Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v4.17
 
   1/*
   2 *
   3 * Alchemy Au1x00 ethernet driver
   4 *
   5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
   6 * Copyright 2002 TimeSys Corp.
   7 * Added ethtool/mii-tool support,
   8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
   9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
  10 * or riemer@riemer-nt.de: fixed the link beat detection with
  11 * ioctls (SIOCGMIIPHY)
  12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
  13 *  converted to use linux-2.6.x's PHY framework
  14 *
  15 * Author: MontaVista Software, Inc.
  16 *		ppopov@mvista.com or source@mvista.com
  17 *
  18 * ########################################################################
  19 *
  20 *  This program is free software; you can distribute it and/or modify it
  21 *  under the terms of the GNU General Public License (Version 2) as
  22 *  published by the Free Software Foundation.
  23 *
  24 *  This program is distributed in the hope it will be useful, but WITHOUT
  25 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  26 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  27 *  for more details.
  28 *
  29 *  You should have received a copy of the GNU General Public License along
  30 *  with this program; if not, see <http://www.gnu.org/licenses/>.
  31 *
  32 * ########################################################################
  33 *
  34 *
  35 */
  36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  37
  38#include <linux/capability.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/module.h>
  41#include <linux/kernel.h>
  42#include <linux/string.h>
  43#include <linux/timer.h>
  44#include <linux/errno.h>
  45#include <linux/in.h>
  46#include <linux/ioport.h>
  47#include <linux/bitops.h>
  48#include <linux/slab.h>
  49#include <linux/interrupt.h>
  50#include <linux/netdevice.h>
  51#include <linux/etherdevice.h>
  52#include <linux/ethtool.h>
  53#include <linux/mii.h>
  54#include <linux/skbuff.h>
  55#include <linux/delay.h>
  56#include <linux/crc32.h>
  57#include <linux/phy.h>
  58#include <linux/platform_device.h>
  59#include <linux/cpu.h>
  60#include <linux/io.h>
  61
  62#include <asm/mipsregs.h>
  63#include <asm/irq.h>
  64#include <asm/processor.h>
  65
  66#include <au1000.h>
  67#include <au1xxx_eth.h>
  68#include <prom.h>
  69
  70#include "au1000_eth.h"
  71
  72#ifdef AU1000_ETH_DEBUG
  73static int au1000_debug = 5;
  74#else
  75static int au1000_debug = 3;
  76#endif
  77
  78#define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
  79				NETIF_MSG_PROBE	| \
  80				NETIF_MSG_LINK)
  81
  82#define DRV_NAME	"au1000_eth"
  83#define DRV_VERSION	"1.7"
  84#define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
  85#define DRV_DESC	"Au1xxx on-chip Ethernet driver"
  86
  87MODULE_AUTHOR(DRV_AUTHOR);
  88MODULE_DESCRIPTION(DRV_DESC);
  89MODULE_LICENSE("GPL");
  90MODULE_VERSION(DRV_VERSION);
  91
  92/* AU1000 MAC registers and bits */
  93#define MAC_CONTROL		0x0
  94#  define MAC_RX_ENABLE		(1 << 2)
  95#  define MAC_TX_ENABLE		(1 << 3)
  96#  define MAC_DEF_CHECK		(1 << 5)
  97#  define MAC_SET_BL(X)		(((X) & 0x3) << 6)
  98#  define MAC_AUTO_PAD		(1 << 8)
  99#  define MAC_DISABLE_RETRY	(1 << 10)
 100#  define MAC_DISABLE_BCAST	(1 << 11)
 101#  define MAC_LATE_COL		(1 << 12)
 102#  define MAC_HASH_MODE		(1 << 13)
 103#  define MAC_HASH_ONLY		(1 << 15)
 104#  define MAC_PASS_ALL		(1 << 16)
 105#  define MAC_INVERSE_FILTER	(1 << 17)
 106#  define MAC_PROMISCUOUS	(1 << 18)
 107#  define MAC_PASS_ALL_MULTI	(1 << 19)
 108#  define MAC_FULL_DUPLEX	(1 << 20)
 109#  define MAC_NORMAL_MODE	0
 110#  define MAC_INT_LOOPBACK	(1 << 21)
 111#  define MAC_EXT_LOOPBACK	(1 << 22)
 112#  define MAC_DISABLE_RX_OWN	(1 << 23)
 113#  define MAC_BIG_ENDIAN	(1 << 30)
 114#  define MAC_RX_ALL		(1 << 31)
 115#define MAC_ADDRESS_HIGH	0x4
 116#define MAC_ADDRESS_LOW		0x8
 117#define MAC_MCAST_HIGH		0xC
 118#define MAC_MCAST_LOW		0x10
 119#define MAC_MII_CNTRL		0x14
 120#  define MAC_MII_BUSY		(1 << 0)
 121#  define MAC_MII_READ		0
 122#  define MAC_MII_WRITE		(1 << 1)
 123#  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
 124#  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
 125#define MAC_MII_DATA		0x18
 126#define MAC_FLOW_CNTRL		0x1C
 127#  define MAC_FLOW_CNTRL_BUSY	(1 << 0)
 128#  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
 129#  define MAC_PASS_CONTROL	(1 << 2)
 130#  define MAC_SET_PAUSE(X)	(((X) & 0xffff) << 16)
 131#define MAC_VLAN1_TAG		0x20
 132#define MAC_VLAN2_TAG		0x24
 133
 134/* Ethernet Controller Enable */
 135#  define MAC_EN_CLOCK_ENABLE	(1 << 0)
 136#  define MAC_EN_RESET0		(1 << 1)
 137#  define MAC_EN_TOSS		(0 << 2)
 138#  define MAC_EN_CACHEABLE	(1 << 3)
 139#  define MAC_EN_RESET1		(1 << 4)
 140#  define MAC_EN_RESET2		(1 << 5)
 141#  define MAC_DMA_RESET		(1 << 6)
 142
 143/* Ethernet Controller DMA Channels */
 144/* offsets from MAC_TX_RING_ADDR address */
 145#define MAC_TX_BUFF0_STATUS	0x0
 146#  define TX_FRAME_ABORTED	(1 << 0)
 147#  define TX_JAB_TIMEOUT	(1 << 1)
 148#  define TX_NO_CARRIER		(1 << 2)
 149#  define TX_LOSS_CARRIER	(1 << 3)
 150#  define TX_EXC_DEF		(1 << 4)
 151#  define TX_LATE_COLL_ABORT	(1 << 5)
 152#  define TX_EXC_COLL		(1 << 6)
 153#  define TX_UNDERRUN		(1 << 7)
 154#  define TX_DEFERRED		(1 << 8)
 155#  define TX_LATE_COLL		(1 << 9)
 156#  define TX_COLL_CNT_MASK	(0xF << 10)
 157#  define TX_PKT_RETRY		(1 << 31)
 158#define MAC_TX_BUFF0_ADDR	0x4
 159#  define TX_DMA_ENABLE		(1 << 0)
 160#  define TX_T_DONE		(1 << 1)
 161#  define TX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
 162#define MAC_TX_BUFF0_LEN	0x8
 163#define MAC_TX_BUFF1_STATUS	0x10
 164#define MAC_TX_BUFF1_ADDR	0x14
 165#define MAC_TX_BUFF1_LEN	0x18
 166#define MAC_TX_BUFF2_STATUS	0x20
 167#define MAC_TX_BUFF2_ADDR	0x24
 168#define MAC_TX_BUFF2_LEN	0x28
 169#define MAC_TX_BUFF3_STATUS	0x30
 170#define MAC_TX_BUFF3_ADDR	0x34
 171#define MAC_TX_BUFF3_LEN	0x38
 172
 173/* offsets from MAC_RX_RING_ADDR */
 174#define MAC_RX_BUFF0_STATUS	0x0
 175#  define RX_FRAME_LEN_MASK	0x3fff
 176#  define RX_WDOG_TIMER		(1 << 14)
 177#  define RX_RUNT		(1 << 15)
 178#  define RX_OVERLEN		(1 << 16)
 179#  define RX_COLL		(1 << 17)
 180#  define RX_ETHER		(1 << 18)
 181#  define RX_MII_ERROR		(1 << 19)
 182#  define RX_DRIBBLING		(1 << 20)
 183#  define RX_CRC_ERROR		(1 << 21)
 184#  define RX_VLAN1		(1 << 22)
 185#  define RX_VLAN2		(1 << 23)
 186#  define RX_LEN_ERROR		(1 << 24)
 187#  define RX_CNTRL_FRAME	(1 << 25)
 188#  define RX_U_CNTRL_FRAME	(1 << 26)
 189#  define RX_MCAST_FRAME	(1 << 27)
 190#  define RX_BCAST_FRAME	(1 << 28)
 191#  define RX_FILTER_FAIL	(1 << 29)
 192#  define RX_PACKET_FILTER	(1 << 30)
 193#  define RX_MISSED_FRAME	(1 << 31)
 194
 195#  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
 196		    RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
 197		    RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
 198#define MAC_RX_BUFF0_ADDR	0x4
 199#  define RX_DMA_ENABLE		(1 << 0)
 200#  define RX_T_DONE		(1 << 1)
 201#  define RX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
 202#  define RX_SET_BUFF_ADDR(X)	((X) & 0xffffffc0)
 203#define MAC_RX_BUFF1_STATUS	0x10
 204#define MAC_RX_BUFF1_ADDR	0x14
 205#define MAC_RX_BUFF2_STATUS	0x20
 206#define MAC_RX_BUFF2_ADDR	0x24
 207#define MAC_RX_BUFF3_STATUS	0x30
 208#define MAC_RX_BUFF3_ADDR	0x34
 209
 210/*
 211 * Theory of operation
 212 *
 213 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
 214 * There are four receive and four transmit descriptors.  These
 215 * descriptors are not in memory; rather, they are just a set of
 216 * hardware registers.
 217 *
 218 * Since the Au1000 has a coherent data cache, the receive and
 219 * transmit buffers are allocated from the KSEG0 segment. The
 220 * hardware registers, however, are still mapped at KSEG1 to
 221 * make sure there's no out-of-order writes, and that all writes
 222 * complete immediately.
 223 */
 224
 225/*
 226 * board-specific configurations
 227 *
 228 * PHY detection algorithm
 229 *
 230 * If phy_static_config is undefined, the PHY setup is
 231 * autodetected:
 232 *
 233 * mii_probe() first searches the current MAC's MII bus for a PHY,
 234 * selecting the first (or last, if phy_search_highest_addr is
 235 * defined) PHY address not already claimed by another netdev.
 236 *
 237 * If nothing was found that way when searching for the 2nd ethernet
 238 * controller's PHY and phy1_search_mac0 is defined, then
 239 * the first MII bus is searched as well for an unclaimed PHY; this is
 240 * needed in case of a dual-PHY accessible only through the MAC0's MII
 241 * bus.
 242 *
 243 * Finally, if no PHY is found, then the corresponding ethernet
 244 * controller is not registered to the network subsystem.
 245 */
 246
 247/* autodetection defaults: phy1_search_mac0 */
 248
 249/* static PHY setup
 250 *
 251 * most boards PHY setup should be detectable properly with the
 252 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
 253 * you have a switch attached, or want to use the PHY's interrupt
 254 * notification capabilities) you can provide a static PHY
 255 * configuration here
 256 *
 257 * IRQs may only be set, if a PHY address was configured
 258 * If a PHY address is given, also a bus id is required to be set
 259 *
 260 * ps: make sure the used irqs are configured properly in the board
 261 * specific irq-map
 262 */
 263
 264static void au1000_enable_mac(struct net_device *dev, int force_reset)
 265{
 266	unsigned long flags;
 267	struct au1000_private *aup = netdev_priv(dev);
 268
 269	spin_lock_irqsave(&aup->lock, flags);
 270
 271	if (force_reset || (!aup->mac_enabled)) {
 272		writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 273		wmb(); /* drain writebuffer */
 274		mdelay(2);
 275		writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
 276				| MAC_EN_CLOCK_ENABLE), aup->enable);
 277		wmb(); /* drain writebuffer */
 278		mdelay(2);
 279
 280		aup->mac_enabled = 1;
 281	}
 282
 283	spin_unlock_irqrestore(&aup->lock, flags);
 284}
 285
 286/*
 287 * MII operations
 288 */
 289static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
 290{
 291	struct au1000_private *aup = netdev_priv(dev);
 292	u32 *const mii_control_reg = &aup->mac->mii_control;
 293	u32 *const mii_data_reg = &aup->mac->mii_data;
 294	u32 timedout = 20;
 295	u32 mii_control;
 296
 297	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 298		mdelay(1);
 299		if (--timedout == 0) {
 300			netdev_err(dev, "read_MII busy timeout!!\n");
 301			return -1;
 302		}
 303	}
 304
 305	mii_control = MAC_SET_MII_SELECT_REG(reg) |
 306		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
 307
 308	writel(mii_control, mii_control_reg);
 309
 310	timedout = 20;
 311	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 312		mdelay(1);
 313		if (--timedout == 0) {
 314			netdev_err(dev, "mdio_read busy timeout!!\n");
 315			return -1;
 316		}
 317	}
 318	return readl(mii_data_reg);
 319}
 320
