0;
 298
 299	/* Attach module to interfaces */
 300	list_for_each_entry(netcp_intf, &netcp_device->interface_head,
 301			    interface_list) {
 302		struct netcp_intf_modpriv *intf_modpriv;
 303
 304		intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
 305					    GFP_KERNEL);
 306		if (!intf_modpriv)
 307			return -ENOMEM;
 308
 309		interface = of_parse_phandle(netcp_intf->node_interface,
 310					     module->name, 0);
 311
 312		if (!interface) {
 313			devm_kfree(dev, intf_modpriv);
 314			continue;
 315		}
 316
 317		intf_modpriv->netcp_priv = netcp_intf;
 318		intf_modpriv->netcp_module = module;
 319		list_add_tail(&intf_modpriv->intf_list,
 320			      &netcp_intf->module_head);
 321
 322		ret = module->attach(inst_modpriv->module_priv,
 323				     netcp_intf->ndev, interface,
 324				     &intf_modpriv->module_priv);
 325		of_node_put(interface);
 326		if (ret) {
 327			dev_dbg(dev, "Attach of module %s declined with %d\n",
 328				module->name, ret);
 329			list_del(&intf_modpriv->intf_list);
 330			devm_kfree(dev, intf_modpriv);
 331			continue;
 332		}
 333	}
 334
 335	/* Now register the interface with netdev */
 336	list_for_each_entry(netcp_intf,
 337			    &netcp_device->interface_head,
 338			    interface_list) {
 339		/* If interface not registered then register now */
 340		if (!netcp_intf->netdev_registered) {
 341			ret = netcp_register_interface(netcp_intf);
 342			if (ret)
 343				return -ENODEV;
 344		}
 345	}
 346	return 0;
 347}
 348
 349int netcp_register_module(struct netcp_module *module)
 350{
 351	struct netcp_device *netcp_device;
 352	struct netcp_module *tmp;
 353	int ret;
 354
 355	if (!module->name) {
 356		WARN(1, "error registering netcp module: no name\n");
 357		return -EINVAL;
 358	}
 359
 360	if (!module->probe) {
 361		WARN(1, "error registering netcp module: no probe\n");
 362		return -EINVAL;
 363	}
 364
 365	mutex_lock(&netcp_modules_lock);
 366
 367	for_each_netcp_module(tmp) {
 368		if (!strcasecmp(tmp->name, module->name)) {
 369			mutex_unlock(&netcp_modules_lock);
 370			return -EEXIST;
 371		}
 372	}
 373	list_add_tail(&module->module_list, &netcp_modules);
 374
 375	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
 376		ret = netcp_module_probe(netcp_device, module);
 377		if (ret < 0)
 378			goto fail;
 379	}
 380	mutex_unlock(&netcp_modules_lock);
 381	return 0;
 382
 383fail:
 384	mutex_unlock(&netcp_modules_lock);
 385	netcp_unregister_module(module);
 386	return ret;
 387}
 388EXPORT_SYMBOL_GPL(netcp_register_module);
 389
 390static void netcp_release_module(struct netcp_device *netcp_device,
 391				 struct netcp_module *module)
 392{
 393	struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
 394	struct netcp_intf *netcp_intf, *netcp_tmp;
 395	struct device *dev = netcp_device->device;
 396
 397	/* Release the module from each interface */
 398	list_for_each_entry_safe(netcp_intf, netcp_tmp,
 399				 &netcp_device->interface_head,
 400				 interface_list) {
 401		struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
 402
 403		list_for_each_entry_safe(intf_modpriv, intf_tmp,
 404					 &netcp_intf->module_head,
 405					 intf_list) {
 406			if (intf_modpriv->netcp_module == module) {
 407				module->release(intf_modpriv->module_priv);
 408				list_del(&intf_modpriv->intf_list);
 409				devm_kfree(dev, intf_modpriv);
 410				break;
 411			}
 412		}
 413	}
 414
 415	/* Remove the module from each instance */
 416	list_for_each_entry_safe(inst_modpriv, inst_tmp,
 417				 &netcp_device->modpriv_head, inst_list) {
 418		if (inst_modpriv->netcp_module == module) {
 419			module->remove(netcp_device,
 420				       inst_modpriv->module_priv);
 421			list_del(&inst_modpriv->inst_list);
 422			devm_kfree(dev, inst_modpriv);
 423			break;
 424		}
 425	}
 426}
 427
 428void netcp_unregister_module(struct netcp_module *module)
 429{
 430	struct netcp_device *netcp_device;
 431	struct netcp_module *module_tmp;
 432
 433	mutex_lock(&netcp_modules_lock);
 434
 435	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
 436		netcp_release_module(netcp_device, module);
 437	}
 438
 439	/* Remove the module from the module list */
 440	for_each_netcp_module(module_tmp) {
 441		if (module == module_tmp) {
 442			list_del(&module->module_list);
 443			break;
 444		}
 445	}
 446
 447	mutex_unlock(&netcp_modules_lock);
 448}
 449EXPORT_SYMBOL_GPL(netcp_unregister_module);
 450
 451void *netcp_module_get_intf_data(struct netcp_module *module,
 452				 struct netcp_intf *intf)
 453{
 454	struct netcp_intf_modpriv *intf_modpriv;
 455
 456	list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
 457		if (intf_modpriv->netcp_module == module)
 458			return intf_modpriv->module_priv;
 459	return NULL;
 460}
 461EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
 462
 463/* Module TX and RX Hook management */
 464struct netcp_hook_list {
 465	struct list_head	 list;
 466	netcp_hook_rtn		*hook_rtn;
 467	void			*hook_data;
 468	int			 order;
 469};
 470
 471int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
 472			  netcp_hook_rtn *hook_rtn, void *hook_data)
 473{
 474	struct netcp_hook_list *entry;
 475	struct netcp_hook_list *next;
 476	unsigned long flags;
 477
 478	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
 479	if (!entry)
 480		return -ENOMEM;
 481
 482	entry->hook_rtn  = hook_rtn;
 483	entry->hook_data = hook_data;
 484	entry->order     = order;
 485
 486	spin_lock_irqsave(&netcp_priv->lock, flags);
 487	list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
 488		if (next->order > order)
 489			break;
 490	}
 491	__list_add(&entry->list, next->list.prev, &next->list);
 492	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 493
 494	return 0;
 495}
 496EXPORT_SYMBOL_GPL(netcp_register_txhook);
 497
 498int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
 499			    netcp_hook_rtn *hook_rtn, void *hook_data)
 500{
 501	struct netcp_hook_list *next, *n;
 502	unsigned long flags;
 503
 504	spin_lock_irqsave(&netcp_priv->lock, flags);
 505	list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
 506		if ((next->order     == order) &&
 507		    (next->hook_rtn  == hook_rtn) &&
 508		    (next->hook_data == hook_data)) {
 509			list_del(&next->list);
 510			spin_unlock_irqrestore(&netcp_priv->lock, flags);
 511			devm_kfree(netcp_priv->dev, next);
 512			return 0;
 513		}
 514	}
 515	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 516	return -ENOENT;
 517}
 518EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
 519
 520int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
 521			  netcp_hook_rtn *hook_rtn, void *hook_data)
 522{
 523	struct netcp_hook_list *entry;
 524	struct netcp_hook_list *next;
 525	unsigned long flags;
 526
 527	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
 528	if (!entry)
 529		return -ENOMEM;
 530
 531	entry->hook_rtn  = hook_rtn;
 532	entry->hook_data = hook_data;
 533	entry->order     = order;
 534
 535	spin_lock_irqsave(&netcp_priv->lock, flags);
 536	list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
 537		if (next->order > order)
 538			break;
 539	}
 540	__list_add(&entry->list, next->list.prev, &next->list);
 541	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 542
 543	return 0;
 544}
 545EXPORT_SYMBOL_GPL(netcp_register_rxhook);
 546
 547int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
 548			    netcp_hook_rtn *hook_rtn, void *hook_data)
 549{
 550	struct netcp_hook_list *next, *n;
 551	unsigned long flags;
 552
 553	spin_lock_irqsave(&netcp_priv->lock, flags);
