Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
  3 * scalable techniques.
  4 *
  5 * Copyright (C) 2017 Facebook
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public
  9 * License v2 as published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 14 * General Public License for more details.
 15 *
 16 * You should have received a copy of the GNU General Public License
 17 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 18 */
 19
 20#include <linux/kernel.h>
 21#include <linux/blkdev.h>
 22#include <linux/blk-mq.h>
 23#include <linux/elevator.h>
 24#include <linux/module.h>
 25#include <linux/sbitmap.h>
 26
 27#include "blk.h"
 28#include "blk-mq.h"
 29#include "blk-mq-debugfs.h"
 30#include "blk-mq-sched.h"
 31#include "blk-mq-tag.h"
 32#include "blk-stat.h"
 33
 34/* Scheduling domains. */
 
 
 
 
 
 
 35enum {
 36	KYBER_READ,
 37	KYBER_SYNC_WRITE,
 38	KYBER_OTHER, /* Async writes, discard, etc. */
 
 39	KYBER_NUM_DOMAINS,
 40};
 41
 42enum {
 43	KYBER_MIN_DEPTH = 256,
 
 
 
 
 44
 
 45	/*
 46	 * In order to prevent starvation of synchronous requests by a flood of
 47	 * asynchronous requests, we reserve 25% of requests for synchronous
 48	 * operations.
 49	 */
 50	KYBER_ASYNC_PERCENT = 75,
 51};
 52
 53/*
 54 * Initial device-wide depths for each scheduling domain.
 55 *
 56 * Even for fast devices with lots of tags like NVMe, you can saturate
 57 * the device with only a fraction of the maximum possible queue depth.
 58 * So, we cap these to a reasonable value.
 59 */
 60static const unsigned int kyber_depth[] = {
 61	[KYBER_READ] = 256,
 62	[KYBER_SYNC_WRITE] = 128,
 63	[KYBER_OTHER] = 64,
 
 
 
 
 
 
 
 
 
 
 64};
 65
 66/*
 67 * Scheduling domain batch sizes. We favor reads.
 
 68 */
 69static const unsigned int kyber_batch_size[] = {
 70	[KYBER_READ] = 16,
 71	[KYBER_SYNC_WRITE] = 8,
 72	[KYBER_OTHER] = 8,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73};
 74
 
 
 
 
 
 
 
 
 
 
 
 
 
 75struct kyber_queue_data {
 76	struct request_queue *q;
 77
 78	struct blk_stat_callback *cb;
 79
 80	/*
 81	 * The device is divided into multiple scheduling domains based on the
 82	 * request type. Each domain has a fixed number of in-flight requests of
 83	 * that type device-wide, limited by these tokens.
 84	 */
 85	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
 86
 87	/*
 88	 * Async request percentage, converted to per-word depth for
 89	 * sbitmap_get_shallow().
 90	 */
 91	unsigned int async_depth;
 92
 
 
 
 
 
 
 
 
 
 
 
 93	/* Target latencies in nanoseconds. */
 94	u64 read_lat_nsec, write_lat_nsec;
 95};
 96
 97struct kyber_hctx_data {
 98	spinlock_t lock;
 99	struct list_head rqs[KYBER_NUM_DOMAINS];
100	unsigned int cur_domain;
101	unsigned int batching;
102	wait_queue_entry_t domain_wait[KYBER_NUM_DOMAINS];
 
 
103	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
104	atomic_t wait_index[KYBER_NUM_DOMAINS];
105};
106
107static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
108			     void *key);
109
110static int rq_sched_domain(const struct request *rq)
111{
112	unsigned int op = rq->cmd_flags;
113
114	if ((op & REQ_OP_MASK) == REQ_OP_READ)
115		return KYBER_READ;
116	else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op))
117		return KYBER_SYNC_WRITE;
118	else
 
 
119		return KYBER_OTHER;
 
120}
121
122enum {
123	NONE = 0,
124	GOOD = 1,
125	GREAT = 2,
126	BAD = -1,
127	AWFUL = -2,
128};
129
130#define IS_GOOD(status) ((status) > 0)
131#define IS_BAD(status) ((status) < 0)
132
133static int kyber_lat_status(struct blk_stat_callback *cb,
134			    unsigned int sched_domain, u64 target)
135{
136	u64 latency;
137
138	if (!cb->stat[sched_domain].nr_samples)
139		return NONE;
140
141	latency = cb->stat[sched_domain].mean;
142	if (latency >= 2 * target)
143		return AWFUL;
144	else if (latency > target)
145		return BAD;
146	else if (latency <= target / 2)
147		return GREAT;
148	else /* (latency <= target) */
149		return GOOD;
150}
151
152/*
153 * Adjust the read or synchronous write depth given the status of reads and
154 * writes. The goal is that the latencies of the two domains are fair (i.e., if
155 * one is good, then the other is good).
156 */
157static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd,
158				  unsigned int sched_domain, int this_status,
159				  int other_status)
160{
161	unsigned int orig_depth, depth;
 
 
 
 
 
 
 
162
163	/*
164	 * If this domain had no samples, or reads and writes are both good or
165	 * both bad, don't adjust the depth.
166	 */
167	if (this_status == NONE ||
168	    (IS_GOOD(this_status) && IS_GOOD(other_status)) ||
169	    (IS_BAD(this_status) && IS_BAD(other_status)))
170		return;
171
172	orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth;
 
173
174	if (other_status == NONE) {
175		depth++;
176	} else {
177		switch (this_status) {
178		case GOOD:
179			if (other_status == AWFUL)
180				depth -= max(depth / 4, 1U);
181			else
182				depth -= max(depth / 8, 1U);
183			break;
184		case GREAT:
185			if (other_status == AWFUL)
186				depth /= 2;
187			else
188				depth -= max(depth / 4, 1U);
189			break;
190		case BAD:
191			depth++;
192			break;
193		case AWFUL:
194			if (other_status == GREAT)
195				depth += 2;
196			else
197				depth++;
198			break;
199		}
200	}
 
201
202	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
203	if (depth != orig_depth)
204		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
 
 
205}
206
207/*
208 * Adjust the depth of other requests given the status of reads and synchronous
209 * writes. As long as either domain is doing fine, we don't throttle, but if
210 * both domains are doing badly, we throttle heavily.
211 */
212static void kyber_adjust_other_depth(struct kyber_queue_data *kqd,
213				     int read_status, int write_status,
214				     bool have_samples)
215{
216	unsigned int orig_depth, depth;
217	int status;
218
219	orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth;
220
221	if (read_status == NONE && write_status == NONE) {
222		depth += 2;
223	} else if (have_samples) {
224		if (read_status == NONE)
225			status = write_status;
226		else if (write_status == NONE)
227			status = read_status;
228		else
229			status = max(read_status, write_status);
230		switch (status) {
231		case GREAT:
232			depth += 2;
233			break;
234		case GOOD:
235			depth++;
236			break;
237		case BAD:
238			depth -= max(depth / 4, 1U);
239			break;
240		case AWFUL:
241			depth /= 2;
242			break;
243		}
244	}
245
246	depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]);
247	if (depth != orig_depth)
248		sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth);
249}
250
251/*
252 * Apply heuristics for limiting queue depths based on gathered latency
253 * statistics.
254 */
255static void kyber_stat_timer_fn(struct blk_stat_callback *cb)
256{
257	struct kyber_queue_data *kqd = cb->data;
258	int read_status, write_status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259
260	read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec);
261	write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec);
 
 
 
 
 
262
263	kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status);
264	kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status);
265	kyber_adjust_other_depth(kqd, read_status, write_status,
266				 cb->stat[KYBER_OTHER].nr_samples != 0);
 
267
268	/*
269	 * Continue monitoring latencies if we aren't hitting the targets or
270	 * we're still throttling other requests.
 
