Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Functions related to setting various queue properties from drivers
  3 */
  4#include <linux/kernel.h>
  5#include <linux/module.h>
  6#include <linux/init.h>
  7#include <linux/bio.h>
  8#include <linux/blkdev.h>
  9#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
 10#include <linux/gcd.h>
 11#include <linux/lcm.h>
 12#include <linux/jiffies.h>
 13#include <linux/gfp.h>
 
 14
 15#include "blk.h"
 16#include "blk-wbt.h"
 17
 18unsigned long blk_max_low_pfn;
 19EXPORT_SYMBOL(blk_max_low_pfn);
 20
 21unsigned long blk_max_pfn;
 22
 23/**
 24 * blk_queue_prep_rq - set a prepare_request function for queue
 25 * @q:		queue
 26 * @pfn:	prepare_request function
 27 *
 28 * It's possible for a queue to register a prepare_request callback which
 29 * is invoked before the request is handed to the request_fn. The goal of
 30 * the function is to prepare a request for I/O, it can be used to build a
 31 * cdb from the request data for instance.
 32 *
 33 */
 34void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
 35{
 36	q->prep_rq_fn = pfn;
 37}
 38EXPORT_SYMBOL(blk_queue_prep_rq);
 39
 40/**
 41 * blk_queue_unprep_rq - set an unprepare_request function for queue
 42 * @q:		queue
 43 * @ufn:	unprepare_request function
 44 *
 45 * It's possible for a queue to register an unprepare_request callback
 46 * which is invoked before the request is finally completed. The goal
 47 * of the function is to deallocate any data that was allocated in the
 48 * prepare_request callback.
 49 *
 50 */
 51void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
 52{
 53	q->unprep_rq_fn = ufn;
 54}
 55EXPORT_SYMBOL(blk_queue_unprep_rq);
 56
 57void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
 58{
 59	q->softirq_done_fn = fn;
 60}
 61EXPORT_SYMBOL(blk_queue_softirq_done);
 62
 63void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 64{
 65	q->rq_timeout = timeout;
 66}
 67EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 68
 69void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
 70{
 71	WARN_ON_ONCE(q->mq_ops);
 72	q->rq_timed_out_fn = fn;
 73}
 74EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
 75
 76void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
 77{
 78	q->lld_busy_fn = fn;
 79}
 80EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
 81
 82/**
 83 * blk_set_default_limits - reset limits to default values
 84 * @lim:  the queue_limits structure to reset
 85 *
 86 * Description:
 87 *   Returns a queue_limit struct to its default state.
 88 */
 89void blk_set_default_limits(struct queue_limits *lim)
 90{
 91	lim->max_segments = BLK_MAX_SEGMENTS;
 92	lim->max_discard_segments = 1;
 93	lim->max_integrity_segments = 0;
 94	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 95	lim->virt_boundary_mask = 0;
 96	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
 97	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
 98	lim->max_dev_sectors = 0;
 99	lim->chunk_sectors = 0;
100	lim->max_write_same_sectors = 0;
101	lim->max_write_zeroes_sectors = 0;
 
102	lim->max_discard_sectors = 0;
103	lim->max_hw_discard_sectors = 0;
104	lim->discard_granularity = 0;
105	lim->discard_alignment = 0;
106	lim->discard_misaligned = 0;
107	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
108	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
109	lim->alignment_offset = 0;
110	lim->io_opt = 0;
111	lim->misaligned = 0;
112	lim->cluster = 1;
113	lim->zoned = BLK_ZONED_NONE;
114}
115EXPORT_SYMBOL(blk_set_default_limits);
116
117/**
118 * blk_set_stacking_limits - set default limits for stacking devices
119 * @lim:  the queue_limits structure to reset
120 *
121 * Description:
122 *   Returns a queue_limit struct to its default state. Should be used
123 *   by stacking drivers like DM that have no internal limits.
124 */
125void blk_set_stacking_limits(struct queue_limits *lim)
126{
127	blk_set_default_limits(lim);
128
129	/* Inherit limits from component devices */
130	lim->max_segments = USHRT_MAX;
131	lim->max_discard_segments = 1;
132	lim->max_hw_sectors = UINT_MAX;
133	lim->max_segment_size = UINT_MAX;
134	lim->max_sectors = UINT_MAX;
135	lim->max_dev_sectors = UINT_MAX;
136	lim->max_write_same_sectors = UINT_MAX;
137	lim->max_write_zeroes_sectors = UINT_MAX;
 