 554	list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
 555		if ((next->order     == order) &&
 556		    (next->hook_rtn  == hook_rtn) &&
 557		    (next->hook_data == hook_data)) {
 558			list_del(&next->list);
 559			spin_unlock_irqrestore(&netcp_priv->lock, flags);
 560			devm_kfree(netcp_priv->dev, next);
 561			return 0;
 562		}
 563	}
 564	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 565
 566	return -ENOENT;
 567}
 568EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
 569
 570static void netcp_frag_free(bool is_frag, void *ptr)
 571{
 572	if (is_frag)
 573		skb_free_frag(ptr);
 574	else
 575		kfree(ptr);
 576}
 577
 578static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
 579				     struct knav_dma_desc *desc)
 580{
 581	struct knav_dma_desc *ndesc;
 582	dma_addr_t dma_desc, dma_buf;
 583	unsigned int buf_len, dma_sz = sizeof(*ndesc);
 584	void *buf_ptr;
 585	u32 tmp;
 586
 587	get_words(&dma_desc, 1, &desc->next_desc);
 588
 589	while (dma_desc) {
 590		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
 591		if (unlikely(!ndesc)) {
 592			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 593			break;
 594		}
 595		get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
 596		/* warning!!!! We are retrieving the virtual ptr in the sw_data
 597		 * field as a 32bit value. Will not work on 64bit machines
 598		 */
 599		buf_ptr = (void *)GET_SW_DATA0(ndesc);
 600		buf_len = (int)GET_SW_DATA1(desc);
 601		dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
 602		__free_page(buf_ptr);
 603		knav_pool_desc_put(netcp->rx_pool, desc);
 604	}
 605	/* warning!!!! We are retrieving the virtual ptr in the sw_data
 606	 * field as a 32bit value. Will not work on 64bit machines
 607	 */
 608	buf_ptr = (void *)GET_SW_DATA0(desc);
 609	buf_len = (int)GET_SW_DATA1(desc);
 610
 611	if (buf_ptr)
 612		netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
 613	knav_pool_desc_put(netcp->rx_pool, desc);
 614}
 615
 616static void netcp_empty_rx_queue(struct netcp_intf *netcp)
 617{
 618	struct netcp_stats *rx_stats = &netcp->stats;
 619	struct knav_dma_desc *desc;
 620	unsigned int dma_sz;
 621	dma_addr_t dma;
 622
 623	for (; ;) {
 624		dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
 625		if (!dma)
 626			break;
 627
 628		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
 629		if (unlikely(!desc)) {
 630			dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
 631				__func__);
 632			rx_stats->rx_errors++;
 633			continue;
 634		}
 635		netcp_free_rx_desc_chain(netcp, desc);
 636		rx_stats->rx_dropped++;
 637	}
 638}
 639
 640static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
 641{
 642	struct netcp_stats *rx_stats = &netcp->stats;
 643	unsigned int dma_sz, buf_len, org_buf_len;
 644	struct knav_dma_desc *desc, *ndesc;
 645	unsigned int pkt_sz = 0, accum_sz;
 646	struct netcp_hook_list *rx_hook;
 647	dma_addr_t dma_desc, dma_buff;
 648	struct netcp_packet p_info;
 649	struct sk_buff *skb;
 650	void *org_buf_ptr;
 651	u32 tmp;
 652
 653	dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
 654	if (!dma_desc)
 655		return -1;
 656
 657	desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
 658	if (unlikely(!desc)) {
 659		dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 660		return 0;
 661	}
 662
 663	get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
 664	/* warning!!!! We are retrieving the virtual ptr in the sw_data
 665	 * field as a 32bit value. Will not work on 64bit machines
 666	 */
 667	org_buf_ptr = (void *)GET_SW_DATA0(desc);
 668	org_buf_len = (int)GET_SW_DATA1(desc);
 669
 670	if (unlikely(!org_buf_ptr)) {
 671		dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
 672		goto free_desc;
 673	}
 674
 675	pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
 676	accum_sz = buf_len;
 677	dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
 678
 679	/* Build a new sk_buff for the primary buffer */
 680	skb = build_skb(org_buf_ptr, org_buf_len);
 681	if (unlikely(!skb)) {
 682		dev_err(netcp->ndev_dev, "build_skb() failed\n");
 683		goto free_desc;
 684	}
 685
 686	/* update data, tail and len */
 687	skb_reserve(skb, NETCP_SOP_OFFSET);
 688	__skb_put(skb, buf_len);
 689
 690	/* Fill in the page fragment list */
 691	while (dma_desc) {
 692		struct page *page;
 693
 694		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
 695		if (unlikely(!ndesc)) {
 696			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 697			goto free_desc;
 698		}
 699
 700		get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
 701		/* warning!!!! We are retrieving the virtual ptr in the sw_data
 702		 * field as a 32bit value. Will not work on 64bit machines
 703		 */
 704		page = (struct page *)GET_SW_DATA0(ndesc);
 705
 706		if (likely(dma_buff && buf_len && page)) {
 707			dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
 708				       DMA_FROM_DEVICE);
 709		} else {
 710			dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
 711				&dma_buff, buf_len, page);
 712			goto free_desc;
 713		}
 714
 715		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 716				offset_in_page(dma_buff), buf_len, PAGE_SIZE);
 717		accum_sz += buf_len;
 718
 719		/* Free the descriptor */
 720		knav_pool_desc_put(netcp->rx_pool, ndesc);
 721	}
 722
 723	/* check for packet len and warn */
 724	if (unlikely(pkt_sz != accum_sz))
 725		dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
 726			pkt_sz, accum_sz);
 727
 728	/* Newer version of the Ethernet switch can trim the Ethernet FCS
 729	 * from the packet and is indicated in hw_cap. So trim it only for
 730	 * older h/w
 731	 */
 732	if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
 733		__pskb_trim(skb, skb->len - ETH_FCS_LEN);
 734
 735	/* Call each of the RX hooks */
 736	p_info.skb = skb;
 737	skb->dev = netcp->ndev;
 738	p_info.rxtstamp_complete = false;
 739	get_desc_info(&tmp, &p_info.eflags, desc);
 740	p_info.epib = desc->epib;
 741	p_info.psdata = (u32 __force *)desc->psdata;
 742	p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
 743			 KNAV_DMA_DESC_EFLAGS_MASK);
 744	list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
 745		int ret;
 746
 747		ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
 748					&p_info);
 749		if (unlikely(ret)) {
 750			dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
 751				rx_hook->order, ret);
 752			/* Free the primary descriptor */
 753			rx_stats->rx_dropped++;
 754			knav_pool_desc_put(netcp->rx_pool, desc);
 755			dev_kfree_skb(skb);
 756			return 0;
 757		}
 758	}
 759	/* Free the primary descriptor */
 760	knav_pool_desc_put(netcp->rx_pool, desc);
 761
 762	u64_stats_update_begin(&rx_stats->syncp_rx);
 763	rx_stats->rx_packets++;
 764	rx_stats->rx_bytes += skb->len;
 765	u64_stats_update_end(&rx_stats->syncp_rx);
 766
 767	/* push skb up the stack */
 768	skb->protocol = eth_type_trans(skb, netcp->ndev);
 769	netif_receive_skb(skb);
 770	return 0;
 771
 772free_desc:
 773	netcp_free_rx_desc_chain(netcp, desc);
 774	rx_stats->rx_errors++;
 775	return 0;
 776}
 777
 778static int netcp_process_rx_packets(struct netcp_intf *netcp,
 779				    unsigned int budget)
 780{
 781	int i;
 782
 783	for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
 784		;
 785	return i;
 786}
 787
 788/* Release descriptors and attached buffers from Rx FDQ */
 789static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
 790{
 791	struct knav_dma_desc *desc;
 792	unsigned int buf_len, dma_sz;
 793	dma_addr_t dma;
 794	void *buf_ptr;
 795
 796	/* Allocate descriptor */
