Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.17
   1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2/*
   3	Written 1996-1999 by Donald Becker.
   4
   5	This software may be used and distributed according to the terms
   6	of the GNU General Public License, incorporated herein by reference.
   7
   8	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10	and the EtherLink XL 3c900 and 3c905 cards.
  11
  12	Problem reports and questions should be directed to
  13	vortex@scyld.com
  14
  15	The author may be reached as becker@scyld.com, or C/O
  16	Scyld Computing Corporation
  17	410 Severn Ave., Suite 210
  18	Annapolis MD 21403
  19
  20*/
  21
  22/*
  23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24 * as well as other drivers
  25 *
  26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27 * due to dead code elimination.  There will be some performance benefits from this due to
  28 * elimination of all the tests and reduced cache footprint.
  29 */
  30
  31
  32#define DRV_NAME	"3c59x"
  33
  34
  35
  36/* A few values that may be tweaked. */
  37/* Keep the ring sizes a power of two for efficiency. */
  38#define TX_RING_SIZE	16
  39#define RX_RING_SIZE	32
  40#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
  41
  42/* "Knobs" that adjust features and parameters. */
  43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44   Setting to > 1512 effectively disables this feature. */
  45#ifndef __arm__
  46static int rx_copybreak = 200;
  47#else
  48/* ARM systems perform better by disregarding the bus-master
  49   transfer capability of these cards. -- rmk */
  50static int rx_copybreak = 1513;
  51#endif
  52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53static const int mtu = 1500;
  54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55static int max_interrupt_work = 32;
  56/* Tx timeout interval (millisecs) */
  57static int watchdog = 5000;
  58
  59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60 * of possible Tx stalls if the system is blocking interrupts
  61 * somewhere else.  Undefine this to disable.
  62 */
  63#define tx_interrupt_mitigation 1
  64
  65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66#define vortex_debug debug
  67#ifdef VORTEX_DEBUG
  68static int vortex_debug = VORTEX_DEBUG;
  69#else
  70static int vortex_debug = 1;
  71#endif
  72
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/string.h>
  76#include <linux/timer.h>
  77#include <linux/errno.h>
  78#include <linux/in.h>
  79#include <linux/ioport.h>
  80#include <linux/interrupt.h>
  81#include <linux/pci.h>
  82#include <linux/mii.h>
  83#include <linux/init.h>
  84#include <linux/netdevice.h>
  85#include <linux/etherdevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/ethtool.h>
  88#include <linux/highmem.h>
  89#include <linux/eisa.h>
  90#include <linux/bitops.h>
  91#include <linux/jiffies.h>
  92#include <linux/gfp.h>
  93#include <asm/irq.h>			/* For nr_irqs only. */
  94#include <asm/io.h>
  95#include <linux/uaccess.h>
  96
  97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98   This is only in the support-all-kernels source code. */
  99
 100#define RUN_AT(x) (jiffies + (x))
 101
 102#include <linux/delay.h>
 103
 104
 105static const char version[] =
 106	DRV_NAME ": Donald Becker and others.\n";
 107
 108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110MODULE_LICENSE("GPL");
 111
 112
 113/* Operational parameter that usually are not changed. */
 114
 115/* The Vortex size is twice that of the original EtherLinkIII series: the
 116   runtime register window, window 1, is now always mapped in.
 117   The Boomerang size is twice as large as the Vortex -- it has additional
 118   bus master control registers. */
 119#define VORTEX_TOTAL_SIZE 0x20
 120#define BOOMERANG_TOTAL_SIZE 0x40
 121
 122/* Set iff a MII transceiver on any interface requires mdio preamble.
 123   This only set with the original DP83840 on older 3c905 boards, so the extra
 124   code size of a per-interface flag is not worthwhile. */
 125static char mii_preamble_required;
 126
 127#define PFX DRV_NAME ": "
 128
 129
 130
 131/*
 132				Theory of Operation
 133
 134I. Board Compatibility
 135
 136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138versions of the FastEtherLink cards.  The supported product IDs are
 139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140
 141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142with the kernel source or available from
 143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144
 145II. Board-specific settings
 146
 147PCI bus devices are configured by the system at boot time, so no jumpers
 148need to be set on the board.  The system BIOS should be set to assign the
 149PCI INTA signal to an otherwise unused system IRQ line.
 150
 151The EEPROM settings for media type and forced-full-duplex are observed.
 152The EEPROM media type should be left at the default "autoselect" unless using
 15310base2 or AUI connections which cannot be reliably detected.
 154
 155III. Driver operation
 156
 157The 3c59x series use an interface that's very similar to the previous 3c5x9
 158series.  The primary interface is two programmed-I/O FIFOs, with an
 159alternate single-contiguous-region bus-master transfer (see next).
 160
 161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164programmed-I/O interface that has been removed in 'B' and subsequent board
 165revisions.
 166
 167One extension that is advertised in a very large font is that the adapters
 168are capable of being bus masters.  On the Vortex chip this capability was
 169only for a single contiguous region making it far less useful than the full
 170bus master capability.  There is a significant performance impact of taking
 171an extra interrupt or polling for the completion of each transfer, as well
 172as difficulty sharing the single transfer engine between the transmit and
 173receive threads.  Using DMA transfers is a win only with large blocks or
 174with the flawed versions of the Intel Orion motherboard PCI controller.
 175
 176The Boomerang chip's full-bus-master interface is useful, and has the
 177currently-unused advantages over other similar chips that queued transmit
 178packets may be reordered and receive buffer groups are associated with a
 179single frame.
 180
 181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182Rather than a fixed intermediate receive buffer, this scheme allocates
 183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184the copying breakpoint: it is chosen to trade-off the memory wasted by
 185passing the full-sized skbuff to the queue layer for all frames vs. the
 186copying cost of copying a frame to a correctly-sized skbuff.
 187
 188IIIC. Synchronization
 189The driver runs as two independent, single-threaded flows of control.  One
 190is the send-packet routine, which enforces single-threaded use by the
 191dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192threaded by the hardware and other software.
 193
 194IV. Notes
 195
 196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 1973c590, 3c595, and 3c900 boards.
 198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199the EISA version is called "Demon".  According to Terry these names come
 200from rides at the local amusement park.
 201
 202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203This driver only supports ethernet packets because of the skbuff allocation
 204limit of 4K.
 205*/
 206
 207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208   of the drivers, and will likely be provided by some future kernel.
 209*/
 210enum pci_flags_bit {
 211	PCI_USES_MASTER=4,
 212};
 213
 214enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220
 221enum vortex_chips {
 222	CH_3C590 = 0,
 223	CH_3C592,
 224	CH_3C597,
 225	CH_3C595_1,
 226	CH_3C595_2,
 227
 228	CH_3C595_3,
 229	CH_3C900_1,
 230	CH_3C900_2,
 231	CH_3C900_3,
 232	CH_3C900_4,
 233
 234	CH_3C900_5,
 235	CH_3C900B_FL,
 236	CH_3C905_1,
 237	CH_3C905_2,
 238	CH_3C905B_TX,
 239	CH_3C905B_1,
 240
 241	CH_3C905B_2,
 242	CH_3C905B_FX,
 243	CH_3C905C,
 244	CH_3C9202,
 245	CH_3C980,
 246	CH_3C9805,
 247
 248	CH_3CSOHO100_TX,
 249	CH_3C555,
 250	CH_3C556,
 251	CH_3C556B,
 252	CH_3C575,
 253
 254	CH_3C575_1,
 255	CH_3CCFE575,
 256	CH_3CCFE575CT,
 257	CH_3CCFE656,
 258	CH_3CCFEM656,
 259
 260	CH_3CCFEM656_1,
 261	CH_3C450,
 262	CH_3C920,
 263	CH_3C982A,
 264	CH_3C982B,
 265
 266	CH_905BT4,
 267	CH_920B_EMB_WNM,
 268};
 269
 270
 271/* note: this array directly indexed by above enums, and MUST
 272 * be kept in sync with both the enums above, and the PCI device
 273 * table below
 274 */
 275static struct vortex_chip_info {
 276	const char *name;
 277	int flags;
 278	int drv_flags;
 279	int io_size;
 280} vortex_info_tbl[] = {
 281	{"3c590 Vortex 10Mbps",
 282	 PCI_USES_MASTER, IS_VORTEX, 32, },
 283	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 284	 PCI_USES_MASTER, IS_VORTEX, 32, },
 285	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 286	 PCI_USES_MASTER, IS_VORTEX, 32, },
 287	{"3c595 Vortex 100baseTx",
 288	 PCI_USES_MASTER, IS_VORTEX, 32, },
 289	{"3c595 Vortex 100baseT4",
 290	 PCI_USES_MASTER, IS_VORTEX, 32, },
 291
 292	{"3c595 Vortex 100base-MII",
 293	 PCI_USES_MASTER, IS_VORTEX, 32, },
 294	{"3c900 Boomerang 10baseT",
 295	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296	{"3c900 Boomerang 10Mbps Combo",
 297	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
 299	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300	{"3c900 Cyclone 10Mbps Combo",
 301	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302
 303	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
 304	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305	{"3c900B-FL Cyclone 10base-FL",
 306	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307	{"3c905 Boomerang 100baseTx",
 308	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309	{"3c905 Boomerang 100baseT4",
 310	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311	{"3C905B-TX Fast Etherlink XL PCI",
 312	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313	{"3c905B Cyclone 100baseTx",
 314	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315
 316	{"3c905B Cyclone 10/100/BNC",
 317	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318	{"3c905B-FX Cyclone 100baseFx",
 319	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320	{"3c905C Tornado",
 321	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324	{"3c980 Cyclone",
 325	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326
 327	{"3c980C Python-T",
 328	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329	{"3cSOHO100-TX Hurricane",
 330	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331	{"3c555 Laptop Hurricane",
 332	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333	{"3c556 Laptop Tornado",
 334	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335									HAS_HWCKSM, 128, },
 336	{"3c556B Laptop Hurricane",
 337	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339
 340	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
 341	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342	{"3c575 Boomerang CardBus",
 343	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344	{"3CCFE575BT Cyclone CardBus",
 345	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347	{"3CCFE575CT Tornado CardBus",
 348	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350	{"3CCFE656 Cyclone CardBus",
 351	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353
 354	{"3CCFEM656B Cyclone+Winmodem CardBus",
 355	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
 358	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
 361	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362	{"3c920 Tornado",
 363	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364	{"3c982 Hydra Dual Port A",
 365	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366
 367	{"3c982 Hydra Dual Port B",
 368	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369	{"3c905B-T4",
 370	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371	{"3c920B-EMB-WNM Tornado",
 372	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373
 374	{NULL,}, /* NULL terminated list. */
 375};
 376
 377
 378static const struct pci_device_id vortex_pci_tbl[] = {
 379	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384
 385	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390
 391	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397
 398	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404
 405	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410
 411	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416
 417	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422
 423	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425
 426	{0,}						/* 0 terminated list. */
 427};
 428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429
 430
 431/* Operational definitions.
 432   These are not used by other compilation units and thus are not
 433   exported in a ".h" file.
 434
 435   First the windows.  There are eight register windows, with the command
 436   and status registers available in each.
 437   */
 438#define EL3_CMD 0x0e
 439#define EL3_STATUS 0x0e
 440
 441/* The top five bits written to EL3_CMD are a command, the lower
 442   11 bits are the parameter, if applicable.
 443   Note that 11 parameters bits was fine for ethernet, but the new chip
 444   can handle FDDI length frames (~4500 octets) and now parameters count
 445   32-bit 'Dwords' rather than octets. */
 446
 447enum vortex_cmd {
 448	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450	UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458
 459/* The SetRxFilter command accepts the following classes: */
 460enum RxFilter {
 461	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462
 463/* Bits in the general status register. */
 464enum vortex_status {
 465	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467	IntReq = 0x0040, StatsFull = 0x0080,
 468	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
 470	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
 471};
 472
 473/* Register window 1 offsets, the window used in normal operation.
 474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475enum Window1 {
 476	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479};
 480enum Window0 {
 481	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
 482	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
 483	IntrStatus=0x0E,		/* Valid in all windows. */
 484};
 485enum Win0_EEPROM_bits {
 486	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
 488	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
 489};
 490/* EEPROM locations. */
 491enum eeprom_offset {
 492	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495	DriverTune=13, Checksum=15};
 496
 497enum Window2 {			/* Window 2. */
 498	Wn2_ResetOptions=12,
 499};
 500enum Window3 {			/* Window 3: MAC/config bits. */
 501	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502};
 503
 504#define BFEXT(value, offset, bitcount)  \
 505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506
 507#define BFINS(lhs, rhs, offset, bitcount)					\
 508	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
 509	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510
 511#define RAM_SIZE(v)		BFEXT(v, 0, 3)
 512#define RAM_WIDTH(v)	BFEXT(v, 3, 1)
 513#define RAM_SPEED(v)	BFEXT(v, 4, 2)
 514#define ROM_SIZE(v)		BFEXT(v, 6, 2)
 515#define RAM_SPLIT(v)	BFEXT(v, 16, 2)
 516#define XCVR(v)			BFEXT(v, 20, 4)
 517#define AUTOSELECT(v)	BFEXT(v, 24, 1)
 518
 519enum Window4 {		/* Window 4: Xcvr/media bits. */
 520	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521};
 522enum Win4_Media_bits {
 523	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
 524	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
 525	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
 526	Media_LnkBeat = 0x0800,
 527};
 528enum Window7 {					/* Window 7: Bus Master control. */
 529	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530	Wn7_MasterStatus = 12,
 531};
 532/* Boomerang bus master control registers. */
 533enum MasterCtrl {
 534	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536};
 537
 538/* The Rx and Tx descriptor lists.
 539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540   alignment contraint on tx_ring[] and rx_ring[]. */
 541#define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
 542#define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
 543struct boom_rx_desc {
 544	__le32 next;					/* Last entry points to 0.   */
 545	__le32 status;
 546	__le32 addr;					/* Up to 63 addr/len pairs possible. */
 547	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
 548};
 549/* Values for the Rx status entry. */
 550enum rx_desc_status {
 551	RxDComplete=0x00008000, RxDError=0x4000,
 552	/* See boomerang_rx() for actual error bits */
 553	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555};
 556
 557#ifdef MAX_SKB_FRAGS
 558#define DO_ZEROCOPY 1
 559#else
 560#define DO_ZEROCOPY 0
 561#endif
 562
 563struct boom_tx_desc {
 564	__le32 next;					/* Last entry points to 0.   */
 565	__le32 status;					/* bits 0:12 length, others see below.  */
 566#if DO_ZEROCOPY
 567	struct {
 568		__le32 addr;
 569		__le32 length;
 570	} frag[1+MAX_SKB_FRAGS];
 571#else
 572		__le32 addr;
 573		__le32 length;
 574#endif
 575};
 576
 577/* Values for the Tx status entry. */
 578enum tx_desc_status {
 579	CRCDisable=0x2000, TxDComplete=0x8000,
 580	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
 582};
 583
 584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586
 587struct vortex_extra_stats {
 588	unsigned long tx_deferred;
 589	unsigned long tx_max_collisions;
 590	unsigned long tx_multiple_collisions;
 591	unsigned long tx_single_collisions;
 592	unsigned long rx_bad_ssd;
 593};
 594
 595struct vortex_private {
 596	/* The Rx and Tx rings should be quad-word-aligned. */
 597	struct boom_rx_desc* rx_ring;
 598	struct boom_tx_desc* tx_ring;
 599	dma_addr_t rx_ring_dma;
 600	dma_addr_t tx_ring_dma;
 601	/* The addresses of transmit- and receive-in-place skbuffs. */
 602	struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603	struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
 605	unsigned int dirty_tx;	/* The ring entries to be free()ed. */
 606	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
 607	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
 608	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
 609
 610	/* PCI configuration space information. */
 611	struct device *gendev;
 612	void __iomem *ioaddr;			/* IO address space */
 613	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
 614
 615	/* Some values here only for performance evaluation and path-coverage */
 616	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617	int card_idx;
 618
 619	/* The remainder are related to chip state, mostly media selection. */
 620	struct timer_list timer;			/* Media selection timer. */
 621	int options;						/* User-settable misc. driver options. */
 622	unsigned int media_override:4, 		/* Passed-in media type. */
 623		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
 624		full_duplex:1, autoselect:1,
 625		bus_master:1,					/* Vortex can only do a fragment bus-m. */
 626		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 627		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
 628		partner_flow_ctrl:1,			/* Partner supports flow control */
 629		has_nway:1,
 630		enable_wol:1,					/* Wake-on-LAN is enabled */
 631		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
 632		open:1,
 633		medialock:1,
 634		large_frames:1,			/* accept large frames */
 635		handling_irq:1;			/* private in_irq indicator */
 636	/* {get|set}_wol operations are already serialized by rtnl.
 637	 * no additional locking is required for the enable_wol and acpi_set_WOL()
 638	 */
 639	int drv_flags;
 640	u16 status_enable;
 641	u16 intr_enable;
 642	u16 available_media;				/* From Wn3_Options. */
 643	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
 644	u16 advertising;					/* NWay media advertisement */
 645	unsigned char phys[2];				/* MII device addresses. */
 646	u16 deferred;						/* Resend these interrupts when we
 647										 * bale from the ISR */
 648	u16 io_size;						/* Size of PCI region (for release_region) */
 649
 650	/* Serialises access to hardware other than MII and variables below.
 651	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 652	spinlock_t lock;
 653
 654	spinlock_t mii_lock;		/* Serialises access to MII */
 655	struct mii_if_info mii;		/* MII lib hooks/info */
 656	spinlock_t window_lock;		/* Serialises access to windowed regs */
 657	int window;			/* Register window */
 658};
 659
 660static void window_set(struct vortex_private *vp, int window)
 661{
 662	if (window != vp->window) {
 663		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 664		vp->window = window;
 665	}
 666}
 667
 668#define DEFINE_WINDOW_IO(size)						\
 669static u ## size							\
 670window_read ## size(struct vortex_private *vp, int window, int addr)	\
 671{									\
 672	unsigned long flags;						\
 673	u ## size ret;							\
 674	spin_lock_irqsave(&vp->window_lock, flags);			\
 675	window_set(vp, window);						\
 676	ret = ioread ## size(vp->ioaddr + addr);			\
 677	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 678	return ret;							\
 679}									\
 680static void								\
 681window_write ## size(struct vortex_private *vp, u ## size value,	\
 682		     int window, int addr)				\
 683{									\
 684	unsigned long flags;						\
 685	spin_lock_irqsave(&vp->window_lock, flags);			\
 686	window_set(vp, window);						\
 687	iowrite ## size(value, vp->ioaddr + addr);			\
 688	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 689}
 690DEFINE_WINDOW_IO(8)
 691DEFINE_WINDOW_IO(16)
 692DEFINE_WINDOW_IO(32)
 693
 694#ifdef CONFIG_PCI
 695#define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
 696#else
 697#define DEVICE_PCI(dev) NULL
 698#endif
 699
 700#define VORTEX_PCI(vp)							\
 701	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 702
 703#ifdef CONFIG_EISA
 704#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 705#else
 706#define DEVICE_EISA(dev) NULL
 707#endif
 708
 709#define VORTEX_EISA(vp)							\
 710	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 711
 712/* The action to take with a media selection timer tick.
 713   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 714 */
 715enum xcvr_types {
 716	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 717	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 718};
 719
 720static const struct media_table {
 721	char *name;
 722	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
 723		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
 724		next:8;						/* The media type to try next. */
 725	int wait;						/* Time before we check media status. */
 726} media_tbl[] = {
 727  {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 728  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 729  { "undefined", 0,			0x80, XCVR_10baseT, 10000},
 730  { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
 731  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 732  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
 733  { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
 734  { "undefined", 0,			0x01, XCVR_10baseT, 10000},
 735  { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
 736  { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
 737  { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
 738};
 739
 740static struct {
 741	const char str[ETH_GSTRING_LEN];
 742} ethtool_stats_keys[] = {
 743	{ "tx_deferred" },
 744	{ "tx_max_collisions" },
 745	{ "tx_multiple_collisions" },
 746	{ "tx_single_collisions" },
 747	{ "rx_bad_ssd" },
 748};
 749
 750/* number of ETHTOOL_GSTATS u64's */
 751#define VORTEX_NUM_STATS    5
 752
 753static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 754				   int chip_idx, int card_idx);
 755static int vortex_up(struct net_device *dev);
 756static void vortex_down(struct net_device *dev, int final);
 757static int vortex_open(struct net_device *dev);
 758static void mdio_sync(struct vortex_private *vp, int bits);
 759static int mdio_read(struct net_device *dev, int phy_id, int location);
 760static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 761static void vortex_timer(struct timer_list *t);
 762static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 763				     struct net_device *dev);
 764static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 765					struct net_device *dev);
 766static int vortex_rx(struct net_device *dev);
 767static int boomerang_rx(struct net_device *dev);
 768static irqreturn_t vortex_interrupt(int irq, void *dev_id);
 769static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
 
