Loading...
1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23#include <linux/fdtable.h>
24#include <linux/uaccess.h>
25#include <linux/firmware.h>
26#include <drm/drmP.h>
27#include "amdgpu.h"
28#include "amdgpu_amdkfd.h"
29#include "cikd.h"
30#include "cik_sdma.h"
31#include "amdgpu_ucode.h"
32#include "gfx_v7_0.h"
33#include "gca/gfx_7_2_d.h"
34#include "gca/gfx_7_2_enum.h"
35#include "gca/gfx_7_2_sh_mask.h"
36#include "oss/oss_2_0_d.h"
37#include "oss/oss_2_0_sh_mask.h"
38#include "gmc/gmc_7_1_d.h"
39#include "gmc/gmc_7_1_sh_mask.h"
40#include "cik_structs.h"
41
42enum hqd_dequeue_request_type {
43 NO_ACTION = 0,
44 DRAIN_PIPE,
45 RESET_WAVES
46};
47
48enum {
49 MAX_TRAPID = 8, /* 3 bits in the bitfield. */
50 MAX_WATCH_ADDRESSES = 4
51};
52
53enum {
54 ADDRESS_WATCH_REG_ADDR_HI = 0,
55 ADDRESS_WATCH_REG_ADDR_LO,
56 ADDRESS_WATCH_REG_CNTL,
57 ADDRESS_WATCH_REG_MAX
58};
59
60/* not defined in the CI/KV reg file */
61enum {
62 ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
63 ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
64 ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
65 /* extend the mask to 26 bits to match the low address field */
66 ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
67 ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
68};
69
70static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
71 mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
72 mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
73 mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
74 mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
75};
76
77union TCP_WATCH_CNTL_BITS {
78 struct {
79 uint32_t mask:24;
80 uint32_t vmid:4;
81 uint32_t atc:1;
82 uint32_t mode:2;
83 uint32_t valid:1;
84 } bitfields, bits;
85 uint32_t u32All;
86 signed int i32All;
87 float f32All;
88};
89
90/*
91 * Register access functions
92 */
93
94static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
95 uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
96 uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
97
98static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
99 unsigned int vmid);
100
101static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
102 uint32_t hpd_size, uint64_t hpd_gpu_addr);
103static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
104static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
105 uint32_t queue_id, uint32_t __user *wptr,
106 uint32_t wptr_shift, uint32_t wptr_mask,
107 struct mm_struct *mm);
108static int kgd_hqd_dump(struct kgd_dev *kgd,
109 uint32_t pipe_id, uint32_t queue_id,
110 uint32_t (**dump)[2], uint32_t *n_regs);
111static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
112 uint32_t __user *wptr, struct mm_struct *mm);
113static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
114 uint32_t engine_id, uint32_t queue_id,
115 uint32_t (**dump)[2], uint32_t *n_regs);
116static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
117 uint32_t pipe_id, uint32_t queue_id);
118
119static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
120 enum kfd_preempt_type reset_type,
121 unsigned int utimeout, uint32_t pipe_id,
122 uint32_t queue_id);
123static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
124static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
125 unsigned int utimeout);
126static int kgd_address_watch_disable(struct kgd_dev *kgd);
127static int kgd_address_watch_execute(struct kgd_dev *kgd,
128 unsigned int watch_point_id,
129 uint32_t cntl_val,
130 uint32_t addr_hi,
131 uint32_t addr_lo);
132static int kgd_wave_control_execute(struct kgd_dev *kgd,
133 uint32_t gfx_index_val,
134 uint32_t sq_cmd);
135static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
136 unsigned int watch_point_id,
137 unsigned int reg_offset);
138
139static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
140static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
141 uint8_t vmid);
142
143static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
144static void set_scratch_backing_va(struct kgd_dev *kgd,
145 uint64_t va, uint32_t vmid);
146static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
147 uint32_t page_table_base);
148static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
149static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
150
151/* Because of REG_GET_FIELD() being used, we put this function in the
152 * asic specific file.