 797	while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
 798		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
 799		if (unlikely(!desc)) {
 800			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 801			continue;
 802		}
 803
 804		get_org_pkt_info(&dma, &buf_len, desc);
 805		/* warning!!!! We are retrieving the virtual ptr in the sw_data
 806		 * field as a 32bit value. Will not work on 64bit machines
 807		 */
 808		buf_ptr = (void *)GET_SW_DATA0(desc);
 809
 810		if (unlikely(!dma)) {
 811			dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
 812			knav_pool_desc_put(netcp->rx_pool, desc);
 813			continue;
 814		}
 815
 816		if (unlikely(!buf_ptr)) {
 817			dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
 818			knav_pool_desc_put(netcp->rx_pool, desc);
 819			continue;
 820		}
 821
 822		if (fdq == 0) {
 823			dma_unmap_single(netcp->dev, dma, buf_len,
 824					 DMA_FROM_DEVICE);
 825			netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
 826		} else {
 827			dma_unmap_page(netcp->dev, dma, buf_len,
 828				       DMA_FROM_DEVICE);
 829			__free_page(buf_ptr);
 830		}
 831
 832		knav_pool_desc_put(netcp->rx_pool, desc);
 833	}
 834}
 835
 836static void netcp_rxpool_free(struct netcp_intf *netcp)
 837{
 838	int i;
 839
 840	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
 841	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
 842		netcp_free_rx_buf(netcp, i);
 843
 844	if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
 845		dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
 846			netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
 847
 848	knav_pool_destroy(netcp->rx_pool);
 849	netcp->rx_pool = NULL;
 850}
 851
 852static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
 853{
 854	struct knav_dma_desc *hwdesc;
 855	unsigned int buf_len, dma_sz;
 856	u32 desc_info, pkt_info;
 857	struct page *page;
 858	dma_addr_t dma;
 859	void *bufptr;
 860	u32 sw_data[2];
 861
 862	/* Allocate descriptor */
 863	hwdesc = knav_pool_desc_get(netcp->rx_pool);
 864	if (IS_ERR_OR_NULL(hwdesc)) {
 865		dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
 866		return -ENOMEM;
 867	}
 868
 869	if (likely(fdq == 0)) {
 870		unsigned int primary_buf_len;
 871		/* Allocate a primary receive queue entry */
 872		buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
 873		primary_buf_len = SKB_DATA_ALIGN(buf_len) +
 874				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 875
 876		bufptr = netdev_alloc_frag(primary_buf_len);
 877		sw_data[1] = primary_buf_len;
 878
 879		if (unlikely(!bufptr)) {
 880			dev_warn_ratelimited(netcp->ndev_dev,
 881					     "Primary RX buffer alloc failed\n");
 882			goto fail;
 883		}
 884		dma = dma_map_single(netcp->dev, bufptr, buf_len,
 885				     DMA_TO_DEVICE);
 886		if (unlikely(dma_mapping_error(netcp->dev, dma)))
 887			goto fail;
 888
 889		/* warning!!!! We are saving the virtual ptr in the sw_data
 890		 * field as a 32bit value. Will not work on 64bit machines
 891		 */
 892		sw_data[0] = (u32)bufptr;
 893	} else {
 894		/* Allocate a secondary receive queue entry */
 895		page = alloc_page(GFP_ATOMIC | GFP_DMA);
 896		if (unlikely(!page)) {
 897			dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
 898			goto fail;
 899		}
 900		buf_len = PAGE_SIZE;
 901		dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
 902		/* warning!!!! We are saving the virtual ptr in the sw_data
 903		 * field as a 32bit value. Will not work on 64bit machines
 904		 */
 905		sw_data[0] = (u32)page;
 906		sw_data[1] = 0;
 907	}
 908
 909	desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
 910	desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
 911	pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
 912	pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
 913	pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
 914		    KNAV_DMA_DESC_RETQ_SHIFT;
 915	set_org_pkt_info(dma, buf_len, hwdesc);
 916	SET_SW_DATA0(sw_data[0], hwdesc);
 917	SET_SW_DATA1(sw_data[1], hwdesc);
 918	set_desc_info(desc_info, pkt_info, hwdesc);
 919
 920	/* Push to FDQs */
 921	knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
 922			   &dma_sz);
 923	knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
 924	return 0;
 925
 926fail:
 927	knav_pool_desc_put(netcp->rx_pool, hwdesc);
 928	return -ENOMEM;
 929}
 930
 931/* Refill Rx FDQ with descriptors & attached buffers */
 932static void netcp_rxpool_refill(struct netcp_intf *netcp)
 933{
 934	u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
 935	int i, ret = 0;
 936
 937	/* Calculate the FDQ deficit and refill */
 938	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
 939		fdq_deficit[i] = netcp->rx_queue_depths[i] -
 940				 knav_queue_get_count(netcp->rx_fdq[i]);
 941
 942		while (fdq_deficit[i]-- && !ret)
 943			ret = netcp_allocate_rx_buf(netcp, i);
 944	} /* end for fdqs */
 945}
 946
 947/* NAPI poll */
 948static int netcp_rx_poll(struct napi_struct *napi, int budget)
 949{
 950	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
 951						rx_napi);
 952	unsigned int packets;
 953
 954	packets = netcp_process_rx_packets(netcp, budget);
 955
 956	netcp_rxpool_refill(netcp);
 957	if (packets < budget) {
 958		napi_complete_done(&netcp->rx_napi, packets);
 959		knav_queue_enable_notify(netcp->rx_queue);
 960	}
 961
 962	return packets;
 963}
 964
 965static void netcp_rx_notify(void *arg)
 966{
 967	struct netcp_intf *netcp = arg;
 968
 969	knav_queue_disable_notify(netcp->rx_queue);
 970	napi_schedule(&netcp->rx_napi);
 971}
 972
 973static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
 974				     struct knav_dma_desc *desc,
 975				     unsigned int desc_sz)
 976{
 977	struct knav_dma_desc *ndesc = desc;
 978	dma_addr_t dma_desc, dma_buf;
 979	unsigned int buf_len;
 980
 981	while (ndesc) {
 982		get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
 983
 984		if (dma_buf && buf_len)
 985			dma_unmap_single(netcp->dev, dma_buf, buf_len,
 986					 DMA_TO_DEVICE);
 987		else
 988			dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
 989				 &dma_buf, buf_len);
 990
 991		knav_pool_desc_put(netcp->tx_pool, ndesc);
 992		ndesc = NULL;
 993		if (dma_desc) {
 994			ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
 995						     desc_sz);
 996			if (!ndesc)
 997				dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
 998		}
 999	}
1000}
1001
1002static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
1003					  unsigned int budget)
1004{
1005	struct netcp_stats *tx_stats = &netcp->stats;
1006	struct knav_dma_desc *desc;
1007	struct netcp_tx_cb *tx_cb;
1008	struct sk_buff *skb;
1009	unsigned int dma_sz;
1010	dma_addr_t dma;
1011	int pkts = 0;
1012
1013	while (budget--) {
1014		dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1015		if (!dma)
1016			break;
1017		desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1018		if (unlikely(!desc)) {
1019			dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1020			tx_stats->tx_errors++;
1021			continue;
1022		}
1023
1024		/* warning!!!! We are retrieving the virtual ptr in the sw_data
1025		 * field as a 32bit value. Will not work on 64bit machines
1026		 */
1027		skb = (struct sk_buff *)GET_SW_DATA0(desc);
1028		netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1029		if (!skb) {
1030			dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1031			tx_stats->tx_errors++;
1032			continue;
1033		}
1034
1035		tx_cb = (struct netcp_tx_cb *)skb->cb;
1036		if (tx_cb->txtstamp)
1037			tx_cb->txtstamp(tx_cb->ts_context, skb);