 770static int vortex_close(struct net_device *dev);
 771static void dump_tx_ring(struct net_device *dev);
 772static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 773static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 774static void set_rx_mode(struct net_device *dev);
 775#ifdef CONFIG_PCI
 776static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 777#endif
 778static void vortex_tx_timeout(struct net_device *dev);
 779static void acpi_set_WOL(struct net_device *dev);
 780static const struct ethtool_ops vortex_ethtool_ops;
 781static void set_8021q_mode(struct net_device *dev, int enable);
 782
 783/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 784/* Option count limit only -- unlimited interfaces are supported. */
 785#define MAX_UNITS 8
 786static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 787static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 788static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 789static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 790static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792static int global_options = -1;
 793static int global_full_duplex = -1;
 794static int global_enable_wol = -1;
 795static int global_use_mmio = -1;
 796
 797/* Variables to work-around the Compaq PCI BIOS32 problem. */
 798static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 799static struct net_device *compaq_net_device;
 800
 801static int vortex_cards_found;
 802
 803module_param(debug, int, 0);
 804module_param(global_options, int, 0);
 805module_param_array(options, int, NULL, 0);
 806module_param(global_full_duplex, int, 0);
 807module_param_array(full_duplex, int, NULL, 0);
 808module_param_array(hw_checksums, int, NULL, 0);
 809module_param_array(flow_ctrl, int, NULL, 0);
 810module_param(global_enable_wol, int, 0);
 811module_param_array(enable_wol, int, NULL, 0);
 812module_param(rx_copybreak, int, 0);
 813module_param(max_interrupt_work, int, 0);
 814module_param_hw(compaq_ioaddr, int, ioport, 0);
 815module_param_hw(compaq_irq, int, irq, 0);
 816module_param(compaq_device_id, int, 0);
 817module_param(watchdog, int, 0);
 818module_param(global_use_mmio, int, 0);
 819module_param_array(use_mmio, int, NULL, 0);
 820MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 821MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 822MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 823MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 824MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 825MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 826MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 827MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 828MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 829MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 830MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 831MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 832MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 833MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 834MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 835MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 836MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 837
 838#ifdef CONFIG_NET_POLL_CONTROLLER
 839static void poll_vortex(struct net_device *dev)
 840{
 841	struct vortex_private *vp = netdev_priv(dev);
 842	unsigned long flags;
 843	local_irq_save(flags);
 844	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
 845	local_irq_restore(flags);
 846}
 847#endif
 848
 849#ifdef CONFIG_PM
 850
 851static int vortex_suspend(struct device *dev)
 852{
 853	struct pci_dev *pdev = to_pci_dev(dev);
 854	struct net_device *ndev = pci_get_drvdata(pdev);
 855
 856	if (!ndev || !netif_running(ndev))
 857		return 0;
 858
 859	netif_device_detach(ndev);
 860	vortex_down(ndev, 1);
 861
 862	return 0;
 863}
 864
 865static int vortex_resume(struct device *dev)
 866{
 867	struct pci_dev *pdev = to_pci_dev(dev);
 868	struct net_device *ndev = pci_get_drvdata(pdev);
 869	int err;
 870
 871	if (!ndev || !netif_running(ndev))
 872		return 0;
 873
 874	err = vortex_up(ndev);
 875	if (err)
 876		return err;
 877
 878	netif_device_attach(ndev);
 879
 880	return 0;
 881}
 882
 883static const struct dev_pm_ops vortex_pm_ops = {
 884	.suspend = vortex_suspend,
 885	.resume = vortex_resume,
 886	.freeze = vortex_suspend,
 887	.thaw = vortex_resume,
 888	.poweroff = vortex_suspend,
 889	.restore = vortex_resume,
 890};
 891
 892#define VORTEX_PM_OPS (&vortex_pm_ops)
 893
 894#else /* !CONFIG_PM */
 895
 896#define VORTEX_PM_OPS NULL
 897
 898#endif /* !CONFIG_PM */
 899
 900#ifdef CONFIG_EISA
 901static const struct eisa_device_id vortex_eisa_ids[] = {
 902	{ "TCM5920", CH_3C592 },
 903	{ "TCM5970", CH_3C597 },
 904	{ "" }
 905};
 906MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 907
 908static int vortex_eisa_probe(struct device *device)
 909{
 910	void __iomem *ioaddr;
 911	struct eisa_device *edev;
 912
 913	edev = to_eisa_device(device);
 914
 915	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 916		return -EBUSY;
 917
 918	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 919
 920	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 921					  edev->id.driver_data, vortex_cards_found)) {
 922		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 923		return -ENODEV;
 924	}
 925
 926	vortex_cards_found++;
 927
 928	return 0;
 929}
 930
 931static int vortex_eisa_remove(struct device *device)
 932{
 933	struct eisa_device *edev;
 934	struct net_device *dev;
 935	struct vortex_private *vp;
 936	void __iomem *ioaddr;
 937
 938	edev = to_eisa_device(device);
 939	dev = eisa_get_drvdata(edev);
 940
 941	if (!dev) {
 942		pr_err("vortex_eisa_remove called for Compaq device!\n");
 943		BUG();
 944	}
 945
 946	vp = netdev_priv(dev);
 947	ioaddr = vp->ioaddr;
 948
 949	unregister_netdev(dev);
 950	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 951	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 952
 953	free_netdev(dev);
 954	return 0;
 955}
 956
 957static struct eisa_driver vortex_eisa_driver = {
 958	.id_table = vortex_eisa_ids,
 959	.driver   = {
 960		.name    = "3c59x",
 961		.probe   = vortex_eisa_probe,
 962		.remove  = vortex_eisa_remove
 963	}
 964};
 965
 966#endif /* CONFIG_EISA */
 967
 968/* returns count found (>= 0), or negative on error */
 969static int __init vortex_eisa_init(void)
 970{
 971	int eisa_found = 0;
 972	int orig_cards_found = vortex_cards_found;
 973
 974#ifdef CONFIG_EISA
 975	int err;
 976
 977	err = eisa_driver_register (&vortex_eisa_driver);
 978	if (!err) {
 979		/*
 980		 * Because of the way EISA bus is probed, we cannot assume
 981		 * any device have been found when we exit from
 982		 * eisa_driver_register (the bus root driver may not be
 983		 * initialized yet). So we blindly assume something was
 984		 * found, and let the sysfs magic happened...
 985		 */
 986		eisa_found = 1;
 987	}
 988#endif
 989
 990	/* Special code to work-around the Compaq PCI BIOS32 problem. */
 991	if (compaq_ioaddr) {
 992		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 993			      compaq_irq, compaq_device_id, vortex_cards_found++);
 994	}
 995
 996	return vortex_cards_found - orig_cards_found + eisa_found;
 997}
 998
 999/* returns count (>= 0), or negative on error */
1000static int vortex_init_one(struct pci_dev *pdev,
1001			   const struct pci_device_id *ent)
1002{
1003	int rc, unit, pci_bar;
1004	struct vortex_chip_info *vci;
1005	void __iomem *ioaddr;
1006
1007	/* wake up and enable device */
1008	rc = pci_enable_device(pdev);
1009	if (rc < 0)
1010		goto out;
1011
1012	rc = pci_request_regions(pdev, DRV_NAME);
1013	if (rc < 0)
1014		goto out_disable;
1015
1016	unit = vortex_cards_found;
1017
1018	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1019		/* Determine the default if the user didn't override us */
1020		vci = &vortex_info_tbl[ent->driver_data];
1021		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1022	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1023		pci_bar = use_mmio[unit] ? 1 : 0;
1024	else
1025		pci_bar = global_use_mmio ? 1 : 0;
1026
1027	ioaddr = pci_iomap(pdev, pci_bar, 0);
1028	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1029		ioaddr = pci_iomap(pdev, 0, 0);
1030	if (!ioaddr) {
1031		rc = -ENOMEM;
1032		goto out_release;
1033	}
1034
1035	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1036			   ent->driver_data, unit);
1037	if (rc < 0)
1038		goto out_iounmap;
1039
1040	vortex_cards_found++;
1041	goto out;
1042
1043out_iounmap:
1044	pci_iounmap(pdev, ioaddr);
1045out_release:
1046	pci_release_regions(pdev);
1047out_disable:
1048	pci_disable_device(pdev);
1049out:
1050	return rc;
1051}
1052
1053static const struct net_device_ops boomrang_netdev_ops = {
1054	.ndo_open		= vortex_open,
1055	.ndo_stop		= vortex_close,
1056	.ndo_start_xmit		= boomerang_start_xmit,
1057	.ndo_tx_timeout		= vortex_tx_timeout,
1058	.ndo_get_stats		= vortex_get_stats,
1059#ifdef CONFIG_PCI
1060	.ndo_do_ioctl 		= vortex_ioctl,
1061#endif
1062	.ndo_set_rx_mode	= set_rx_mode,
1063	.ndo_set_mac_address 	= eth_mac_addr,
1064	.ndo_validate_addr	= eth_validate_addr,
1065#ifdef CONFIG_NET_POLL_CONTROLLER
1066	.ndo_poll_controller	= poll_vortex,
1067#endif
1068};
1069
1070static const struct net_device_ops vortex_netdev_ops = {
1071	.ndo_open		= vortex_open,
1072	.ndo_stop		= vortex_close,
1073	.ndo_start_xmit		= vortex_start_xmit,
1074	.ndo_tx_timeout		= vortex_tx_timeout,
1075	.ndo_get_stats		= vortex_get_stats,
1076#ifdef CONFIG_PCI
1077	.ndo_do_ioctl 		= vortex_ioctl,
1078#endif
1079	.ndo_set_rx_mode	= set_rx_mode,
1080	.ndo_set_mac_address 	= eth_mac_addr,
1081	.ndo_validate_addr	= eth_validate_addr,
1082#ifdef CONFIG_NET_POLL_CONTROLLER
1083	.ndo_poll_controller	= poll_vortex,
1084#endif
1085};
1086
1087/*
1088 * Start up the PCI/EISA device which is described by *gendev.
1089 * Return 0 on success.
1090 *
1091 * NOTE: pdev can be NULL, for the case of a Compaq device
1092 */
1093static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1094			 int chip_idx, int card_idx)
1095{
1096	struct vortex_private *vp;
1097	int option;
1098	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1099	int i, step;
1100	struct net_device *dev;
1101	static int printed_version;
1102	int retval, print_info;
1103	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1104	const char *print_name = "3c59x";
1105	struct pci_dev *pdev = NULL;
1106	struct eisa_device *edev = NULL;
1107
1108	if (!printed_version) {
1109		pr_info("%s", version);
1110		printed_version = 1;
1111	}
1112
1113	if (gendev) {
1114		if ((pdev = DEVICE_PCI(gendev))) {
1115			print_name = pci_name(pdev);
1116		}
1117
1118		if ((edev = DEVICE_EISA(gendev))) {
1119			print_name = dev_name(&edev->dev);
1120		}
1121	}
1122
1123	dev = alloc_etherdev(sizeof(*vp));
1124	retval = -ENOMEM;
1125	if (!dev)
1126		goto out;
1127
1128	SET_NETDEV_DEV(dev, gendev);
1129	vp = netdev_priv(dev);
1130
1131	option = global_options;
1132
1133	/* The lower four bits are the media type. */
1134	if (dev->mem_start) {
1135		/*
1136		 * The 'options' param is passed in as the third arg to the
1137		 * LILO 'ether=' argument for non-modular use
1138		 */
1139		option = dev->mem_start;
1140	}
1141	else if (card_idx < MAX_UNITS) {
1142		if (options[card_idx] >= 0)
1143			option = options[card_idx];
1144	}
1145
1146	if (option > 0) {
1147		if (option & 0x8000)
1148			vortex_debug = 7;
1149		if (option & 0x4000)
1150			vortex_debug = 2;
1151		if (option & 0x0400)
1152			vp->enable_wol = 1;
1153	}
1154
1155	print_info = (vortex_debug > 1);
1156	if (print_info)
1157		pr_info("See Documentation/networking/vortex.txt\n");
1158
1159	pr_info("%s: 3Com %s %s at %p.\n",
1160	       print_name,
1161	       pdev ? "PCI" : "EISA",
1162	       vci->name,
1163	       ioaddr);
1164
1165	dev->base_addr = (unsigned long)ioaddr;
1166	dev->irq = irq;
1167	dev->mtu = mtu;
1168	vp->ioaddr = ioaddr;
1169	vp->large_frames = mtu > 1500;
1170	vp->drv_flags = vci->drv_flags;
1171	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1172	vp->io_size = vci->io_size;
1173	vp->card_idx = card_idx;
1174	vp->window = -1;
1175
1176	/* module list only for Compaq device */
1177	if (gendev == NULL) {
1178		compaq_net_device = dev;
1179	}
1180
1181	/* PCI-only startup logic */
1182	if (pdev) {
1183		/* enable bus-mastering if necessary */
1184		if (vci->flags & PCI_USES_MASTER)
1185			pci_set_master(pdev);
1186
1187		if (vci->drv_flags & IS_VORTEX) {
1188			u8 pci_latency;
1189			u8 new_latency = 248;
1190
1191			/* Check the PCI latency value.  On the 3c590 series the latency timer
1192			   must be set to the maximum value to avoid data corruption that occurs
1193			   when the timer expires during a transfer.  This bug exists the Vortex
1194			   chip only. */
1195			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1196			if (pci_latency < new_latency) {
1197				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1198					print_name, pci_latency, new_latency);
1199				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1200			}
1201		}
1202	}
1203
1204	spin_lock_init(&vp->lock);
1205	spin_lock_init(&vp->mii_lock);
1206	spin_lock_init(&vp->window_lock);
1207	vp->gendev = gendev;
1208	vp->mii.dev = dev;
1209	vp->mii.mdio_read = mdio_read;
1210	vp->mii.mdio_write = mdio_write;
1211	vp->mii.phy_id_mask = 0x1f;
1212	vp->mii.reg_num_mask = 0x1f;
1213
1214	/* Makes sure rings are at least 16 byte aligned. */
1215	vp->rx_ring = dma_alloc_coherent(gendev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1216					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1217					   &vp->rx_ring_dma, GFP_KERNEL);
1218	retval = -ENOMEM;
1219	if (!vp->rx_ring)
1220		goto free_device;
1221
1222	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1223	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1224
1225	/* if we are a PCI driver, we store info in pdev->driver_data
1226	 * instead of a module list */
1227	if (pdev)
1228		pci_set_drvdata(pdev, dev);
1229	if (edev)
1230		eisa_set_drvdata(edev, dev);
1231
1232	vp->media_override = 7;
1233	if (option >= 0) {
1234		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1235		if (vp->media_override != 7)
1236			vp->medialock = 1;
1237		vp->full_duplex = (option & 0x200) ? 1 : 0;
1238		vp->bus_master = (option & 16) ? 1 : 0;
1239	}
1240
1241	if (global_full_duplex > 0)
1242		vp->full_duplex = 1;
1243	if (global_enable_wol > 0)
1244		vp->enable_wol = 1;
1245
1246	if (card_idx < MAX_UNITS) {
1247		if (full_duplex[card_idx] > 0)
1248			vp->full_duplex = 1;
1249		if (flow_ctrl[card_idx] > 0)
1250			vp->flow_ctrl = 1;
1251		if (enable_wol[card_idx] > 0)
1252			vp->enable_wol = 1;
1253	}
1254
1255	vp->mii.force_media = vp->full_duplex;
1256	vp->options = option;
1257	/* Read the station address from the EEPROM. */
1258	{
1259		int base;
1260
1261		if (vci->drv_flags & EEPROM_8BIT)
1262			base = 0x230;
1263		else if (vci->drv_flags & EEPROM_OFFSET)
1264			base = EEPROM_Read + 0x30;
1265		else
1266			base = EEPROM_Read;
1267
1268		for (i = 0; i < 0x40; i++) {
1269			int timer;
1270			window_write16(vp, base + i, 0, Wn0EepromCmd);
1271			/* Pause for at least 162 us. for the read to take place. */
1272			for (timer = 10; timer >= 0; timer--) {
1273				udelay(162);
1274				if ((window_read16(vp, 0, Wn0EepromCmd) &
1275				     0x8000) == 0)
1276					break;
1277			}
1278			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1279		}
1280	}
1281	for (i = 0; i < 0x18; i++)
1282		checksum ^= eeprom[i];
1283	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1284	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1285		while (i < 0x21)
1286			checksum ^= eeprom[i++];
1287		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1288	}
1289	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1290		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1291	for (i = 0; i < 3; i++)
1292		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1293	if (print_info)
1294		pr_cont(" %pM", dev->dev_addr);
1295	/* Unfortunately an all zero eeprom passes the checksum and this
1296	   gets found in the wild in failure cases. Crypto is hard 8) */
1297	if (!is_valid_ether_addr(dev->dev_addr)) {
1298		retval = -EINVAL;
1299		pr_err("*** EEPROM MAC address is invalid.\n");
1300		goto free_ring;	/* With every pack */
1301	}
1302	for (i = 0; i < 6; i++)
1303		window_write8(vp, dev->dev_addr[i], 2, i);
1304
1305	if (print_info)
1306		pr_cont(", IRQ %d\n", dev->irq);
1307	/* Tell them about an invalid IRQ. */
1308	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1309		pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1310			dev->irq);
1311
1312	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1313	if (print_info) {
1314		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1315			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1316			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1317	}
1318
1319
1320	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1321		unsigned short n;
1322
1323		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1324		if (!vp->cb_fn_base) {
1325			retval = -ENOMEM;
1326			goto free_ring;
1327		}
1328
1329		if (print_info) {
1330			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1331				print_name,
1332				(unsigned long long)pci_resource_start(pdev, 2),
1333				vp->cb_fn_base);
1334		}
1335
1336		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1337		if (vp->drv_flags & INVERT_LED_PWR)
1338			n |= 0x10;
1339		if (vp->drv_flags & INVERT_MII_PWR)
1340			n |= 0x4000;
1341		window_write16(vp, n, 2, Wn2_ResetOptions);
1342		if (vp->drv_flags & WNO_XCVR_PWR) {
1343			window_write16(vp, 0x0800, 0, 0);
1344		}
1345	}
1346
1347	/* Extract our information from the EEPROM data. */
1348	vp->info1 = eeprom[13];
1349	vp->info2 = eeprom[15];
1350	vp->capabilities = eeprom[16];
1351
1352	if (vp->info1 & 0x8000) {
1353		vp->full_duplex = 1;
1354		if (print_info)
1355			pr_info("Full duplex capable\n");
1356	}
1357
1358	{
1359		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1360		unsigned int config;
1361		vp->available_media = window_read16(vp, 3, Wn3_Options);
1362		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1363			vp->available_media = 0x40;
1364		config = window_read32(vp, 3, Wn3_Config);
1365		if (print_info) {
1366			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1367				config, window_read16(vp, 3, Wn3_Options));
1368			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1369				   8 << RAM_SIZE(config),
1370				   RAM_WIDTH(config) ? "word" : "byte",
1371				   ram_split[RAM_SPLIT(config)],
1372				   AUTOSELECT(config) ? "autoselect/" : "",
1373				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1374				   media_tbl[XCVR(config)].name);
1375		}
1376		vp->default_media = XCVR(config);
1377		if (vp->default_media == XCVR_NWAY)
1378			vp->has_nway = 1;
1379		vp->autoselect = AUTOSELECT(config);
1380	}
1381
1382	if (vp->media_override != 7) {
1383		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1384				print_name, vp->media_override,
1385				media_tbl[vp->media_override].name);
1386		dev->if_port = vp->media_override;
1387	} else
1388		dev->if_port = vp->default_media;
1389
1390	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1391		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1392		int phy, phy_idx = 0;
1393		mii_preamble_required++;
1394		if (vp->drv_flags & EXTRA_PREAMBLE)
1395			mii_preamble_required++;
1396		mdio_sync(vp, 32);
1397		mdio_read(dev, 24, MII_BMSR);
1398		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1399			int mii_status, phyx;
1400
1401			/*
1402			 * For the 3c905CX we look at index 24 first, because it bogusly
1403			 * reports an external PHY at all indices
1404			 */
1405			if (phy == 0)
1406				phyx = 24;
1407			else if (phy <= 24)
1408				phyx = phy - 1;
1409			else
1410				phyx = phy;
1411			mii_status = mdio_read(dev, phyx, MII_BMSR);
1412			if (mii_status  &&  mii_status != 0xffff) {
1413				vp->phys[phy_idx++] = phyx;
1414				if (print_info) {
1415					pr_info("  MII transceiver found at address %d, status %4x.\n",
1416						phyx, mii_status);
1417				}
1418				if ((mii_status & 0x0040) == 0)
1419					mii_preamble_required++;
1420			}
1421		}
1422		mii_preamble_required--;
1423		if (phy_idx == 0) {
1424			pr_warn("  ***WARNING*** No MII transceivers found!\n");
1425			vp->phys[0] = 24;
1426		} else {
1427			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1428			if (vp->full_duplex) {
1429				/* Only advertise the FD media types. */
1430				vp->advertising &= ~0x02A0;
1431				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1432			}
1433		}
1434		vp->mii.phy_id = vp->phys[0];
1435	}
1436
1437	if (vp->capabilities & CapBusMaster) {
1438		vp->full_bus_master_tx = 1;
1439		if (print_info) {
1440			pr_info("  Enabling bus-master transmits and %s receives.\n",
1441			(vp->info2 & 1) ? "early" : "whole-frame" );
1442		}
1443		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1444		vp->bus_master = 0;		/* AKPM: vortex only */
1445	}
1446
1447	/* The 3c59x-specific entries in the device structure. */
1448	if (vp->full_bus_master_tx) {
1449		dev->netdev_ops = &boomrang_netdev_ops;
1450		/* Actually, it still should work with iommu. */
1451		if (card_idx < MAX_UNITS &&
1452		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1453				hw_checksums[card_idx] == 1)) {
1454			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1455		}
1456	} else
1457		dev->netdev_ops =  &vortex_netdev_ops;
1458
1459	if (print_info) {
1460		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1461				print_name,
1462				(dev->features & NETIF_F_SG) ? "en":"dis",
1463				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1464	}
1465
1466	dev->ethtool_ops = &vortex_ethtool_ops;
1467	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1468
1469	if (pdev) {
1470		vp->pm_state_valid = 1;
1471		pci_save_state(pdev);
1472 		acpi_set_WOL(dev);
1473	}
1474	retval = register_netdev(dev);
1475	if (retval == 0)
1476		return 0;
1477
1478free_ring:
1479	dma_free_coherent(&pdev->dev,
1480		sizeof(struct boom_rx_desc) * RX_RING_SIZE +
1481		sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1482		vp->rx_ring, vp->rx_ring_dma);
1483free_device:
1484	free_netdev(dev);
1485	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1486out:
1487	return retval;
1488}
1489
1490static void
1491issue_and_wait(struct net_device *dev, int cmd)
1492{
1493	struct vortex_private *vp = netdev_priv(dev);
1494	void __iomem *ioaddr = vp->ioaddr;
1495	int i;
1496
1497	iowrite16(cmd, ioaddr + EL3_CMD);
1498	for (i = 0; i < 2000; i++) {
1499		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1500			return;
1501	}
1502
1503	/* OK, that didn't work.  Do it the slow way.  One second */
1504	for (i = 0; i < 100000; i++) {
1505		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1506			if (vortex_debug > 1)
1507				pr_info("%s: command 0x%04x took %d usecs\n",
1508					   dev->name, cmd, i * 10);
1509			return;
1510		}
1511		udelay(10);
1512	}
1513	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1514			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1515}
1516
1517static void
1518vortex_set_duplex(struct net_device *dev)
1519{
1520	struct vortex_private *vp = netdev_priv(dev);
1521
1522	pr_info("%s:  setting %s-duplex.\n",
1523		dev->name, (vp->full_duplex) ? "full" : "half");
1524
1525	/* Set the full-duplex bit. */
1526	window_write16(vp,
1527		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1528		       (vp->large_frames ? 0x40 : 0) |
1529		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1530			0x100 : 0),
1531		       3, Wn3_MAC_Ctrl);
1532}
1533
1534static void vortex_check_media(struct net_device *dev, unsigned int init)
1535{
1536	struct vortex_private *vp = netdev_priv(dev);
1537	unsigned int ok_to_print = 0;
1538
1539	if (vortex_debug > 3)
1540		ok_to_print = 1;
1541
1542	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1543		vp->full_duplex = vp->mii.full_duplex;
1544		vortex_set_duplex(dev);
1545	} else if (init) {
1546		vortex_set_duplex(dev);
1547	}
1548}
1549
1550static int
1551vortex_up(struct net_device *dev)
1552{
1553	struct vortex_private *vp = netdev_priv(dev);
1554	void __iomem *ioaddr = vp->ioaddr;
1555	unsigned int config;
1556	int i, mii_reg1, mii_reg5, err = 0;
1557
1558	if (VORTEX_PCI(vp)) {
1559		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1560		if (vp->pm_state_valid)
1561			pci_restore_state(VORTEX_PCI(vp));
1562		err = pci_enable_device(VORTEX_PCI(vp));
1563		if (err) {
1564			pr_warn("%s: Could not enable device\n", dev->name);
1565			goto err_out;
1566		}
1567	}
1568
1569	/* Before initializing select the active media port. */
1570	config = window_read32(vp, 3, Wn3_Config);
1571
1572	if (vp->media_override != 7) {
1573		pr_info("%s: Media override to transceiver %d (%s).\n",
1574			   dev->name, vp->media_override,
1575			   media_tbl[vp->media_override].name);
1576		dev->if_port = vp->media_override;
1577	} else if (vp->autoselect) {
1578		if (vp->has_nway) {
1579			if (vortex_debug > 1)
1580				pr_info("%s: using NWAY device table, not %d\n",
1581								dev->name, dev->if_port);
1582			dev->if_port = XCVR_NWAY;
1583		} else {
1584			/* Find first available media type, starting with 100baseTx. */
1585			dev->if_port = XCVR_100baseTx;
1586			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1587				dev->if_port = media_tbl[dev->if_port].next;
1588			if (vortex_debug > 1)
1589				pr_info("%s: first available media type: %s\n",
1590					dev->name, media_tbl[dev->if_port].name);
1591		}
1592	} else {
1593		dev->if_port = vp->default_media;
1594		if (vortex_debug > 1)
1595			pr_info("%s: using default media %s\n",
1596				dev->name, media_tbl[dev->if_port].name);
1597	}
1598
1599	timer_setup(&vp->timer, vortex_timer, 0);
1600	mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1601
1602	if (vortex_debug > 1)
1603		pr_debug("%s: Initial media type %s.\n",
1604			   dev->name, media_tbl[dev->if_port].name);
1605
1606	vp->full_duplex = vp->mii.force_media;
1607	config = BFINS(config, dev->if_port, 20, 4);
1608	if (vortex_debug > 6)
1609		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1610	window_write32(vp, config, 3, Wn3_Config);
1611
1612	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1613		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1614		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1615		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1616		vp->mii.full_duplex = vp->full_duplex;
1617
1618		vortex_check_media(dev, 1);
1619	}
1620	else
1621		vortex_set_duplex(dev);
1622
1623	issue_and_wait(dev, TxReset);
1624	/*
1625	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1626	 */
1627	issue_and_wait(dev, RxReset|0x04);
1628
1629
1630	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1631
1632	if (vortex_debug > 1) {
1633		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1634			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1635	}
1636
1637	/* Set the station address and mask in window 2 each time opened. */
1638	for (i = 0; i < 6; i++)
1639		window_write8(vp, dev->dev_addr[i], 2, i);
1640	for (; i < 12; i+=2)
1641		window_write16(vp, 0, 2, i);
1642
1643	if (vp->cb_fn_base) {
1644		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1645		if (vp->drv_flags & INVERT_LED_PWR)
1646			n |= 0x10;
1647		if (vp->drv_flags & INVERT_MII_PWR)
1648			n |= 0x4000;
1649		window_write16(vp, n, 2, Wn2_ResetOptions);
1650	}
1651
1652	if (dev->if_port == XCVR_10base2)
1653		/* Start the thinnet transceiver. We should really wait 50ms...*/
1654		iowrite16(StartCoax, ioaddr + EL3_CMD);
1655	if (dev->if_port != XCVR_NWAY) {
1656		window_write16(vp,
1657			       (window_read16(vp, 4, Wn4_Media) &
1658				~(Media_10TP|Media_SQE)) |
1659			       media_tbl[dev->if_port].media_bits,
1660			       4, Wn4_Media);
1661	}
1662
1663	/* Switch to the stats window, and clear all stats by reading. */
1664	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1665	for (i = 0; i < 10; i++)
1666		window_read8(vp, 6, i);