271	 */
272	if (!blk_stat_is_active(kqd->cb) &&
273	    ((IS_BAD(read_status) || IS_BAD(write_status) ||
274	      kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER])))
275		blk_stat_activate_msecs(kqd->cb, 100);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276}
277
278static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd)
279{
280	/*
281	 * All of the hardware queues have the same depth, so we can just grab
282	 * the shift of the first one.
283	 */
284	return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
285}
286
287static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
288{
289	struct kyber_queue_data *kqd;
290	unsigned int max_tokens;
291	unsigned int shift;
292	int ret = -ENOMEM;
293	int i;
294
295	kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
296	if (!kqd)
297		goto err;
 
298	kqd->q = q;
299
300	kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, rq_sched_domain,
301					  KYBER_NUM_DOMAINS, kqd);
302	if (!kqd->cb)
303		goto err_kqd;
304
305	/*
306	 * The maximum number of tokens for any scheduling domain is at least
307	 * the queue depth of a single hardware queue. If the hardware doesn't
308	 * have many tags, still provide a reasonable number.
309	 */
310	max_tokens = max_t(unsigned int, q->tag_set->queue_depth,
311			   KYBER_MIN_DEPTH);
312	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
313		WARN_ON(!kyber_depth[i]);
314		WARN_ON(!kyber_batch_size[i]);
315		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
316					      max_tokens, -1, false, GFP_KERNEL,
317					      q->node);
318		if (ret) {
319			while (--i >= 0)
320				sbitmap_queue_free(&kqd->domain_tokens[i]);
321			goto err_cb;
322		}
323		sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]);
324	}
325
326	shift = kyber_sched_tags_shift(kqd);
327	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
 
 
328
329	kqd->read_lat_nsec = 2000000ULL;
330	kqd->write_lat_nsec = 10000000ULL;
331
332	return kqd;
333
334err_cb:
335	blk_stat_free_callback(kqd->cb);
336err_kqd:
337	kfree(kqd);
338err:
339	return ERR_PTR(ret);
340}
341
342static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
343{
344	struct kyber_queue_data *kqd;
345	struct elevator_queue *eq;
346
347	eq = elevator_alloc(q, e);
348	if (!eq)
349		return -ENOMEM;
350
351	kqd = kyber_queue_data_alloc(q);
352	if (IS_ERR(kqd)) {
353		kobject_put(&eq->kobj);
354		return PTR_ERR(kqd);
355	}
356
 
 
357	eq->elevator_data = kqd;
358	q->elevator = eq;
359
360	blk_stat_add_callback(q, kqd->cb);
361
362	return 0;
363}
364
365static void kyber_exit_sched(struct elevator_queue *e)
366{
367	struct kyber_queue_data *kqd = e->elevator_data;
368	struct request_queue *q = kqd->q;
369	int i;
370
371	blk_stat_remove_callback(q, kqd->cb);
372
373	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
374		sbitmap_queue_free(&kqd->domain_tokens[i]);
375	blk_stat_free_callback(kqd->cb);
376	kfree(kqd);
377}
378
 
 
 
 
 
 
 
 
 
379static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
380{
 
381	struct kyber_hctx_data *khd;
382	int i;
383
384	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
385	if (!khd)
386		return -ENOMEM;
387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388	spin_lock_init(&khd->lock);
389
390	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
391		INIT_LIST_HEAD(&khd->rqs[i]);
392		init_waitqueue_func_entry(&khd->domain_wait[i],
 
393					  kyber_domain_wake);
394		khd->domain_wait[i].private = hctx;
395		INIT_LIST_HEAD(&khd->domain_wait[i].entry);
396		atomic_set(&khd->wait_index[i], 0);
397	}
398
399	khd->cur_domain = 0;
400	khd->batching = 0;
401
402	hctx->sched_data = khd;
 
 
403
404	return 0;
 
 
 
 
 
 
405}
406
407static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
408{
 
 
 
 
 
 
409	kfree(hctx->sched_data);
410}
411
412static int rq_get_domain_token(struct request *rq)
413{
414	return (long)rq->elv.priv[0];
415}
416
417static void rq_set_domain_token(struct request *rq, int token)
418{
419	rq->elv.priv[0] = (void *)(long)token;
420}
421
422static void rq_clear_domain_token(struct kyber_queue_data *kqd,
423				  struct request *rq)
424{
425	unsigned int sched_domain;
426	int nr;
427
428	nr = rq_get_domain_token(rq);
429	if (nr != -1) {
430		sched_domain = rq_sched_domain(rq);
431		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
432				    rq->mq_ctx->cpu);
433	}
434}
435
436static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
437{
438	/*
439	 * We use the scheduler tags as per-hardware queue queueing tokens.
440	 * Async requests can be limited at this stage.
441	 */
442	if (!op_is_sync(op)) {
443		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
444
445		data->shallow_depth = kqd->async_depth;
446	}
447}
448
449static void kyber_prepare_request(struct request *rq, struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
450{
451	rq_set_domain_token(rq, -1);
452}
453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454static void kyber_finish_request(struct request *rq)
455{
456	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
457
458	rq_clear_domain_token(kqd, rq);
459}
460
461static void kyber_completed_request(struct request *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462{
463	struct request_queue *q = rq->q;
464	struct kyber_queue_data *kqd = q->elevator->elevator_data;
465	unsigned int sched_domain;
466	u64 now, latency, target;
467
468	/*
469	 * Check if this request met our latency goal. If not, quickly gather
470	 * some statistics and start throttling.
471	 */
472	sched_domain = rq_sched_domain(rq);
473	switch (sched_domain) {
474	case KYBER_READ:
475		target = kqd->read_lat_nsec;
476		break;
477	case KYBER_SYNC_WRITE:
478		target = kqd->write_lat_nsec;
479		break;
480	default:
481		return;
482	}
483
484	/* If we are already monitoring latencies, don't check again. */
485	if (blk_stat_is_active(kqd->cb))
486		return;
 
 
 
 
487
488	now = __blk_stat_time(ktime_to_ns(ktime_get()));
489	if (now < blk_stat_time(&rq->issue_stat))
490		return;
491
492	latency = now - blk_stat_time(&rq->issue_stat);
 
 
 
 
493
494	if (latency > target)
495		blk_stat_activate_msecs(kqd->cb, 10);
 
 
 
 
 
 
 
 
 
 
496}
497
498static void kyber_flush_busy_ctxs(struct kyber_hctx_data *khd,
499				  struct blk_mq_hw_ctx *hctx)
 
500{
501	LIST_HEAD(rq_list);
502	struct request *rq, *next;
503
504	blk_mq_flush_busy_ctxs(hctx, &rq_list);
505	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
506		unsigned int sched_domain;
507
508		sched_domain = rq_sched_domain(rq);
509		list_move_tail(&rq->queuelist, &khd->rqs[sched_domain]);
510	}
511}
512
513static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
514			     void *key)
515{
516	struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private);
 