1038
1039		if (netif_subqueue_stopped(netcp->ndev, skb) &&
1040		    netif_running(netcp->ndev) &&
1041		    (knav_pool_count(netcp->tx_pool) >
1042		    netcp->tx_resume_threshold)) {
1043			u16 subqueue = skb_get_queue_mapping(skb);
1044
1045			netif_wake_subqueue(netcp->ndev, subqueue);
1046		}
1047
1048		u64_stats_update_begin(&tx_stats->syncp_tx);
1049		tx_stats->tx_packets++;
1050		tx_stats->tx_bytes += skb->len;
1051		u64_stats_update_end(&tx_stats->syncp_tx);
1052		dev_kfree_skb(skb);
1053		pkts++;
1054	}
1055	return pkts;
1056}
1057
1058static int netcp_tx_poll(struct napi_struct *napi, int budget)
1059{
1060	int packets;
1061	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1062						tx_napi);
1063
1064	packets = netcp_process_tx_compl_packets(netcp, budget);
1065	if (packets < budget) {
1066		napi_complete(&netcp->tx_napi);
1067		knav_queue_enable_notify(netcp->tx_compl_q);
1068	}
1069
1070	return packets;
1071}
1072
1073static void netcp_tx_notify(void *arg)
1074{
1075	struct netcp_intf *netcp = arg;
1076
1077	knav_queue_disable_notify(netcp->tx_compl_q);
1078	napi_schedule(&netcp->tx_napi);
1079}
1080
1081static struct knav_dma_desc*
1082netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1083{
1084	struct knav_dma_desc *desc, *ndesc, *pdesc;
1085	unsigned int pkt_len = skb_headlen(skb);
1086	struct device *dev = netcp->dev;
1087	dma_addr_t dma_addr;
1088	unsigned int dma_sz;
1089	int i;
1090
1091	/* Map the linear buffer */
1092	dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1093	if (unlikely(dma_mapping_error(dev, dma_addr))) {
1094		dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1095		return NULL;
1096	}
1097
1098	desc = knav_pool_desc_get(netcp->tx_pool);
1099	if (IS_ERR_OR_NULL(desc)) {
1100		dev_err(netcp->ndev_dev, "out of TX desc\n");
1101		dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1102		return NULL;
1103	}
1104
1105	set_pkt_info(dma_addr, pkt_len, 0, desc);
1106	if (skb_is_nonlinear(skb)) {
1107		prefetchw(skb_shinfo(skb));
1108	} else {
1109		desc->next_desc = 0;
1110		goto upd_pkt_len;
1111	}
1112
1113	pdesc = desc;
1114
1115	/* Handle the case where skb is fragmented in pages */
1116	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1117		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1118		struct page *page = skb_frag_page(frag);
1119		u32 page_offset = skb_frag_off(frag);
1120		u32 buf_len = skb_frag_size(frag);
1121		dma_addr_t desc_dma;
1122		u32 desc_dma_32;
1123
1124		dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1125					DMA_TO_DEVICE);
1126		if (unlikely(!dma_addr)) {
1127			dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1128			goto free_descs;
1129		}
1130
1131		ndesc = knav_pool_desc_get(netcp->tx_pool);
1132		if (IS_ERR_OR_NULL(ndesc)) {
1133			dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1134			dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1135			goto free_descs;
1136		}
1137
1138		desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1139		set_pkt_info(dma_addr, buf_len, 0, ndesc);
1140		desc_dma_32 = (u32)desc_dma;
1141		set_words(&desc_dma_32, 1, &pdesc->next_desc);
1142		pkt_len += buf_len;
1143		if (pdesc != desc)
1144			knav_pool_desc_map(netcp->tx_pool, pdesc,
1145					   sizeof(*pdesc), &desc_dma, &dma_sz);
1146		pdesc = ndesc;
1147	}
1148	if (pdesc != desc)
1149		knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1150				   &dma_addr, &dma_sz);
1151
1152	/* frag list based linkage is not supported for now. */
1153	if (skb_shinfo(skb)->frag_list) {
1154		dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1155		goto free_descs;
1156	}
1157
1158upd_pkt_len:
1159	WARN_ON(pkt_len != skb->len);
1160
1161	pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1162	set_words(&pkt_len, 1, &desc->desc_info);
1163	return desc;
1164
1165free_descs:
1166	netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1167	return NULL;
1168}
1169
1170static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1171			       struct sk_buff *skb,
1172			       struct knav_dma_desc *desc)
1173{
1174	struct netcp_tx_pipe *tx_pipe = NULL;
1175	struct netcp_hook_list *tx_hook;
1176	struct netcp_packet p_info;
1177	struct netcp_tx_cb *tx_cb;
1178	unsigned int dma_sz;
1179	dma_addr_t dma;
1180	u32 tmp = 0;
1181	int ret = 0;
1182
1183	p_info.netcp = netcp;
1184	p_info.skb = skb;
1185	p_info.tx_pipe = NULL;
1186	p_info.psdata_len = 0;
1187	p_info.ts_context = NULL;
1188	p_info.txtstamp = NULL;
1189	p_info.epib = desc->epib;
1190	p_info.psdata = (u32 __force *)desc->psdata;
1191	memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1192
1193	/* Find out where to inject the packet for transmission */
1194	list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1195		ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1196					&p_info);
1197		if (unlikely(ret != 0)) {
1198			dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1199				tx_hook->order, ret);
1200			ret = (ret < 0) ? ret : NETDEV_TX_OK;
1201			goto out;
1202		}
1203	}
1204
1205	/* Make sure some TX hook claimed the packet */
1206	tx_pipe = p_info.tx_pipe;
1207	if (!tx_pipe) {
1208		dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1209		ret = -ENXIO;
1210		goto out;
1211	}
1212
1213	tx_cb = (struct netcp_tx_cb *)skb->cb;
1214	tx_cb->ts_context = p_info.ts_context;
1215	tx_cb->txtstamp = p_info.txtstamp;
1216
1217	/* update descriptor */
1218	if (p_info.psdata_len) {
1219		/* psdata points to both native-endian and device-endian data */
1220		__le32 *psdata = (void __force *)p_info.psdata;
1221
1222		set_words((u32 *)psdata +
1223			  (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
1224			  p_info.psdata_len, psdata);
1225		tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1226			KNAV_DMA_DESC_PSLEN_SHIFT;
1227	}
1228
1229	tmp |= KNAV_DMA_DESC_HAS_EPIB |
1230		((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1231		KNAV_DMA_DESC_RETQ_SHIFT);
1232
1233	if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1234		tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1235			KNAV_DMA_DESC_PSFLAG_SHIFT);
1236	}
1237
1238	set_words(&tmp, 1, &desc->packet_info);
1239	/* warning!!!! We are saving the virtual ptr in the sw_data
1240	 * field as a 32bit value. Will not work on 64bit machines
1241	 */
1242	SET_SW_DATA0((u32)skb, desc);
1243
1244	if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1245		tmp = tx_pipe->switch_to_port;
1246		set_words(&tmp, 1, &desc->tag_info);
1247	}
1248
1249	/* submit packet descriptor */
1250	ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1251				 &dma_sz);
1252	if (unlikely(ret)) {
1253		dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1254		ret = -ENOMEM;
1255		goto out;
1256	}
1257	skb_tx_timestamp(skb);
1258	knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1259
1260out:
1261	return ret;
1262}
1263
1264/* Submit the packet */
1265static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1266{
1267	struct netcp_intf *netcp = netdev_priv(ndev);
1268	struct netcp_stats *tx_stats = &netcp->stats;
1269	int subqueue = skb_get_queue_mapping(skb);
1270	struct knav_dma_desc *desc;
1271	int desc_count, ret = 0;
1272
1273	if (unlikely(skb->len <= 0)) {
1274		dev_kfree_skb(skb);
1275		return NETDEV_TX_OK;
1276	}
1277
1278	if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1279		ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1280		if (ret < 0) {
1281			/* If we get here, the skb has already been dropped */
1282			dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1283				 ret);