 321static void au1000_mdio_write(struct net_device *dev, int phy_addr,
 322			      int reg, u16 value)
 323{
 324	struct au1000_private *aup = netdev_priv(dev);
 325	u32 *const mii_control_reg = &aup->mac->mii_control;
 326	u32 *const mii_data_reg = &aup->mac->mii_data;
 327	u32 timedout = 20;
 328	u32 mii_control;
 329
 330	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 331		mdelay(1);
 332		if (--timedout == 0) {
 333			netdev_err(dev, "mdio_write busy timeout!!\n");
 334			return;
 335		}
 336	}
 337
 338	mii_control = MAC_SET_MII_SELECT_REG(reg) |
 339		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
 340
 341	writel(value, mii_data_reg);
 342	writel(mii_control, mii_control_reg);
 343}
 344
 345static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
 346{
 347	struct net_device *const dev = bus->priv;
 348
 349	/* make sure the MAC associated with this
 350	 * mii_bus is enabled
 351	 */
 352	au1000_enable_mac(dev, 0);
 353
 354	return au1000_mdio_read(dev, phy_addr, regnum);
 355}
 356
 357static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
 358				u16 value)
 359{
 360	struct net_device *const dev = bus->priv;
 361
 362	/* make sure the MAC associated with this
 363	 * mii_bus is enabled
 364	 */
 365	au1000_enable_mac(dev, 0);
 366
 367	au1000_mdio_write(dev, phy_addr, regnum, value);
 368	return 0;
 369}
 370
 371static int au1000_mdiobus_reset(struct mii_bus *bus)
 372{
 373	struct net_device *const dev = bus->priv;
 374
 375	/* make sure the MAC associated with this
 376	 * mii_bus is enabled
 377	 */
 378	au1000_enable_mac(dev, 0);
 379
 380	return 0;
 381}
 382
 383static void au1000_hard_stop(struct net_device *dev)
 384{
 385	struct au1000_private *aup = netdev_priv(dev);
 386	u32 reg;
 387
 388	netif_dbg(aup, drv, dev, "hard stop\n");
 389
 390	reg = readl(&aup->mac->control);
 391	reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
 392	writel(reg, &aup->mac->control);
 393	wmb(); /* drain writebuffer */
 394	mdelay(10);
 395}
 396
 397static void au1000_enable_rx_tx(struct net_device *dev)
 398{
 399	struct au1000_private *aup = netdev_priv(dev);
 400	u32 reg;
 401
 402	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
 403
 404	reg = readl(&aup->mac->control);
 405	reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
 406	writel(reg, &aup->mac->control);
 407	wmb(); /* drain writebuffer */
 408	mdelay(10);
 409}
 410
 411static void
 412au1000_adjust_link(struct net_device *dev)
 413{
 414	struct au1000_private *aup = netdev_priv(dev);
 415	struct phy_device *phydev = dev->phydev;
 416	unsigned long flags;
 417	u32 reg;
 418
 419	int status_change = 0;
 420
 421	BUG_ON(!phydev);
 422
 423	spin_lock_irqsave(&aup->lock, flags);
 424
 425	if (phydev->link && (aup->old_speed != phydev->speed)) {
 426		/* speed changed */
 427
 428		switch (phydev->speed) {
 429		case SPEED_10:
 430		case SPEED_100:
 431			break;
 432		default:
 433			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
 434							phydev->speed);
 435			break;
 436		}
 437
 438		aup->old_speed = phydev->speed;
 439
 440		status_change = 1;
 441	}
 442
 443	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
 444		/* duplex mode changed */
 445
 446		/* switching duplex mode requires to disable rx and tx! */
 447		au1000_hard_stop(dev);
 448
 449		reg = readl(&aup->mac->control);
 450		if (DUPLEX_FULL == phydev->duplex) {
 451			reg |= MAC_FULL_DUPLEX;
 452			reg &= ~MAC_DISABLE_RX_OWN;
 453		} else {
 454			reg &= ~MAC_FULL_DUPLEX;
 455			reg |= MAC_DISABLE_RX_OWN;
 456		}
 457		writel(reg, &aup->mac->control);
 458		wmb(); /* drain writebuffer */
 459		mdelay(1);
 460
 461		au1000_enable_rx_tx(dev);
 462		aup->old_duplex = phydev->duplex;
 463
 464		status_change = 1;
 465	}
 466
 467	if (phydev->link != aup->old_link) {
 468		/* link state changed */
 469
 470		if (!phydev->link) {
 471			/* link went down */
 472			aup->old_speed = 0;
 473			aup->old_duplex = -1;
 474		}
 475
 476		aup->old_link = phydev->link;
 477		status_change = 1;
 478	}
 479
 480	spin_unlock_irqrestore(&aup->lock, flags);
 481
 482	if (status_change) {
 483		if (phydev->link)
 484			netdev_info(dev, "link up (%d/%s)\n",
 485			       phydev->speed,
 486			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
 487		else
 488			netdev_info(dev, "link down\n");
 489	}
 490}
 491
 492static int au1000_mii_probe(struct net_device *dev)
 493{
 494	struct au1000_private *const aup = netdev_priv(dev);
 495	struct phy_device *phydev = NULL;
 496	int phy_addr;
 497
 498	if (aup->phy_static_config) {
 499		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
 500
 501		if (aup->phy_addr)
 502			phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
 503		else
 504			netdev_info(dev, "using PHY-less setup\n");
 505		return 0;
 506	}
 507
 508	/* find the first (lowest address) PHY
 509	 * on the current MAC's MII bus
 510	 */
 511	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
 512		if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
 513			phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
 514			if (!aup->phy_search_highest_addr)
 515				/* break out with first one found */
 516				break;
 517		}
 518
 519	if (aup->phy1_search_mac0) {
 520		/* try harder to find a PHY */
 521		if (!phydev && (aup->mac_id == 1)) {
 522			/* no PHY found, maybe we have a dual PHY? */
 523			dev_info(&dev->dev, ": no PHY found on MAC1, "
 524				"let's see if it's attached to MAC0...\n");
 525
 526			/* find the first (lowest address) non-attached
 527			 * PHY on the MAC0 MII bus
 528			 */
 529			for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
 530				struct phy_device *const tmp_phydev =
 531					mdiobus_get_phy(aup->mii_bus,
 532							phy_addr);
 533
 534				if (aup->mac_id == 1)
 535					break;
 536
 537				/* no PHY here... */
 538				if (!tmp_phydev)
 539					continue;
 540
 541				/* already claimed by MAC0 */
 542				if (tmp_phydev->attached_dev)
 543					continue;
 544
 545				phydev = tmp_phydev;
 546				break; /* found it */
 547			}
 548		}
 549	}
 550
 551	if (!phydev) {
 552		netdev_err(dev, "no PHY found\n");
 553		return -1;
 554	}
 555
 556	/* now we are supposed to have a proper phydev, to attach to... */
 557	BUG_ON(phydev->attached_dev);
 558
 559	phydev = phy_connect(dev, phydev_name(phydev),
 560			     &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
 561
 562	if (IS_ERR(phydev)) {
 563		netdev_err(dev, "Could not attach to PHY\n");
 564		return PTR_ERR(phydev);
 565	}
 566
 567	/* mask with MAC supported features */
 568	phydev->supported &= (SUPPORTED_10baseT_Half
 569			      | SUPPORTED_10baseT_Full
 570			      | SUPPORTED_100baseT_Half
 571			      | SUPPORTED_100baseT_Full
 572			      | SUPPORTED_Autoneg
 573			      /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
 574			      | SUPPORTED_MII
 575			      | SUPPORTED_TP);
 576
 577	phydev->advertising = phydev->supported;
 578
 579	aup->old_link = 0;
 580	aup->old_speed = 0;
 581	aup->old_duplex = -1;
 582
 583	phy_attached_info(phydev);
 584
 585	return 0;
 586}
 587
 588
 589/*
 590 * Buffer allocation/deallocation routines. The buffer descriptor returned
 591 * has the virtual and dma address of a buffer suitable for
 592 * both, receive and transmit operations.
 593 */
 594static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
 595{
 596	struct db_dest *pDB;
 597	pDB = aup->pDBfree;
 598
 599	if (pDB)
 600		aup->pDBfree = pDB->pnext;
 601
 602	return pDB;
 603}
 604
 605void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
 606{
 607	struct db_dest *pDBfree = aup->pDBfree;
 608	if (pDBfree)
 609		pDBfree->pnext = pDB;
 610	aup->pDBfree = pDB;
 611}
 612
 613static void au1000_reset_mac_unlocked(struct net_device *dev)
 614{
 615	struct au1000_private *const aup = netdev_priv(dev);
 616	int i;
 617
 618	au1000_hard_stop(dev);
 619
 620	writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 621	wmb(); /* drain writebuffer */
 622	mdelay(2);
 623	writel(0, aup->enable);
 624	wmb(); /* drain writebuffer */
 625	mdelay(2);
 626
 627	aup->tx_full = 0;
 628	for (i = 0; i < NUM_RX_DMA; i++) {
 629		/* reset control bits */
 630		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
 631	}
 632	for (i = 0; i < NUM_TX_DMA; i++) {
 633		/* reset control bits */
 634		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
 635	}
 636
 637	aup->mac_enabled = 0;
 638
 639}
 640
 641static void au1000_reset_mac(struct net_device *dev)
 642{
 643	struct au1000_private *const aup = netdev_priv(dev);
 644	unsigned long flags;
 645
 646	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
 647					(unsigned)aup);
 648
 649	spin_lock_irqsave(&aup->lock, flags);
 650
 651	au1000_reset_mac_unlocked(dev);
 652
 653	spin_unlock_irqrestore(&aup->lock, flags);
 654}
 655
 656/*
 657 * Setup the receive and transmit "rings".  These pointers are the addresses
 658 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
 659 * these are not descriptors sitting in memory.
 660 */
 661static void
 662au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
 663{
 664	int i;
 665
 666	for (i = 0; i < NUM_RX_DMA; i++) {
 667		aup->rx_dma_ring[i] = (struct rx_dma *)
 668			(tx_base + 0x100 + sizeof(struct rx_dma) * i);
 669	}
 670	for (i = 0; i < NUM_TX_DMA; i++) {
 671		aup->tx_dma_ring[i] = (struct tx_dma *)
 672			(tx_base + sizeof(struct tx_dma) * i);
 673	}
 674}
 675
 676/*
 677 * ethtool operations
 678 */
 679
 680static void
 681au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 682{
 683	struct au1000_private *aup = netdev_priv(dev);
 684
 685	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 686	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 687	snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
 688		 aup->mac_id);
 689}
 690
 691static void au1000_set_msglevel(struct net_device *dev, u32 value)
 692{
 693	struct au1000_private *aup = netdev_priv(dev);
 694	aup->msg_enable = value;
 695}
 696
 697static u32 au1000_get_msglevel(struct net_device *dev)
 698{
 699	struct au1000_private *aup = netdev_priv(dev);
 700	return aup->msg_enable;
 701}
 702
 703static const struct ethtool_ops au1000_ethtool_ops = {
 704	.get_drvinfo = au1000_get_drvinfo,
 705	.get_link = ethtool_op_get_link,
 706	.get_msglevel = au1000_get_msglevel,
 707	.set_msglevel = au1000_set_msglevel,
 708	.get_link_ksettings = phy_ethtool_get_link_ksettings,
 709	.set_link_ksettings = phy_ethtool_set_link_ksettings,
 710};
 711
 712
 713/*
 714 * Initialize the interface.
 715 *
 716 * When the device powers up, the clocks are disabled and the
 717 * mac is in reset state.  When the interface is closed, we
 718 * do the same -- reset the device and disable the clocks to
 719 * conserve power. Thus, whenever au1000_init() is called,
 720 * the device should already be in reset state.
 721 */
 722static int au1000_init(struct net_device *dev)
 723{
 724	struct au1000_private *aup = netdev_priv(dev);
 725	unsigned long flags;
 726	int i;
 727	u32 control;
 728
 729	netif_dbg(aup, hw, dev, "au1000_init\n");
 730