517
518	list_del_init(&wait->entry);
519	blk_mq_run_hw_queue(hctx, true);
520	return 1;
521}
522
523static int kyber_get_domain_token(struct kyber_queue_data *kqd,
524				  struct kyber_hctx_data *khd,
525				  struct blk_mq_hw_ctx *hctx)
526{
527	unsigned int sched_domain = khd->cur_domain;
528	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
529	wait_queue_entry_t *wait = &khd->domain_wait[sched_domain];
530	struct sbq_wait_state *ws;
531	int nr;
532
533	nr = __sbitmap_queue_get(domain_tokens);
534
535	/*
536	 * If we failed to get a domain token, make sure the hardware queue is
537	 * run when one becomes available. Note that this is serialized on
538	 * khd->lock, but we still need to be careful about the waker.
539	 */
540	if (nr < 0 && list_empty_careful(&wait->entry)) {
541		ws = sbq_wait_ptr(domain_tokens,
542				  &khd->wait_index[sched_domain]);
543		khd->domain_ws[sched_domain] = ws;
544		add_wait_queue(&ws->wait, wait);
545
546		/*
547		 * Try again in case a token was freed before we got on the wait
548		 * queue.
549		 */
550		nr = __sbitmap_queue_get(domain_tokens);
551	}
552
553	/*
554	 * If we got a token while we were on the wait queue, remove ourselves
555	 * from the wait queue to ensure that all wake ups make forward
556	 * progress. It's possible that the waker already deleted the entry
557	 * between the !list_empty_careful() check and us grabbing the lock, but
558	 * list_del_init() is okay with that.
559	 */
560	if (nr >= 0 && !list_empty_careful(&wait->entry)) {
561		ws = khd->domain_ws[sched_domain];
562		spin_lock_irq(&ws->wait.lock);
563		list_del_init(&wait->entry);
564		spin_unlock_irq(&ws->wait.lock);
565	}
566
567	return nr;
568}
569
570static struct request *
571kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
572			  struct kyber_hctx_data *khd,
573			  struct blk_mq_hw_ctx *hctx,
574			  bool *flushed)
575{
576	struct list_head *rqs;
577	struct request *rq;
578	int nr;
579
580	rqs = &khd->rqs[khd->cur_domain];
581	rq = list_first_entry_or_null(rqs, struct request, queuelist);
582
583	/*
584	 * If there wasn't already a pending request and we haven't flushed the
585	 * software queues yet, flush the software queues and check again.
 
 
 
 
586	 */
587	if (!rq && !*flushed) {
588		kyber_flush_busy_ctxs(khd, hctx);
589		*flushed = true;
590		rq = list_first_entry_or_null(rqs, struct request, queuelist);
591	}
592
593	if (rq) {
594		nr = kyber_get_domain_token(kqd, khd, hctx);
595		if (nr >= 0) {
596			khd->batching++;
597			rq_set_domain_token(rq, nr);
598			list_del_init(&rq->queuelist);
599			return rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600		}
601	}
602
603	/* There were either no pending requests or no tokens. */
604	return NULL;
605}
606
607static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
608{
609	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
610	struct kyber_hctx_data *khd = hctx->sched_data;
611	bool flushed = false;
612	struct request *rq;
613	int i;
614
615	spin_lock(&khd->lock);
616
617	/*
618	 * First, if we are still entitled to batch, try to dispatch a request
619	 * from the batch.
620	 */
621	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
622		rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
623		if (rq)
624			goto out;
625	}
626
627	/*
628	 * Either,
629	 * 1. We were no longer entitled to a batch.
630	 * 2. The domain we were batching didn't have any requests.
631	 * 3. The domain we were batching was out of tokens.
632	 *
633	 * Start another batch. Note that this wraps back around to the original
634	 * domain if no other domains have requests or tokens.
635	 */
636	khd->batching = 0;
637	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
638		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
639			khd->cur_domain = 0;
640		else
641			khd->cur_domain++;
642
643		rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
644		if (rq)
645			goto out;
646	}
647
648	rq = NULL;
649out:
650	spin_unlock(&khd->lock);
651	return rq;
652}
653
654static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
655{
656	struct kyber_hctx_data *khd = hctx->sched_data;
657	int i;
658
659	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
660		if (!list_empty_careful(&khd->rqs[i]))
 
661			return true;
662	}
663	return sbitmap_any_bit_set(&hctx->ctx_map);
 
664}
665
666#define KYBER_LAT_SHOW_STORE(op)					\
667static ssize_t kyber_##op##_lat_show(struct elevator_queue *e,		\
668				     char *page)			\
669{									\
670	struct kyber_queue_data *kqd = e->elevator_data;		\
671									\
672	return sprintf(page, "%llu\n", kqd->op##_lat_nsec);		\
673}									\
674									\
675static ssize_t kyber_##op##_lat_store(struct elevator_queue *e,		\
676				      const char *page, size_t count)	\
677{									\
678	struct kyber_queue_data *kqd = e->elevator_data;		\
679	unsigned long long nsec;					\
680	int ret;							\
681									\
682	ret = kstrtoull(page, 10, &nsec);				\
683	if (ret)							\
684		return ret;						\
685									\
686	kqd->op##_lat_nsec = nsec;					\
687									\
688	return count;							\
689}
690KYBER_LAT_SHOW_STORE(read);
691KYBER_LAT_SHOW_STORE(write);
692#undef KYBER_LAT_SHOW_STORE
693
694#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
695static struct elv_fs_entry kyber_sched_attrs[] = {
696	KYBER_LAT_ATTR(read),
697	KYBER_LAT_ATTR(write),
698	__ATTR_NULL
699};
700#undef KYBER_LAT_ATTR
701
702#ifdef CONFIG_BLK_DEBUG_FS
703#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
704static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
705{									\
706	struct request_queue *q = data;					\
707	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
708									\
709	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
710	return 0;							\
711}									\
712									\
713static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
714	__acquires(&khd->lock)						\
715{									\
716	struct blk_mq_hw_ctx *hctx = m->private;			\
717	struct kyber_hctx_data *khd = hctx->sched_data;			\
718									\
719	spin_lock(&khd->lock);						\
720	return seq_list_start(&khd->rqs[domain], *pos);			\
721}									\
722									\
723static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
724				     loff_t *pos)			\
725{									\
726	struct blk_mq_hw_ctx *hctx = m->private;			\
727	struct kyber_hctx_data *khd = hctx->sched_data;			\
728									\
729	return seq_list_next(v, &khd->rqs[domain], pos);		\
730}									\
731									\
732static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
733	__releases(&khd->lock)						\
734{									\
735	struct blk_mq_hw_ctx *hctx = m->private;			\
736	struct kyber_hctx_data *khd = hctx->sched_data;			\
737									\
738	spin_unlock(&khd->lock);					\
739}									\
740									\
741static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
742	.start	= kyber_##name##_rqs_start,				\
743	.next	= kyber_##name##_rqs_next,				\
744	.stop	= kyber_##name##_rqs_stop,				\
745	.show	= blk_mq_debugfs_rq_show,				\
746};									\
747									\
748static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
749{									\
750	struct blk_mq_hw_ctx *hctx = data;				\
751	struct kyber_hctx_data *khd = hctx->sched_data;			\
752	wait_queue_entry_t *wait = &khd->domain_wait[domain];		\
753									\
754	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
755	return 0;							\
756}
757KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
758KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE, sync_write)
 
759KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
760#undef KYBER_DEBUGFS_DOMAIN_ATTRS
761
762static int kyber_async_depth_show(void *data, struct seq_file *m)
763{
764	struct request_queue *q = data;
765	struct kyber_queue_data *kqd = q->elevator->elevator_data;
766
767	seq_printf(m, "%u\n", kqd->async_depth);
768	return 0;
769}
770
771static int kyber_cur_domain_show(void *data, struct seq_file *m)
772{
773	struct blk_mq_hw_ctx *hctx = data;
774	struct kyber_hctx_data *khd = hctx->sched_data;
775
776	switch (khd->cur_domain) {
777	case KYBER_READ:
778		seq_puts(m, "READ\n");
779		break;
780	case KYBER_SYNC_WRITE:
781		seq_puts(m, "SYNC_WRITE\n");
782		break;
783	case KYBER_OTHER:
784		seq_puts(m, "OTHER\n");
785		break;
786	default:
787		seq_printf(m, "%u\n", khd->cur_domain);
788		break;
789	}
790	return 0;
791}
792
793static int kyber_batching_show(void *data, struct seq_file *m)
794{
795	struct blk_mq_hw_ctx *hctx = data;
796	struct kyber_hctx_data *khd = hctx->sched_data;
797
798	seq_printf(m, "%u\n", khd->batching);
799	return 0;
800}
801
802#define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
803	{#name "_tokens", 0400, kyber_##name##_tokens_show}
804static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
805	KYBER_QUEUE_DOMAIN_ATTRS(read),
806	KYBER_QUEUE_DOMAIN_ATTRS(sync_write),
 
807	KYBER_QUEUE_DOMAIN_ATTRS(other),
808	{"async_depth", 0400, kyber_async_depth_show},
809	{},
810};
811#undef KYBER_QUEUE_DOMAIN_ATTRS
812
813#define KYBER_HCTX_DOMAIN_ATTRS(name)					\
814	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
815	{#name "_waiting", 0400, kyber_##name##_waiting_show}
816static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
817	KYBER_HCTX_DOMAIN_ATTRS(read),
818	KYBER_HCTX_DOMAIN_ATTRS(sync_write),
 
819	KYBER_HCTX_DOMAIN_ATTRS(other),
820	{"cur_domain", 0400, kyber_cur_domain_show},
821	{"batching", 0400, kyber_batching_show},
822	{},
823};
824#undef KYBER_HCTX_DOMAIN_ATTRS
825#endif
826
827static struct elevator_type kyber_sched = {
828	.ops.mq = {
829		.init_sched = kyber_init_sched,
830		.exit_sched = kyber_exit_sched,
831		.init_hctx = kyber_init_hctx,
832		.exit_hctx = kyber_exit_hctx,
833		.limit_depth = kyber_limit_depth,
 
834		.prepare_request = kyber_prepare_request,
 
835		.finish_request = kyber_finish_request,
836		.requeue_request = kyber_finish_request,
837		.completed_request = kyber_completed_request,
838		.dispatch_request = kyber_dispatch_request,
839		.has_work = kyber_has_work,
840	},
841	.uses_mq = true,
842#ifdef CONFIG_BLK_DEBUG_FS
843	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
844	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
845#endif
846	.elevator_attrs = kyber_sched_attrs,
847	.elevator_name = "kyber",
848	.elevator_owner = THIS_MODULE,
849};
850
851static int __init kyber_init(void)
852{
853	return elv_register(&kyber_sched);
854}
855
856static void __exit kyber_exit(void)
857{
858	elv_unregister(&kyber_sched);
859}
860
861module_init(kyber_init);
862module_exit(kyber_exit);
863
864MODULE_AUTHOR("Omar Sandoval");
865MODULE_LICENSE("GPL");
866MODULE_DESCRIPTION("Kyber I/O scheduler");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
   4 * scalable techniques.
   5 *
   6 * Copyright (C) 2017 Facebook
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/blkdev.h>
  11#include <linux/blk-mq.h>
  12#include <linux/elevator.h>
  13#include <linux/module.h>
  14#include <linux/sbitmap.h>
  15
  16#include "blk.h"
  17#include "blk-mq.h"
  18#include "blk-mq-debugfs.h"
  19#include "blk-mq-sched.h"
  20#include "blk-mq-tag.h"
 
  21
  22#define CREATE_TRACE_POINTS
  23#include <trace/events/kyber.h>
  24
  25/*
  26 * Scheduling domains: the device is divided into multiple domains based on the
  27 * request type.
  28 */
  29enum {
  30	KYBER_READ,
  31	KYBER_WRITE,
  32	KYBER_DISCARD,
  33	KYBER_OTHER,
  34	KYBER_NUM_DOMAINS,
  35};
  36
  37static const char *kyber_domain_names[] = {
  38	[KYBER_READ] = "READ",
  39	[KYBER_WRITE] = "WRITE",
  40	[KYBER_DISCARD] = "DISCARD",
  41	[KYBER_OTHER] = "OTHER",
  42};
  43
  44enum {
  45	/*
  46	 * In order to prevent starvation of synchronous requests by a flood of
  47	 * asynchronous requests, we reserve 25% of requests for synchronous
  48	 * operations.
  49	 */
  50	KYBER_ASYNC_PERCENT = 75,
  51};
  52
  53/*
  54 * Maximum device-wide depth for each scheduling domain.
  55 *
  56 * Even for fast devices with lots of tags like NVMe, you can saturate the
  57 * device with only a fraction of the maximum possible queue depth. So, we cap
  58 * these to a reasonable value.
  59 */
  60static const unsigned int kyber_depth[] = {
  61	[KYBER_READ] = 256,
  62	[KYBER_WRITE] = 128,
  63	[KYBER_DISCARD] = 64,
  64	[KYBER_OTHER] = 16,
  65};
  66
  67/*
  68 * Default latency targets for each scheduling domain.
  69 */
  70static const u64 kyber_latency_targets[] = {
  71	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
  72	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
  73	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
  74};
  75
  76/*
  77 * Batch size (number of requests we'll dispatch in a row) for each scheduling
  78 * domain.
  79 */
  80static const unsigned int kyber_batch_size[] = {
  81	[KYBER_READ] = 16,
  82	[KYBER_WRITE] = 8,
  83	[KYBER_DISCARD] = 1,
  84	[KYBER_OTHER] = 1,
  85};
  86
  87/*
  88 * Requests latencies are recorded in a histogram with buckets defined relative
  89 * to the target latency:
  90 *
  91 * <= 1/4 * target latency
  92 * <= 1/2 * target latency
  93 * <= 3/4 * target latency
  94 * <= target latency
  95 * <= 1 1/4 * target latency
  96 * <= 1 1/2 * target latency
  97 * <= 1 3/4 * target latency
  98 * > 1 3/4 * target latency
  99 */
 100enum {
 101	/*
 102	 * The width of the latency histogram buckets is
 103	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
 104	 */
 105	KYBER_LATENCY_SHIFT = 2,
 106	/*
 107	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
 108	 * thus, "good".
 109	 */
 110	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
 111	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
 112	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
 113};
 114
 115/*
 116 * We measure both the total latency and the I/O latency (i.e., latency after
 117 * submitting to the device).
 118 */
 119enum {
 120	KYBER_TOTAL_LATENCY,
 121	KYBER_IO_LATENCY,
 122};
 123
 124static const char *kyber_latency_type_names[] = {
 125	[KYBER_TOTAL_LATENCY] = "total",
 126	[KYBER_IO_LATENCY] = "I/O",
 127};
 128
 129/*
 130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
 131 * domain except for KYBER_OTHER.
 132 */
 133struct kyber_cpu_latency {
 134	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 135};
 136
 137/*
 138 * There is a same mapping between ctx & hctx and kcq & khd,
 139 * we use request->mq_ctx->index_hw to index the kcq in khd.
 140 */
 141struct kyber_ctx_queue {
 142	/*
 143	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
 144	 * Also protect the rqs on rq_list when merge.
 145	 */
 146	spinlock_t lock;
 147	struct list_head rq_list[KYBER_NUM_DOMAINS];
 148} ____cacheline_aligned_in_smp;
 149
 150struct kyber_queue_data {
 151	struct request_queue *q;
 152
 
