Loading...
1/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2/*
3 Written 1999-2000 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
19 [link no longer provides useful info -jgarzik]
20 Archives of the mailing list are still available at
21 http://www.beowulf.org/pipermail/netdrivers/
22
23*/
24
25#define DRV_NAME "sundance"
26#define DRV_VERSION "1.2"
27#define DRV_RELDATE "11-Sep-2006"
28
29
30/* The user-configurable values.
31 These may be modified when a driver module is loaded.*/
32static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
33/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
34 Typical is a 64 element hash table based on the Ethernet CRC. */
35static const int multicast_filter_limit = 32;
36
37/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
38 Setting to > 1518 effectively disables this feature.
39 This chip can receive into offset buffers, so the Alpha does not
40 need a copy-align. */
41static int rx_copybreak;
42static int flowctrl=1;
43
44/* media[] specifies the media type the NIC operates at.
45 autosense Autosensing active media.
46 10mbps_hd 10Mbps half duplex.
47 10mbps_fd 10Mbps full duplex.
48 100mbps_hd 100Mbps half duplex.
49 100mbps_fd 100Mbps full duplex.
50 0 Autosensing active media.
51 1 10Mbps half duplex.
52 2 10Mbps full duplex.
53 3 100Mbps half duplex.
54 4 100Mbps full duplex.
55*/
56#define MAX_UNITS 8
57static char *media[MAX_UNITS];
58
59
60/* Operational parameters that are set at compile time. */
61
62/* Keep the ring sizes a power of two for compile efficiency.
63 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
64 Making the Tx ring too large decreases the effectiveness of channel
65 bonding and packet priority, and more than 128 requires modifying the
66 Tx error recovery.
67 Large receive rings merely waste memory. */
68#define TX_RING_SIZE 32
69#define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
70#define RX_RING_SIZE 64
71#define RX_BUDGET 32
72#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
73#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
74
75/* Operational parameters that usually are not changed. */
76/* Time in jiffies before concluding the transmitter is hung. */
77#define TX_TIMEOUT (4*HZ)
78#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
79
80/* Include files, designed to support most kernel versions 2.0.0 and later. */
81#include <linux/module.h>
82#include <linux/kernel.h>
83#include <linux/string.h>
84#include <linux/timer.h>
85#include <linux/errno.h>
86#include <linux/ioport.h>
87#include <linux/interrupt.h>
88#include <linux/pci.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/skbuff.h>
92#include <linux/init.h>
93#include <linux/bitops.h>
94#include <linux/uaccess.h>
95#include <asm/processor.h> /* Processor type for cache alignment. */
96#include <asm/io.h>
97#include <linux/delay.h>
98#include <linux/spinlock.h>
99#include <linux/dma-mapping.h>
100#include <linux/crc32.h>
101#include <linux/ethtool.h>
102#include <linux/mii.h>
103
104/* These identify the driver base version and may not be removed. */
105static const char version[] =
106 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE
107 " Written by Donald Becker\n";
108
109MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
110MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
111MODULE_LICENSE("GPL");
112
113module_param(debug, int, 0);
114module_param(rx_copybreak, int, 0);
115module_param_array(media, charp, NULL, 0);
116module_param(flowctrl, int, 0);
117MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
118MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
119MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
120
121/*
122 Theory of Operation
123
124I. Board Compatibility
125
126This driver is designed for the Sundance Technologies "Alta" ST201 chip.
127
128II. Board-specific settings
129
130III. Driver operation
131
132IIIa. Ring buffers
133
134This driver uses two statically allocated fixed-size descriptor lists
135formed into rings by a branch from the final descriptor to the beginning of
136the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
137Some chips explicitly use only 2^N sized rings, while others use a
138'next descriptor' pointer that the driver forms into rings.
139
140IIIb/c. Transmit/Receive Structure
141
142This driver uses a zero-copy receive and transmit scheme.
143The driver allocates full frame size skbuffs for the Rx ring buffers at
144open() time and passes the skb->data field to the chip as receive data
145buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
146a fresh skbuff is allocated and the frame is copied to the new skbuff.
147When the incoming frame is larger, the skbuff is passed directly up the
148protocol stack. Buffers consumed this way are replaced by newly allocated
149skbuffs in a later phase of receives.
150
151The RX_COPYBREAK value is chosen to trade-off the memory wasted by
152using a full-sized skbuff for small frames vs. the copying costs of larger
153frames. New boards are typically used in generously configured machines
154and the underfilled buffers have negligible impact compared to the benefit of
155a single allocation size, so the default value of zero results in never
156copying packets. When copying is done, the cost is usually mitigated by using
157a combined copy/checksum routine. Copying also preloads the cache, which is
158most useful with small frames.
159
160A subtle aspect of the operation is that the IP header at offset 14 in an
161ethernet frame isn't longword aligned for further processing.
162Unaligned buffers are permitted by the Sundance hardware, so
163frames are received into the skbuff at an offset of "+2", 16-byte aligning
164the IP header.
165
166IIId. Synchronization
167
168The driver runs as two independent, single-threaded flows of control. One
169is the send-packet routine, which enforces single-threaded use by the
170dev->tbusy flag. The other thread is the interrupt handler, which is single
171threaded by the hardware and interrupt handling software.
172
173The send packet thread has partial control over the Tx ring and 'dev->tbusy'
174flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
175queue slot is empty, it clears the tbusy flag when finished otherwise it sets
176the 'lp->tx_full' flag.
177
178The interrupt handler has exclusive control over the Rx ring and records stats
179from the Tx ring. After reaping the stats, it marks the Tx queue entry as
180empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
181clears both the tx_full and tbusy flags.
182
183IV. Notes
184
185IVb. References
186
187The Sundance ST201 datasheet, preliminary version.
188The Kendin KS8723 datasheet, preliminary version.
189The ICplus IP100 datasheet, preliminary version.
190http://www.scyld.com/expert/100mbps.html
191http://www.scyld.com/expert/NWay.html
192
193IVc. Errata
194
195*/
196
197/* Work-around for Kendin chip bugs. */
198#ifndef CONFIG_SUNDANCE_MMIO
199#define USE_IO_OPS 1
200#endif
201
202static const struct pci_device_id sundance_pci_tbl[] = {
203 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
204 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
205 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
206 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
207 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
208 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
209 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
210 { }
211};
212MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
213
214enum {
215 netdev_io_size = 128
216};
217
218struct pci_id_info {
219 const char *name;
220};
221static const struct pci_id_info pci_id_tbl[] = {
222 {"D-Link DFE-550TX FAST Ethernet Adapter"},
223 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
224 {"D-Link DFE-580TX 4 port Server Adapter"},
225 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
226 {"D-Link DL10050-based FAST Ethernet Adapter"},
227 {"Sundance Technology Alta"},
228 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
229 { } /* terminate list. */
230};
231
232/* This driver was written to use PCI memory space, however x86-oriented
233 hardware often uses I/O space accesses. */
234
235/* Offsets to the device registers.
236 Unlike software-only systems, device drivers interact with complex hardware.
237 It's not useful to define symbolic names for every register bit in the
238 device. The name can only partially document the semantics and make
239 the driver longer and more difficult to read.
240 In general, only the important configuration values or bits changed
241 multiple times should be defined symbolically.
242*/
243enum alta_offsets {
244 DMACtrl = 0x00,
245 TxListPtr = 0x04,
246 TxDMABurstThresh = 0x08,
247 TxDMAUrgentThresh = 0x09,
248 TxDMAPollPeriod = 0x0a,
249 RxDMAStatus = 0x0c,
250 RxListPtr = 0x10,
251 DebugCtrl0 = 0x1a,
252 DebugCtrl1 = 0x1c,
253 RxDMABurstThresh = 0x14,
254 RxDMAUrgentThresh = 0x15,
255 RxDMAPollPeriod = 0x16,
256 LEDCtrl = 0x1a,
257 ASICCtrl = 0x30,
258 EEData = 0x34,
259 EECtrl = 0x36,
260 FlashAddr = 0x40,
261 FlashData = 0x44,
262 WakeEvent = 0x45,
263 TxStatus = 0x46,
264 TxFrameId = 0x47,
265 DownCounter = 0x18,
266 IntrClear = 0x4a,
267 IntrEnable = 0x4c,
268 IntrStatus = 0x4e,
269 MACCtrl0 = 0x50,
270 MACCtrl1 = 0x52,
271 StationAddr = 0x54,
272 MaxFrameSize = 0x5A,
273 RxMode = 0x5c,
274 MIICtrl = 0x5e,
275 MulticastFilter0 = 0x60,
276 MulticastFilter1 = 0x64,
277 RxOctetsLow = 0x68,
278 RxOctetsHigh = 0x6a,
279 TxOctetsLow = 0x6c,
280 TxOctetsHigh = 0x6e,
281 TxFramesOK = 0x70,
282 RxFramesOK = 0x72,
283 StatsCarrierError = 0x74,
284 StatsLateColl = 0x75,
285 StatsMultiColl = 0x76,
286 StatsOneColl = 0x77,
287 StatsTxDefer = 0x78,
288 RxMissed = 0x79,
289 StatsTxXSDefer = 0x7a,
290 StatsTxAbort = 0x7b,
291 StatsBcastTx = 0x7c,
292 StatsBcastRx = 0x7d,
293 StatsMcastTx = 0x7e,
294 StatsMcastRx = 0x7f,
295 /* Aliased and bogus values! */
296 RxStatus = 0x0c,
297};
298
299#define ASIC_HI_WORD(x) ((x) + 2)
300
301enum ASICCtrl_HiWord_bit {
302 GlobalReset = 0x0001,
303 RxReset = 0x0002,
304 TxReset = 0x0004,
305 DMAReset = 0x0008,
306 FIFOReset = 0x0010,
307 NetworkReset = 0x0020,
308 HostReset = 0x0040,
309 ResetBusy = 0x0400,
310};
311
312/* Bits in the interrupt status/mask registers. */
313enum intr_status_bits {
314 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
315 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
316 IntrDrvRqst=0x0040,
317 StatsMax=0x0080, LinkChange=0x0100,
318 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
319};
320
321/* Bits in the RxMode register. */
322enum rx_mode_bits {
323 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
324 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
325};
326/* Bits in MACCtrl. */
327enum mac_ctrl0_bits {
328 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
329 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
330};
331enum mac_ctrl1_bits {
332 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
333 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
334 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
335};
336
337/* Bits in WakeEvent register. */
338enum wake_event_bits {
339 WakePktEnable = 0x01,
340 MagicPktEnable = 0x02,
341 LinkEventEnable = 0x04,
342 WolEnable = 0x80,
343};
344
345/* The Rx and Tx buffer descriptors. */
346/* Note that using only 32 bit fields simplifies conversion to big-endian
347 architectures. */
348struct netdev_desc {
349 __le32 next_desc;
350 __le32 status;
351 struct desc_frag { __le32 addr, length; } frag[1];
352};
353
354/* Bits in netdev_desc.status */
355enum desc_status_bits {
356 DescOwn=0x8000,
357 DescEndPacket=0x4000,
358 DescEndRing=0x2000,
359 LastFrag=0x80000000,
360 DescIntrOnTx=0x8000,
361 DescIntrOnDMADone=0x80000000,
362 DisableAlign = 0x00000001,
363};
364
365#define PRIV_ALIGN 15 /* Required alignment mask */
366/* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
367 within the structure. */
368#define MII_CNT 4
369struct netdev_private {
370 /* Descriptor rings first for alignment. */
371 struct netdev_desc *rx_ring;
372 struct netdev_desc *tx_ring;
373 struct sk_buff* rx_skbuff[RX_RING_SIZE];
374 struct sk_buff* tx_skbuff[TX_RING_SIZE];
375 dma_addr_t tx_ring_dma;
376 dma_addr_t rx_ring_dma;
377 struct timer_list timer; /* Media monitoring timer. */
378 /* ethtool extra stats */
379 struct {
380 u64 tx_multiple_collisions;
381 u64 tx_single_collisions;
382 u64 tx_late_collisions;
383 u64 tx_deferred;
384 u64 tx_deferred_excessive;
385 u64 tx_aborted;
386 u64 tx_bcasts;
387 u64 rx_bcasts;
388 u64 tx_mcasts;
389 u64 rx_mcasts;
390 } xstats;
391 /* Frequently used values: keep some adjacent for cache effect. */
392 spinlock_t lock;
393 int msg_enable;
394 int chip_id;
395 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
396 unsigned int rx_buf_sz; /* Based on MTU+slack. */
397 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
398 unsigned int cur_tx, dirty_tx;
399 /* These values are keep track of the transceiver/media in use. */
400 unsigned int flowctrl:1;
401 unsigned int default_port:4; /* Last dev->if_port value. */
402 unsigned int an_enable:1;
403 unsigned int speed;
404 unsigned int wol_enabled:1; /* Wake on LAN enabled */
405 struct tasklet_struct rx_tasklet;
406 struct tasklet_struct tx_tasklet;
407 int budget;
408 int cur_task;
409 /* Multicast and receive mode. */
410 spinlock_t mcastlock; /* SMP lock multicast updates. */
411 u16 mcast_filter[4];
412 /* MII transceiver section. */
413 struct mii_if_info mii_if;
414 int mii_preamble_required;
415 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
416 struct pci_dev *pci_dev;
417 void __iomem *base;
418 spinlock_t statlock;
419};
420
421/* The station address location in the EEPROM. */
422#define EEPROM_SA_OFFSET 0x10
423#define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
424 IntrDrvRqst | IntrTxDone | StatsMax | \
425 LinkChange)
426
427static int change_mtu(struct net_device *dev, int new_mtu);
428static int eeprom_read(void __iomem *ioaddr, int location);
429static int mdio_read(struct net_device *dev, int phy_id, int location);
430static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
431static int mdio_wait_link(struct net_device *dev, int wait);
432static int netdev_open(struct net_device *dev);
433static void check_duplex(struct net_device *dev);
434static void netdev_timer(struct timer_list *t);
435static void tx_timeout(struct net_device *dev);
436static void init_ring(struct net_device *dev);
437static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
438static int reset_tx (struct net_device *dev);
439static irqreturn_t intr_handler(int irq, void *dev_instance);
440static void rx_poll(unsigned long data);
441static void tx_poll(unsigned long data);
442static void refill_rx (struct net_device *dev);
443static void netdev_error(struct net_device *dev, int intr_status);
444static void netdev_error(struct net_device *dev, int intr_status);
445static void set_rx_mode(struct net_device *dev);
446static int __set_mac_addr(struct net_device *dev);
447static int sundance_set_mac_addr(struct net_device *dev, void *data);
448static struct net_device_stats *get_stats(struct net_device *dev);
449static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
450static int netdev_close(struct net_device *dev);
451static const struct ethtool_ops ethtool_ops;
452
453static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
454{
455 struct netdev_private *np = netdev_priv(dev);
456 void __iomem *ioaddr = np->base + ASICCtrl;
457 int countdown;
458
459 /* ST201 documentation states ASICCtrl is a 32bit register */
460 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
461 /* ST201 documentation states reset can take up to 1 ms */
462 countdown = 10 + 1;