1284			tx_stats->tx_dropped++;
1285			return ret;
1286		}
1287		skb->len = NETCP_MIN_PACKET_SIZE;
1288	}
1289
1290	desc = netcp_tx_map_skb(skb, netcp);
1291	if (unlikely(!desc)) {
1292		netif_stop_subqueue(ndev, subqueue);
1293		ret = -ENOBUFS;
1294		goto drop;
1295	}
1296
1297	ret = netcp_tx_submit_skb(netcp, skb, desc);
1298	if (ret)
1299		goto drop;
1300
1301	/* Check Tx pool count & stop subqueue if needed */
1302	desc_count = knav_pool_count(netcp->tx_pool);
1303	if (desc_count < netcp->tx_pause_threshold) {
1304		dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1305		netif_stop_subqueue(ndev, subqueue);
1306	}
1307	return NETDEV_TX_OK;
1308
1309drop:
1310	tx_stats->tx_dropped++;
1311	if (desc)
1312		netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1313	dev_kfree_skb(skb);
1314	return ret;
1315}
1316
1317int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1318{
1319	if (tx_pipe->dma_channel) {
1320		knav_dma_close_channel(tx_pipe->dma_channel);
1321		tx_pipe->dma_channel = NULL;
1322	}
1323	return 0;
1324}
1325EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1326
1327int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1328{
1329	struct device *dev = tx_pipe->netcp_device->device;
1330	struct knav_dma_cfg config;
1331	int ret = 0;
1332	u8 name[16];
1333
1334	memset(&config, 0, sizeof(config));
1335	config.direction = DMA_MEM_TO_DEV;
1336	config.u.tx.filt_einfo = false;
1337	config.u.tx.filt_pswords = false;
1338	config.u.tx.priority = DMA_PRIO_MED_L;
1339
1340	tx_pipe->dma_channel = knav_dma_open_channel(dev,
1341				tx_pipe->dma_chan_name, &config);
1342	if (IS_ERR(tx_pipe->dma_channel)) {
1343		dev_err(dev, "failed opening tx chan(%s)\n",
1344			tx_pipe->dma_chan_name);
1345		ret = PTR_ERR(tx_pipe->dma_channel);
1346		goto err;
1347	}
1348
1349	snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1350	tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1351					     KNAV_QUEUE_SHARED);
1352	if (IS_ERR(tx_pipe->dma_queue)) {
1353		dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1354			name, ret);
1355		ret = PTR_ERR(tx_pipe->dma_queue);
1356		goto err;
1357	}
1358
1359	dev_dbg(dev, "opened tx pipe %s\n", name);
1360	return 0;
1361
1362err:
1363	if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1364		knav_dma_close_channel(tx_pipe->dma_channel);
1365	tx_pipe->dma_channel = NULL;
1366	return ret;
1367}
1368EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1369
1370int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1371		      struct netcp_device *netcp_device,
1372		      const char *dma_chan_name, unsigned int dma_queue_id)
1373{
1374	memset(tx_pipe, 0, sizeof(*tx_pipe));
1375	tx_pipe->netcp_device = netcp_device;
1376	tx_pipe->dma_chan_name = dma_chan_name;
1377	tx_pipe->dma_queue_id = dma_queue_id;
1378	return 0;
1379}
1380EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1381
1382static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1383					  const u8 *addr,
1384					  enum netcp_addr_type type)
1385{
1386	struct netcp_addr *naddr;
1387
1388	list_for_each_entry(naddr, &netcp->addr_list, node) {
1389		if (naddr->type != type)
1390			continue;
1391		if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1392			continue;
1393		return naddr;
1394	}
1395
1396	return NULL;
1397}
1398
1399static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1400					 const u8 *addr,
1401					 enum netcp_addr_type type)
1402{
1403	struct netcp_addr *naddr;
1404
1405	naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1406	if (!naddr)
1407		return NULL;
1408
1409	naddr->type = type;
1410	naddr->flags = 0;
1411	naddr->netcp = netcp;
1412	if (addr)
1413		ether_addr_copy(naddr->addr, addr);
1414	else
1415		eth_zero_addr(naddr->addr);
1416	list_add_tail(&naddr->node, &netcp->addr_list);
1417
1418	return naddr;
1419}
1420
1421static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1422{
1423	list_del(&naddr->node);
1424	devm_kfree(netcp->dev, naddr);
1425}
1426
1427static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1428{
1429	struct netcp_addr *naddr;
1430
1431	list_for_each_entry(naddr, &netcp->addr_list, node)
1432		naddr->flags = 0;
1433}
1434
1435static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1436				enum netcp_addr_type type)
1437{
1438	struct netcp_addr *naddr;
1439
1440	naddr = netcp_addr_find(netcp, addr, type);
1441	if (naddr) {
1442		naddr->flags |= ADDR_VALID;
1443		return;
1444	}
1445
1446	naddr = netcp_addr_add(netcp, addr, type);
1447	if (!WARN_ON(!naddr))
1448		naddr->flags |= ADDR_NEW;
1449}
1450
1451static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1452{
1453	struct netcp_addr *naddr, *tmp;
1454	struct netcp_intf_modpriv *priv;
1455	struct netcp_module *module;
1456	int error;
1457
1458	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1459		if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1460			continue;
1461		dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1462			naddr->addr, naddr->type);
1463		for_each_module(netcp, priv) {
1464			module = priv->netcp_module;
1465			if (!module->del_addr)
1466				continue;
1467			error = module->del_addr(priv->module_priv,
1468						 naddr);
1469			WARN_ON(error);
1470		}
1471		netcp_addr_del(netcp, naddr);
1472	}
1473}
1474
1475static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1476{
1477	struct netcp_addr *naddr, *tmp;
1478	struct netcp_intf_modpriv *priv;
1479	struct netcp_module *module;
1480	int error;
1481
1482	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1483		if (!(naddr->flags & ADDR_NEW))
1484			continue;
1485		dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1486			naddr->addr, naddr->type);
1487
1488		for_each_module(netcp, priv) {
1489			module = priv->netcp_module;
1490			if (!module->add_addr)
1491				continue;
1492			error = module->add_addr(priv->module_priv, naddr);
1493			WARN_ON(error);
1494		}
1495	}
1496}
1497
1498static int netcp_set_promiscuous(struct netcp_intf *netcp, bool promisc)
1499{
1500	struct netcp_intf_modpriv *priv;
1501	struct netcp_module *module;
1502	int error;
1503
1504	for_each_module(netcp, priv) {
1505		module = priv->netcp_module;
1506		if (!module->set_rx_mode)
1507			continue;
1508
1509		error = module->set_rx_mode(priv->module_priv, promisc);
1510		if (error)
1511			return error;
1512	}
1513	return 0;
1514}
1515
1516static void netcp_set_rx_mode(struct net_device *ndev)
1517{
1518	struct netcp_intf *netcp = netdev_priv(ndev);
1519	struct netdev_hw_addr *ndev_addr;
1520	bool promisc;
1521
1522	promisc = (ndev->flags & IFF_PROMISC ||
1523		   ndev->flags & IFF_ALLMULTI ||
1524		   netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1525
1526	spin_lock(&netcp->lock);
1527	/* first clear all marks */
1528	netcp_addr_clear_mark(netcp);
1529
1530	/* next add new entries, mark existing ones */
1531	netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1532	for_each_dev_addr(ndev, ndev_addr)
1533		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1534	netdev_for_each_uc_addr(ndev_addr, ndev)
1535		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1536	netdev_for_each_mc_addr(ndev_addr, ndev)
1537		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1538
1539	if (promisc)
1540		netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1541
1542	/* finally sweep and callout into modules */
1543	netcp_addr_sweep_del(netcp);
1544	netcp_addr_sweep_add(netcp);
1545	netcp_set_promiscuous(netcp, promisc);
1546	spin_unlock(&netcp->lock);
1547}
1548
1549static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1550{