 731	/* bring the device out of reset */
 732	au1000_enable_mac(dev, 1);
 733
 734	spin_lock_irqsave(&aup->lock, flags);
 735
 736	writel(0, &aup->mac->control);
 737	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
 738	aup->tx_tail = aup->tx_head;
 739	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
 740
 741	writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
 742					&aup->mac->mac_addr_high);
 743	writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
 744		dev->dev_addr[1]<<8 | dev->dev_addr[0],
 745					&aup->mac->mac_addr_low);
 746
 747
 748	for (i = 0; i < NUM_RX_DMA; i++)
 749		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
 750
 751	wmb(); /* drain writebuffer */
 752
 753	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
 754#ifndef CONFIG_CPU_LITTLE_ENDIAN
 755	control |= MAC_BIG_ENDIAN;
 756#endif
 757	if (dev->phydev) {
 758		if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
 759			control |= MAC_FULL_DUPLEX;
 760		else
 761			control |= MAC_DISABLE_RX_OWN;
 762	} else { /* PHY-less op, assume full-duplex */
 763		control |= MAC_FULL_DUPLEX;
 764	}
 765
 766	writel(control, &aup->mac->control);
 767	writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
 768	wmb(); /* drain writebuffer */
 769
 770	spin_unlock_irqrestore(&aup->lock, flags);
 771	return 0;
 772}
 773
 774static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
 775{
 776	struct net_device_stats *ps = &dev->stats;
 777
 778	ps->rx_packets++;
 779	if (status & RX_MCAST_FRAME)
 780		ps->multicast++;
 781
 782	if (status & RX_ERROR) {
 783		ps->rx_errors++;
 784		if (status & RX_MISSED_FRAME)
 785			ps->rx_missed_errors++;
 786		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
 787			ps->rx_length_errors++;
 788		if (status & RX_CRC_ERROR)
 789			ps->rx_crc_errors++;
 790		if (status & RX_COLL)
 791			ps->collisions++;
 792	} else
 793		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
 794
 795}
 796
 797/*
 798 * Au1000 receive routine.
 799 */
 800static int au1000_rx(struct net_device *dev)
 801{
 802	struct au1000_private *aup = netdev_priv(dev);
 803	struct sk_buff *skb;
 804	struct rx_dma *prxd;
 805	u32 buff_stat, status;
 806	struct db_dest *pDB;
 807	u32	frmlen;
 808
 809	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
 810
 811	prxd = aup->rx_dma_ring[aup->rx_head];
 812	buff_stat = prxd->buff_stat;
 813	while (buff_stat & RX_T_DONE)  {
 814		status = prxd->status;
 815		pDB = aup->rx_db_inuse[aup->rx_head];
 816		au1000_update_rx_stats(dev, status);
 817		if (!(status & RX_ERROR))  {
 818
 819			/* good frame */
 820			frmlen = (status & RX_FRAME_LEN_MASK);
 821			frmlen -= 4; /* Remove FCS */
 822			skb = netdev_alloc_skb(dev, frmlen + 2);
 823			if (skb == NULL) {
 824				dev->stats.rx_dropped++;
 825				continue;
 826			}
 827			skb_reserve(skb, 2);	/* 16 byte IP header align */
 828			skb_copy_to_linear_data(skb,
 829				(unsigned char *)pDB->vaddr, frmlen);
 830			skb_put(skb, frmlen);
 831			skb->protocol = eth_type_trans(skb, dev);
 832			netif_rx(skb);	/* pass the packet to upper layers */
 833		} else {
 834			if (au1000_debug > 4) {
 835				pr_err("rx_error(s):");
 836				if (status & RX_MISSED_FRAME)
 837					pr_cont(" miss");
 838				if (status & RX_WDOG_TIMER)
 839					pr_cont(" wdog");
 840				if (status & RX_RUNT)
 841					pr_cont(" runt");
 842				if (status & RX_OVERLEN)
 843					pr_cont(" overlen");
 844				if (status & RX_COLL)
 845					pr_cont(" coll");
 846				if (status & RX_MII_ERROR)
 847					pr_cont(" mii error");
 848				if (status & RX_CRC_ERROR)
 849					pr_cont(" crc error");
 850				if (status & RX_LEN_ERROR)
 851					pr_cont(" len error");
 852				if (status & RX_U_CNTRL_FRAME)
 853					pr_cont(" u control frame");
 854				pr_cont("\n");
 855			}
 856		}
 857		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
 858		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
 859		wmb(); /* drain writebuffer */
 860
 861		/* next descriptor */
 862		prxd = aup->rx_dma_ring[aup->rx_head];
 863		buff_stat = prxd->buff_stat;
 864	}
 865	return 0;
 866}
 867
 868static void au1000_update_tx_stats(struct net_device *dev, u32 status)
 869{
 870	struct net_device_stats *ps = &dev->stats;
 871
 872	if (status & TX_FRAME_ABORTED) {
 873		if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
 874			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
 875				/* any other tx errors are only valid
 876				 * in half duplex mode
 877				 */
 878				ps->tx_errors++;
 879				ps->tx_aborted_errors++;
 880			}
 881		} else {
 882			ps->tx_errors++;
 883			ps->tx_aborted_errors++;
 884			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
 885				ps->tx_carrier_errors++;
 886		}
 887	}
 888}
 889
 890/*
 891 * Called from the interrupt service routine to acknowledge
 892 * the TX DONE bits.  This is a must if the irq is setup as
 893 * edge triggered.
 894 */
 895static void au1000_tx_ack(struct net_device *dev)
 896{
 897	struct au1000_private *aup = netdev_priv(dev);
 898	struct tx_dma *ptxd;
 899
 900	ptxd = aup->tx_dma_ring[aup->tx_tail];
 901
 902	while (ptxd->buff_stat & TX_T_DONE) {
 903		au1000_update_tx_stats(dev, ptxd->status);
 904		ptxd->buff_stat &= ~TX_T_DONE;
 905		ptxd->len = 0;
 906		wmb(); /* drain writebuffer */
 907
 908		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
 909		ptxd = aup->tx_dma_ring[aup->tx_tail];
 910
 911		if (aup->tx_full) {
 912			aup->tx_full = 0;
 913			netif_wake_queue(dev);
 914		}
 915	}
 916}
 917
 918/*
 919 * Au1000 interrupt service routine.
 920 */
 921static irqreturn_t au1000_interrupt(int irq, void *dev_id)
 922{
 923	struct net_device *dev = dev_id;
 924
 925	/* Handle RX interrupts first to minimize chance of overrun */
 926
 927	au1000_rx(dev);
 928	au1000_tx_ack(dev);
 929	return IRQ_RETVAL(1);
 930}
 931
 932static int au1000_open(struct net_device *dev)
 933{
 934	int retval;
 935	struct au1000_private *aup = netdev_priv(dev);
 936
 937	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
 938
 939	retval = request_irq(dev->irq, au1000_interrupt, 0,
 940					dev->name, dev);
 941	if (retval) {
 942		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
 943		return retval;
 944	}
 945
 946	retval = au1000_init(dev);
 947	if (retval) {
 948		netdev_err(dev, "error in au1000_init\n");
 949		free_irq(dev->irq, dev);
 950		return retval;
 951	}
 952
 953	if (dev->phydev) {
 954		/* cause the PHY state machine to schedule a link state check */
 955		dev->phydev->state = PHY_CHANGELINK;
 956		phy_start(dev->phydev);
 957	}
 958
 959	netif_start_queue(dev);
 960
 961	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
 962
 963	return 0;
 964}
 965
 966static int au1000_close(struct net_device *dev)
 967{
 968	unsigned long flags;
 969	struct au1000_private *const aup = netdev_priv(dev);
 970
 971	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
 972
 973	if (dev->phydev)
 974		phy_stop(dev->phydev);
 975
 976	spin_lock_irqsave(&aup->lock, flags);
 977
 978	au1000_reset_mac_unlocked(dev);
 979
 980	/* stop the device */
 981	netif_stop_queue(dev);
 982
 983	/* disable the interrupt */
 984	free_irq(dev->irq, dev);
 985	spin_unlock_irqrestore(&aup->lock, flags);
 986
 987	return 0;
 988}
 989
 990/*
 991 * Au1000 transmit routine.
 992 */
 993static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
 994{
 995	struct au1000_private *aup = netdev_priv(dev);
 996	struct net_device_stats *ps = &dev->stats;
 997	struct tx_dma *ptxd;
 998	u32 buff_stat;
 999	struct db_dest *pDB;
1000	int i;
1001
1002	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
1003				(unsigned)aup, skb->len,
1004				skb->data, aup->tx_head);
1005
1006	ptxd = aup->tx_dma_ring[aup->tx_head];
1007	buff_stat = ptxd->buff_stat;
1008	if (buff_stat & TX_DMA_ENABLE) {
1009		/* We've wrapped around and the transmitter is still busy */
1010		netif_stop_queue(dev);
1011		aup->tx_full = 1;
1012		return NETDEV_TX_BUSY;
1013	} else if (buff_stat & TX_T_DONE) {
1014		au1000_update_tx_stats(dev, ptxd->status);
1015		ptxd->len = 0;
1016	}
1017
1018	if (aup->tx_full) {
1019		aup->tx_full = 0;
1020		netif_wake_queue(dev);
1021	}
1022
1023	pDB = aup->tx_db_inuse[aup->tx_head];
1024	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
1025	if (skb->len < ETH_ZLEN) {
1026		for (i = skb->len; i < ETH_ZLEN; i++)
1027			((char *)pDB->vaddr)[i] = 0;
1028
1029		ptxd->len = ETH_ZLEN;
1030	} else
1031		ptxd->len = skb->len;
1032
1033	ps->tx_packets++;
1034	ps->tx_bytes += ptxd->len;
1035
1036	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1037	wmb(); /* drain writebuffer */
1038	dev_kfree_skb(skb);
1039	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1040	return NETDEV_TX_OK;
1041}
1042
1043/*
1044 * The Tx ring has been full longer than the watchdog timeout
1045 * value. The transmitter must be hung?
1046 */
1047static void au1000_tx_timeout(struct net_device *dev)
1048{
1049	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1050	au1000_reset_mac(dev);
1051	au1000_init(dev);
1052	netif_trans_update(dev); /* prevent tx timeout */
1053	netif_wake_queue(dev);
1054}
1055
1056static void au1000_multicast_list(struct net_device *dev)
1057{
1058	struct au1000_private *aup = netdev_priv(dev);
1059	u32 reg;
1060
1061	netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1062	reg = readl(&aup->mac->control);
1063	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1064		reg |= MAC_PROMISCUOUS;
1065	} else if ((dev->flags & IFF_ALLMULTI)  ||
1066			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1067		reg |= MAC_PASS_ALL_MULTI;
1068		reg &= ~MAC_PROMISCUOUS;
1069		netdev_info(dev, "Pass all multicast\n");
1070	} else {
1071		struct netdev_hw_addr *ha;
1072		u32 mc_filter[2];	/* Multicast hash filter */
1073
1074		mc_filter[1] = mc_filter[0] = 0;
1075		netdev_for_each_mc_addr(ha, dev)
1076			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1077					(long *)mc_filter);
1078		writel(mc_filter[1], &aup->mac->multi_hash_high);
1079		writel(mc_filter[0], &aup->mac->multi_hash_low);
1080		reg &= ~MAC_PROMISCUOUS;
1081		reg |= MAC_HASH_MODE;
1082	}
1083	writel(reg, &aup->mac->control);
1084}
1085
1086static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1087{
1088	if (!netif_running(dev))
1089		return -EINVAL;
1090
1091	if (!dev->phydev)
1092		return -EINVAL; /* PHY not controllable */
1093
1094	return phy_mii_ioctl(dev->phydev, rq, cmd);
1095}
1096
1097static const struct net_device_ops au1000_netdev_ops = {
1098	.ndo_open		= au1000_open,
1099	.ndo_stop		= au1000_close,
1100	.ndo_start_xmit		= au1000_tx,
1101	.ndo_set_rx_mode	= au1000_multicast_list,
1102	.ndo_do_ioctl		= au1000_ioctl,
1103	.ndo_tx_timeout		= au1000_tx_timeout,
1104	.ndo_set_mac_address	= eth_mac_addr,
1105	.ndo_validate_addr	= eth_validate_addr,
1106};
1107
1108static int au1000_probe(struct platform_device *pdev)
1109{
1110	struct au1000_private *aup = NULL;
1111	struct au1000_eth_platform_data *pd;
1112	struct net_device *dev = NULL;
1113	struct db_dest *pDB, *pDBfree;
1114	int irq, i, err = 0;
1115	struct resource *base, *macen, *macdma;
1116
