Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.17
 
   1/* arch/sparc64/kernel/traps.c
   2 *
   3 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   4 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   5 */
   6
   7/*
   8 * I like traps on v9, :))))
   9 */
  10
  11#include <linux/extable.h>
  12#include <linux/sched/mm.h>
  13#include <linux/sched/debug.h>
  14#include <linux/linkage.h>
  15#include <linux/kernel.h>
  16#include <linux/signal.h>
  17#include <linux/smp.h>
  18#include <linux/mm.h>
  19#include <linux/init.h>
 
  20#include <linux/kdebug.h>
  21#include <linux/ftrace.h>
  22#include <linux/reboot.h>
  23#include <linux/gfp.h>
  24#include <linux/context_tracking.h>
  25
  26#include <asm/smp.h>
  27#include <asm/delay.h>
  28#include <asm/ptrace.h>
  29#include <asm/oplib.h>
  30#include <asm/page.h>
  31#include <asm/pgtable.h>
  32#include <asm/unistd.h>
  33#include <linux/uaccess.h>
  34#include <asm/fpumacro.h>
  35#include <asm/lsu.h>
  36#include <asm/dcu.h>
  37#include <asm/estate.h>
  38#include <asm/chafsr.h>
  39#include <asm/sfafsr.h>
  40#include <asm/psrcompat.h>
  41#include <asm/processor.h>
  42#include <asm/timer.h>
  43#include <asm/head.h>
  44#include <asm/prom.h>
  45#include <asm/memctrl.h>
  46#include <asm/cacheflush.h>
  47#include <asm/setup.h>
  48
  49#include "entry.h"
  50#include "kernel.h"
  51#include "kstack.h"
  52
  53/* When an irrecoverable trap occurs at tl > 0, the trap entry
  54 * code logs the trap state registers at every level in the trap
  55 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  56 * is as follows:
  57 */
  58struct tl1_traplog {
  59	struct {
  60		unsigned long tstate;
  61		unsigned long tpc;
  62		unsigned long tnpc;
  63		unsigned long tt;
  64	} trapstack[4];
  65	unsigned long tl;
  66};
  67
  68static void dump_tl1_traplog(struct tl1_traplog *p)
  69{
  70	int i, limit;
  71
  72	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  73	       "dumping track stack.\n", p->tl);
  74
  75	limit = (tlb_type == hypervisor) ? 2 : 4;
  76	for (i = 0; i < limit; i++) {
  77		printk(KERN_EMERG
  78		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  79		       "TNPC[%016lx] TT[%lx]\n",
  80		       i + 1,
  81		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  82		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  83		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  84	}
  85}
  86
  87void bad_trap(struct pt_regs *regs, long lvl)
  88{
  89	char buffer[36];
  90	siginfo_t info;
  91
  92	if (notify_die(DIE_TRAP, "bad trap", regs,
  93		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  94		return;
  95
  96	if (lvl < 0x100) {
  97		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  98		die_if_kernel(buffer, regs);
  99	}
 100
 101	lvl -= 0x100;
 102	if (regs->tstate & TSTATE_PRIV) {
 103		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 104		die_if_kernel(buffer, regs);
 105	}
 106	if (test_thread_flag(TIF_32BIT)) {
 107		regs->tpc &= 0xffffffff;
 108		regs->tnpc &= 0xffffffff;
 109	}
 110	info.si_signo = SIGILL;
 111	info.si_errno = 0;
 112	info.si_code = ILL_ILLTRP;
 113	info.si_addr = (void __user *)regs->tpc;
 114	info.si_trapno = lvl;
 115	force_sig_info(SIGILL, &info, current);
 116}
 117
 118void bad_trap_tl1(struct pt_regs *regs, long lvl)
 119{
 120	char buffer[36];
 121	
 122	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 123		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 124		return;
 125
 126	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 127
 128	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 129	die_if_kernel (buffer, regs);
 130}
 131
 132#ifdef CONFIG_DEBUG_BUGVERBOSE
 133void do_BUG(const char *file, int line)
 134{
 135	bust_spinlocks(1);
 136	printk("kernel BUG at %s:%d!\n", file, line);
 137}
 138EXPORT_SYMBOL(do_BUG);
 139#endif
 140
 141static DEFINE_SPINLOCK(dimm_handler_lock);
 142static dimm_printer_t dimm_handler;
 143
 144static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 145{
 146	unsigned long flags;
 147	int ret = -ENODEV;
 148
 149	spin_lock_irqsave(&dimm_handler_lock, flags);
 150	if (dimm_handler) {
 151		ret = dimm_handler(synd_code, paddr, buf, buflen);
 152	} else if (tlb_type == spitfire) {
 153		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 154			ret = -EINVAL;
 155		else
 156			ret = 0;
 157	} else
 158		ret = -ENODEV;
 159	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 160
 161	return ret;
 162}
 163
 164int register_dimm_printer(dimm_printer_t func)
 165{
 166	unsigned long flags;
 167	int ret = 0;
 168
 169	spin_lock_irqsave(&dimm_handler_lock, flags);
 170	if (!dimm_handler)
 171		dimm_handler = func;
 172	else
 173		ret = -EEXIST;
 174	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 175
 176	return ret;
 177}
 178EXPORT_SYMBOL_GPL(register_dimm_printer);
 179
 180void unregister_dimm_printer(dimm_printer_t func)
 181{
 182	unsigned long flags;
 183
 184	spin_lock_irqsave(&dimm_handler_lock, flags);
 185	if (dimm_handler == func)
 186		dimm_handler = NULL;
 187	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 188}
 189EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 190
 191void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 192{
 193	enum ctx_state prev_state = exception_enter();
 194	siginfo_t info;
 195
 196	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 197		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 198		goto out;
 199
 200	if (regs->tstate & TSTATE_PRIV) {
 201		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 202		       "SFAR[%016lx], going.\n", sfsr, sfar);
 203		die_if_kernel("Iax", regs);
 204	}
 205	if (test_thread_flag(TIF_32BIT)) {
 206		regs->tpc &= 0xffffffff;
 207		regs->tnpc &= 0xffffffff;
 208	}
 209	info.si_signo = SIGSEGV;
 210	info.si_errno = 0;
 211	info.si_code = SEGV_MAPERR;
 212	info.si_addr = (void __user *)regs->tpc;
 213	info.si_trapno = 0;
 214	force_sig_info(SIGSEGV, &info, current);
 215out:
 216	exception_exit(prev_state);
 217}
 218
 219void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 220{