463 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
464 if (--countdown == 0) {
465 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
466 break;
467 }
468 udelay(100);
469 }
470}
471
472#ifdef CONFIG_NET_POLL_CONTROLLER
473static void sundance_poll_controller(struct net_device *dev)
474{
475 struct netdev_private *np = netdev_priv(dev);
476
477 disable_irq(np->pci_dev->irq);
478 intr_handler(np->pci_dev->irq, dev);
479 enable_irq(np->pci_dev->irq);
480}
481#endif
482
483static const struct net_device_ops netdev_ops = {
484 .ndo_open = netdev_open,
485 .ndo_stop = netdev_close,
486 .ndo_start_xmit = start_tx,
487 .ndo_get_stats = get_stats,
488 .ndo_set_rx_mode = set_rx_mode,
489 .ndo_do_ioctl = netdev_ioctl,
490 .ndo_tx_timeout = tx_timeout,
491 .ndo_change_mtu = change_mtu,
492 .ndo_set_mac_address = sundance_set_mac_addr,
493 .ndo_validate_addr = eth_validate_addr,
494#ifdef CONFIG_NET_POLL_CONTROLLER
495 .ndo_poll_controller = sundance_poll_controller,
496#endif
497};
498
499static int sundance_probe1(struct pci_dev *pdev,
500 const struct pci_device_id *ent)
501{
502 struct net_device *dev;
503 struct netdev_private *np;
504 static int card_idx;
505 int chip_idx = ent->driver_data;
506 int irq;
507 int i;
508 void __iomem *ioaddr;
509 u16 mii_ctl;
510 void *ring_space;
511 dma_addr_t ring_dma;
512#ifdef USE_IO_OPS
513 int bar = 0;
514#else
515 int bar = 1;
516#endif
517 int phy, phy_end, phy_idx = 0;
518
519/* when built into the kernel, we only print version if device is found */
520#ifndef MODULE
521 static int printed_version;
522 if (!printed_version++)
523 printk(version);
524#endif
525
526 if (pci_enable_device(pdev))
527 return -EIO;
528 pci_set_master(pdev);
529
530 irq = pdev->irq;
531
532 dev = alloc_etherdev(sizeof(*np));
533 if (!dev)
534 return -ENOMEM;
535 SET_NETDEV_DEV(dev, &pdev->dev);
536
537 if (pci_request_regions(pdev, DRV_NAME))
538 goto err_out_netdev;
539
540 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
541 if (!ioaddr)
542 goto err_out_res;
543
544 for (i = 0; i < 3; i++)
545 ((__le16 *)dev->dev_addr)[i] =
546 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
547
548 np = netdev_priv(dev);
549 np->base = ioaddr;
550 np->pci_dev = pdev;
551 np->chip_id = chip_idx;
552 np->msg_enable = (1 << debug) - 1;
553 spin_lock_init(&np->lock);
554 spin_lock_init(&np->statlock);
555 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
556 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
557
558 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
559 &ring_dma, GFP_KERNEL);
560 if (!ring_space)
561 goto err_out_cleardev;
562 np->tx_ring = (struct netdev_desc *)ring_space;
563 np->tx_ring_dma = ring_dma;
564
565 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
566 &ring_dma, GFP_KERNEL);
567 if (!ring_space)
568 goto err_out_unmap_tx;
569 np->rx_ring = (struct netdev_desc *)ring_space;
570 np->rx_ring_dma = ring_dma;
571
572 np->mii_if.dev = dev;
573 np->mii_if.mdio_read = mdio_read;
574 np->mii_if.mdio_write = mdio_write;
575 np->mii_if.phy_id_mask = 0x1f;
576 np->mii_if.reg_num_mask = 0x1f;
577
578 /* The chip-specific entries in the device structure. */
579 dev->netdev_ops = &netdev_ops;
580 dev->ethtool_ops = ðtool_ops;
581 dev->watchdog_timeo = TX_TIMEOUT;
582
583 /* MTU range: 68 - 8191 */
584 dev->min_mtu = ETH_MIN_MTU;
585 dev->max_mtu = 8191;
586
587 pci_set_drvdata(pdev, dev);
588
589 i = register_netdev(dev);
590 if (i)
591 goto err_out_unmap_rx;
592
593 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
594 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
595 dev->dev_addr, irq);
596
597 np->phys[0] = 1; /* Default setting */
598 np->mii_preamble_required++;
599
600 /*
601 * It seems some phys doesn't deal well with address 0 being accessed
602 * first
603 */
604 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
605 phy = 0;
606 phy_end = 31;
607 } else {
608 phy = 1;
609 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
610 }
611 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
612 int phyx = phy & 0x1f;
613 int mii_status = mdio_read(dev, phyx, MII_BMSR);
614 if (mii_status != 0xffff && mii_status != 0x0000) {
615 np->phys[phy_idx++] = phyx;
616 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
617 if ((mii_status & 0x0040) == 0)
618 np->mii_preamble_required++;
619 printk(KERN_INFO "%s: MII PHY found at address %d, status "
620 "0x%4.4x advertising %4.4x.\n",
621 dev->name, phyx, mii_status, np->mii_if.advertising);
622 }
623 }
624 np->mii_preamble_required--;
625
626 if (phy_idx == 0) {
627 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
628 dev->name, ioread32(ioaddr + ASICCtrl));
629 goto err_out_unregister;
630 }
631
632 np->mii_if.phy_id = np->phys[0];
633
634 /* Parse override configuration */
635 np->an_enable = 1;
636 if (card_idx < MAX_UNITS) {
637 if (media[card_idx] != NULL) {
638 np->an_enable = 0;
639 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
640 strcmp (media[card_idx], "4") == 0) {
641 np->speed = 100;
642 np->mii_if.full_duplex = 1;
643 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
644 strcmp (media[card_idx], "3") == 0) {
645 np->speed = 100;
646 np->mii_if.full_duplex = 0;
647 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
648 strcmp (media[card_idx], "2") == 0) {
649 np->speed = 10;
650 np->mii_if.full_duplex = 1;
651 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
652 strcmp (media[card_idx], "1") == 0) {
653 np->speed = 10;
654 np->mii_if.full_duplex = 0;
655 } else {
656 np->an_enable = 1;
657 }
658 }
659 if (flowctrl == 1)
660 np->flowctrl = 1;
661 }
662
663 /* Fibre PHY? */
664 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
665 /* Default 100Mbps Full */
666 if (np->an_enable) {
667 np->speed = 100;
668 np->mii_if.full_duplex = 1;
669 np->an_enable = 0;
670 }
671 }
672 /* Reset PHY */
673 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
674 mdelay (300);
675 /* If flow control enabled, we need to advertise it.*/
676 if (np->flowctrl)
677 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
678 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
679 /* Force media type */
680 if (!np->an_enable) {
681 mii_ctl = 0;
682 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
683 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
684 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
685 printk (KERN_INFO "Override speed=%d, %s duplex\n",
686 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
687
688 }
689
690 /* Perhaps move the reset here? */
691 /* Reset the chip to erase previous misconfiguration. */
692 if (netif_msg_hw(np))
693 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
694 sundance_reset(dev, 0x00ff << 16);
695 if (netif_msg_hw(np))
696 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
697
698 card_idx++;
699 return 0;
700
701err_out_unregister:
702 unregister_netdev(dev);
703err_out_unmap_rx:
704 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
705 np->rx_ring, np->rx_ring_dma);
706err_out_unmap_tx:
707 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
708 np->tx_ring, np->tx_ring_dma);
709err_out_cleardev:
710 pci_iounmap(pdev, ioaddr);
711err_out_res:
712 pci_release_regions(pdev);
713err_out_netdev:
714 free_netdev (dev);
715 return -ENODEV;
716}
717
718static int change_mtu(struct net_device *dev, int new_mtu)
719{
720 if (netif_running(dev))
721 return -EBUSY;
722 dev->mtu = new_mtu;
723 return 0;
724}
725
726#define eeprom_delay(ee_addr) ioread32(ee_addr)
727/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
728static int eeprom_read(void __iomem *ioaddr, int location)
729{
730 int boguscnt = 10000; /* Typical 1900 ticks. */
731 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
732 do {
733 eeprom_delay(ioaddr + EECtrl);
734 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
735 return ioread16(ioaddr + EEData);
736 }
737 } while (--boguscnt > 0);
738 return 0;
739}
740
741/* MII transceiver control section.
742 Read and write the MII registers using software-generated serial
743 MDIO protocol. See the MII specifications or DP83840A data sheet
744 for details.
745
746 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
747 met by back-to-back 33Mhz PCI cycles. */
748#define mdio_delay() ioread8(mdio_addr)
749
750enum mii_reg_bits {
751 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
752};
753#define MDIO_EnbIn (0)
754#define MDIO_WRITE0 (MDIO_EnbOutput)
755#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
756
757/* Generate the preamble required for initial synchronization and
758 a few older transceivers. */
759static void mdio_sync(void __iomem *mdio_addr)
760{
761 int bits = 32;
762
763 /* Establish sync by sending at least 32 logic ones. */
764 while (--bits >= 0) {
765 iowrite8(MDIO_WRITE1, mdio_addr);
766 mdio_delay();
767 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
768 mdio_delay();
769 }
770}
771
772static int mdio_read(struct net_device *dev, int phy_id, int location)
773{
774 struct netdev_private *np = netdev_priv(dev);
775 void __iomem *mdio_addr = np->base + MIICtrl;
776 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
777 int i, retval = 0;
778
779 if (np->mii_preamble_required)
780 mdio_sync(mdio_addr);
781
782 /* Shift the read command bits out. */
783 for (i = 15; i >= 0; i--) {
784 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
785
786 iowrite8(dataval, mdio_addr);
787 mdio_delay();
788 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
789 mdio_delay();
790 }
791 /* Read the two transition, 16 data, and wire-idle bits. */
792 for (i = 19; i > 0; i--) {
793 iowrite8(MDIO_EnbIn, mdio_addr);
794 mdio_delay();
795 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
796 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
797 mdio_delay();
798 }
799 return (retval>>1) & 0xffff;
800}
801
802static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
803{
804 struct netdev_private *np = netdev_priv(dev);
805 void __iomem *mdio_addr = np->base + MIICtrl;
806 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
807 int i;
808
809 if (np->mii_preamble_required)
810 mdio_sync(mdio_addr);
811
812 /* Shift the command bits out. */
813 for (i = 31; i >= 0; i--) {
814 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
815
816 iowrite8(dataval, mdio_addr);
817 mdio_delay();
818 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
819 mdio_delay();
820 }
821 /* Clear out extra bits. */
822 for (i = 2; i > 0; i--) {
823 iowrite8(MDIO_EnbIn, mdio_addr);
824 mdio_delay();
825 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
826 mdio_delay();
827 }
828}
829
830static int mdio_wait_link(struct net_device *dev, int wait)
831{
832 int bmsr;
833 int phy_id;
834 struct netdev_private *np;
835
836 np = netdev_priv(dev);
837 phy_id = np->phys[0];
838
839 do {
840 bmsr = mdio_read(dev, phy_id, MII_BMSR);
841 if (bmsr & 0x0004)
842 return 0;
843 mdelay(1);
844 } while (--wait > 0);
845 return -1;
846}
847
848static int netdev_open(struct net_device *dev)
849{
850 struct netdev_private *np = netdev_priv(dev);
851 void __iomem *ioaddr = np->base;
852 const int irq = np->pci_dev->irq;
853 unsigned long flags;
854 int i;
855
856 sundance_reset(dev, 0x00ff << 16);
857
858 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
859 if (i)
860 return i;
861
862 if (netif_msg_ifup(np))
863 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq);
864
865 init_ring(dev);
866
867 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
868 /* The Tx list pointer is written as packets are queued. */
869
870 /* Initialize other registers. */
871 __set_mac_addr(dev);
872#if IS_ENABLED(CONFIG_VLAN_8021Q)
873 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
874#else
875 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
876#endif
877 if (dev->mtu > 2047)
878 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
879
880 /* Configure the PCI bus bursts and FIFO thresholds. */
881
882 if (dev->if_port == 0)
883 dev->if_port = np->default_port;
884
885 spin_lock_init(&np->mcastlock);
886
887 set_rx_mode(dev);
888 iowrite16(0, ioaddr + IntrEnable);
889 iowrite16(0, ioaddr + DownCounter);
890 /* Set the chip to poll every N*320nsec. */
891 iowrite8(100, ioaddr + RxDMAPollPeriod);
892 iowrite8(127, ioaddr + TxDMAPollPeriod);
893 /* Fix DFE-580TX packet drop issue */
894 if (np->pci_dev->revision >= 0x14)
895 iowrite8(0x01, ioaddr + DebugCtrl1);
896 netif_start_queue(dev);
897
898 spin_lock_irqsave(&np->lock, flags);
899 reset_tx(dev);
900 spin_unlock_irqrestore(&np->lock, flags);
901
902 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
903
904 /* Disable Wol */
905 iowrite8(ioread8(ioaddr + WakeEvent) | 0x00, ioaddr + WakeEvent);
906 np->wol_enabled = 0;
907
908 if (netif_msg_ifup(np))
909 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
910 "MAC Control %x, %4.4x %4.4x.\n",
911 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
912 ioread32(ioaddr + MACCtrl0),
913 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
914
915 /* Set the timer to check for link beat. */
916 timer_setup(&np->timer, netdev_timer, 0);
917 np->timer.expires = jiffies + 3*HZ;
918 add_timer(&np->timer);
919
920 /* Enable interrupts by setting the interrupt mask. */
921 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
922
923 return 0;
924}
925
926static void check_duplex(struct net_device *dev)
927{
928 struct netdev_private *np = netdev_priv(dev);
929 void __iomem *ioaddr = np->base;
930 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
931 int negotiated = mii_lpa & np->mii_if.advertising;
932 int duplex;
933
934 /* Force media */
935 if (!np->an_enable || mii_lpa == 0xffff) {
936 if (np->mii_if.full_duplex)
937 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
938 ioaddr + MACCtrl0);
939 return;
940 }
941
942 /* Autonegotiation */
943 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
944 if (np->mii_if.full_duplex != duplex) {
945 np->mii_if.full_duplex = duplex;
946 if (netif_msg_link(np))
947 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
948 "negotiated capability %4.4x.\n", dev->name,
949 duplex ? "full" : "half", np->phys[0], negotiated);
950 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
951 }
952}
953
954static void netdev_timer(struct timer_list *t)
955{
956 struct netdev_private *np = from_timer(np, t, timer);
957 struct net_device *dev = np->mii_if.dev;
958 void __iomem *ioaddr = np->base;
959 int next_tick = 10*HZ;
960
961 if (netif_msg_timer(np)) {
962 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
963 "Tx %x Rx %x.\n",
964 dev->name, ioread16(ioaddr + IntrEnable),
965 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
966 }
967 check_duplex(dev);
968 np->timer.expires = jiffies + next_tick;
969 add_timer(&np->timer);
970}
971
972static void tx_timeout(struct net_device *dev)
973{
974 struct netdev_private *np = netdev_priv(dev);
975 void __iomem *ioaddr = np->base;
976 unsigned long flag;
977
978 netif_stop_queue(dev);
979 tasklet_disable(&np->tx_tasklet);
980 iowrite16(0, ioaddr + IntrEnable);
981 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
982 "TxFrameId %2.2x,"
983 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
984 ioread8(ioaddr + TxFrameId));
985
986 {
987 int i;
988 for (i=0; i<TX_RING_SIZE; i++) {
989 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
990 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
991 le32_to_cpu(np->tx_ring[i].next_desc),
992 le32_to_cpu(np->tx_ring[i].status),
993 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
994 le32_to_cpu(np->tx_ring[i].frag[0].addr),
995 le32_to_cpu(np->tx_ring[i].frag[0].length));
996 }
997 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
998 ioread32(np->base + TxListPtr),
999 netif_queue_stopped(dev));
1000 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1001 np->cur_tx, np->cur_tx % TX_RING_SIZE,