1117	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1118	if (!base) {
1119		dev_err(&pdev->dev, "failed to retrieve base register\n");
1120		err = -ENODEV;
1121		goto out;
1122	}
1123
1124	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1125	if (!macen) {
1126		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1127		err = -ENODEV;
1128		goto out;
1129	}
1130
1131	irq = platform_get_irq(pdev, 0);
1132	if (irq < 0) {
1133		dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1134		err = -ENODEV;
1135		goto out;
1136	}
1137
1138	macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1139	if (!macdma) {
1140		dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1141		err = -ENODEV;
1142		goto out;
1143	}
1144
1145	if (!request_mem_region(base->start, resource_size(base),
1146							pdev->name)) {
1147		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1148		err = -ENXIO;
1149		goto out;
1150	}
1151
1152	if (!request_mem_region(macen->start, resource_size(macen),
1153							pdev->name)) {
1154		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1155		err = -ENXIO;
1156		goto err_request;
1157	}
1158
1159	if (!request_mem_region(macdma->start, resource_size(macdma),
1160							pdev->name)) {
1161		dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1162		err = -ENXIO;
1163		goto err_macdma;
1164	}
1165
1166	dev = alloc_etherdev(sizeof(struct au1000_private));
1167	if (!dev) {
1168		err = -ENOMEM;
1169		goto err_alloc;
1170	}
1171
1172	SET_NETDEV_DEV(dev, &pdev->dev);
1173	platform_set_drvdata(pdev, dev);
1174	aup = netdev_priv(dev);
1175
1176	spin_lock_init(&aup->lock);
1177	aup->msg_enable = (au1000_debug < 4 ?
1178				AU1000_DEF_MSG_ENABLE : au1000_debug);
1179
1180	/* Allocate the data buffers
1181	 * Snooping works fine with eth on all au1xxx
1182	 */
1183	aup->vaddr = (u32)dma_alloc_attrs(NULL, MAX_BUF_SIZE *
1184					  (NUM_TX_BUFFS + NUM_RX_BUFFS),
1185					  &aup->dma_addr, 0,
1186					  DMA_ATTR_NON_CONSISTENT);
1187	if (!aup->vaddr) {
1188		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1189		err = -ENOMEM;
1190		goto err_vaddr;
1191	}
1192
1193	/* aup->mac is the base address of the MAC's registers */
1194	aup->mac = (struct mac_reg *)
1195			ioremap_nocache(base->start, resource_size(base));
1196	if (!aup->mac) {
1197		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1198		err = -ENXIO;
1199		goto err_remap1;
1200	}
1201
1202	/* Setup some variables for quick register address access */
1203	aup->enable = (u32 *)ioremap_nocache(macen->start,
1204						resource_size(macen));
1205	if (!aup->enable) {
1206		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1207		err = -ENXIO;
1208		goto err_remap2;
1209	}
1210	aup->mac_id = pdev->id;
1211
1212	aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1213	if (!aup->macdma) {
1214		dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1215		err = -ENXIO;
1216		goto err_remap3;
1217	}
1218
1219	au1000_setup_hw_rings(aup, aup->macdma);
1220
1221	writel(0, aup->enable);
1222	aup->mac_enabled = 0;
1223
1224	pd = dev_get_platdata(&pdev->dev);
1225	if (!pd) {
1226		dev_info(&pdev->dev, "no platform_data passed,"
1227					" PHY search on MAC0\n");
1228		aup->phy1_search_mac0 = 1;
1229	} else {
1230		if (is_valid_ether_addr(pd->mac)) {
1231			memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1232		} else {
1233			/* Set a random MAC since no valid provided by platform_data. */
1234			eth_hw_addr_random(dev);
1235		}
1236
1237		aup->phy_static_config = pd->phy_static_config;
1238		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1239		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1240		aup->phy_addr = pd->phy_addr;
1241		aup->phy_busid = pd->phy_busid;
1242		aup->phy_irq = pd->phy_irq;
1243	}
1244
1245	if (aup->phy_busid > 0) {
1246		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1247		err = -ENODEV;
1248		goto err_mdiobus_alloc;
1249	}
1250
1251	aup->mii_bus = mdiobus_alloc();
1252	if (aup->mii_bus == NULL) {
1253		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1254		err = -ENOMEM;
1255		goto err_mdiobus_alloc;
1256	}
1257
1258	aup->mii_bus->priv = dev;
1259	aup->mii_bus->read = au1000_mdiobus_read;
1260	aup->mii_bus->write = au1000_mdiobus_write;
1261	aup->mii_bus->reset = au1000_mdiobus_reset;
1262	aup->mii_bus->name = "au1000_eth_mii";
1263	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1264		pdev->name, aup->mac_id);
1265
1266	/* if known, set corresponding PHY IRQs */
1267	if (aup->phy_static_config)
1268		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1269			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1270
1271	err = mdiobus_register(aup->mii_bus);
1272	if (err) {
1273		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1274		goto err_mdiobus_reg;
1275	}
1276
1277	err = au1000_mii_probe(dev);
1278	if (err != 0)
1279		goto err_out;
1280
1281	pDBfree = NULL;
1282	/* setup the data buffer descriptors and attach a buffer to each one */
1283	pDB = aup->db;
1284	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1285		pDB->pnext = pDBfree;
1286		pDBfree = pDB;
1287		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1288		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1289		pDB++;
1290	}
1291	aup->pDBfree = pDBfree;
1292
1293	err = -ENODEV;
1294	for (i = 0; i < NUM_RX_DMA; i++) {
1295		pDB = au1000_GetFreeDB(aup);
1296		if (!pDB)
1297			goto err_out;
1298
1299		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1300		aup->rx_db_inuse[i] = pDB;
1301	}
1302
1303	err = -ENODEV;
1304	for (i = 0; i < NUM_TX_DMA; i++) {
1305		pDB = au1000_GetFreeDB(aup);
1306		if (!pDB)
1307			goto err_out;
1308
1309		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1310		aup->tx_dma_ring[i]->len = 0;
1311		aup->tx_db_inuse[i] = pDB;
1312	}
1313
1314	dev->base_addr = base->start;
1315	dev->irq = irq;
1316	dev->netdev_ops = &au1000_netdev_ops;
1317	dev->ethtool_ops = &au1000_ethtool_ops;
1318	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1319
1320	/*
1321	 * The boot code uses the ethernet controller, so reset it to start
1322	 * fresh.  au1000_init() expects that the device is in reset state.
1323	 */
1324	au1000_reset_mac(dev);
1325
1326	err = register_netdev(dev);
1327	if (err) {
1328		netdev_err(dev, "Cannot register net device, aborting.\n");
1329		goto err_out;
1330	}
1331
1332	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1333			(unsigned long)base->start, irq);
1334
1335	pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1336
1337	return 0;
1338
1339err_out:
1340	if (aup->mii_bus != NULL)
1341		mdiobus_unregister(aup->mii_bus);
1342
1343	/* here we should have a valid dev plus aup-> register addresses
1344	 * so we can reset the mac properly.
1345	 */
1346	au1000_reset_mac(dev);
1347
1348	for (i = 0; i < NUM_RX_DMA; i++) {
1349		if (aup->rx_db_inuse[i])
1350			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1351	}
1352	for (i = 0; i < NUM_TX_DMA; i++) {
1353		if (aup->tx_db_inuse[i])
1354			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1355	}
1356err_mdiobus_reg:
1357	mdiobus_free(aup->mii_bus);
1358err_mdiobus_alloc:
1359	iounmap(aup->macdma);
1360err_remap3:
1361	iounmap(aup->enable);
1362err_remap2:
1363	iounmap(aup->mac);
1364err_remap1:
1365	dma_free_attrs(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1366			(void *)aup->vaddr, aup->dma_addr,
1367			DMA_ATTR_NON_CONSISTENT);
1368err_vaddr:
1369	free_netdev(dev);
1370err_alloc:
1371	release_mem_region(macdma->start, resource_size(macdma));
1372err_macdma:
1373	release_mem_region(macen->start, resource_size(macen));
1374err_request:
1375	release_mem_region(base->start, resource_size(base));
1376out:
1377	return err;
1378}
1379
1380static int au1000_remove(struct platform_device *pdev)
1381{
1382	struct net_device *dev = platform_get_drvdata(pdev);
1383	struct au1000_private *aup = netdev_priv(dev);
1384	int i;
1385	struct resource *base, *macen;
1386
1387	unregister_netdev(dev);
1388	mdiobus_unregister(aup->mii_bus);
1389	mdiobus_free(aup->mii_bus);
1390
1391	for (i = 0; i < NUM_RX_DMA; i++)
1392		if (aup->rx_db_inuse[i])
1393			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1394
1395	for (i = 0; i < NUM_TX_DMA; i++)
1396		if (aup->tx_db_inuse[i])
1397			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1398
1399	dma_free_attrs(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1400			(void *)aup->vaddr, aup->dma_addr,
1401			DMA_ATTR_NON_CONSISTENT);
1402
1403	iounmap(aup->macdma);
1404	iounmap(aup->mac);
1405	iounmap(aup->enable);
1406
1407	base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1408	release_mem_region(base->start, resource_size(base));
1409
1410	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1411	release_mem_region(base->start, resource_size(base));
1412
1413	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1414	release_mem_region(macen->start, resource_size(macen));
1415
1416	free_netdev(dev);
1417
1418	return 0;
1419}
1420
1421static struct platform_driver au1000_eth_driver = {
1422	.probe  = au1000_probe,
1423	.remove = au1000_remove,
1424	.driver = {
1425		.name   = "au1000-eth",
1426	},
1427};
1428
1429module_platform_driver(au1000_eth_driver);
1430
1431MODULE_ALIAS("platform:au1000-eth");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Alchemy Au1x00 ethernet driver
   5 *
   6 * Copyright 2001-2003, 2006 MontaVista Software Inc.
   7 * Copyright 2002 TimeSys Corp.
   8 * Added ethtool/mii-tool support,
   9 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
  10 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
  11 * or riemer@riemer-nt.de: fixed the link beat detection with
  12 * ioctls (SIOCGMIIPHY)
  13 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
  14 *  converted to use linux-2.6.x's PHY framework
  15 *
  16 * Author: MontaVista Software, Inc.
  17 *		ppopov@mvista.com or source@mvista.com
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  18 */
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include <linux/capability.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/module.h>
  24#include <linux/kernel.h>
  25#include <linux/string.h>
  26#include <linux/timer.h>
  27#include <linux/errno.h>
  28#include <linux/in.h>
  29#include <linux/ioport.h>
  30#include <linux/bitops.h>
  31#include <linux/slab.h>
  32#include <linux/interrupt.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/ethtool.h>
  36#include <linux/mii.h>
  37#include <linux/skbuff.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/phy.h>
  41#include <linux/platform_device.h>
  42#include <linux/cpu.h>
  43#include <linux/io.h>
  44
  45#include <asm/mipsregs.h>
  46#include <asm/irq.h>
  47#include <asm/processor.h>
  48
  49#include <au1000.h>
  50#include <au1xxx_eth.h>
  51#include <prom.h>
  52
  53#include "au1000_eth.h"
  54
  55#ifdef AU1000_ETH_DEBUG
  56static int au1000_debug = 5;
  57#else
  58static int au1000_debug = 3;
  59#endif
  60
  61#define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
  62				NETIF_MSG_PROBE	| \
  63				NETIF_MSG_LINK)
  64
  65#define DRV_NAME	"au1000_eth"
 