 221	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 222		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 223		return;
 224
 225	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 226	spitfire_insn_access_exception(regs, sfsr, sfar);
 227}
 228
 229void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 230{
 231	unsigned short type = (type_ctx >> 16);
 232	unsigned short ctx  = (type_ctx & 0xffff);
 233	siginfo_t info;
 234
 235	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 236		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 237		return;
 238
 239	if (regs->tstate & TSTATE_PRIV) {
 240		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 241		       "CTX[%04x] TYPE[%04x], going.\n",
 242		       addr, ctx, type);
 243		die_if_kernel("Iax", regs);
 244	}
 245
 246	if (test_thread_flag(TIF_32BIT)) {
 247		regs->tpc &= 0xffffffff;
 248		regs->tnpc &= 0xffffffff;
 249	}
 250	info.si_signo = SIGSEGV;
 251	info.si_errno = 0;
 252	info.si_code = SEGV_MAPERR;
 253	info.si_addr = (void __user *) addr;
 254	info.si_trapno = 0;
 255	force_sig_info(SIGSEGV, &info, current);
 256}
 257
 258void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 259{
 260	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 261		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 262		return;
 263
 264	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 265	sun4v_insn_access_exception(regs, addr, type_ctx);
 266}
 267
 268bool is_no_fault_exception(struct pt_regs *regs)
 269{
 270	unsigned char asi;
 271	u32 insn;
 272
 273	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 274		return false;
 275
 276	/*
 277	 * Must do a little instruction decoding here in order to
 278	 * decide on a course of action. The bits of interest are:
 279	 *  insn[31:30] = op, where 3 indicates the load/store group
 280	 *  insn[24:19] = op3, which identifies individual opcodes
 281	 *  insn[13] indicates an immediate offset
 282	 *  op3[4]=1 identifies alternate space instructions
 283	 *  op3[5:4]=3 identifies floating point instructions
 284	 *  op3[2]=1 identifies stores
 285	 * See "Opcode Maps" in the appendix of any Sparc V9
 286	 * architecture spec for full details.
 287	 */
 288	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 289		if (insn & 0x2000)		    /* immediate offset */
 290			asi = (regs->tstate >> 24); /* saved %asi       */
 291		else
 292			asi = (insn >> 5);	    /* immediate asi    */
 293		if ((asi & 0xf2) == ASI_PNF) {
 294			if (insn & 0x1000000) {     /* op3[5:4]=3       */
 295				handle_ldf_stq(insn, regs);
 296				return true;
 297			} else if (insn & 0x200000) { /* op3[2], stores */
 298				return false;
 299			}
 300			handle_ld_nf(insn, regs);
 301			return true;
 302		}
 303	}
 304	return false;
 305}
 306
 307void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 308{
 309	enum ctx_state prev_state = exception_enter();
 310	siginfo_t info;
 311
 312	if (notify_die(DIE_TRAP, "data access exception", regs,
 313		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 314		goto out;
 315
 316	if (regs->tstate & TSTATE_PRIV) {
 317		/* Test if this comes from uaccess places. */
 318		const struct exception_table_entry *entry;
 319
 320		entry = search_exception_tables(regs->tpc);
 321		if (entry) {
 322			/* Ouch, somebody is trying VM hole tricks on us... */
 323#ifdef DEBUG_EXCEPTIONS
 324			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 325			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 326			       regs->tpc, entry->fixup);
 327#endif
 328			regs->tpc = entry->fixup;
 329			regs->tnpc = regs->tpc + 4;
 330			goto out;
 331		}
 332		/* Shit... */
 333		printk("spitfire_data_access_exception: SFSR[%016lx] "
 334		       "SFAR[%016lx], going.\n", sfsr, sfar);
 335		die_if_kernel("Dax", regs);
 336	}
 337
 338	if (is_no_fault_exception(regs))
 339		return;
 340
 341	info.si_signo = SIGSEGV;
 342	info.si_errno = 0;
 343	info.si_code = SEGV_MAPERR;
 344	info.si_addr = (void __user *)sfar;
 345	info.si_trapno = 0;
 346	force_sig_info(SIGSEGV, &info, current);
 347out:
 348	exception_exit(prev_state);
 349}
 350
 351void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 352{
 353	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 354		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 355		return;
 356
 357	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 358	spitfire_data_access_exception(regs, sfsr, sfar);
 359}
 360
 361void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 362{
 363	unsigned short type = (type_ctx >> 16);
 364	unsigned short ctx  = (type_ctx & 0xffff);
 365
 366	if (notify_die(DIE_TRAP, "data access exception", regs,
 367		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 368		return;
 369
 370	if (regs->tstate & TSTATE_PRIV) {
 371		/* Test if this comes from uaccess places. */
 372		const struct exception_table_entry *entry;
 373
 374		entry = search_exception_tables(regs->tpc);
 375		if (entry) {
 376			/* Ouch, somebody is trying VM hole tricks on us... */
 377#ifdef DEBUG_EXCEPTIONS
 378			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 379			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 380			       regs->tpc, entry->fixup);
 381#endif
 382			regs->tpc = entry->fixup;
 383			regs->tnpc = regs->tpc + 4;
 384			return;
 385		}
 386		printk("sun4v_data_access_exception: ADDR[%016lx] "
 387		       "CTX[%04x] TYPE[%04x], going.\n",
 388		       addr, ctx, type);
 389		die_if_kernel("Dax", regs);
 390	}
 391
 392	if (test_thread_flag(TIF_32BIT)) {
 393		regs->tpc &= 0xffffffff;
 394		regs->tnpc &= 0xffffffff;
 395	}
 396	if (is_no_fault_exception(regs))
 397		return;
 398
 399	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 400	 * is vectored thorugh data access exception trap with fault type
 401	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 402	 * Accessing an address with invalid ASI for the address, for
 403	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 404	 * when TTE.mcd is not set for the VA, is also vectored into
 405	 * kerbel by HV as data access exception with fault type set to
 406	 * HV_FAULT_TYPE_INV_ASI.