1002 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
1003 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
1004 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
1005 }
1006 spin_lock_irqsave(&np->lock, flag);
1007
1008 /* Stop and restart the chip's Tx processes . */
1009 reset_tx(dev);
1010 spin_unlock_irqrestore(&np->lock, flag);
1011
1012 dev->if_port = 0;
1013
1014 netif_trans_update(dev); /* prevent tx timeout */
1015 dev->stats.tx_errors++;
1016 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1017 netif_wake_queue(dev);
1018 }
1019 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1020 tasklet_enable(&np->tx_tasklet);
1021}
1022
1023
1024/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1025static void init_ring(struct net_device *dev)
1026{
1027 struct netdev_private *np = netdev_priv(dev);
1028 int i;
1029
1030 np->cur_rx = np->cur_tx = 0;
1031 np->dirty_rx = np->dirty_tx = 0;
1032 np->cur_task = 0;
1033
1034 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1035
1036 /* Initialize all Rx descriptors. */
1037 for (i = 0; i < RX_RING_SIZE; i++) {
1038 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1039 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1040 np->rx_ring[i].status = 0;
1041 np->rx_ring[i].frag[0].length = 0;
1042 np->rx_skbuff[i] = NULL;
1043 }
1044
1045 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1046 for (i = 0; i < RX_RING_SIZE; i++) {
1047 struct sk_buff *skb =
1048 netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1049 np->rx_skbuff[i] = skb;
1050 if (skb == NULL)
1051 break;
1052 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1053 np->rx_ring[i].frag[0].addr = cpu_to_le32(
1054 dma_map_single(&np->pci_dev->dev, skb->data,
1055 np->rx_buf_sz, DMA_FROM_DEVICE));
1056 if (dma_mapping_error(&np->pci_dev->dev,
1057 np->rx_ring[i].frag[0].addr)) {
1058 dev_kfree_skb(skb);
1059 np->rx_skbuff[i] = NULL;
1060 break;
1061 }
1062 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1063 }
1064 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1065
1066 for (i = 0; i < TX_RING_SIZE; i++) {
1067 np->tx_skbuff[i] = NULL;
1068 np->tx_ring[i].status = 0;
1069 }
1070}
1071
1072static void tx_poll (unsigned long data)
1073{
1074 struct net_device *dev = (struct net_device *)data;
1075 struct netdev_private *np = netdev_priv(dev);
1076 unsigned head = np->cur_task % TX_RING_SIZE;
1077 struct netdev_desc *txdesc =
1078 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1079
1080 /* Chain the next pointer */
1081 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1082 int entry = np->cur_task % TX_RING_SIZE;
1083 txdesc = &np->tx_ring[entry];
1084 if (np->last_tx) {
1085 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1086 entry*sizeof(struct netdev_desc));
1087 }
1088 np->last_tx = txdesc;
1089 }
1090 /* Indicate the latest descriptor of tx ring */
1091 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1092
1093 if (ioread32 (np->base + TxListPtr) == 0)
1094 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1095 np->base + TxListPtr);
1096}
1097
1098static netdev_tx_t
1099start_tx (struct sk_buff *skb, struct net_device *dev)
1100{
1101 struct netdev_private *np = netdev_priv(dev);
1102 struct netdev_desc *txdesc;
1103 unsigned entry;
1104
1105 /* Calculate the next Tx descriptor entry. */
1106 entry = np->cur_tx % TX_RING_SIZE;
1107 np->tx_skbuff[entry] = skb;
1108 txdesc = &np->tx_ring[entry];
1109
1110 txdesc->next_desc = 0;
1111 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1112 txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
1113 skb->data, skb->len, DMA_TO_DEVICE));
1114 if (dma_mapping_error(&np->pci_dev->dev,
1115 txdesc->frag[0].addr))
1116 goto drop_frame;
1117 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1118
1119 /* Increment cur_tx before tasklet_schedule() */
1120 np->cur_tx++;
1121 mb();
1122 /* Schedule a tx_poll() task */
1123 tasklet_schedule(&np->tx_tasklet);
1124
1125 /* On some architectures: explicitly flush cache lines here. */
1126 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1127 !netif_queue_stopped(dev)) {
1128 /* do nothing */
1129 } else {
1130 netif_stop_queue (dev);
1131 }
1132 if (netif_msg_tx_queued(np)) {
1133 printk (KERN_DEBUG
1134 "%s: Transmit frame #%d queued in slot %d.\n",
1135 dev->name, np->cur_tx, entry);
1136 }
1137 return NETDEV_TX_OK;
1138
1139drop_frame:
1140 dev_kfree_skb_any(skb);
1141 np->tx_skbuff[entry] = NULL;
1142 dev->stats.tx_dropped++;
1143 return NETDEV_TX_OK;
1144}
1145
1146/* Reset hardware tx and free all of tx buffers */
1147static int
1148reset_tx (struct net_device *dev)
1149{
1150 struct netdev_private *np = netdev_priv(dev);
1151 void __iomem *ioaddr = np->base;
1152 struct sk_buff *skb;
1153 int i;
1154
1155 /* Reset tx logic, TxListPtr will be cleaned */
1156 iowrite16 (TxDisable, ioaddr + MACCtrl1);
1157 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1158
1159 /* free all tx skbuff */
1160 for (i = 0; i < TX_RING_SIZE; i++) {
1161 np->tx_ring[i].next_desc = 0;
1162
1163 skb = np->tx_skbuff[i];
1164 if (skb) {
1165 dma_unmap_single(&np->pci_dev->dev,
1166 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1167 skb->len, DMA_TO_DEVICE);
1168 dev_kfree_skb_any(skb);
1169 np->tx_skbuff[i] = NULL;
1170 dev->stats.tx_dropped++;
1171 }
1172 }
1173 np->cur_tx = np->dirty_tx = 0;
1174 np->cur_task = 0;
1175
1176 np->last_tx = NULL;
1177 iowrite8(127, ioaddr + TxDMAPollPeriod);
1178
1179 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1180 return 0;
1181}
1182
1183/* The interrupt handler cleans up after the Tx thread,
1184 and schedule a Rx thread work */
1185static irqreturn_t intr_handler(int irq, void *dev_instance)
1186{
1187 struct net_device *dev = (struct net_device *)dev_instance;
1188 struct netdev_private *np = netdev_priv(dev);
1189 void __iomem *ioaddr = np->base;
1190 int hw_frame_id;
1191 int tx_cnt;
1192 int tx_status;
1193 int handled = 0;
1194 int i;
1195
1196
1197 do {
1198 int intr_status = ioread16(ioaddr + IntrStatus);
1199 iowrite16(intr_status, ioaddr + IntrStatus);
1200
1201 if (netif_msg_intr(np))
1202 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1203 dev->name, intr_status);
1204
1205 if (!(intr_status & DEFAULT_INTR))
1206 break;
1207
1208 handled = 1;
1209
1210 if (intr_status & (IntrRxDMADone)) {
1211 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1212 ioaddr + IntrEnable);
1213 if (np->budget < 0)
1214 np->budget = RX_BUDGET;
1215 tasklet_schedule(&np->rx_tasklet);
1216 }
1217 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1218 tx_status = ioread16 (ioaddr + TxStatus);
1219 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1220 if (netif_msg_tx_done(np))
1221 printk
1222 ("%s: Transmit status is %2.2x.\n",
1223 dev->name, tx_status);
1224 if (tx_status & 0x1e) {
1225 if (netif_msg_tx_err(np))
1226 printk("%s: Transmit error status %4.4x.\n",
1227 dev->name, tx_status);
1228 dev->stats.tx_errors++;
1229 if (tx_status & 0x10)
1230 dev->stats.tx_fifo_errors++;
1231 if (tx_status & 0x08)
1232 dev->stats.collisions++;
1233 if (tx_status & 0x04)
1234 dev->stats.tx_fifo_errors++;
1235 if (tx_status & 0x02)
1236 dev->stats.tx_window_errors++;
1237
1238 /*
1239 ** This reset has been verified on
1240 ** DFE-580TX boards ! phdm@macqel.be.
1241 */
1242 if (tx_status & 0x10) { /* TxUnderrun */
1243 /* Restart Tx FIFO and transmitter */
1244 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
1245 /* No need to reset the Tx pointer here */
1246 }
1247 /* Restart the Tx. Need to make sure tx enabled */
1248 i = 10;
1249 do {
1250 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1251 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1252 break;
1253 mdelay(1);
1254 } while (--i);
1255 }
1256 /* Yup, this is a documentation bug. It cost me *hours*. */
1257 iowrite16 (0, ioaddr + TxStatus);
1258 if (tx_cnt < 0) {
1259 iowrite32(5000, ioaddr + DownCounter);
1260 break;
1261 }
1262 tx_status = ioread16 (ioaddr + TxStatus);
1263 }
1264 hw_frame_id = (tx_status >> 8) & 0xff;
1265 } else {
1266 hw_frame_id = ioread8(ioaddr + TxFrameId);
1267 }
1268
1269 if (np->pci_dev->revision >= 0x14) {
1270 spin_lock(&np->lock);
1271 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1272 int entry = np->dirty_tx % TX_RING_SIZE;
1273 struct sk_buff *skb;
1274 int sw_frame_id;
1275 sw_frame_id = (le32_to_cpu(
1276 np->tx_ring[entry].status) >> 2) & 0xff;
1277 if (sw_frame_id == hw_frame_id &&
1278 !(le32_to_cpu(np->tx_ring[entry].status)
1279 & 0x00010000))
1280 break;
1281 if (sw_frame_id == (hw_frame_id + 1) %
1282 TX_RING_SIZE)
1283 break;
1284 skb = np->tx_skbuff[entry];
1285 /* Free the original skb. */
1286 dma_unmap_single(&np->pci_dev->dev,
1287 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1288 skb->len, DMA_TO_DEVICE);
1289 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1290 np->tx_skbuff[entry] = NULL;
1291 np->tx_ring[entry].frag[0].addr = 0;
1292 np->tx_ring[entry].frag[0].length = 0;
1293 }
1294 spin_unlock(&np->lock);
1295 } else {
1296 spin_lock(&np->lock);
1297 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1298 int entry = np->dirty_tx % TX_RING_SIZE;
1299 struct sk_buff *skb;
1300 if (!(le32_to_cpu(np->tx_ring[entry].status)
1301 & 0x00010000))
1302 break;
1303 skb = np->tx_skbuff[entry];
1304 /* Free the original skb. */
1305 dma_unmap_single(&np->pci_dev->dev,
1306 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1307 skb->len, DMA_TO_DEVICE);
1308 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1309 np->tx_skbuff[entry] = NULL;
1310 np->tx_ring[entry].frag[0].addr = 0;
1311 np->tx_ring[entry].frag[0].length = 0;
1312 }
1313 spin_unlock(&np->lock);
1314 }
1315
1316 if (netif_queue_stopped(dev) &&
1317 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1318 /* The ring is no longer full, clear busy flag. */
1319 netif_wake_queue (dev);
1320 }
1321 /* Abnormal error summary/uncommon events handlers. */
1322 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1323 netdev_error(dev, intr_status);
1324 } while (0);
1325 if (netif_msg_intr(np))
1326 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1327 dev->name, ioread16(ioaddr + IntrStatus));
1328 return IRQ_RETVAL(handled);
1329}
1330
1331static void rx_poll(unsigned long data)
1332{
1333 struct net_device *dev = (struct net_device *)data;
1334 struct netdev_private *np = netdev_priv(dev);
1335 int entry = np->cur_rx % RX_RING_SIZE;
1336 int boguscnt = np->budget;
1337 void __iomem *ioaddr = np->base;
1338 int received = 0;
1339
1340 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1341 while (1) {
1342 struct netdev_desc *desc = &(np->rx_ring[entry]);
1343 u32 frame_status = le32_to_cpu(desc->status);
1344 int pkt_len;
1345
1346 if (--boguscnt < 0) {
1347 goto not_done;
1348 }
1349 if (!(frame_status & DescOwn))
1350 break;
1351 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1352 if (netif_msg_rx_status(np))
1353 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1354 frame_status);
1355 if (frame_status & 0x001f4000) {
1356 /* There was a error. */
1357 if (netif_msg_rx_err(np))
1358 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1359 frame_status);
1360 dev->stats.rx_errors++;
1361 if (frame_status & 0x00100000)
1362 dev->stats.rx_length_errors++;
1363 if (frame_status & 0x00010000)
1364 dev->stats.rx_fifo_errors++;
1365 if (frame_status & 0x00060000)
1366 dev->stats.rx_frame_errors++;
1367 if (frame_status & 0x00080000)
1368 dev->stats.rx_crc_errors++;
1369 if (frame_status & 0x00100000) {
1370 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1371 " status %8.8x.\n",
1372 dev->name, frame_status);
1373 }
1374 } else {
1375 struct sk_buff *skb;
1376#ifndef final_version
1377 if (netif_msg_rx_status(np))
1378 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1379 ", bogus_cnt %d.\n",
1380 pkt_len, boguscnt);
1381#endif
1382 /* Check if the packet is long enough to accept without copying
1383 to a minimally-sized skbuff. */
1384 if (pkt_len < rx_copybreak &&
1385 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1386 skb_reserve(skb, 2); /* 16 byte align the IP header */
1387 dma_sync_single_for_cpu(&np->pci_dev->dev,
1388 le32_to_cpu(desc->frag[0].addr),
1389 np->rx_buf_sz, DMA_FROM_DEVICE);
1390 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1391 dma_sync_single_for_device(&np->pci_dev->dev,
1392 le32_to_cpu(desc->frag[0].addr),
1393 np->rx_buf_sz, DMA_FROM_DEVICE);
1394 skb_put(skb, pkt_len);
1395 } else {
1396 dma_unmap_single(&np->pci_dev->dev,
1397 le32_to_cpu(desc->frag[0].addr),
1398 np->rx_buf_sz, DMA_FROM_DEVICE);
1399 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1400 np->rx_skbuff[entry] = NULL;
1401 }
1402 skb->protocol = eth_type_trans(skb, dev);
1403 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1404 netif_rx(skb);
1405 }
1406 entry = (entry + 1) % RX_RING_SIZE;
1407 received++;
1408 }
1409 np->cur_rx = entry;
1410 refill_rx (dev);
1411 np->budget -= received;
1412 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1413 return;
1414
1415not_done:
1416 np->cur_rx = entry;
1417 refill_rx (dev);
1418 if (!received)
1419 received = 1;
1420 np->budget -= received;
1421 if (np->budget <= 0)
1422 np->budget = RX_BUDGET;
1423 tasklet_schedule(&np->rx_tasklet);
1424}
1425
1426static void refill_rx (struct net_device *dev)
1427{
1428 struct netdev_private *np = netdev_priv(dev);
1429 int entry;
1430 int cnt = 0;
1431
1432 /* Refill the Rx ring buffers. */
1433 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1434 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1435 struct sk_buff *skb;
1436 entry = np->dirty_rx % RX_RING_SIZE;
1437 if (np->rx_skbuff[entry] == NULL) {
1438 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1439 np->rx_skbuff[entry] = skb;
1440 if (skb == NULL)
1441 break; /* Better luck next round. */
1442 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1443 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
1444 dma_map_single(&np->pci_dev->dev, skb->data,
1445 np->rx_buf_sz, DMA_FROM_DEVICE));
1446 if (dma_mapping_error(&np->pci_dev->dev,
1447 np->rx_ring[entry].frag[0].addr)) {
1448 dev_kfree_skb_irq(skb);
1449 np->rx_skbuff[entry] = NULL;
1450 break;
1451 }
1452 }
1453 /* Perhaps we need not reset this field. */
1454 np->rx_ring[entry].frag[0].length =
1455 cpu_to_le32(np->rx_buf_sz | LastFrag);
1456 np->rx_ring[entry].status = 0;
1457 cnt++;
1458 }
1459}
1460static void netdev_error(struct net_device *dev, int intr_status)
1461{
1462 struct netdev_private *np = netdev_priv(dev);
1463 void __iomem *ioaddr = np->base;
1464 u16 mii_ctl, mii_advertise, mii_lpa;
1465 int speed;
1466
1467 if (intr_status & LinkChange) {
1468 if (mdio_wait_link(dev, 10) == 0) {
1469 printk(KERN_INFO "%s: Link up\n", dev->name);
1470 if (np->an_enable) {
1471 mii_advertise = mdio_read(dev, np->phys[0],
1472 MII_ADVERTISE);
1473 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1474 mii_advertise &= mii_lpa;
1475 printk(KERN_INFO "%s: Link changed: ",
1476 dev->name);
1477 if (mii_advertise & ADVERTISE_100FULL) {
1478 np->speed = 100;
1479 printk("100Mbps, full duplex\n");
1480 } else if (mii_advertise & ADVERTISE_100HALF) {
1481 np->speed = 100;
1482 printk("100Mbps, half duplex\n");
1483 } else if (mii_advertise & ADVERTISE_10FULL) {
1484 np->speed = 10;
1485 printk("10Mbps, full duplex\n");
1486 } else if (mii_advertise & ADVERTISE_10HALF) {
1487 np->speed = 10;
1488 printk("10Mbps, half duplex\n");
1489 } else
1490 printk("\n");
1491
1492 } else {
1493 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1494 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1495 np->speed = speed;
1496 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1497 dev->name, speed);
1498 printk("%s duplex.\n",
1499 (mii_ctl & BMCR_FULLDPLX) ?