153 */
154static int get_tile_config(struct kgd_dev *kgd,
155 struct tile_config *config)
156{
157 struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
158
159 config->gb_addr_config = adev->gfx.config.gb_addr_config;
160 config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
161 MC_ARB_RAMCFG, NOOFBANK);
162 config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
163 MC_ARB_RAMCFG, NOOFRANKS);
164
165 config->tile_config_ptr = adev->gfx.config.tile_mode_array;
166 config->num_tile_configs =
167 ARRAY_SIZE(adev->gfx.config.tile_mode_array);
168 config->macro_tile_config_ptr =
169 adev->gfx.config.macrotile_mode_array;
170 config->num_macro_tile_configs =
171 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
172
173 return 0;
174}
175
176static const struct kfd2kgd_calls kfd2kgd = {
177 .init_gtt_mem_allocation = alloc_gtt_mem,
178 .free_gtt_mem = free_gtt_mem,
179 .get_local_mem_info = get_local_mem_info,
180 .get_gpu_clock_counter = get_gpu_clock_counter,
181 .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
182 .alloc_pasid = amdgpu_pasid_alloc,
183 .free_pasid = amdgpu_pasid_free,
184 .program_sh_mem_settings = kgd_program_sh_mem_settings,
185 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
186 .init_pipeline = kgd_init_pipeline,
187 .init_interrupts = kgd_init_interrupts,
188 .hqd_load = kgd_hqd_load,
189 .hqd_sdma_load = kgd_hqd_sdma_load,
190 .hqd_dump = kgd_hqd_dump,
191 .hqd_sdma_dump = kgd_hqd_sdma_dump,
192 .hqd_is_occupied = kgd_hqd_is_occupied,
193 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
194 .hqd_destroy = kgd_hqd_destroy,
195 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
196 .address_watch_disable = kgd_address_watch_disable,
197 .address_watch_execute = kgd_address_watch_execute,
198 .wave_control_execute = kgd_wave_control_execute,
199 .address_watch_get_offset = kgd_address_watch_get_offset,
200 .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
201 .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
202 .get_fw_version = get_fw_version,
203 .set_scratch_backing_va = set_scratch_backing_va,
204 .get_tile_config = get_tile_config,
205 .get_cu_info = get_cu_info,
206 .get_vram_usage = amdgpu_amdkfd_get_vram_usage,
207 .create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
208 .acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
209 .destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
210 .get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
211 .set_vm_context_page_table_base = set_vm_context_page_table_base,
212 .alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
213 .free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
214 .map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
215 .unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
216 .sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
217 .map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
218 .restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
219 .invalidate_tlbs = invalidate_tlbs,
220 .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
221 .submit_ib = amdgpu_amdkfd_submit_ib,
222};
223
224struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
225{
226 return (struct kfd2kgd_calls *)&kfd2kgd;
227}
228
229static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
230{
231 return (struct amdgpu_device *)kgd;
232}
233
234static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
235 uint32_t queue, uint32_t vmid)
236{
237 struct amdgpu_device *adev = get_amdgpu_device(kgd);
238 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
239
240 mutex_lock(&adev->srbm_mutex);
241 WREG32(mmSRBM_GFX_CNTL, value);
242}
243
244static void unlock_srbm(struct kgd_dev *kgd)
245{
246 struct amdgpu_device *adev = get_amdgpu_device(kgd);
247
248 WREG32(mmSRBM_GFX_CNTL, 0);
249 mutex_unlock(&adev->srbm_mutex);
250}
251
252static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
253 uint32_t queue_id)
254{
255 struct amdgpu_device *adev = get_amdgpu_device(kgd);
256
257 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
258 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
259
260 lock_srbm(kgd, mec, pipe, queue_id, 0);
261}
262
263static void release_queue(struct kgd_dev *kgd)
264{
265 unlock_srbm(kgd);
266}
267
268static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
269 uint32_t sh_mem_config,
270 uint32_t sh_mem_ape1_base,
271 uint32_t sh_mem_ape1_limit,
272 uint32_t sh_mem_bases)
273{
274 struct amdgpu_device *adev = get_amdgpu_device(kgd);
275
276 lock_srbm(kgd, 0, 0, 0, vmid);
277
278 WREG32(mmSH_MEM_CONFIG, sh_mem_config);
279 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
280 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
281 WREG32(mmSH_MEM_BASES, sh_mem_bases);
282
283 unlock_srbm(kgd);
284}
285
286static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
287 unsigned int vmid)
288{
289 struct amdgpu_device *adev = get_amdgpu_device(kgd);
290
291 /*
292 * We have to assume that there is no outstanding mapping.
293 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
294 * a mapping is in progress or because a mapping finished and the
295 * SW cleared it. So the protocol is to always wait & clear.
296 */
297 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
298 ATC_VMID0_PASID_MAPPING__VALID_MASK;
299
300 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
301
302 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
303 cpu_relax();
304 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
305
306 /* Mapping vmid to pasid also for IH block */
307 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
308
309 return 0;
310}
311
312static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
313 uint32_t hpd_size, uint64_t hpd_gpu_addr)
314{
315 /* amdgpu owns the per-pipe state */
316 return 0;
317}
318
319static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
320{
321 struct amdgpu_device *adev = get_amdgpu_device(kgd);
322 uint32_t mec;
323 uint32_t pipe;
324
325 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
326 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
327
328 lock_srbm(kgd, mec, pipe, 0, 0);
329
330 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
331 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
332
333 unlock_srbm(kgd);
334
335 return 0;
336}
337
338static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
339{
340 uint32_t retval;
341
342 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
343 m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
344
345 pr_debug("kfd: sdma base address: 0x%x\n", retval);
346
347 return retval;
348}
349
350static inline struct cik_mqd *get_mqd(void *mqd)
351{
352 return (struct cik_mqd *)mqd;
353}
354
355static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
356{
357 return (struct cik_sdma_rlc_registers *)mqd;
358}
359
360static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
361 uint32_t queue_id, uint32_t __user *wptr,
362 uint32_t wptr_shift, uint32_t wptr_mask,
363 struct mm_struct *mm)
364{
365 struct amdgpu_device *adev = get_amdgpu_device(kgd);
366 struct cik_mqd *m;
367 uint32_t *mqd_hqd;
368 uint32_t reg, wptr_val, data;
369 bool valid_wptr = false;
370
371 m = get_mqd(mqd);
372
373 acquire_queue(kgd, pipe_id, queue_id);
374
375 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
376 mqd_hqd = &m->cp_mqd_base_addr_lo;
377
378 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
379 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
380
381 /* Copy userspace write pointer value to register.