138}
139EXPORT_SYMBOL(blk_set_stacking_limits);
140
141/**
142 * blk_queue_make_request - define an alternate make_request function for a device
143 * @q:  the request queue for the device to be affected
144 * @mfn: the alternate make_request function
145 *
146 * Description:
147 *    The normal way for &struct bios to be passed to a device
148 *    driver is for them to be collected into requests on a request
149 *    queue, and then to allow the device driver to select requests
150 *    off that queue when it is ready.  This works well for many block
151 *    devices. However some block devices (typically virtual devices
152 *    such as md or lvm) do not benefit from the processing on the
153 *    request queue, and are served best by having the requests passed
154 *    directly to them.  This can be achieved by providing a function
155 *    to blk_queue_make_request().
156 *
157 * Caveat:
158 *    The driver that does this *must* be able to deal appropriately
159 *    with buffers in "highmemory". This can be accomplished by either calling
160 *    kmap_atomic() to get a temporary kernel mapping, or by calling
161 *    blk_queue_bounce() to create a buffer in normal memory.
162 **/
163void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
164{
165	/*
166	 * set defaults
167	 */
168	q->nr_requests = BLKDEV_MAX_RQ;
169
170	q->make_request_fn = mfn;
171	blk_queue_dma_alignment(q, 511);
172	blk_queue_congestion_threshold(q);
173	q->nr_batching = BLK_BATCH_REQ;
174
175	blk_set_default_limits(&q->limits);
176}
177EXPORT_SYMBOL(blk_queue_make_request);
178
179/**
180 * blk_queue_bounce_limit - set bounce buffer limit for queue
181 * @q: the request queue for the device
182 * @max_addr: the maximum address the device can handle
183 *
184 * Description:
185 *    Different hardware can have different requirements as to what pages
186 *    it can do I/O directly to. A low level driver can call
187 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
188 *    buffers for doing I/O to pages residing above @max_addr.
189 **/
190void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
191{
192	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
193	int dma = 0;
194
195	q->bounce_gfp = GFP_NOIO;
196#if BITS_PER_LONG == 64
197	/*
198	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
199	 * some IOMMUs can handle everything, but I don't know of a
200	 * way to test this here.
201	 */
202	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
203		dma = 1;
204	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
205#else
206	if (b_pfn < blk_max_low_pfn)
207		dma = 1;
208	q->limits.bounce_pfn = b_pfn;
209#endif
210	if (dma) {
211		init_emergency_isa_pool();
212		q->bounce_gfp = GFP_NOIO | GFP_DMA;
213		q->limits.bounce_pfn = b_pfn;
214	}
215}
216EXPORT_SYMBOL(blk_queue_bounce_limit);
217
218/**
219 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
220 * @q:  the request queue for the device
221 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
222 *
223 * Description:
224 *    Enables a low level driver to set a hard upper limit,
225 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
226 *    the device driver based upon the capabilities of the I/O
227 *    controller.
228 *
229 *    max_dev_sectors is a hard limit imposed by the storage device for
230 *    READ/WRITE requests. It is set by the disk driver.
231 *
232 *    max_sectors is a soft limit imposed by the block layer for
233 *    filesystem type requests.  This value can be overridden on a
234 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
235 *    The soft limit can not exceed max_hw_sectors.
236 **/
237void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
238{
239	struct queue_limits *limits = &q->limits;
240	unsigned int max_sectors;
241
242	if ((max_hw_sectors << 9) < PAGE_SIZE) {
243		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
244		printk(KERN_INFO "%s: set to minimum %d\n",
245		       __func__, max_hw_sectors);
246	}
247
248	limits->max_hw_sectors = max_hw_sectors;
249	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
250	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
251	limits->max_sectors = max_sectors;
252	q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
253}
254EXPORT_SYMBOL(blk_queue_max_hw_sectors);
255
256/**
257 * blk_queue_chunk_sectors - set size of the chunk for this queue
258 * @q:  the request queue for the device
259 * @chunk_sectors:  chunk sectors in the usual 512b unit
260 *
261 * Description:
262 *    If a driver doesn't want IOs to cross a given chunk size, it can set
263 *    this limit and prevent merging across chunks. Note that the chunk size
264 *    must currently be a power-of-2 in sectors. Also note that the block
265 *    layer must accept a page worth of data at any offset. So if the
266 *    crossing of chunks is a hard limitation in the driver, it must still be
267 *    prepared to split single page bios.
268 **/
269void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
270{
271	BUG_ON(!is_power_of_2(chunk_sectors));
272	q->limits.chunk_sectors = chunk_sectors;
273}
274EXPORT_SYMBOL(blk_queue_chunk_sectors);
275
276/**
277 * blk_queue_max_discard_sectors - set max sectors for a single discard
278 * @q:  the request queue for the device
279 * @max_discard_sectors: maximum number of sectors to discard
280 **/
281void blk_queue_max_discard_sectors(struct request_queue *q,
282		unsigned int max_discard_sectors)
283{
284	q->limits.max_hw_discard_sectors = max_discard_sectors;
285	q->limits.max_discard_sectors = max_discard_sectors;
286}
287EXPORT_SYMBOL(blk_queue_max_discard_sectors);
288
289/**
290 * blk_queue_max_write_same_sectors - set max sectors for a single write same
291 * @q:  the request queue for the device
292 * @max_write_same_sectors: maximum number of sectors to write per command
293 **/
294void blk_queue_max_write_same_sectors(struct request_queue *q,
295				      unsigned int max_write_same_sectors)
296{
297	q->limits.max_write_same_sectors = max_write_same_sectors;
298}
299EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
300
301/**
302 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
303 *                                      write zeroes
304 * @q:  the request queue for the device
305 * @max_write_zeroes_sectors: maximum number of sectors to write per command
306 **/
307void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
308		unsigned int max_write_zeroes_sectors)
309{
310	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
311}
312EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
313
314/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315 * blk_queue_max_segments - set max hw segments for a request for this queue
316 * @q:  the request queue for the device
317 * @max_segments:  max number of segments
318 *
319 * Description:
320 *    Enables a low level driver to set an upper limit on the number of
321 *    hw data segments in a request.
322 **/
323void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
324{
325	if (!max_segments) {
326		max_segments = 1;
327		printk(KERN_INFO "%s: set to minimum %d\n",
328		       __func__, max_segments);
329	}
330
331	q->limits.max_segments = max_segments;
332}
333EXPORT_SYMBOL(blk_queue_max_segments);
334
335/**
336 * blk_queue_max_discard_segments - set max segments for discard requests
337 * @q:  the request queue for the device
338 * @max_segments:  max number of segments
339 *
340 * Description:
341 *    Enables a low level driver to set an upper limit on the number of
342 *    segments in a discard request.
343 **/
344void blk_queue_max_discard_segments(struct request_queue *q,
345		unsigned short max_segments)
346{
347	q->limits.max_discard_segments = max_segments;
348}
349EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
350
351/**
352 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
353 * @q:  the request queue for the device
354 * @max_size:  max size of segment in bytes
355 *
356 * Description:
357 *    Enables a low level driver to set an upper limit on the size of a
358 *    coalesced segment
359 **/
360void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
361{
362	if (max_size < PAGE_SIZE) {
363		max_size = PAGE_SIZE;
364		printk(KERN_INFO "%s: set to minimum %d\n",
365		       __func__, max_size);
366	}
367
 
 
 