1500 "full" : "half");
1501 }
1502 check_duplex(dev);
1503 if (np->flowctrl && np->mii_if.full_duplex) {
1504 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1505 ioaddr + MulticastFilter1+2);
1506 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1507 ioaddr + MACCtrl0);
1508 }
1509 netif_carrier_on(dev);
1510 } else {
1511 printk(KERN_INFO "%s: Link down\n", dev->name);
1512 netif_carrier_off(dev);
1513 }
1514 }
1515 if (intr_status & StatsMax) {
1516 get_stats(dev);
1517 }
1518 if (intr_status & IntrPCIErr) {
1519 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1520 dev->name, intr_status);
1521 /* We must do a global reset of DMA to continue. */
1522 }
1523}
1524
1525static struct net_device_stats *get_stats(struct net_device *dev)
1526{
1527 struct netdev_private *np = netdev_priv(dev);
1528 void __iomem *ioaddr = np->base;
1529 unsigned long flags;
1530 u8 late_coll, single_coll, mult_coll;
1531
1532 spin_lock_irqsave(&np->statlock, flags);
1533 /* The chip only need report frame silently dropped. */
1534 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1535 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1536 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1537 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1538
1539 mult_coll = ioread8(ioaddr + StatsMultiColl);
1540 np->xstats.tx_multiple_collisions += mult_coll;
1541 single_coll = ioread8(ioaddr + StatsOneColl);
1542 np->xstats.tx_single_collisions += single_coll;
1543 late_coll = ioread8(ioaddr + StatsLateColl);
1544 np->xstats.tx_late_collisions += late_coll;
1545 dev->stats.collisions += mult_coll
1546 + single_coll
1547 + late_coll;
1548
1549 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
1550 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
1551 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
1552 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
1553 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
1554 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
1555 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);
1556
1557 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1558 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1559 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1560 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1561
1562 spin_unlock_irqrestore(&np->statlock, flags);
1563
1564 return &dev->stats;
1565}
1566
1567static void set_rx_mode(struct net_device *dev)
1568{
1569 struct netdev_private *np = netdev_priv(dev);
1570 void __iomem *ioaddr = np->base;
1571 u16 mc_filter[4]; /* Multicast hash filter */
1572 u32 rx_mode;
1573 int i;
1574
1575 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1576 memset(mc_filter, 0xff, sizeof(mc_filter));
1577 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1578 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1579 (dev->flags & IFF_ALLMULTI)) {
1580 /* Too many to match, or accept all multicasts. */
1581 memset(mc_filter, 0xff, sizeof(mc_filter));
1582 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1583 } else if (!netdev_mc_empty(dev)) {
1584 struct netdev_hw_addr *ha;
1585 int bit;
1586 int index;
1587 int crc;
1588 memset (mc_filter, 0, sizeof (mc_filter));
1589 netdev_for_each_mc_addr(ha, dev) {
1590 crc = ether_crc_le(ETH_ALEN, ha->addr);
1591 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1592 if (crc & 0x80000000) index |= 1 << bit;
1593 mc_filter[index/16] |= (1 << (index % 16));
1594 }
1595 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1596 } else {
1597 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1598 return;
1599 }
1600 if (np->mii_if.full_duplex && np->flowctrl)
1601 mc_filter[3] |= 0x0200;
1602
1603 for (i = 0; i < 4; i++)
1604 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1605 iowrite8(rx_mode, ioaddr + RxMode);
1606}
1607
1608static int __set_mac_addr(struct net_device *dev)
1609{
1610 struct netdev_private *np = netdev_priv(dev);
1611 u16 addr16;
1612
1613 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1614 iowrite16(addr16, np->base + StationAddr);
1615 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1616 iowrite16(addr16, np->base + StationAddr+2);
1617 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1618 iowrite16(addr16, np->base + StationAddr+4);
1619 return 0;
1620}
1621
1622/* Invoked with rtnl_lock held */
1623static int sundance_set_mac_addr(struct net_device *dev, void *data)
1624{
1625 const struct sockaddr *addr = data;
1626
1627 if (!is_valid_ether_addr(addr->sa_data))
1628 return -EADDRNOTAVAIL;
1629 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
1630 __set_mac_addr(dev);
1631
1632 return 0;
1633}
1634
1635static const struct {
1636 const char name[ETH_GSTRING_LEN];
1637} sundance_stats[] = {
1638 { "tx_multiple_collisions" },
1639 { "tx_single_collisions" },
1640 { "tx_late_collisions" },
1641 { "tx_deferred" },
1642 { "tx_deferred_excessive" },
1643 { "tx_aborted" },
1644 { "tx_bcasts" },
1645 { "rx_bcasts" },
1646 { "tx_mcasts" },
1647 { "rx_mcasts" },
1648};
1649
1650static int check_if_running(struct net_device *dev)
1651{
1652 if (!netif_running(dev))
1653 return -EINVAL;
1654 return 0;
1655}
1656
1657static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1658{
1659 struct netdev_private *np = netdev_priv(dev);
1660 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1661 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1662 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1663}
1664
1665static int get_link_ksettings(struct net_device *dev,
1666 struct ethtool_link_ksettings *cmd)
1667{
1668 struct netdev_private *np = netdev_priv(dev);
1669 spin_lock_irq(&np->lock);
1670 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1671 spin_unlock_irq(&np->lock);
1672 return 0;
1673}
1674
1675static int set_link_ksettings(struct net_device *dev,
1676 const struct ethtool_link_ksettings *cmd)
1677{
1678 struct netdev_private *np = netdev_priv(dev);
1679 int res;
1680 spin_lock_irq(&np->lock);
1681 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1682 spin_unlock_irq(&np->lock);
1683 return res;
1684}
1685
1686static int nway_reset(struct net_device *dev)
1687{
1688 struct netdev_private *np = netdev_priv(dev);
1689 return mii_nway_restart(&np->mii_if);
1690}
1691
1692static u32 get_link(struct net_device *dev)
1693{
1694 struct netdev_private *np = netdev_priv(dev);
1695 return mii_link_ok(&np->mii_if);
1696}
1697
1698static u32 get_msglevel(struct net_device *dev)
1699{
1700 struct netdev_private *np = netdev_priv(dev);
1701 return np->msg_enable;
1702}
1703
1704static void set_msglevel(struct net_device *dev, u32 val)
1705{
1706 struct netdev_private *np = netdev_priv(dev);
1707 np->msg_enable = val;
1708}
1709
1710static void get_strings(struct net_device *dev, u32 stringset,
1711 u8 *data)
1712{
1713 if (stringset == ETH_SS_STATS)
1714 memcpy(data, sundance_stats, sizeof(sundance_stats));
1715}
1716
1717static int get_sset_count(struct net_device *dev, int sset)
1718{
1719 switch (sset) {
1720 case ETH_SS_STATS:
1721 return ARRAY_SIZE(sundance_stats);
1722 default:
1723 return -EOPNOTSUPP;
1724 }
1725}
1726
1727static void get_ethtool_stats(struct net_device *dev,
1728 struct ethtool_stats *stats, u64 *data)
1729{
1730 struct netdev_private *np = netdev_priv(dev);
1731 int i = 0;
1732
1733 get_stats(dev);
1734 data[i++] = np->xstats.tx_multiple_collisions;
1735 data[i++] = np->xstats.tx_single_collisions;
1736 data[i++] = np->xstats.tx_late_collisions;
1737 data[i++] = np->xstats.tx_deferred;
1738 data[i++] = np->xstats.tx_deferred_excessive;
1739 data[i++] = np->xstats.tx_aborted;
1740 data[i++] = np->xstats.tx_bcasts;
1741 data[i++] = np->xstats.rx_bcasts;
1742 data[i++] = np->xstats.tx_mcasts;
1743 data[i++] = np->xstats.rx_mcasts;
1744}
1745
1746#ifdef CONFIG_PM
1747
1748static void sundance_get_wol(struct net_device *dev,
1749 struct ethtool_wolinfo *wol)
1750{
1751 struct netdev_private *np = netdev_priv(dev);
1752 void __iomem *ioaddr = np->base;
1753 u8 wol_bits;
1754
1755 wol->wolopts = 0;
1756
1757 wol->supported = (WAKE_PHY | WAKE_MAGIC);
1758 if (!np->wol_enabled)
1759 return;
1760
1761 wol_bits = ioread8(ioaddr + WakeEvent);
1762 if (wol_bits & MagicPktEnable)
1763 wol->wolopts |= WAKE_MAGIC;
1764 if (wol_bits & LinkEventEnable)
1765 wol->wolopts |= WAKE_PHY;
1766}
1767
1768static int sundance_set_wol(struct net_device *dev,
1769 struct ethtool_wolinfo *wol)
1770{
1771 struct netdev_private *np = netdev_priv(dev);
1772 void __iomem *ioaddr = np->base;
1773 u8 wol_bits;
1774
1775 if (!device_can_wakeup(&np->pci_dev->dev))
1776 return -EOPNOTSUPP;
1777
1778 np->wol_enabled = !!(wol->wolopts);
1779 wol_bits = ioread8(ioaddr + WakeEvent);
1780 wol_bits &= ~(WakePktEnable | MagicPktEnable |
1781 LinkEventEnable | WolEnable);
1782
1783 if (np->wol_enabled) {
1784 if (wol->wolopts & WAKE_MAGIC)
1785 wol_bits |= (MagicPktEnable | WolEnable);
1786 if (wol->wolopts & WAKE_PHY)
1787 wol_bits |= (LinkEventEnable | WolEnable);
1788 }
1789 iowrite8(wol_bits, ioaddr + WakeEvent);
1790
1791 device_set_wakeup_enable(&np->pci_dev->dev, np->wol_enabled);
1792
1793 return 0;
1794}
1795#else
1796#define sundance_get_wol NULL
1797#define sundance_set_wol NULL
1798#endif /* CONFIG_PM */
1799
1800static const struct ethtool_ops ethtool_ops = {
1801 .begin = check_if_running,
1802 .get_drvinfo = get_drvinfo,
1803 .nway_reset = nway_reset,
1804 .get_link = get_link,
1805 .get_wol = sundance_get_wol,
1806 .set_wol = sundance_set_wol,
1807 .get_msglevel = get_msglevel,
1808 .set_msglevel = set_msglevel,
1809 .get_strings = get_strings,
1810 .get_sset_count = get_sset_count,
1811 .get_ethtool_stats = get_ethtool_stats,
1812 .get_link_ksettings = get_link_ksettings,
1813 .set_link_ksettings = set_link_ksettings,
1814};
1815
1816static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1817{
1818 struct netdev_private *np = netdev_priv(dev);
1819 int rc;
1820
1821 if (!netif_running(dev))
1822 return -EINVAL;
1823
1824 spin_lock_irq(&np->lock);
1825 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1826 spin_unlock_irq(&np->lock);
1827
1828 return rc;
1829}
1830
1831static int netdev_close(struct net_device *dev)
1832{
1833 struct netdev_private *np = netdev_priv(dev);
1834 void __iomem *ioaddr = np->base;
1835 struct sk_buff *skb;
1836 int i;
1837
1838 /* Wait and kill tasklet */
1839 tasklet_kill(&np->rx_tasklet);
1840 tasklet_kill(&np->tx_tasklet);
1841 np->cur_tx = 0;
1842 np->dirty_tx = 0;
1843 np->cur_task = 0;
1844 np->last_tx = NULL;
1845
1846 netif_stop_queue(dev);
1847
1848 if (netif_msg_ifdown(np)) {
1849 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1850 "Rx %4.4x Int %2.2x.\n",
1851 dev->name, ioread8(ioaddr + TxStatus),
1852 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1853 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1854 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1855 }
1856
1857 /* Disable interrupts by clearing the interrupt mask. */
1858 iowrite16(0x0000, ioaddr + IntrEnable);
1859
1860 /* Disable Rx and Tx DMA for safely release resource */
1861 iowrite32(0x500, ioaddr + DMACtrl);
1862
1863 /* Stop the chip's Tx and Rx processes. */
1864 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1865
1866 for (i = 2000; i > 0; i--) {
1867 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1868 break;
1869 mdelay(1);
1870 }
1871
1872 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1873 ioaddr + ASIC_HI_WORD(ASICCtrl));
1874
1875 for (i = 2000; i > 0; i--) {
1876 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
1877 break;
1878 mdelay(1);
1879 }
1880
1881#ifdef __i386__
1882 if (netif_msg_hw(np)) {
1883 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1884 (int)(np->tx_ring_dma));
1885 for (i = 0; i < TX_RING_SIZE; i++)
1886 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1887 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1888 np->tx_ring[i].frag[0].length);
1889 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1890 (int)(np->rx_ring_dma));
1891 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1892 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1893 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1894 np->rx_ring[i].frag[0].length);
1895 }
1896 }
1897#endif /* __i386__ debugging only */
1898
1899 free_irq(np->pci_dev->irq, dev);
1900
1901 del_timer_sync(&np->timer);
1902
1903 /* Free all the skbuffs in the Rx queue. */
1904 for (i = 0; i < RX_RING_SIZE; i++) {
1905 np->rx_ring[i].status = 0;
1906 skb = np->rx_skbuff[i];
1907 if (skb) {
1908 dma_unmap_single(&np->pci_dev->dev,
1909 le32_to_cpu(np->rx_ring[i].frag[0].addr),
1910 np->rx_buf_sz, DMA_FROM_DEVICE);
1911 dev_kfree_skb(skb);
1912 np->rx_skbuff[i] = NULL;
1913 }
1914 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
1915 }
1916 for (i = 0; i < TX_RING_SIZE; i++) {
1917 np->tx_ring[i].next_desc = 0;
1918 skb = np->tx_skbuff[i];
1919 if (skb) {
1920 dma_unmap_single(&np->pci_dev->dev,
1921 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1922 skb->len, DMA_TO_DEVICE);
1923 dev_kfree_skb(skb);
1924 np->tx_skbuff[i] = NULL;
1925 }
1926 }
1927
1928 return 0;
1929}
1930
1931static void sundance_remove1(struct pci_dev *pdev)
1932{
1933 struct net_device *dev = pci_get_drvdata(pdev);
1934
1935 if (dev) {
1936 struct netdev_private *np = netdev_priv(dev);
1937 unregister_netdev(dev);
1938 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
1939 np->rx_ring, np->rx_ring_dma);
1940 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
1941 np->tx_ring, np->tx_ring_dma);
1942 pci_iounmap(pdev, np->base);
1943 pci_release_regions(pdev);
1944 free_netdev(dev);
1945 }
1946}
1947
1948#ifdef CONFIG_PM
1949
1950static int sundance_suspend(struct pci_dev *pci_dev, pm_message_t state)
1951{
1952 struct net_device *dev = pci_get_drvdata(pci_dev);
1953 struct netdev_private *np = netdev_priv(dev);
1954 void __iomem *ioaddr = np->base;
1955
1956 if (!netif_running(dev))
1957 return 0;
1958
1959 netdev_close(dev);
1960 netif_device_detach(dev);
1961
1962 pci_save_state(pci_dev);
1963 if (np->wol_enabled) {
1964 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1965 iowrite16(RxEnable, ioaddr + MACCtrl1);
1966 }
1967 pci_enable_wake(pci_dev, pci_choose_state(pci_dev, state),
1968 np->wol_enabled);
1969 pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state));
1970
1971 return 0;
1972}
1973
1974static int sundance_resume(struct pci_dev *pci_dev)
1975{
1976 struct net_device *dev = pci_get_drvdata(pci_dev);
1977 int err = 0;
1978
1979 if (!netif_running(dev))
1980 return 0;
1981
1982 pci_set_power_state(pci_dev, PCI_D0);
1983 pci_restore_state(pci_dev);
1984 pci_enable_wake(pci_dev, PCI_D0, 0);
1985
1986 err = netdev_open(dev);
1987 if (err) {
1988 printk(KERN_ERR "%s: Can't resume interface!\n",
1989 dev->name);
1990 goto out;
1991 }
1992
1993 netif_device_attach(dev);
1994
1995out:
1996 return err;
1997}
1998
1999#endif /* CONFIG_PM */
2000
2001static struct pci_driver sundance_driver = {
2002 .name = DRV_NAME,
2003 .id_table = sundance_pci_tbl,
2004 .probe = sundance_probe1,
2005 .remove = sundance_remove1,
2006#ifdef CONFIG_PM
2007 .suspend = sundance_suspend,
2008 .resume = sundance_resume,
2009#endif /* CONFIG_PM */
2010};
2011
2012static int __init sundance_init(void)
2013{
2014/* when a module, this is printed whether or not devices are found in probe */
2015#ifdef MODULE
2016 printk(version);
2017#endif
2018 return pci_register_driver(&sundance_driver);
2019}
2020
2021static void __exit sundance_exit(void)
2022{
2023 pci_unregister_driver(&sundance_driver);
2024}
2025
2026module_init(sundance_init);
2027module_exit(sundance_exit);
2028
2029
1/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2/*
3 Written 1999-2000 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
19 [link no longer provides useful info -jgarzik]
20 Archives of the mailing list are still available at
21 https://www.beowulf.org/pipermail/netdrivers/
22
23*/
24
25#define DRV_NAME "sundance"
26
27/* The user-configurable values.