 407	 */
 408	switch (type) {
 409	case HV_FAULT_TYPE_INV_ASI:
 410		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0,
 411				current);
 412		break;
 413	case HV_FAULT_TYPE_MCD_DIS:
 414		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0,
 415				current);
 416		break;
 417	default:
 418		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0,
 419				current);
 420		break;
 421	}
 422}
 423
 424void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 425{
 426	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 427		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 428		return;
 429
 430	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 431	sun4v_data_access_exception(regs, addr, type_ctx);
 432}
 433
 434#ifdef CONFIG_PCI
 435#include "pci_impl.h"
 436#endif
 437
 438/* When access exceptions happen, we must do this. */
 439static void spitfire_clean_and_reenable_l1_caches(void)
 440{
 441	unsigned long va;
 442
 443	if (tlb_type != spitfire)
 444		BUG();
 445
 446	/* Clean 'em. */
 447	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 448		spitfire_put_icache_tag(va, 0x0);
 449		spitfire_put_dcache_tag(va, 0x0);
 450	}
 451
 452	/* Re-enable in LSU. */
 453	__asm__ __volatile__("flush %%g6\n\t"
 454			     "membar #Sync\n\t"
 455			     "stxa %0, [%%g0] %1\n\t"
 456			     "membar #Sync"
 457			     : /* no outputs */
 458			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 459				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 460			     "i" (ASI_LSU_CONTROL)
 461			     : "memory");
 462}
 463
 464static void spitfire_enable_estate_errors(void)
 465{
 466	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 467			     "membar	#Sync"
 468			     : /* no outputs */
 469			     : "r" (ESTATE_ERR_ALL),
 470			       "i" (ASI_ESTATE_ERROR_EN));
 471}
 472
 473static char ecc_syndrome_table[] = {
 474	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 475	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 476	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 477	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 478	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 479	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 480	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 481	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 482	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 483	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 484	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 485	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 486	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 487	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 488	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 489	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 490	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 491	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 492	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 493	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 494	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 495	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 496	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 497	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 498	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 499	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 500	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 501	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 502	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 503	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 504	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 505	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 506};
 507
 508static char *syndrome_unknown = "<Unknown>";
 509
 510static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 511{
 512	unsigned short scode;
 513	char memmod_str[64], *p;
 514
 515	if (udbl & bit) {
 516		scode = ecc_syndrome_table[udbl & 0xff];
 517		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 518			p = syndrome_unknown;
 519		else
 520			p = memmod_str;
 521		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 522		       "Memory Module \"%s\"\n",
 523		       smp_processor_id(), scode, p);
 524	}
 525
 526	if (udbh & bit) {
 527		scode = ecc_syndrome_table[udbh & 0xff];
 528		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 529			p = syndrome_unknown;
 530		else
 531			p = memmod_str;
 532		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 533		       "Memory Module \"%s\"\n",
 534		       smp_processor_id(), scode, p);
 535	}
 536
 537}
 538
 539static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 540{
 541
 542	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 543	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 544	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 545
 546	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 547
 548	/* We always log it, even if someone is listening for this
 549	 * trap.
 550	 */
 551	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 552		   0, TRAP_TYPE_CEE, SIGTRAP);
 553
 554	/* The Correctable ECC Error trap does not disable I/D caches.  So
 555	 * we only have to restore the ESTATE Error Enable register.
 556	 */
 557	spitfire_enable_estate_errors();
 558}
 559
 560static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 561{
 562	siginfo_t info;
 563
 564	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 565	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 566	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 567
 568	/* XXX add more human friendly logging of the error status
 569	 * XXX as is implemented for cheetah
 570	 */
 571
 572	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 573
 574	/* We always log it, even if someone is listening for this
 575	 * trap.
 576	 */
 577	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 578		   0, tt, SIGTRAP);
 579
 580	if (regs->tstate & TSTATE_PRIV) {
 581		if (tl1)
 582			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 583		die_if_kernel("UE", regs);
 584	}
 585
 586	/* XXX need more intelligent processing here, such as is implemented
 587	 * XXX for cheetah errors, in fact if the E-cache still holds the
 588	 * XXX line with bad parity this will loop
 589	 */
 590
 591	spitfire_clean_and_reenable_l1_caches();
 592	spitfire_enable_estate_errors();
 593
 594	if (test_thread_flag(TIF_32BIT)) {
 595		regs->tpc &= 0xffffffff;
 596		regs->tnpc &= 0xffffffff;
 597	}
 598	info.si_signo = SIGBUS;
 599	info.si_errno = 0;
 600	info.si_code = BUS_OBJERR;
 601	info.si_addr = (void *)0;
 602	info.si_trapno = 0;
 603	force_sig_info(SIGBUS, &info, current);
 604}
 605
 606void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 607{
 608	unsigned long afsr, tt, udbh, udbl;
 609	int tl1;
 610
 611	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 612	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 613	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 614	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 615	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 616
 617#ifdef CONFIG_PCI
 618	if (tt == TRAP_TYPE_DAE &&
 619	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 620		spitfire_clean_and_reenable_l1_caches();
 621		spitfire_enable_estate_errors();
 622
 623		pci_poke_faulted = 1;
 624		regs->tnpc = regs->tpc + 4;
 625		return;
 626	}
 627#endif
 628
 629	if (afsr & SFAFSR_UE)
 630		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 631
 632	if (tt == TRAP_TYPE_CEE) {
 633		/* Handle the case where we took a CEE trap, but ACK'd
 634		 * only the UE state in the UDB error registers.
 635		 */
 636		if (afsr & SFAFSR_UE) {
 637			if (udbh & UDBE_CE) {
 638				__asm__ __volatile__(
 639					"stxa	%0, [%1] %2\n\t"
 640					"membar	#Sync"
 641					: /* no outputs */
 642					: "r" (udbh & UDBE_CE),
 643					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 644			}
 645			if (udbl & UDBE_CE) {
 646				__asm__ __volatile__(
 647					"stxa	%0, [%1] %2\n\t"
 648					"membar	#Sync"
 649					: /* no outputs */
 650					: "r" (udbl & UDBE_CE),
 651					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 652			}
 653		}
 654
 655		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 656	}
 657}
 658
 659int cheetah_pcache_forced_on;
 660
 661void cheetah_enable_pcache(void)
 662{
 663	unsigned long dcr;
 664
 665	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 666	       smp_processor_id());
 667
 668	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 669			     : "=r" (dcr)
 670			     : "i" (ASI_DCU_CONTROL_REG));
 671	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 672	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 673			     "membar #Sync"
 674			     : /* no outputs */
 675			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 676}
 677
 678/* Cheetah error trap handling. */
 679static unsigned long ecache_flush_physbase;
 680static unsigned long ecache_flush_linesize;
 681static unsigned long ecache_flush_size;
 682
 683/* This table is ordered in priority of errors and matches the
 684 * AFAR overwrite policy as well.