368	q->limits.max_segment_size = max_size;
369}
370EXPORT_SYMBOL(blk_queue_max_segment_size);
371
372/**
373 * blk_queue_logical_block_size - set logical block size for the queue
374 * @q:  the request queue for the device
375 * @size:  the logical block size, in bytes
376 *
377 * Description:
378 *   This should be set to the lowest possible block size that the
379 *   storage device can address.  The default of 512 covers most
380 *   hardware.
381 **/
382void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
383{
384	q->limits.logical_block_size = size;
385
386	if (q->limits.physical_block_size < size)
387		q->limits.physical_block_size = size;
388
389	if (q->limits.io_min < q->limits.physical_block_size)
390		q->limits.io_min = q->limits.physical_block_size;
391}
392EXPORT_SYMBOL(blk_queue_logical_block_size);
393
394/**
395 * blk_queue_physical_block_size - set physical block size for the queue
396 * @q:  the request queue for the device
397 * @size:  the physical block size, in bytes
398 *
399 * Description:
400 *   This should be set to the lowest possible sector size that the
401 *   hardware can operate on without reverting to read-modify-write
402 *   operations.
403 */
404void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
405{
406	q->limits.physical_block_size = size;
407
408	if (q->limits.physical_block_size < q->limits.logical_block_size)
409		q->limits.physical_block_size = q->limits.logical_block_size;
410
411	if (q->limits.io_min < q->limits.physical_block_size)
412		q->limits.io_min = q->limits.physical_block_size;
413}
414EXPORT_SYMBOL(blk_queue_physical_block_size);
415
416/**
417 * blk_queue_alignment_offset - set physical block alignment offset
418 * @q:	the request queue for the device
419 * @offset: alignment offset in bytes
420 *
421 * Description:
422 *   Some devices are naturally misaligned to compensate for things like
423 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
424 *   should call this function for devices whose first sector is not
425 *   naturally aligned.
426 */
427void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
428{
429	q->limits.alignment_offset =
430		offset & (q->limits.physical_block_size - 1);
431	q->limits.misaligned = 0;
432}
433EXPORT_SYMBOL(blk_queue_alignment_offset);
434
435/**
436 * blk_limits_io_min - set minimum request size for a device
437 * @limits: the queue limits
438 * @min:  smallest I/O size in bytes
439 *
440 * Description:
441 *   Some devices have an internal block size bigger than the reported
442 *   hardware sector size.  This function can be used to signal the
443 *   smallest I/O the device can perform without incurring a performance
444 *   penalty.
445 */
446void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
447{
448	limits->io_min = min;
449
450	if (limits->io_min < limits->logical_block_size)
451		limits->io_min = limits->logical_block_size;
452
453	if (limits->io_min < limits->physical_block_size)
454		limits->io_min = limits->physical_block_size;
455}
456EXPORT_SYMBOL(blk_limits_io_min);
457
458/**
459 * blk_queue_io_min - set minimum request size for the queue
460 * @q:	the request queue for the device
461 * @min:  smallest I/O size in bytes
462 *
463 * Description:
464 *   Storage devices may report a granularity or preferred minimum I/O
465 *   size which is the smallest request the device can perform without
466 *   incurring a performance penalty.  For disk drives this is often the
467 *   physical block size.  For RAID arrays it is often the stripe chunk
468 *   size.  A properly aligned multiple of minimum_io_size is the
469 *   preferred request size for workloads where a high number of I/O
470 *   operations is desired.
471 */
472void blk_queue_io_min(struct request_queue *q, unsigned int min)
473{
474	blk_limits_io_min(&q->limits, min);
475}
476EXPORT_SYMBOL(blk_queue_io_min);
477
478/**
479 * blk_limits_io_opt - set optimal request size for a device
480 * @limits: the queue limits
481 * @opt:  smallest I/O size in bytes
482 *
483 * Description:
484 *   Storage devices may report an optimal I/O size, which is the
485 *   device's preferred unit for sustained I/O.  This is rarely reported
486 *   for disk drives.  For RAID arrays it is usually the stripe width or
487 *   the internal track size.  A properly aligned multiple of
488 *   optimal_io_size is the preferred request size for workloads where
489 *   sustained throughput is desired.
490 */
491void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
492{
493	limits->io_opt = opt;
494}
495EXPORT_SYMBOL(blk_limits_io_opt);
496
497/**
498 * blk_queue_io_opt - set optimal request size for the queue
499 * @q:	the request queue for the device
500 * @opt:  optimal request size in bytes
501 *
502 * Description:
503 *   Storage devices may report an optimal I/O size, which is the
504 *   device's preferred unit for sustained I/O.  This is rarely reported
505 *   for disk drives.  For RAID arrays it is usually the stripe width or
506 *   the internal track size.  A properly aligned multiple of
507 *   optimal_io_size is the preferred request size for workloads where
508 *   sustained throughput is desired.
509 */
510void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
511{
512	blk_limits_io_opt(&q->limits, opt);
513}
514EXPORT_SYMBOL(blk_queue_io_opt);
515
516/**
517 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
518 * @t:	the stacking driver (top)
519 * @b:  the underlying device (bottom)
520 **/
521void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
522{
523	blk_stack_limits(&t->limits, &b->limits, 0);
524}
525EXPORT_SYMBOL(blk_queue_stack_limits);
526
527/**
528 * blk_stack_limits - adjust queue_limits for stacked devices
529 * @t:	the stacking driver limits (top device)
530 * @b:  the underlying queue limits (bottom, component device)
531 * @start:  first data sector within component device
532 *
533 * Description:
534 *    This function is used by stacking drivers like MD and DM to ensure
535 *    that all component devices have compatible block sizes and
536 *    alignments.  The stacking driver must provide a queue_limits
537 *    struct (top) and then iteratively call the stacking function for
538 *    all component (bottom) devices.  The stacking function will
539 *    attempt to combine the values and ensure proper alignment.
540 *
541 *    Returns 0 if the top and bottom queue_limits are compatible.  The
542 *    top device's block sizes and alignment offsets may be adjusted to
543 *    ensure alignment with the bottom device. If no compatible sizes
544 *    and alignments exist, -1 is returned and the resulting top
545 *    queue_limits will have the misaligned flag set to indicate that
546 *    the alignment_offset is undefined.
547 */
548int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
549		     sector_t start)
550{
551	unsigned int top, bottom, alignment, ret = 0;
552
553	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
554	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
555	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
556	t->max_write_same_sectors = min(t->max_write_same_sectors,
557					b->max_write_same_sectors);
558	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
559					b->max_write_zeroes_sectors);
 
 
560	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
561
562	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
563					    b->seg_boundary_mask);
564	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
565					    b->virt_boundary_mask);
566
567	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
568	t->max_discard_segments = min_not_zero(t->max_discard_segments,
569					       b->max_discard_segments);
570	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
571						 b->max_integrity_segments);
572
573	t->max_segment_size = min_not_zero(t->max_segment_size,
574					   b->max_segment_size);
575
576	t->misaligned |= b->misaligned;
577
578	alignment = queue_limit_alignment_offset(b, start);
579
580	/* Bottom device has different alignment.  Check that it is
581	 * compatible with the current top alignment.
582	 */
583	if (t->alignment_offset != alignment) {
584
585		top = max(t->physical_block_size, t->io_min)
586			+ t->alignment_offset;
587		bottom = max(b->physical_block_size, b->io_min) + alignment;
588
589		/* Verify that top and bottom intervals line up */
590		if (max(top, bottom) % min(top, bottom)) {
591			t->misaligned = 1;
592			ret = -1;
593		}
594	}
595
596	t->logical_block_size = max(t->logical_block_size,
597				    b->logical_block_size);
598
599	t->physical_block_size = max(t->physical_block_size,
600				     b->physical_block_size);
601
602	t->io_min = max(t->io_min, b->io_min);
603	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
604
605	t->cluster &= b->cluster;
606
607	/* Physical block size a multiple of the logical block size? */
608	if (t->physical_block_size & (t->logical_block_size - 1)) {
609		t->physical_block_size = t->logical_block_size;
610		t->misaligned = 1;
611		ret = -1;
612	}
613
614	/* Minimum I/O a multiple of the physical block size? */
615	if (t->io_min & (t->physical_block_size - 1)) {
616		t->io_min = t->physical_block_size;
617		t->misaligned = 1;
618		ret = -1;
619	}
620
621	/* Optimal I/O a multiple of the physical block size? */
622	if (t->io_opt & (t->physical_block_size - 1)) {
623		t->io_opt = 0;
624		t->misaligned = 1;
625		ret = -1;
626	}
627
628	t->raid_partial_stripes_expensive =
629		max(t->raid_partial_stripes_expensive,
630		    b->raid_partial_stripes_expensive);
631
632	/* Find lowest common alignment_offset */
633	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
634		% max(t->physical_block_size, t->io_min);
635
636	/* Verify that new alignment_offset is on a logical block boundary */
637	if (t->alignment_offset & (t->logical_block_size - 1)) {
638		t->misaligned = 1;
639		ret = -1;
640	}
641
642	/* Discard alignment and granularity */
643	if (b->discard_granularity) {
644		alignment = queue_limit_discard_alignment(b, start);
645
646		if (t->discard_granularity != 0 &&
647		    t->discard_alignment != alignment) {
648			top = t->discard_granularity + t->discard_alignment;
649			bottom = b->discard_granularity + alignment;
650
651			/* Verify that top and bottom intervals line up */
652			if ((max(top, bottom) % min(top, bottom)) != 0)
653				t->discard_misaligned = 1;
654		}
655
656		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
657						      b->max_discard_sectors);
658		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
659							 b->max_hw_discard_sectors);
660		t->discard_granularity = max(t->discard_granularity,
661					     b->discard_granularity);
662		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
663			t->discard_granularity;
664	}
665
666	if (b->chunk_sectors)
667		t->chunk_sectors = min_not_zero(t->chunk_sectors,
668						b->chunk_sectors);
669
 