28 These may be modified when a driver module is loaded.*/
29static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
30/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
31 Typical is a 64 element hash table based on the Ethernet CRC. */
32static const int multicast_filter_limit = 32;
33
34/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
35 Setting to > 1518 effectively disables this feature.
36 This chip can receive into offset buffers, so the Alpha does not
37 need a copy-align. */
38static int rx_copybreak;
39static int flowctrl=1;
40
41/* media[] specifies the media type the NIC operates at.
42 autosense Autosensing active media.
43 10mbps_hd 10Mbps half duplex.
44 10mbps_fd 10Mbps full duplex.
45 100mbps_hd 100Mbps half duplex.
46 100mbps_fd 100Mbps full duplex.
47 0 Autosensing active media.
48 1 10Mbps half duplex.
49 2 10Mbps full duplex.
50 3 100Mbps half duplex.
51 4 100Mbps full duplex.
52*/
53#define MAX_UNITS 8
54static char *media[MAX_UNITS];
55
56
57/* Operational parameters that are set at compile time. */
58
59/* Keep the ring sizes a power of two for compile efficiency.
60 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
61 Making the Tx ring too large decreases the effectiveness of channel
62 bonding and packet priority, and more than 128 requires modifying the
63 Tx error recovery.
64 Large receive rings merely waste memory. */
65#define TX_RING_SIZE 32
66#define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
67#define RX_RING_SIZE 64
68#define RX_BUDGET 32
69#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
70#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
71
72/* Operational parameters that usually are not changed. */
73/* Time in jiffies before concluding the transmitter is hung. */
74#define TX_TIMEOUT (4*HZ)
75#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
76
77/* Include files, designed to support most kernel versions 2.0.0 and later. */
78#include <linux/module.h>
79#include <linux/kernel.h>
80#include <linux/string.h>
81#include <linux/timer.h>
82#include <linux/errno.h>
83#include <linux/ioport.h>
84#include <linux/interrupt.h>
85#include <linux/pci.h>
86#include <linux/netdevice.h>
87#include <linux/etherdevice.h>
88#include <linux/skbuff.h>
89#include <linux/init.h>
90#include <linux/bitops.h>
91#include <linux/uaccess.h>
92#include <asm/processor.h> /* Processor type for cache alignment. */
93#include <asm/io.h>
94#include <linux/delay.h>
95#include <linux/spinlock.h>
96#include <linux/dma-mapping.h>
97#include <linux/crc32.h>
98#include <linux/ethtool.h>
99#include <linux/mii.h>
100
101MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
102MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
103MODULE_LICENSE("GPL");
104
105module_param(debug, int, 0);
106module_param(rx_copybreak, int, 0);
107module_param_array(media, charp, NULL, 0);
108module_param(flowctrl, int, 0);
109MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
110MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
111MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
112
113/*
114 Theory of Operation
115
116I. Board Compatibility
117
118This driver is designed for the Sundance Technologies "Alta" ST201 chip.
119
120II. Board-specific settings
121
122III. Driver operation
123
124IIIa. Ring buffers
125
126This driver uses two statically allocated fixed-size descriptor lists
127formed into rings by a branch from the final descriptor to the beginning of
128the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
129Some chips explicitly use only 2^N sized rings, while others use a
130'next descriptor' pointer that the driver forms into rings.
131
132IIIb/c. Transmit/Receive Structure
133
134This driver uses a zero-copy receive and transmit scheme.
135The driver allocates full frame size skbuffs for the Rx ring buffers at
136open() time and passes the skb->data field to the chip as receive data
137buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
138a fresh skbuff is allocated and the frame is copied to the new skbuff.
139When the incoming frame is larger, the skbuff is passed directly up the
140protocol stack. Buffers consumed this way are replaced by newly allocated
141skbuffs in a later phase of receives.
142
143The RX_COPYBREAK value is chosen to trade-off the memory wasted by
144using a full-sized skbuff for small frames vs. the copying costs of larger
145frames. New boards are typically used in generously configured machines
146and the underfilled buffers have negligible impact compared to the benefit of
147a single allocation size, so the default value of zero results in never
148copying packets. When copying is done, the cost is usually mitigated by using
149a combined copy/checksum routine. Copying also preloads the cache, which is
150most useful with small frames.
151
152A subtle aspect of the operation is that the IP header at offset 14 in an
153ethernet frame isn't longword aligned for further processing.
154Unaligned buffers are permitted by the Sundance hardware, so
155frames are received into the skbuff at an offset of "+2", 16-byte aligning
156the IP header.
157
158IIId. Synchronization
159
160The driver runs as two independent, single-threaded flows of control. One
161is the send-packet routine, which enforces single-threaded use by the
162dev->tbusy flag. The other thread is the interrupt handler, which is single
163threaded by the hardware and interrupt handling software.
164
165The send packet thread has partial control over the Tx ring and 'dev->tbusy'
166flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
167queue slot is empty, it clears the tbusy flag when finished otherwise it sets
168the 'lp->tx_full' flag.
169
170The interrupt handler has exclusive control over the Rx ring and records stats
171from the Tx ring. After reaping the stats, it marks the Tx queue entry as
172empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
173clears both the tx_full and tbusy flags.
174
175IV. Notes
176
177IVb. References
178
179The Sundance ST201 datasheet, preliminary version.
180The Kendin KS8723 datasheet, preliminary version.
181The ICplus IP100 datasheet, preliminary version.
182http://www.scyld.com/expert/100mbps.html
183http://www.scyld.com/expert/NWay.html
184
185IVc. Errata
186
187*/
188
189/* Work-around for Kendin chip bugs. */
190#ifndef CONFIG_SUNDANCE_MMIO
191#define USE_IO_OPS 1
192#endif
193
194static const struct pci_device_id sundance_pci_tbl[] = {
195 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
196 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
197 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
198 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
199 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
200 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
201 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
202 { }
203};
204MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
205
206enum {
207 netdev_io_size = 128
208};
209
210struct pci_id_info {
211 const char *name;
212};
213static const struct pci_id_info pci_id_tbl[] = {
214 {"D-Link DFE-550TX FAST Ethernet Adapter"},
215 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
216 {"D-Link DFE-580TX 4 port Server Adapter"},
217 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
218 {"D-Link DL10050-based FAST Ethernet Adapter"},
219 {"Sundance Technology Alta"},
220 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
221 { } /* terminate list. */
222};
223
224/* This driver was written to use PCI memory space, however x86-oriented
225 hardware often uses I/O space accesses. */
226
227/* Offsets to the device registers.
228 Unlike software-only systems, device drivers interact with complex hardware.
229 It's not useful to define symbolic names for every register bit in the
230 device. The name can only partially document the semantics and make
231 the driver longer and more difficult to read.
232 In general, only the important configuration values or bits changed
233 multiple times should be defined symbolically.
234*/
235enum alta_offsets {
236 DMACtrl = 0x00,
237 TxListPtr = 0x04,
238 TxDMABurstThresh = 0x08,
239 TxDMAUrgentThresh = 0x09,
240 TxDMAPollPeriod = 0x0a,
241 RxDMAStatus = 0x0c,
242 RxListPtr = 0x10,
243 DebugCtrl0 = 0x1a,
244 DebugCtrl1 = 0x1c,
245 RxDMABurstThresh = 0x14,
246 RxDMAUrgentThresh = 0x15,
247 RxDMAPollPeriod = 0x16,
248 LEDCtrl = 0x1a,
249 ASICCtrl = 0x30,
250 EEData = 0x34,
251 EECtrl = 0x36,
252 FlashAddr = 0x40,
253 FlashData = 0x44,
254 WakeEvent = 0x45,
255 TxStatus = 0x46,
256 TxFrameId = 0x47,
257 DownCounter = 0x18,
258 IntrClear = 0x4a,
259 IntrEnable = 0x4c,
260 IntrStatus = 0x4e,
261 MACCtrl0 = 0x50,
262 MACCtrl1 = 0x52,
263 StationAddr = 0x54,
264 MaxFrameSize = 0x5A,
265 RxMode = 0x5c,
266 MIICtrl = 0x5e,
267 MulticastFilter0 = 0x60,
268 MulticastFilter1 = 0x64,
269 RxOctetsLow = 0x68,
270 RxOctetsHigh = 0x6a,
271 TxOctetsLow = 0x6c,
272 TxOctetsHigh = 0x6e,
273 TxFramesOK = 0x70,
274 RxFramesOK = 0x72,
275 StatsCarrierError = 0x74,
276 StatsLateColl = 0x75,
277 StatsMultiColl = 0x76,
278 StatsOneColl = 0x77,
279 StatsTxDefer = 0x78,
280 RxMissed = 0x79,
281 StatsTxXSDefer = 0x7a,
282 StatsTxAbort = 0x7b,
283 StatsBcastTx = 0x7c,
284 StatsBcastRx = 0x7d,
285 StatsMcastTx = 0x7e,
286 StatsMcastRx = 0x7f,
287 /* Aliased and bogus values! */
288 RxStatus = 0x0c,
289};
290
291#define ASIC_HI_WORD(x) ((x) + 2)
292
293enum ASICCtrl_HiWord_bit {
294 GlobalReset = 0x0001,
295 RxReset = 0x0002,
296 TxReset = 0x0004,
297 DMAReset = 0x0008,
298 FIFOReset = 0x0010,
299 NetworkReset = 0x0020,
300 HostReset = 0x0040,
301 ResetBusy = 0x0400,
302};
303
304/* Bits in the interrupt status/mask registers. */
305enum intr_status_bits {
306 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
307 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
308 IntrDrvRqst=0x0040,
309 StatsMax=0x0080, LinkChange=0x0100,
310 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
311};
312
313/* Bits in the RxMode register. */
314enum rx_mode_bits {
315 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
316 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
317};
318/* Bits in MACCtrl. */
319enum mac_ctrl0_bits {
320 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
321 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
322};
323enum mac_ctrl1_bits {
324 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
325 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
326 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
327};
328
329/* Bits in WakeEvent register. */
330enum wake_event_bits {
331 WakePktEnable = 0x01,
332 MagicPktEnable = 0x02,
333 LinkEventEnable = 0x04,
334 WolEnable = 0x80,
335};
336
337/* The Rx and Tx buffer descriptors. */
338/* Note that using only 32 bit fields simplifies conversion to big-endian
339 architectures. */
340struct netdev_desc {
341 __le32 next_desc;
342 __le32 status;
343 struct desc_frag { __le32 addr, length; } frag[1];
344};
345
346/* Bits in netdev_desc.status */
347enum desc_status_bits {
348 DescOwn=0x8000,
349 DescEndPacket=0x4000,
350 DescEndRing=0x2000,
351 LastFrag=0x80000000,
352 DescIntrOnTx=0x8000,
353 DescIntrOnDMADone=0x80000000,
354 DisableAlign = 0x00000001,
355};
356
357#define PRIV_ALIGN 15 /* Required alignment mask */
358/* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
359 within the structure. */
360#define MII_CNT 4
361struct netdev_private {
362 /* Descriptor rings first for alignment. */
363 struct netdev_desc *rx_ring;
364 struct netdev_desc *tx_ring;
365 struct sk_buff* rx_skbuff[RX_RING_SIZE];
366 struct sk_buff* tx_skbuff[TX_RING_SIZE];
367 dma_addr_t tx_ring_dma;
368 dma_addr_t rx_ring_dma;
369 struct timer_list timer; /* Media monitoring timer. */
370 /* ethtool extra stats */
371 struct {
372 u64 tx_multiple_collisions;
373 u64 tx_single_collisions;
374 u64 tx_late_collisions;
375 u64 tx_deferred;
376 u64 tx_deferred_excessive;
377 u64 tx_aborted;
378 u64 tx_bcasts;
379 u64 rx_bcasts;
380 u64 tx_mcasts;
381 u64 rx_mcasts;
382 } xstats;
383 /* Frequently used values: keep some adjacent for cache effect. */
384 spinlock_t lock;
385 int msg_enable;
386 int chip_id;
387 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
388 unsigned int rx_buf_sz; /* Based on MTU+slack. */
389 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
390 unsigned int cur_tx, dirty_tx;
391 /* These values are keep track of the transceiver/media in use. */
392 unsigned int flowctrl:1;
393 unsigned int default_port:4; /* Last dev->if_port value. */
394 unsigned int an_enable:1;
395 unsigned int speed;
396 unsigned int wol_enabled:1; /* Wake on LAN enabled */
397 struct tasklet_struct rx_tasklet;
398 struct tasklet_struct tx_tasklet;
399 int budget;
400 int cur_task;
401 /* Multicast and receive mode. */
402 spinlock_t mcastlock; /* SMP lock multicast updates. */
403 u16 mcast_filter[4];
404 /* MII transceiver section. */
405 struct mii_if_info mii_if;
406 int mii_preamble_required;
407 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
408 struct pci_dev *pci_dev;
409 void __iomem *base;
410 spinlock_t statlock;
411};
412
413/* The station address location in the EEPROM. */
414#define EEPROM_SA_OFFSET 0x10
415#define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
416 IntrDrvRqst | IntrTxDone | StatsMax | \
417 LinkChange)
418
419static int change_mtu(struct net_device *dev, int new_mtu);
420static int eeprom_read(void __iomem *ioaddr, int location);
421static int mdio_read(struct net_device *dev, int phy_id, int location);
422static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
423static int mdio_wait_link(struct net_device *dev, int wait);
424static int netdev_open(struct net_device *dev);
425static void check_duplex(struct net_device *dev);
426static void netdev_timer(struct timer_list *t);
427static void tx_timeout(struct net_device *dev, unsigned int txqueue);
428static void init_ring(struct net_device *dev);
429static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
430static int reset_tx (struct net_device *dev);
431static irqreturn_t intr_handler(int irq, void *dev_instance);
432static void rx_poll(unsigned long data);
433static void tx_poll(unsigned long data);
434static void refill_rx (struct net_device *dev);
435static void netdev_error(struct net_device *dev, int intr_status);
436static void netdev_error(struct net_device *dev, int intr_status);
437static void set_rx_mode(struct net_device *dev);
438static int __set_mac_addr(struct net_device *dev);
439static int sundance_set_mac_addr(struct net_device *dev, void *data);
440static struct net_device_stats *get_stats(struct net_device *dev);
441static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
442static int netdev_close(struct net_device *dev);
443static const struct ethtool_ops ethtool_ops;
444
445static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
446{
447 struct netdev_private *np = netdev_priv(dev);
448 void __iomem *ioaddr = np->base + ASICCtrl;
449 int countdown;
450
451 /* ST201 documentation states ASICCtrl is a 32bit register */
452 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
453 /* ST201 documentation states reset can take up to 1 ms */
454 countdown = 10 + 1;
455 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
456 if (--countdown == 0) {
457 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
458 break;
459 }
460 udelay(100);
461 }
462}
463
464#ifdef CONFIG_NET_POLL_CONTROLLER
465static void sundance_poll_controller(struct net_device *dev)
466{
467 struct netdev_private *np = netdev_priv(dev);