382 * Activate doorbell logic to monitor subsequent changes.
383 */
384 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
385 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
386 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
387
388 /* read_user_ptr may take the mm->mmap_sem.
389 * release srbm_mutex to avoid circular dependency between
390 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
391 */
392 release_queue(kgd);
393 valid_wptr = read_user_wptr(mm, wptr, wptr_val);
394 acquire_queue(kgd, pipe_id, queue_id);
395 if (valid_wptr)
396 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
397
398 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
399 WREG32(mmCP_HQD_ACTIVE, data);
400
401 release_queue(kgd);
402
403 return 0;
404}
405
406static int kgd_hqd_dump(struct kgd_dev *kgd,
407 uint32_t pipe_id, uint32_t queue_id,
408 uint32_t (**dump)[2], uint32_t *n_regs)
409{
410 struct amdgpu_device *adev = get_amdgpu_device(kgd);
411 uint32_t i = 0, reg;
412#define HQD_N_REGS (35+4)
413#define DUMP_REG(addr) do { \
414 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
415 break; \
416 (*dump)[i][0] = (addr) << 2; \
417 (*dump)[i++][1] = RREG32(addr); \
418 } while (0)
419
420 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
421 if (*dump == NULL)
422 return -ENOMEM;
423
424 acquire_queue(kgd, pipe_id, queue_id);
425
426 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
427 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
428 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
429 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
430
431 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
432 DUMP_REG(reg);
433
434 release_queue(kgd);
435
436 WARN_ON_ONCE(i != HQD_N_REGS);
437 *n_regs = i;
438
439 return 0;
440}
441
442static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
443 uint32_t __user *wptr, struct mm_struct *mm)
444{
445 struct amdgpu_device *adev = get_amdgpu_device(kgd);
446 struct cik_sdma_rlc_registers *m;
447 unsigned long end_jiffies;
448 uint32_t sdma_base_addr;
449 uint32_t data;
450
451 m = get_sdma_mqd(mqd);
452 sdma_base_addr = get_sdma_base_addr(m);
453
454 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
455 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
456
457 end_jiffies = msecs_to_jiffies(2000) + jiffies;
458 while (true) {
459 data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
460 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
461 break;
462 if (time_after(jiffies, end_jiffies))
463 return -ETIME;
464 usleep_range(500, 1000);
465 }
466 if (m->sdma_engine_id) {
467 data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
468 data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
469 RESUME_CTX, 0);
470 WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
471 } else {
472 data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
473 data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
474 RESUME_CTX, 0);
475 WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
476 }
477
478 data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
479 ENABLE, 1);
480 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
481 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
482
483 if (read_user_wptr(mm, wptr, data))
484 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
485 else
486 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
487 m->sdma_rlc_rb_rptr);
488
489 WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
490 m->sdma_rlc_virtual_addr);
491 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
492 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
493 m->sdma_rlc_rb_base_hi);
494 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
495 m->sdma_rlc_rb_rptr_addr_lo);
496 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
497 m->sdma_rlc_rb_rptr_addr_hi);
498
499 data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
500 RB_ENABLE, 1);
501 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
502
503 return 0;
504}
505
506static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
507 uint32_t engine_id, uint32_t queue_id,
508 uint32_t (**dump)[2], uint32_t *n_regs)
509{
510 struct amdgpu_device *adev = get_amdgpu_device(kgd);
511 uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
512 queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
513 uint32_t i = 0, reg;
514#undef HQD_N_REGS
515#define HQD_N_REGS (19+4)
516
517 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
518 if (*dump == NULL)
519 return -ENOMEM;
520
521 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
522 DUMP_REG(sdma_offset + reg);
523 for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
524 reg++)
525 DUMP_REG(sdma_offset + reg);
526
527 WARN_ON_ONCE(i != HQD_N_REGS);
528 *n_regs = i;
529
530 return 0;
531}
532
533static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
534 uint32_t pipe_id, uint32_t queue_id)
535{
536 struct amdgpu_device *adev = get_amdgpu_device(kgd);
537 uint32_t act;
538 bool retval = false;
539 uint32_t low, high;
540
541 acquire_queue(kgd, pipe_id, queue_id);
542 act = RREG32(mmCP_HQD_ACTIVE);
543 if (act) {
544 low = lower_32_bits(queue_address >> 8);
545 high = upper_32_bits(queue_address >> 8);
546
547 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
548 high == RREG32(mmCP_HQD_PQ_BASE_HI))
549 retval = true;
550 }
551 release_queue(kgd);
552 return retval;
553}
554
555static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
556{
557 struct amdgpu_device *adev = get_amdgpu_device(kgd);
558 struct cik_sdma_rlc_registers *m;
559 uint32_t sdma_base_addr;
560 uint32_t sdma_rlc_rb_cntl;
561
562 m = get_sdma_mqd(mqd);
563 sdma_base_addr = get_sdma_base_addr(m);
564
565 sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
566
567 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
568 return true;
569
570 return false;
571}
572
573static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
574 enum kfd_preempt_type reset_type,
575 unsigned int utimeout, uint32_t pipe_id,
576 uint32_t queue_id)
577{
578 struct amdgpu_device *adev = get_amdgpu_device(kgd);
579 uint32_t temp;
580 enum hqd_dequeue_request_type type;
581 unsigned long flags, end_jiffies;
582 int retry;
583
584 acquire_queue(kgd, pipe_id, queue_id);
585 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
586
587 switch (reset_type) {
588 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
589 type = DRAIN_PIPE;
590 break;
591 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
592 type = RESET_WAVES;
593 break;
594 default:
595 type = DRAIN_PIPE;
596 break;
597 }
598
599 /* Workaround: If IQ timer is active and the wait time is close to or
600 * equal to 0, dequeueing is not safe. Wait until either the wait time
601 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
602 * cleared before continuing. Also, ensure wait times are set to at
603 * least 0x3.