670	return ret;
671}
672EXPORT_SYMBOL(blk_stack_limits);
673
674/**
675 * bdev_stack_limits - adjust queue limits for stacked drivers
676 * @t:	the stacking driver limits (top device)
677 * @bdev:  the component block_device (bottom)
678 * @start:  first data sector within component device
679 *
680 * Description:
681 *    Merges queue limits for a top device and a block_device.  Returns
682 *    0 if alignment didn't change.  Returns -1 if adding the bottom
683 *    device caused misalignment.
684 */
685int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
686		      sector_t start)
687{
688	struct request_queue *bq = bdev_get_queue(bdev);
689
690	start += get_start_sect(bdev);
691
692	return blk_stack_limits(t, &bq->limits, start);
693}
694EXPORT_SYMBOL(bdev_stack_limits);
695
696/**
697 * disk_stack_limits - adjust queue limits for stacked drivers
698 * @disk:  MD/DM gendisk (top)
699 * @bdev:  the underlying block device (bottom)
700 * @offset:  offset to beginning of data within component device
701 *
702 * Description:
703 *    Merges the limits for a top level gendisk and a bottom level
704 *    block_device.
705 */
706void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
707		       sector_t offset)
708{
709	struct request_queue *t = disk->queue;
710
711	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
 
712		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
713
714		disk_name(disk, 0, top);
715		bdevname(bdev, bottom);
716
717		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
718		       top, bottom);
719	}
720}
721EXPORT_SYMBOL(disk_stack_limits);
722
723/**
724 * blk_queue_dma_pad - set pad mask
725 * @q:     the request queue for the device
726 * @mask:  pad mask
727 *
728 * Set dma pad mask.
729 *
730 * Appending pad buffer to a request modifies the last entry of a
731 * scatter list such that it includes the pad buffer.
732 **/
733void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
734{
735	q->dma_pad_mask = mask;
736}
737EXPORT_SYMBOL(blk_queue_dma_pad);
738
739/**
740 * blk_queue_update_dma_pad - update pad mask
741 * @q:     the request queue for the device
742 * @mask:  pad mask
743 *
744 * Update dma pad mask.
745 *
746 * Appending pad buffer to a request modifies the last entry of a
747 * scatter list such that it includes the pad buffer.
748 **/
749void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
750{
751	if (mask > q->dma_pad_mask)
752		q->dma_pad_mask = mask;
753}
754EXPORT_SYMBOL(blk_queue_update_dma_pad);
755
756/**
757 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
758 * @q:  the request queue for the device
759 * @dma_drain_needed: fn which returns non-zero if drain is necessary
760 * @buf:	physically contiguous buffer
761 * @size:	size of the buffer in bytes
762 *
763 * Some devices have excess DMA problems and can't simply discard (or
764 * zero fill) the unwanted piece of the transfer.  They have to have a
765 * real area of memory to transfer it into.  The use case for this is
766 * ATAPI devices in DMA mode.  If the packet command causes a transfer
767 * bigger than the transfer size some HBAs will lock up if there
768 * aren't DMA elements to contain the excess transfer.  What this API
769 * does is adjust the queue so that the buf is always appended
770 * silently to the scatterlist.
771 *
772 * Note: This routine adjusts max_hw_segments to make room for appending
773 * the drain buffer.  If you call blk_queue_max_segments() after calling
774 * this routine, you must set the limit to one fewer than your device
775 * can support otherwise there won't be room for the drain buffer.
776 */
777int blk_queue_dma_drain(struct request_queue *q,
778			       dma_drain_needed_fn *dma_drain_needed,
779			       void *buf, unsigned int size)
780{
781	if (queue_max_segments(q) < 2)
782		return -EINVAL;
783	/* make room for appending the drain */
784	blk_queue_max_segments(q, queue_max_segments(q) - 1);
785	q->dma_drain_needed = dma_drain_needed;
786	q->dma_drain_buffer = buf;
787	q->dma_drain_size = size;
788
789	return 0;
790}
791EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
792
793/**
794 * blk_queue_segment_boundary - set boundary rules for segment merging
795 * @q:  the request queue for the device
796 * @mask:  the memory boundary mask
797 **/
798void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
799{
800	if (mask < PAGE_SIZE - 1) {
801		mask = PAGE_SIZE - 1;
802		printk(KERN_INFO "%s: set to minimum %lx\n",
803		       __func__, mask);
804	}
805
806	q->limits.seg_boundary_mask = mask;
807}
808EXPORT_SYMBOL(blk_queue_segment_boundary);
809
810/**
811 * blk_queue_virt_boundary - set boundary rules for bio merging
812 * @q:  the request queue for the device
813 * @mask:  the memory boundary mask
814 **/
815void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
816{
817	q->limits.virt_boundary_mask = mask;
 
 
 
 
 
 
 
 
 