 685 */
 686
 687struct afsr_error_table {
 688	unsigned long mask;
 689	const char *name;
 690};
 691
 692static const char CHAFSR_PERR_msg[] =
 693	"System interface protocol error";
 694static const char CHAFSR_IERR_msg[] =
 695	"Internal processor error";
 696static const char CHAFSR_ISAP_msg[] =
 697	"System request parity error on incoming address";
 698static const char CHAFSR_UCU_msg[] =
 699	"Uncorrectable E-cache ECC error for ifetch/data";
 700static const char CHAFSR_UCC_msg[] =
 701	"SW Correctable E-cache ECC error for ifetch/data";
 702static const char CHAFSR_UE_msg[] =
 703	"Uncorrectable system bus data ECC error for read";
 704static const char CHAFSR_EDU_msg[] =
 705	"Uncorrectable E-cache ECC error for stmerge/blkld";
 706static const char CHAFSR_EMU_msg[] =
 707	"Uncorrectable system bus MTAG error";
 708static const char CHAFSR_WDU_msg[] =
 709	"Uncorrectable E-cache ECC error for writeback";
 710static const char CHAFSR_CPU_msg[] =
 711	"Uncorrectable ECC error for copyout";
 712static const char CHAFSR_CE_msg[] =
 713	"HW corrected system bus data ECC error for read";
 714static const char CHAFSR_EDC_msg[] =
 715	"HW corrected E-cache ECC error for stmerge/blkld";
 716static const char CHAFSR_EMC_msg[] =
 717	"HW corrected system bus MTAG ECC error";
 718static const char CHAFSR_WDC_msg[] =
 719	"HW corrected E-cache ECC error for writeback";
 720static const char CHAFSR_CPC_msg[] =
 721	"HW corrected ECC error for copyout";
 722static const char CHAFSR_TO_msg[] =
 723	"Unmapped error from system bus";
 724static const char CHAFSR_BERR_msg[] =
 725	"Bus error response from system bus";
 726static const char CHAFSR_IVC_msg[] =
 727	"HW corrected system bus data ECC error for ivec read";
 728static const char CHAFSR_IVU_msg[] =
 729	"Uncorrectable system bus data ECC error for ivec read";
 730static struct afsr_error_table __cheetah_error_table[] = {
 731	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 732	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 733	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 734	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 735	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 736	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 737	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 738	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 739	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 740	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 741	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 742	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 743	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 744	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 745	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 746	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 747	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 748	/* These two do not update the AFAR. */
 749	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 750	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 751	{	0,		NULL			},
 752};
 753static const char CHPAFSR_DTO_msg[] =
 754	"System bus unmapped error for prefetch/storequeue-read";
 755static const char CHPAFSR_DBERR_msg[] =
 756	"System bus error for prefetch/storequeue-read";
 757static const char CHPAFSR_THCE_msg[] =
 758	"Hardware corrected E-cache Tag ECC error";
 759static const char CHPAFSR_TSCE_msg[] =
 760	"SW handled correctable E-cache Tag ECC error";
 761static const char CHPAFSR_TUE_msg[] =
 762	"Uncorrectable E-cache Tag ECC error";
 763static const char CHPAFSR_DUE_msg[] =
 764	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 765static struct afsr_error_table __cheetah_plus_error_table[] = {
 766	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 767	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 768	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 769	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 770	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 771	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 772	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 773	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 774	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 775	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 776	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 777	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 778	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 779	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 780	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 781	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 782	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 783	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 784	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 785	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 786	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 787	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 788	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 789	/* These two do not update the AFAR. */
 790	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 791	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 792	{	0,		NULL			},
 793};
 794static const char JPAFSR_JETO_msg[] =
 795	"System interface protocol error, hw timeout caused";
 796static const char JPAFSR_SCE_msg[] =
 797	"Parity error on system snoop results";
 798static const char JPAFSR_JEIC_msg[] =
 799	"System interface protocol error, illegal command detected";
 800static const char JPAFSR_JEIT_msg[] =
 801	"System interface protocol error, illegal ADTYPE detected";
 802static const char JPAFSR_OM_msg[] =
 803	"Out of range memory error has occurred";
 804static const char JPAFSR_ETP_msg[] =
 805	"Parity error on L2 cache tag SRAM";
 806static const char JPAFSR_UMS_msg[] =
 807	"Error due to unsupported store";
 808static const char JPAFSR_RUE_msg[] =
 809	"Uncorrectable ECC error from remote cache/memory";
 810static const char JPAFSR_RCE_msg[] =
 811	"Correctable ECC error from remote cache/memory";
 812static const char JPAFSR_BP_msg[] =
 813	"JBUS parity error on returned read data";
 814static const char JPAFSR_WBP_msg[] =
 815	"JBUS parity error on data for writeback or block store";
 816static const char JPAFSR_FRC_msg[] =
 817	"Foreign read to DRAM incurring correctable ECC error";
 818static const char JPAFSR_FRU_msg[] =
 819	"Foreign read to DRAM incurring uncorrectable ECC error";
 820static struct afsr_error_table __jalapeno_error_table[] = {
 821	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 822	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 823	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 824	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 825	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 826	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 827	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 828	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 829	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 830	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 831	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 832	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 833	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 834	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 835	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 836	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 837	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 838	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 839	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 840	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 841	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 842	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 843	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 844	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 845	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 846	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 847	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 848	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 849	/* These two do not update the AFAR. */