1667	window_read16(vp, 6, 10);
1668	window_read16(vp, 6, 12);
1669	/* New: On the Vortex we must also clear the BadSSD counter. */
1670	window_read8(vp, 4, 12);
1671	/* ..and on the Boomerang we enable the extra statistics bits. */
1672	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1673
1674	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1675		vp->cur_rx = 0;
1676		/* Initialize the RxEarly register as recommended. */
1677		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1678		iowrite32(0x0020, ioaddr + PktStatus);
1679		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1680	}
1681	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1682		vp->cur_tx = vp->dirty_tx = 0;
1683		if (vp->drv_flags & IS_BOOMERANG)
1684			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1685		/* Clear the Rx, Tx rings. */
1686		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1687			vp->rx_ring[i].status = 0;
1688		for (i = 0; i < TX_RING_SIZE; i++)
1689			vp->tx_skbuff[i] = NULL;
1690		iowrite32(0, ioaddr + DownListPtr);
1691	}
1692	/* Set receiver mode: presumably accept b-case and phys addr only. */
1693	set_rx_mode(dev);
1694	/* enable 802.1q tagged frames */
1695	set_8021q_mode(dev, 1);
1696	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1697
1698	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1699	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1700	/* Allow status bits to be seen. */
1701	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1702		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1703		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1704		(vp->bus_master ? DMADone : 0);
1705	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1706		(vp->full_bus_master_rx ? 0 : RxComplete) |
1707		StatsFull | HostError | TxComplete | IntReq
1708		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1709	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1710	/* Ack all pending events, and set active indicator mask. */
1711	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1712		 ioaddr + EL3_CMD);
1713	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1714	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1715		iowrite32(0x8000, vp->cb_fn_base + 4);
1716	netif_start_queue (dev);
1717	netdev_reset_queue(dev);
1718err_out:
1719	return err;
1720}
1721
1722static int
1723vortex_open(struct net_device *dev)
1724{
1725	struct vortex_private *vp = netdev_priv(dev);
1726	int i;
1727	int retval;
1728	dma_addr_t dma;
1729
1730	/* Use the now-standard shared IRQ implementation. */
1731	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1732				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1733		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1734		goto err;
1735	}
1736
1737	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1738		if (vortex_debug > 2)
1739			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1740		for (i = 0; i < RX_RING_SIZE; i++) {
1741			struct sk_buff *skb;
1742			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1743			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1744			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1745
1746			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1747						 GFP_KERNEL);
1748			vp->rx_skbuff[i] = skb;
1749			if (skb == NULL)
1750				break;			/* Bad news!  */
1751
1752			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1753			dma = dma_map_single(vp->gendev, skb->data,
1754					     PKT_BUF_SZ, DMA_FROM_DEVICE);
1755			if (dma_mapping_error(vp->gendev, dma))
1756				break;
1757			vp->rx_ring[i].addr = cpu_to_le32(dma);
1758		}
1759		if (i != RX_RING_SIZE) {
1760			pr_emerg("%s: no memory for rx ring\n", dev->name);
1761			retval = -ENOMEM;
1762			goto err_free_skb;
1763		}
1764		/* Wrap the ring. */
1765		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1766	}
1767
1768	retval = vortex_up(dev);
1769	if (!retval)
1770		goto out;
1771
1772err_free_skb:
1773	for (i = 0; i < RX_RING_SIZE; i++) {
1774		if (vp->rx_skbuff[i]) {
1775			dev_kfree_skb(vp->rx_skbuff[i]);
1776			vp->rx_skbuff[i] = NULL;
1777		}
1778	}
1779	free_irq(dev->irq, dev);
1780err:
1781	if (vortex_debug > 1)
1782		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1783out:
1784	return retval;
1785}
1786
1787static void
1788vortex_timer(struct timer_list *t)
1789{
1790	struct vortex_private *vp = from_timer(vp, t, timer);
1791	struct net_device *dev = vp->mii.dev;
1792	void __iomem *ioaddr = vp->ioaddr;
1793	int next_tick = 60*HZ;
1794	int ok = 0;
1795	int media_status;
1796
1797	if (vortex_debug > 2) {
1798		pr_debug("%s: Media selection timer tick happened, %s.\n",
1799			   dev->name, media_tbl[dev->if_port].name);
1800		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1801	}
1802
1803	media_status = window_read16(vp, 4, Wn4_Media);
1804	switch (dev->if_port) {
1805	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1806		if (media_status & Media_LnkBeat) {
1807			netif_carrier_on(dev);
1808			ok = 1;
1809			if (vortex_debug > 1)
1810				pr_debug("%s: Media %s has link beat, %x.\n",
1811					   dev->name, media_tbl[dev->if_port].name, media_status);
1812		} else {
1813			netif_carrier_off(dev);
1814			if (vortex_debug > 1) {
1815				pr_debug("%s: Media %s has no link beat, %x.\n",
1816					   dev->name, media_tbl[dev->if_port].name, media_status);
1817			}
1818		}
1819		break;
1820	case XCVR_MII: case XCVR_NWAY:
1821		{
1822			ok = 1;
1823			vortex_check_media(dev, 0);
1824		}
1825		break;
1826	  default:					/* Other media types handled by Tx timeouts. */
1827		if (vortex_debug > 1)
1828		  pr_debug("%s: Media %s has no indication, %x.\n",
1829				 dev->name, media_tbl[dev->if_port].name, media_status);
1830		ok = 1;
1831	}
1832
1833	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1834		next_tick = 5*HZ;
1835
1836	if (vp->medialock)
1837		goto leave_media_alone;
1838
1839	if (!ok) {
1840		unsigned int config;
1841
1842		spin_lock_irq(&vp->lock);
1843
1844		do {
1845			dev->if_port = media_tbl[dev->if_port].next;
1846		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1847		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1848		  dev->if_port = vp->default_media;
1849		  if (vortex_debug > 1)
1850			pr_debug("%s: Media selection failing, using default %s port.\n",
1851				   dev->name, media_tbl[dev->if_port].name);
1852		} else {
1853			if (vortex_debug > 1)
1854				pr_debug("%s: Media selection failed, now trying %s port.\n",
1855					   dev->name, media_tbl[dev->if_port].name);
1856			next_tick = media_tbl[dev->if_port].wait;
1857		}
1858		window_write16(vp,
1859			       (media_status & ~(Media_10TP|Media_SQE)) |
1860			       media_tbl[dev->if_port].media_bits,
1861			       4, Wn4_Media);
1862
1863		config = window_read32(vp, 3, Wn3_Config);
1864		config = BFINS(config, dev->if_port, 20, 4);
1865		window_write32(vp, config, 3, Wn3_Config);
1866
1867		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1868			 ioaddr + EL3_CMD);
1869		if (vortex_debug > 1)
1870			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1871		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1872
1873		spin_unlock_irq(&vp->lock);
1874	}
1875
1876leave_media_alone:
1877	if (vortex_debug > 2)
1878	  pr_debug("%s: Media selection timer finished, %s.\n",
1879			 dev->name, media_tbl[dev->if_port].name);
1880
1881	mod_timer(&vp->timer, RUN_AT(next_tick));
1882	if (vp->deferred)
1883		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1884}
1885
1886static void vortex_tx_timeout(struct net_device *dev)
1887{
1888	struct vortex_private *vp = netdev_priv(dev);
1889	void __iomem *ioaddr = vp->ioaddr;
1890
1891	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1892		   dev->name, ioread8(ioaddr + TxStatus),
1893		   ioread16(ioaddr + EL3_STATUS));
1894	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1895			window_read16(vp, 4, Wn4_NetDiag),
1896			window_read16(vp, 4, Wn4_Media),
1897			ioread32(ioaddr + PktStatus),
1898			window_read16(vp, 4, Wn4_FIFODiag));
1899	/* Slight code bloat to be user friendly. */
1900	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1901		pr_err("%s: Transmitter encountered 16 collisions --"
1902			   " network cable problem?\n", dev->name);
1903	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1904		pr_err("%s: Interrupt posted but not delivered --"
1905			   " IRQ blocked by another device?\n", dev->name);
1906		/* Bad idea here.. but we might as well handle a few events. */
1907		{
1908			/*
1909			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1910			 */
1911			unsigned long flags;
1912			local_irq_save(flags);
1913			if (vp->full_bus_master_tx)
1914				boomerang_interrupt(dev->irq, dev);
1915			else
1916				vortex_interrupt(dev->irq, dev);
1917			local_irq_restore(flags);
1918		}
1919	}
1920
1921	if (vortex_debug > 0)
1922		dump_tx_ring(dev);
1923
1924	issue_and_wait(dev, TxReset);
1925
1926	dev->stats.tx_errors++;
1927	if (vp->full_bus_master_tx) {
1928		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1929		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1930			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1931				 ioaddr + DownListPtr);
1932		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1933			netif_wake_queue (dev);
1934			netdev_reset_queue (dev);
1935		}
1936		if (vp->drv_flags & IS_BOOMERANG)
1937			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1938		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1939	} else {
1940		dev->stats.tx_dropped++;
1941		netif_wake_queue(dev);
1942		netdev_reset_queue(dev);
1943	}
1944	/* Issue Tx Enable */
1945	iowrite16(TxEnable, ioaddr + EL3_CMD);
1946	netif_trans_update(dev); /* prevent tx timeout */
1947}
1948
1949/*
1950 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1951 * the cache impact.
1952 */
1953static void
1954vortex_error(struct net_device *dev, int status)
1955{
1956	struct vortex_private *vp = netdev_priv(dev);
1957	void __iomem *ioaddr = vp->ioaddr;
1958	int do_tx_reset = 0, reset_mask = 0;
1959	unsigned char tx_status = 0;
1960
1961	if (vortex_debug > 2) {
1962		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1963	}
1964
1965	if (status & TxComplete) {			/* Really "TxError" for us. */
1966		tx_status = ioread8(ioaddr + TxStatus);
1967		/* Presumably a tx-timeout. We must merely re-enable. */
1968		if (vortex_debug > 2 ||
1969		    (tx_status != 0x88 && vortex_debug > 0)) {
1970			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1971				   dev->name, tx_status);
1972			if (tx_status == 0x82) {
1973				pr_err("Probably a duplex mismatch.  See "
1974						"Documentation/networking/vortex.txt\n");
1975			}
1976			dump_tx_ring(dev);
1977		}
1978		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1979		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1980		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1981		iowrite8(0, ioaddr + TxStatus);
1982		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1983			do_tx_reset = 1;
1984		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1985			do_tx_reset = 1;
1986			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1987		} else {				/* Merely re-enable the transmitter. */
1988			iowrite16(TxEnable, ioaddr + EL3_CMD);
1989		}
1990	}
1991
1992	if (status & RxEarly)				/* Rx early is unused. */
1993		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1994
1995	if (status & StatsFull) {			/* Empty statistics. */
1996		static int DoneDidThat;
1997		if (vortex_debug > 4)
1998			pr_debug("%s: Updating stats.\n", dev->name);
1999		update_stats(ioaddr, dev);
2000		/* HACK: Disable statistics as an interrupt source. */
2001		/* This occurs when we have the wrong media type! */
2002		if (DoneDidThat == 0  &&
2003			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2004			pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
2005				dev->name);
2006			iowrite16(SetIntrEnb |
2007				  (window_read16(vp, 5, 10) & ~StatsFull),
2008				  ioaddr + EL3_CMD);
2009			vp->intr_enable &= ~StatsFull;
2010			DoneDidThat++;
2011		}
2012	}
2013	if (status & IntReq) {		/* Restore all interrupt sources.  */
2014		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2015		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2016	}
2017	if (status & HostError) {
2018		u16 fifo_diag;
2019		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2020		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2021			   dev->name, fifo_diag);
2022		/* Adapter failure requires Tx/Rx reset and reinit. */
2023		if (vp->full_bus_master_tx) {
2024			int bus_status = ioread32(ioaddr + PktStatus);
2025			/* 0x80000000 PCI master abort. */
2026			/* 0x40000000 PCI target abort. */
2027			if (vortex_debug)
2028				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2029
2030			/* In this case, blow the card away */
2031			/* Must not enter D3 or we can't legally issue the reset! */
2032			vortex_down(dev, 0);
2033			issue_and_wait(dev, TotalReset | 0xff);
2034			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2035		} else if (fifo_diag & 0x0400)
2036			do_tx_reset = 1;
2037		if (fifo_diag & 0x3000) {
2038			/* Reset Rx fifo and upload logic */
2039			issue_and_wait(dev, RxReset|0x07);
2040			/* Set the Rx filter to the current state. */
2041			set_rx_mode(dev);
2042			/* enable 802.1q VLAN tagged frames */
2043			set_8021q_mode(dev, 1);
2044			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2045			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2046		}
2047	}
2048
2049	if (do_tx_reset) {
2050		issue_and_wait(dev, TxReset|reset_mask);
2051		iowrite16(TxEnable, ioaddr + EL3_CMD);
2052		if (!vp->full_bus_master_tx)
2053			netif_wake_queue(dev);
2054	}
2055}
2056
2057static netdev_tx_t
2058vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2059{
2060	struct vortex_private *vp = netdev_priv(dev);
2061	void __iomem *ioaddr = vp->ioaddr;
2062	int skblen = skb->len;
2063
2064	/* Put out the doubleword header... */
2065	iowrite32(skb->len, ioaddr + TX_FIFO);
2066	if (vp->bus_master) {
2067		/* Set the bus-master controller to transfer the packet. */
2068		int len = (skb->len + 3) & ~3;
2069		vp->tx_skb_dma = dma_map_single(vp->gendev, skb->data, len,
2070						DMA_TO_DEVICE);
2071		if (dma_mapping_error(vp->gendev, vp->tx_skb_dma)) {
2072			dev_kfree_skb_any(skb);
2073			dev->stats.tx_dropped++;
2074			return NETDEV_TX_OK;
2075		}
2076
2077		spin_lock_irq(&vp->window_lock);
2078		window_set(vp, 7);
2079		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2080		iowrite16(len, ioaddr + Wn7_MasterLen);
2081		spin_unlock_irq(&vp->window_lock);
2082		vp->tx_skb = skb;
2083		skb_tx_timestamp(skb);
2084		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2085		/* netif_wake_queue() will be called at the DMADone interrupt. */
2086	} else {
2087		/* ... and the packet rounded to a doubleword. */
2088		skb_tx_timestamp(skb);
2089		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2090		dev_consume_skb_any (skb);
2091		if (ioread16(ioaddr + TxFree) > 1536) {
2092			netif_start_queue (dev);	/* AKPM: redundant? */
2093		} else {
2094			/* Interrupt us when the FIFO has room for max-sized packet. */
2095			netif_stop_queue(dev);
2096			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2097		}
2098	}
2099
2100	netdev_sent_queue(dev, skblen);
2101
2102	/* Clear the Tx status stack. */
2103	{
2104		int tx_status;
2105		int i = 32;
2106
2107		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2108			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2109				if (vortex_debug > 2)
2110				  pr_debug("%s: Tx error, status %2.2x.\n",
2111						 dev->name, tx_status);
2112				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2113				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2114				if (tx_status & 0x30) {
2115					issue_and_wait(dev, TxReset);
2116				}
2117				iowrite16(TxEnable, ioaddr + EL3_CMD);
2118			}
2119			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2120		}
2121	}
2122	return NETDEV_TX_OK;
2123}
2124
2125static netdev_tx_t
2126boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2127{
2128	struct vortex_private *vp = netdev_priv(dev);
2129	void __iomem *ioaddr = vp->ioaddr;
2130	/* Calculate the next Tx descriptor entry. */
2131	int entry = vp->cur_tx % TX_RING_SIZE;
2132	int skblen = skb->len;
2133	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2134	unsigned long flags;
2135	dma_addr_t dma_addr;
2136
2137	if (vortex_debug > 6) {
2138		pr_debug("boomerang_start_xmit()\n");
2139		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2140			   dev->name, vp->cur_tx);
2141	}
2142
2143	/*
2144	 * We can't allow a recursion from our interrupt handler back into the
2145	 * tx routine, as they take the same spin lock, and that causes
2146	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2147	 * a bit
2148	 */
2149	if (vp->handling_irq)
2150		return NETDEV_TX_BUSY;
2151
2152	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2153		if (vortex_debug > 0)
2154			pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2155				dev->name);
2156		netif_stop_queue(dev);
2157		return NETDEV_TX_BUSY;
2158	}
2159
2160	vp->tx_skbuff[entry] = skb;
2161
2162	vp->tx_ring[entry].next = 0;
2163#if DO_ZEROCOPY
2164	if (skb->ip_summed != CHECKSUM_PARTIAL)
2165			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2166	else
2167			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2168
2169	if (!skb_shinfo(skb)->nr_frags) {
2170		dma_addr = dma_map_single(vp->gendev, skb->data, skb->len,
2171					  DMA_TO_DEVICE);
2172		if (dma_mapping_error(vp->gendev, dma_addr))
2173			goto out_dma_err;
2174
2175		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2176		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2177	} else {
2178		int i;
2179
2180		dma_addr = dma_map_single(vp->gendev, skb->data,
2181					  skb_headlen(skb), DMA_TO_DEVICE);
2182		if (dma_mapping_error(vp->gendev, dma_addr))
2183			goto out_dma_err;
2184
2185		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2186		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2187
2188		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2189			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2190
2191			dma_addr = skb_frag_dma_map(vp->gendev, frag,
2192						    0,
2193						    frag->size,
2194						    DMA_TO_DEVICE);
2195			if (dma_mapping_error(vp->gendev, dma_addr)) {
2196				for(i = i-1; i >= 0; i--)
2197					dma_unmap_page(vp->gendev,
2198						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2199						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2200						       DMA_TO_DEVICE);
2201
2202				dma_unmap_single(vp->gendev,
2203						 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2204						 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2205						 DMA_TO_DEVICE);
2206
2207				goto out_dma_err;
2208			}
2209
2210			vp->tx_ring[entry].frag[i+1].addr =
2211						cpu_to_le32(dma_addr);
2212
2213			if (i == skb_shinfo(skb)->nr_frags-1)
2214					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2215			else
2216					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2217		}
2218	}
2219#else
2220	dma_addr = dma_map_single(vp->gendev, skb->data, skb->len, DMA_TO_DEVICE);
2221	if (dma_mapping_error(vp->gendev, dma_addr))
2222		goto out_dma_err;
2223	vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2224	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2225	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2226#endif
2227
2228	spin_lock_irqsave(&vp->lock, flags);
2229	/* Wait for the stall to complete. */
2230	issue_and_wait(dev, DownStall);
2231	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2232	if (ioread32(ioaddr + DownListPtr) == 0) {
2233		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2234		vp->queued_packet++;
2235	}
2236
2237	vp->cur_tx++;
2238	netdev_sent_queue(dev, skblen);
2239
2240	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2241		netif_stop_queue (dev);
2242	} else {					/* Clear previous interrupt enable. */
2243#if defined(tx_interrupt_mitigation)
2244		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2245		 * were selected, this would corrupt DN_COMPLETE. No?
2246		 */
2247		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2248#endif
2249	}
2250	skb_tx_timestamp(skb);
2251	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2252	spin_unlock_irqrestore(&vp->lock, flags);
2253out:
2254	return NETDEV_TX_OK;
2255out_dma_err:
2256	dev_err(vp->gendev, "Error mapping dma buffer\n");
2257	goto out;
2258}
2259
2260/* The interrupt handler does all of the Rx thread work and cleans up
2261   after the Tx thread. */
2262
2263/*
2264 * This is the ISR for the vortex series chips.
2265 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2266 */
2267
2268static irqreturn_t
2269vortex_interrupt(int irq, void *dev_id)
2270{
2271	struct net_device *dev = dev_id;
2272	struct vortex_private *vp = netdev_priv(dev);
2273	void __iomem *ioaddr;
2274	int status;
2275	int work_done = max_interrupt_work;
2276	int handled = 0;
2277	unsigned int bytes_compl = 0, pkts_compl = 0;
2278
2279	ioaddr = vp->ioaddr;
2280	spin_lock(&vp->lock);
2281
2282	status = ioread16(ioaddr + EL3_STATUS);
2283
2284	if (vortex_debug > 6)
2285		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2286
2287	if ((status & IntLatch) == 0)
2288		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2289	handled = 1;
2290
2291	if (status & IntReq) {
2292		status |= vp->deferred;
2293		vp->deferred = 0;
2294	}
2295
2296	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2297		goto handler_exit;
2298
2299	if (vortex_debug > 4)
2300		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2301			   dev->name, status, ioread8(ioaddr + Timer));
2302
2303	spin_lock(&vp->window_lock);
2304	window_set(vp, 7);
2305
2306	do {
2307		if (vortex_debug > 5)
2308				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2309					   dev->name, status);
2310		if (status & RxComplete)
2311			vortex_rx(dev);
2312
2313		if (status & TxAvailable) {
2314			if (vortex_debug > 5)
2315				pr_debug("	TX room bit was handled.\n");
2316			/* There's room in the FIFO for a full-sized packet. */
2317			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2318			netif_wake_queue (dev);
2319		}
2320
2321		if (status & DMADone) {
2322			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2323				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2324				dma_unmap_single(vp->gendev, vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, DMA_TO_DEVICE);
2325				pkts_compl++;
2326				bytes_compl += vp->tx_skb->len;
2327				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2328				if (ioread16(ioaddr + TxFree) > 1536) {
2329					/*
2330					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2331					 * insufficient FIFO room, the TxAvailable test will succeed and call
2332					 * netif_wake_queue()
2333					 */
2334					netif_wake_queue(dev);
2335				} else { /* Interrupt when FIFO has room for max-sized packet. */
2336					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2337					netif_stop_queue(dev);
2338				}
2339			}
2340		}
2341		/* Check for all uncommon interrupts at once. */
2342		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2343			if (status == 0xffff)
2344				break;
2345			if (status & RxEarly)
2346				vortex_rx(dev);
2347			spin_unlock(&vp->window_lock);
2348			vortex_error(dev, status);
2349			spin_lock(&vp->window_lock);
2350			window_set(vp, 7);
2351		}
2352
2353		if (--work_done < 0) {
2354			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2355				dev->name, status);
2356			/* Disable all pending interrupts. */
2357			do {
2358				vp->deferred |= status;
2359				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2360					 ioaddr + EL3_CMD);
2361				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2362			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2363			/* The timer will reenable interrupts. */
2364			mod_timer(&vp->timer, jiffies + 1*HZ);
2365			break;
2366		}
2367		/* Acknowledge the IRQ. */
2368		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2369	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2370
2371	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2372	spin_unlock(&vp->window_lock);
2373
2374	if (vortex_debug > 4)
2375		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2376			   dev->name, status);
2377handler_exit:
2378	spin_unlock(&vp->lock);
2379	return IRQ_RETVAL(handled);
2380}
2381
2382/*
2383 * This is the ISR for the boomerang series chips.
2384 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2385 */
2386
2387static irqreturn_t
2388boomerang_interrupt(int irq, void *dev_id)
2389{
2390	struct net_device *dev = dev_id;
2391	struct vortex_private *vp = netdev_priv(dev);
2392	void __iomem *ioaddr;
2393	int status;
2394	int work_done = max_interrupt_work;
2395	int handled = 0;
2396	unsigned int bytes_compl = 0, pkts_compl = 0;
2397
2398	ioaddr = vp->ioaddr;
2399
2400
2401	/*
2402	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2403	 * and boomerang_start_xmit
2404	 */
2405	spin_lock(&vp->lock);
2406	vp->handling_irq = 1;
2407
2408	status = ioread16(ioaddr + EL3_STATUS);
2409
2410	if (vortex_debug > 6)
2411		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2412
2413	if ((status & IntLatch) == 0)
2414		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2415	handled = 1;
2416
2417	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2418		if (vortex_debug > 1)
2419			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2420		goto handler_exit;
2421	}
2422
2423	if (status & IntReq) {
2424		status |= vp->deferred;
2425		vp->deferred = 0;
2426	}
2427
2428	if (vortex_debug > 4)
2429		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2430			   dev->name, status, ioread8(ioaddr + Timer));
2431	do {
2432		if (vortex_debug > 5)
2433				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2434					   dev->name, status);
2435		if (status & UpComplete) {
2436			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2437			if (vortex_debug > 5)
2438				pr_debug("boomerang_interrupt->boomerang_rx\n");
2439			boomerang_rx(dev);
2440		}
2441
2442		if (status & DownComplete) {
2443			unsigned int dirty_tx = vp->dirty_tx;
2444
2445			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2446			while (vp->cur_tx - dirty_tx > 0) {
2447				int entry = dirty_tx % TX_RING_SIZE;
2448#if 1	/* AKPM: the latter is faster, but cyclone-only */
2449				if (ioread32(ioaddr + DownListPtr) ==
2450					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2451					break;			/* It still hasn't been processed. */
2452#else
2453				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2454					break;			/* It still hasn't been processed. */
2455#endif
2456
2457				if (vp->tx_skbuff[entry]) {
2458					struct sk_buff *skb = vp->tx_skbuff[entry];
2459#if DO_ZEROCOPY
2460					int i;
2461					dma_unmap_single(vp->gendev,
2462							le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2463							le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2464							DMA_TO_DEVICE);
2465
2466					for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2467							dma_unmap_page(vp->gendev,
2468											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2469											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2470											 DMA_TO_DEVICE);
2471#else
2472					dma_unmap_single(vp->gendev,
2473						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, DMA_TO_DEVICE);
2474#endif
2475					pkts_compl++;
2476					bytes_compl += skb->len;
2477					dev_kfree_skb_irq(skb);
2478					vp->tx_skbuff[entry] = NULL;
2479				} else {
2480					pr_debug("boomerang_interrupt: no skb!\n");
2481				}
2482				/* dev->stats.tx_packets++;  Counted below. */
2483				dirty_tx++;
2484			}
2485			vp->dirty_tx = dirty_tx;
2486			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2487				if (vortex_debug > 6)
2488					pr_debug("boomerang_interrupt: wake queue\n");
2489				netif_wake_queue (dev);
2490			}
2491		}
2492
2493		/* Check for all uncommon interrupts at once. */
2494		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2495			vortex_error(dev, status);