604 */
605 local_irq_save(flags);
606 preempt_disable();
607 retry = 5000; /* wait for 500 usecs at maximum */
608 while (true) {
609 temp = RREG32(mmCP_HQD_IQ_TIMER);
610 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
611 pr_debug("HW is processing IQ\n");
612 goto loop;
613 }
614 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
615 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
616 == 3) /* SEM-rearm is safe */
617 break;
618 /* Wait time 3 is safe for CP, but our MMIO read/write
619 * time is close to 1 microsecond, so check for 10 to
620 * leave more buffer room
621 */
622 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
623 >= 10)
624 break;
625 pr_debug("IQ timer is active\n");
626 } else
627 break;
628loop:
629 if (!retry) {
630 pr_err("CP HQD IQ timer status time out\n");
631 break;
632 }
633 ndelay(100);
634 --retry;
635 }
636 retry = 1000;
637 while (true) {
638 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
639 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
640 break;
641 pr_debug("Dequeue request is pending\n");
642
643 if (!retry) {
644 pr_err("CP HQD dequeue request time out\n");
645 break;
646 }
647 ndelay(100);
648 --retry;
649 }
650 local_irq_restore(flags);
651 preempt_enable();
652
653 WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
654
655 end_jiffies = (utimeout * HZ / 1000) + jiffies;
656 while (true) {
657 temp = RREG32(mmCP_HQD_ACTIVE);
658 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
659 break;
660 if (time_after(jiffies, end_jiffies)) {
661 pr_err("cp queue preemption time out\n");
662 release_queue(kgd);
663 return -ETIME;
664 }
665 usleep_range(500, 1000);
666 }
667
668 release_queue(kgd);
669 return 0;
670}
671
672static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
673 unsigned int utimeout)
674{
675 struct amdgpu_device *adev = get_amdgpu_device(kgd);
676 struct cik_sdma_rlc_registers *m;
677 uint32_t sdma_base_addr;
678 uint32_t temp;
679 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
680
681 m = get_sdma_mqd(mqd);
682 sdma_base_addr = get_sdma_base_addr(m);
683
684 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
685 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
686 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
687
688 while (true) {
689 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
690 if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
691 break;
692 if (time_after(jiffies, end_jiffies))
693 return -ETIME;
694 usleep_range(500, 1000);
695 }
696
697 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
698 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
699 RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
700 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
701
702 m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
703
704 return 0;
705}
706
707static int kgd_address_watch_disable(struct kgd_dev *kgd)
708{
709 struct amdgpu_device *adev = get_amdgpu_device(kgd);
710 union TCP_WATCH_CNTL_BITS cntl;
711 unsigned int i;
712
713 cntl.u32All = 0;
714
715 cntl.bitfields.valid = 0;
716 cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
717 cntl.bitfields.atc = 1;
718
719 /* Turning off this address until we set all the registers */
720 for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
721 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
722 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
723
724 return 0;
725}
726
727static int kgd_address_watch_execute(struct kgd_dev *kgd,
728 unsigned int watch_point_id,
729 uint32_t cntl_val,
730 uint32_t addr_hi,
731 uint32_t addr_lo)
732{
733 struct amdgpu_device *adev = get_amdgpu_device(kgd);
734 union TCP_WATCH_CNTL_BITS cntl;
735
736 cntl.u32All = cntl_val;
737
738 /* Turning off this watch point until we set all the registers */
739 cntl.bitfields.valid = 0;
740 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
741 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
742
743 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
744 ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
745
746 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
747 ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
748
749 /* Enable the watch point */
750 cntl.bitfields.valid = 1;
751
752 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
753 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
754
755 return 0;
756}
757
758static int kgd_wave_control_execute(struct kgd_dev *kgd,
759 uint32_t gfx_index_val,
760 uint32_t sq_cmd)
761{
762 struct amdgpu_device *adev = get_amdgpu_device(kgd);
763 uint32_t data;
764
765 mutex_lock(&adev->grbm_idx_mutex);
766
767 WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
768 WREG32(mmSQ_CMD, sq_cmd);
769
770 /* Restore the GRBM_GFX_INDEX register */
771
772 data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
773 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
774 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
775
776 WREG32(mmGRBM_GFX_INDEX, data);
777
778 mutex_unlock(&adev->grbm_idx_mutex);
779
780 return 0;
781}
782
783static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
784 unsigned int watch_point_id,
785 unsigned int reg_offset)
786{
787 return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
788}
789
790static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
791 uint8_t vmid)
792{
793 uint32_t reg;
794 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
795
796 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
797 return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
798}
799
800static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
801 uint8_t vmid)
802{
803 uint32_t reg;
804 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
805
806 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
807 return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
808}
809
810static void set_scratch_backing_va(struct kgd_dev *kgd,
811 uint64_t va, uint32_t vmid)
812{
813 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
814
815 lock_srbm(kgd, 0, 0, 0, vmid);
816 WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