 
 153	/*
 154	 * Each scheduling domain has a limited number of in-flight requests
 155	 * device-wide, limited by these tokens.
 
 156	 */
 157	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
 158
 159	/*
 160	 * Async request percentage, converted to per-word depth for
 161	 * sbitmap_get_shallow().
 162	 */
 163	unsigned int async_depth;
 164
 165	struct kyber_cpu_latency __percpu *cpu_latency;
 166
 167	/* Timer for stats aggregation and adjusting domain tokens. */
 168	struct timer_list timer;
 169
 170	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 171
 172	unsigned long latency_timeout[KYBER_OTHER];
 173
 174	int domain_p99[KYBER_OTHER];
 175
 176	/* Target latencies in nanoseconds. */
 177	u64 latency_targets[KYBER_OTHER];
 178};
 179
 180struct kyber_hctx_data {
 181	spinlock_t lock;
 182	struct list_head rqs[KYBER_NUM_DOMAINS];
 183	unsigned int cur_domain;
 184	unsigned int batching;
 185	struct kyber_ctx_queue *kcqs;
 186	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
 187	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
 188	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
 189	atomic_t wait_index[KYBER_NUM_DOMAINS];
 190};
 191
 192static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
 193			     void *key);
 194
 195static unsigned int kyber_sched_domain(unsigned int op)
 196{
 197	switch (op & REQ_OP_MASK) {
 198	case REQ_OP_READ:
 
 199		return KYBER_READ;
 200	case REQ_OP_WRITE:
 201		return KYBER_WRITE;
 202	case REQ_OP_DISCARD:
 203		return KYBER_DISCARD;
 204	default:
 205		return KYBER_OTHER;
 206	}
 207}
 208
 209static void flush_latency_buckets(struct kyber_queue_data *kqd,
 210				  struct kyber_cpu_latency *cpu_latency,
 211				  unsigned int sched_domain, unsigned int type)
 212{
 213	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 214	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
 215	unsigned int bucket;
 216
 217	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 218		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219}
 220
 221/*
 222 * Calculate the histogram bucket with the given percentile rank, or -1 if there
 223 * aren't enough samples yet.
 
 224 */
 225static int calculate_percentile(struct kyber_queue_data *kqd,
 226				unsigned int sched_domain, unsigned int type,
 227				unsigned int percentile)
 228{
 229	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 230	unsigned int bucket, samples = 0, percentile_samples;
 231
 232	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 233		samples += buckets[bucket];
 234
 235	if (!samples)
 236		return -1;
 237
 238	/*
 239	 * We do the calculation once we have 500 samples or one second passes
 240	 * since the first sample was recorded, whichever comes first.
 241	 */
 242	if (!kqd->latency_timeout[sched_domain])
 243		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
 244	if (samples < 500 &&
 245	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
 246		return -1;
 247	}
 248	kqd->latency_timeout[sched_domain] = 0;
 249
 250	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
 251	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
 252		if (buckets[bucket] >= percentile_samples)
 
 
 
 
 
 
 
 
 
 
 
 
 253			break;
 254		percentile_samples -= buckets[bucket];
 
 
 
 
 
 
 
 
 
 255	}
 256	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
 257
 258	trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
 259			    kyber_latency_type_names[type], percentile,
 260			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
 261
 262	return bucket;
 263}
 264
 265static void kyber_resize_domain(struct kyber_queue_data *kqd,
 266				unsigned int sched_domain, unsigned int depth)
 267{
 268	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
 269	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
 270		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
 271		trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
 272				   depth);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 273	}
 
 
 
 
 274}
 275
 276static void kyber_timer_fn(struct timer_list *t)
 
 
 
 
 277{
 278	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
 279	unsigned int sched_domain;
 280	int cpu;
 281	bool bad = false;
 282
 283	/* Sum all of the per-cpu latency histograms. */
 284	for_each_online_cpu(cpu) {
 285		struct kyber_cpu_latency *cpu_latency;
 286
 287		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
 288		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 289			flush_latency_buckets(kqd, cpu_latency, sched_domain,
 290					      KYBER_TOTAL_LATENCY);
 291			flush_latency_buckets(kqd, cpu_latency, sched_domain,
 292					      KYBER_IO_LATENCY);
 293		}
 294	}
 295
 296	/*
 297	 * Check if any domains have a high I/O latency, which might indicate
 298	 * congestion in the device. Note that we use the p90; we don't want to
 299	 * be too sensitive to outliers here.
 300	 */
 301	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 302		int p90;
 303
 304		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
 305					   90);
 306		if (p90 >= KYBER_GOOD_BUCKETS)
 307			bad = true;
 308	}
 309
 310	/*
 311	 * Adjust the scheduling domain depths. If we determined that there was
 312	 * congestion, we throttle all domains with good latencies. Either way,
 313	 * we ease up on throttling domains with bad latencies.
 314	 */
 315	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 316		unsigned int orig_depth, depth;
 317		int p99;
 318
 319		p99 = calculate_percentile(kqd, sched_domain,
 320					   KYBER_TOTAL_LATENCY, 99);
 321		/*
 322		 * This is kind of subtle: different domains will not
 323		 * necessarily have enough samples to calculate the latency
 324		 * percentiles during the same window, so we have to remember
 325		 * the p99 for the next time we observe congestion; once we do,
 326		 * we don't want to throttle again until we get more data, so we
 327		 * reset it to -1.
 328		 */
 329		if (bad) {
 330			if (p99 < 0)
 331				p99 = kqd->domain_p99[sched_domain];
 332			kqd->domain_p99[sched_domain] = -1;
 333		} else if (p99 >= 0) {
 334			kqd->domain_p99[sched_domain] = p99;
 335		}
 336		if (p99 < 0)
 337			continue;
 338
 339		/*
 340		 * If this domain has bad latency, throttle less. Otherwise,
 341		 * throttle more iff we determined that there is congestion.
 342		 *
 343		 * The new depth is scaled linearly with the p99 latency vs the
 344		 * latency target. E.g., if the p99 is 3/4 of the target, then
 345		 * we throttle down to 3/4 of the current depth, and if the p99
 346		 * is 2x the target, then we double the depth.
 347		 */
 348		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
 349			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
 350			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
 351			kyber_resize_domain(kqd, sched_domain, depth);
 352		}
 353	}
 354}
 355
 356static unsigned int kyber_sched_tags_shift(struct request_queue *q)
 357{
 358	/*
 359	 * All of the hardware queues have the same depth, so we can just grab
 360	 * the shift of the first one.
 361	 */
 362	return q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
 363}
 364
 365static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
 366{
 367	struct kyber_queue_data *kqd;
 