 850	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 851	{	0,		NULL			},
 852};
 853static struct afsr_error_table *cheetah_error_table;
 854static unsigned long cheetah_afsr_errors;
 855
 856struct cheetah_err_info *cheetah_error_log;
 857
 858static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 859{
 860	struct cheetah_err_info *p;
 861	int cpu = smp_processor_id();
 862
 863	if (!cheetah_error_log)
 864		return NULL;
 865
 866	p = cheetah_error_log + (cpu * 2);
 867	if ((afsr & CHAFSR_TL1) != 0UL)
 868		p++;
 869
 870	return p;
 871}
 872
 873extern unsigned int tl0_icpe[], tl1_icpe[];
 874extern unsigned int tl0_dcpe[], tl1_dcpe[];
 875extern unsigned int tl0_fecc[], tl1_fecc[];
 876extern unsigned int tl0_cee[], tl1_cee[];
 877extern unsigned int tl0_iae[], tl1_iae[];
 878extern unsigned int tl0_dae[], tl1_dae[];
 879extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 880extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 881extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 882extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 883extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 884
 885void __init cheetah_ecache_flush_init(void)
 886{
 887	unsigned long largest_size, smallest_linesize, order, ver;
 888	int i, sz;
 889
 890	/* Scan all cpu device tree nodes, note two values:
 891	 * 1) largest E-cache size
 892	 * 2) smallest E-cache line size
 893	 */
 894	largest_size = 0UL;
 895	smallest_linesize = ~0UL;
 896
 897	for (i = 0; i < NR_CPUS; i++) {
 898		unsigned long val;
 899
 900		val = cpu_data(i).ecache_size;
 901		if (!val)
 902			continue;
 903
 904		if (val > largest_size)
 905			largest_size = val;
 906
 907		val = cpu_data(i).ecache_line_size;
 908		if (val < smallest_linesize)
 909			smallest_linesize = val;
 910
 911	}
 912
 913	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 914		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 915			    "parameters.\n");
 916		prom_halt();
 917	}
 918
 919	ecache_flush_size = (2 * largest_size);
 920	ecache_flush_linesize = smallest_linesize;
 921
 922	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 923
 924	if (ecache_flush_physbase == ~0UL) {
 925		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 926			    "contiguous physical memory.\n",
 927			    ecache_flush_size);
 928		prom_halt();
 929	}
 930
 931	/* Now allocate error trap reporting scoreboard. */
 932	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 933	for (order = 0; order < MAX_ORDER; order++) {
 934		if ((PAGE_SIZE << order) >= sz)
 935			break;
 936	}
 937	cheetah_error_log = (struct cheetah_err_info *)
 938		__get_free_pages(GFP_KERNEL, order);
 939	if (!cheetah_error_log) {
 940		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 941			    "error logging scoreboard (%d bytes).\n", sz);
 942		prom_halt();
 943	}
 944	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 945
 946	/* Mark all AFSRs as invalid so that the trap handler will
 947	 * log new new information there.
 948	 */
 949	for (i = 0; i < 2 * NR_CPUS; i++)
 950		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 951
 952	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 953	if ((ver >> 32) == __JALAPENO_ID ||
 954	    (ver >> 32) == __SERRANO_ID) {
 955		cheetah_error_table = &__jalapeno_error_table[0];
 956		cheetah_afsr_errors = JPAFSR_ERRORS;
 957	} else if ((ver >> 32) == 0x003e0015) {
 958		cheetah_error_table = &__cheetah_plus_error_table[0];
 959		cheetah_afsr_errors = CHPAFSR_ERRORS;
 960	} else {
 961		cheetah_error_table = &__cheetah_error_table[0];
 962		cheetah_afsr_errors = CHAFSR_ERRORS;
 963	}
 964
 965	/* Now patch trap tables. */
 966	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 967	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 968	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 969	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 970	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 971	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 972	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 973	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 974	if (tlb_type == cheetah_plus) {
 975		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 976		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 977		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 978		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 979	}
 980	flushi(PAGE_OFFSET);
 981}
 982
 983static void cheetah_flush_ecache(void)
 984{
 985	unsigned long flush_base = ecache_flush_physbase;
 986	unsigned long flush_linesize = ecache_flush_linesize;
 987	unsigned long flush_size = ecache_flush_size;
 988
 989	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 990			     "   bne,pt	%%xcc, 1b\n\t"
 991			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 992			     : "=&r" (flush_size)
 993			     : "0" (flush_size), "r" (flush_base),
 994			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 995}
 996
 997static void cheetah_flush_ecache_line(unsigned long physaddr)
 998{
 999	unsigned long alias;
1000
1001	physaddr &= ~(8UL - 1UL);
1002	physaddr = (ecache_flush_physbase +
1003		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
1004	alias = physaddr + (ecache_flush_size >> 1UL);
1005	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
1006			     "ldxa [%1] %2, %%g0\n\t"
1007			     "membar #Sync"
1008			     : /* no outputs */
1009			     : "r" (physaddr), "r" (alias),
1010			       "i" (ASI_PHYS_USE_EC));
1011}
1012
1013/* Unfortunately, the diagnostic access to the I-cache tags we need to
1014 * use to clear the thing interferes with I-cache coherency transactions.
1015 *
1016 * So we must only flush the I-cache when it is disabled.
1017 */
1018static void __cheetah_flush_icache(void)
1019{
1020	unsigned int icache_size, icache_line_size;
1021	unsigned long addr;
1022
1023	icache_size = local_cpu_data().icache_size;
1024	icache_line_size = local_cpu_data().icache_line_size;
1025
1026	/* Clear the valid bits in all the tags. */
1027	for (addr = 0; addr < icache_size; addr += icache_line_size) {
1028		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1029				     "membar #Sync"
1030				     : /* no outputs */
1031				     : "r" (addr | (2 << 3)),
1032				       "i" (ASI_IC_TAG));
1033	}
1034}
1035
1036static void cheetah_flush_icache(void)
1037{
1038	unsigned long dcu_save;
1039
1040	/* Save current DCU, disable I-cache. */
1041	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1042			     "or %0, %2, %%g1\n\t"
1043			     "stxa %%g1, [%%g0] %1\n\t"
1044			     "membar #Sync"
1045			     : "=r" (dcu_save)
1046			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1047			     : "g1");
1048
1049	__cheetah_flush_icache();
1050
1051	/* Restore DCU register */
1052	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1053			     "membar #Sync"
1054			     : /* no outputs */
1055			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1056}
1057
1058static void cheetah_flush_dcache(void)
1059{
1060	unsigned int dcache_size, dcache_line_size;
1061	unsigned long addr;
1062
1063	dcache_size = local_cpu_data().dcache_size;
1064	dcache_line_size = local_cpu_data().dcache_line_size;
1065
1066	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1067		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1068				     "membar #Sync"
1069				     : /* no outputs */
1070				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1071	}
1072}
1073
1074/* In order to make the even parity correct we must do two things.
1075 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1076 * Next, we clear out all 32-bytes of data for that line.  Data of
1077 * all-zero + tag parity value of zero == correct parity.