817 unlock_srbm(kgd);
818}
819
820static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
821{
822 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
823 const union amdgpu_firmware_header *hdr;
824
825 switch (type) {
826 case KGD_ENGINE_PFP:
827 hdr = (const union amdgpu_firmware_header *)
828 adev->gfx.pfp_fw->data;
829 break;
830
831 case KGD_ENGINE_ME:
832 hdr = (const union amdgpu_firmware_header *)
833 adev->gfx.me_fw->data;
834 break;
835
836 case KGD_ENGINE_CE:
837 hdr = (const union amdgpu_firmware_header *)
838 adev->gfx.ce_fw->data;
839 break;
840
841 case KGD_ENGINE_MEC1:
842 hdr = (const union amdgpu_firmware_header *)
843 adev->gfx.mec_fw->data;
844 break;
845
846 case KGD_ENGINE_MEC2:
847 hdr = (const union amdgpu_firmware_header *)
848 adev->gfx.mec2_fw->data;
849 break;
850
851 case KGD_ENGINE_RLC:
852 hdr = (const union amdgpu_firmware_header *)
853 adev->gfx.rlc_fw->data;
854 break;
855
856 case KGD_ENGINE_SDMA1:
857 hdr = (const union amdgpu_firmware_header *)
858 adev->sdma.instance[0].fw->data;
859 break;
860
861 case KGD_ENGINE_SDMA2:
862 hdr = (const union amdgpu_firmware_header *)
863 adev->sdma.instance[1].fw->data;
864 break;
865
866 default:
867 return 0;
868 }
869
870 if (hdr == NULL)
871 return 0;
872
873 /* Only 12 bit in use*/
874 return hdr->common.ucode_version;
875}
876
877static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
878 uint32_t page_table_base)
879{
880 struct amdgpu_device *adev = get_amdgpu_device(kgd);
881
882 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
883 pr_err("trying to set page table base for wrong VMID\n");
884 return;
885 }
886 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
887}
888
889static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
890{
891 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
892 int vmid;
893 unsigned int tmp;
894
895 for (vmid = 0; vmid < 16; vmid++) {
896 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
897 continue;
898
899 tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
900 if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
901 (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
902 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
903 RREG32(mmVM_INVALIDATE_RESPONSE);
904 break;
905 }
906 }
907
908 return 0;
909}
910
911static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
912{
913 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
914
915 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
916 pr_err("non kfd vmid\n");
917 return 0;
918 }
919
920 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
921 RREG32(mmVM_INVALIDATE_RESPONSE);
922 return 0;
923}
1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23#include "amdgpu.h"
24#include "amdgpu_amdkfd.h"
25#include "cikd.h"
26#include "cik_sdma.h"
27#include "gfx_v7_0.h"
28#include "gca/gfx_7_2_d.h"
29#include "gca/gfx_7_2_enum.h"
30#include "gca/gfx_7_2_sh_mask.h"
31#include "oss/oss_2_0_d.h"
32#include "oss/oss_2_0_sh_mask.h"
33#include "gmc/gmc_7_1_d.h"
34#include "gmc/gmc_7_1_sh_mask.h"
35#include "cik_structs.h"
36
37enum hqd_dequeue_request_type {
38 NO_ACTION = 0,
39 DRAIN_PIPE,
40 RESET_WAVES
41};
42
43enum {
44 MAX_TRAPID = 8, /* 3 bits in the bitfield. */
45 MAX_WATCH_ADDRESSES = 4
46};
47
48enum {
49 ADDRESS_WATCH_REG_ADDR_HI = 0,
50 ADDRESS_WATCH_REG_ADDR_LO,
51 ADDRESS_WATCH_REG_CNTL,
52 ADDRESS_WATCH_REG_MAX
53};
54
55/* not defined in the CI/KV reg file */
56enum {
57 ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
58 ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
59 ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
60 /* extend the mask to 26 bits to match the low address field */
61 ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
62 ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
63};
64
65static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
66 mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
67 mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
68 mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
69 mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
70};
71
72union TCP_WATCH_CNTL_BITS {
73 struct {
74 uint32_t mask:24;
75 uint32_t vmid:4;
76 uint32_t atc:1;
77 uint32_t mode:2;
78 uint32_t valid:1;
79 } bitfields, bits;
80 uint32_t u32All;
81 signed int i32All;
82 float f32All;
83};
84
85static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
86{
87 return (struct amdgpu_device *)kgd;
88}
89
90static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
91 uint32_t queue, uint32_t vmid)
92{
93 struct amdgpu_device *adev = get_amdgpu_device(kgd);
94 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
95
96 mutex_lock(&adev->srbm_mutex);
97 WREG32(mmSRBM_GFX_CNTL, value);
98}
99
100static void unlock_srbm(struct kgd_dev *kgd)
101{
102 struct amdgpu_device *adev = get_amdgpu_device(kgd);
103
104 WREG32(mmSRBM_GFX_CNTL, 0);
105 mutex_unlock(&adev->srbm_mutex);
106}
107
108static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
109 uint32_t queue_id)
110{
111 struct amdgpu_device *adev = get_amdgpu_device(kgd);
112
113 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
114 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
115
116 lock_srbm(kgd, mec, pipe, queue_id, 0);
117}
118
119static void release_queue(struct kgd_dev *kgd)
120{
121 unlock_srbm(kgd);
122}
123
124static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
125 uint32_t sh_mem_config,
126 uint32_t sh_mem_ape1_base,
127 uint32_t sh_mem_ape1_limit,
128 uint32_t sh_mem_bases)
129{
130 struct amdgpu_device *adev = get_amdgpu_device(kgd);
131
132 lock_srbm(kgd, 0, 0, 0, vmid);
133
134 WREG32(mmSH_MEM_CONFIG, sh_mem_config);
135 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
136 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
137 WREG32(mmSH_MEM_BASES, sh_mem_bases);
138
139 unlock_srbm(kgd);
140}
141
142static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
143 unsigned int vmid)
144{
145 struct amdgpu_device *adev = get_amdgpu_device(kgd);
146
147 /*
148 * We have to assume that there is no outstanding mapping.