 368	unsigned int shift;
 369	int ret = -ENOMEM;
 370	int i;
 371
 372	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
 373	if (!kqd)
 374		goto err;
 375
 376	kqd->q = q;
 377
 378	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
 379					    GFP_KERNEL | __GFP_ZERO);
 380	if (!kqd->cpu_latency)
 381		goto err_kqd;
 382
 383	timer_setup(&kqd->timer, kyber_timer_fn, 0);
 384
 
 
 
 
 
 385	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 386		WARN_ON(!kyber_depth[i]);
 387		WARN_ON(!kyber_batch_size[i]);
 388		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
 389					      kyber_depth[i], -1, false,
 390					      GFP_KERNEL, q->node);
 391		if (ret) {
 392			while (--i >= 0)
 393				sbitmap_queue_free(&kqd->domain_tokens[i]);
 394			goto err_buckets;
 395		}
 
 396	}
 397
 398	for (i = 0; i < KYBER_OTHER; i++) {
 399		kqd->domain_p99[i] = -1;
 400		kqd->latency_targets[i] = kyber_latency_targets[i];
 401	}
 402
 403	shift = kyber_sched_tags_shift(q);
 404	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
 405
 406	return kqd;
 407
 408err_buckets:
 409	free_percpu(kqd->cpu_latency);
 410err_kqd:
 411	kfree(kqd);
 412err:
 413	return ERR_PTR(ret);
 414}
 415
 416static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
 417{
 418	struct kyber_queue_data *kqd;
 419	struct elevator_queue *eq;
 420
 421	eq = elevator_alloc(q, e);
 422	if (!eq)
 423		return -ENOMEM;
 424
 425	kqd = kyber_queue_data_alloc(q);
 426	if (IS_ERR(kqd)) {
 427		kobject_put(&eq->kobj);
 428		return PTR_ERR(kqd);
 429	}
 430
 431	blk_stat_enable_accounting(q);
 432
 433	eq->elevator_data = kqd;
 434	q->elevator = eq;
 435
 
 
 436	return 0;
 437}
 438
 439static void kyber_exit_sched(struct elevator_queue *e)
 440{
 441	struct kyber_queue_data *kqd = e->elevator_data;
 
 442	int i;
 443
 444	del_timer_sync(&kqd->timer);
 445
 446	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 447		sbitmap_queue_free(&kqd->domain_tokens[i]);
 448	free_percpu(kqd->cpu_latency);
 449	kfree(kqd);
 450}
 451
 452static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
 453{
 454	unsigned int i;
 455
 456	spin_lock_init(&kcq->lock);
 457	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 458		INIT_LIST_HEAD(&kcq->rq_list[i]);
 459}
 460
 461static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 462{
 463	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 464	struct kyber_hctx_data *khd;
 465	int i;
 466
 467	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
 468	if (!khd)
 469		return -ENOMEM;
 470
 471	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
 472				       sizeof(struct kyber_ctx_queue),
 473				       GFP_KERNEL, hctx->numa_node);
 474	if (!khd->kcqs)
 475		goto err_khd;
 476
 477	for (i = 0; i < hctx->nr_ctx; i++)
 478		kyber_ctx_queue_init(&khd->kcqs[i]);
 479
 480	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 481		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
 482				      ilog2(8), GFP_KERNEL, hctx->numa_node)) {
 483			while (--i >= 0)
 484				sbitmap_free(&khd->kcq_map[i]);
 485			goto err_kcqs;
 486		}
 487	}
 488
 489	spin_lock_init(&khd->lock);
 490
 491	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 492		INIT_LIST_HEAD(&khd->rqs[i]);
 493		khd->domain_wait[i].sbq = NULL;
 494		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
 495					  kyber_domain_wake);
 496		khd->domain_wait[i].wait.private = hctx;
 497		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
 498		atomic_set(&khd->wait_index[i], 0);
 499	}
 500
 501	khd->cur_domain = 0;
 502	khd->batching = 0;
 503
 504	hctx->sched_data = khd;
 505	sbitmap_queue_min_shallow_depth(&hctx->sched_tags->bitmap_tags,
 506					kqd->async_depth);
 507
 508	return 0;
 509
 510err_kcqs:
 511	kfree(khd->kcqs);
 512err_khd:
 513	kfree(khd);
 514	return -ENOMEM;
 515}
 516
 517static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 518{
 519	struct kyber_hctx_data *khd = hctx->sched_data;
 520	int i;
 521
 522	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 523		sbitmap_free(&khd->kcq_map[i]);
 524	kfree(khd->kcqs);
 525	kfree(hctx->sched_data);
 526}
 527
 528static int rq_get_domain_token(struct request *rq)
 529{
 530	return (long)rq->elv.priv[0];
 531}
 532
 533static void rq_set_domain_token(struct request *rq, int token)
 534{
 535	rq->elv.priv[0] = (void *)(long)token;
 536}
 537
 538static void rq_clear_domain_token(struct kyber_queue_data *kqd,
 539				  struct request *rq)
 540{
 541	unsigned int sched_domain;
 542	int nr;
 543
 544	nr = rq_get_domain_token(rq);
 545	if (nr != -1) {
 546		sched_domain = kyber_sched_domain(rq->cmd_flags);
 547		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
 548				    rq->mq_ctx->cpu);
 549	}
 550}
 551
 552static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
 553{
 554	/*
 555	 * We use the scheduler tags as per-hardware queue queueing tokens.
 556	 * Async requests can be limited at this stage.
 557	 */
 558	if (!op_is_sync(op)) {
 559		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
 560
 561		data->shallow_depth = kqd->async_depth;
 562	}
 563}
 564
 565static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
 566		unsigned int nr_segs)
 567{
 568	struct kyber_hctx_data *khd = hctx->sched_data;
 569	struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue);
 570	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
 571	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
 572	struct list_head *rq_list = &kcq->rq_list[sched_domain];
 573	bool merged;
 574
 575	spin_lock(&kcq->lock);
 576	merged = blk_mq_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
 577	spin_unlock(&kcq->lock);
 578
 579	return merged;
 580}
 581
 582static void kyber_prepare_request(struct request *rq)
 583{
 584	rq_set_domain_token(rq, -1);
 585}
 586
 587static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
 588				  struct list_head *rq_list, bool at_head)
 589{
 590	struct kyber_hctx_data *khd = hctx->sched_data;
 591	struct request *rq, *next;
 592
 593	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
 594		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
 595		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
 596		struct list_head *head = &kcq->rq_list[sched_domain];
 597
 598		spin_lock(&kcq->lock);
 599		if (at_head)
 600			list_move(&rq->queuelist, head);
 601		else
 602			list_move_tail(&rq->queuelist, head);
 603		sbitmap_set_bit(&khd->kcq_map[sched_domain],
 604				rq->mq_ctx->index_hw[hctx->type]);
 605		blk_mq_sched_request_inserted(rq);
 606		spin_unlock(&kcq->lock);
 607	}
 608}
 609
 610static void kyber_finish_request(struct request *rq)
 611{
 612	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 613
 614	rq_clear_domain_token(kqd, rq);
 615}
 616
 617static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
 618			       unsigned int sched_domain, unsigned int type,
 619			       u64 target, u64 latency)
 620{
 621	unsigned int bucket;
 622	u64 divisor;
 623
 624	if (latency > 0) {
 625		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
 626		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
 627			       KYBER_LATENCY_BUCKETS - 1);
 628	} else {
 629		bucket = 0;
 630	}
 631
 632	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
 633}
 634
 635static void kyber_completed_request(struct request *rq, u64 now)
 636{
 637	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 638	struct kyber_cpu_latency *cpu_latency;
 639	unsigned int sched_domain;
 640	u64 target;
 641
 642	sched_domain = kyber_sched_domain(rq->cmd_flags);
 643	if (sched_domain == KYBER_OTHER)
 