2496
2497		if (--work_done < 0) {
2498			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2499				dev->name, status);
2500			/* Disable all pending interrupts. */
2501			do {
2502				vp->deferred |= status;
2503				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2504					 ioaddr + EL3_CMD);
2505				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2506			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2507			/* The timer will reenable interrupts. */
2508			mod_timer(&vp->timer, jiffies + 1*HZ);
2509			break;
2510		}
2511		/* Acknowledge the IRQ. */
2512		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2513		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2514			iowrite32(0x8000, vp->cb_fn_base + 4);
2515
2516	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2517	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2518
2519	if (vortex_debug > 4)
2520		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2521			   dev->name, status);
2522handler_exit:
2523	vp->handling_irq = 0;
2524	spin_unlock(&vp->lock);
2525	return IRQ_RETVAL(handled);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2526}
2527
2528static int vortex_rx(struct net_device *dev)
2529{
2530	struct vortex_private *vp = netdev_priv(dev);
2531	void __iomem *ioaddr = vp->ioaddr;
2532	int i;
2533	short rx_status;
2534
2535	if (vortex_debug > 5)
2536		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2537			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2538	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2539		if (rx_status & 0x4000) { /* Error, update stats. */
2540			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2541			if (vortex_debug > 2)
2542				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2543			dev->stats.rx_errors++;
2544			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2545			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2546			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2547			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2548			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2549		} else {
2550			/* The packet length: up to 4.5K!. */
2551			int pkt_len = rx_status & 0x1fff;
2552			struct sk_buff *skb;
2553
2554			skb = netdev_alloc_skb(dev, pkt_len + 5);
2555			if (vortex_debug > 4)
2556				pr_debug("Receiving packet size %d status %4.4x.\n",
2557					   pkt_len, rx_status);
2558			if (skb != NULL) {
2559				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2560				/* 'skb_put()' points to the start of sk_buff data area. */
2561				if (vp->bus_master &&
2562					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2563					dma_addr_t dma = dma_map_single(vp->gendev, skb_put(skb, pkt_len),
2564									   pkt_len, DMA_FROM_DEVICE);
2565					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2566					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2567					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2568					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2569						;
2570					dma_unmap_single(vp->gendev, dma, pkt_len, DMA_FROM_DEVICE);
2571				} else {
2572					ioread32_rep(ioaddr + RX_FIFO,
2573					             skb_put(skb, pkt_len),
2574						     (pkt_len + 3) >> 2);
2575				}
2576				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2577				skb->protocol = eth_type_trans(skb, dev);
2578				netif_rx(skb);
2579				dev->stats.rx_packets++;
2580				/* Wait a limited time to go to next packet. */
2581				for (i = 200; i >= 0; i--)
2582					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2583						break;
2584				continue;
2585			} else if (vortex_debug > 0)
2586				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2587					dev->name, pkt_len);
2588			dev->stats.rx_dropped++;
2589		}
2590		issue_and_wait(dev, RxDiscard);
2591	}
2592
2593	return 0;
2594}
2595
2596static int
2597boomerang_rx(struct net_device *dev)
2598{
2599	struct vortex_private *vp = netdev_priv(dev);
2600	int entry = vp->cur_rx % RX_RING_SIZE;
2601	void __iomem *ioaddr = vp->ioaddr;
2602	int rx_status;
2603	int rx_work_limit = RX_RING_SIZE;
2604
2605	if (vortex_debug > 5)
2606		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2607
2608	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2609		if (--rx_work_limit < 0)
2610			break;
2611		if (rx_status & RxDError) { /* Error, update stats. */
2612			unsigned char rx_error = rx_status >> 16;
2613			if (vortex_debug > 2)
2614				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2615			dev->stats.rx_errors++;
2616			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2617			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2618			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2619			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2620			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2621		} else {
2622			/* The packet length: up to 4.5K!. */
2623			int pkt_len = rx_status & 0x1fff;
2624			struct sk_buff *skb, *newskb;
2625			dma_addr_t newdma;
2626			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2627
2628			if (vortex_debug > 4)
2629				pr_debug("Receiving packet size %d status %4.4x.\n",
2630					   pkt_len, rx_status);
2631
2632			/* Check if the packet is long enough to just accept without
2633			   copying to a properly sized skbuff. */
2634			if (pkt_len < rx_copybreak &&
2635			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2636				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2637				dma_sync_single_for_cpu(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2638				/* 'skb_put()' points to the start of sk_buff data area. */
2639				skb_put_data(skb, vp->rx_skbuff[entry]->data,
2640					     pkt_len);
2641				dma_sync_single_for_device(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2642				vp->rx_copy++;
2643			} else {
2644				/* Pre-allocate the replacement skb.  If it or its
2645				 * mapping fails then recycle the buffer thats already
2646				 * in place
2647				 */
2648				newskb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2649				if (!newskb) {
2650					dev->stats.rx_dropped++;
2651					goto clear_complete;
2652				}
2653				newdma = dma_map_single(vp->gendev, newskb->data,
2654							PKT_BUF_SZ, DMA_FROM_DEVICE);
2655				if (dma_mapping_error(vp->gendev, newdma)) {
2656					dev->stats.rx_dropped++;
2657					consume_skb(newskb);
2658					goto clear_complete;
2659				}
2660
2661				/* Pass up the skbuff already on the Rx ring. */
2662				skb = vp->rx_skbuff[entry];
2663				vp->rx_skbuff[entry] = newskb;
2664				vp->rx_ring[entry].addr = cpu_to_le32(newdma);
2665				skb_put(skb, pkt_len);
2666				dma_unmap_single(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2667				vp->rx_nocopy++;
2668			}
2669			skb->protocol = eth_type_trans(skb, dev);
2670			{					/* Use hardware checksum info. */
2671				int csum_bits = rx_status & 0xee000000;
2672				if (csum_bits &&
2673					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2674					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2675					skb->ip_summed = CHECKSUM_UNNECESSARY;
2676					vp->rx_csumhits++;
2677				}
2678			}
2679			netif_rx(skb);
2680			dev->stats.rx_packets++;
2681		}
2682
2683clear_complete:
2684		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2685		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2686		entry = (++vp->cur_rx) % RX_RING_SIZE;
2687	}
2688	return 0;
2689}
2690
2691static void
2692vortex_down(struct net_device *dev, int final_down)
2693{
2694	struct vortex_private *vp = netdev_priv(dev);
2695	void __iomem *ioaddr = vp->ioaddr;
2696
2697	netdev_reset_queue(dev);
2698	netif_stop_queue(dev);
2699
2700	del_timer_sync(&vp->timer);
2701
2702	/* Turn off statistics ASAP.  We update dev->stats below. */
2703	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2704
2705	/* Disable the receiver and transmitter. */
2706	iowrite16(RxDisable, ioaddr + EL3_CMD);
2707	iowrite16(TxDisable, ioaddr + EL3_CMD);
2708
2709	/* Disable receiving 802.1q tagged frames */
2710	set_8021q_mode(dev, 0);
2711
2712	if (dev->if_port == XCVR_10base2)
2713		/* Turn off thinnet power.  Green! */
2714		iowrite16(StopCoax, ioaddr + EL3_CMD);
2715
2716	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2717
2718	update_stats(ioaddr, dev);
2719	if (vp->full_bus_master_rx)
2720		iowrite32(0, ioaddr + UpListPtr);
2721	if (vp->full_bus_master_tx)
2722		iowrite32(0, ioaddr + DownListPtr);
2723
2724	if (final_down && VORTEX_PCI(vp)) {
2725		vp->pm_state_valid = 1;
2726		pci_save_state(VORTEX_PCI(vp));
2727		acpi_set_WOL(dev);
2728	}
2729}
2730
2731static int
2732vortex_close(struct net_device *dev)
2733{
2734	struct vortex_private *vp = netdev_priv(dev);
2735	void __iomem *ioaddr = vp->ioaddr;
2736	int i;
2737
2738	if (netif_device_present(dev))
2739		vortex_down(dev, 1);
2740
2741	if (vortex_debug > 1) {
2742		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2743			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2744		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2745			   " tx_queued %d Rx pre-checksummed %d.\n",
2746			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2747	}
2748
2749#if DO_ZEROCOPY
2750	if (vp->rx_csumhits &&
2751	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2752	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2753		pr_warn("%s supports hardware checksums, and we're not using them!\n",
2754			dev->name);
2755	}
2756#endif
2757
2758	free_irq(dev->irq, dev);
2759
2760	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2761		for (i = 0; i < RX_RING_SIZE; i++)
2762			if (vp->rx_skbuff[i]) {
2763				dma_unmap_single(vp->gendev, le32_to_cpu(vp->rx_ring[i].addr),
2764									PKT_BUF_SZ, DMA_FROM_DEVICE);
2765				dev_kfree_skb(vp->rx_skbuff[i]);
2766				vp->rx_skbuff[i] = NULL;
2767			}
2768	}
2769	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2770		for (i = 0; i < TX_RING_SIZE; i++) {
2771			if (vp->tx_skbuff[i]) {
2772				struct sk_buff *skb = vp->tx_skbuff[i];
2773#if DO_ZEROCOPY
2774				int k;
2775
2776				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2777						dma_unmap_single(vp->gendev,
2778										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2779										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2780										 DMA_TO_DEVICE);
2781#else
2782				dma_unmap_single(vp->gendev, le32_to_cpu(vp->tx_ring[i].addr), skb->len, DMA_TO_DEVICE);
2783#endif
2784				dev_kfree_skb(skb);
2785				vp->tx_skbuff[i] = NULL;
2786			}
2787		}
2788	}
2789
2790	return 0;
2791}
2792
2793static void
2794dump_tx_ring(struct net_device *dev)
2795{
2796	if (vortex_debug > 0) {
2797	struct vortex_private *vp = netdev_priv(dev);
2798		void __iomem *ioaddr = vp->ioaddr;
2799
2800		if (vp->full_bus_master_tx) {
2801			int i;
2802			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2803
2804			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2805					vp->full_bus_master_tx,
2806					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2807					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2808			pr_err("  Transmit list %8.8x vs. %p.\n",
2809				   ioread32(ioaddr + DownListPtr),
2810				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2811			issue_and_wait(dev, DownStall);
2812			for (i = 0; i < TX_RING_SIZE; i++) {
2813				unsigned int length;
2814
2815#if DO_ZEROCOPY
2816				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2817#else
2818				length = le32_to_cpu(vp->tx_ring[i].length);
2819#endif
2820				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2821					   i, &vp->tx_ring[i], length,
2822					   le32_to_cpu(vp->tx_ring[i].status));
2823			}
2824			if (!stalled)
2825				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2826		}
2827	}
2828}
2829
2830static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2831{
2832	struct vortex_private *vp = netdev_priv(dev);
2833	void __iomem *ioaddr = vp->ioaddr;
2834	unsigned long flags;
2835
2836	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2837		spin_lock_irqsave (&vp->lock, flags);
2838		update_stats(ioaddr, dev);
2839		spin_unlock_irqrestore (&vp->lock, flags);
2840	}
2841	return &dev->stats;
2842}
2843
2844/*  Update statistics.
2845	Unlike with the EL3 we need not worry about interrupts changing
2846	the window setting from underneath us, but we must still guard
2847	against a race condition with a StatsUpdate interrupt updating the
2848	table.  This is done by checking that the ASM (!) code generated uses
2849	atomic updates with '+='.
2850	*/
2851static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2852{
2853	struct vortex_private *vp = netdev_priv(dev);
2854
2855	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2856	/* Switch to the stats window, and read everything. */
2857	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2858	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2859	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2860	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2861	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2862	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2863						    0x30) << 4;
2864	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2865	/* Don't bother with register 9, an extension of registers 6&7.
2866	   If we do use the 6&7 values the atomic update assumption above
2867	   is invalid. */
2868	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2869	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2870	/* Extra stats for get_ethtool_stats() */
2871	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2872	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2873	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2874	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2875
2876	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2877		+ vp->xstats.tx_single_collisions
2878		+ vp->xstats.tx_max_collisions;
2879
2880	{
2881		u8 up = window_read8(vp, 4, 13);
2882		dev->stats.rx_bytes += (up & 0x0f) << 16;
2883		dev->stats.tx_bytes += (up & 0xf0) << 12;
2884	}
2885}
2886
2887static int vortex_nway_reset(struct net_device *dev)
2888{
2889	struct vortex_private *vp = netdev_priv(dev);
2890
2891	return mii_nway_restart(&vp->mii);
2892}
2893
2894static int vortex_get_link_ksettings(struct net_device *dev,
2895				     struct ethtool_link_ksettings *cmd)
2896{
2897	struct vortex_private *vp = netdev_priv(dev);
2898
2899	mii_ethtool_get_link_ksettings(&vp->mii, cmd);
2900
2901	return 0;
2902}
2903
2904static int vortex_set_link_ksettings(struct net_device *dev,
2905				     const struct ethtool_link_ksettings *cmd)
2906{
2907	struct vortex_private *vp = netdev_priv(dev);
2908
2909	return mii_ethtool_set_link_ksettings(&vp->mii, cmd);
2910}
2911
2912static u32 vortex_get_msglevel(struct net_device *dev)
2913{
2914	return vortex_debug;
2915}
2916
2917static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2918{
2919	vortex_debug = dbg;
2920}
2921
2922static int vortex_get_sset_count(struct net_device *dev, int sset)
2923{
2924	switch (sset) {
2925	case ETH_SS_STATS:
2926		return VORTEX_NUM_STATS;
2927	default:
2928		return -EOPNOTSUPP;
2929	}
2930}
2931
2932static void vortex_get_ethtool_stats(struct net_device *dev,
2933	struct ethtool_stats *stats, u64 *data)
2934{
2935	struct vortex_private *vp = netdev_priv(dev);
2936	void __iomem *ioaddr = vp->ioaddr;
2937	unsigned long flags;
2938
2939	spin_lock_irqsave(&vp->lock, flags);
2940	update_stats(ioaddr, dev);
2941	spin_unlock_irqrestore(&vp->lock, flags);
2942
2943	data[0] = vp->xstats.tx_deferred;
2944	data[1] = vp->xstats.tx_max_collisions;
2945	data[2] = vp->xstats.tx_multiple_collisions;
2946	data[3] = vp->xstats.tx_single_collisions;
2947	data[4] = vp->xstats.rx_bad_ssd;
2948}
2949
2950
2951static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2952{
2953	switch (stringset) {
2954	case ETH_SS_STATS:
2955		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2956		break;
2957	default:
2958		WARN_ON(1);
2959		break;
2960	}
2961}
2962
2963static void vortex_get_drvinfo(struct net_device *dev,
2964					struct ethtool_drvinfo *info)
2965{
2966	struct vortex_private *vp = netdev_priv(dev);
2967
2968	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2969	if (VORTEX_PCI(vp)) {
2970		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2971			sizeof(info->bus_info));
2972	} else {
2973		if (VORTEX_EISA(vp))
2974			strlcpy(info->bus_info, dev_name(vp->gendev),
2975				sizeof(info->bus_info));
2976		else
2977			snprintf(info->bus_info, sizeof(info->bus_info),
2978				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2979	}
2980}
2981
2982static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2983{
2984	struct vortex_private *vp = netdev_priv(dev);
2985
2986	if (!VORTEX_PCI(vp))
2987		return;
2988
2989	wol->supported = WAKE_MAGIC;
2990
2991	wol->wolopts = 0;
2992	if (vp->enable_wol)
2993		wol->wolopts |= WAKE_MAGIC;
2994}
2995
2996static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2997{
2998	struct vortex_private *vp = netdev_priv(dev);
2999
3000	if (!VORTEX_PCI(vp))
3001		return -EOPNOTSUPP;
3002
3003	if (wol->wolopts & ~WAKE_MAGIC)
3004		return -EINVAL;
3005
3006	if (wol->wolopts & WAKE_MAGIC)
3007		vp->enable_wol = 1;
3008	else
3009		vp->enable_wol = 0;
3010	acpi_set_WOL(dev);
3011
3012	return 0;
3013}
3014
3015static const struct ethtool_ops vortex_ethtool_ops = {
3016	.get_drvinfo		= vortex_get_drvinfo,
3017	.get_strings            = vortex_get_strings,
3018	.get_msglevel           = vortex_get_msglevel,
3019	.set_msglevel           = vortex_set_msglevel,
3020	.get_ethtool_stats      = vortex_get_ethtool_stats,
3021	.get_sset_count		= vortex_get_sset_count,
3022	.get_link               = ethtool_op_get_link,
3023	.nway_reset             = vortex_nway_reset,
3024	.get_wol                = vortex_get_wol,
3025	.set_wol                = vortex_set_wol,
3026	.get_ts_info		= ethtool_op_get_ts_info,
3027	.get_link_ksettings     = vortex_get_link_ksettings,
3028	.set_link_ksettings     = vortex_set_link_ksettings,
3029};
3030
3031#ifdef CONFIG_PCI
3032/*
3033 *	Must power the device up to do MDIO operations
3034 */
3035static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3036{
3037	int err;
3038	struct vortex_private *vp = netdev_priv(dev);
3039	pci_power_t state = 0;
3040
3041	if(VORTEX_PCI(vp))
3042		state = VORTEX_PCI(vp)->current_state;
3043
3044	/* The kernel core really should have pci_get_power_state() */
3045
3046	if(state != 0)
3047		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3048	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3049	if(state != 0)
3050		pci_set_power_state(VORTEX_PCI(vp), state);
3051
3052	return err;
3053}
3054#endif
3055
3056
3057/* Pre-Cyclone chips have no documented multicast filter, so the only
3058   multicast setting is to receive all multicast frames.  At least
3059   the chip has a very clean way to set the mode, unlike many others. */
3060static void set_rx_mode(struct net_device *dev)
3061{
3062	struct vortex_private *vp = netdev_priv(dev);
3063	void __iomem *ioaddr = vp->ioaddr;
3064	int new_mode;
3065
3066	if (dev->flags & IFF_PROMISC) {
3067		if (vortex_debug > 3)
3068			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3069		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3070	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3071		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3072	} else
3073		new_mode = SetRxFilter | RxStation | RxBroadcast;
3074
3075	iowrite16(new_mode, ioaddr + EL3_CMD);
3076}
3077
3078#if IS_ENABLED(CONFIG_VLAN_8021Q)
3079/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3080   Note that this must be done after each RxReset due to some backwards
3081   compatibility logic in the Cyclone and Tornado ASICs */
3082
3083/* The Ethernet Type used for 802.1q tagged frames */
3084#define VLAN_ETHER_TYPE 0x8100
3085
3086static void set_8021q_mode(struct net_device *dev, int enable)
3087{
3088	struct vortex_private *vp = netdev_priv(dev);
3089	int mac_ctrl;
3090
3091	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3092		/* cyclone and tornado chipsets can recognize 802.1q
3093		 * tagged frames and treat them correctly */
3094
3095		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3096		if (enable)
3097			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3098
3099		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3100
3101		/* set VlanEtherType to let the hardware checksumming
3102		   treat tagged frames correctly */
3103		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3104	} else {
3105		/* on older cards we have to enable large frames */
3106
3107		vp->large_frames = dev->mtu > 1500 || enable;
3108
3109		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3110		if (vp->large_frames)
3111			mac_ctrl |= 0x40;
3112		else
3113			mac_ctrl &= ~0x40;
3114		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3115	}
3116}
3117#else
3118
3119static void set_8021q_mode(struct net_device *dev, int enable)
3120{
3121}
3122
3123
3124#endif
3125
3126/* MII transceiver control section.
3127   Read and write the MII registers using software-generated serial
3128   MDIO protocol.  See the MII specifications or DP83840A data sheet
3129   for details. */
3130
3131/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3132   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3133   "overclocking" issues. */
3134static void mdio_delay(struct vortex_private *vp)
3135{
3136	window_read32(vp, 4, Wn4_PhysicalMgmt);
3137}
3138
3139#define MDIO_SHIFT_CLK	0x01
3140#define MDIO_DIR_WRITE	0x04
3141#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3142#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3143#define MDIO_DATA_READ	0x02
3144#define MDIO_ENB_IN		0x00
3145
3146/* Generate the preamble required for initial synchronization and
3147   a few older transceivers. */
3148static void mdio_sync(struct vortex_private *vp, int bits)
3149{
3150	/* Establish sync by sending at least 32 logic ones. */
3151	while (-- bits >= 0) {
3152		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3153		mdio_delay(vp);
3154		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3155			       4, Wn4_PhysicalMgmt);
3156		mdio_delay(vp);
3157	}
3158}
3159
3160static int mdio_read(struct net_device *dev, int phy_id, int location)
3161{
3162	int i;
3163	struct vortex_private *vp = netdev_priv(dev);
3164	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3165	unsigned int retval = 0;
3166
3167	spin_lock_bh(&vp->mii_lock);
3168
3169	if (mii_preamble_required)
3170		mdio_sync(vp, 32);
3171
3172	/* Shift the read command bits out. */
3173	for (i = 14; i >= 0; i--) {
3174		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3175		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3176		mdio_delay(vp);
3177		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3178			       4, Wn4_PhysicalMgmt);
3179		mdio_delay(vp);
3180	}
3181	/* Read the two transition, 16 data, and wire-idle bits. */
3182	for (i = 19; i > 0; i--) {
3183		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3184		mdio_delay(vp);
3185		retval = (retval << 1) |
3186			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3187			  MDIO_DATA_READ) ? 1 : 0);
3188		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3189			       4, Wn4_PhysicalMgmt);
3190		mdio_delay(vp);
3191	}
3192
3193	spin_unlock_bh(&vp->mii_lock);
3194
3195	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3196}
3197
3198static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3199{
3200	struct vortex_private *vp = netdev_priv(dev);
3201	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3202	int i;
3203
3204	spin_lock_bh(&vp->mii_lock);
3205
3206	if (mii_preamble_required)
3207		mdio_sync(vp, 32);
3208
3209	/* Shift the command bits out. */
3210	for (i = 31; i >= 0; i--) {
3211		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3212		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3213		mdio_delay(vp);
3214		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3215			       4, Wn4_PhysicalMgmt);
3216		mdio_delay(vp);
3217	}
3218	/* Leave the interface idle. */
3219	for (i = 1; i >= 0; i--) {
3220		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3221		mdio_delay(vp);
3222		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3223			       4, Wn4_PhysicalMgmt);
3224		mdio_delay(vp);
3225	}
3226
3227	spin_unlock_bh(&vp->mii_lock);
3228}
3229
3230/* ACPI: Advanced Configuration and Power Interface. */
3231/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3232static void acpi_set_WOL(struct net_device *dev)
3233{
3234	struct vortex_private *vp = netdev_priv(dev);
3235	void __iomem *ioaddr = vp->ioaddr;
3236
3237	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3238
3239	if (vp->enable_wol) {
3240		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3241		window_write16(vp, 2, 7, 0x0c);
3242		/* The RxFilter must accept the WOL frames. */
3243		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3244		iowrite16(RxEnable, ioaddr + EL3_CMD);
3245
3246		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3247			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3248
3249			vp->enable_wol = 0;
3250			return;
3251		}
3252
3253		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3254			return;
3255
3256		/* Change the power state to D3; RxEnable doesn't take effect. */
3257		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3258	}
3259}
3260
3261
3262static void vortex_remove_one(struct pci_dev *pdev)
3263{
3264	struct net_device *dev = pci_get_drvdata(pdev);
3265	struct vortex_private *vp;
3266
3267	if (!dev) {
3268		pr_err("vortex_remove_one called for Compaq device!\n");
3269		BUG();
3270	}
3271
3272	vp = netdev_priv(dev);
3273
3274	if (vp->cb_fn_base)
3275		pci_iounmap(pdev, vp->cb_fn_base);
3276
3277	unregister_netdev(dev);
3278
3279	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3280	if (vp->pm_state_valid)
3281		pci_restore_state(pdev);
3282	pci_disable_device(pdev);
3283
3284	/* Should really use issue_and_wait() here */
3285	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3286	     vp->ioaddr + EL3_CMD);
3287
3288	pci_iounmap(pdev, vp->ioaddr);
3289
3290	dma_free_coherent(&pdev->dev,
3291			sizeof(struct boom_rx_desc) * RX_RING_SIZE +
3292			sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3293			vp->rx_ring, vp->rx_ring_dma);
3294
3295	pci_release_regions(pdev);
3296
3297	free_netdev(dev);
3298}
3299
3300
3301static struct pci_driver vortex_driver = {
3302	.name		= "3c59x",
3303	.probe		= vortex_init_one,
3304	.remove		= vortex_remove_one,
3305	.id_table	= vortex_pci_tbl,
3306	.driver.pm	= VORTEX_PM_OPS,
3307};
3308
3309
3310static int vortex_have_pci;
3311static int vortex_have_eisa;
3312
3313
3314static int __init vortex_init(void)
3315{
3316	int pci_rc, eisa_rc;
3317
3318	pci_rc = pci_register_driver(&vortex_driver);
3319	eisa_rc = vortex_eisa_init();
3320
3321	if (pci_rc == 0)
3322		vortex_have_pci = 1;
3323	if (eisa_rc > 0)
3324		vortex_have_eisa = 1;
3325
3326	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3327}
3328
3329
3330static void __exit vortex_eisa_cleanup(void)
3331{
3332	void __iomem *ioaddr;
3333
3334#ifdef CONFIG_EISA
3335	/* Take care of the EISA devices */
3336	eisa_driver_unregister(&vortex_eisa_driver);
3337#endif
3338
3339	if (compaq_net_device) {
3340		ioaddr = ioport_map(compaq_net_device->base_addr,
3341		                    VORTEX_TOTAL_SIZE);
3342
3343		unregister_netdev(compaq_net_device);
3344		iowrite16(TotalReset, ioaddr + EL3_CMD);
3345		release_region(compaq_net_device->base_addr,
3346		               VORTEX_TOTAL_SIZE);
3347
3348		free_netdev(compaq_net_device);
3349	}
3350}
3351
3352
3353static void __exit vortex_cleanup(void)
3354{
3355	if (vortex_have_pci)
3356		pci_unregister_driver(&vortex_driver);
3357	if (vortex_have_eisa)
3358		vortex_eisa_cleanup();
3359}
3360
3361
3362module_init(vortex_init);
3363module_exit(vortex_cleanup);
v5.9
   1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2/*
   3	Written 1996-1999 by Donald Becker.
   4
   5	This software may be used and distributed according to the terms
   6	of the GNU General Public License, incorporated herein by reference.