1551	int i;
1552
1553	if (netcp->rx_channel) {
1554		knav_dma_close_channel(netcp->rx_channel);
1555		netcp->rx_channel = NULL;
1556	}
1557
1558	if (!IS_ERR_OR_NULL(netcp->rx_pool))
1559		netcp_rxpool_free(netcp);
1560
1561	if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1562		knav_queue_close(netcp->rx_queue);
1563		netcp->rx_queue = NULL;
1564	}
1565
1566	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1567	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1568		knav_queue_close(netcp->rx_fdq[i]);
1569		netcp->rx_fdq[i] = NULL;
1570	}
1571
1572	if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1573		knav_queue_close(netcp->tx_compl_q);
1574		netcp->tx_compl_q = NULL;
1575	}
1576
1577	if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1578		knav_pool_destroy(netcp->tx_pool);
1579		netcp->tx_pool = NULL;
1580	}
1581}
1582
1583static int netcp_setup_navigator_resources(struct net_device *ndev)
1584{
1585	struct netcp_intf *netcp = netdev_priv(ndev);
1586	struct knav_queue_notify_config notify_cfg;
1587	struct knav_dma_cfg config;
1588	u32 last_fdq = 0;
1589	u8 name[16];
1590	int ret;
1591	int i;
1592
1593	/* Create Rx/Tx descriptor pools */
1594	snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1595	netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1596						netcp->rx_pool_region_id);
1597	if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1598		dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1599		ret = PTR_ERR(netcp->rx_pool);
1600		goto fail;
1601	}
1602
1603	snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1604	netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1605						netcp->tx_pool_region_id);
1606	if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1607		dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1608		ret = PTR_ERR(netcp->tx_pool);
1609		goto fail;
1610	}
1611
1612	/* open Tx completion queue */
1613	snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1614	netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1615	if (IS_ERR(netcp->tx_compl_q)) {
1616		ret = PTR_ERR(netcp->tx_compl_q);
1617		goto fail;
1618	}
1619	netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1620
1621	/* Set notification for Tx completion */
1622	notify_cfg.fn = netcp_tx_notify;
1623	notify_cfg.fn_arg = netcp;
1624	ret = knav_queue_device_control(netcp->tx_compl_q,
1625					KNAV_QUEUE_SET_NOTIFIER,
1626					(unsigned long)&notify_cfg);
1627	if (ret)
1628		goto fail;
1629
1630	knav_queue_disable_notify(netcp->tx_compl_q);
1631
1632	/* open Rx completion queue */
1633	snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1634	netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1635	if (IS_ERR(netcp->rx_queue)) {
1636		ret = PTR_ERR(netcp->rx_queue);
1637		goto fail;
1638	}
1639	netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1640
1641	/* Set notification for Rx completion */
1642	notify_cfg.fn = netcp_rx_notify;
1643	notify_cfg.fn_arg = netcp;
1644	ret = knav_queue_device_control(netcp->rx_queue,
1645					KNAV_QUEUE_SET_NOTIFIER,
1646					(unsigned long)&notify_cfg);
1647	if (ret)
1648		goto fail;
1649
1650	knav_queue_disable_notify(netcp->rx_queue);
1651
1652	/* open Rx FDQs */
1653	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1654	     ++i) {
1655		snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1656		netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1657		if (IS_ERR(netcp->rx_fdq[i])) {
1658			ret = PTR_ERR(netcp->rx_fdq[i]);
1659			goto fail;
1660		}
1661	}
1662
1663	memset(&config, 0, sizeof(config));
1664	config.direction		= DMA_DEV_TO_MEM;
1665	config.u.rx.einfo_present	= true;
1666	config.u.rx.psinfo_present	= true;
1667	config.u.rx.err_mode		= DMA_DROP;
1668	config.u.rx.desc_type		= DMA_DESC_HOST;
1669	config.u.rx.psinfo_at_sop	= false;
1670	config.u.rx.sop_offset		= NETCP_SOP_OFFSET;
1671	config.u.rx.dst_q		= netcp->rx_queue_id;
1672	config.u.rx.thresh		= DMA_THRESH_NONE;
1673
1674	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1675		if (netcp->rx_fdq[i])
1676			last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1677		config.u.rx.fdq[i] = last_fdq;
1678	}
1679
1680	netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1681					netcp->dma_chan_name, &config);
1682	if (IS_ERR(netcp->rx_channel)) {
1683		dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1684			netcp->dma_chan_name);
1685		ret = PTR_ERR(netcp->rx_channel);
1686		goto fail;
1687	}
1688
1689	dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1690	return 0;
1691
1692fail:
1693	netcp_free_navigator_resources(netcp);
1694	return ret;
1695}
1696
1697/* Open the device */
1698static int netcp_ndo_open(struct net_device *ndev)
1699{
1700	struct netcp_intf *netcp = netdev_priv(ndev);
1701	struct netcp_intf_modpriv *intf_modpriv;
1702	struct netcp_module *module;
1703	int ret;
1704
1705	netif_carrier_off(ndev);
1706	ret = netcp_setup_navigator_resources(ndev);
1707	if (ret) {
1708		dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1709		goto fail;
1710	}
1711
1712	for_each_module(netcp, intf_modpriv) {
1713		module = intf_modpriv->netcp_module;
1714		if (module->open) {
1715			ret = module->open(intf_modpriv->module_priv, ndev);
1716			if (ret != 0) {
1717				dev_err(netcp->ndev_dev, "module open failed\n");
1718				goto fail_open;
1719			}
1720		}
1721	}
1722
1723	napi_enable(&netcp->rx_napi);
1724	napi_enable(&netcp->tx_napi);
1725	knav_queue_enable_notify(netcp->tx_compl_q);
1726	knav_queue_enable_notify(netcp->rx_queue);
1727	netcp_rxpool_refill(netcp);
1728	netif_tx_wake_all_queues(ndev);
1729	dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1730	return 0;
1731
1732fail_open:
1733	for_each_module(netcp, intf_modpriv) {
1734		module = intf_modpriv->netcp_module;
1735		if (module->close)
1736			module->close(intf_modpriv->module_priv, ndev);
1737	}
1738
1739fail:
1740	netcp_free_navigator_resources(netcp);
1741	return ret;
1742}
1743
1744/* Close the device */
1745static int netcp_ndo_stop(struct net_device *ndev)
1746{
1747	struct netcp_intf *netcp = netdev_priv(ndev);
1748	struct netcp_intf_modpriv *intf_modpriv;
1749	struct netcp_module *module;
1750	int err = 0;
1751
1752	netif_tx_stop_all_queues(ndev);
1753	netif_carrier_off(ndev);
1754	netcp_addr_clear_mark(netcp);
1755	netcp_addr_sweep_del(netcp);
1756	knav_queue_disable_notify(netcp->rx_queue);
1757	knav_queue_disable_notify(netcp->tx_compl_q);
1758	napi_disable(&netcp->rx_napi);
1759	napi_disable(&netcp->tx_napi);
1760
1761	for_each_module(netcp, intf_modpriv) {
1762		module = intf_modpriv->netcp_module;
1763		if (module->close) {
1764			err = module->close(intf_modpriv->module_priv, ndev);
1765			if (err != 0)
1766				dev_err(netcp->ndev_dev, "Close failed\n");
1767		}
1768	}
1769
1770	/* Recycle Rx descriptors from completion queue */
1771	netcp_empty_rx_queue(netcp);
1772
1773	/* Recycle Tx descriptors from completion queue */
1774	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1775
1776	if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1777		dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1778			netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1779
1780	netcp_free_navigator_resources(netcp);
1781	dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1782	return 0;
1783}
1784
1785static int netcp_ndo_ioctl(struct net_device *ndev,
1786			   struct ifreq *req, int cmd)
1787{
1788	struct netcp_intf *netcp = netdev_priv(ndev);
1789	struct netcp_intf_modpriv *intf_modpriv;
1790	struct netcp_module *module;
1791	int ret = -1, err = -EOPNOTSUPP;
1792