  66#define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
  67#define DRV_DESC	"Au1xxx on-chip Ethernet driver"
  68
  69MODULE_AUTHOR(DRV_AUTHOR);
  70MODULE_DESCRIPTION(DRV_DESC);
  71MODULE_LICENSE("GPL");
 
  72
  73/* AU1000 MAC registers and bits */
  74#define MAC_CONTROL		0x0
  75#  define MAC_RX_ENABLE		(1 << 2)
  76#  define MAC_TX_ENABLE		(1 << 3)
  77#  define MAC_DEF_CHECK		(1 << 5)
  78#  define MAC_SET_BL(X)		(((X) & 0x3) << 6)
  79#  define MAC_AUTO_PAD		(1 << 8)
  80#  define MAC_DISABLE_RETRY	(1 << 10)
  81#  define MAC_DISABLE_BCAST	(1 << 11)
  82#  define MAC_LATE_COL		(1 << 12)
  83#  define MAC_HASH_MODE		(1 << 13)
  84#  define MAC_HASH_ONLY		(1 << 15)
  85#  define MAC_PASS_ALL		(1 << 16)
  86#  define MAC_INVERSE_FILTER	(1 << 17)
  87#  define MAC_PROMISCUOUS	(1 << 18)
  88#  define MAC_PASS_ALL_MULTI	(1 << 19)
  89#  define MAC_FULL_DUPLEX	(1 << 20)
  90#  define MAC_NORMAL_MODE	0
  91#  define MAC_INT_LOOPBACK	(1 << 21)
  92#  define MAC_EXT_LOOPBACK	(1 << 22)
  93#  define MAC_DISABLE_RX_OWN	(1 << 23)
  94#  define MAC_BIG_ENDIAN	(1 << 30)
  95#  define MAC_RX_ALL		(1 << 31)
  96#define MAC_ADDRESS_HIGH	0x4
  97#define MAC_ADDRESS_LOW		0x8
  98#define MAC_MCAST_HIGH		0xC
  99#define MAC_MCAST_LOW		0x10
 100#define MAC_MII_CNTRL		0x14
 101#  define MAC_MII_BUSY		(1 << 0)
 102#  define MAC_MII_READ		0
 103#  define MAC_MII_WRITE		(1 << 1)
 104#  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
 105#  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
 106#define MAC_MII_DATA		0x18
 107#define MAC_FLOW_CNTRL		0x1C
 108#  define MAC_FLOW_CNTRL_BUSY	(1 << 0)
 109#  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
 110#  define MAC_PASS_CONTROL	(1 << 2)
 111#  define MAC_SET_PAUSE(X)	(((X) & 0xffff) << 16)
 112#define MAC_VLAN1_TAG		0x20
 113#define MAC_VLAN2_TAG		0x24
 114
 115/* Ethernet Controller Enable */
 116#  define MAC_EN_CLOCK_ENABLE	(1 << 0)
 117#  define MAC_EN_RESET0		(1 << 1)
 118#  define MAC_EN_TOSS		(0 << 2)
 119#  define MAC_EN_CACHEABLE	(1 << 3)
 120#  define MAC_EN_RESET1		(1 << 4)
 121#  define MAC_EN_RESET2		(1 << 5)
 122#  define MAC_DMA_RESET		(1 << 6)
 123
 124/* Ethernet Controller DMA Channels */
 125/* offsets from MAC_TX_RING_ADDR address */
 126#define MAC_TX_BUFF0_STATUS	0x0
 127#  define TX_FRAME_ABORTED	(1 << 0)
 128#  define TX_JAB_TIMEOUT	(1 << 1)
 129#  define TX_NO_CARRIER		(1 << 2)
 130#  define TX_LOSS_CARRIER	(1 << 3)
 131#  define TX_EXC_DEF		(1 << 4)
 132#  define TX_LATE_COLL_ABORT	(1 << 5)
 133#  define TX_EXC_COLL		(1 << 6)
 134#  define TX_UNDERRUN		(1 << 7)
 135#  define TX_DEFERRED		(1 << 8)
 136#  define TX_LATE_COLL		(1 << 9)
 137#  define TX_COLL_CNT_MASK	(0xF << 10)
 138#  define TX_PKT_RETRY		(1 << 31)
 139#define MAC_TX_BUFF0_ADDR	0x4
 140#  define TX_DMA_ENABLE		(1 << 0)
 141#  define TX_T_DONE		(1 << 1)
 142#  define TX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
 143#define MAC_TX_BUFF0_LEN	0x8
 144#define MAC_TX_BUFF1_STATUS	0x10
 145#define MAC_TX_BUFF1_ADDR	0x14
 146#define MAC_TX_BUFF1_LEN	0x18
 147#define MAC_TX_BUFF2_STATUS	0x20
 148#define MAC_TX_BUFF2_ADDR	0x24
 149#define MAC_TX_BUFF2_LEN	0x28
 150#define MAC_TX_BUFF3_STATUS	0x30
 151#define MAC_TX_BUFF3_ADDR	0x34
 152#define MAC_TX_BUFF3_LEN	0x38
 153
 154/* offsets from MAC_RX_RING_ADDR */
 155#define MAC_RX_BUFF0_STATUS	0x0
 156#  define RX_FRAME_LEN_MASK	0x3fff
 157#  define RX_WDOG_TIMER		(1 << 14)
 158#  define RX_RUNT		(1 << 15)
 159#  define RX_OVERLEN		(1 << 16)
 160#  define RX_COLL		(1 << 17)
 161#  define RX_ETHER		(1 << 18)
 162#  define RX_MII_ERROR		(1 << 19)
 163#  define RX_DRIBBLING		(1 << 20)
 164#  define RX_CRC_ERROR		(1 << 21)
 165#  define RX_VLAN1		(1 << 22)
 166#  define RX_VLAN2		(1 << 23)
 167#  define RX_LEN_ERROR		(1 << 24)
 168#  define RX_CNTRL_FRAME	(1 << 25)
 169#  define RX_U_CNTRL_FRAME	(1 << 26)
 170#  define RX_MCAST_FRAME	(1 << 27)
 171#  define RX_BCAST_FRAME	(1 << 28)
 172#  define RX_FILTER_FAIL	(1 << 29)
 173#  define RX_PACKET_FILTER	(1 << 30)
 174#  define RX_MISSED_FRAME	(1 << 31)
 175
 176#  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
 177		    RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
 178		    RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
 179#define MAC_RX_BUFF0_ADDR	0x4
 180#  define RX_DMA_ENABLE		(1 << 0)
 181#  define RX_T_DONE		(1 << 1)
 182#  define RX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
 183#  define RX_SET_BUFF_ADDR(X)	((X) & 0xffffffc0)
 184#define MAC_RX_BUFF1_STATUS	0x10
 185#define MAC_RX_BUFF1_ADDR	0x14
 186#define MAC_RX_BUFF2_STATUS	0x20
 187#define MAC_RX_BUFF2_ADDR	0x24
 188#define MAC_RX_BUFF3_STATUS	0x30
 189#define MAC_RX_BUFF3_ADDR	0x34
 190
 191/*
 192 * Theory of operation
 193 *
 194 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
 195 * There are four receive and four transmit descriptors.  These
 196 * descriptors are not in memory; rather, they are just a set of
 197 * hardware registers.
 198 *
 199 * Since the Au1000 has a coherent data cache, the receive and
 200 * transmit buffers are allocated from the KSEG0 segment. The
 201 * hardware registers, however, are still mapped at KSEG1 to
 202 * make sure there's no out-of-order writes, and that all writes
 203 * complete immediately.
 204 */
 205
 206/*
 207 * board-specific configurations
 208 *
 209 * PHY detection algorithm
 210 *
 211 * If phy_static_config is undefined, the PHY setup is
 212 * autodetected:
 213 *
 214 * mii_probe() first searches the current MAC's MII bus for a PHY,
 215 * selecting the first (or last, if phy_search_highest_addr is
 216 * defined) PHY address not already claimed by another netdev.
 217 *
 218 * If nothing was found that way when searching for the 2nd ethernet
 219 * controller's PHY and phy1_search_mac0 is defined, then
 220 * the first MII bus is searched as well for an unclaimed PHY; this is
 221 * needed in case of a dual-PHY accessible only through the MAC0's MII
 222 * bus.
 223 *
 224 * Finally, if no PHY is found, then the corresponding ethernet
 225 * controller is not registered to the network subsystem.
 226 */
 227
 228/* autodetection defaults: phy1_search_mac0 */
 229
 230/* static PHY setup
 231 *
 232 * most boards PHY setup should be detectable properly with the
 233 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
 234 * you have a switch attached, or want to use the PHY's interrupt
 235 * notification capabilities) you can provide a static PHY
 236 * configuration here
 237 *
 238 * IRQs may only be set, if a PHY address was configured
 239 * If a PHY address is given, also a bus id is required to be set
 240 *
 241 * ps: make sure the used irqs are configured properly in the board
 242 * specific irq-map
 243 */
 