   7
   8	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10	and the EtherLink XL 3c900 and 3c905 cards.
  11
  12	Problem reports and questions should be directed to
  13	vortex@scyld.com
  14
  15	The author may be reached as becker@scyld.com, or C/O
  16	Scyld Computing Corporation
  17	410 Severn Ave., Suite 210
  18	Annapolis MD 21403
  19
  20*/
  21
  22/*
  23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24 * as well as other drivers
  25 *
  26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27 * due to dead code elimination.  There will be some performance benefits from this due to
  28 * elimination of all the tests and reduced cache footprint.
  29 */
  30
  31
  32#define DRV_NAME	"3c59x"
  33
  34
  35
  36/* A few values that may be tweaked. */
  37/* Keep the ring sizes a power of two for efficiency. */
  38#define TX_RING_SIZE	16
  39#define RX_RING_SIZE	32
  40#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
  41
  42/* "Knobs" that adjust features and parameters. */
  43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44   Setting to > 1512 effectively disables this feature. */
  45#ifndef __arm__
  46static int rx_copybreak = 200;
  47#else
  48/* ARM systems perform better by disregarding the bus-master
  49   transfer capability of these cards. -- rmk */
  50static int rx_copybreak = 1513;
  51#endif
  52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53static const int mtu = 1500;
  54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55static int max_interrupt_work = 32;
  56/* Tx timeout interval (millisecs) */
  57static int watchdog = 5000;
  58
  59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60 * of possible Tx stalls if the system is blocking interrupts
  61 * somewhere else.  Undefine this to disable.
  62 */
  63#define tx_interrupt_mitigation 1
  64
  65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66#define vortex_debug debug
  67#ifdef VORTEX_DEBUG
  68static int vortex_debug = VORTEX_DEBUG;
  69#else
  70static int vortex_debug = 1;
  71#endif
  72
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/string.h>
  76#include <linux/timer.h>
  77#include <linux/errno.h>
  78#include <linux/in.h>
  79#include <linux/ioport.h>
  80#include <linux/interrupt.h>
  81#include <linux/pci.h>
  82#include <linux/mii.h>
  83#include <linux/init.h>
  84#include <linux/netdevice.h>
  85#include <linux/etherdevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/ethtool.h>
  88#include <linux/highmem.h>
  89#include <linux/eisa.h>
  90#include <linux/bitops.h>
  91#include <linux/jiffies.h>
  92#include <linux/gfp.h>
  93#include <asm/irq.h>			/* For nr_irqs only. */
  94#include <asm/io.h>
  95#include <linux/uaccess.h>
  96
  97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98   This is only in the support-all-kernels source code. */
  99
 100#define RUN_AT(x) (jiffies + (x))
 101
 102#include <linux/delay.h>
 103
 104
 105static const char version[] =
 106	DRV_NAME ": Donald Becker and others.\n";
 107
 108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110MODULE_LICENSE("GPL");
 111
 112
 113/* Operational parameter that usually are not changed. */
 114
 115/* The Vortex size is twice that of the original EtherLinkIII series: the
 116   runtime register window, window 1, is now always mapped in.
 117   The Boomerang size is twice as large as the Vortex -- it has additional
 118   bus master control registers. */
 119#define VORTEX_TOTAL_SIZE 0x20
 120#define BOOMERANG_TOTAL_SIZE 0x40
 121
 122/* Set iff a MII transceiver on any interface requires mdio preamble.
 123   This only set with the original DP83840 on older 3c905 boards, so the extra
 124   code size of a per-interface flag is not worthwhile. */
 125static char mii_preamble_required;
 126
 127#define PFX DRV_NAME ": "
 128
 129
 130
 131/*
 132				Theory of Operation
 133
 134I. Board Compatibility
 135
 136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138versions of the FastEtherLink cards.  The supported product IDs are
 139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140
 141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142with the kernel source or available from
 143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144
 145II. Board-specific settings
 146
 147PCI bus devices are configured by the system at boot time, so no jumpers
 148need to be set on the board.  The system BIOS should be set to assign the
 149PCI INTA signal to an otherwise unused system IRQ line.
 150
 151The EEPROM settings for media type and forced-full-duplex are observed.
 152The EEPROM media type should be left at the default "autoselect" unless using
 15310base2 or AUI connections which cannot be reliably detected.
 154
 155III. Driver operation
 156
 157The 3c59x series use an interface that's very similar to the previous 3c5x9
 158series.  The primary interface is two programmed-I/O FIFOs, with an
 159alternate single-contiguous-region bus-master transfer (see next).
 160
 161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164programmed-I/O interface that has been removed in 'B' and subsequent board
 165revisions.
 166
 167One extension that is advertised in a very large font is that the adapters
 168are capable of being bus masters.  On the Vortex chip this capability was
 169only for a single contiguous region making it far less useful than the full
 170bus master capability.  There is a significant performance impact of taking
 171an extra interrupt or polling for the completion of each transfer, as well
 172as difficulty sharing the single transfer engine between the transmit and
 173receive threads.  Using DMA transfers is a win only with large blocks or
 174with the flawed versions of the Intel Orion motherboard PCI controller.
 175
 176The Boomerang chip's full-bus-master interface is useful, and has the
 177currently-unused advantages over other similar chips that queued transmit
 178packets may be reordered and receive buffer groups are associated with a
 179single frame.
 180
 181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182Rather than a fixed intermediate receive buffer, this scheme allocates
 183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184the copying breakpoint: it is chosen to trade-off the memory wasted by
 185passing the full-sized skbuff to the queue layer for all frames vs. the
 186copying cost of copying a frame to a correctly-sized skbuff.
 187
 188IIIC. Synchronization
 189The driver runs as two independent, single-threaded flows of control.  One
 190is the send-packet routine, which enforces single-threaded use by the
 191dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192threaded by the hardware and other software.
 193
 194IV. Notes
 195
 196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 1973c590, 3c595, and 3c900 boards.
 198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199the EISA version is called "Demon".  According to Terry these names come
 200from rides at the local amusement park.
 201
 202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203This driver only supports ethernet packets because of the skbuff allocation
 204limit of 4K.
 205*/
 206
 207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208   of the drivers, and will likely be provided by some future kernel.
 209*/
 210enum pci_flags_bit {
 211	PCI_USES_MASTER=4,
 212};
 213
 214enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220
 221enum vortex_chips {
 222	CH_3C590 = 0,
 223	CH_3C592,
 224	CH_3C597,
 225	CH_3C595_1,
 226	CH_3C595_2,
 227
 228	CH_3C595_3,
 229	CH_3C900_1,
 230	CH_3C900_2,
 231	CH_3C900_3,
 232	CH_3C900_4,
 233
 234	CH_3C900_5,
 235	CH_3C900B_FL,
 236	CH_3C905_1,
 237	CH_3C905_2,
 238	CH_3C905B_TX,
 239	CH_3C905B_1,
 240
 241	CH_3C905B_2,
 242	CH_3C905B_FX,
 243	CH_3C905C,
 244	CH_3C9202,
 245	CH_3C980,
 246	CH_3C9805,
 247
 248	CH_3CSOHO100_TX,
 249	CH_3C555,
 250	CH_3C556,
 251	CH_3C556B,
 252	CH_3C575,
 253
 254	CH_3C575_1,
 255	CH_3CCFE575,
 256	CH_3CCFE575CT,
 257	CH_3CCFE656,
 258	CH_3CCFEM656,
 259
 260	CH_3CCFEM656_1,
 261	CH_3C450,
 262	CH_3C920,
 263	CH_3C982A,
 264	CH_3C982B,
 265
 266	CH_905BT4,
 267	CH_920B_EMB_WNM,
 268};
 269
 270
 271/* note: this array directly indexed by above enums, and MUST
 272 * be kept in sync with both the enums above, and the PCI device
 273 * table below
 274 */
 275static struct vortex_chip_info {
 276	const char *name;
 277	int flags;
 278	int drv_flags;
 279	int io_size;
 280} vortex_info_tbl[] = {
 281	{"3c590 Vortex 10Mbps",
 282	 PCI_USES_MASTER, IS_VORTEX, 32, },
 283	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 284	 PCI_USES_MASTER, IS_VORTEX, 32, },
 285	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 286	 PCI_USES_MASTER, IS_VORTEX, 32, },
 287	{"3c595 Vortex 100baseTx",
 288	 PCI_USES_MASTER, IS_VORTEX, 32, },
 289	{"3c595 Vortex 100baseT4",
 290	 PCI_USES_MASTER, IS_VORTEX, 32, },
 291
 292	{"3c595 Vortex 100base-MII",
 293	 PCI_USES_MASTER, IS_VORTEX, 32, },
 294	{"3c900 Boomerang 10baseT",
 295	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296	{"3c900 Boomerang 10Mbps Combo",
 297	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
 299	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300	{"3c900 Cyclone 10Mbps Combo",
 301	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302
 303	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
 304	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305	{"3c900B-FL Cyclone 10base-FL",
 306	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307	{"3c905 Boomerang 100baseTx",
 308	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309	{"3c905 Boomerang 100baseT4",
 310	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311	{"3C905B-TX Fast Etherlink XL PCI",
 312	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313	{"3c905B Cyclone 100baseTx",
 314	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315
 316	{"3c905B Cyclone 10/100/BNC",
 317	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318	{"3c905B-FX Cyclone 100baseFx",
 319	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320	{"3c905C Tornado",
 321	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324	{"3c980 Cyclone",
 325	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326
 327	{"3c980C Python-T",
 328	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329	{"3cSOHO100-TX Hurricane",
 330	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331	{"3c555 Laptop Hurricane",
 332	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333	{"3c556 Laptop Tornado",
 334	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335									HAS_HWCKSM, 128, },
 336	{"3c556B Laptop Hurricane",
 337	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339
 340	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
 341	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342	{"3c575 Boomerang CardBus",
 343	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344	{"3CCFE575BT Cyclone CardBus",
 345	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347	{"3CCFE575CT Tornado CardBus",
 348	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350	{"3CCFE656 Cyclone CardBus",
 351	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353
 354	{"3CCFEM656B Cyclone+Winmodem CardBus",
 355	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
 358	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
 361	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362	{"3c920 Tornado",
 363	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364	{"3c982 Hydra Dual Port A",
 365	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366
 367	{"3c982 Hydra Dual Port B",
 368	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369	{"3c905B-T4",
 370	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371	{"3c920B-EMB-WNM Tornado",
 372	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373
 374	{NULL,}, /* NULL terminated list. */
 375};
 376
 377
 378static const struct pci_device_id vortex_pci_tbl[] = {
 379	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384
 385	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390
 391	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397
 398	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404
 405	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410
 411	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416
 417	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422
 423	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425
 426	{0,}						/* 0 terminated list. */
 427};
 428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429
 430
 431/* Operational definitions.
 432   These are not used by other compilation units and thus are not
 433   exported in a ".h" file.
 434
 435   First the windows.  There are eight register windows, with the command
 436   and status registers available in each.
 437   */
 438#define EL3_CMD 0x0e
 439#define EL3_STATUS 0x0e
 440
 441/* The top five bits written to EL3_CMD are a command, the lower
 442   11 bits are the parameter, if applicable.
 443   Note that 11 parameters bits was fine for ethernet, but the new chip
 444   can handle FDDI length frames (~4500 octets) and now parameters count
 445   32-bit 'Dwords' rather than octets. */
 446
 447enum vortex_cmd {
 448	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450	UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458
 459/* The SetRxFilter command accepts the following classes: */
 460enum RxFilter {
 461	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462
 463/* Bits in the general status register. */
 464enum vortex_status {
 465	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467	IntReq = 0x0040, StatsFull = 0x0080,
 468	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
 470	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
 471};
 472
 473/* Register window 1 offsets, the window used in normal operation.
 474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475enum Window1 {
 476	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479};
 480enum Window0 {
 481	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
 482	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
 483	IntrStatus=0x0E,		/* Valid in all windows. */
 484};
 485enum Win0_EEPROM_bits {
 486	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
 488	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
 489};
 490/* EEPROM locations. */
 491enum eeprom_offset {
 492	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495	DriverTune=13, Checksum=15};
 496
 497enum Window2 {			/* Window 2. */
 498	Wn2_ResetOptions=12,
 499};
 500enum Window3 {			/* Window 3: MAC/config bits. */
 501	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502};
 503
 504#define BFEXT(value, offset, bitcount)  \
 505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506
 507#define BFINS(lhs, rhs, offset, bitcount)					\
 508	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
 509	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510
 511#define RAM_SIZE(v)		BFEXT(v, 0, 3)
 512#define RAM_WIDTH(v)	BFEXT(v, 3, 1)
 513#define RAM_SPEED(v)	BFEXT(v, 4, 2)
 514#define ROM_SIZE(v)		BFEXT(v, 6, 2)
 515#define RAM_SPLIT(v)	BFEXT(v, 16, 2)
 516#define XCVR(v)			BFEXT(v, 20, 4)
 517#define AUTOSELECT(v)	BFEXT(v, 24, 1)
 518
 519enum Window4 {		/* Window 4: Xcvr/media bits. */
 520	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521};
 522enum Win4_Media_bits {
 523	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
 524	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
 525	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
 526	Media_LnkBeat = 0x0800,
 527};
 528enum Window7 {					/* Window 7: Bus Master control. */
 529	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530	Wn7_MasterStatus = 12,
 531};
 532/* Boomerang bus master control registers. */
 533enum MasterCtrl {
 534	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536};
 537
 538/* The Rx and Tx descriptor lists.
 539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540   alignment contraint on tx_ring[] and rx_ring[]. */
 541#define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
 542#define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
 543struct boom_rx_desc {
 544	__le32 next;					/* Last entry points to 0.   */
 545	__le32 status;
 546	__le32 addr;					/* Up to 63 addr/len pairs possible. */
 547	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
 548};
 549/* Values for the Rx status entry. */
 550enum rx_desc_status {
 551	RxDComplete=0x00008000, RxDError=0x4000,
 552	/* See boomerang_rx() for actual error bits */
 553	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555};
 556
 557#ifdef MAX_SKB_FRAGS
 558#define DO_ZEROCOPY 1
 559#else
 560#define DO_ZEROCOPY 0
 561#endif
 562
 563struct boom_tx_desc {
 564	__le32 next;					/* Last entry points to 0.   */
 565	__le32 status;					/* bits 0:12 length, others see below.  */
 566#if DO_ZEROCOPY
 567	struct {
 568		__le32 addr;
 569		__le32 length;
 570	} frag[1+MAX_SKB_FRAGS];
 571#else
 572		__le32 addr;
 573		__le32 length;
 574#endif
 575};
 576
 577/* Values for the Tx status entry. */
 578enum tx_desc_status {
 579	CRCDisable=0x2000, TxDComplete=0x8000,
 580	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
 582};
 583
 584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586
 587struct vortex_extra_stats {
 588	unsigned long tx_deferred;
 589	unsigned long tx_max_collisions;
 590	unsigned long tx_multiple_collisions;
 591	unsigned long tx_single_collisions;
 592	unsigned long rx_bad_ssd;
 593};
 594
 595struct vortex_private {
 596	/* The Rx and Tx rings should be quad-word-aligned. */
 597	struct boom_rx_desc* rx_ring;
 598	struct boom_tx_desc* tx_ring;
 599	dma_addr_t rx_ring_dma;
 600	dma_addr_t tx_ring_dma;
 601	/* The addresses of transmit- and receive-in-place skbuffs. */
 602	struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603	struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
 605	unsigned int dirty_tx;	/* The ring entries to be free()ed. */
 606	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
 607	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
 608	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
 609
 610	/* PCI configuration space information. */
 611	struct device *gendev;
 612	void __iomem *ioaddr;			/* IO address space */
 613	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
 614
 615	/* Some values here only for performance evaluation and path-coverage */
 616	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617	int card_idx;
 618
 619	/* The remainder are related to chip state, mostly media selection. */
 620	struct timer_list timer;			/* Media selection timer. */
 621	int options;						/* User-settable misc. driver options. */
 622	unsigned int media_override:4, 		/* Passed-in media type. */
 623		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
 624		full_duplex:1, autoselect:1,
 625		bus_master:1,					/* Vortex can only do a fragment bus-m. */
 626		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 627		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
 628		partner_flow_ctrl:1,			/* Partner supports flow control */
 629		has_nway:1,
 630		enable_wol:1,					/* Wake-on-LAN is enabled */
 631		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
 632		open:1,
 633		medialock:1,
 634		large_frames:1,			/* accept large frames */
 635		handling_irq:1;			/* private in_irq indicator */
 636	/* {get|set}_wol operations are already serialized by rtnl.
 637	 * no additional locking is required for the enable_wol and acpi_set_WOL()
 638	 */
 639	int drv_flags;
 640	u16 status_enable;
 641	u16 intr_enable;
 642	u16 available_media;				/* From Wn3_Options. */
 643	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
 644	u16 advertising;					/* NWay media advertisement */
 645	unsigned char phys[2];				/* MII device addresses. */
 646	u16 deferred;						/* Resend these interrupts when we
 647										 * bale from the ISR */
 648	u16 io_size;						/* Size of PCI region (for release_region) */
 649
 650	/* Serialises access to hardware other than MII and variables below.
 651	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 652	spinlock_t lock;
 653
 654	spinlock_t mii_lock;		/* Serialises access to MII */
 655	struct mii_if_info mii;		/* MII lib hooks/info */
 656	spinlock_t window_lock;		/* Serialises access to windowed regs */
 657	int window;			/* Register window */
 658};
 659
 660static void window_set(struct vortex_private *vp, int window)
 661{
 662	if (window != vp->window) {
 663		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 664		vp->window = window;
 665	}
 666}
 667
 668#define DEFINE_WINDOW_IO(size)						\
 669static u ## size							\
 670window_read ## size(struct vortex_private *vp, int window, int addr)	\
 671{									\
 672	unsigned long flags;						\
 673	u ## size ret;							\
 674	spin_lock_irqsave(&vp->window_lock, flags);			\
 675	window_set(vp, window);						\
 676	ret = ioread ## size(vp->ioaddr + addr);			\
 677	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 678	return ret;							\
 679}									\
 680static void								\
 681window_write ## size(struct vortex_private *vp, u ## size value,	\
 682		     int window, int addr)				\
 683{									\
 684	unsigned long flags;						\
 685	spin_lock_irqsave(&vp->window_lock, flags);			\
 686	window_set(vp, window);						\
 687	iowrite ## size(value, vp->ioaddr + addr);			\
 688	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 689}
 690DEFINE_WINDOW_IO(8)
 691DEFINE_WINDOW_IO(16)
 692DEFINE_WINDOW_IO(32)
 693
 694#ifdef CONFIG_PCI
 695#define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
 696#else
 697#define DEVICE_PCI(dev) NULL
 698#endif
 699
 700#define VORTEX_PCI(vp)							\
 701	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 702
 703#ifdef CONFIG_EISA
 704#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 705#else
 706#define DEVICE_EISA(dev) NULL
 707#endif
 708
 709#define VORTEX_EISA(vp)							\
 710	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 711
 712/* The action to take with a media selection timer tick.
 713   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 714 */
 715enum xcvr_types {
 716	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 717	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 718};
 719
 720static const struct media_table {
 721	char *name;
 722	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
 723		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
 724		next:8;						/* The media type to try next. */
 725	int wait;						/* Time before we check media status. */
 726} media_tbl[] = {
 727  {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 728  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 729  { "undefined", 0,			0x80, XCVR_10baseT, 10000},
 730  { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
 731  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 732  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
 733  { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
 734  { "undefined", 0,			0x01, XCVR_10baseT, 10000},
 735  { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
 736  { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
 737  { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
 738};
 739
 740static struct {
 741	const char str[ETH_GSTRING_LEN];
 742} ethtool_stats_keys[] = {
 743	{ "tx_deferred" },
 744	{ "tx_max_collisions" },
 745	{ "tx_multiple_collisions" },
 746	{ "tx_single_collisions" },
 747	{ "rx_bad_ssd" },
 748};
 749
 750/* number of ETHTOOL_GSTATS u64's */
 751#define VORTEX_NUM_STATS    5
 752
 753static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 754				   int chip_idx, int card_idx);
 755static int vortex_up(struct net_device *dev);
 756static void vortex_down(struct net_device *dev, int final);
 757static int vortex_open(struct net_device *dev);
 758static void mdio_sync(struct vortex_private *vp, int bits);
 759static int mdio_read(struct net_device *dev, int phy_id, int location);
 760static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 761static void vortex_timer(struct timer_list *t);
 762static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 763				     struct net_device *dev);
 764static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 765					struct net_device *dev);
 766static int vortex_rx(struct net_device *dev);
 767static int boomerang_rx(struct net_device *dev);
 768static irqreturn_t vortex_boomerang_interrupt(int irq, void *dev_id);
 769static irqreturn_t _vortex_interrupt(int irq, struct net_device *dev);
 770static irqreturn_t _boomerang_interrupt(int irq, struct net_device *dev);
 771static int vortex_close(struct net_device *dev);
 772static void dump_tx_ring(struct net_device *dev);
 773static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 774static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 775static void set_rx_mode(struct net_device *dev);
 776#ifdef CONFIG_PCI
 777static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 778#endif
 779static void vortex_tx_timeout(struct net_device *dev, unsigned int txqueue);
 780static void acpi_set_WOL(struct net_device *dev);
 781static const struct ethtool_ops vortex_ethtool_ops;
 782static void set_8021q_mode(struct net_device *dev, int enable);
 783
 784/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 785/* Option count limit only -- unlimited interfaces are supported. */
 786#define MAX_UNITS 8
 787static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 788static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 789static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 790static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 793static int global_options = -1;
 794static int global_full_duplex = -1;
 795static int global_enable_wol = -1;
 796static int global_use_mmio = -1;
 797
 798/* Variables to work-around the Compaq PCI BIOS32 problem. */
 799static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 800static struct net_device *compaq_net_device;
 801
 802static int vortex_cards_found;
 803
 804module_param(debug, int, 0);
 805module_param(global_options, int, 0);
 806module_param_array(options, int, NULL, 0);
 807module_param(global_full_duplex, int, 0);
 808module_param_array(full_duplex, int, NULL, 0);
 809module_param_array(hw_checksums, int, NULL, 0);
 810module_param_array(flow_ctrl, int, NULL, 0);
 811module_param(global_enable_wol, int, 0);
 812module_param_array(enable_wol, int, NULL, 0);
 813module_param(rx_copybreak, int, 0);
 814module_param(max_interrupt_work, int, 0);
 815module_param_hw(compaq_ioaddr, int, ioport, 0);
 816module_param_hw(compaq_irq, int, irq, 0);
 817module_param(compaq_device_id, int, 0);
 818module_param(watchdog, int, 0);
 819module_param(global_use_mmio, int, 0);
 820module_param_array(use_mmio, int, NULL, 0);
 821MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 822MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 823MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 824MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 825MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 826MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 827MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 828MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 829MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 830MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 831MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 832MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 833MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 834MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 835MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 836MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 837MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 838
 839#ifdef CONFIG_NET_POLL_CONTROLLER
 840static void poll_vortex(struct net_device *dev)
 841{
 842	vortex_boomerang_interrupt(dev->irq, dev);
 