1078 */
1079static void cheetah_plus_zap_dcache_parity(void)
1080{
1081	unsigned int dcache_size, dcache_line_size;
1082	unsigned long addr;
1083
1084	dcache_size = local_cpu_data().dcache_size;
1085	dcache_line_size = local_cpu_data().dcache_line_size;
1086
1087	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1088		unsigned long tag = (addr >> 14);
1089		unsigned long line;
1090
1091		__asm__ __volatile__("membar	#Sync\n\t"
1092				     "stxa	%0, [%1] %2\n\t"
1093				     "membar	#Sync"
1094				     : /* no outputs */
1095				     : "r" (tag), "r" (addr),
1096				       "i" (ASI_DCACHE_UTAG));
1097		for (line = addr; line < addr + dcache_line_size; line += 8)
1098			__asm__ __volatile__("membar	#Sync\n\t"
1099					     "stxa	%%g0, [%0] %1\n\t"
1100					     "membar	#Sync"
1101					     : /* no outputs */
1102					     : "r" (line),
1103					       "i" (ASI_DCACHE_DATA));
1104	}
1105}
1106
1107/* Conversion tables used to frob Cheetah AFSR syndrome values into
1108 * something palatable to the memory controller driver get_unumber
1109 * routine.
1110 */
1111#define MT0	137
1112#define MT1	138
1113#define MT2	139
1114#define NONE	254
1115#define MTC0	140
1116#define MTC1	141
1117#define MTC2	142
1118#define MTC3	143
1119#define C0	128
1120#define C1	129
1121#define C2	130
1122#define C3	131
1123#define C4	132
1124#define C5	133
1125#define C6	134
1126#define C7	135
1127#define C8	136
1128#define M2	144
1129#define M3	145
1130#define M4	146
1131#define M	147
1132static unsigned char cheetah_ecc_syntab[] = {
1133/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1134/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1135/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1136/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1137/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1138/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1139/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1140/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1141/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1142/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1143/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1144/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1145/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1146/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1147/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1148/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1149/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1150/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1151/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1152/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1153/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1154/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1155/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1156/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1157/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1158/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1159/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1160/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1161/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1162/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1163/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1164/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1165};
1166static unsigned char cheetah_mtag_syntab[] = {
1167       NONE, MTC0,
1168       MTC1, NONE,
1169       MTC2, NONE,
1170       NONE, MT0,
1171       MTC3, NONE,
1172       NONE, MT1,
1173       NONE, MT2,
1174       NONE, NONE
1175};
1176
1177/* Return the highest priority error conditon mentioned. */
1178static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1179{
1180	unsigned long tmp = 0;
1181	int i;
1182
1183	for (i = 0; cheetah_error_table[i].mask; i++) {
1184		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1185			return tmp;
1186	}
1187	return tmp;
1188}
1189
1190static const char *cheetah_get_string(unsigned long bit)
1191{
1192	int i;
1193
1194	for (i = 0; cheetah_error_table[i].mask; i++) {
1195		if ((bit & cheetah_error_table[i].mask) != 0UL)
1196			return cheetah_error_table[i].name;
1197	}
1198	return "???";
1199}
1200
1201static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1202			       unsigned long afsr, unsigned long afar, int recoverable)
1203{
1204	unsigned long hipri;
1205	char unum[256];
1206
1207	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1208	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1209	       afsr, afar,
1210	       (afsr & CHAFSR_TL1) ? 1 : 0);
1211	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1212	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1213	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1214	printk("%s" "ERROR(%d): ",
1215	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1216	printk("TPC<%pS>\n", (void *) regs->tpc);
1217	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1218	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1219	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1220	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1221	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1222	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1223	hipri = cheetah_get_hipri(afsr);
1224	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1225	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1226	       hipri, cheetah_get_string(hipri));
1227
1228	/* Try to get unumber if relevant. */
1229#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1230			 CHAFSR_CPC | CHAFSR_CPU | \
1231			 CHAFSR_UE  | CHAFSR_CE  | \
1232			 CHAFSR_EDC | CHAFSR_EDU  | \
1233			 CHAFSR_UCC | CHAFSR_UCU  | \
1234			 CHAFSR_WDU | CHAFSR_WDC)
1235#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1236	if (afsr & ESYND_ERRORS) {
1237		int syndrome;
1238		int ret;
1239
1240		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1241		syndrome = cheetah_ecc_syntab[syndrome];
1242		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1243		if (ret != -1)
1244			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1245			       (recoverable ? KERN_WARNING : KERN_CRIT),
1246			       smp_processor_id(), unum);
1247	} else if (afsr & MSYND_ERRORS) {
1248		int syndrome;
1249		int ret;
1250
1251		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1252		syndrome = cheetah_mtag_syntab[syndrome];
1253		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1254		if (ret != -1)
1255			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1256			       (recoverable ? KERN_WARNING : KERN_CRIT),
1257			       smp_processor_id(), unum);
1258	}
1259
1260	/* Now dump the cache snapshots. */
1261	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1262	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1263	       (int) info->dcache_index,
1264	       info->dcache_tag,
1265	       info->dcache_utag,
1266	       info->dcache_stag);
1267	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1268	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1269	       info->dcache_data[0],
1270	       info->dcache_data[1],
1271	       info->dcache_data[2],
1272	       info->dcache_data[3]);
1273	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1274	       "u[%016llx] l[%016llx]\n",
1275	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1276	       (int) info->icache_index,
1277	       info->icache_tag,
1278	       info->icache_utag,
1279	       info->icache_stag,
1280	       info->icache_upper,
1281	       info->icache_lower);
1282	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1283	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1284	       info->icache_data[0],
1285	       info->icache_data[1],
1286	       info->icache_data[2],
1287	       info->icache_data[3]);
1288	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1289	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1290	       info->icache_data[4],
1291	       info->icache_data[5],
1292	       info->icache_data[6],
1293	       info->icache_data[7]);
1294	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1295	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1296	       (int) info->ecache_index, info->ecache_tag);
1297	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1298	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1299	       info->ecache_data[0],
1300	       info->ecache_data[1],
1301	       info->ecache_data[2],
1302	       info->ecache_data[3]);
1303
1304	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1305	while (afsr != 0UL) {
1306		unsigned long bit = cheetah_get_hipri(afsr);
1307
1308		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1309		       (recoverable ? KERN_WARNING : KERN_CRIT),
1310		       bit, cheetah_get_string(bit));
1311
1312		afsr &= ~bit;
1313	}
1314
1315	if (!recoverable)
1316		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1317}
1318
1319static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1320{
1321	unsigned long afsr, afar;
1322	int ret = 0;
1323
1324	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1325			     : "=r" (afsr)
1326			     : "i" (ASI_AFSR));
1327	if ((afsr & cheetah_afsr_errors) != 0) {
1328		if (logp != NULL) {
1329			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1330					     : "=r" (afar)
1331					     : "i" (ASI_AFAR));
1332			logp->afsr = afsr;
1333			logp->afar = afar;
1334		}
1335		ret = 1;
1336	}
1337	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1338			     "membar #Sync\n\t"
1339			     : : "r" (afsr), "i" (ASI_AFSR));
1340
1341	return ret;
1342}
1343
1344void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1345{
1346	struct cheetah_err_info local_snapshot, *p;
1347	int recoverable;
1348
1349	/* Flush E-cache */
1350	cheetah_flush_ecache();
1351
1352	p = cheetah_get_error_log(afsr);
1353	if (!p) {
1354		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1355			    afsr, afar);
1356		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1357			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1358		prom_halt();
1359	}
1360
1361	/* Grab snapshot of logged error. */
1362	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1363
1364	/* If the current trap snapshot does not match what the
1365	 * trap handler passed along into our args, big trouble.