818}
819EXPORT_SYMBOL(blk_queue_virt_boundary);
820
821/**
822 * blk_queue_dma_alignment - set dma length and memory alignment
823 * @q:     the request queue for the device
824 * @mask:  alignment mask
825 *
826 * description:
827 *    set required memory and length alignment for direct dma transactions.
828 *    this is used when building direct io requests for the queue.
829 *
830 **/
831void blk_queue_dma_alignment(struct request_queue *q, int mask)
832{
833	q->dma_alignment = mask;
834}
835EXPORT_SYMBOL(blk_queue_dma_alignment);
836
837/**
838 * blk_queue_update_dma_alignment - update dma length and memory alignment
839 * @q:     the request queue for the device
840 * @mask:  alignment mask
841 *
842 * description:
843 *    update required memory and length alignment for direct dma transactions.
844 *    If the requested alignment is larger than the current alignment, then
845 *    the current queue alignment is updated to the new value, otherwise it
846 *    is left alone.  The design of this is to allow multiple objects
847 *    (driver, device, transport etc) to set their respective
848 *    alignments without having them interfere.
849 *
850 **/
851void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
852{
853	BUG_ON(mask > PAGE_SIZE);
854
855	if (mask > q->dma_alignment)
856		q->dma_alignment = mask;
857}
858EXPORT_SYMBOL(blk_queue_update_dma_alignment);
859
860void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
861{
862	if (queueable)
863		blk_queue_flag_clear(QUEUE_FLAG_FLUSH_NQ, q);
864	else
865		blk_queue_flag_set(QUEUE_FLAG_FLUSH_NQ, q);
866}
867EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
868
869/**
870 * blk_set_queue_depth - tell the block layer about the device queue depth
871 * @q:		the request queue for the device
872 * @depth:		queue depth
873 *
874 */
875void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
876{
877	q->queue_depth = depth;
878	wbt_set_queue_depth(q->rq_wb, depth);
879}
880EXPORT_SYMBOL(blk_set_queue_depth);
881
882/**
883 * blk_queue_write_cache - configure queue's write cache
884 * @q:		the request queue for the device
885 * @wc:		write back cache on or off
886 * @fua:	device supports FUA writes, if true
887 *
888 * Tell the block layer about the write cache of @q.
889 */
890void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
891{
892	spin_lock_irq(q->queue_lock);
893	if (wc)
894		queue_flag_set(QUEUE_FLAG_WC, q);
895	else
896		queue_flag_clear(QUEUE_FLAG_WC, q);
897	if (fua)
898		queue_flag_set(QUEUE_FLAG_FUA, q);
899	else
900		queue_flag_clear(QUEUE_FLAG_FUA, q);
901	spin_unlock_irq(q->queue_lock);
902
903	wbt_set_write_cache(q->rq_wb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
904}
905EXPORT_SYMBOL_GPL(blk_queue_write_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
906
907static int __init blk_settings_init(void)
908{
909	blk_max_low_pfn = max_low_pfn - 1;
910	blk_max_pfn = max_pfn - 1;
911	return 0;
912}
913subsys_initcall(blk_settings_init);
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions related to setting various queue properties from drivers
  4 */
  5#include <linux/kernel.h>
  6#include <linux/module.h>
  7#include <linux/init.h>
  8#include <linux/bio.h>
  9#include <linux/blkdev.h>
 10#include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
 11#include <linux/gcd.h>
 12#include <linux/lcm.h>
 13#include <linux/jiffies.h>
 14#include <linux/gfp.h>
 15#include <linux/dma-mapping.h>
 16
 17#include "blk.h"
 18#include "blk-wbt.h"
 19
 20unsigned long blk_max_low_pfn;
 21EXPORT_SYMBOL(blk_max_low_pfn);
 22
 23unsigned long blk_max_pfn;
 24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 26{
 27	q->rq_timeout = timeout;
 28}
 29EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 30
 
 
 
 
 
 
 
 
 
 
 
 
 
 31/**
 32 * blk_set_default_limits - reset limits to default values
 33 * @lim:  the queue_limits structure to reset
 34 *
 35 * Description:
 36 *   Returns a queue_limit struct to its default state.
 37 */
 38void blk_set_default_limits(struct queue_limits *lim)
 39{
 40	lim->max_segments = BLK_MAX_SEGMENTS;
 41	lim->max_discard_segments = 1;
 42	lim->max_integrity_segments = 0;
 43	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 44	lim->virt_boundary_mask = 0;
 45	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
 46	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
 47	lim->max_dev_sectors = 0;
 48	lim->chunk_sectors = 0;
 49	lim->max_write_same_sectors = 0;
 50	lim->max_write_zeroes_sectors = 0;
 51	lim->max_zone_append_sectors = 0;
 52	lim->max_discard_sectors = 0;
 53	lim->max_hw_discard_sectors = 0;
 54	lim->discard_granularity = 0;
 55	lim->discard_alignment = 0;
 56	lim->discard_misaligned = 0;
 57	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
 58	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
 59	lim->alignment_offset = 0;
 60	lim->io_opt = 0;
 61	lim->misaligned = 0;
 