468
469 disable_irq(np->pci_dev->irq);
470 intr_handler(np->pci_dev->irq, dev);
471 enable_irq(np->pci_dev->irq);
472}
473#endif
474
475static const struct net_device_ops netdev_ops = {
476 .ndo_open = netdev_open,
477 .ndo_stop = netdev_close,
478 .ndo_start_xmit = start_tx,
479 .ndo_get_stats = get_stats,
480 .ndo_set_rx_mode = set_rx_mode,
481 .ndo_do_ioctl = netdev_ioctl,
482 .ndo_tx_timeout = tx_timeout,
483 .ndo_change_mtu = change_mtu,
484 .ndo_set_mac_address = sundance_set_mac_addr,
485 .ndo_validate_addr = eth_validate_addr,
486#ifdef CONFIG_NET_POLL_CONTROLLER
487 .ndo_poll_controller = sundance_poll_controller,
488#endif
489};
490
491static int sundance_probe1(struct pci_dev *pdev,
492 const struct pci_device_id *ent)
493{
494 struct net_device *dev;
495 struct netdev_private *np;
496 static int card_idx;
497 int chip_idx = ent->driver_data;
498 int irq;
499 int i;
500 void __iomem *ioaddr;
501 u16 mii_ctl;
502 void *ring_space;
503 dma_addr_t ring_dma;
504#ifdef USE_IO_OPS
505 int bar = 0;
506#else
507 int bar = 1;
508#endif
509 int phy, phy_end, phy_idx = 0;
510
511 if (pci_enable_device(pdev))
512 return -EIO;
513 pci_set_master(pdev);
514
515 irq = pdev->irq;
516
517 dev = alloc_etherdev(sizeof(*np));
518 if (!dev)
519 return -ENOMEM;
520 SET_NETDEV_DEV(dev, &pdev->dev);
521
522 if (pci_request_regions(pdev, DRV_NAME))
523 goto err_out_netdev;
524
525 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
526 if (!ioaddr)
527 goto err_out_res;
528
529 for (i = 0; i < 3; i++)
530 ((__le16 *)dev->dev_addr)[i] =
531 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
532
533 np = netdev_priv(dev);
534 np->base = ioaddr;
535 np->pci_dev = pdev;
536 np->chip_id = chip_idx;
537 np->msg_enable = (1 << debug) - 1;
538 spin_lock_init(&np->lock);
539 spin_lock_init(&np->statlock);
540 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
541 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
542
543 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
544 &ring_dma, GFP_KERNEL);
545 if (!ring_space)
546 goto err_out_cleardev;
547 np->tx_ring = (struct netdev_desc *)ring_space;
548 np->tx_ring_dma = ring_dma;
549
550 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
551 &ring_dma, GFP_KERNEL);
552 if (!ring_space)
553 goto err_out_unmap_tx;
554 np->rx_ring = (struct netdev_desc *)ring_space;
555 np->rx_ring_dma = ring_dma;
556
557 np->mii_if.dev = dev;
558 np->mii_if.mdio_read = mdio_read;
559 np->mii_if.mdio_write = mdio_write;
560 np->mii_if.phy_id_mask = 0x1f;
561 np->mii_if.reg_num_mask = 0x1f;
562
563 /* The chip-specific entries in the device structure. */
564 dev->netdev_ops = &netdev_ops;
565 dev->ethtool_ops = ðtool_ops;
566 dev->watchdog_timeo = TX_TIMEOUT;
567
568 /* MTU range: 68 - 8191 */
569 dev->min_mtu = ETH_MIN_MTU;
570 dev->max_mtu = 8191;
571
572 pci_set_drvdata(pdev, dev);
573
574 i = register_netdev(dev);
575 if (i)
576 goto err_out_unmap_rx;
577
578 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
579 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
580 dev->dev_addr, irq);
581
582 np->phys[0] = 1; /* Default setting */
583 np->mii_preamble_required++;
584
585 /*
586 * It seems some phys doesn't deal well with address 0 being accessed
587 * first
588 */
589 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
590 phy = 0;
591 phy_end = 31;
592 } else {
593 phy = 1;
594 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
595 }
596 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
597 int phyx = phy & 0x1f;
598 int mii_status = mdio_read(dev, phyx, MII_BMSR);
599 if (mii_status != 0xffff && mii_status != 0x0000) {
600 np->phys[phy_idx++] = phyx;
601 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
602 if ((mii_status & 0x0040) == 0)
603 np->mii_preamble_required++;
604 printk(KERN_INFO "%s: MII PHY found at address %d, status "
605 "0x%4.4x advertising %4.4x.\n",
606 dev->name, phyx, mii_status, np->mii_if.advertising);
607 }
608 }
609 np->mii_preamble_required--;
610
611 if (phy_idx == 0) {
612 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
613 dev->name, ioread32(ioaddr + ASICCtrl));
614 goto err_out_unregister;
615 }
616
617 np->mii_if.phy_id = np->phys[0];
618
619 /* Parse override configuration */
620 np->an_enable = 1;
621 if (card_idx < MAX_UNITS) {
622 if (media[card_idx] != NULL) {
623 np->an_enable = 0;
624 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
625 strcmp (media[card_idx], "4") == 0) {
626 np->speed = 100;
627 np->mii_if.full_duplex = 1;
628 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
629 strcmp (media[card_idx], "3") == 0) {
630 np->speed = 100;
631 np->mii_if.full_duplex = 0;
632 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
633 strcmp (media[card_idx], "2") == 0) {
634 np->speed = 10;
635 np->mii_if.full_duplex = 1;
636 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
637 strcmp (media[card_idx], "1") == 0) {
638 np->speed = 10;
639 np->mii_if.full_duplex = 0;
640 } else {
641 np->an_enable = 1;
642 }
643 }
644 if (flowctrl == 1)
645 np->flowctrl = 1;
646 }
647
648 /* Fibre PHY? */
649 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
650 /* Default 100Mbps Full */
651 if (np->an_enable) {
652 np->speed = 100;
653 np->mii_if.full_duplex = 1;
654 np->an_enable = 0;
655 }
656 }
657 /* Reset PHY */
658 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
659 mdelay (300);
660 /* If flow control enabled, we need to advertise it.*/
661 if (np->flowctrl)
662 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
663 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
664 /* Force media type */
665 if (!np->an_enable) {
666 mii_ctl = 0;
667 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
668 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
669 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
670 printk (KERN_INFO "Override speed=%d, %s duplex\n",
671 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
672
673 }
674
675 /* Perhaps move the reset here? */
676 /* Reset the chip to erase previous misconfiguration. */
677 if (netif_msg_hw(np))
678 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
679 sundance_reset(dev, 0x00ff << 16);
680 if (netif_msg_hw(np))
681 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
682
683 card_idx++;
684 return 0;
685
686err_out_unregister:
687 unregister_netdev(dev);
688err_out_unmap_rx:
689 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
690 np->rx_ring, np->rx_ring_dma);
691err_out_unmap_tx:
692 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
693 np->tx_ring, np->tx_ring_dma);
694err_out_cleardev:
695 pci_iounmap(pdev, ioaddr);
696err_out_res:
697 pci_release_regions(pdev);
698err_out_netdev:
699 free_netdev (dev);
700 return -ENODEV;
701}
702
703static int change_mtu(struct net_device *dev, int new_mtu)
704{
705 if (netif_running(dev))
706 return -EBUSY;
707 dev->mtu = new_mtu;
708 return 0;
709}
710
711#define eeprom_delay(ee_addr) ioread32(ee_addr)
712/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
713static int eeprom_read(void __iomem *ioaddr, int location)
714{
715 int boguscnt = 10000; /* Typical 1900 ticks. */
716 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
717 do {
718 eeprom_delay(ioaddr + EECtrl);
719 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
720 return ioread16(ioaddr + EEData);
721 }
722 } while (--boguscnt > 0);
723 return 0;
724}
725
726/* MII transceiver control section.
727 Read and write the MII registers using software-generated serial
728 MDIO protocol. See the MII specifications or DP83840A data sheet
729 for details.
730
731 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
732 met by back-to-back 33Mhz PCI cycles. */
733#define mdio_delay() ioread8(mdio_addr)
734
735enum mii_reg_bits {
736 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
737};
738#define MDIO_EnbIn (0)
739#define MDIO_WRITE0 (MDIO_EnbOutput)
740#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
741
742/* Generate the preamble required for initial synchronization and
743 a few older transceivers. */
744static void mdio_sync(void __iomem *mdio_addr)
745{
746 int bits = 32;
747
748 /* Establish sync by sending at least 32 logic ones. */
749 while (--bits >= 0) {
750 iowrite8(MDIO_WRITE1, mdio_addr);
751 mdio_delay();
752 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
753 mdio_delay();
754 }
755}
756
757static int mdio_read(struct net_device *dev, int phy_id, int location)
758{
759 struct netdev_private *np = netdev_priv(dev);
760 void __iomem *mdio_addr = np->base + MIICtrl;
761 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
762 int i, retval = 0;
763
764 if (np->mii_preamble_required)
765 mdio_sync(mdio_addr);
766
767 /* Shift the read command bits out. */
768 for (i = 15; i >= 0; i--) {
769 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
770
771 iowrite8(dataval, mdio_addr);
772 mdio_delay();
773 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
774 mdio_delay();
775 }
776 /* Read the two transition, 16 data, and wire-idle bits. */
777 for (i = 19; i > 0; i--) {
778 iowrite8(MDIO_EnbIn, mdio_addr);
779 mdio_delay();
780 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
781 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
782 mdio_delay();
783 }
784 return (retval>>1) & 0xffff;
785}
786
787static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
788{
789 struct netdev_private *np = netdev_priv(dev);
790 void __iomem *mdio_addr = np->base + MIICtrl;
791 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
792 int i;
793
794 if (np->mii_preamble_required)
795 mdio_sync(mdio_addr);
796
797 /* Shift the command bits out. */
798 for (i = 31; i >= 0; i--) {
799 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
800
801 iowrite8(dataval, mdio_addr);
802 mdio_delay();
803 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
804 mdio_delay();
805 }
806 /* Clear out extra bits. */
807 for (i = 2; i > 0; i--) {
808 iowrite8(MDIO_EnbIn, mdio_addr);
809 mdio_delay();
810 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
811 mdio_delay();
812 }
813}
814
815static int mdio_wait_link(struct net_device *dev, int wait)
816{
817 int bmsr;
818 int phy_id;
819 struct netdev_private *np;
820
821 np = netdev_priv(dev);
822 phy_id = np->phys[0];
823
824 do {
825 bmsr = mdio_read(dev, phy_id, MII_BMSR);
826 if (bmsr & 0x0004)
827 return 0;
828 mdelay(1);
829 } while (--wait > 0);
830 return -1;
831}
832
833static int netdev_open(struct net_device *dev)
834{
835 struct netdev_private *np = netdev_priv(dev);
836 void __iomem *ioaddr = np->base;
837 const int irq = np->pci_dev->irq;
838 unsigned long flags;
839 int i;
840
841 sundance_reset(dev, 0x00ff << 16);
842
843 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
844 if (i)
845 return i;
846
847 if (netif_msg_ifup(np))
848 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq);
849
850 init_ring(dev);
851
852 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
853 /* The Tx list pointer is written as packets are queued. */
854
855 /* Initialize other registers. */
856 __set_mac_addr(dev);
857#if IS_ENABLED(CONFIG_VLAN_8021Q)
858 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
859#else
860 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
861#endif
862 if (dev->mtu > 2047)
863 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
864
865 /* Configure the PCI bus bursts and FIFO thresholds. */
866
867 if (dev->if_port == 0)
868 dev->if_port = np->default_port;
869
870 spin_lock_init(&np->mcastlock);
871
872 set_rx_mode(dev);
873 iowrite16(0, ioaddr + IntrEnable);
874 iowrite16(0, ioaddr + DownCounter);
875 /* Set the chip to poll every N*320nsec. */
876 iowrite8(100, ioaddr + RxDMAPollPeriod);
877 iowrite8(127, ioaddr + TxDMAPollPeriod);
878 /* Fix DFE-580TX packet drop issue */
879 if (np->pci_dev->revision >= 0x14)
880 iowrite8(0x01, ioaddr + DebugCtrl1);
881 netif_start_queue(dev);
882
883 spin_lock_irqsave(&np->lock, flags);
884 reset_tx(dev);
885 spin_unlock_irqrestore(&np->lock, flags);
886
887 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
888
889 /* Disable Wol */
890 iowrite8(ioread8(ioaddr + WakeEvent) | 0x00, ioaddr + WakeEvent);
891 np->wol_enabled = 0;
892
893 if (netif_msg_ifup(np))
894 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
895 "MAC Control %x, %4.4x %4.4x.\n",
896 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
897 ioread32(ioaddr + MACCtrl0),
898 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
899
900 /* Set the timer to check for link beat. */
901 timer_setup(&np->timer, netdev_timer, 0);
902 np->timer.expires = jiffies + 3*HZ;
903 add_timer(&np->timer);
904
905 /* Enable interrupts by setting the interrupt mask. */
906 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
907
908 return 0;
909}
910
911static void check_duplex(struct net_device *dev)
912{
913 struct netdev_private *np = netdev_priv(dev);
914 void __iomem *ioaddr = np->base;
915 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
916 int negotiated = mii_lpa & np->mii_if.advertising;
917 int duplex;
918
919 /* Force media */
920 if (!np->an_enable || mii_lpa == 0xffff) {
921 if (np->mii_if.full_duplex)
922 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
923 ioaddr + MACCtrl0);
924 return;
925 }
926
927 /* Autonegotiation */
928 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
929 if (np->mii_if.full_duplex != duplex) {
930 np->mii_if.full_duplex = duplex;
931 if (netif_msg_link(np))
932 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
933 "negotiated capability %4.4x.\n", dev->name,
934 duplex ? "full" : "half", np->phys[0], negotiated);
935 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
936 }
937}
938
939static void netdev_timer(struct timer_list *t)
940{
941 struct netdev_private *np = from_timer(np, t, timer);
942 struct net_device *dev = np->mii_if.dev;
943 void __iomem *ioaddr = np->base;
944 int next_tick = 10*HZ;
945
946 if (netif_msg_timer(np)) {
947 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
948 "Tx %x Rx %x.\n",
949 dev->name, ioread16(ioaddr + IntrEnable),
950 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
951 }
952 check_duplex(dev);
953 np->timer.expires = jiffies + next_tick;
954 add_timer(&np->timer);
955}
956
957static void tx_timeout(struct net_device *dev, unsigned int txqueue)
958{
959 struct netdev_private *np = netdev_priv(dev);
960 void __iomem *ioaddr = np->base;
961 unsigned long flag;
962
963 netif_stop_queue(dev);
964 tasklet_disable(&np->tx_tasklet);
965 iowrite16(0, ioaddr + IntrEnable);
966 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
967 "TxFrameId %2.2x,"
968 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
969 ioread8(ioaddr + TxFrameId));
970
971 {
972 int i;
973 for (i=0; i<TX_RING_SIZE; i++) {
974 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
975 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
976 le32_to_cpu(np->tx_ring[i].next_desc),
977 le32_to_cpu(np->tx_ring[i].status),
978 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
979 le32_to_cpu(np->tx_ring[i].frag[0].addr),
980 le32_to_cpu(np->tx_ring[i].frag[0].length));
981 }
982 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
983 ioread32(np->base + TxListPtr),
984 netif_queue_stopped(dev));
985 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
986 np->cur_tx, np->cur_tx % TX_RING_SIZE,
987 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
988 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
989 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
990 }
991 spin_lock_irqsave(&np->lock, flag);