149 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
150 * a mapping is in progress or because a mapping finished and the
151 * SW cleared it. So the protocol is to always wait & clear.
152 */
153 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
154 ATC_VMID0_PASID_MAPPING__VALID_MASK;
155
156 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
157
158 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
159 cpu_relax();
160 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
161
162 /* Mapping vmid to pasid also for IH block */
163 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
164
165 return 0;
166}
167
168static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
169{
170 struct amdgpu_device *adev = get_amdgpu_device(kgd);
171 uint32_t mec;
172 uint32_t pipe;
173
174 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
175 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
176
177 lock_srbm(kgd, mec, pipe, 0, 0);
178
179 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
180 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
181
182 unlock_srbm(kgd);
183
184 return 0;
185}
186
187static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m)
188{
189 uint32_t retval;
190
191 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
192 m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
193
194 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
195 m->sdma_engine_id, m->sdma_queue_id, retval);
196
197 return retval;
198}
199
200static inline struct cik_mqd *get_mqd(void *mqd)
201{
202 return (struct cik_mqd *)mqd;
203}
204
205static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
206{
207 return (struct cik_sdma_rlc_registers *)mqd;
208}
209
210static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
211 uint32_t queue_id, uint32_t __user *wptr,
212 uint32_t wptr_shift, uint32_t wptr_mask,
213 struct mm_struct *mm)
214{
215 struct amdgpu_device *adev = get_amdgpu_device(kgd);
216 struct cik_mqd *m;
217 uint32_t *mqd_hqd;
218 uint32_t reg, wptr_val, data;
219 bool valid_wptr = false;
220
221 m = get_mqd(mqd);
222
223 acquire_queue(kgd, pipe_id, queue_id);
224
225 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
226 mqd_hqd = &m->cp_mqd_base_addr_lo;
227
228 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
229 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
230
231 /* Copy userspace write pointer value to register.
232 * Activate doorbell logic to monitor subsequent changes.
233 */
234 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
235 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
236 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
237
238 /* read_user_ptr may take the mm->mmap_lock.
239 * release srbm_mutex to avoid circular dependency between
240 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
241 */
242 release_queue(kgd);
243 valid_wptr = read_user_wptr(mm, wptr, wptr_val);
244 acquire_queue(kgd, pipe_id, queue_id);
245 if (valid_wptr)
246 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
247
248 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
249 WREG32(mmCP_HQD_ACTIVE, data);
250
251 release_queue(kgd);
252
253 return 0;
254}
255
256static int kgd_hqd_dump(struct kgd_dev *kgd,
257 uint32_t pipe_id, uint32_t queue_id,
258 uint32_t (**dump)[2], uint32_t *n_regs)
259{
260 struct amdgpu_device *adev = get_amdgpu_device(kgd);
261 uint32_t i = 0, reg;
262#define HQD_N_REGS (35+4)
263#define DUMP_REG(addr) do { \
264 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
265 break; \
266 (*dump)[i][0] = (addr) << 2; \
267 (*dump)[i++][1] = RREG32(addr); \
268 } while (0)
269
270 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
271 if (*dump == NULL)
272 return -ENOMEM;
273
274 acquire_queue(kgd, pipe_id, queue_id);
275
276 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
277 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
278 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
279 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
280
281 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
282 DUMP_REG(reg);
283
284 release_queue(kgd);
285
286 WARN_ON_ONCE(i != HQD_N_REGS);
287 *n_regs = i;
288
289 return 0;
290}
291
292static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
293 uint32_t __user *wptr, struct mm_struct *mm)
294{
295 struct amdgpu_device *adev = get_amdgpu_device(kgd);
296 struct cik_sdma_rlc_registers *m;
297 unsigned long end_jiffies;
298 uint32_t sdma_rlc_reg_offset;
299 uint32_t data;
300