 62	lim->zoned = BLK_ZONED_NONE;
 63}
 64EXPORT_SYMBOL(blk_set_default_limits);
 65
 66/**
 67 * blk_set_stacking_limits - set default limits for stacking devices
 68 * @lim:  the queue_limits structure to reset
 69 *
 70 * Description:
 71 *   Returns a queue_limit struct to its default state. Should be used
 72 *   by stacking drivers like DM that have no internal limits.
 73 */
 74void blk_set_stacking_limits(struct queue_limits *lim)
 75{
 76	blk_set_default_limits(lim);
 77
 78	/* Inherit limits from component devices */
 79	lim->max_segments = USHRT_MAX;
 80	lim->max_discard_segments = USHRT_MAX;
 81	lim->max_hw_sectors = UINT_MAX;
 82	lim->max_segment_size = UINT_MAX;
 83	lim->max_sectors = UINT_MAX;
 84	lim->max_dev_sectors = UINT_MAX;
 85	lim->max_write_same_sectors = UINT_MAX;
 86	lim->max_write_zeroes_sectors = UINT_MAX;
 87	lim->max_zone_append_sectors = UINT_MAX;
 88}
 89EXPORT_SYMBOL(blk_set_stacking_limits);
 90
 91/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92 * blk_queue_bounce_limit - set bounce buffer limit for queue
 93 * @q: the request queue for the device
 94 * @max_addr: the maximum address the device can handle
 95 *
 96 * Description:
 97 *    Different hardware can have different requirements as to what pages
 98 *    it can do I/O directly to. A low level driver can call
 99 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
100 *    buffers for doing I/O to pages residing above @max_addr.
101 **/
102void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
103{
104	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
105	int dma = 0;
106
107	q->bounce_gfp = GFP_NOIO;
108#if BITS_PER_LONG == 64
109	/*
110	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
111	 * some IOMMUs can handle everything, but I don't know of a
112	 * way to test this here.
113	 */
114	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
115		dma = 1;
116	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
117#else
118	if (b_pfn < blk_max_low_pfn)
119		dma = 1;
120	q->limits.bounce_pfn = b_pfn;
121#endif
122	if (dma) {
123		init_emergency_isa_pool();
124		q->bounce_gfp = GFP_NOIO | GFP_DMA;
125		q->limits.bounce_pfn = b_pfn;
126	}
127}
128EXPORT_SYMBOL(blk_queue_bounce_limit);
129
130/**
131 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
132 * @q:  the request queue for the device
133 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
134 *
135 * Description:
136 *    Enables a low level driver to set a hard upper limit,
137 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
138 *    the device driver based upon the capabilities of the I/O
139 *    controller.
140 *
141 *    max_dev_sectors is a hard limit imposed by the storage device for
142 *    READ/WRITE requests. It is set by the disk driver.
143 *
144 *    max_sectors is a soft limit imposed by the block layer for
145 *    filesystem type requests.  This value can be overridden on a
146 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
147 *    The soft limit can not exceed max_hw_sectors.
148 **/
149void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
150{
151	struct queue_limits *limits = &q->limits;
152	unsigned int max_sectors;
153
154	if ((max_hw_sectors << 9) < PAGE_SIZE) {
155		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
156		printk(KERN_INFO "%s: set to minimum %d\n",
157		       __func__, max_hw_sectors);
158	}
159
160	limits->max_hw_sectors = max_hw_sectors;
161	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
162	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
163	limits->max_sectors = max_sectors;
164	q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
165}
166EXPORT_SYMBOL(blk_queue_max_hw_sectors);
167
168/**
169 * blk_queue_chunk_sectors - set size of the chunk for this queue
170 * @q:  the request queue for the device
171 * @chunk_sectors:  chunk sectors in the usual 512b unit
172 *
173 * Description:
174 *    If a driver doesn't want IOs to cross a given chunk size, it can set
175 *    this limit and prevent merging across chunks. Note that the chunk size
176 *    must currently be a power-of-2 in sectors. Also note that the block
177 *    layer must accept a page worth of data at any offset. So if the
178 *    crossing of chunks is a hard limitation in the driver, it must still be
179 *    prepared to split single page bios.
180 **/
181void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
182{
183	BUG_ON(!is_power_of_2(chunk_sectors));
184	q->limits.chunk_sectors = chunk_sectors;
185}
186EXPORT_SYMBOL(blk_queue_chunk_sectors);
187
188/**
189 * blk_queue_max_discard_sectors - set max sectors for a single discard
190 * @q:  the request queue for the device
191 * @max_discard_sectors: maximum number of sectors to discard
192 **/
193void blk_queue_max_discard_sectors(struct request_queue *q,
194		unsigned int max_discard_sectors)
195{
196	q->limits.max_hw_discard_sectors = max_discard_sectors;
197	q->limits.max_discard_sectors = max_discard_sectors;
198}
199EXPORT_SYMBOL(blk_queue_max_discard_sectors);
200
201/**
202 * blk_queue_max_write_same_sectors - set max sectors for a single write same
203 * @q:  the request queue for the device
204 * @max_write_same_sectors: maximum number of sectors to write per command
205 **/
206void blk_queue_max_write_same_sectors(struct request_queue *q,
207				      unsigned int max_write_same_sectors)
208{
209	q->limits.max_write_same_sectors = max_write_same_sectors;
210}
211EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
212
213/**
214 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
215 *                                      write zeroes
216 * @q:  the request queue for the device
217 * @max_write_zeroes_sectors: maximum number of sectors to write per command
218 **/
219void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
220		unsigned int max_write_zeroes_sectors)
221{
222	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
223}
224EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
225
226/**
227 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
228 * @q:  the request queue for the device
229 * @max_zone_append_sectors: maximum number of sectors to write per command
230 **/
231void blk_queue_max_zone_append_sectors(struct request_queue *q,
232		unsigned int max_zone_append_sectors)
233{
234	unsigned int max_sectors;
235
236	if (WARN_ON(!blk_queue_is_zoned(q)))
237		return;
238
239	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
240	max_sectors = min(q->limits.chunk_sectors, max_sectors);
241
242	/*
243	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
244	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
245	 * or the max_hw_sectors limit not set.
246	 */
247	WARN_ON(!max_sectors);
248
249	q->limits.max_zone_append_sectors = max_sectors;
250}
251EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
252
253/**
254 * blk_queue_max_segments - set max hw segments for a request for this queue
255 * @q:  the request queue for the device
256 * @max_segments:  max number of segments
257 *
258 * Description:
259 *    Enables a low level driver to set an upper limit on the number of
260 *    hw data segments in a request.
261 **/
262void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
263{
264	if (!max_segments) {
265		max_segments = 1;
266		printk(KERN_INFO "%s: set to minimum %d\n",
267		       __func__, max_segments);
268	}
269
270	q->limits.max_segments = max_segments;
271}
272EXPORT_SYMBOL(blk_queue_max_segments);
273
274/**
275 * blk_queue_max_discard_segments - set max segments for discard requests
276 * @q:  the request queue for the device
277 * @max_segments:  max number of segments
278 *
279 * Description:
280 *    Enables a low level driver to set an upper limit on the number of
281 *    segments in a discard request.
282 **/
283void blk_queue_max_discard_segments(struct request_queue *q,
284		unsigned short max_segments)
285{
286	q->limits.max_discard_segments = max_segments;
287}
288EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
289
290/**
291 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
292 * @q:  the request queue for the device
293 * @max_size:  max size of segment in bytes
294 *
295 * Description:
296 *    Enables a low level driver to set an upper limit on the size of a
297 *    coalesced segment
298 **/
299void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
300{
301	if (max_size < PAGE_SIZE) {
302		max_size = PAGE_SIZE;
303		printk(KERN_INFO "%s: set to minimum %d\n",
304		       __func__, max_size);
305	}
306
307	/* see blk_queue_virt_boundary() for the explanation */
308	WARN_ON_ONCE(q->limits.virt_boundary_mask);
309
310	q->limits.max_segment_size = max_size;
311}
312EXPORT_SYMBOL(blk_queue_max_segment_size);
313
314/**
315 * blk_queue_logical_block_size - set logical block size for the queue
316 * @q:  the request queue for the device
317 * @size:  the logical block size, in bytes
318 *
319 * Description:
320 *   This should be set to the lowest possible block size that the
321 *   storage device can address.  The default of 512 covers most
322 *   hardware.
323 **/
324void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
325{
326	q->limits.logical_block_size = size;
327
328	if (q->limits.physical_block_size < size)
329		q->limits.physical_block_size = size;
330
331	if (q->limits.io_min < q->limits.physical_block_size)
332		q->limits.io_min = q->limits.physical_block_size;
333}
334EXPORT_SYMBOL(blk_queue_logical_block_size);
335
336/**
337 * blk_queue_physical_block_size - set physical block size for the queue
338 * @q:  the request queue for the device
339 * @size:  the physical block size, in bytes
340 *
341 * Description:
342 *   This should be set to the lowest possible sector size that the
343 *   hardware can operate on without reverting to read-modify-write
344 *   operations.
345 */
346void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
347{
348	q->limits.physical_block_size = size;
349
350	if (q->limits.physical_block_size < q->limits.logical_block_size)
351		q->limits.physical_block_size = q->limits.logical_block_size;
352
353	if (q->limits.io_min < q->limits.physical_block_size)
354		q->limits.io_min = q->limits.physical_block_size;
355}
356EXPORT_SYMBOL(blk_queue_physical_block_size);
357
358/**
359 * blk_queue_alignment_offset - set physical block alignment offset
360 * @q:	the request queue for the device
361 * @offset: alignment offset in bytes
362 *
363 * Description:
364 *   Some devices are naturally misaligned to compensate for things like
365 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
366 *   should call this function for devices whose first sector is not
367 *   naturally aligned.
368 */
369void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
370{
371	q->limits.alignment_offset =
372		offset & (q->limits.physical_block_size - 1);
373	q->limits.misaligned = 0;
374}
375EXPORT_SYMBOL(blk_queue_alignment_offset);
376
377/**
378 * blk_limits_io_min - set minimum request size for a device
379 * @limits: the queue limits
380 * @min:  smallest I/O size in bytes
381 *
382 * Description:
383 *   Some devices have an internal block size bigger than the reported
384 *   hardware sector size.  This function can be used to signal the
385 *   smallest I/O the device can perform without incurring a performance
386 *   penalty.
387 */
388void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
389{
390	limits->io_min = min;
391
392	if (limits->io_min < limits->logical_block_size)
393		limits->io_min = limits->logical_block_size;
394
395	if (limits->io_min < limits->physical_block_size)
396		limits->io_min = limits->physical_block_size;
397}
398EXPORT_SYMBOL(blk_limits_io_min);
399
400/**
401 * blk_queue_io_min - set minimum request size for the queue
402 * @q:	the request queue for the device
403 * @min:  smallest I/O size in bytes
404 *
405 * Description:
406 *   Storage devices may report a granularity or preferred minimum I/O
407 *   size which is the smallest request the device can perform without
408 *   incurring a performance penalty.  For disk drives this is often the
409 *   physical block size.  For RAID arrays it is often the stripe chunk
410 *   size.  A properly aligned multiple of minimum_io_size is the
411 *   preferred request size for workloads where a high number of I/O
412 *   operations is desired.
413 */
414void blk_queue_io_min(struct request_queue *q, unsigned int min)
415{
416	blk_limits_io_min(&q->limits, min);
417}
418EXPORT_SYMBOL(blk_queue_io_min);
419
420/**
421 * blk_limits_io_opt - set optimal request size for a device
422 * @limits: the queue limits
423 * @opt:  smallest I/O size in bytes
424 *
425 * Description:
426 *   Storage devices may report an optimal I/O size, which is the
427 *   device's preferred unit for sustained I/O.  This is rarely reported
428 *   for disk drives.  For RAID arrays it is usually the stripe width or
429 *   the internal track size.  A properly aligned multiple of
430 *   optimal_io_size is the preferred request size for workloads where
431 *   sustained throughput is desired.
432 */
433void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
434{
435	limits->io_opt = opt;
436}
437EXPORT_SYMBOL(blk_limits_io_opt);
438
439/**
440 * blk_queue_io_opt - set optimal request size for the queue
441 * @q:	the request queue for the device
442 * @opt:  optimal request size in bytes
443 *
444 * Description:
445 *   Storage devices may report an optimal I/O size, which is the
446 *   device's preferred unit for sustained I/O.  This is rarely reported
447 *   for disk drives.  For RAID arrays it is usually the stripe width or
448 *   the internal track size.  A properly aligned multiple of
449 *   optimal_io_size is the preferred request size for workloads where
450 *   sustained throughput is desired.
451 */
452void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
453{
454	blk_limits_io_opt(&q->limits, opt);
455}
456EXPORT_SYMBOL(blk_queue_io_opt);
457
458/**
 