992
993 /* Stop and restart the chip's Tx processes . */
994 reset_tx(dev);
995 spin_unlock_irqrestore(&np->lock, flag);
996
997 dev->if_port = 0;
998
999 netif_trans_update(dev); /* prevent tx timeout */
1000 dev->stats.tx_errors++;
1001 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1002 netif_wake_queue(dev);
1003 }
1004 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1005 tasklet_enable(&np->tx_tasklet);
1006}
1007
1008
1009/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1010static void init_ring(struct net_device *dev)
1011{
1012 struct netdev_private *np = netdev_priv(dev);
1013 int i;
1014
1015 np->cur_rx = np->cur_tx = 0;
1016 np->dirty_rx = np->dirty_tx = 0;
1017 np->cur_task = 0;
1018
1019 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1020
1021 /* Initialize all Rx descriptors. */
1022 for (i = 0; i < RX_RING_SIZE; i++) {
1023 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1024 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1025 np->rx_ring[i].status = 0;
1026 np->rx_ring[i].frag[0].length = 0;
1027 np->rx_skbuff[i] = NULL;
1028 }
1029
1030 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1031 for (i = 0; i < RX_RING_SIZE; i++) {
1032 struct sk_buff *skb =
1033 netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1034 np->rx_skbuff[i] = skb;
1035 if (skb == NULL)
1036 break;
1037 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1038 np->rx_ring[i].frag[0].addr = cpu_to_le32(
1039 dma_map_single(&np->pci_dev->dev, skb->data,
1040 np->rx_buf_sz, DMA_FROM_DEVICE));
1041 if (dma_mapping_error(&np->pci_dev->dev,
1042 np->rx_ring[i].frag[0].addr)) {
1043 dev_kfree_skb(skb);
1044 np->rx_skbuff[i] = NULL;
1045 break;
1046 }
1047 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1048 }
1049 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1050
1051 for (i = 0; i < TX_RING_SIZE; i++) {
1052 np->tx_skbuff[i] = NULL;
1053 np->tx_ring[i].status = 0;
1054 }
1055}
1056
1057static void tx_poll (unsigned long data)
1058{
1059 struct net_device *dev = (struct net_device *)data;
1060 struct netdev_private *np = netdev_priv(dev);
1061 unsigned head = np->cur_task % TX_RING_SIZE;
1062 struct netdev_desc *txdesc =
1063 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1064
1065 /* Chain the next pointer */
1066 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1067 int entry = np->cur_task % TX_RING_SIZE;
1068 txdesc = &np->tx_ring[entry];
1069 if (np->last_tx) {
1070 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1071 entry*sizeof(struct netdev_desc));
1072 }
1073 np->last_tx = txdesc;
1074 }
1075 /* Indicate the latest descriptor of tx ring */
1076 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1077
1078 if (ioread32 (np->base + TxListPtr) == 0)
1079 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1080 np->base + TxListPtr);
1081}
1082
1083static netdev_tx_t
1084start_tx (struct sk_buff *skb, struct net_device *dev)
1085{
1086 struct netdev_private *np = netdev_priv(dev);
1087 struct netdev_desc *txdesc;
1088 unsigned entry;
1089
1090 /* Calculate the next Tx descriptor entry. */
1091 entry = np->cur_tx % TX_RING_SIZE;
1092 np->tx_skbuff[entry] = skb;
1093 txdesc = &np->tx_ring[entry];
1094
1095 txdesc->next_desc = 0;
1096 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1097 txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
1098 skb->data, skb->len, DMA_TO_DEVICE));
1099 if (dma_mapping_error(&np->pci_dev->dev,
1100 txdesc->frag[0].addr))
1101 goto drop_frame;
1102 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1103
1104 /* Increment cur_tx before tasklet_schedule() */
1105 np->cur_tx++;
1106 mb();
1107 /* Schedule a tx_poll() task */
1108 tasklet_schedule(&np->tx_tasklet);
1109
1110 /* On some architectures: explicitly flush cache lines here. */
1111 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1112 !netif_queue_stopped(dev)) {
1113 /* do nothing */
1114 } else {
1115 netif_stop_queue (dev);
1116 }
1117 if (netif_msg_tx_queued(np)) {
1118 printk (KERN_DEBUG
1119 "%s: Transmit frame #%d queued in slot %d.\n",
1120 dev->name, np->cur_tx, entry);
1121 }
1122 return NETDEV_TX_OK;
1123
1124drop_frame:
1125 dev_kfree_skb_any(skb);
1126 np->tx_skbuff[entry] = NULL;
1127 dev->stats.tx_dropped++;
1128 return NETDEV_TX_OK;
1129}
1130
1131/* Reset hardware tx and free all of tx buffers */
1132static int
1133reset_tx (struct net_device *dev)
1134{
1135 struct netdev_private *np = netdev_priv(dev);
1136 void __iomem *ioaddr = np->base;
1137 struct sk_buff *skb;
1138 int i;
1139
1140 /* Reset tx logic, TxListPtr will be cleaned */
1141 iowrite16 (TxDisable, ioaddr + MACCtrl1);
1142 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1143
1144 /* free all tx skbuff */
1145 for (i = 0; i < TX_RING_SIZE; i++) {
1146 np->tx_ring[i].next_desc = 0;
1147
1148 skb = np->tx_skbuff[i];
1149 if (skb) {
1150 dma_unmap_single(&np->pci_dev->dev,
1151 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1152 skb->len, DMA_TO_DEVICE);
1153 dev_kfree_skb_any(skb);
1154 np->tx_skbuff[i] = NULL;
1155 dev->stats.tx_dropped++;
1156 }
1157 }
1158 np->cur_tx = np->dirty_tx = 0;
1159 np->cur_task = 0;
1160
1161 np->last_tx = NULL;
1162 iowrite8(127, ioaddr + TxDMAPollPeriod);
1163
1164 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1165 return 0;
1166}
1167
1168/* The interrupt handler cleans up after the Tx thread,
1169 and schedule a Rx thread work */
1170static irqreturn_t intr_handler(int irq, void *dev_instance)
1171{
1172 struct net_device *dev = (struct net_device *)dev_instance;
1173 struct netdev_private *np = netdev_priv(dev);
1174 void __iomem *ioaddr = np->base;
1175 int hw_frame_id;
1176 int tx_cnt;
1177 int tx_status;
1178 int handled = 0;
1179 int i;
1180
1181 do {
1182 int intr_status = ioread16(ioaddr + IntrStatus);
1183 iowrite16(intr_status, ioaddr + IntrStatus);
1184
1185 if (netif_msg_intr(np))
1186 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1187 dev->name, intr_status);
1188
1189 if (!(intr_status & DEFAULT_INTR))
1190 break;
1191
1192 handled = 1;
1193
1194 if (intr_status & (IntrRxDMADone)) {
1195 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1196 ioaddr + IntrEnable);
1197 if (np->budget < 0)
1198 np->budget = RX_BUDGET;
1199 tasklet_schedule(&np->rx_tasklet);
1200 }
1201 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1202 tx_status = ioread16 (ioaddr + TxStatus);
1203 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1204 if (netif_msg_tx_done(np))
1205 printk
1206 ("%s: Transmit status is %2.2x.\n",
1207 dev->name, tx_status);
1208 if (tx_status & 0x1e) {
1209 if (netif_msg_tx_err(np))
1210 printk("%s: Transmit error status %4.4x.\n",
1211 dev->name, tx_status);
1212 dev->stats.tx_errors++;
1213 if (tx_status & 0x10)
1214 dev->stats.tx_fifo_errors++;
1215 if (tx_status & 0x08)
1216 dev->stats.collisions++;
1217 if (tx_status & 0x04)
1218 dev->stats.tx_fifo_errors++;
1219 if (tx_status & 0x02)
1220 dev->stats.tx_window_errors++;
1221
1222 /*
1223 ** This reset has been verified on
1224 ** DFE-580TX boards ! phdm@macqel.be.
1225 */
1226 if (tx_status & 0x10) { /* TxUnderrun */
1227 /* Restart Tx FIFO and transmitter */
1228 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
1229 /* No need to reset the Tx pointer here */
1230 }
1231 /* Restart the Tx. Need to make sure tx enabled */
1232 i = 10;
1233 do {
1234 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1235 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1236 break;
1237 mdelay(1);
1238 } while (--i);
1239 }
1240 /* Yup, this is a documentation bug. It cost me *hours*. */
1241 iowrite16 (0, ioaddr + TxStatus);
1242 if (tx_cnt < 0) {
1243 iowrite32(5000, ioaddr + DownCounter);
1244 break;
1245 }
1246 tx_status = ioread16 (ioaddr + TxStatus);
1247 }
1248 hw_frame_id = (tx_status >> 8) & 0xff;
1249 } else {
1250 hw_frame_id = ioread8(ioaddr + TxFrameId);
1251 }
1252
1253 if (np->pci_dev->revision >= 0x14) {
1254 spin_lock(&np->lock);
1255 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1256 int entry = np->dirty_tx % TX_RING_SIZE;
1257 struct sk_buff *skb;
1258 int sw_frame_id;
1259 sw_frame_id = (le32_to_cpu(
1260 np->tx_ring[entry].status) >> 2) & 0xff;
1261 if (sw_frame_id == hw_frame_id &&
1262 !(le32_to_cpu(np->tx_ring[entry].status)
1263 & 0x00010000))
1264 break;
1265 if (sw_frame_id == (hw_frame_id + 1) %
1266 TX_RING_SIZE)
1267 break;
1268 skb = np->tx_skbuff[entry];
1269 /* Free the original skb. */
1270 dma_unmap_single(&np->pci_dev->dev,
1271 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1272 skb->len, DMA_TO_DEVICE);
1273 dev_consume_skb_irq(np->tx_skbuff[entry]);
1274 np->tx_skbuff[entry] = NULL;
1275 np->tx_ring[entry].frag[0].addr = 0;
1276 np->tx_ring[entry].frag[0].length = 0;
1277 }
1278 spin_unlock(&np->lock);
1279 } else {
1280 spin_lock(&np->lock);
1281 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1282 int entry = np->dirty_tx % TX_RING_SIZE;
1283 struct sk_buff *skb;
1284 if (!(le32_to_cpu(np->tx_ring[entry].status)
1285 & 0x00010000))
1286 break;
1287 skb = np->tx_skbuff[entry];
1288 /* Free the original skb. */
1289 dma_unmap_single(&np->pci_dev->dev,
1290 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1291 skb->len, DMA_TO_DEVICE);
1292 dev_consume_skb_irq(np->tx_skbuff[entry]);
1293 np->tx_skbuff[entry] = NULL;
1294 np->tx_ring[entry].frag[0].addr = 0;
1295 np->tx_ring[entry].frag[0].length = 0;
1296 }
1297 spin_unlock(&np->lock);
1298 }
1299
1300 if (netif_queue_stopped(dev) &&
1301 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1302 /* The ring is no longer full, clear busy flag. */
1303 netif_wake_queue (dev);
1304 }
1305 /* Abnormal error summary/uncommon events handlers. */
1306 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1307 netdev_error(dev, intr_status);
1308 } while (0);
1309 if (netif_msg_intr(np))
1310 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1311 dev->name, ioread16(ioaddr + IntrStatus));
1312 return IRQ_RETVAL(handled);
1313}
1314
1315static void rx_poll(unsigned long data)
1316{
1317 struct net_device *dev = (struct net_device *)data;
1318 struct netdev_private *np = netdev_priv(dev);
1319 int entry = np->cur_rx % RX_RING_SIZE;
1320 int boguscnt = np->budget;
1321 void __iomem *ioaddr = np->base;
1322 int received = 0;
1323
1324 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1325 while (1) {
1326 struct netdev_desc *desc = &(np->rx_ring[entry]);
1327 u32 frame_status = le32_to_cpu(desc->status);
1328 int pkt_len;
1329
1330 if (--boguscnt < 0) {
1331 goto not_done;
1332 }
1333 if (!(frame_status & DescOwn))
1334 break;
1335 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1336 if (netif_msg_rx_status(np))
1337 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1338 frame_status);
1339 if (frame_status & 0x001f4000) {
1340 /* There was a error. */
1341 if (netif_msg_rx_err(np))
1342 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1343 frame_status);
1344 dev->stats.rx_errors++;
1345 if (frame_status & 0x00100000)
1346 dev->stats.rx_length_errors++;
1347 if (frame_status & 0x00010000)
1348 dev->stats.rx_fifo_errors++;
1349 if (frame_status & 0x00060000)
1350 dev->stats.rx_frame_errors++;
1351 if (frame_status & 0x00080000)
1352 dev->stats.rx_crc_errors++;
1353 if (frame_status & 0x00100000) {
1354 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1355 " status %8.8x.\n",
1356 dev->name, frame_status);
1357 }
1358 } else {
1359 struct sk_buff *skb;
1360#ifndef final_version
1361 if (netif_msg_rx_status(np))
1362 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1363 ", bogus_cnt %d.\n",
1364 pkt_len, boguscnt);
1365#endif
1366 /* Check if the packet is long enough to accept without copying
1367 to a minimally-sized skbuff. */
1368 if (pkt_len < rx_copybreak &&
1369 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1370 skb_reserve(skb, 2); /* 16 byte align the IP header */
1371 dma_sync_single_for_cpu(&np->pci_dev->dev,
1372 le32_to_cpu(desc->frag[0].addr),
1373 np->rx_buf_sz, DMA_FROM_DEVICE);
1374 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1375 dma_sync_single_for_device(&np->pci_dev->dev,
1376 le32_to_cpu(desc->frag[0].addr),
1377 np->rx_buf_sz, DMA_FROM_DEVICE);
1378 skb_put(skb, pkt_len);
1379 } else {
1380 dma_unmap_single(&np->pci_dev->dev,
1381 le32_to_cpu(desc->frag[0].addr),
1382 np->rx_buf_sz, DMA_FROM_DEVICE);
1383 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1384 np->rx_skbuff[entry] = NULL;
1385 }
1386 skb->protocol = eth_type_trans(skb, dev);
1387 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1388 netif_rx(skb);
1389 }
1390 entry = (entry + 1) % RX_RING_SIZE;
1391 received++;
1392 }
1393 np->cur_rx = entry;
1394 refill_rx (dev);
1395 np->budget -= received;
1396 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1397 return;
1398
1399not_done:
1400 np->cur_rx = entry;
1401 refill_rx (dev);
1402 if (!received)
1403 received = 1;
1404 np->budget -= received;
1405 if (np->budget <= 0)
1406 np->budget = RX_BUDGET;
1407 tasklet_schedule(&np->rx_tasklet);
1408}
1409
1410static void refill_rx (struct net_device *dev)
1411{
1412 struct netdev_private *np = netdev_priv(dev);
1413 int entry;
1414 int cnt = 0;
1415
1416 /* Refill the Rx ring buffers. */
1417 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1418 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1419 struct sk_buff *skb;
1420 entry = np->dirty_rx % RX_RING_SIZE;
1421 if (np->rx_skbuff[entry] == NULL) {
1422 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1423 np->rx_skbuff[entry] = skb;
1424 if (skb == NULL)
1425 break; /* Better luck next round. */
1426 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1427 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
1428 dma_map_single(&np->pci_dev->dev, skb->data,
1429 np->rx_buf_sz, DMA_FROM_DEVICE));
1430 if (dma_mapping_error(&np->pci_dev->dev,
1431 np->rx_ring[entry].frag[0].addr)) {
1432 dev_kfree_skb_irq(skb);
1433 np->rx_skbuff[entry] = NULL;
1434 break;
1435 }
1436 }
1437 /* Perhaps we need not reset this field. */
1438 np->rx_ring[entry].frag[0].length =
1439 cpu_to_le32(np->rx_buf_sz | LastFrag);
1440 np->rx_ring[entry].status = 0;
1441 cnt++;
1442 }
1443}
1444static void netdev_error(struct net_device *dev, int intr_status)
1445{
1446 struct netdev_private *np = netdev_priv(dev);
1447 void __iomem *ioaddr = np->base;
1448 u16 mii_ctl, mii_advertise, mii_lpa;
1449 int speed;
1450
1451 if (intr_status & LinkChange) {
1452 if (mdio_wait_link(dev, 10) == 0) {
1453 printk(KERN_INFO "%s: Link up\n", dev->name);
1454 if (np->an_enable) {
1455 mii_advertise = mdio_read(dev, np->phys[0],
1456 MII_ADVERTISE);
1457 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1458 mii_advertise &= mii_lpa;
1459 printk(KERN_INFO "%s: Link changed: ",
1460 dev->name);
1461 if (mii_advertise & ADVERTISE_100FULL) {
1462 np->speed = 100;
1463 printk("100Mbps, full duplex\n");
1464 } else if (mii_advertise & ADVERTISE_100HALF) {
1465 np->speed = 100;
1466 printk("100Mbps, half duplex\n");
1467 } else if (mii_advertise & ADVERTISE_10FULL) {
1468 np->speed = 10;
1469 printk("10Mbps, full duplex\n");
1470 } else if (mii_advertise & ADVERTISE_10HALF) {
1471 np->speed = 10;
1472 printk("10Mbps, half duplex\n");
1473 } else
1474 printk("\n");
1475
1476 } else {
1477 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1478 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1479 np->speed = speed;
1480 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1481 dev->name, speed);
1482 printk("%s duplex.\n",
1483 (mii_ctl & BMCR_FULLDPLX) ?