1793	if (!netif_running(ndev))
1794		return -EINVAL;
1795
1796	for_each_module(netcp, intf_modpriv) {
1797		module = intf_modpriv->netcp_module;
1798		if (!module->ioctl)
1799			continue;
1800
1801		err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1802		if ((err < 0) && (err != -EOPNOTSUPP)) {
1803			ret = err;
1804			goto out;
1805		}
1806		if (err == 0)
1807			ret = err;
1808	}
1809
1810out:
1811	return (ret == 0) ? 0 : err;
1812}
1813
1814static void netcp_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1815{
1816	struct netcp_intf *netcp = netdev_priv(ndev);
1817	unsigned int descs = knav_pool_count(netcp->tx_pool);
1818
1819	dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1820	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1821	netif_trans_update(ndev);
1822	netif_tx_wake_all_queues(ndev);
1823}
1824
1825static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1826{
1827	struct netcp_intf *netcp = netdev_priv(ndev);
1828	struct netcp_intf_modpriv *intf_modpriv;
1829	struct netcp_module *module;
1830	unsigned long flags;
1831	int err = 0;
1832
1833	dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1834
1835	spin_lock_irqsave(&netcp->lock, flags);
1836	for_each_module(netcp, intf_modpriv) {
1837		module = intf_modpriv->netcp_module;
1838		if ((module->add_vid) && (vid != 0)) {
1839			err = module->add_vid(intf_modpriv->module_priv, vid);
1840			if (err != 0) {
1841				dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1842					vid);
1843				break;
1844			}
1845		}
1846	}
1847	spin_unlock_irqrestore(&netcp->lock, flags);
1848
1849	return err;
1850}
1851
1852static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1853{
1854	struct netcp_intf *netcp = netdev_priv(ndev);
1855	struct netcp_intf_modpriv *intf_modpriv;
1856	struct netcp_module *module;
1857	unsigned long flags;
1858	int err = 0;
1859
1860	dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1861
1862	spin_lock_irqsave(&netcp->lock, flags);
1863	for_each_module(netcp, intf_modpriv) {
1864		module = intf_modpriv->netcp_module;
1865		if (module->del_vid) {
1866			err = module->del_vid(intf_modpriv->module_priv, vid);
1867			if (err != 0) {
1868				dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1869					vid);
1870				break;
1871			}
1872		}
1873	}
1874	spin_unlock_irqrestore(&netcp->lock, flags);
1875	return err;
1876}
1877
 
 
 
 
 
 
 
1878static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type,
1879			  void *type_data)
1880{
1881	struct tc_mqprio_qopt *mqprio = type_data;
1882	u8 num_tc;
1883	int i;
1884
1885	/* setup tc must be called under rtnl lock */
1886	ASSERT_RTNL();
1887
1888	if (type != TC_SETUP_QDISC_MQPRIO)
1889		return -EOPNOTSUPP;
1890
1891	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1892	num_tc = mqprio->num_tc;
1893
1894	/* Sanity-check the number of traffic classes requested */
1895	if ((dev->real_num_tx_queues <= 1) ||
1896	    (dev->real_num_tx_queues < num_tc))
1897		return -EINVAL;
1898
1899	/* Configure traffic class to queue mappings */
1900	if (num_tc) {
1901		netdev_set_num_tc(dev, num_tc);
1902		for (i = 0; i < num_tc; i++)
1903			netdev_set_tc_queue(dev, i, 1, i);
1904	} else {
1905		netdev_reset_tc(dev);
1906	}
1907
1908	return 0;
1909}
1910
1911static void
1912netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
1913{
1914	struct netcp_intf *netcp = netdev_priv(ndev);
1915	struct netcp_stats *p = &netcp->stats;
1916	u64 rxpackets, rxbytes, txpackets, txbytes;
1917	unsigned int start;
1918
1919	do {
1920		start = u64_stats_fetch_begin_irq(&p->syncp_rx);
1921		rxpackets       = p->rx_packets;
1922		rxbytes         = p->rx_bytes;
1923	} while (u64_stats_fetch_retry_irq(&p->syncp_rx, start));
1924
1925	do {
1926		start = u64_stats_fetch_begin_irq(&p->syncp_tx);
1927		txpackets       = p->tx_packets;
1928		txbytes         = p->tx_bytes;
1929	} while (u64_stats_fetch_retry_irq(&p->syncp_tx, start));
1930
1931	stats->rx_packets = rxpackets;
1932	stats->rx_bytes = rxbytes;
1933	stats->tx_packets = txpackets;
1934	stats->tx_bytes = txbytes;
1935
1936	/* The following are stored as 32 bit */
1937	stats->rx_errors = p->rx_errors;
1938	stats->rx_dropped = p->rx_dropped;
1939	stats->tx_dropped = p->tx_dropped;
1940}
1941
1942static const struct net_device_ops netcp_netdev_ops = {
1943	.ndo_open		= netcp_ndo_open,
1944	.ndo_stop		= netcp_ndo_stop,
1945	.ndo_start_xmit		= netcp_ndo_start_xmit,
1946	.ndo_set_rx_mode	= netcp_set_rx_mode,
1947	.ndo_do_ioctl           = netcp_ndo_ioctl,
1948	.ndo_get_stats64        = netcp_get_stats,
1949	.ndo_set_mac_address	= eth_mac_addr,
1950	.ndo_validate_addr	= eth_validate_addr,
1951	.ndo_vlan_rx_add_vid	= netcp_rx_add_vid,
1952	.ndo_vlan_rx_kill_vid	= netcp_rx_kill_vid,
1953	.ndo_tx_timeout		= netcp_ndo_tx_timeout,
1954	.ndo_select_queue	= dev_pick_tx_zero,
1955	.ndo_setup_tc		= netcp_setup_tc,
1956};
1957
1958static int netcp_create_interface(struct netcp_device *netcp_device,
1959				  struct device_node *node_interface)
1960{
1961	struct device *dev = netcp_device->device;
1962	struct device_node *node = dev->of_node;
1963	struct netcp_intf *netcp;
1964	struct net_device *ndev;
1965	resource_size_t size;
1966	struct resource res;
1967	void __iomem *efuse = NULL;
1968	u32 efuse_mac = 0;
1969	const void *mac_addr;
1970	u8 efuse_mac_addr[6];
1971	u32 temp[2];
1972	int ret = 0;
1973
1974	ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1975	if (!ndev) {
1976		dev_err(dev, "Error allocating netdev\n");
1977		return -ENOMEM;
1978	}
1979
1980	ndev->features |= NETIF_F_SG;
1981	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1982	ndev->hw_features = ndev->features;
1983	ndev->vlan_features |=  NETIF_F_SG;
1984
1985	/* MTU range: 68 - 9486 */
1986	ndev->min_mtu = ETH_MIN_MTU;
1987	ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1988
1989	netcp = netdev_priv(ndev);
1990	spin_lock_init(&netcp->lock);
1991	INIT_LIST_HEAD(&netcp->module_head);
1992	INIT_LIST_HEAD(&netcp->txhook_list_head);
1993	INIT_LIST_HEAD(&netcp->rxhook_list_head);
1994	INIT_LIST_HEAD(&netcp->addr_list);
1995	u64_stats_init(&netcp->stats.syncp_rx);
1996	u64_stats_init(&netcp->stats.syncp_tx);
1997	netcp->netcp_device = netcp_device;
1998	netcp->dev = netcp_device->device;
1999	netcp->ndev = ndev;
2000	netcp->ndev_dev  = &ndev->dev;
2001	netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
2002	netcp->tx_pause_threshold = MAX_SKB_FRAGS;
2003	netcp->tx_resume_threshold = netcp->tx_pause_threshold;
2004	netcp->node_interface = node_interface;
2005
2006	ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
2007	if (efuse_mac) {
2008		if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
2009			dev_err(dev, "could not find efuse-mac reg resource\n");
2010			ret = -ENODEV;
2011			goto quit;
2012		}
2013		size = resource_size(&res);
2014
2015		if (!devm_request_mem_region(dev, res.start, size,
2016					     dev_name(dev))) {
2017			dev_err(dev, "could not reserve resource\n");
2018			ret = -ENOMEM;
2019			goto quit;
2020		}
2021
2022		efuse = devm_ioremap(dev, res.start, size);
2023		if (!efuse) {
2024			dev_err(dev, "could not map resource\n");
2025			devm_release_mem_region(dev, res.start, size);
2026			ret = -ENOMEM;
2027			goto quit;
2028		}
2029
2030		emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
2031		if (is_valid_ether_addr(efuse_mac_addr))
2032			ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
2033		else
2034			eth_random_addr(ndev->dev_addr);
2035
2036		devm_iounmap(dev, efuse);
2037		devm_release_mem_region(dev, res.start, size);
2038	} else {