 
 
 
 843}
 844#endif
 845
 846#ifdef CONFIG_PM
 847
 848static int vortex_suspend(struct device *dev)
 849{
 850	struct net_device *ndev = dev_get_drvdata(dev);
 
 851
 852	if (!ndev || !netif_running(ndev))
 853		return 0;
 854
 855	netif_device_detach(ndev);
 856	vortex_down(ndev, 1);
 857
 858	return 0;
 859}
 860
 861static int vortex_resume(struct device *dev)
 862{
 863	struct net_device *ndev = dev_get_drvdata(dev);
 
 864	int err;
 865
 866	if (!ndev || !netif_running(ndev))
 867		return 0;
 868
 869	err = vortex_up(ndev);
 870	if (err)
 871		return err;
 872
 873	netif_device_attach(ndev);
 874
 875	return 0;
 876}
 877
 878static const struct dev_pm_ops vortex_pm_ops = {
 879	.suspend = vortex_suspend,
 880	.resume = vortex_resume,
 881	.freeze = vortex_suspend,
 882	.thaw = vortex_resume,
 883	.poweroff = vortex_suspend,
 884	.restore = vortex_resume,
 885};
 886
 887#define VORTEX_PM_OPS (&vortex_pm_ops)
 888
 889#else /* !CONFIG_PM */
 890
 891#define VORTEX_PM_OPS NULL
 892
 893#endif /* !CONFIG_PM */
 894
 895#ifdef CONFIG_EISA
 896static const struct eisa_device_id vortex_eisa_ids[] = {
 897	{ "TCM5920", CH_3C592 },
 898	{ "TCM5970", CH_3C597 },
 899	{ "" }
 900};
 901MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 902
 903static int vortex_eisa_probe(struct device *device)
 904{
 905	void __iomem *ioaddr;
 906	struct eisa_device *edev;
 907
 908	edev = to_eisa_device(device);
 909
 910	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 911		return -EBUSY;
 912
 913	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 914
 915	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 916					  edev->id.driver_data, vortex_cards_found)) {
 917		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 918		return -ENODEV;
 919	}
 920
 921	vortex_cards_found++;
 922
 923	return 0;
 924}
 925
 926static int vortex_eisa_remove(struct device *device)
 927{
 928	struct eisa_device *edev;
 929	struct net_device *dev;
 930	struct vortex_private *vp;
 931	void __iomem *ioaddr;
 932
 933	edev = to_eisa_device(device);
 934	dev = eisa_get_drvdata(edev);
 935
 936	if (!dev) {
 937		pr_err("vortex_eisa_remove called for Compaq device!\n");
 938		BUG();
 939	}
 940
 941	vp = netdev_priv(dev);
 942	ioaddr = vp->ioaddr;
 943
 944	unregister_netdev(dev);
 945	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 946	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 947
 948	free_netdev(dev);
 949	return 0;
 950}
 951
 952static struct eisa_driver vortex_eisa_driver = {
 953	.id_table = vortex_eisa_ids,
 954	.driver   = {
 955		.name    = "3c59x",
 956		.probe   = vortex_eisa_probe,
 957		.remove  = vortex_eisa_remove
 958	}
 959};
 960
 961#endif /* CONFIG_EISA */
 962
 963/* returns count found (>= 0), or negative on error */
 964static int __init vortex_eisa_init(void)
 965{
 966	int eisa_found = 0;
 967	int orig_cards_found = vortex_cards_found;
 968
 969#ifdef CONFIG_EISA
 970	int err;
 971
 972	err = eisa_driver_register (&vortex_eisa_driver);
 973	if (!err) {
 974		/*
 975		 * Because of the way EISA bus is probed, we cannot assume
 976		 * any device have been found when we exit from
 977		 * eisa_driver_register (the bus root driver may not be
 978		 * initialized yet). So we blindly assume something was
 979		 * found, and let the sysfs magic happened...
 980		 */
 981		eisa_found = 1;
 982	}
 983#endif
 984
 985	/* Special code to work-around the Compaq PCI BIOS32 problem. */
 986	if (compaq_ioaddr) {
 987		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 988			      compaq_irq, compaq_device_id, vortex_cards_found++);
 989	}
 990
 991	return vortex_cards_found - orig_cards_found + eisa_found;
 992}
 993
 994/* returns count (>= 0), or negative on error */
 995static int vortex_init_one(struct pci_dev *pdev,
 996			   const struct pci_device_id *ent)
 997{
 998	int rc, unit, pci_bar;
 999	struct vortex_chip_info *vci;
1000	void __iomem *ioaddr;
1001
1002	/* wake up and enable device */
1003	rc = pci_enable_device(pdev);
1004	if (rc < 0)
1005		goto out;
1006
1007	rc = pci_request_regions(pdev, DRV_NAME);
1008	if (rc < 0)
1009		goto out_disable;
1010
1011	unit = vortex_cards_found;
1012
1013	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1014		/* Determine the default if the user didn't override us */
1015		vci = &vortex_info_tbl[ent->driver_data];
1016		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1017	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1018		pci_bar = use_mmio[unit] ? 1 : 0;
1019	else
1020		pci_bar = global_use_mmio ? 1 : 0;
1021
1022	ioaddr = pci_iomap(pdev, pci_bar, 0);
1023	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1024		ioaddr = pci_iomap(pdev, 0, 0);
1025	if (!ioaddr) {
1026		rc = -ENOMEM;
1027		goto out_release;
1028	}
1029
1030	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1031			   ent->driver_data, unit);
1032	if (rc < 0)
1033		goto out_iounmap;
1034
1035	vortex_cards_found++;
1036	goto out;
1037
1038out_iounmap:
1039	pci_iounmap(pdev, ioaddr);
1040out_release:
1041	pci_release_regions(pdev);
1042out_disable:
1043	pci_disable_device(pdev);
1044out:
1045	return rc;
1046}
1047
1048static const struct net_device_ops boomrang_netdev_ops = {
1049	.ndo_open		= vortex_open,
1050	.ndo_stop		= vortex_close,
1051	.ndo_start_xmit		= boomerang_start_xmit,
1052	.ndo_tx_timeout		= vortex_tx_timeout,
1053	.ndo_get_stats		= vortex_get_stats,
1054#ifdef CONFIG_PCI
1055	.ndo_do_ioctl 		= vortex_ioctl,
1056#endif
1057	.ndo_set_rx_mode	= set_rx_mode,
1058	.ndo_set_mac_address 	= eth_mac_addr,
1059	.ndo_validate_addr	= eth_validate_addr,
1060#ifdef CONFIG_NET_POLL_CONTROLLER
1061	.ndo_poll_controller	= poll_vortex,
1062#endif
1063};
1064
1065static const struct net_device_ops vortex_netdev_ops = {
1066	.ndo_open		= vortex_open,
1067	.ndo_stop		= vortex_close,
1068	.ndo_start_xmit		= vortex_start_xmit,
1069	.ndo_tx_timeout		= vortex_tx_timeout,
1070	.ndo_get_stats		= vortex_get_stats,
1071#ifdef CONFIG_PCI
1072	.ndo_do_ioctl 		= vortex_ioctl,
1073#endif
1074	.ndo_set_rx_mode	= set_rx_mode,
1075	.ndo_set_mac_address 	= eth_mac_addr,
1076	.ndo_validate_addr	= eth_validate_addr,
1077#ifdef CONFIG_NET_POLL_CONTROLLER
1078	.ndo_poll_controller	= poll_vortex,
1079#endif
1080};
1081
1082/*
1083 * Start up the PCI/EISA device which is described by *gendev.
1084 * Return 0 on success.
1085 *
1086 * NOTE: pdev can be NULL, for the case of a Compaq device
1087 */
1088static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1089			 int chip_idx, int card_idx)
1090{
1091	struct vortex_private *vp;
1092	int option;
1093	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1094	int i, step;
1095	struct net_device *dev;
1096	static int printed_version;
1097	int retval, print_info;
1098	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1099	const char *print_name = "3c59x";
1100	struct pci_dev *pdev = NULL;
1101	struct eisa_device *edev = NULL;
1102
1103	if (!printed_version) {
1104		pr_info("%s", version);
1105		printed_version = 1;
1106	}
1107
1108	if (gendev) {
1109		if ((pdev = DEVICE_PCI(gendev))) {
1110			print_name = pci_name(pdev);
1111		}
1112
1113		if ((edev = DEVICE_EISA(gendev))) {
1114			print_name = dev_name(&edev->dev);
1115		}
1116	}
1117
1118	dev = alloc_etherdev(sizeof(*vp));
1119	retval = -ENOMEM;
1120	if (!dev)
1121		goto out;
1122
1123	SET_NETDEV_DEV(dev, gendev);
1124	vp = netdev_priv(dev);
1125
1126	option = global_options;
1127
1128	/* The lower four bits are the media type. */
1129	if (dev->mem_start) {
1130		/*
1131		 * The 'options' param is passed in as the third arg to the
1132		 * LILO 'ether=' argument for non-modular use
1133		 */
1134		option = dev->mem_start;
1135	}
1136	else if (card_idx < MAX_UNITS) {
1137		if (options[card_idx] >= 0)
1138			option = options[card_idx];
1139	}
1140
1141	if (option > 0) {
1142		if (option & 0x8000)
1143			vortex_debug = 7;
1144		if (option & 0x4000)
1145			vortex_debug = 2;
1146		if (option & 0x0400)
1147			vp->enable_wol = 1;
1148	}
1149
1150	print_info = (vortex_debug > 1);
1151	if (print_info)
1152		pr_info("See Documentation/networking/device_drivers/ethernet/3com/vortex.rst\n");
1153
1154	pr_info("%s: 3Com %s %s at %p.\n",
1155	       print_name,
1156	       pdev ? "PCI" : "EISA",
1157	       vci->name,
1158	       ioaddr);
1159
1160	dev->base_addr = (unsigned long)ioaddr;
1161	dev->irq = irq;
1162	dev->mtu = mtu;
1163	vp->ioaddr = ioaddr;
1164	vp->large_frames = mtu > 1500;
1165	vp->drv_flags = vci->drv_flags;
1166	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1167	vp->io_size = vci->io_size;
1168	vp->card_idx = card_idx;
1169	vp->window = -1;
1170
1171	/* module list only for Compaq device */
1172	if (gendev == NULL) {
1173		compaq_net_device = dev;
1174	}
1175
1176	/* PCI-only startup logic */
1177	if (pdev) {
1178		/* enable bus-mastering if necessary */
1179		if (vci->flags & PCI_USES_MASTER)
1180			pci_set_master(pdev);
1181
1182		if (vci->drv_flags & IS_VORTEX) {
1183			u8 pci_latency;
1184			u8 new_latency = 248;
1185
1186			/* Check the PCI latency value.  On the 3c590 series the latency timer
1187			   must be set to the maximum value to avoid data corruption that occurs
1188			   when the timer expires during a transfer.  This bug exists the Vortex
1189			   chip only. */
1190			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1191			if (pci_latency < new_latency) {
1192				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1193					print_name, pci_latency, new_latency);
1194				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1195			}
1196		}
1197	}
1198
1199	spin_lock_init(&vp->lock);
1200	spin_lock_init(&vp->mii_lock);
1201	spin_lock_init(&vp->window_lock);
1202	vp->gendev = gendev;
1203	vp->mii.dev = dev;
1204	vp->mii.mdio_read = mdio_read;
1205	vp->mii.mdio_write = mdio_write;
1206	vp->mii.phy_id_mask = 0x1f;
1207	vp->mii.reg_num_mask = 0x1f;
1208
1209	/* Makes sure rings are at least 16 byte aligned. */
1210	vp->rx_ring = dma_alloc_coherent(gendev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1211					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1212					   &vp->rx_ring_dma, GFP_KERNEL);
1213	retval = -ENOMEM;
1214	if (!vp->rx_ring)
1215		goto free_device;
1216
1217	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1218	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1219
1220	/* if we are a PCI driver, we store info in pdev->driver_data
1221	 * instead of a module list */
1222	if (pdev)
1223		pci_set_drvdata(pdev, dev);
1224	if (edev)
1225		eisa_set_drvdata(edev, dev);
1226
1227	vp->media_override = 7;
1228	if (option >= 0) {
1229		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1230		if (vp->media_override != 7)
1231			vp->medialock = 1;
1232		vp->full_duplex = (option & 0x200) ? 1 : 0;
1233		vp->bus_master = (option & 16) ? 1 : 0;
1234	}
1235
1236	if (global_full_duplex > 0)
1237		vp->full_duplex = 1;
1238	if (global_enable_wol > 0)
1239		vp->enable_wol = 1;
1240
1241	if (card_idx < MAX_UNITS) {
1242		if (full_duplex[card_idx] > 0)
1243			vp->full_duplex = 1;
1244		if (flow_ctrl[card_idx] > 0)
1245			vp->flow_ctrl = 1;
1246		if (enable_wol[card_idx] > 0)
1247			vp->enable_wol = 1;
1248	}
1249
1250	vp->mii.force_media = vp->full_duplex;
1251	vp->options = option;
1252	/* Read the station address from the EEPROM. */
1253	{
1254		int base;
1255
1256		if (vci->drv_flags & EEPROM_8BIT)
1257			base = 0x230;
1258		else if (vci->drv_flags & EEPROM_OFFSET)
1259			base = EEPROM_Read + 0x30;
1260		else
1261			base = EEPROM_Read;
1262
1263		for (i = 0; i < 0x40; i++) {
1264			int timer;
1265			window_write16(vp, base + i, 0, Wn0EepromCmd);
1266			/* Pause for at least 162 us. for the read to take place. */
1267			for (timer = 10; timer >= 0; timer--) {
1268				udelay(162);
1269				if ((window_read16(vp, 0, Wn0EepromCmd) &
1270				     0x8000) == 0)
1271					break;
1272			}
1273			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1274		}
1275	}
1276	for (i = 0; i < 0x18; i++)
1277		checksum ^= eeprom[i];
1278	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1279	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1280		while (i < 0x21)
1281			checksum ^= eeprom[i++];
1282		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1283	}
1284	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1285		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1286	for (i = 0; i < 3; i++)
1287		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1288	if (print_info)
1289		pr_cont(" %pM", dev->dev_addr);
1290	/* Unfortunately an all zero eeprom passes the checksum and this
1291	   gets found in the wild in failure cases. Crypto is hard 8) */
1292	if (!is_valid_ether_addr(dev->dev_addr)) {
1293		retval = -EINVAL;
1294		pr_err("*** EEPROM MAC address is invalid.\n");
1295		goto free_ring;	/* With every pack */
1296	}
1297	for (i = 0; i < 6; i++)
1298		window_write8(vp, dev->dev_addr[i], 2, i);
1299
1300	if (print_info)
1301		pr_cont(", IRQ %d\n", dev->irq);
1302	/* Tell them about an invalid IRQ. */
1303	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1304		pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1305			dev->irq);
1306
1307	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1308	if (print_info) {
1309		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1310			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1311			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1312	}
1313
1314
1315	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1316		unsigned short n;
1317
1318		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1319		if (!vp->cb_fn_base) {
1320			retval = -ENOMEM;
1321			goto free_ring;
1322		}
1323
1324		if (print_info) {
1325			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1326				print_name,
1327				(unsigned long long)pci_resource_start(pdev, 2),
1328				vp->cb_fn_base);
1329		}
1330
1331		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1332		if (vp->drv_flags & INVERT_LED_PWR)
1333			n |= 0x10;
1334		if (vp->drv_flags & INVERT_MII_PWR)
1335			n |= 0x4000;
1336		window_write16(vp, n, 2, Wn2_ResetOptions);
1337		if (vp->drv_flags & WNO_XCVR_PWR) {
1338			window_write16(vp, 0x0800, 0, 0);
1339		}
1340	}
1341
1342	/* Extract our information from the EEPROM data. */
1343	vp->info1 = eeprom[13];
1344	vp->info2 = eeprom[15];
1345	vp->capabilities = eeprom[16];
1346
1347	if (vp->info1 & 0x8000) {
1348		vp->full_duplex = 1;
1349		if (print_info)
1350			pr_info("Full duplex capable\n");
1351	}
1352
1353	{
1354		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1355		unsigned int config;
1356		vp->available_media = window_read16(vp, 3, Wn3_Options);
1357		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1358			vp->available_media = 0x40;
1359		config = window_read32(vp, 3, Wn3_Config);
1360		if (print_info) {
1361			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1362				config, window_read16(vp, 3, Wn3_Options));
1363			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1364				   8 << RAM_SIZE(config),
1365				   RAM_WIDTH(config) ? "word" : "byte",
1366				   ram_split[RAM_SPLIT(config)],
1367				   AUTOSELECT(config) ? "autoselect/" : "",
1368				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1369				   media_tbl[XCVR(config)].name);
1370		}
1371		vp->default_media = XCVR(config);
1372		if (vp->default_media == XCVR_NWAY)
1373			vp->has_nway = 1;
1374		vp->autoselect = AUTOSELECT(config);
1375	}
1376
1377	if (vp->media_override != 7) {
1378		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1379				print_name, vp->media_override,
1380				media_tbl[vp->media_override].name);
1381		dev->if_port = vp->media_override;
1382	} else
1383		dev->if_port = vp->default_media;
1384
1385	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1386		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1387		int phy, phy_idx = 0;
1388		mii_preamble_required++;
1389		if (vp->drv_flags & EXTRA_PREAMBLE)
1390			mii_preamble_required++;
1391		mdio_sync(vp, 32);
1392		mdio_read(dev, 24, MII_BMSR);
1393		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1394			int mii_status, phyx;
1395
1396			/*
1397			 * For the 3c905CX we look at index 24 first, because it bogusly
1398			 * reports an external PHY at all indices
1399			 */
1400			if (phy == 0)
1401				phyx = 24;
1402			else if (phy <= 24)
1403				phyx = phy - 1;
1404			else
1405				phyx = phy;
1406			mii_status = mdio_read(dev, phyx, MII_BMSR);
1407			if (mii_status  &&  mii_status != 0xffff) {
1408				vp->phys[phy_idx++] = phyx;
1409				if (print_info) {
1410					pr_info("  MII transceiver found at address %d, status %4x.\n",
1411						phyx, mii_status);
1412				}
1413				if ((mii_status & 0x0040) == 0)
1414					mii_preamble_required++;
1415			}
1416		}
1417		mii_preamble_required--;
1418		if (phy_idx == 0) {
1419			pr_warn("  ***WARNING*** No MII transceivers found!\n");
1420			vp->phys[0] = 24;
1421		} else {
1422			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1423			if (vp->full_duplex) {
1424				/* Only advertise the FD media types. */
1425				vp->advertising &= ~0x02A0;
1426				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1427			}
1428		}
1429		vp->mii.phy_id = vp->phys[0];
1430	}
1431
1432	if (vp->capabilities & CapBusMaster) {
1433		vp->full_bus_master_tx = 1;
1434		if (print_info) {
1435			pr_info("  Enabling bus-master transmits and %s receives.\n",
1436			(vp->info2 & 1) ? "early" : "whole-frame" );
1437		}
1438		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1439		vp->bus_master = 0;		/* AKPM: vortex only */
1440	}
1441
1442	/* The 3c59x-specific entries in the device structure. */
1443	if (vp->full_bus_master_tx) {
1444		dev->netdev_ops = &boomrang_netdev_ops;
1445		/* Actually, it still should work with iommu. */
1446		if (card_idx < MAX_UNITS &&
1447		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1448				hw_checksums[card_idx] == 1)) {
1449			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1450		}
1451	} else
1452		dev->netdev_ops =  &vortex_netdev_ops;
1453
1454	if (print_info) {
1455		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1456				print_name,
1457				(dev->features & NETIF_F_SG) ? "en":"dis",
1458				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1459	}
1460
1461	dev->ethtool_ops = &vortex_ethtool_ops;
1462	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1463
1464	if (pdev) {
1465		vp->pm_state_valid = 1;
1466		pci_save_state(pdev);
1467 		acpi_set_WOL(dev);
1468	}
1469	retval = register_netdev(dev);
1470	if (retval == 0)
1471		return 0;
1472
1473free_ring:
1474	dma_free_coherent(&pdev->dev,
1475		sizeof(struct boom_rx_desc) * RX_RING_SIZE +
1476		sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1477		vp->rx_ring, vp->rx_ring_dma);
1478free_device:
1479	free_netdev(dev);
1480	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1481out:
1482	return retval;
1483}
1484
1485static void
1486issue_and_wait(struct net_device *dev, int cmd)
1487{
1488	struct vortex_private *vp = netdev_priv(dev);
1489	void __iomem *ioaddr = vp->ioaddr;
1490	int i;
1491
1492	iowrite16(cmd, ioaddr + EL3_CMD);
1493	for (i = 0; i < 2000; i++) {
1494		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1495			return;
1496	}
1497
1498	/* OK, that didn't work.  Do it the slow way.  One second */
1499	for (i = 0; i < 100000; i++) {
1500		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1501			if (vortex_debug > 1)
1502				pr_info("%s: command 0x%04x took %d usecs\n",
1503					   dev->name, cmd, i * 10);
1504			return;
1505		}
1506		udelay(10);
1507	}
1508	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1509			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1510}
1511
1512static void
1513vortex_set_duplex(struct net_device *dev)
1514{
1515	struct vortex_private *vp = netdev_priv(dev);
1516
1517	pr_info("%s:  setting %s-duplex.\n",
1518		dev->name, (vp->full_duplex) ? "full" : "half");
1519
1520	/* Set the full-duplex bit. */
1521	window_write16(vp,
1522		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1523		       (vp->large_frames ? 0x40 : 0) |
1524		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1525			0x100 : 0),
1526		       3, Wn3_MAC_Ctrl);
1527}
1528
1529static void vortex_check_media(struct net_device *dev, unsigned int init)
1530{
1531	struct vortex_private *vp = netdev_priv(dev);
1532	unsigned int ok_to_print = 0;
1533
1534	if (vortex_debug > 3)
1535		ok_to_print = 1;
1536
1537	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1538		vp->full_duplex = vp->mii.full_duplex;
1539		vortex_set_duplex(dev);
1540	} else if (init) {
1541		vortex_set_duplex(dev);
1542	}
1543}
1544
1545static int
1546vortex_up(struct net_device *dev)
1547{
1548	struct vortex_private *vp = netdev_priv(dev);
1549	void __iomem *ioaddr = vp->ioaddr;
1550	unsigned int config;
1551	int i, mii_reg5, err = 0;
1552
1553	if (VORTEX_PCI(vp)) {
1554		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1555		if (vp->pm_state_valid)
1556			pci_restore_state(VORTEX_PCI(vp));
1557		err = pci_enable_device(VORTEX_PCI(vp));
1558		if (err) {
1559			pr_warn("%s: Could not enable device\n", dev->name);
1560			goto err_out;
1561		}
1562	}
1563
1564	/* Before initializing select the active media port. */
1565	config = window_read32(vp, 3, Wn3_Config);
1566
1567	if (vp->media_override != 7) {
1568		pr_info("%s: Media override to transceiver %d (%s).\n",
1569			   dev->name, vp->media_override,
1570			   media_tbl[vp->media_override].name);
1571		dev->if_port = vp->media_override;
1572	} else if (vp->autoselect) {
1573		if (vp->has_nway) {
1574			if (vortex_debug > 1)
1575				pr_info("%s: using NWAY device table, not %d\n",
1576								dev->name, dev->if_port);
1577			dev->if_port = XCVR_NWAY;
1578		} else {
1579			/* Find first available media type, starting with 100baseTx. */
1580			dev->if_port = XCVR_100baseTx;
1581			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1582				dev->if_port = media_tbl[dev->if_port].next;
1583			if (vortex_debug > 1)
1584				pr_info("%s: first available media type: %s\n",
1585					dev->name, media_tbl[dev->if_port].name);
1586		}
1587	} else {
1588		dev->if_port = vp->default_media;
1589		if (vortex_debug > 1)
1590			pr_info("%s: using default media %s\n",
1591				dev->name, media_tbl[dev->if_port].name);
1592	}
1593
1594	timer_setup(&vp->timer, vortex_timer, 0);
1595	mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1596
1597	if (vortex_debug > 1)
1598		pr_debug("%s: Initial media type %s.\n",
1599			   dev->name, media_tbl[dev->if_port].name);
1600
1601	vp->full_duplex = vp->mii.force_media;
1602	config = BFINS(config, dev->if_port, 20, 4);
1603	if (vortex_debug > 6)
1604		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1605	window_write32(vp, config, 3, Wn3_Config);
1606
1607	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1608		mdio_read(dev, vp->phys[0], MII_BMSR);
1609		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1610		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1611		vp->mii.full_duplex = vp->full_duplex;
1612
1613		vortex_check_media(dev, 1);
1614	}
1615	else
1616		vortex_set_duplex(dev);
1617
1618	issue_and_wait(dev, TxReset);
1619	/*
1620	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1621	 */
1622	issue_and_wait(dev, RxReset|0x04);
1623
1624
1625	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1626
1627	if (vortex_debug > 1) {
1628		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1629			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1630	}
1631
1632	/* Set the station address and mask in window 2 each time opened. */
1633	for (i = 0; i < 6; i++)
1634		window_write8(vp, dev->dev_addr[i], 2, i);
1635	for (; i < 12; i+=2)
1636		window_write16(vp, 0, 2, i);
1637
1638	if (vp->cb_fn_base) {
1639		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1640		if (vp->drv_flags & INVERT_LED_PWR)
1641			n |= 0x10;
1642		if (vp->drv_flags & INVERT_MII_PWR)
1643			n |= 0x4000;
1644		window_write16(vp, n, 2, Wn2_ResetOptions);
1645	}
1646
1647	if (dev->if_port == XCVR_10base2)
1648		/* Start the thinnet transceiver. We should really wait 50ms...*/
1649		iowrite16(StartCoax, ioaddr + EL3_CMD);
1650	if (dev->if_port != XCVR_NWAY) {
1651		window_write16(vp,
1652			       (window_read16(vp, 4, Wn4_Media) &
1653				~(Media_10TP|Media_SQE)) |
1654			       media_tbl[dev->if_port].media_bits,
1655			       4, Wn4_Media);
1656	}
1657
1658	/* Switch to the stats window, and clear all stats by reading. */
1659	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1660	for (i = 0; i < 10; i++)
1661		window_read8(vp, 6, i);
1662	window_read16(vp, 6, 10);
1663	window_read16(vp, 6, 12);
1664	/* New: On the Vortex we must also clear the BadSSD counter. */
1665	window_read8(vp, 4, 12);
1666	/* ..and on the Boomerang we enable the extra statistics bits. */
1667	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1668
1669	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1670		vp->cur_rx = 0;
1671		/* Initialize the RxEarly register as recommended. */
1672		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1673		iowrite32(0x0020, ioaddr + PktStatus);
1674		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1675	}
1676	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1677		vp->cur_tx = vp->dirty_tx = 0;
1678		if (vp->drv_flags & IS_BOOMERANG)
1679			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1680		/* Clear the Rx, Tx rings. */
1681		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1682			vp->rx_ring[i].status = 0;
1683		for (i = 0; i < TX_RING_SIZE; i++)
1684			vp->tx_skbuff[i] = NULL;
1685		iowrite32(0, ioaddr + DownListPtr);
1686	}
1687	/* Set receiver mode: presumably accept b-case and phys addr only. */
1688	set_rx_mode(dev);
1689	/* enable 802.1q tagged frames */
1690	set_8021q_mode(dev, 1);
1691	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1692
1693	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1694	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1695	/* Allow status bits to be seen. */
1696	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1697		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1698		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1699		(vp->bus_master ? DMADone : 0);
1700	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1701		(vp->full_bus_master_rx ? 0 : RxComplete) |
1702		StatsFull | HostError | TxComplete | IntReq
1703		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1704	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1705	/* Ack all pending events, and set active indicator mask. */
1706	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1707		 ioaddr + EL3_CMD);
1708	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1709	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1710		iowrite32(0x8000, vp->cb_fn_base + 4);
1711	netif_start_queue (dev);
1712	netdev_reset_queue(dev);
1713err_out:
1714	return err;
1715}
1716
1717static int
1718vortex_open(struct net_device *dev)
1719{
1720	struct vortex_private *vp = netdev_priv(dev);
1721	int i;
1722	int retval;
1723	dma_addr_t dma;
1724
1725	/* Use the now-standard shared IRQ implementation. */
1726	if ((retval = request_irq(dev->irq, vortex_boomerang_interrupt, IRQF_SHARED, dev->name, dev))) {
 