1484 "full" : "half");
1485 }
1486 check_duplex(dev);
1487 if (np->flowctrl && np->mii_if.full_duplex) {
1488 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1489 ioaddr + MulticastFilter1+2);
1490 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1491 ioaddr + MACCtrl0);
1492 }
1493 netif_carrier_on(dev);
1494 } else {
1495 printk(KERN_INFO "%s: Link down\n", dev->name);
1496 netif_carrier_off(dev);
1497 }
1498 }
1499 if (intr_status & StatsMax) {
1500 get_stats(dev);
1501 }
1502 if (intr_status & IntrPCIErr) {
1503 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1504 dev->name, intr_status);
1505 /* We must do a global reset of DMA to continue. */
1506 }
1507}
1508
1509static struct net_device_stats *get_stats(struct net_device *dev)
1510{
1511 struct netdev_private *np = netdev_priv(dev);
1512 void __iomem *ioaddr = np->base;
1513 unsigned long flags;
1514 u8 late_coll, single_coll, mult_coll;
1515
1516 spin_lock_irqsave(&np->statlock, flags);
1517 /* The chip only need report frame silently dropped. */
1518 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1519 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1520 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1521 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1522
1523 mult_coll = ioread8(ioaddr + StatsMultiColl);
1524 np->xstats.tx_multiple_collisions += mult_coll;
1525 single_coll = ioread8(ioaddr + StatsOneColl);
1526 np->xstats.tx_single_collisions += single_coll;
1527 late_coll = ioread8(ioaddr + StatsLateColl);
1528 np->xstats.tx_late_collisions += late_coll;
1529 dev->stats.collisions += mult_coll
1530 + single_coll
1531 + late_coll;
1532
1533 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
1534 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
1535 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
1536 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
1537 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
1538 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
1539 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);
1540
1541 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1542 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1543 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1544 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1545
1546 spin_unlock_irqrestore(&np->statlock, flags);
1547
1548 return &dev->stats;
1549}
1550
1551static void set_rx_mode(struct net_device *dev)
1552{
1553 struct netdev_private *np = netdev_priv(dev);
1554 void __iomem *ioaddr = np->base;
1555 u16 mc_filter[4]; /* Multicast hash filter */
1556 u32 rx_mode;
1557 int i;
1558
1559 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1560 memset(mc_filter, 0xff, sizeof(mc_filter));
1561 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1562 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1563 (dev->flags & IFF_ALLMULTI)) {
1564 /* Too many to match, or accept all multicasts. */
1565 memset(mc_filter, 0xff, sizeof(mc_filter));
1566 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1567 } else if (!netdev_mc_empty(dev)) {
1568 struct netdev_hw_addr *ha;
1569 int bit;
1570 int index;
1571 int crc;
1572 memset (mc_filter, 0, sizeof (mc_filter));
1573 netdev_for_each_mc_addr(ha, dev) {
1574 crc = ether_crc_le(ETH_ALEN, ha->addr);
1575 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1576 if (crc & 0x80000000) index |= 1 << bit;
1577 mc_filter[index/16] |= (1 << (index % 16));
1578 }
1579 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1580 } else {
1581 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1582 return;
1583 }
1584 if (np->mii_if.full_duplex && np->flowctrl)
1585 mc_filter[3] |= 0x0200;
1586
1587 for (i = 0; i < 4; i++)
1588 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1589 iowrite8(rx_mode, ioaddr + RxMode);
1590}
1591
1592static int __set_mac_addr(struct net_device *dev)
1593{
1594 struct netdev_private *np = netdev_priv(dev);
1595 u16 addr16;
1596
1597 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1598 iowrite16(addr16, np->base + StationAddr);
1599 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1600 iowrite16(addr16, np->base + StationAddr+2);
1601 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1602 iowrite16(addr16, np->base + StationAddr+4);
1603 return 0;
1604}
1605
1606/* Invoked with rtnl_lock held */
1607static int sundance_set_mac_addr(struct net_device *dev, void *data)
1608{
1609 const struct sockaddr *addr = data;
1610
1611 if (!is_valid_ether_addr(addr->sa_data))
1612 return -EADDRNOTAVAIL;
1613 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
1614 __set_mac_addr(dev);
1615
1616 return 0;
1617}
1618
1619static const struct {
1620 const char name[ETH_GSTRING_LEN];
1621} sundance_stats[] = {
1622 { "tx_multiple_collisions" },
1623 { "tx_single_collisions" },
1624 { "tx_late_collisions" },
1625 { "tx_deferred" },
1626 { "tx_deferred_excessive" },
1627 { "tx_aborted" },
1628 { "tx_bcasts" },
1629 { "rx_bcasts" },
1630 { "tx_mcasts" },
1631 { "rx_mcasts" },
1632};
1633
1634static int check_if_running(struct net_device *dev)
1635{
1636 if (!netif_running(dev))
1637 return -EINVAL;
1638 return 0;
1639}
1640
1641static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1642{
1643 struct netdev_private *np = netdev_priv(dev);
1644 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1645 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1646}
1647
1648static int get_link_ksettings(struct net_device *dev,
1649 struct ethtool_link_ksettings *cmd)
1650{
1651 struct netdev_private *np = netdev_priv(dev);
1652 spin_lock_irq(&np->lock);
1653 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1654 spin_unlock_irq(&np->lock);
1655 return 0;
1656}
1657
1658static int set_link_ksettings(struct net_device *dev,
1659 const struct ethtool_link_ksettings *cmd)
1660{
1661 struct netdev_private *np = netdev_priv(dev);
1662 int res;
1663 spin_lock_irq(&np->lock);
1664 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1665 spin_unlock_irq(&np->lock);
1666 return res;
1667}
1668
1669static int nway_reset(struct net_device *dev)
1670{
1671 struct netdev_private *np = netdev_priv(dev);
1672 return mii_nway_restart(&np->mii_if);
1673}
1674
1675static u32 get_link(struct net_device *dev)
1676{
1677 struct netdev_private *np = netdev_priv(dev);
1678 return mii_link_ok(&np->mii_if);
1679}
1680
1681static u32 get_msglevel(struct net_device *dev)
1682{
1683 struct netdev_private *np = netdev_priv(dev);
1684 return np->msg_enable;
1685}
1686
1687static void set_msglevel(struct net_device *dev, u32 val)
1688{
1689 struct netdev_private *np = netdev_priv(dev);
1690 np->msg_enable = val;
1691}
1692
1693static void get_strings(struct net_device *dev, u32 stringset,
1694 u8 *data)
1695{
1696 if (stringset == ETH_SS_STATS)
1697 memcpy(data, sundance_stats, sizeof(sundance_stats));
1698}
1699
1700static int get_sset_count(struct net_device *dev, int sset)
1701{
1702 switch (sset) {
1703 case ETH_SS_STATS:
1704 return ARRAY_SIZE(sundance_stats);
1705 default:
1706 return -EOPNOTSUPP;
1707 }
1708}
1709
1710static void get_ethtool_stats(struct net_device *dev,
1711 struct ethtool_stats *stats, u64 *data)
1712{
1713 struct netdev_private *np = netdev_priv(dev);
1714 int i = 0;
1715
1716 get_stats(dev);
1717 data[i++] = np->xstats.tx_multiple_collisions;
1718 data[i++] = np->xstats.tx_single_collisions;
1719 data[i++] = np->xstats.tx_late_collisions;
1720 data[i++] = np->xstats.tx_deferred;
1721 data[i++] = np->xstats.tx_deferred_excessive;
1722 data[i++] = np->xstats.tx_aborted;
1723 data[i++] = np->xstats.tx_bcasts;
1724 data[i++] = np->xstats.rx_bcasts;
1725 data[i++] = np->xstats.tx_mcasts;
1726 data[i++] = np->xstats.rx_mcasts;
1727}
1728
1729#ifdef CONFIG_PM
1730
1731static void sundance_get_wol(struct net_device *dev,
1732 struct ethtool_wolinfo *wol)
1733{
1734 struct netdev_private *np = netdev_priv(dev);
1735 void __iomem *ioaddr = np->base;
1736 u8 wol_bits;
1737
1738 wol->wolopts = 0;
1739
1740 wol->supported = (WAKE_PHY | WAKE_MAGIC);
1741 if (!np->wol_enabled)
1742 return;
1743
1744 wol_bits = ioread8(ioaddr + WakeEvent);
1745 if (wol_bits & MagicPktEnable)
1746 wol->wolopts |= WAKE_MAGIC;
1747 if (wol_bits & LinkEventEnable)
1748 wol->wolopts |= WAKE_PHY;
1749}
1750
1751static int sundance_set_wol(struct net_device *dev,
1752 struct ethtool_wolinfo *wol)
1753{
1754 struct netdev_private *np = netdev_priv(dev);
1755 void __iomem *ioaddr = np->base;
1756 u8 wol_bits;
1757
1758 if (!device_can_wakeup(&np->pci_dev->dev))
1759 return -EOPNOTSUPP;
1760
1761 np->wol_enabled = !!(wol->wolopts);
1762 wol_bits = ioread8(ioaddr + WakeEvent);
1763 wol_bits &= ~(WakePktEnable | MagicPktEnable |
1764 LinkEventEnable | WolEnable);
1765
1766 if (np->wol_enabled) {
1767 if (wol->wolopts & WAKE_MAGIC)
1768 wol_bits |= (MagicPktEnable | WolEnable);
1769 if (wol->wolopts & WAKE_PHY)
1770 wol_bits |= (LinkEventEnable | WolEnable);
1771 }
1772 iowrite8(wol_bits, ioaddr + WakeEvent);
1773
1774 device_set_wakeup_enable(&np->pci_dev->dev, np->wol_enabled);
1775
1776 return 0;
1777}
1778#else
1779#define sundance_get_wol NULL
1780#define sundance_set_wol NULL
1781#endif /* CONFIG_PM */
1782
1783static const struct ethtool_ops ethtool_ops = {
1784 .begin = check_if_running,
1785 .get_drvinfo = get_drvinfo,
1786 .nway_reset = nway_reset,
1787 .get_link = get_link,
1788 .get_wol = sundance_get_wol,
1789 .set_wol = sundance_set_wol,
1790 .get_msglevel = get_msglevel,
1791 .set_msglevel = set_msglevel,
1792 .get_strings = get_strings,
1793 .get_sset_count = get_sset_count,
1794 .get_ethtool_stats = get_ethtool_stats,
1795 .get_link_ksettings = get_link_ksettings,
1796 .set_link_ksettings = set_link_ksettings,
1797};
1798
1799static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1800{
1801 struct netdev_private *np = netdev_priv(dev);
1802 int rc;
1803
1804 if (!netif_running(dev))
1805 return -EINVAL;
1806
1807 spin_lock_irq(&np->lock);
1808 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1809 spin_unlock_irq(&np->lock);
1810
1811 return rc;
1812}
1813
1814static int netdev_close(struct net_device *dev)
1815{
1816 struct netdev_private *np = netdev_priv(dev);
1817 void __iomem *ioaddr = np->base;
1818 struct sk_buff *skb;
1819 int i;
1820
1821 /* Wait and kill tasklet */
1822 tasklet_kill(&np->rx_tasklet);
1823 tasklet_kill(&np->tx_tasklet);
1824 np->cur_tx = 0;
1825 np->dirty_tx = 0;
1826 np->cur_task = 0;
1827 np->last_tx = NULL;
1828
1829 netif_stop_queue(dev);
1830
1831 if (netif_msg_ifdown(np)) {
1832 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1833 "Rx %4.4x Int %2.2x.\n",
1834 dev->name, ioread8(ioaddr + TxStatus),
1835 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1836 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1837 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1838 }
1839
1840 /* Disable interrupts by clearing the interrupt mask. */
1841 iowrite16(0x0000, ioaddr + IntrEnable);
1842
1843 /* Disable Rx and Tx DMA for safely release resource */
1844 iowrite32(0x500, ioaddr + DMACtrl);
1845
1846 /* Stop the chip's Tx and Rx processes. */
1847 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1848
1849 for (i = 2000; i > 0; i--) {
1850 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1851 break;
1852 mdelay(1);
1853 }
1854
1855 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1856 ioaddr + ASIC_HI_WORD(ASICCtrl));
1857
1858 for (i = 2000; i > 0; i--) {
1859 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
1860 break;
1861 mdelay(1);
1862 }
1863
1864#ifdef __i386__
1865 if (netif_msg_hw(np)) {
1866 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1867 (int)(np->tx_ring_dma));
1868 for (i = 0; i < TX_RING_SIZE; i++)
1869 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1870 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1871 np->tx_ring[i].frag[0].length);
1872 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1873 (int)(np->rx_ring_dma));
1874 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1875 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1876 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1877 np->rx_ring[i].frag[0].length);
1878 }
1879 }
1880#endif /* __i386__ debugging only */
1881
1882 free_irq(np->pci_dev->irq, dev);
1883
1884 del_timer_sync(&np->timer);
1885
1886 /* Free all the skbuffs in the Rx queue. */
1887 for (i = 0; i < RX_RING_SIZE; i++) {
1888 np->rx_ring[i].status = 0;
1889 skb = np->rx_skbuff[i];
1890 if (skb) {
1891 dma_unmap_single(&np->pci_dev->dev,
1892 le32_to_cpu(np->rx_ring[i].frag[0].addr),
1893 np->rx_buf_sz, DMA_FROM_DEVICE);
1894 dev_kfree_skb(skb);
1895 np->rx_skbuff[i] = NULL;
1896 }
1897 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
1898 }
1899 for (i = 0; i < TX_RING_SIZE; i++) {
1900 np->tx_ring[i].next_desc = 0;
1901 skb = np->tx_skbuff[i];
1902 if (skb) {
1903 dma_unmap_single(&np->pci_dev->dev,
1904 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1905 skb->len, DMA_TO_DEVICE);
1906 dev_kfree_skb(skb);
1907 np->tx_skbuff[i] = NULL;
1908 }
1909 }
1910
1911 return 0;
1912}
1913
1914static void sundance_remove1(struct pci_dev *pdev)
1915{
1916 struct net_device *dev = pci_get_drvdata(pdev);
1917
1918 if (dev) {
1919 struct netdev_private *np = netdev_priv(dev);
1920 unregister_netdev(dev);
1921 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
1922 np->rx_ring, np->rx_ring_dma);
1923 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
1924 np->tx_ring, np->tx_ring_dma);
1925 pci_iounmap(pdev, np->base);
1926 pci_release_regions(pdev);
1927 free_netdev(dev);
1928 }
1929}
1930
1931static int __maybe_unused sundance_suspend(struct device *dev_d)
1932{
1933 struct net_device *dev = dev_get_drvdata(dev_d);
1934 struct netdev_private *np = netdev_priv(dev);
1935 void __iomem *ioaddr = np->base;
1936
1937 if (!netif_running(dev))
1938 return 0;
1939
1940 netdev_close(dev);
1941 netif_device_detach(dev);
1942
1943 if (np->wol_enabled) {
1944 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1945 iowrite16(RxEnable, ioaddr + MACCtrl1);
1946 }
1947
1948 device_set_wakeup_enable(dev_d, np->wol_enabled);
1949
1950 return 0;
1951}
1952
1953static int __maybe_unused sundance_resume(struct device *dev_d)
1954{
1955 struct net_device *dev = dev_get_drvdata(dev_d);
1956 int err = 0;
1957
1958 if (!netif_running(dev))
1959 return 0;
1960
1961 err = netdev_open(dev);
1962 if (err) {
1963 printk(KERN_ERR "%s: Can't resume interface!\n",
1964 dev->name);
1965 goto out;
1966 }
1967
1968 netif_device_attach(dev);
1969
1970out:
1971 return err;
1972}
1973
1974static SIMPLE_DEV_PM_OPS(sundance_pm_ops, sundance_suspend, sundance_resume);
1975
1976static struct pci_driver sundance_driver = {
1977 .name = DRV_NAME,
1978 .id_table = sundance_pci_tbl,
1979 .probe = sundance_probe1,
1980 .remove = sundance_remove1,
1981 .driver.pm = &sundance_pm_ops,
1982};
1983
1984static int __init sundance_init(void)
1985{
1986 return pci_register_driver(&sundance_driver);
1987}
1988
1989static void __exit sundance_exit(void)
1990{
1991 pci_unregister_driver(&sundance_driver);
1992}
1993
1994module_init(sundance_init);
1995module_exit(sundance_exit);
1996
1997