 
 
 
 
 
 
 
 
 
 
459 * blk_stack_limits - adjust queue_limits for stacked devices
460 * @t:	the stacking driver limits (top device)
461 * @b:  the underlying queue limits (bottom, component device)
462 * @start:  first data sector within component device
463 *
464 * Description:
465 *    This function is used by stacking drivers like MD and DM to ensure
466 *    that all component devices have compatible block sizes and
467 *    alignments.  The stacking driver must provide a queue_limits
468 *    struct (top) and then iteratively call the stacking function for
469 *    all component (bottom) devices.  The stacking function will
470 *    attempt to combine the values and ensure proper alignment.
471 *
472 *    Returns 0 if the top and bottom queue_limits are compatible.  The
473 *    top device's block sizes and alignment offsets may be adjusted to
474 *    ensure alignment with the bottom device. If no compatible sizes
475 *    and alignments exist, -1 is returned and the resulting top
476 *    queue_limits will have the misaligned flag set to indicate that
477 *    the alignment_offset is undefined.
478 */
479int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
480		     sector_t start)
481{
482	unsigned int top, bottom, alignment, ret = 0;
483
484	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
485	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
486	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
487	t->max_write_same_sectors = min(t->max_write_same_sectors,
488					b->max_write_same_sectors);
489	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
490					b->max_write_zeroes_sectors);
491	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
492					b->max_zone_append_sectors);
493	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
494
495	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
496					    b->seg_boundary_mask);
497	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
498					    b->virt_boundary_mask);
499
500	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
501	t->max_discard_segments = min_not_zero(t->max_discard_segments,
502					       b->max_discard_segments);
503	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
504						 b->max_integrity_segments);
505
506	t->max_segment_size = min_not_zero(t->max_segment_size,
507					   b->max_segment_size);
508
509	t->misaligned |= b->misaligned;
510
511	alignment = queue_limit_alignment_offset(b, start);
512
513	/* Bottom device has different alignment.  Check that it is
514	 * compatible with the current top alignment.
515	 */
516	if (t->alignment_offset != alignment) {
517
518		top = max(t->physical_block_size, t->io_min)
519			+ t->alignment_offset;
520		bottom = max(b->physical_block_size, b->io_min) + alignment;
521
522		/* Verify that top and bottom intervals line up */
523		if (max(top, bottom) % min(top, bottom)) {
524			t->misaligned = 1;
525			ret = -1;
526		}
527	}
528
529	t->logical_block_size = max(t->logical_block_size,
530				    b->logical_block_size);
531
532	t->physical_block_size = max(t->physical_block_size,
533				     b->physical_block_size);
534
535	t->io_min = max(t->io_min, b->io_min);
536	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
537
 
 
538	/* Physical block size a multiple of the logical block size? */
539	if (t->physical_block_size & (t->logical_block_size - 1)) {
540		t->physical_block_size = t->logical_block_size;
541		t->misaligned = 1;
542		ret = -1;
543	}
544
545	/* Minimum I/O a multiple of the physical block size? */
546	if (t->io_min & (t->physical_block_size - 1)) {
547		t->io_min = t->physical_block_size;
548		t->misaligned = 1;
549		ret = -1;
550	}
551
552	/* Optimal I/O a multiple of the physical block size? */
553	if (t->io_opt & (t->physical_block_size - 1)) {
554		t->io_opt = 0;
555		t->misaligned = 1;
556		ret = -1;
557	}
558
559	t->raid_partial_stripes_expensive =
560		max(t->raid_partial_stripes_expensive,
561		    b->raid_partial_stripes_expensive);
562
563	/* Find lowest common alignment_offset */
564	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
565		% max(t->physical_block_size, t->io_min);
566
567	/* Verify that new alignment_offset is on a logical block boundary */
568	if (t->alignment_offset & (t->logical_block_size - 1)) {
569		t->misaligned = 1;
570		ret = -1;
571	}
572
573	/* Discard alignment and granularity */
574	if (b->discard_granularity) {
575		alignment = queue_limit_discard_alignment(b, start);
576
577		if (t->discard_granularity != 0 &&
578		    t->discard_alignment != alignment) {
579			top = t->discard_granularity + t->discard_alignment;
580			bottom = b->discard_granularity + alignment;
581
582			/* Verify that top and bottom intervals line up */
583			if ((max(top, bottom) % min(top, bottom)) != 0)
584				t->discard_misaligned = 1;
585		}
586
587		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
588						      b->max_discard_sectors);
589		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
590							 b->max_hw_discard_sectors);
591		t->discard_granularity = max(t->discard_granularity,
592					     b->discard_granularity);
593		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
594			t->discard_granularity;
595	}
596
597	if (b->chunk_sectors)
598		t->chunk_sectors = min_not_zero(t->chunk_sectors,
599						b->chunk_sectors);
600
601	t->zoned = max(t->zoned, b->zoned);
602	return ret;
603}
604EXPORT_SYMBOL(blk_stack_limits);
605
606/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607 * disk_stack_limits - adjust queue limits for stacked drivers
608 * @disk:  MD/DM gendisk (top)
609 * @bdev:  the underlying block device (bottom)
610 * @offset:  offset to beginning of data within component device
611 *
612 * Description:
613 *    Merges the limits for a top level gendisk and a bottom level
614 *    block_device.
615 */
616void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
617		       sector_t offset)
618{
619	struct request_queue *t = disk->queue;
620
621	if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
622			get_start_sect(bdev) + (offset >> 9)) < 0) {
623		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
624
625		disk_name(disk, 0, top);
626		bdevname(bdev, bottom);
627
628		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
629		       top, bottom);
630	}
 