301 m = get_sdma_mqd(mqd);
302 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
303
304 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
305 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
306
307 end_jiffies = msecs_to_jiffies(2000) + jiffies;
308 while (true) {
309 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
310 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
311 break;
312 if (time_after(jiffies, end_jiffies)) {
313 pr_err("SDMA RLC not idle in %s\n", __func__);
314 return -ETIME;
315 }
316 usleep_range(500, 1000);
317 }
318
319 data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
320 ENABLE, 1);
321 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
322 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
323 m->sdma_rlc_rb_rptr);
324
325 if (read_user_wptr(mm, wptr, data))
326 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
327 else
328 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
329 m->sdma_rlc_rb_rptr);
330
331 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
332 m->sdma_rlc_virtual_addr);
333 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
334 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
335 m->sdma_rlc_rb_base_hi);
336 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
337 m->sdma_rlc_rb_rptr_addr_lo);
338 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
339 m->sdma_rlc_rb_rptr_addr_hi);
340
341 data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
342 RB_ENABLE, 1);
343 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
344
345 return 0;
346}
347
348static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
349 uint32_t engine_id, uint32_t queue_id,
350 uint32_t (**dump)[2], uint32_t *n_regs)
351{
352 struct amdgpu_device *adev = get_amdgpu_device(kgd);
353 uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
354 queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
355 uint32_t i = 0, reg;
356#undef HQD_N_REGS
357#define HQD_N_REGS (19+4)
358
359 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
360 if (*dump == NULL)
361 return -ENOMEM;
362
363 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
364 DUMP_REG(sdma_offset + reg);
365 for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
366 reg++)
367 DUMP_REG(sdma_offset + reg);
368
369 WARN_ON_ONCE(i != HQD_N_REGS);
370 *n_regs = i;
371
372 return 0;
373}
374
375static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
376 uint32_t pipe_id, uint32_t queue_id)
377{
378 struct amdgpu_device *adev = get_amdgpu_device(kgd);
379 uint32_t act;
380 bool retval = false;
381 uint32_t low, high;
382
383 acquire_queue(kgd, pipe_id, queue_id);
384 act = RREG32(mmCP_HQD_ACTIVE);
385 if (act) {
386 low = lower_32_bits(queue_address >> 8);
387 high = upper_32_bits(queue_address >> 8);
388
389 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
390 high == RREG32(mmCP_HQD_PQ_BASE_HI))
391 retval = true;
392 }
393 release_queue(kgd);
394 return retval;
395}
396
397static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
398{
399 struct amdgpu_device *adev = get_amdgpu_device(kgd);
400 struct cik_sdma_rlc_registers *m;
401 uint32_t sdma_rlc_reg_offset;
402 uint32_t sdma_rlc_rb_cntl;
403
404 m = get_sdma_mqd(mqd);
405 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
406
407 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
408
409 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
410 return true;
411
412 return false;
413}
414
415static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
416 enum kfd_preempt_type reset_type,
417 unsigned int utimeout, uint32_t pipe_id,
418 uint32_t queue_id)
419{
420 struct amdgpu_device *adev = get_amdgpu_device(kgd);
421 uint32_t temp;
422 enum hqd_dequeue_request_type type;
423 unsigned long flags, end_jiffies;
424 int retry;
425
426 if (adev->in_gpu_reset)
427 return -EIO;
428
429 acquire_queue(kgd, pipe_id, queue_id);
430 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
431
432 switch (reset_type) {
433 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
434 type = DRAIN_PIPE;
435 break;
436 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
437 type = RESET_WAVES;
438 break;
439 default:
440 type = DRAIN_PIPE;
441 break;
442 }
443
444 /* Workaround: If IQ timer is active and the wait time is close to or
445 * equal to 0, dequeueing is not safe. Wait until either the wait time
446 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
447 * cleared before continuing. Also, ensure wait times are set to at
448 * least 0x3.