 244static void au1000_enable_mac(struct net_device *dev, int force_reset)
 245{
 246	unsigned long flags;
 247	struct au1000_private *aup = netdev_priv(dev);
 248
 249	spin_lock_irqsave(&aup->lock, flags);
 250
 251	if (force_reset || (!aup->mac_enabled)) {
 252		writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 253		wmb(); /* drain writebuffer */
 254		mdelay(2);
 255		writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
 256				| MAC_EN_CLOCK_ENABLE), aup->enable);
 257		wmb(); /* drain writebuffer */
 258		mdelay(2);
 259
 260		aup->mac_enabled = 1;
 261	}
 262
 263	spin_unlock_irqrestore(&aup->lock, flags);
 264}
 265
 266/*
 267 * MII operations
 268 */
 269static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
 270{
 271	struct au1000_private *aup = netdev_priv(dev);
 272	u32 *const mii_control_reg = &aup->mac->mii_control;
 273	u32 *const mii_data_reg = &aup->mac->mii_data;
 274	u32 timedout = 20;
 275	u32 mii_control;
 276
 277	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 278		mdelay(1);
 279		if (--timedout == 0) {
 280			netdev_err(dev, "read_MII busy timeout!!\n");
 281			return -1;
 282		}
 283	}
 284
 285	mii_control = MAC_SET_MII_SELECT_REG(reg) |
 286		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
 287
 288	writel(mii_control, mii_control_reg);
 289
 290	timedout = 20;
 291	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 292		mdelay(1);
 293		if (--timedout == 0) {
 294			netdev_err(dev, "mdio_read busy timeout!!\n");
 295			return -1;
 296		}
 297	}
 298	return readl(mii_data_reg);
 299}
 300
 301static void au1000_mdio_write(struct net_device *dev, int phy_addr,
 302			      int reg, u16 value)
 303{
 304	struct au1000_private *aup = netdev_priv(dev);
 305	u32 *const mii_control_reg = &aup->mac->mii_control;
 306	u32 *const mii_data_reg = &aup->mac->mii_data;
 307	u32 timedout = 20;
 308	u32 mii_control;
 309
 310	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 311		mdelay(1);
 312		if (--timedout == 0) {
 313			netdev_err(dev, "mdio_write busy timeout!!\n");
 314			return;
 315		}
 316	}
 317
 318	mii_control = MAC_SET_MII_SELECT_REG(reg) |
 319		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
 320
 321	writel(value, mii_data_reg);
 322	writel(mii_control, mii_control_reg);
 323}
 324
 325static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
 326{
 327	struct net_device *const dev = bus->priv;
 328
 329	/* make sure the MAC associated with this
 330	 * mii_bus is enabled
 331	 */
 332	au1000_enable_mac(dev, 0);
 333
 334	return au1000_mdio_read(dev, phy_addr, regnum);
 335}
 336
 337static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
 338				u16 value)
 339{
 340	struct net_device *const dev = bus->priv;
 341
 342	/* make sure the MAC associated with this
 343	 * mii_bus is enabled
 344	 */
 345	au1000_enable_mac(dev, 0);
 346
 347	au1000_mdio_write(dev, phy_addr, regnum, value);
 348	return 0;
 349}
 350
 351static int au1000_mdiobus_reset(struct mii_bus *bus)
 352{
 353	struct net_device *const dev = bus->priv;
 354
 355	/* make sure the MAC associated with this
 356	 * mii_bus is enabled
 357	 */
 358	au1000_enable_mac(dev, 0);
 359
 360	return 0;
 361}
 362
 363static void au1000_hard_stop(struct net_device *dev)
 364{
 365	struct au1000_private *aup = netdev_priv(dev);
 366	u32 reg;
 367
 368	netif_dbg(aup, drv, dev, "hard stop\n");
 369
 370	reg = readl(&aup->mac->control);
 371	reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
 372	writel(reg, &aup->mac->control);
 373	wmb(); /* drain writebuffer */
 374	mdelay(10);
 375}
 376
 377static void au1000_enable_rx_tx(struct net_device *dev)
 378{
 379	struct au1000_private *aup = netdev_priv(dev);
 380	u32 reg;
 381
 382	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
 383
 384	reg = readl(&aup->mac->control);
 385	reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
 386	writel(reg, &aup->mac->control);
 387	wmb(); /* drain writebuffer */
 388	mdelay(10);
 389}
 390
 391static void
 392au1000_adjust_link(struct net_device *dev)
 393{
 394	struct au1000_private *aup = netdev_priv(dev);
 395	struct phy_device *phydev = dev->phydev;
 396	unsigned long flags;
 397	u32 reg;
 398
 399	int status_change = 0;
 400
 401	BUG_ON(!phydev);
 402
 403	spin_lock_irqsave(&aup->lock, flags);
 404
 405	if (phydev->link && (aup->old_speed != phydev->speed)) {
 406		/* speed changed */
 407
 408		switch (phydev->speed) {
 409		case SPEED_10:
 410		case SPEED_100:
 411			break;
 412		default:
 413			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
 414							phydev->speed);
 415			break;
 416		}
 417
 418		aup->old_speed = phydev->speed;
 419
 420		status_change = 1;
 421	}
 422
 423	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
 424		/* duplex mode changed */
 425
 426		/* switching duplex mode requires to disable rx and tx! */
 427		au1000_hard_stop(dev);
 428
 429		reg = readl(&aup->mac->control);
 430		if (DUPLEX_FULL == phydev->duplex) {
 431			reg |= MAC_FULL_DUPLEX;
 432			reg &= ~MAC_DISABLE_RX_OWN;
 433		} else {
 434			reg &= ~MAC_FULL_DUPLEX;
 435			reg |= MAC_DISABLE_RX_OWN;
 436		}
 437		writel(reg, &aup->mac->control);
 438		wmb(); /* drain writebuffer */
 439		mdelay(1);
 440
 441		au1000_enable_rx_tx(dev);
 442		aup->old_duplex = phydev->duplex;
 443
 444		status_change = 1;
 445	}
 446
 447	if (phydev->link != aup->old_link) {
 448		/* link state changed */
 449
 450		if (!phydev->link) {
 451			/* link went down */
 452			aup->old_speed = 0;
 453			aup->old_duplex = -1;
 454		}
 455
 456		aup->old_link = phydev->link;
 457		status_change = 1;
 458	}
 459
 460	spin_unlock_irqrestore(&aup->lock, flags);
 461
 462	if (status_change) {
 463		if (phydev->link)
 464			netdev_info(dev, "link up (%d/%s)\n",
 465			       phydev->speed,
 466			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
 467		else
 468			netdev_info(dev, "link down\n");
 469	}
 470}
 471
 472static int au1000_mii_probe(struct net_device *dev)
 473{
 474	struct au1000_private *const aup = netdev_priv(dev);
 475	struct phy_device *phydev = NULL;
 476	int phy_addr;
 477
 478	if (aup->phy_static_config) {
 479		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
 480
 481		if (aup->phy_addr)
 482			phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
 483		else
 484			netdev_info(dev, "using PHY-less setup\n");
 485		return 0;
 486	}
 487
 488	/* find the first (lowest address) PHY
 489	 * on the current MAC's MII bus
 490	 */
 491	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
 492		if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
 493			phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
 494			if (!aup->phy_search_highest_addr)
 495				/* break out with first one found */
 496				break;
 497		}
 498
 499	if (aup->phy1_search_mac0) {
 500		/* try harder to find a PHY */
 501		if (!phydev && (aup->mac_id == 1)) {
 502			/* no PHY found, maybe we have a dual PHY? */
 503			dev_info(&dev->dev, ": no PHY found on MAC1, "
 504				"let's see if it's attached to MAC0...\n");
 505
 506			/* find the first (lowest address) non-attached
 507			 * PHY on the MAC0 MII bus
 508			 */
 509			for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
 510				struct phy_device *const tmp_phydev =
 511					mdiobus_get_phy(aup->mii_bus,
 512							phy_addr);
 513
 514				if (aup->mac_id == 1)
 515					break;
 516
 517				/* no PHY here... */
 518				if (!tmp_phydev)
 519					continue;
 520
 521				/* already claimed by MAC0 */
 522				if (tmp_phydev->attached_dev)
 523					continue;
 524
 525				phydev = tmp_phydev;
 526				break; /* found it */
 527			}
 528		}
 529	}
 530
 531	if (!phydev) {
 532		netdev_err(dev, "no PHY found\n");
 533		return -1;
 534	}
 535
 536	/* now we are supposed to have a proper phydev, to attach to... */
 537	BUG_ON(phydev->attached_dev);
 538
 539	phydev = phy_connect(dev, phydev_name(phydev),
 540			     &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
 541
 542	if (IS_ERR(phydev)) {
 543		netdev_err(dev, "Could not attach to PHY\n");
 544		return PTR_ERR(phydev);
 545	}
 546
 547	phy_set_max_speed(phydev, SPEED_100);
 
 
 
 
 
 
 
 
 
 
 548
 549	aup->old_link = 0;
 550	aup->old_speed = 0;
 551	aup->old_duplex = -1;
 552
 553	phy_attached_info(phydev);
 554
 555	return 0;
 556}
 557
 
 558/*
 559 * Buffer allocation/deallocation routines. The buffer descriptor returned
 560 * has the virtual and dma address of a buffer suitable for
 561 * both, receive and transmit operations.
 562 */
 563static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
 564{
 565	struct db_dest *pDB;
 566	pDB = aup->pDBfree;
 567
 568	if (pDB)
 569		aup->pDBfree = pDB->pnext;
 570
 571	return pDB;
 572}
 573
 574void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
 575{
 576	struct db_dest *pDBfree = aup->pDBfree;
 577	if (pDBfree)
 578		pDBfree->pnext = pDB;
 579	aup->pDBfree = pDB;
 580}
 581
 582static void au1000_reset_mac_unlocked(struct net_device *dev)
 583{
 584	struct au1000_private *const aup = netdev_priv(dev);
 585	int i;
 586
 587	au1000_hard_stop(dev);
 588
 589	writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 590	wmb(); /* drain writebuffer */
 591	mdelay(2);
 592	writel(0, aup->enable);
 593	wmb(); /* drain writebuffer */
 594	mdelay(2);
 595
 596	aup->tx_full = 0;
 597	for (i = 0; i < NUM_RX_DMA; i++) {
 598		/* reset control bits */
 599		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
 600	}
 601	for (i = 0; i < NUM_TX_DMA; i++) {
 602		/* reset control bits */
 603		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
 604	}
 605
 606	aup->mac_enabled = 0;
 607
 608}
 609
 610static void au1000_reset_mac(struct net_device *dev)
 611{
 612	struct au1000_private *const aup = netdev_priv(dev);
 613	unsigned long flags;
 614
 615	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
 616					(unsigned)aup);
 617
 618	spin_lock_irqsave(&aup->lock, flags);
 619
 620	au1000_reset_mac_unlocked(dev);
 621
 622	spin_unlock_irqrestore(&aup->lock, flags);
 623}
 624
 625/*
 626 * Setup the receive and transmit "rings".  These pointers are the addresses
 627 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
 628 * these are not descriptors sitting in memory.
 629 */
 630static void
 631au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
 632{
 633	int i;
 634
 635	for (i = 0; i < NUM_RX_DMA; i++) {
 636		aup->rx_dma_ring[i] = (struct rx_dma *)
 637			(tx_base + 0x100 + sizeof(struct rx_dma) * i);
 638	}
 639	for (i = 0; i < NUM_TX_DMA; i++) {
 640		aup->tx_dma_ring[i] = (struct tx_dma *)
 641			(tx_base + sizeof(struct tx_dma) * i);
 642	}
 643}
 644
 645/*
 646 * ethtool operations
 647 */
 