 
631
632	t->backing_dev_info->io_pages =
633		t->limits.max_sectors >> (PAGE_SHIFT - 9);
 
 
 
 
 
 
 
 
 
 
 
634}
635EXPORT_SYMBOL(disk_stack_limits);
636
637/**
638 * blk_queue_update_dma_pad - update pad mask
639 * @q:     the request queue for the device
640 * @mask:  pad mask
641 *
642 * Update dma pad mask.
643 *
644 * Appending pad buffer to a request modifies the last entry of a
645 * scatter list such that it includes the pad buffer.
646 **/
647void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
648{
649	if (mask > q->dma_pad_mask)
650		q->dma_pad_mask = mask;
651}
652EXPORT_SYMBOL(blk_queue_update_dma_pad);
653
654/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655 * blk_queue_segment_boundary - set boundary rules for segment merging
656 * @q:  the request queue for the device
657 * @mask:  the memory boundary mask
658 **/
659void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
660{
661	if (mask < PAGE_SIZE - 1) {
662		mask = PAGE_SIZE - 1;
663		printk(KERN_INFO "%s: set to minimum %lx\n",
664		       __func__, mask);
665	}
666
667	q->limits.seg_boundary_mask = mask;
668}
669EXPORT_SYMBOL(blk_queue_segment_boundary);
670
671/**
672 * blk_queue_virt_boundary - set boundary rules for bio merging
673 * @q:  the request queue for the device
674 * @mask:  the memory boundary mask
675 **/
676void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
677{
678	q->limits.virt_boundary_mask = mask;
679
680	/*
681	 * Devices that require a virtual boundary do not support scatter/gather
682	 * I/O natively, but instead require a descriptor list entry for each
683	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
684	 * of that they are not limited by our notion of "segment size".
685	 */
686	if (mask)
687		q->limits.max_segment_size = UINT_MAX;
688}
689EXPORT_SYMBOL(blk_queue_virt_boundary);
690
691/**
692 * blk_queue_dma_alignment - set dma length and memory alignment
693 * @q:     the request queue for the device
694 * @mask:  alignment mask
695 *
696 * description:
697 *    set required memory and length alignment for direct dma transactions.
698 *    this is used when building direct io requests for the queue.
699 *
700 **/
701void blk_queue_dma_alignment(struct request_queue *q, int mask)
702{
703	q->dma_alignment = mask;
704}
705EXPORT_SYMBOL(blk_queue_dma_alignment);
706
707/**
708 * blk_queue_update_dma_alignment - update dma length and memory alignment
709 * @q:     the request queue for the device
710 * @mask:  alignment mask
711 *
712 * description:
713 *    update required memory and length alignment for direct dma transactions.
714 *    If the requested alignment is larger than the current alignment, then
715 *    the current queue alignment is updated to the new value, otherwise it
716 *    is left alone.  The design of this is to allow multiple objects
717 *    (driver, device, transport etc) to set their respective
718 *    alignments without having them interfere.
719 *
720 **/
721void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
722{
723	BUG_ON(mask > PAGE_SIZE);
724
725	if (mask > q->dma_alignment)
726		q->dma_alignment = mask;
727}
728EXPORT_SYMBOL(blk_queue_update_dma_alignment);
729
 
 
 
 
 
 
 
 
 
730/**
731 * blk_set_queue_depth - tell the block layer about the device queue depth
732 * @q:		the request queue for the device
733 * @depth:		queue depth
734 *
735 */
736void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
737{
738	q->queue_depth = depth;
739	rq_qos_queue_depth_changed(q);
740}
741EXPORT_SYMBOL(blk_set_queue_depth);
742
743/**
744 * blk_queue_write_cache - configure queue's write cache
745 * @q:		the request queue for the device
746 * @wc:		write back cache on or off
747 * @fua:	device supports FUA writes, if true
748 *
749 * Tell the block layer about the write cache of @q.
750 */
751void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
752{
 
753	if (wc)
754		blk_queue_flag_set(QUEUE_FLAG_WC, q);
755	else
756		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
757	if (fua)
758		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
759	else
760		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
 
761
762	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
763}
764EXPORT_SYMBOL_GPL(blk_queue_write_cache);
765
766/**
767 * blk_queue_required_elevator_features - Set a queue required elevator features
768 * @q:		the request queue for the target device
769 * @features:	Required elevator features OR'ed together
770 *
771 * Tell the block layer that for the device controlled through @q, only the
772 * only elevators that can be used are those that implement at least the set of
773 * features specified by @features.
774 */
775void blk_queue_required_elevator_features(struct request_queue *q,
776					  unsigned int features)
777{
778	q->required_elevator_features = features;
779}
780EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
781
782/**
783 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
784 * @q:		the request queue for the device
785 * @dev:	the device pointer for dma
786 *
787 * Tell the block layer about merging the segments by dma map of @q.
788 */
789bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
790				       struct device *dev)
791{
792	unsigned long boundary = dma_get_merge_boundary(dev);
793
794	if (!boundary)
795		return false;
796
797	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
798	blk_queue_virt_boundary(q, boundary);
799
800	return true;
801}
802EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
803
804/**
805 * blk_queue_set_zoned - configure a disk queue zoned model.
806 * @disk:	the gendisk of the queue to configure
807 * @model:	the zoned model to set
808 *
809 * Set the zoned model of the request queue of @disk according to @model.
810 * When @model is BLK_ZONED_HM (host managed), this should be called only
811 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
812 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
813 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
814 * on the disk.
815 */
816void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
817{
818	switch (model) {
819	case BLK_ZONED_HM:
820		/*
821		 * Host managed devices are supported only if
822		 * CONFIG_BLK_DEV_ZONED is enabled.
823		 */
824		WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
825		break;
826	case BLK_ZONED_HA:
827		/*
828		 * Host aware devices can be treated either as regular block
829		 * devices (similar to drive managed devices) or as zoned block
830		 * devices to take advantage of the zone command set, similarly
831		 * to host managed devices. We try the latter if there are no
832		 * partitions and zoned block device support is enabled, else
833		 * we do nothing special as far as the block layer is concerned.
834		 */
835		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
836		    disk_has_partitions(disk))
837			model = BLK_ZONED_NONE;
838		break;
839	case BLK_ZONED_NONE:
840	default:
841		if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
842			model = BLK_ZONED_NONE;
843		break;
844	}
845
846	disk->queue->limits.zoned = model;
847}
848EXPORT_SYMBOL_GPL(blk_queue_set_zoned);
849
850static int __init blk_settings_init(void)
851{
852	blk_max_low_pfn = max_low_pfn - 1;
853	blk_max_pfn = max_pfn - 1;
854	return 0;
855}
856subsys_initcall(blk_settings_init);