2039		mac_addr = of_get_mac_address(node_interface);
2040		if (!IS_ERR(mac_addr))
2041			ether_addr_copy(ndev->dev_addr, mac_addr);
2042		else
2043			eth_random_addr(ndev->dev_addr);
2044	}
2045
2046	ret = of_property_read_string(node_interface, "rx-channel",
2047				      &netcp->dma_chan_name);
2048	if (ret < 0) {
2049		dev_err(dev, "missing \"rx-channel\" parameter\n");
2050		ret = -ENODEV;
2051		goto quit;
2052	}
2053
2054	ret = of_property_read_u32(node_interface, "rx-queue",
2055				   &netcp->rx_queue_id);
2056	if (ret < 0) {
2057		dev_warn(dev, "missing \"rx-queue\" parameter\n");
2058		netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2059	}
2060
2061	ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2062					 netcp->rx_queue_depths,
2063					 KNAV_DMA_FDQ_PER_CHAN);
2064	if (ret < 0) {
2065		dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2066		netcp->rx_queue_depths[0] = 128;
2067	}
2068
2069	ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2070	if (ret < 0) {
2071		dev_err(dev, "missing \"rx-pool\" parameter\n");
2072		ret = -ENODEV;
2073		goto quit;
2074	}
2075	netcp->rx_pool_size = temp[0];
2076	netcp->rx_pool_region_id = temp[1];
2077
2078	ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2079	if (ret < 0) {
2080		dev_err(dev, "missing \"tx-pool\" parameter\n");
2081		ret = -ENODEV;
2082		goto quit;
2083	}
2084	netcp->tx_pool_size = temp[0];
2085	netcp->tx_pool_region_id = temp[1];
2086
2087	if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2088		dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2089			MAX_SKB_FRAGS);
2090		ret = -ENODEV;
2091		goto quit;
2092	}
2093
2094	ret = of_property_read_u32(node_interface, "tx-completion-queue",
2095				   &netcp->tx_compl_qid);
2096	if (ret < 0) {
2097		dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2098		netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2099	}
2100
2101	/* NAPI register */
2102	netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2103	netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2104
2105	/* Register the network device */
2106	ndev->dev_id		= 0;
2107	ndev->watchdog_timeo	= NETCP_TX_TIMEOUT;
2108	ndev->netdev_ops	= &netcp_netdev_ops;
2109	SET_NETDEV_DEV(ndev, dev);
2110
2111	list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2112	return 0;
2113
2114quit:
2115	free_netdev(ndev);
2116	return ret;
2117}
2118
2119static void netcp_delete_interface(struct netcp_device *netcp_device,
2120				   struct net_device *ndev)
2121{
2122	struct netcp_intf_modpriv *intf_modpriv, *tmp;
2123	struct netcp_intf *netcp = netdev_priv(ndev);
2124	struct netcp_module *module;
2125
2126	dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2127		ndev->name);
2128
2129	/* Notify each of the modules that the interface is going away */
2130	list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2131				 intf_list) {
2132		module = intf_modpriv->netcp_module;
2133		dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2134			module->name);
2135		if (module->release)
2136			module->release(intf_modpriv->module_priv);
2137		list_del(&intf_modpriv->intf_list);
2138	}
2139	WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2140	     ndev->name);
2141
2142	list_del(&netcp->interface_list);
2143
2144	of_node_put(netcp->node_interface);
2145	unregister_netdev(ndev);
2146	free_netdev(ndev);
2147}
2148
2149static int netcp_probe(struct platform_device *pdev)
2150{
2151	struct device_node *node = pdev->dev.of_node;
2152	struct netcp_intf *netcp_intf, *netcp_tmp;
2153	struct device_node *child, *interfaces;
2154	struct netcp_device *netcp_device;
2155	struct device *dev = &pdev->dev;
2156	struct netcp_module *module;
2157	int ret;
2158
2159	if (!knav_dma_device_ready() ||
2160	    !knav_qmss_device_ready())
2161		return -EPROBE_DEFER;
2162
2163	if (!node) {
2164		dev_err(dev, "could not find device info\n");
2165		return -ENODEV;
2166	}
2167
2168	/* Allocate a new NETCP device instance */
2169	netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2170	if (!netcp_device)
2171		return -ENOMEM;
2172
2173	pm_runtime_enable(&pdev->dev);
2174	ret = pm_runtime_get_sync(&pdev->dev);
2175	if (ret < 0) {
2176		dev_err(dev, "Failed to enable NETCP power-domain\n");
2177		pm_runtime_disable(&pdev->dev);
2178		return ret;
2179	}
2180
2181	/* Initialize the NETCP device instance */
2182	INIT_LIST_HEAD(&netcp_device->interface_head);
2183	INIT_LIST_HEAD(&netcp_device->modpriv_head);
2184	netcp_device->device = dev;
2185	platform_set_drvdata(pdev, netcp_device);
2186
2187	/* create interfaces */
2188	interfaces = of_get_child_by_name(node, "netcp-interfaces");
2189	if (!interfaces) {
2190		dev_err(dev, "could not find netcp-interfaces node\n");
2191		ret = -ENODEV;
2192		goto probe_quit;
2193	}
2194
2195	for_each_available_child_of_node(interfaces, child) {
2196		ret = netcp_create_interface(netcp_device, child);
2197		if (ret) {
2198			dev_err(dev, "could not create interface(%pOFn)\n",
2199				child);
2200			goto probe_quit_interface;
2201		}
2202	}
2203
2204	of_node_put(interfaces);
2205
2206	/* Add the device instance to the list */
2207	list_add_tail(&netcp_device->device_list, &netcp_devices);
2208
2209	/* Probe & attach any modules already registered */
2210	mutex_lock(&netcp_modules_lock);
2211	for_each_netcp_module(module) {
2212		ret = netcp_module_probe(netcp_device, module);
2213		if (ret < 0)
2214			dev_err(dev, "module(%s) probe failed\n", module->name);
2215	}
2216	mutex_unlock(&netcp_modules_lock);
2217	return 0;
2218
2219probe_quit_interface:
2220	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2221				 &netcp_device->interface_head,
2222				 interface_list) {
2223		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2224	}
2225
2226	of_node_put(interfaces);
2227
2228probe_quit:
2229	pm_runtime_put_sync(&pdev->dev);
2230	pm_runtime_disable(&pdev->dev);
2231	platform_set_drvdata(pdev, NULL);
2232	return ret;
2233}
2234
2235static int netcp_remove(struct platform_device *pdev)
2236{
2237	struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2238	struct netcp_intf *netcp_intf, *netcp_tmp;
2239	struct netcp_inst_modpriv *inst_modpriv, *tmp;
2240	struct netcp_module *module;
2241
2242	list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2243				 inst_list) {
2244		module = inst_modpriv->netcp_module;
2245		dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2246		module->remove(netcp_device, inst_modpriv->module_priv);
2247		list_del(&inst_modpriv->inst_list);
2248	}
2249
2250	/* now that all modules are removed, clean up the interfaces */
2251	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2252				 &netcp_device->interface_head,
2253				 interface_list) {
2254		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2255	}
2256
2257	WARN(!list_empty(&netcp_device->interface_head),
2258	     "%s interface list not empty!\n", pdev->name);
2259
2260	pm_runtime_put_sync(&pdev->dev);
2261	pm_runtime_disable(&pdev->dev);
2262	platform_set_drvdata(pdev, NULL);
2263	return 0;
2264}
2265
2266static const struct of_device_id of_match[] = {
2267	{ .compatible = "ti,netcp-1.0", },
2268	{},
2269};
2270MODULE_DEVICE_TABLE(of, of_match);
2271
2272static struct platform_driver netcp_driver = {
2273	.driver = {
2274		.name		= "netcp-1.0",
2275		.of_match_table	= of_match,
2276	},
2277	.probe = netcp_probe,
2278	.remove = netcp_remove,
2279};
2280module_platform_driver(netcp_driver);
2281
2282MODULE_LICENSE("GPL v2");
2283MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2284MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");