 
 
 
 
 
 
 
 
 
 
 644		return;
 
 645
 646	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
 647	target = kqd->latency_targets[sched_domain];
 648	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
 649			   target, now - rq->start_time_ns);
 650	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
 651			   now - rq->io_start_time_ns);
 652	put_cpu_ptr(kqd->cpu_latency);
 653
 654	timer_reduce(&kqd->timer, jiffies + HZ / 10);
 655}
 
 656
 657struct flush_kcq_data {
 658	struct kyber_hctx_data *khd;
 659	unsigned int sched_domain;
 660	struct list_head *list;
 661};
 662
 663static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
 664{
 665	struct flush_kcq_data *flush_data = data;
 666	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
 667
 668	spin_lock(&kcq->lock);
 669	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
 670			      flush_data->list);
 671	sbitmap_clear_bit(sb, bitnr);
 672	spin_unlock(&kcq->lock);
 673
 674	return true;
 675}
 676
 677static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
 678				  unsigned int sched_domain,
 679				  struct list_head *list)
 680{
 681	struct flush_kcq_data data = {
 682		.khd = khd,
 683		.sched_domain = sched_domain,
 684		.list = list,
 685	};
 
 686
 687	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
 688			     flush_busy_kcq, &data);
 
 689}
 690
 691static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
 692			     void *key)
 693{
 694	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
 695	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
 696
 697	sbitmap_del_wait_queue(wait);
 698	blk_mq_run_hw_queue(hctx, true);
 699	return 1;
 700}
 701
 702static int kyber_get_domain_token(struct kyber_queue_data *kqd,
 703				  struct kyber_hctx_data *khd,
 704				  struct blk_mq_hw_ctx *hctx)
 705{
 706	unsigned int sched_domain = khd->cur_domain;
 707	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
 708	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
 709	struct sbq_wait_state *ws;
 710	int nr;
 711
 712	nr = __sbitmap_queue_get(domain_tokens);
 713
 714	/*
 715	 * If we failed to get a domain token, make sure the hardware queue is
 716	 * run when one becomes available. Note that this is serialized on
 717	 * khd->lock, but we still need to be careful about the waker.
 718	 */
 719	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
 720		ws = sbq_wait_ptr(domain_tokens,
 721				  &khd->wait_index[sched_domain]);
 722		khd->domain_ws[sched_domain] = ws;
 723		sbitmap_add_wait_queue(domain_tokens, ws, wait);
 724
 725		/*
 726		 * Try again in case a token was freed before we got on the wait
 727		 * queue.
 728		 */
 729		nr = __sbitmap_queue_get(domain_tokens);
 730	}
 731
 732	/*
 733	 * If we got a token while we were on the wait queue, remove ourselves
 734	 * from the wait queue to ensure that all wake ups make forward
 735	 * progress. It's possible that the waker already deleted the entry
 736	 * between the !list_empty_careful() check and us grabbing the lock, but
 737	 * list_del_init() is okay with that.
 738	 */
 739	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
 740		ws = khd->domain_ws[sched_domain];
 741		spin_lock_irq(&ws->wait.lock);
 742		sbitmap_del_wait_queue(wait);
 743		spin_unlock_irq(&ws->wait.lock);
 744	}
 745
 746	return nr;
 747}
 748
 749static struct request *
 750kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
 751			  struct kyber_hctx_data *khd,
 752			  struct blk_mq_hw_ctx *hctx)
 
 753{
 754	struct list_head *rqs;
 755	struct request *rq;
 756	int nr;
 757
 758	rqs = &khd->rqs[khd->cur_domain];
 
 759
 760	/*
 761	 * If we already have a flushed request, then we just need to get a
 762	 * token for it. Otherwise, if there are pending requests in the kcqs,
 763	 * flush the kcqs, but only if we can get a token. If not, we should
 764	 * leave the requests in the kcqs so that they can be merged. Note that
 765	 * khd->lock serializes the flushes, so if we observed any bit set in
 766	 * the kcq_map, we will always get a request.
 767	 */
 768	rq = list_first_entry_or_null(rqs, struct request, queuelist);
 
 
 
 
 
 769	if (rq) {
 770		nr = kyber_get_domain_token(kqd, khd, hctx);
 771		if (nr >= 0) {
 772			khd->batching++;
 773			rq_set_domain_token(rq, nr);
 774			list_del_init(&rq->queuelist);
 775			return rq;
 776		} else {
 777			trace_kyber_throttled(kqd->q,
 778					      kyber_domain_names[khd->cur_domain]);
 779		}
 780	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
 781		nr = kyber_get_domain_token(kqd, khd, hctx);
 782		if (nr >= 0) {
 783			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
 784			rq = list_first_entry(rqs, struct request, queuelist);
 785			khd->batching++;
 786			rq_set_domain_token(rq, nr);
 787			list_del_init(&rq->queuelist);
 788			return rq;
 789		} else {
 790			trace_kyber_throttled(kqd->q,
 791					      kyber_domain_names[khd->cur_domain]);
 792		}
 793	}
 794
 795	/* There were either no pending requests or no tokens. */
 796	return NULL;
 797}
 798
 799static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
 800{
 801	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 802	struct kyber_hctx_data *khd = hctx->sched_data;
 