1366	 * In such a case, mark the local copy as invalid.
1367	 *
1368	 * Else, it matches and we mark the afsr in the non-local
1369	 * copy as invalid so we may log new error traps there.
1370	 */
1371	if (p->afsr != afsr || p->afar != afar)
1372		local_snapshot.afsr = CHAFSR_INVALID;
1373	else
1374		p->afsr = CHAFSR_INVALID;
1375
1376	cheetah_flush_icache();
1377	cheetah_flush_dcache();
1378
1379	/* Re-enable I-cache/D-cache */
1380	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1381			     "or %%g1, %1, %%g1\n\t"
1382			     "stxa %%g1, [%%g0] %0\n\t"
1383			     "membar #Sync"
1384			     : /* no outputs */
1385			     : "i" (ASI_DCU_CONTROL_REG),
1386			       "i" (DCU_DC | DCU_IC)
1387			     : "g1");
1388
1389	/* Re-enable error reporting */
1390	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1391			     "or %%g1, %1, %%g1\n\t"
1392			     "stxa %%g1, [%%g0] %0\n\t"
1393			     "membar #Sync"
1394			     : /* no outputs */
1395			     : "i" (ASI_ESTATE_ERROR_EN),
1396			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1397			     : "g1");
1398
1399	/* Decide if we can continue after handling this trap and
1400	 * logging the error.
1401	 */
1402	recoverable = 1;
1403	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1404		recoverable = 0;
1405
1406	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1407	 * error was logged while we had error reporting traps disabled.
1408	 */
1409	if (cheetah_recheck_errors(&local_snapshot)) {
1410		unsigned long new_afsr = local_snapshot.afsr;
1411
1412		/* If we got a new asynchronous error, die... */
1413		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1414				CHAFSR_WDU | CHAFSR_CPU |
1415				CHAFSR_IVU | CHAFSR_UE |
1416				CHAFSR_BERR | CHAFSR_TO))
1417			recoverable = 0;
1418	}
1419
1420	/* Log errors. */
1421	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1422
1423	if (!recoverable)
1424		panic("Irrecoverable Fast-ECC error trap.\n");
1425
1426	/* Flush E-cache to kick the error trap handlers out. */
1427	cheetah_flush_ecache();
1428}
1429
1430/* Try to fix a correctable error by pushing the line out from
1431 * the E-cache.  Recheck error reporting registers to see if the
1432 * problem is intermittent.
1433 */
1434static int cheetah_fix_ce(unsigned long physaddr)
1435{
1436	unsigned long orig_estate;
1437	unsigned long alias1, alias2;
1438	int ret;
1439
1440	/* Make sure correctable error traps are disabled. */
1441	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1442			     "andn	%0, %1, %%g1\n\t"
1443			     "stxa	%%g1, [%%g0] %2\n\t"
1444			     "membar	#Sync"
1445			     : "=&r" (orig_estate)
1446			     : "i" (ESTATE_ERROR_CEEN),
1447			       "i" (ASI_ESTATE_ERROR_EN)
1448			     : "g1");
1449
1450	/* We calculate alias addresses that will force the
1451	 * cache line in question out of the E-cache.  Then
1452	 * we bring it back in with an atomic instruction so
1453	 * that we get it in some modified/exclusive state,
1454	 * then we displace it again to try and get proper ECC
1455	 * pushed back into the system.
1456	 */
1457	physaddr &= ~(8UL - 1UL);
1458	alias1 = (ecache_flush_physbase +
1459		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1460	alias2 = alias1 + (ecache_flush_size >> 1);
1461	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1462			     "ldxa	[%1] %3, %%g0\n\t"
1463			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1464			     "ldxa	[%0] %3, %%g0\n\t"
1465			     "ldxa	[%1] %3, %%g0\n\t"
1466			     "membar	#Sync"
1467			     : /* no outputs */
1468			     : "r" (alias1), "r" (alias2),
1469			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1470
1471	/* Did that trigger another error? */
1472	if (cheetah_recheck_errors(NULL)) {
1473		/* Try one more time. */
1474		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1475				     "membar #Sync"
1476				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1477		if (cheetah_recheck_errors(NULL))
1478			ret = 2;
1479		else
1480			ret = 1;
1481	} else {
1482		/* No new error, intermittent problem. */
1483		ret = 0;
1484	}
1485
1486	/* Restore error enables. */
1487	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1488			     "membar	#Sync"
1489			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1490
1491	return ret;
1492}
1493
1494/* Return non-zero if PADDR is a valid physical memory address. */
1495static int cheetah_check_main_memory(unsigned long paddr)
1496{
1497	unsigned long vaddr = PAGE_OFFSET + paddr;
1498
1499	if (vaddr > (unsigned long) high_memory)
1500		return 0;
1501
1502	return kern_addr_valid(vaddr);
1503}
1504
1505void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1506{
1507	struct cheetah_err_info local_snapshot, *p;
1508	int recoverable, is_memory;
1509
1510	p = cheetah_get_error_log(afsr);
1511	if (!p) {
1512		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1513			    afsr, afar);
1514		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1515			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1516		prom_halt();
1517	}
1518
1519	/* Grab snapshot of logged error. */
1520	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1521
1522	/* If the current trap snapshot does not match what the
1523	 * trap handler passed along into our args, big trouble.