1727		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1728		goto err;
1729	}
1730
1731	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1732		if (vortex_debug > 2)
1733			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1734		for (i = 0; i < RX_RING_SIZE; i++) {
1735			struct sk_buff *skb;
1736			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1737			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1738			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1739
1740			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1741						 GFP_KERNEL);
1742			vp->rx_skbuff[i] = skb;
1743			if (skb == NULL)
1744				break;			/* Bad news!  */
1745
1746			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1747			dma = dma_map_single(vp->gendev, skb->data,
1748					     PKT_BUF_SZ, DMA_FROM_DEVICE);
1749			if (dma_mapping_error(vp->gendev, dma))
1750				break;
1751			vp->rx_ring[i].addr = cpu_to_le32(dma);
1752		}
1753		if (i != RX_RING_SIZE) {
1754			pr_emerg("%s: no memory for rx ring\n", dev->name);
1755			retval = -ENOMEM;
1756			goto err_free_skb;
1757		}
1758		/* Wrap the ring. */
1759		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1760	}
1761
1762	retval = vortex_up(dev);
1763	if (!retval)
1764		goto out;
1765
1766err_free_skb:
1767	for (i = 0; i < RX_RING_SIZE; i++) {
1768		if (vp->rx_skbuff[i]) {
1769			dev_kfree_skb(vp->rx_skbuff[i]);
1770			vp->rx_skbuff[i] = NULL;
1771		}
1772	}
1773	free_irq(dev->irq, dev);
1774err:
1775	if (vortex_debug > 1)
1776		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1777out:
1778	return retval;
1779}
1780
1781static void
1782vortex_timer(struct timer_list *t)
1783{
1784	struct vortex_private *vp = from_timer(vp, t, timer);
1785	struct net_device *dev = vp->mii.dev;
1786	void __iomem *ioaddr = vp->ioaddr;
1787	int next_tick = 60*HZ;
1788	int ok = 0;
1789	int media_status;
1790
1791	if (vortex_debug > 2) {
1792		pr_debug("%s: Media selection timer tick happened, %s.\n",
1793			   dev->name, media_tbl[dev->if_port].name);
1794		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1795	}
1796
1797	media_status = window_read16(vp, 4, Wn4_Media);
1798	switch (dev->if_port) {
1799	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1800		if (media_status & Media_LnkBeat) {
1801			netif_carrier_on(dev);
1802			ok = 1;
1803			if (vortex_debug > 1)
1804				pr_debug("%s: Media %s has link beat, %x.\n",
1805					   dev->name, media_tbl[dev->if_port].name, media_status);
1806		} else {
1807			netif_carrier_off(dev);
1808			if (vortex_debug > 1) {
1809				pr_debug("%s: Media %s has no link beat, %x.\n",
1810					   dev->name, media_tbl[dev->if_port].name, media_status);
1811			}
1812		}
1813		break;
1814	case XCVR_MII: case XCVR_NWAY:
1815		{
1816			ok = 1;
1817			vortex_check_media(dev, 0);
1818		}
1819		break;
1820	  default:					/* Other media types handled by Tx timeouts. */
1821		if (vortex_debug > 1)
1822		  pr_debug("%s: Media %s has no indication, %x.\n",
1823				 dev->name, media_tbl[dev->if_port].name, media_status);
1824		ok = 1;
1825	}
1826
1827	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1828		next_tick = 5*HZ;
1829
1830	if (vp->medialock)
1831		goto leave_media_alone;
1832
1833	if (!ok) {
1834		unsigned int config;
1835
1836		spin_lock_irq(&vp->lock);
1837
1838		do {
1839			dev->if_port = media_tbl[dev->if_port].next;
1840		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1841		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1842		  dev->if_port = vp->default_media;
1843		  if (vortex_debug > 1)
1844			pr_debug("%s: Media selection failing, using default %s port.\n",
1845				   dev->name, media_tbl[dev->if_port].name);
1846		} else {
1847			if (vortex_debug > 1)
1848				pr_debug("%s: Media selection failed, now trying %s port.\n",
1849					   dev->name, media_tbl[dev->if_port].name);
1850			next_tick = media_tbl[dev->if_port].wait;
1851		}
1852		window_write16(vp,
1853			       (media_status & ~(Media_10TP|Media_SQE)) |
1854			       media_tbl[dev->if_port].media_bits,
1855			       4, Wn4_Media);
1856
1857		config = window_read32(vp, 3, Wn3_Config);
1858		config = BFINS(config, dev->if_port, 20, 4);
1859		window_write32(vp, config, 3, Wn3_Config);
1860
1861		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1862			 ioaddr + EL3_CMD);
1863		if (vortex_debug > 1)
1864			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1865		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1866
1867		spin_unlock_irq(&vp->lock);
1868	}
1869
1870leave_media_alone:
1871	if (vortex_debug > 2)
1872	  pr_debug("%s: Media selection timer finished, %s.\n",
1873			 dev->name, media_tbl[dev->if_port].name);
1874
1875	mod_timer(&vp->timer, RUN_AT(next_tick));
1876	if (vp->deferred)
1877		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1878}
1879
1880static void vortex_tx_timeout(struct net_device *dev, unsigned int txqueue)
1881{
1882	struct vortex_private *vp = netdev_priv(dev);
1883	void __iomem *ioaddr = vp->ioaddr;
1884
1885	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1886		   dev->name, ioread8(ioaddr + TxStatus),
1887		   ioread16(ioaddr + EL3_STATUS));
1888	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1889			window_read16(vp, 4, Wn4_NetDiag),
1890			window_read16(vp, 4, Wn4_Media),
1891			ioread32(ioaddr + PktStatus),
1892			window_read16(vp, 4, Wn4_FIFODiag));
1893	/* Slight code bloat to be user friendly. */
1894	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1895		pr_err("%s: Transmitter encountered 16 collisions --"
1896			   " network cable problem?\n", dev->name);
1897	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1898		pr_err("%s: Interrupt posted but not delivered --"
1899			   " IRQ blocked by another device?\n", dev->name);
1900		/* Bad idea here.. but we might as well handle a few events. */
1901		vortex_boomerang_interrupt(dev->irq, dev);
 
 
 
 
 
 
 
 
 
 
 
1902	}
1903
1904	if (vortex_debug > 0)
1905		dump_tx_ring(dev);
1906
1907	issue_and_wait(dev, TxReset);
1908
1909	dev->stats.tx_errors++;
1910	if (vp->full_bus_master_tx) {
1911		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1912		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1913			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1914				 ioaddr + DownListPtr);
1915		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1916			netif_wake_queue (dev);
1917			netdev_reset_queue (dev);
1918		}
1919		if (vp->drv_flags & IS_BOOMERANG)
1920			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1921		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1922	} else {
1923		dev->stats.tx_dropped++;
1924		netif_wake_queue(dev);
1925		netdev_reset_queue(dev);
1926	}
1927	/* Issue Tx Enable */
1928	iowrite16(TxEnable, ioaddr + EL3_CMD);
1929	netif_trans_update(dev); /* prevent tx timeout */
1930}
1931
1932/*
1933 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1934 * the cache impact.
1935 */
1936static void
1937vortex_error(struct net_device *dev, int status)
1938{
1939	struct vortex_private *vp = netdev_priv(dev);
1940	void __iomem *ioaddr = vp->ioaddr;
1941	int do_tx_reset = 0, reset_mask = 0;
1942	unsigned char tx_status = 0;
1943
1944	if (vortex_debug > 2) {
1945		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1946	}
1947
1948	if (status & TxComplete) {			/* Really "TxError" for us. */
1949		tx_status = ioread8(ioaddr + TxStatus);
1950		/* Presumably a tx-timeout. We must merely re-enable. */
1951		if (vortex_debug > 2 ||
1952		    (tx_status != 0x88 && vortex_debug > 0)) {
1953			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1954				   dev->name, tx_status);
1955			if (tx_status == 0x82) {
1956				pr_err("Probably a duplex mismatch.  See "
1957						"Documentation/networking/device_drivers/ethernet/3com/vortex.rst\n");
1958			}
1959			dump_tx_ring(dev);
1960		}
1961		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1962		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1963		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1964		iowrite8(0, ioaddr + TxStatus);
1965		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1966			do_tx_reset = 1;
1967		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1968			do_tx_reset = 1;
1969			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1970		} else {				/* Merely re-enable the transmitter. */
1971			iowrite16(TxEnable, ioaddr + EL3_CMD);
1972		}
1973	}
1974
1975	if (status & RxEarly)				/* Rx early is unused. */
1976		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1977
1978	if (status & StatsFull) {			/* Empty statistics. */
1979		static int DoneDidThat;
1980		if (vortex_debug > 4)
1981			pr_debug("%s: Updating stats.\n", dev->name);
1982		update_stats(ioaddr, dev);
1983		/* HACK: Disable statistics as an interrupt source. */
1984		/* This occurs when we have the wrong media type! */
1985		if (DoneDidThat == 0  &&
1986			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1987			pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
1988				dev->name);
1989			iowrite16(SetIntrEnb |
1990				  (window_read16(vp, 5, 10) & ~StatsFull),
1991				  ioaddr + EL3_CMD);
1992			vp->intr_enable &= ~StatsFull;
1993			DoneDidThat++;
1994		}
1995	}
1996	if (status & IntReq) {		/* Restore all interrupt sources.  */
1997		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1998		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1999	}
2000	if (status & HostError) {
2001		u16 fifo_diag;
2002		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2003		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2004			   dev->name, fifo_diag);
2005		/* Adapter failure requires Tx/Rx reset and reinit. */
2006		if (vp->full_bus_master_tx) {
2007			int bus_status = ioread32(ioaddr + PktStatus);
2008			/* 0x80000000 PCI master abort. */
2009			/* 0x40000000 PCI target abort. */
2010			if (vortex_debug)
2011				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2012
2013			/* In this case, blow the card away */
2014			/* Must not enter D3 or we can't legally issue the reset! */
2015			vortex_down(dev, 0);
2016			issue_and_wait(dev, TotalReset | 0xff);
2017			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2018		} else if (fifo_diag & 0x0400)
2019			do_tx_reset = 1;
2020		if (fifo_diag & 0x3000) {
2021			/* Reset Rx fifo and upload logic */
2022			issue_and_wait(dev, RxReset|0x07);
2023			/* Set the Rx filter to the current state. */
2024			set_rx_mode(dev);
2025			/* enable 802.1q VLAN tagged frames */
2026			set_8021q_mode(dev, 1);
2027			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2028			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2029		}
2030	}
2031
2032	if (do_tx_reset) {
2033		issue_and_wait(dev, TxReset|reset_mask);
2034		iowrite16(TxEnable, ioaddr + EL3_CMD);
2035		if (!vp->full_bus_master_tx)
2036			netif_wake_queue(dev);
2037	}
2038}
2039
2040static netdev_tx_t
2041vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2042{
2043	struct vortex_private *vp = netdev_priv(dev);
2044	void __iomem *ioaddr = vp->ioaddr;
2045	int skblen = skb->len;
2046
2047	/* Put out the doubleword header... */
2048	iowrite32(skb->len, ioaddr + TX_FIFO);
2049	if (vp->bus_master) {
2050		/* Set the bus-master controller to transfer the packet. */
2051		int len = (skb->len + 3) & ~3;
2052		vp->tx_skb_dma = dma_map_single(vp->gendev, skb->data, len,
2053						DMA_TO_DEVICE);
2054		if (dma_mapping_error(vp->gendev, vp->tx_skb_dma)) {
2055			dev_kfree_skb_any(skb);
2056			dev->stats.tx_dropped++;
2057			return NETDEV_TX_OK;
2058		}
2059
2060		spin_lock_irq(&vp->window_lock);
2061		window_set(vp, 7);
2062		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2063		iowrite16(len, ioaddr + Wn7_MasterLen);
2064		spin_unlock_irq(&vp->window_lock);
2065		vp->tx_skb = skb;
2066		skb_tx_timestamp(skb);
2067		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2068		/* netif_wake_queue() will be called at the DMADone interrupt. */
2069	} else {
2070		/* ... and the packet rounded to a doubleword. */
2071		skb_tx_timestamp(skb);
2072		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2073		dev_consume_skb_any (skb);
2074		if (ioread16(ioaddr + TxFree) > 1536) {
2075			netif_start_queue (dev);	/* AKPM: redundant? */
2076		} else {
2077			/* Interrupt us when the FIFO has room for max-sized packet. */
2078			netif_stop_queue(dev);
2079			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2080		}
2081	}
2082
2083	netdev_sent_queue(dev, skblen);
2084
2085	/* Clear the Tx status stack. */
2086	{
2087		int tx_status;
2088		int i = 32;
2089
2090		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2091			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2092				if (vortex_debug > 2)
2093				  pr_debug("%s: Tx error, status %2.2x.\n",
2094						 dev->name, tx_status);
2095				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2096				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2097				if (tx_status & 0x30) {
2098					issue_and_wait(dev, TxReset);
2099				}
2100				iowrite16(TxEnable, ioaddr + EL3_CMD);
2101			}
2102			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2103		}
2104	}
2105	return NETDEV_TX_OK;
2106}
2107
2108static netdev_tx_t
2109boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2110{
2111	struct vortex_private *vp = netdev_priv(dev);
2112	void __iomem *ioaddr = vp->ioaddr;
2113	/* Calculate the next Tx descriptor entry. */
2114	int entry = vp->cur_tx % TX_RING_SIZE;
2115	int skblen = skb->len;
2116	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2117	unsigned long flags;
2118	dma_addr_t dma_addr;
2119
2120	if (vortex_debug > 6) {
2121		pr_debug("boomerang_start_xmit()\n");
2122		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2123			   dev->name, vp->cur_tx);
2124	}
2125
2126	/*
2127	 * We can't allow a recursion from our interrupt handler back into the
2128	 * tx routine, as they take the same spin lock, and that causes
2129	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2130	 * a bit
2131	 */
2132	if (vp->handling_irq)
2133		return NETDEV_TX_BUSY;
2134
2135	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2136		if (vortex_debug > 0)
2137			pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2138				dev->name);
2139		netif_stop_queue(dev);
2140		return NETDEV_TX_BUSY;
2141	}
2142
2143	vp->tx_skbuff[entry] = skb;
2144
2145	vp->tx_ring[entry].next = 0;
2146#if DO_ZEROCOPY
2147	if (skb->ip_summed != CHECKSUM_PARTIAL)
2148			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2149	else
2150			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2151
2152	if (!skb_shinfo(skb)->nr_frags) {
2153		dma_addr = dma_map_single(vp->gendev, skb->data, skb->len,
2154					  DMA_TO_DEVICE);
2155		if (dma_mapping_error(vp->gendev, dma_addr))
2156			goto out_dma_err;
2157
2158		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2159		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2160	} else {
2161		int i;
2162
2163		dma_addr = dma_map_single(vp->gendev, skb->data,
2164					  skb_headlen(skb), DMA_TO_DEVICE);
2165		if (dma_mapping_error(vp->gendev, dma_addr))
2166			goto out_dma_err;
2167
2168		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2169		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2170
2171		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2172			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2173
2174			dma_addr = skb_frag_dma_map(vp->gendev, frag,
2175						    0,
2176						    skb_frag_size(frag),
2177						    DMA_TO_DEVICE);
2178			if (dma_mapping_error(vp->gendev, dma_addr)) {
2179				for(i = i-1; i >= 0; i--)
2180					dma_unmap_page(vp->gendev,
2181						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2182						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2183						       DMA_TO_DEVICE);
2184
2185				dma_unmap_single(vp->gendev,
2186						 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2187						 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2188						 DMA_TO_DEVICE);
2189
2190				goto out_dma_err;
2191			}
2192
2193			vp->tx_ring[entry].frag[i+1].addr =
2194						cpu_to_le32(dma_addr);
2195
2196			if (i == skb_shinfo(skb)->nr_frags-1)
2197					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2198			else
2199					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2200		}
2201	}
2202#else
2203	dma_addr = dma_map_single(vp->gendev, skb->data, skb->len, DMA_TO_DEVICE);
2204	if (dma_mapping_error(vp->gendev, dma_addr))
2205		goto out_dma_err;
2206	vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2207	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2208	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2209#endif
2210
2211	spin_lock_irqsave(&vp->lock, flags);
2212	/* Wait for the stall to complete. */
2213	issue_and_wait(dev, DownStall);
2214	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2215	if (ioread32(ioaddr + DownListPtr) == 0) {
2216		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2217		vp->queued_packet++;
2218	}
2219
2220	vp->cur_tx++;
2221	netdev_sent_queue(dev, skblen);
2222
2223	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2224		netif_stop_queue (dev);
2225	} else {					/* Clear previous interrupt enable. */
2226#if defined(tx_interrupt_mitigation)
2227		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2228		 * were selected, this would corrupt DN_COMPLETE. No?
2229		 */
2230		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2231#endif
2232	}
2233	skb_tx_timestamp(skb);
2234	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2235	spin_unlock_irqrestore(&vp->lock, flags);
2236out:
2237	return NETDEV_TX_OK;
2238out_dma_err:
2239	dev_err(vp->gendev, "Error mapping dma buffer\n");
2240	goto out;
2241}
2242
2243/* The interrupt handler does all of the Rx thread work and cleans up
2244   after the Tx thread. */
2245
2246/*
2247 * This is the ISR for the vortex series chips.
2248 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2249 */
2250
2251static irqreturn_t
2252_vortex_interrupt(int irq, struct net_device *dev)
2253{
 
2254	struct vortex_private *vp = netdev_priv(dev);
2255	void __iomem *ioaddr;
2256	int status;
2257	int work_done = max_interrupt_work;
2258	int handled = 0;
2259	unsigned int bytes_compl = 0, pkts_compl = 0;
2260
2261	ioaddr = vp->ioaddr;
 
2262
2263	status = ioread16(ioaddr + EL3_STATUS);
2264
2265	if (vortex_debug > 6)
2266		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2267
2268	if ((status & IntLatch) == 0)
2269		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2270	handled = 1;
2271
2272	if (status & IntReq) {
2273		status |= vp->deferred;
2274		vp->deferred = 0;
2275	}
2276
2277	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2278		goto handler_exit;
2279
2280	if (vortex_debug > 4)
2281		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2282			   dev->name, status, ioread8(ioaddr + Timer));
2283
2284	spin_lock(&vp->window_lock);
2285	window_set(vp, 7);
2286
2287	do {
2288		if (vortex_debug > 5)
2289				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2290					   dev->name, status);
2291		if (status & RxComplete)
2292			vortex_rx(dev);
2293
2294		if (status & TxAvailable) {
2295			if (vortex_debug > 5)
2296				pr_debug("	TX room bit was handled.\n");
2297			/* There's room in the FIFO for a full-sized packet. */
2298			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2299			netif_wake_queue (dev);
2300		}
2301
2302		if (status & DMADone) {
2303			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2304				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2305				dma_unmap_single(vp->gendev, vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, DMA_TO_DEVICE);
2306				pkts_compl++;
2307				bytes_compl += vp->tx_skb->len;
2308				dev_consume_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2309				if (ioread16(ioaddr + TxFree) > 1536) {
2310					/*
2311					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2312					 * insufficient FIFO room, the TxAvailable test will succeed and call
2313					 * netif_wake_queue()
2314					 */
2315					netif_wake_queue(dev);
2316				} else { /* Interrupt when FIFO has room for max-sized packet. */
2317					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2318					netif_stop_queue(dev);
2319				}
2320			}
2321		}
2322		/* Check for all uncommon interrupts at once. */
2323		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2324			if (status == 0xffff)
2325				break;
2326			if (status & RxEarly)
2327				vortex_rx(dev);
2328			spin_unlock(&vp->window_lock);
2329			vortex_error(dev, status);
2330			spin_lock(&vp->window_lock);
2331			window_set(vp, 7);
2332		}
2333
2334		if (--work_done < 0) {
2335			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2336				dev->name, status);
2337			/* Disable all pending interrupts. */
2338			do {
2339				vp->deferred |= status;
2340				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2341					 ioaddr + EL3_CMD);
2342				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2343			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2344			/* The timer will reenable interrupts. */
2345			mod_timer(&vp->timer, jiffies + 1*HZ);
2346			break;
2347		}
2348		/* Acknowledge the IRQ. */
2349		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2350	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2351
2352	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2353	spin_unlock(&vp->window_lock);
2354
2355	if (vortex_debug > 4)
2356		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2357			   dev->name, status);
2358handler_exit:
 
2359	return IRQ_RETVAL(handled);
2360}
2361
2362/*
2363 * This is the ISR for the boomerang series chips.
2364 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2365 */
2366
2367static irqreturn_t
2368_boomerang_interrupt(int irq, struct net_device *dev)
2369{
 
2370	struct vortex_private *vp = netdev_priv(dev);
2371	void __iomem *ioaddr;
2372	int status;
2373	int work_done = max_interrupt_work;
2374	int handled = 0;
2375	unsigned int bytes_compl = 0, pkts_compl = 0;
2376
2377	ioaddr = vp->ioaddr;
2378
 
 
 
 
 
 
2379	vp->handling_irq = 1;
2380
2381	status = ioread16(ioaddr + EL3_STATUS);
2382
2383	if (vortex_debug > 6)
2384		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2385
2386	if ((status & IntLatch) == 0)
2387		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2388	handled = 1;
2389
2390	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2391		if (vortex_debug > 1)
2392			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2393		goto handler_exit;
2394	}
2395
2396	if (status & IntReq) {
2397		status |= vp->deferred;
2398		vp->deferred = 0;
2399	}
2400
2401	if (vortex_debug > 4)
2402		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2403			   dev->name, status, ioread8(ioaddr + Timer));
2404	do {
2405		if (vortex_debug > 5)
2406				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2407					   dev->name, status);
2408		if (status & UpComplete) {
2409			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2410			if (vortex_debug > 5)
2411				pr_debug("boomerang_interrupt->boomerang_rx\n");
2412			boomerang_rx(dev);
2413		}
2414
2415		if (status & DownComplete) {
2416			unsigned int dirty_tx = vp->dirty_tx;
2417
2418			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2419			while (vp->cur_tx - dirty_tx > 0) {
2420				int entry = dirty_tx % TX_RING_SIZE;
2421#if 1	/* AKPM: the latter is faster, but cyclone-only */
2422				if (ioread32(ioaddr + DownListPtr) ==
2423					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2424					break;			/* It still hasn't been processed. */
2425#else
2426				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2427					break;			/* It still hasn't been processed. */
2428#endif
2429
2430				if (vp->tx_skbuff[entry]) {
2431					struct sk_buff *skb = vp->tx_skbuff[entry];
2432#if DO_ZEROCOPY
2433					int i;
2434					dma_unmap_single(vp->gendev,
2435							le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2436							le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2437							DMA_TO_DEVICE);
2438
2439					for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2440							dma_unmap_page(vp->gendev,
2441											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2442											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2443											 DMA_TO_DEVICE);
2444#else
2445					dma_unmap_single(vp->gendev,
2446						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, DMA_TO_DEVICE);
2447#endif
2448					pkts_compl++;
2449					bytes_compl += skb->len;
2450					dev_consume_skb_irq(skb);
2451					vp->tx_skbuff[entry] = NULL;
2452				} else {
2453					pr_debug("boomerang_interrupt: no skb!\n");
2454				}
2455				/* dev->stats.tx_packets++;  Counted below. */
2456				dirty_tx++;
2457			}
2458			vp->dirty_tx = dirty_tx;
2459			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2460				if (vortex_debug > 6)
2461					pr_debug("boomerang_interrupt: wake queue\n");
2462				netif_wake_queue (dev);
2463			}
2464		}
2465
2466		/* Check for all uncommon interrupts at once. */
2467		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2468			vortex_error(dev, status);
2469
2470		if (--work_done < 0) {
2471			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2472				dev->name, status);
2473			/* Disable all pending interrupts. */
2474			do {
2475				vp->deferred |= status;
2476				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2477					 ioaddr + EL3_CMD);
2478				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2479			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2480			/* The timer will reenable interrupts. */
2481			mod_timer(&vp->timer, jiffies + 1*HZ);
2482			break;
2483		}
2484		/* Acknowledge the IRQ. */
2485		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2486		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2487			iowrite32(0x8000, vp->cb_fn_base + 4);
2488
2489	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2490	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2491
2492	if (vortex_debug > 4)
2493		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2494			   dev->name, status);
2495handler_exit:
2496	vp->handling_irq = 0;
 