 648static void
 649au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 650{
 651	struct au1000_private *aup = netdev_priv(dev);
 652
 653	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 
 654	snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
 655		 aup->mac_id);
 656}
 657
 658static void au1000_set_msglevel(struct net_device *dev, u32 value)
 659{
 660	struct au1000_private *aup = netdev_priv(dev);
 661	aup->msg_enable = value;
 662}
 663
 664static u32 au1000_get_msglevel(struct net_device *dev)
 665{
 666	struct au1000_private *aup = netdev_priv(dev);
 667	return aup->msg_enable;
 668}
 669
 670static const struct ethtool_ops au1000_ethtool_ops = {
 671	.get_drvinfo = au1000_get_drvinfo,
 672	.get_link = ethtool_op_get_link,
 673	.get_msglevel = au1000_get_msglevel,
 674	.set_msglevel = au1000_set_msglevel,
 675	.get_link_ksettings = phy_ethtool_get_link_ksettings,
 676	.set_link_ksettings = phy_ethtool_set_link_ksettings,
 677};
 678
 
 679/*
 680 * Initialize the interface.
 681 *
 682 * When the device powers up, the clocks are disabled and the
 683 * mac is in reset state.  When the interface is closed, we
 684 * do the same -- reset the device and disable the clocks to
 685 * conserve power. Thus, whenever au1000_init() is called,
 686 * the device should already be in reset state.
 687 */
 688static int au1000_init(struct net_device *dev)
 689{
 690	struct au1000_private *aup = netdev_priv(dev);
 691	unsigned long flags;
 692	int i;
 693	u32 control;
 694
 695	netif_dbg(aup, hw, dev, "au1000_init\n");
 696
 697	/* bring the device out of reset */
 698	au1000_enable_mac(dev, 1);
 699
 700	spin_lock_irqsave(&aup->lock, flags);
 701
 702	writel(0, &aup->mac->control);
 703	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
 704	aup->tx_tail = aup->tx_head;
 705	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
 706
 707	writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
 708					&aup->mac->mac_addr_high);
 709	writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
 710		dev->dev_addr[1]<<8 | dev->dev_addr[0],
 711					&aup->mac->mac_addr_low);
 712
 713
 714	for (i = 0; i < NUM_RX_DMA; i++)
 715		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
 716
 717	wmb(); /* drain writebuffer */
 718
 719	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
 720#ifndef CONFIG_CPU_LITTLE_ENDIAN
 721	control |= MAC_BIG_ENDIAN;
 722#endif
 723	if (dev->phydev) {
 724		if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
 725			control |= MAC_FULL_DUPLEX;
 726		else
 727			control |= MAC_DISABLE_RX_OWN;
 728	} else { /* PHY-less op, assume full-duplex */
 729		control |= MAC_FULL_DUPLEX;
 730	}
 731
 732	writel(control, &aup->mac->control);
 733	writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
 734	wmb(); /* drain writebuffer */
 735
 736	spin_unlock_irqrestore(&aup->lock, flags);
 737	return 0;
 738}
 739
 740static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
 741{
 742	struct net_device_stats *ps = &dev->stats;
 743
 744	ps->rx_packets++;
 745	if (status & RX_MCAST_FRAME)
 746		ps->multicast++;
 747
 748	if (status & RX_ERROR) {
 749		ps->rx_errors++;
 750		if (status & RX_MISSED_FRAME)
 751			ps->rx_missed_errors++;
 752		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
 753			ps->rx_length_errors++;
 754		if (status & RX_CRC_ERROR)
 755			ps->rx_crc_errors++;
 756		if (status & RX_COLL)
 757			ps->collisions++;
 758	} else
 759		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
 760
 761}
 762
 763/*
 764 * Au1000 receive routine.
 765 */
 766static int au1000_rx(struct net_device *dev)
 767{
 768	struct au1000_private *aup = netdev_priv(dev);
 769	struct sk_buff *skb;
 770	struct rx_dma *prxd;
 771	u32 buff_stat, status;
 772	struct db_dest *pDB;
 773	u32	frmlen;
 774
 775	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
 776
 777	prxd = aup->rx_dma_ring[aup->rx_head];
 778	buff_stat = prxd->buff_stat;
 779	while (buff_stat & RX_T_DONE)  {
 780		status = prxd->status;
 781		pDB = aup->rx_db_inuse[aup->rx_head];
 782		au1000_update_rx_stats(dev, status);
 783		if (!(status & RX_ERROR))  {
 784
 785			/* good frame */
 786			frmlen = (status & RX_FRAME_LEN_MASK);
 787			frmlen -= 4; /* Remove FCS */
 788			skb = netdev_alloc_skb(dev, frmlen + 2);
 789			if (skb == NULL) {
 790				dev->stats.rx_dropped++;
 791				continue;
 792			}
 793			skb_reserve(skb, 2);	/* 16 byte IP header align */
 794			skb_copy_to_linear_data(skb,
 795				(unsigned char *)pDB->vaddr, frmlen);
 796			skb_put(skb, frmlen);
 797			skb->protocol = eth_type_trans(skb, dev);
 798			netif_rx(skb);	/* pass the packet to upper layers */
 799		} else {
 800			if (au1000_debug > 4) {
 801				pr_err("rx_error(s):");
 802				if (status & RX_MISSED_FRAME)
 803					pr_cont(" miss");
 804				if (status & RX_WDOG_TIMER)
 805					pr_cont(" wdog");
 806				if (status & RX_RUNT)
 807					pr_cont(" runt");
 808				if (status & RX_OVERLEN)
 809					pr_cont(" overlen");
 810				if (status & RX_COLL)
 811					pr_cont(" coll");
 812				if (status & RX_MII_ERROR)
 813					pr_cont(" mii error");
 814				if (status & RX_CRC_ERROR)
 815					pr_cont(" crc error");
 816				if (status & RX_LEN_ERROR)
 817					pr_cont(" len error");
 818				if (status & RX_U_CNTRL_FRAME)
 819					pr_cont(" u control frame");
 820				pr_cont("\n");
 821			}
 822		}
 823		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
 824		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
 825		wmb(); /* drain writebuffer */
 826
 827		/* next descriptor */
 828		prxd = aup->rx_dma_ring[aup->rx_head];
 829		buff_stat = prxd->buff_stat;
 830	}
 831	return 0;
 832}
 833
 834static void au1000_update_tx_stats(struct net_device *dev, u32 status)
 835{
 836	struct net_device_stats *ps = &dev->stats;
 837
 838	if (status & TX_FRAME_ABORTED) {
 839		if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
 840			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
 841				/* any other tx errors are only valid
 842				 * in half duplex mode
 843				 */
 844				ps->tx_errors++;
 845				ps->tx_aborted_errors++;
 846			}
 847		} else {
 848			ps->tx_errors++;
 849			ps->tx_aborted_errors++;
 850			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
 851				ps->tx_carrier_errors++;
 852		}
 853	}
 854}
 855
 856/*
 857 * Called from the interrupt service routine to acknowledge
 858 * the TX DONE bits.  This is a must if the irq is setup as
 859 * edge triggered.
 860 */
 861static void au1000_tx_ack(struct net_device *dev)
 862{
 863	struct au1000_private *aup = netdev_priv(dev);
 864	struct tx_dma *ptxd;
 865
 866	ptxd = aup->tx_dma_ring[aup->tx_tail];
 867
 868	while (ptxd->buff_stat & TX_T_DONE) {
 869		au1000_update_tx_stats(dev, ptxd->status);
 870		ptxd->buff_stat &= ~TX_T_DONE;
 871		ptxd->len = 0;
 872		wmb(); /* drain writebuffer */
 873
 874		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
 875		ptxd = aup->tx_dma_ring[aup->tx_tail];
 876
 877		if (aup->tx_full) {
 878			aup->tx_full = 0;
 879			netif_wake_queue(dev);
 880		}
 881	}
 882}
 883
 884/*
 885 * Au1000 interrupt service routine.
 886 */
 887static irqreturn_t au1000_interrupt(int irq, void *dev_id)
 888{
 889	struct net_device *dev = dev_id;
 890
 891	/* Handle RX interrupts first to minimize chance of overrun */
 892
 893	au1000_rx(dev);
 894	au1000_tx_ack(dev);
 895	return IRQ_RETVAL(1);
 896}
 897
 898static int au1000_open(struct net_device *dev)
 899{
 900	int retval;
 901	struct au1000_private *aup = netdev_priv(dev);
 902
 903	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
 904
 905	retval = request_irq(dev->irq, au1000_interrupt, 0,
 906					dev->name, dev);
 907	if (retval) {
 908		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
 909		return retval;
 910	}
 911
 912	retval = au1000_init(dev);
 913	if (retval) {
 914		netdev_err(dev, "error in au1000_init\n");
 915		free_irq(dev->irq, dev);
 916		return retval;
 917	}
 918
 919	if (dev->phydev)
 
 
 920		phy_start(dev->phydev);
 
 921
 922	netif_start_queue(dev);
 923
 924	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
 925
 926	return 0;
 927}
 928
 929static int au1000_close(struct net_device *dev)
 930{
 931	unsigned long flags;
 932	struct au1000_private *const aup = netdev_priv(dev);
 933
 934	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
 935
 936	if (dev->phydev)
 937		phy_stop(dev->phydev);
 938
 939	spin_lock_irqsave(&aup->lock, flags);
 940
 941	au1000_reset_mac_unlocked(dev);
 942
 943	/* stop the device */
 944	netif_stop_queue(dev);
 945
 946	/* disable the interrupt */
 947	free_irq(dev->irq, dev);
 948	spin_unlock_irqrestore(&aup->lock, flags);
 949
 950	return 0;
 951}
 952
 953/*
 954 * Au1000 transmit routine.
 955 */
 956static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
 957{
 958	struct au1000_private *aup = netdev_priv(dev);
 959	struct net_device_stats *ps = &dev->stats;
 960	struct tx_dma *ptxd;
 961	u32 buff_stat;
 962	struct db_dest *pDB;
 963	int i;
 964
 965	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
 966				(unsigned)aup, skb->len,
 967				skb->data, aup->tx_head);
 968
 969	ptxd = aup->tx_dma_ring[aup->tx_head];
 970	buff_stat = ptxd->buff_stat;
 971	if (buff_stat & TX_DMA_ENABLE) {
 972		/* We've wrapped around and the transmitter is still busy */
 973		netif_stop_queue(dev);
 974		aup->tx_full = 1;
 975		return NETDEV_TX_BUSY;
 976	} else if (buff_stat & TX_T_DONE) {
 977		au1000_update_tx_stats(dev, ptxd->status);
 978		ptxd->len = 0;
 979	}
 980
 981	if (aup->tx_full) {
 982		aup->tx_full = 0;
 983		netif_wake_queue(dev);
 984	}
 985
 986	pDB = aup->tx_db_inuse[aup->tx_head];
 987	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
 988	if (skb->len < ETH_ZLEN) {
 989		for (i = skb->len; i < ETH_ZLEN; i++)
 990			((char *)pDB->vaddr)[i] = 0;
 991
 992		ptxd->len = ETH_ZLEN;
 993	} else
 994		ptxd->len = skb->len;
 995
 996	ps->tx_packets++;
 997	ps->tx_bytes += ptxd->len;
 998
 999	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1000	wmb(); /* drain writebuffer */
1001	dev_kfree_skb(skb);
1002	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1003	return NETDEV_TX_OK;
1004}
1005
1006/*
1007 * The Tx ring has been full longer than the watchdog timeout
1008 * value. The transmitter must be hung?
1009 */
1010static void au1000_tx_timeout(struct net_device *dev, unsigned int txqueue)
1011{
1012	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1013	au1000_reset_mac(dev);
1014	au1000_init(dev);
1015	netif_trans_update(dev); /* prevent tx timeout */
1016	netif_wake_queue(dev);
1017}
1018
1019static void au1000_multicast_list(struct net_device *dev)
1020{
1021	struct au1000_private *aup = netdev_priv(dev);
1022	u32 reg;
1023
1024	netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1025	reg = readl(&aup->mac->control);
1026	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1027		reg |= MAC_PROMISCUOUS;
1028	} else if ((dev->flags & IFF_ALLMULTI)  ||
1029			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1030		reg |= MAC_PASS_ALL_MULTI;
1031		reg &= ~MAC_PROMISCUOUS;
1032		netdev_info(dev, "Pass all multicast\n");
1033	} else {
1034		struct netdev_hw_addr *ha;
1035		u32 mc_filter[2];	/* Multicast hash filter */
1036
1037		mc_filter[1] = mc_filter[0] = 0;
1038		netdev_for_each_mc_addr(ha, dev)
1039			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1040					(long *)mc_filter);
1041		writel(mc_filter[1], &aup->mac->multi_hash_high);
1042		writel(mc_filter[0], &aup->mac->multi_hash_low);
1043		reg &= ~MAC_PROMISCUOUS;
1044		reg |= MAC_HASH_MODE;
1045	}
1046	writel(reg, &aup->mac->control);
1047}
1048
 