449 */
450 local_irq_save(flags);
451 preempt_disable();
452 retry = 5000; /* wait for 500 usecs at maximum */
453 while (true) {
454 temp = RREG32(mmCP_HQD_IQ_TIMER);
455 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
456 pr_debug("HW is processing IQ\n");
457 goto loop;
458 }
459 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
460 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
461 == 3) /* SEM-rearm is safe */
462 break;
463 /* Wait time 3 is safe for CP, but our MMIO read/write
464 * time is close to 1 microsecond, so check for 10 to
465 * leave more buffer room
466 */
467 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
468 >= 10)
469 break;
470 pr_debug("IQ timer is active\n");
471 } else
472 break;
473loop:
474 if (!retry) {
475 pr_err("CP HQD IQ timer status time out\n");
476 break;
477 }
478 ndelay(100);
479 --retry;
480 }
481 retry = 1000;
482 while (true) {
483 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
484 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
485 break;
486 pr_debug("Dequeue request is pending\n");
487
488 if (!retry) {
489 pr_err("CP HQD dequeue request time out\n");
490 break;
491 }
492 ndelay(100);
493 --retry;
494 }
495 local_irq_restore(flags);
496 preempt_enable();
497
498 WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
499
500 end_jiffies = (utimeout * HZ / 1000) + jiffies;
501 while (true) {
502 temp = RREG32(mmCP_HQD_ACTIVE);
503 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
504 break;
505 if (time_after(jiffies, end_jiffies)) {
506 pr_err("cp queue preemption time out\n");
507 release_queue(kgd);
508 return -ETIME;
509 }
510 usleep_range(500, 1000);
511 }
512
513 release_queue(kgd);
514 return 0;
515}
516
517static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
518 unsigned int utimeout)
519{
520 struct amdgpu_device *adev = get_amdgpu_device(kgd);
521 struct cik_sdma_rlc_registers *m;
522 uint32_t sdma_rlc_reg_offset;
523 uint32_t temp;
524 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
525
526 m = get_sdma_mqd(mqd);
527 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
528
529 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
530 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
531 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
532
533 while (true) {
534 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
535 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
536 break;
537 if (time_after(jiffies, end_jiffies)) {
538 pr_err("SDMA RLC not idle in %s\n", __func__);
539 return -ETIME;
540 }
541 usleep_range(500, 1000);
542 }
543
544 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
545 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
546 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
547 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
548
549 m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
550
551 return 0;
552}
553
554static int kgd_address_watch_disable(struct kgd_dev *kgd)
555{
556 struct amdgpu_device *adev = get_amdgpu_device(kgd);
557 union TCP_WATCH_CNTL_BITS cntl;
558 unsigned int i;
559
560 cntl.u32All = 0;
561
562 cntl.bitfields.valid = 0;
563 cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
564 cntl.bitfields.atc = 1;
565
566 /* Turning off this address until we set all the registers */
567 for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
568 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
569 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
570
571 return 0;
572}
573
574static int kgd_address_watch_execute(struct kgd_dev *kgd,
575 unsigned int watch_point_id,
576 uint32_t cntl_val,
577 uint32_t addr_hi,
578 uint32_t addr_lo)
579{
580 struct amdgpu_device *adev = get_amdgpu_device(kgd);
581 union TCP_WATCH_CNTL_BITS cntl;
582
583 cntl.u32All = cntl_val;
584
585 /* Turning off this watch point until we set all the registers */
586 cntl.bitfields.valid = 0;
587 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
588 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
589
590 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
591 ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
592
593 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
594 ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
595
596 /* Enable the watch point */
597 cntl.bitfields.valid = 1;
598
599 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
600 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
601
602 return 0;
603}
604
605static int kgd_wave_control_execute(struct kgd_dev *kgd,
606 uint32_t gfx_index_val,
607 uint32_t sq_cmd)
608{
609 struct amdgpu_device *adev = get_amdgpu_device(kgd);
610 uint32_t data;
611
612 mutex_lock(&adev->grbm_idx_mutex);
613
614 WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
615 WREG32(mmSQ_CMD, sq_cmd);
616
617 /* Restore the GRBM_GFX_INDEX register */
618
619 data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
620 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
621 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
622
623 WREG32(mmGRBM_GFX_INDEX, data);
624
625 mutex_unlock(&adev->grbm_idx_mutex);
626
627 return 0;
628}
629
630static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
631 unsigned int watch_point_id,
632 unsigned int reg_offset)
633{
634 return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
635}
636
637static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
638 uint8_t vmid, uint16_t *p_pasid)
639{
640 uint32_t value;
641 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
642
643 value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
644 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
645
646 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
647}
648
649static void set_scratch_backing_va(struct kgd_dev *kgd,
650 uint64_t va, uint32_t vmid)
651{
652 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
653
654 lock_srbm(kgd, 0, 0, 0, vmid);
655 WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
656 unlock_srbm(kgd);
657}
658
659static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
660 uint64_t page_table_base)
661{
662 struct amdgpu_device *adev = get_amdgpu_device(kgd);
663
664 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
665 pr_err("trying to set page table base for wrong VMID\n");
666 return;
667 }
668 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
669 lower_32_bits(page_table_base));
670}
671
672 /**
673 * read_vmid_from_vmfault_reg - read vmid from register
674 *
675 * adev: amdgpu_device pointer
676 * @vmid: vmid pointer
677 * read vmid from register (CIK).
678 */
679static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
680{
681 struct amdgpu_device *adev = get_amdgpu_device(kgd);
682
683 uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
684
685 return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
686}
687
688const struct kfd2kgd_calls gfx_v7_kfd2kgd = {
689 .program_sh_mem_settings = kgd_program_sh_mem_settings,
690 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
691 .init_interrupts = kgd_init_interrupts,
692 .hqd_load = kgd_hqd_load,
693 .hqd_sdma_load = kgd_hqd_sdma_load,
694 .hqd_dump = kgd_hqd_dump,
695 .hqd_sdma_dump = kgd_hqd_sdma_dump,
696 .hqd_is_occupied = kgd_hqd_is_occupied,
697 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
698 .hqd_destroy = kgd_hqd_destroy,
699 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
700 .address_watch_disable = kgd_address_watch_disable,
701 .address_watch_execute = kgd_address_watch_execute,
702 .wave_control_execute = kgd_wave_control_execute,
703 .address_watch_get_offset = kgd_address_watch_get_offset,
704 .get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info,
705 .set_scratch_backing_va = set_scratch_backing_va,
706 .set_vm_context_page_table_base = set_vm_context_page_table_base,
707 .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
708};