2497	return IRQ_RETVAL(handled);
2498}
2499
2500static irqreturn_t
2501vortex_boomerang_interrupt(int irq, void *dev_id)
2502{
2503	struct net_device *dev = dev_id;
2504	struct vortex_private *vp = netdev_priv(dev);
2505	unsigned long flags;
2506	irqreturn_t ret;
2507
2508	spin_lock_irqsave(&vp->lock, flags);
2509
2510	if (vp->full_bus_master_rx)
2511		ret = _boomerang_interrupt(dev->irq, dev);
2512	else
2513		ret = _vortex_interrupt(dev->irq, dev);
2514
2515	spin_unlock_irqrestore(&vp->lock, flags);
2516
2517	return ret;
2518}
2519
2520static int vortex_rx(struct net_device *dev)
2521{
2522	struct vortex_private *vp = netdev_priv(dev);
2523	void __iomem *ioaddr = vp->ioaddr;
2524	int i;
2525	short rx_status;
2526
2527	if (vortex_debug > 5)
2528		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2529			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2530	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2531		if (rx_status & 0x4000) { /* Error, update stats. */
2532			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2533			if (vortex_debug > 2)
2534				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2535			dev->stats.rx_errors++;
2536			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2537			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2538			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2539			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2540			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2541		} else {
2542			/* The packet length: up to 4.5K!. */
2543			int pkt_len = rx_status & 0x1fff;
2544			struct sk_buff *skb;
2545
2546			skb = netdev_alloc_skb(dev, pkt_len + 5);
2547			if (vortex_debug > 4)
2548				pr_debug("Receiving packet size %d status %4.4x.\n",
2549					   pkt_len, rx_status);
2550			if (skb != NULL) {
2551				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2552				/* 'skb_put()' points to the start of sk_buff data area. */
2553				if (vp->bus_master &&
2554					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2555					dma_addr_t dma = dma_map_single(vp->gendev, skb_put(skb, pkt_len),
2556									   pkt_len, DMA_FROM_DEVICE);
2557					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2558					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2559					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2560					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2561						;
2562					dma_unmap_single(vp->gendev, dma, pkt_len, DMA_FROM_DEVICE);
2563				} else {
2564					ioread32_rep(ioaddr + RX_FIFO,
2565					             skb_put(skb, pkt_len),
2566						     (pkt_len + 3) >> 2);
2567				}
2568				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2569				skb->protocol = eth_type_trans(skb, dev);
2570				netif_rx(skb);
2571				dev->stats.rx_packets++;
2572				/* Wait a limited time to go to next packet. */
2573				for (i = 200; i >= 0; i--)
2574					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2575						break;
2576				continue;
2577			} else if (vortex_debug > 0)
2578				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2579					dev->name, pkt_len);
2580			dev->stats.rx_dropped++;
2581		}
2582		issue_and_wait(dev, RxDiscard);
2583	}
2584
2585	return 0;
2586}
2587
2588static int
2589boomerang_rx(struct net_device *dev)
2590{
2591	struct vortex_private *vp = netdev_priv(dev);
2592	int entry = vp->cur_rx % RX_RING_SIZE;
2593	void __iomem *ioaddr = vp->ioaddr;
2594	int rx_status;
2595	int rx_work_limit = RX_RING_SIZE;
2596
2597	if (vortex_debug > 5)
2598		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2599
2600	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2601		if (--rx_work_limit < 0)
2602			break;
2603		if (rx_status & RxDError) { /* Error, update stats. */
2604			unsigned char rx_error = rx_status >> 16;
2605			if (vortex_debug > 2)
2606				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2607			dev->stats.rx_errors++;
2608			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2609			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2610			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2611			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2612			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2613		} else {
2614			/* The packet length: up to 4.5K!. */
2615			int pkt_len = rx_status & 0x1fff;
2616			struct sk_buff *skb, *newskb;
2617			dma_addr_t newdma;
2618			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2619
2620			if (vortex_debug > 4)
2621				pr_debug("Receiving packet size %d status %4.4x.\n",
2622					   pkt_len, rx_status);
2623
2624			/* Check if the packet is long enough to just accept without
2625			   copying to a properly sized skbuff. */
2626			if (pkt_len < rx_copybreak &&
2627			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2628				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2629				dma_sync_single_for_cpu(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2630				/* 'skb_put()' points to the start of sk_buff data area. */
2631				skb_put_data(skb, vp->rx_skbuff[entry]->data,
2632					     pkt_len);
2633				dma_sync_single_for_device(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2634				vp->rx_copy++;
2635			} else {
2636				/* Pre-allocate the replacement skb.  If it or its
2637				 * mapping fails then recycle the buffer thats already
2638				 * in place
2639				 */
2640				newskb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2641				if (!newskb) {
2642					dev->stats.rx_dropped++;
2643					goto clear_complete;
2644				}
2645				newdma = dma_map_single(vp->gendev, newskb->data,
2646							PKT_BUF_SZ, DMA_FROM_DEVICE);
2647				if (dma_mapping_error(vp->gendev, newdma)) {
2648					dev->stats.rx_dropped++;
2649					consume_skb(newskb);
2650					goto clear_complete;
2651				}
2652
2653				/* Pass up the skbuff already on the Rx ring. */
2654				skb = vp->rx_skbuff[entry];
2655				vp->rx_skbuff[entry] = newskb;
2656				vp->rx_ring[entry].addr = cpu_to_le32(newdma);
2657				skb_put(skb, pkt_len);
2658				dma_unmap_single(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2659				vp->rx_nocopy++;
2660			}
2661			skb->protocol = eth_type_trans(skb, dev);
2662			{					/* Use hardware checksum info. */
2663				int csum_bits = rx_status & 0xee000000;
2664				if (csum_bits &&
2665					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2666					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2667					skb->ip_summed = CHECKSUM_UNNECESSARY;
2668					vp->rx_csumhits++;
2669				}
2670			}
2671			netif_rx(skb);
2672			dev->stats.rx_packets++;
2673		}
2674
2675clear_complete:
2676		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2677		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2678		entry = (++vp->cur_rx) % RX_RING_SIZE;
2679	}
2680	return 0;
2681}
2682
2683static void
2684vortex_down(struct net_device *dev, int final_down)
2685{
2686	struct vortex_private *vp = netdev_priv(dev);
2687	void __iomem *ioaddr = vp->ioaddr;
2688
2689	netdev_reset_queue(dev);
2690	netif_stop_queue(dev);
2691
2692	del_timer_sync(&vp->timer);
2693
2694	/* Turn off statistics ASAP.  We update dev->stats below. */
2695	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2696
2697	/* Disable the receiver and transmitter. */
2698	iowrite16(RxDisable, ioaddr + EL3_CMD);
2699	iowrite16(TxDisable, ioaddr + EL3_CMD);
2700
2701	/* Disable receiving 802.1q tagged frames */
2702	set_8021q_mode(dev, 0);
2703
2704	if (dev->if_port == XCVR_10base2)
2705		/* Turn off thinnet power.  Green! */
2706		iowrite16(StopCoax, ioaddr + EL3_CMD);
2707
2708	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2709
2710	update_stats(ioaddr, dev);
2711	if (vp->full_bus_master_rx)
2712		iowrite32(0, ioaddr + UpListPtr);
2713	if (vp->full_bus_master_tx)
2714		iowrite32(0, ioaddr + DownListPtr);
2715
2716	if (final_down && VORTEX_PCI(vp)) {
2717		vp->pm_state_valid = 1;
2718		pci_save_state(VORTEX_PCI(vp));
2719		acpi_set_WOL(dev);
2720	}
2721}
2722
2723static int
2724vortex_close(struct net_device *dev)
2725{
2726	struct vortex_private *vp = netdev_priv(dev);
2727	void __iomem *ioaddr = vp->ioaddr;
2728	int i;
2729
2730	if (netif_device_present(dev))
2731		vortex_down(dev, 1);
2732
2733	if (vortex_debug > 1) {
2734		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2735			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2736		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2737			   " tx_queued %d Rx pre-checksummed %d.\n",
2738			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2739	}
2740
2741#if DO_ZEROCOPY
2742	if (vp->rx_csumhits &&
2743	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2744	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2745		pr_warn("%s supports hardware checksums, and we're not using them!\n",
2746			dev->name);
2747	}
2748#endif
2749
2750	free_irq(dev->irq, dev);
2751
2752	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2753		for (i = 0; i < RX_RING_SIZE; i++)
2754			if (vp->rx_skbuff[i]) {
2755				dma_unmap_single(vp->gendev, le32_to_cpu(vp->rx_ring[i].addr),
2756									PKT_BUF_SZ, DMA_FROM_DEVICE);
2757				dev_kfree_skb(vp->rx_skbuff[i]);
2758				vp->rx_skbuff[i] = NULL;
2759			}
2760	}
2761	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2762		for (i = 0; i < TX_RING_SIZE; i++) {
2763			if (vp->tx_skbuff[i]) {
2764				struct sk_buff *skb = vp->tx_skbuff[i];
2765#if DO_ZEROCOPY
2766				int k;
2767
2768				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2769						dma_unmap_single(vp->gendev,
2770										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2771										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2772										 DMA_TO_DEVICE);
2773#else
2774				dma_unmap_single(vp->gendev, le32_to_cpu(vp->tx_ring[i].addr), skb->len, DMA_TO_DEVICE);
2775#endif
2776				dev_kfree_skb(skb);
2777				vp->tx_skbuff[i] = NULL;
2778			}
2779		}
2780	}
2781
2782	return 0;
2783}
2784
2785static void
2786dump_tx_ring(struct net_device *dev)
2787{
2788	if (vortex_debug > 0) {
2789	struct vortex_private *vp = netdev_priv(dev);
2790		void __iomem *ioaddr = vp->ioaddr;
2791
2792		if (vp->full_bus_master_tx) {
2793			int i;
2794			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2795
2796			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2797					vp->full_bus_master_tx,
2798					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2799					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2800			pr_err("  Transmit list %8.8x vs. %p.\n",
2801				   ioread32(ioaddr + DownListPtr),
2802				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2803			issue_and_wait(dev, DownStall);
2804			for (i = 0; i < TX_RING_SIZE; i++) {
2805				unsigned int length;
2806
2807#if DO_ZEROCOPY
2808				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2809#else
2810				length = le32_to_cpu(vp->tx_ring[i].length);
2811#endif
2812				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2813					   i, &vp->tx_ring[i], length,
2814					   le32_to_cpu(vp->tx_ring[i].status));
2815			}
2816			if (!stalled)
2817				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2818		}
2819	}
2820}
2821
2822static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2823{
2824	struct vortex_private *vp = netdev_priv(dev);
2825	void __iomem *ioaddr = vp->ioaddr;
2826	unsigned long flags;
2827
2828	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2829		spin_lock_irqsave (&vp->lock, flags);
2830		update_stats(ioaddr, dev);
2831		spin_unlock_irqrestore (&vp->lock, flags);
2832	}
2833	return &dev->stats;
2834}
2835
2836/*  Update statistics.
2837	Unlike with the EL3 we need not worry about interrupts changing
2838	the window setting from underneath us, but we must still guard
2839	against a race condition with a StatsUpdate interrupt updating the
2840	table.  This is done by checking that the ASM (!) code generated uses
2841	atomic updates with '+='.
2842	*/
2843static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2844{
2845	struct vortex_private *vp = netdev_priv(dev);
2846
2847	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2848	/* Switch to the stats window, and read everything. */
2849	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2850	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2851	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2852	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2853	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2854	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2855						    0x30) << 4;
2856	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2857	/* Don't bother with register 9, an extension of registers 6&7.
2858	   If we do use the 6&7 values the atomic update assumption above
2859	   is invalid. */
2860	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2861	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2862	/* Extra stats for get_ethtool_stats() */
2863	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2864	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2865	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2866	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2867
2868	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2869		+ vp->xstats.tx_single_collisions
2870		+ vp->xstats.tx_max_collisions;
2871
2872	{
2873		u8 up = window_read8(vp, 4, 13);
2874		dev->stats.rx_bytes += (up & 0x0f) << 16;
2875		dev->stats.tx_bytes += (up & 0xf0) << 12;
2876	}
2877}
2878
2879static int vortex_nway_reset(struct net_device *dev)
2880{
2881	struct vortex_private *vp = netdev_priv(dev);
2882
2883	return mii_nway_restart(&vp->mii);
2884}
2885
2886static int vortex_get_link_ksettings(struct net_device *dev,
2887				     struct ethtool_link_ksettings *cmd)
2888{
2889	struct vortex_private *vp = netdev_priv(dev);
2890
2891	mii_ethtool_get_link_ksettings(&vp->mii, cmd);
2892
2893	return 0;
2894}
2895
2896static int vortex_set_link_ksettings(struct net_device *dev,
2897				     const struct ethtool_link_ksettings *cmd)
2898{
2899	struct vortex_private *vp = netdev_priv(dev);
2900
2901	return mii_ethtool_set_link_ksettings(&vp->mii, cmd);
2902}
2903
2904static u32 vortex_get_msglevel(struct net_device *dev)
2905{
2906	return vortex_debug;
2907}
2908
2909static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2910{
2911	vortex_debug = dbg;
2912}
2913
2914static int vortex_get_sset_count(struct net_device *dev, int sset)
2915{
2916	switch (sset) {
2917	case ETH_SS_STATS:
2918		return VORTEX_NUM_STATS;
2919	default:
2920		return -EOPNOTSUPP;
2921	}
2922}
2923
2924static void vortex_get_ethtool_stats(struct net_device *dev,
2925	struct ethtool_stats *stats, u64 *data)
2926{
2927	struct vortex_private *vp = netdev_priv(dev);
2928	void __iomem *ioaddr = vp->ioaddr;
2929	unsigned long flags;
2930
2931	spin_lock_irqsave(&vp->lock, flags);
2932	update_stats(ioaddr, dev);
2933	spin_unlock_irqrestore(&vp->lock, flags);
2934
2935	data[0] = vp->xstats.tx_deferred;
2936	data[1] = vp->xstats.tx_max_collisions;
2937	data[2] = vp->xstats.tx_multiple_collisions;
2938	data[3] = vp->xstats.tx_single_collisions;
2939	data[4] = vp->xstats.rx_bad_ssd;
2940}
2941
2942
2943static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2944{
2945	switch (stringset) {
2946	case ETH_SS_STATS:
2947		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2948		break;
2949	default:
2950		WARN_ON(1);
2951		break;
2952	}
2953}
2954
2955static void vortex_get_drvinfo(struct net_device *dev,
2956					struct ethtool_drvinfo *info)
2957{
2958	struct vortex_private *vp = netdev_priv(dev);
2959
2960	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2961	if (VORTEX_PCI(vp)) {
2962		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2963			sizeof(info->bus_info));
2964	} else {
2965		if (VORTEX_EISA(vp))
2966			strlcpy(info->bus_info, dev_name(vp->gendev),
2967				sizeof(info->bus_info));
2968		else
2969			snprintf(info->bus_info, sizeof(info->bus_info),
2970				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2971	}
2972}
2973
2974static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2975{
2976	struct vortex_private *vp = netdev_priv(dev);
2977
2978	if (!VORTEX_PCI(vp))
2979		return;
2980
2981	wol->supported = WAKE_MAGIC;
2982
2983	wol->wolopts = 0;
2984	if (vp->enable_wol)
2985		wol->wolopts |= WAKE_MAGIC;
2986}
2987
2988static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2989{
2990	struct vortex_private *vp = netdev_priv(dev);
2991
2992	if (!VORTEX_PCI(vp))
2993		return -EOPNOTSUPP;
2994
2995	if (wol->wolopts & ~WAKE_MAGIC)
2996		return -EINVAL;
2997
2998	if (wol->wolopts & WAKE_MAGIC)
2999		vp->enable_wol = 1;
3000	else
3001		vp->enable_wol = 0;
3002	acpi_set_WOL(dev);
3003
3004	return 0;
3005}
3006
3007static const struct ethtool_ops vortex_ethtool_ops = {
3008	.get_drvinfo		= vortex_get_drvinfo,
3009	.get_strings            = vortex_get_strings,
3010	.get_msglevel           = vortex_get_msglevel,
3011	.set_msglevel           = vortex_set_msglevel,
3012	.get_ethtool_stats      = vortex_get_ethtool_stats,
3013	.get_sset_count		= vortex_get_sset_count,
3014	.get_link               = ethtool_op_get_link,
3015	.nway_reset             = vortex_nway_reset,
3016	.get_wol                = vortex_get_wol,
3017	.set_wol                = vortex_set_wol,
3018	.get_ts_info		= ethtool_op_get_ts_info,
3019	.get_link_ksettings     = vortex_get_link_ksettings,
3020	.set_link_ksettings     = vortex_set_link_ksettings,
3021};
3022
3023#ifdef CONFIG_PCI
3024/*
3025 *	Must power the device up to do MDIO operations
3026 */
3027static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3028{
3029	int err;
3030	struct vortex_private *vp = netdev_priv(dev);
3031	pci_power_t state = 0;
3032
3033	if(VORTEX_PCI(vp))
3034		state = VORTEX_PCI(vp)->current_state;
3035
3036	/* The kernel core really should have pci_get_power_state() */
3037
3038	if(state != 0)
3039		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3040	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3041	if(state != 0)
3042		pci_set_power_state(VORTEX_PCI(vp), state);
3043
3044	return err;
3045}
3046#endif
3047
3048
3049/* Pre-Cyclone chips have no documented multicast filter, so the only
3050   multicast setting is to receive all multicast frames.  At least
3051   the chip has a very clean way to set the mode, unlike many others. */
3052static void set_rx_mode(struct net_device *dev)
3053{
3054	struct vortex_private *vp = netdev_priv(dev);
3055	void __iomem *ioaddr = vp->ioaddr;
3056	int new_mode;
3057
3058	if (dev->flags & IFF_PROMISC) {
3059		if (vortex_debug > 3)
3060			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3061		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3062	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3063		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3064	} else
3065		new_mode = SetRxFilter | RxStation | RxBroadcast;
3066
3067	iowrite16(new_mode, ioaddr + EL3_CMD);
3068}
3069
3070#if IS_ENABLED(CONFIG_VLAN_8021Q)
3071/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3072   Note that this must be done after each RxReset due to some backwards
3073   compatibility logic in the Cyclone and Tornado ASICs */
3074
3075/* The Ethernet Type used for 802.1q tagged frames */
3076#define VLAN_ETHER_TYPE 0x8100
3077
3078static void set_8021q_mode(struct net_device *dev, int enable)
3079{
3080	struct vortex_private *vp = netdev_priv(dev);
3081	int mac_ctrl;
3082
3083	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3084		/* cyclone and tornado chipsets can recognize 802.1q
3085		 * tagged frames and treat them correctly */
3086
3087		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3088		if (enable)
3089			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3090
3091		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3092
3093		/* set VlanEtherType to let the hardware checksumming
3094		   treat tagged frames correctly */
3095		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3096	} else {
3097		/* on older cards we have to enable large frames */
3098
3099		vp->large_frames = dev->mtu > 1500 || enable;
3100
3101		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3102		if (vp->large_frames)
3103			mac_ctrl |= 0x40;
3104		else
3105			mac_ctrl &= ~0x40;
3106		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3107	}
3108}
3109#else
3110
3111static void set_8021q_mode(struct net_device *dev, int enable)
3112{
3113}
3114
3115
3116#endif
3117
3118/* MII transceiver control section.
3119   Read and write the MII registers using software-generated serial
3120   MDIO protocol.  See the MII specifications or DP83840A data sheet
3121   for details. */
3122
3123/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3124   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3125   "overclocking" issues. */
3126static void mdio_delay(struct vortex_private *vp)
3127{
3128	window_read32(vp, 4, Wn4_PhysicalMgmt);
3129}
3130
3131#define MDIO_SHIFT_CLK	0x01
3132#define MDIO_DIR_WRITE	0x04
3133#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3134#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3135#define MDIO_DATA_READ	0x02
3136#define MDIO_ENB_IN		0x00
3137
3138/* Generate the preamble required for initial synchronization and
3139   a few older transceivers. */
3140static void mdio_sync(struct vortex_private *vp, int bits)
3141{
3142	/* Establish sync by sending at least 32 logic ones. */
3143	while (-- bits >= 0) {
3144		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3145		mdio_delay(vp);
3146		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3147			       4, Wn4_PhysicalMgmt);
3148		mdio_delay(vp);
3149	}
3150}
3151
3152static int mdio_read(struct net_device *dev, int phy_id, int location)
3153{
3154	int i;
3155	struct vortex_private *vp = netdev_priv(dev);
3156	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3157	unsigned int retval = 0;
3158
3159	spin_lock_bh(&vp->mii_lock);
3160
3161	if (mii_preamble_required)
3162		mdio_sync(vp, 32);
3163
3164	/* Shift the read command bits out. */
3165	for (i = 14; i >= 0; i--) {
3166		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3167		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3168		mdio_delay(vp);
3169		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3170			       4, Wn4_PhysicalMgmt);
3171		mdio_delay(vp);
3172	}
3173	/* Read the two transition, 16 data, and wire-idle bits. */
3174	for (i = 19; i > 0; i--) {
3175		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3176		mdio_delay(vp);
3177		retval = (retval << 1) |
3178			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3179			  MDIO_DATA_READ) ? 1 : 0);
3180		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3181			       4, Wn4_PhysicalMgmt);
3182		mdio_delay(vp);
3183	}
3184
3185	spin_unlock_bh(&vp->mii_lock);
3186
3187	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3188}
3189
3190static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3191{
3192	struct vortex_private *vp = netdev_priv(dev);
3193	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3194	int i;
3195
3196	spin_lock_bh(&vp->mii_lock);
3197
3198	if (mii_preamble_required)
3199		mdio_sync(vp, 32);
3200
3201	/* Shift the command bits out. */
3202	for (i = 31; i >= 0; i--) {
3203		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3204		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3205		mdio_delay(vp);
3206		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3207			       4, Wn4_PhysicalMgmt);
3208		mdio_delay(vp);
3209	}
3210	/* Leave the interface idle. */
3211	for (i = 1; i >= 0; i--) {
3212		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3213		mdio_delay(vp);
3214		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3215			       4, Wn4_PhysicalMgmt);
3216		mdio_delay(vp);
3217	}
3218
3219	spin_unlock_bh(&vp->mii_lock);
3220}
3221
3222/* ACPI: Advanced Configuration and Power Interface. */
3223/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3224static void acpi_set_WOL(struct net_device *dev)
3225{
3226	struct vortex_private *vp = netdev_priv(dev);
3227	void __iomem *ioaddr = vp->ioaddr;
3228
3229	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3230
3231	if (vp->enable_wol) {
3232		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3233		window_write16(vp, 2, 7, 0x0c);
3234		/* The RxFilter must accept the WOL frames. */
3235		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3236		iowrite16(RxEnable, ioaddr + EL3_CMD);
3237
3238		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3239			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3240
3241			vp->enable_wol = 0;
3242			return;
3243		}
3244
3245		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3246			return;
3247
3248		/* Change the power state to D3; RxEnable doesn't take effect. */
3249		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3250	}
3251}
3252
3253
3254static void vortex_remove_one(struct pci_dev *pdev)
3255{
3256	struct net_device *dev = pci_get_drvdata(pdev);
3257	struct vortex_private *vp;
3258
3259	if (!dev) {
3260		pr_err("vortex_remove_one called for Compaq device!\n");
3261		BUG();
3262	}
3263
3264	vp = netdev_priv(dev);
3265
3266	if (vp->cb_fn_base)
3267		pci_iounmap(pdev, vp->cb_fn_base);
3268
3269	unregister_netdev(dev);
3270
3271	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3272	if (vp->pm_state_valid)
3273		pci_restore_state(pdev);
3274	pci_disable_device(pdev);
3275
3276	/* Should really use issue_and_wait() here */
3277	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3278	     vp->ioaddr + EL3_CMD);
3279
3280	pci_iounmap(pdev, vp->ioaddr);
3281
3282	dma_free_coherent(&pdev->dev,
3283			sizeof(struct boom_rx_desc) * RX_RING_SIZE +
3284			sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3285			vp->rx_ring, vp->rx_ring_dma);
3286
3287	pci_release_regions(pdev);
3288
3289	free_netdev(dev);
3290}
3291
3292
3293static struct pci_driver vortex_driver = {
3294	.name		= "3c59x",
3295	.probe		= vortex_init_one,
3296	.remove		= vortex_remove_one,
3297	.id_table	= vortex_pci_tbl,
3298	.driver.pm	= VORTEX_PM_OPS,
3299};
3300
3301
3302static int vortex_have_pci;
3303static int vortex_have_eisa;
3304
3305
3306static int __init vortex_init(void)
3307{
3308	int pci_rc, eisa_rc;
3309
3310	pci_rc = pci_register_driver(&vortex_driver);
3311	eisa_rc = vortex_eisa_init();
3312
3313	if (pci_rc == 0)
3314		vortex_have_pci = 1;
3315	if (eisa_rc > 0)
3316		vortex_have_eisa = 1;
3317
3318	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3319}
3320
3321
3322static void __exit vortex_eisa_cleanup(void)
3323{
3324	void __iomem *ioaddr;
3325
3326#ifdef CONFIG_EISA
3327	/* Take care of the EISA devices */
3328	eisa_driver_unregister(&vortex_eisa_driver);
3329#endif
3330
3331	if (compaq_net_device) {
3332		ioaddr = ioport_map(compaq_net_device->base_addr,
3333		                    VORTEX_TOTAL_SIZE);
3334
3335		unregister_netdev(compaq_net_device);
3336		iowrite16(TotalReset, ioaddr + EL3_CMD);
3337		release_region(compaq_net_device->base_addr,
3338		               VORTEX_TOTAL_SIZE);
3339
3340		free_netdev(compaq_net_device);
3341	}
3342}
3343
3344
3345static void __exit vortex_cleanup(void)
3346{
3347	if (vortex_have_pci)
3348		pci_unregister_driver(&vortex_driver);
3349	if (vortex_have_eisa)
3350		vortex_eisa_cleanup();
3351}
3352
3353
3354module_init(vortex_init);
3355module_exit(vortex_cleanup);