 
 
 
 
 
 
 
 
 
 
1049static const struct net_device_ops au1000_netdev_ops = {
1050	.ndo_open		= au1000_open,
1051	.ndo_stop		= au1000_close,
1052	.ndo_start_xmit		= au1000_tx,
1053	.ndo_set_rx_mode	= au1000_multicast_list,
1054	.ndo_do_ioctl		= phy_do_ioctl_running,
1055	.ndo_tx_timeout		= au1000_tx_timeout,
1056	.ndo_set_mac_address	= eth_mac_addr,
1057	.ndo_validate_addr	= eth_validate_addr,
1058};
1059
1060static int au1000_probe(struct platform_device *pdev)
1061{
1062	struct au1000_private *aup = NULL;
1063	struct au1000_eth_platform_data *pd;
1064	struct net_device *dev = NULL;
1065	struct db_dest *pDB, *pDBfree;
1066	int irq, i, err = 0;
1067	struct resource *base, *macen, *macdma;
1068
1069	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1070	if (!base) {
1071		dev_err(&pdev->dev, "failed to retrieve base register\n");
1072		err = -ENODEV;
1073		goto out;
1074	}
1075
1076	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1077	if (!macen) {
1078		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1079		err = -ENODEV;
1080		goto out;
1081	}
1082
1083	irq = platform_get_irq(pdev, 0);
1084	if (irq < 0) {
 
1085		err = -ENODEV;
1086		goto out;
1087	}
1088
1089	macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1090	if (!macdma) {
1091		dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1092		err = -ENODEV;
1093		goto out;
1094	}
1095
1096	if (!request_mem_region(base->start, resource_size(base),
1097							pdev->name)) {
1098		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1099		err = -ENXIO;
1100		goto out;
1101	}
1102
1103	if (!request_mem_region(macen->start, resource_size(macen),
1104							pdev->name)) {
1105		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1106		err = -ENXIO;
1107		goto err_request;
1108	}
1109
1110	if (!request_mem_region(macdma->start, resource_size(macdma),
1111							pdev->name)) {
1112		dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1113		err = -ENXIO;
1114		goto err_macdma;
1115	}
1116
1117	dev = alloc_etherdev(sizeof(struct au1000_private));
1118	if (!dev) {
1119		err = -ENOMEM;
1120		goto err_alloc;
1121	}
1122
1123	SET_NETDEV_DEV(dev, &pdev->dev);
1124	platform_set_drvdata(pdev, dev);
1125	aup = netdev_priv(dev);
1126
1127	spin_lock_init(&aup->lock);
1128	aup->msg_enable = (au1000_debug < 4 ?
1129				AU1000_DEF_MSG_ENABLE : au1000_debug);
1130
1131	/* Allocate the data buffers
1132	 * Snooping works fine with eth on all au1xxx
1133	 */
1134	aup->vaddr = (u32)dma_alloc_attrs(&pdev->dev, MAX_BUF_SIZE *
1135					  (NUM_TX_BUFFS + NUM_RX_BUFFS),
1136					  &aup->dma_addr, 0,
1137					  DMA_ATTR_NON_CONSISTENT);
1138	if (!aup->vaddr) {
1139		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1140		err = -ENOMEM;
1141		goto err_vaddr;
1142	}
1143
1144	/* aup->mac is the base address of the MAC's registers */
1145	aup->mac = (struct mac_reg *)
1146			ioremap(base->start, resource_size(base));
1147	if (!aup->mac) {
1148		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1149		err = -ENXIO;
1150		goto err_remap1;
1151	}
1152
1153	/* Setup some variables for quick register address access */
1154	aup->enable = (u32 *)ioremap(macen->start,
1155						resource_size(macen));
1156	if (!aup->enable) {
1157		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1158		err = -ENXIO;
1159		goto err_remap2;
1160	}
1161	aup->mac_id = pdev->id;
1162
1163	aup->macdma = ioremap(macdma->start, resource_size(macdma));
1164	if (!aup->macdma) {
1165		dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1166		err = -ENXIO;
1167		goto err_remap3;
1168	}
1169
1170	au1000_setup_hw_rings(aup, aup->macdma);
1171
1172	writel(0, aup->enable);
1173	aup->mac_enabled = 0;
1174
1175	pd = dev_get_platdata(&pdev->dev);
1176	if (!pd) {
1177		dev_info(&pdev->dev, "no platform_data passed,"
1178					" PHY search on MAC0\n");
1179		aup->phy1_search_mac0 = 1;
1180	} else {
1181		if (is_valid_ether_addr(pd->mac)) {
1182			memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1183		} else {
1184			/* Set a random MAC since no valid provided by platform_data. */
1185			eth_hw_addr_random(dev);
1186		}
1187
1188		aup->phy_static_config = pd->phy_static_config;
1189		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1190		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1191		aup->phy_addr = pd->phy_addr;
1192		aup->phy_busid = pd->phy_busid;
1193		aup->phy_irq = pd->phy_irq;
1194	}
1195
1196	if (aup->phy_busid > 0) {
1197		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1198		err = -ENODEV;
1199		goto err_mdiobus_alloc;
1200	}
1201
1202	aup->mii_bus = mdiobus_alloc();
1203	if (aup->mii_bus == NULL) {
1204		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1205		err = -ENOMEM;
1206		goto err_mdiobus_alloc;
1207	}
1208
1209	aup->mii_bus->priv = dev;
1210	aup->mii_bus->read = au1000_mdiobus_read;
1211	aup->mii_bus->write = au1000_mdiobus_write;
1212	aup->mii_bus->reset = au1000_mdiobus_reset;
1213	aup->mii_bus->name = "au1000_eth_mii";
1214	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1215		pdev->name, aup->mac_id);
1216
1217	/* if known, set corresponding PHY IRQs */
1218	if (aup->phy_static_config)
1219		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1220			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1221
1222	err = mdiobus_register(aup->mii_bus);
1223	if (err) {
1224		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1225		goto err_mdiobus_reg;
1226	}
1227
1228	err = au1000_mii_probe(dev);
1229	if (err != 0)
1230		goto err_out;
1231
1232	pDBfree = NULL;
1233	/* setup the data buffer descriptors and attach a buffer to each one */
1234	pDB = aup->db;
1235	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1236		pDB->pnext = pDBfree;
1237		pDBfree = pDB;
1238		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1239		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1240		pDB++;
1241	}
1242	aup->pDBfree = pDBfree;
1243
1244	err = -ENODEV;
1245	for (i = 0; i < NUM_RX_DMA; i++) {
1246		pDB = au1000_GetFreeDB(aup);
1247		if (!pDB)
1248			goto err_out;
1249
1250		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1251		aup->rx_db_inuse[i] = pDB;
1252	}
1253
 
1254	for (i = 0; i < NUM_TX_DMA; i++) {
1255		pDB = au1000_GetFreeDB(aup);
1256		if (!pDB)
1257			goto err_out;
1258
1259		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1260		aup->tx_dma_ring[i]->len = 0;
1261		aup->tx_db_inuse[i] = pDB;
1262	}
1263
1264	dev->base_addr = base->start;
1265	dev->irq = irq;
1266	dev->netdev_ops = &au1000_netdev_ops;
1267	dev->ethtool_ops = &au1000_ethtool_ops;
1268	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1269
1270	/*
1271	 * The boot code uses the ethernet controller, so reset it to start
1272	 * fresh.  au1000_init() expects that the device is in reset state.
1273	 */
1274	au1000_reset_mac(dev);
1275
1276	err = register_netdev(dev);
1277	if (err) {
1278		netdev_err(dev, "Cannot register net device, aborting.\n");
1279		goto err_out;
1280	}
1281
1282	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1283			(unsigned long)base->start, irq);
1284
 
 
1285	return 0;
1286
1287err_out:
1288	if (aup->mii_bus != NULL)
1289		mdiobus_unregister(aup->mii_bus);
1290
1291	/* here we should have a valid dev plus aup-> register addresses
1292	 * so we can reset the mac properly.
1293	 */
1294	au1000_reset_mac(dev);
1295
1296	for (i = 0; i < NUM_RX_DMA; i++) {
1297		if (aup->rx_db_inuse[i])
1298			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1299	}
1300	for (i = 0; i < NUM_TX_DMA; i++) {
1301		if (aup->tx_db_inuse[i])
1302			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1303	}
1304err_mdiobus_reg:
1305	mdiobus_free(aup->mii_bus);
1306err_mdiobus_alloc:
1307	iounmap(aup->macdma);
1308err_remap3:
1309	iounmap(aup->enable);
1310err_remap2:
1311	iounmap(aup->mac);
1312err_remap1:
1313	dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1314			(void *)aup->vaddr, aup->dma_addr,
1315			DMA_ATTR_NON_CONSISTENT);
1316err_vaddr:
1317	free_netdev(dev);
1318err_alloc:
1319	release_mem_region(macdma->start, resource_size(macdma));
1320err_macdma:
1321	release_mem_region(macen->start, resource_size(macen));
1322err_request:
1323	release_mem_region(base->start, resource_size(base));
1324out:
1325	return err;
1326}
1327
1328static int au1000_remove(struct platform_device *pdev)
1329{
1330	struct net_device *dev = platform_get_drvdata(pdev);
1331	struct au1000_private *aup = netdev_priv(dev);
1332	int i;
1333	struct resource *base, *macen;
1334
1335	unregister_netdev(dev);
1336	mdiobus_unregister(aup->mii_bus);
1337	mdiobus_free(aup->mii_bus);
1338
1339	for (i = 0; i < NUM_RX_DMA; i++)
1340		if (aup->rx_db_inuse[i])
1341			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1342
1343	for (i = 0; i < NUM_TX_DMA; i++)
1344		if (aup->tx_db_inuse[i])
1345			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1346
1347	dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1348			(void *)aup->vaddr, aup->dma_addr,
1349			DMA_ATTR_NON_CONSISTENT);
1350
1351	iounmap(aup->macdma);
1352	iounmap(aup->mac);
1353	iounmap(aup->enable);
1354
1355	base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1356	release_mem_region(base->start, resource_size(base));
1357
1358	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1359	release_mem_region(base->start, resource_size(base));
1360
1361	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1362	release_mem_region(macen->start, resource_size(macen));
1363
1364	free_netdev(dev);
1365
1366	return 0;
1367}
1368
1369static struct platform_driver au1000_eth_driver = {
1370	.probe  = au1000_probe,
1371	.remove = au1000_remove,
1372	.driver = {
1373		.name   = "au1000-eth",
1374	},
1375};
1376
1377module_platform_driver(au1000_eth_driver);
1378
1379MODULE_ALIAS("platform:au1000-eth");