 803	struct request *rq;
 804	int i;
 805
 806	spin_lock(&khd->lock);
 807
 808	/*
 809	 * First, if we are still entitled to batch, try to dispatch a request
 810	 * from the batch.
 811	 */
 812	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
 813		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 814		if (rq)
 815			goto out;
 816	}
 817
 818	/*
 819	 * Either,
 820	 * 1. We were no longer entitled to a batch.
 821	 * 2. The domain we were batching didn't have any requests.
 822	 * 3. The domain we were batching was out of tokens.
 823	 *
 824	 * Start another batch. Note that this wraps back around to the original
 825	 * domain if no other domains have requests or tokens.
 826	 */
 827	khd->batching = 0;
 828	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 829		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
 830			khd->cur_domain = 0;
 831		else
 832			khd->cur_domain++;
 833
 834		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 835		if (rq)
 836			goto out;
 837	}
 838
 839	rq = NULL;
 840out:
 841	spin_unlock(&khd->lock);
 842	return rq;
 843}
 844
 845static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
 846{
 847	struct kyber_hctx_data *khd = hctx->sched_data;
 848	int i;
 849
 850	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 851		if (!list_empty_careful(&khd->rqs[i]) ||
 852		    sbitmap_any_bit_set(&khd->kcq_map[i]))
 853			return true;
 854	}
 855
 856	return false;
 857}
 858
 859#define KYBER_LAT_SHOW_STORE(domain, name)				\
 860static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
 861				       char *page)			\
 862{									\
 863	struct kyber_queue_data *kqd = e->elevator_data;		\
 864									\
 865	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
 866}									\
 867									\
 868static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
 869					const char *page, size_t count)	\
 870{									\
 871	struct kyber_queue_data *kqd = e->elevator_data;		\
 872	unsigned long long nsec;					\
 873	int ret;							\
 874									\
 875	ret = kstrtoull(page, 10, &nsec);				\
 876	if (ret)							\
 877		return ret;						\
 878									\
 879	kqd->latency_targets[domain] = nsec;				\
 880									\
 881	return count;							\
 882}
 883KYBER_LAT_SHOW_STORE(KYBER_READ, read);
 884KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
 885#undef KYBER_LAT_SHOW_STORE
 886
 887#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
 888static struct elv_fs_entry kyber_sched_attrs[] = {
 889	KYBER_LAT_ATTR(read),
 890	KYBER_LAT_ATTR(write),
 891	__ATTR_NULL
 892};
 893#undef KYBER_LAT_ATTR
 894
 895#ifdef CONFIG_BLK_DEBUG_FS
 896#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
 897static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
 898{									\
 899	struct request_queue *q = data;					\
 900	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
 901									\
 902	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
 903	return 0;							\
 904}									\
 905									\
 906static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
 907	__acquires(&khd->lock)						\
 908{									\
 909	struct blk_mq_hw_ctx *hctx = m->private;			\
 910	struct kyber_hctx_data *khd = hctx->sched_data;			\
 911									\
 912	spin_lock(&khd->lock);						\
 913	return seq_list_start(&khd->rqs[domain], *pos);			\
 914}									\
 915									\
 916static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
 917				     loff_t *pos)			\
 918{									\
 919	struct blk_mq_hw_ctx *hctx = m->private;			\
 920	struct kyber_hctx_data *khd = hctx->sched_data;			\
 921									\
 922	return seq_list_next(v, &khd->rqs[domain], pos);		\
 923}									\
 924									\
 925static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
 926	__releases(&khd->lock)						\
 927{									\
 928	struct blk_mq_hw_ctx *hctx = m->private;			\
 929	struct kyber_hctx_data *khd = hctx->sched_data;			\
 930									\
 931	spin_unlock(&khd->lock);					\
 932}									\
 933									\
 934static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
 935	.start	= kyber_##name##_rqs_start,				\
 936	.next	= kyber_##name##_rqs_next,				\
 937	.stop	= kyber_##name##_rqs_stop,				\
 938	.show	= blk_mq_debugfs_rq_show,				\
 939};									\
 940									\
 941static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
 942{									\
 943	struct blk_mq_hw_ctx *hctx = data;				\
 944	struct kyber_hctx_data *khd = hctx->sched_data;			\
 945	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
 946									\
 947	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
 948	return 0;							\
 949}
 950KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
 951KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
 952KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
 953KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
 954#undef KYBER_DEBUGFS_DOMAIN_ATTRS
 955
 956static int kyber_async_depth_show(void *data, struct seq_file *m)
 957{
 958	struct request_queue *q = data;
 959	struct kyber_queue_data *kqd = q->elevator->elevator_data;
 960
 961	seq_printf(m, "%u\n", kqd->async_depth);
 962	return 0;
 963}
 964
 965static int kyber_cur_domain_show(void *data, struct seq_file *m)
 966{
 967	struct blk_mq_hw_ctx *hctx = data;
 968	struct kyber_hctx_data *khd = hctx->sched_data;
 969
 970	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 971	return 0;
 972}
 973
 974static int kyber_batching_show(void *data, struct seq_file *m)
 975{
 976	struct blk_mq_hw_ctx *hctx = data;
 977	struct kyber_hctx_data *khd = hctx->sched_data;
 978
 979	seq_printf(m, "%u\n", khd->batching);
 980	return 0;
 981}
 982
 983#define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
 984	{#name "_tokens", 0400, kyber_##name##_tokens_show}
 985static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
 986	KYBER_QUEUE_DOMAIN_ATTRS(read),
 987	KYBER_QUEUE_DOMAIN_ATTRS(write),
 988	KYBER_QUEUE_DOMAIN_ATTRS(discard),
 989	KYBER_QUEUE_DOMAIN_ATTRS(other),
 990	{"async_depth", 0400, kyber_async_depth_show},
 991	{},
 992};
 993#undef KYBER_QUEUE_DOMAIN_ATTRS
 994
 995#define KYBER_HCTX_DOMAIN_ATTRS(name)					\
 996	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
 997	{#name "_waiting", 0400, kyber_##name##_waiting_show}
 998static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
 999	KYBER_HCTX_DOMAIN_ATTRS(read),
1000	KYBER_HCTX_DOMAIN_ATTRS(write),
1001	KYBER_HCTX_DOMAIN_ATTRS(discard),
1002	KYBER_HCTX_DOMAIN_ATTRS(other),
1003	{"cur_domain", 0400, kyber_cur_domain_show},
1004	{"batching", 0400, kyber_batching_show},
1005	{},
1006};
1007#undef KYBER_HCTX_DOMAIN_ATTRS
1008#endif
1009
1010static struct elevator_type kyber_sched = {
1011	.ops = {
1012		.init_sched = kyber_init_sched,
1013		.exit_sched = kyber_exit_sched,
1014		.init_hctx = kyber_init_hctx,
1015		.exit_hctx = kyber_exit_hctx,
1016		.limit_depth = kyber_limit_depth,
1017		.bio_merge = kyber_bio_merge,
1018		.prepare_request = kyber_prepare_request,
1019		.insert_requests = kyber_insert_requests,
1020		.finish_request = kyber_finish_request,
1021		.requeue_request = kyber_finish_request,
1022		.completed_request = kyber_completed_request,
1023		.dispatch_request = kyber_dispatch_request,
1024		.has_work = kyber_has_work,
1025	},
 
1026#ifdef CONFIG_BLK_DEBUG_FS
1027	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1028	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1029#endif
1030	.elevator_attrs = kyber_sched_attrs,
1031	.elevator_name = "kyber",
1032	.elevator_owner = THIS_MODULE,
1033};
1034
1035static int __init kyber_init(void)
1036{
1037	return elv_register(&kyber_sched);
1038}
1039
1040static void __exit kyber_exit(void)
1041{
1042	elv_unregister(&kyber_sched);
1043}
1044
1045module_init(kyber_init);
1046module_exit(kyber_exit);
1047
1048MODULE_AUTHOR("Omar Sandoval");
1049MODULE_LICENSE("GPL");
1050MODULE_DESCRIPTION("Kyber I/O scheduler");