1524	 * In such a case, mark the local copy as invalid.
1525	 *
1526	 * Else, it matches and we mark the afsr in the non-local
1527	 * copy as invalid so we may log new error traps there.
1528	 */
1529	if (p->afsr != afsr || p->afar != afar)
1530		local_snapshot.afsr = CHAFSR_INVALID;
1531	else
1532		p->afsr = CHAFSR_INVALID;
1533
1534	is_memory = cheetah_check_main_memory(afar);
1535
1536	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1537		/* XXX Might want to log the results of this operation
1538		 * XXX somewhere... -DaveM
1539		 */
1540		cheetah_fix_ce(afar);
1541	}
1542
1543	{
1544		int flush_all, flush_line;
1545
1546		flush_all = flush_line = 0;
1547		if ((afsr & CHAFSR_EDC) != 0UL) {
1548			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1549				flush_line = 1;
1550			else
1551				flush_all = 1;
1552		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1553			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1554				flush_line = 1;
1555			else
1556				flush_all = 1;
1557		}
1558
1559		/* Trap handler only disabled I-cache, flush it. */
1560		cheetah_flush_icache();
1561
1562		/* Re-enable I-cache */
1563		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1564				     "or %%g1, %1, %%g1\n\t"
1565				     "stxa %%g1, [%%g0] %0\n\t"
1566				     "membar #Sync"
1567				     : /* no outputs */
1568				     : "i" (ASI_DCU_CONTROL_REG),
1569				     "i" (DCU_IC)
1570				     : "g1");
1571
1572		if (flush_all)
1573			cheetah_flush_ecache();
1574		else if (flush_line)
1575			cheetah_flush_ecache_line(afar);
1576	}
1577
1578	/* Re-enable error reporting */
1579	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1580			     "or %%g1, %1, %%g1\n\t"
1581			     "stxa %%g1, [%%g0] %0\n\t"
1582			     "membar #Sync"
1583			     : /* no outputs */
1584			     : "i" (ASI_ESTATE_ERROR_EN),
1585			       "i" (ESTATE_ERROR_CEEN)
1586			     : "g1");
1587
1588	/* Decide if we can continue after handling this trap and
1589	 * logging the error.
1590	 */
1591	recoverable = 1;
1592	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1593		recoverable = 0;
1594
1595	/* Re-check AFSR/AFAR */
1596	(void) cheetah_recheck_errors(&local_snapshot);
1597
1598	/* Log errors. */
1599	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1600
1601	if (!recoverable)
1602		panic("Irrecoverable Correctable-ECC error trap.\n");
1603}
1604
1605void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1606{
1607	struct cheetah_err_info local_snapshot, *p;
1608	int recoverable, is_memory;
1609
1610#ifdef CONFIG_PCI
1611	/* Check for the special PCI poke sequence. */
1612	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1613		cheetah_flush_icache();
1614		cheetah_flush_dcache();
1615
1616		/* Re-enable I-cache/D-cache */
1617		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1618				     "or %%g1, %1, %%g1\n\t"
1619				     "stxa %%g1, [%%g0] %0\n\t"
1620				     "membar #Sync"
1621				     : /* no outputs */
1622				     : "i" (ASI_DCU_CONTROL_REG),
1623				       "i" (DCU_DC | DCU_IC)
1624				     : "g1");
1625
1626		/* Re-enable error reporting */
1627		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1628				     "or %%g1, %1, %%g1\n\t"
1629				     "stxa %%g1, [%%g0] %0\n\t"
1630				     "membar #Sync"
1631				     : /* no outputs */
1632				     : "i" (ASI_ESTATE_ERROR_EN),
1633				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1634				     : "g1");
1635
1636		(void) cheetah_recheck_errors(NULL);
1637
1638		pci_poke_faulted = 1;
1639		regs->tpc += 4;
1640		regs->tnpc = regs->tpc + 4;
1641		return;
1642	}
1643#endif
1644
1645	p = cheetah_get_error_log(afsr);
1646	if (!p) {
1647		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1648			    afsr, afar);
1649		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1650			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1651		prom_halt();
1652	}
1653
1654	/* Grab snapshot of logged error. */
1655	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1656
1657	/* If the current trap snapshot does not match what the
1658	 * trap handler passed along into our args, big trouble.
1659	 * In such a case, mark the local copy as invalid.
1660	 *
1661	 * Else, it matches and we mark the afsr in the non-local
1662	 * copy as invalid so we may log new error traps there.
1663	 */
1664	if (p->afsr != afsr || p->afar != afar)
1665		local_snapshot.afsr = CHAFSR_INVALID;
1666	else
1667		p->afsr = CHAFSR_INVALID;
1668
1669	is_memory = cheetah_check_main_memory(afar);
1670
1671	{
1672		int flush_all, flush_line;
1673
1674		flush_all = flush_line = 0;
1675		if ((afsr & CHAFSR_EDU) != 0UL) {
1676			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1677				flush_line = 1;
1678			else
1679				flush_all = 1;
1680		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1681			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1682				flush_line = 1;
1683			else
1684				flush_all = 1;
1685		}
1686
1687		cheetah_flush_icache();
1688		cheetah_flush_dcache();
1689
1690		/* Re-enable I/D caches */
1691		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1692				     "or %%g1, %1, %%g1\n\t"
1693				     "stxa %%g1, [%%g0] %0\n\t"
1694				     "membar #Sync"
1695				     : /* no outputs */
1696				     : "i" (ASI_DCU_CONTROL_REG),
1697				     "i" (DCU_IC | DCU_DC)
1698				     : "g1");
1699
1700		if (flush_all)
1701			cheetah_flush_ecache();
1702		else if (flush_line)
1703			cheetah_flush_ecache_line(afar);
1704	}
1705
1706	/* Re-enable error reporting */
1707	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1708			     "or %%g1, %1, %%g1\n\t"
1709			     "stxa %%g1, [%%g0] %0\n\t"
1710			     "membar #Sync"
1711			     : /* no outputs */
1712			     : "i" (ASI_ESTATE_ERROR_EN),
1713			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1714			     : "g1");
1715
1716	/* Decide if we can continue after handling this trap and
1717	 * logging the error.
1718	 */
1719	recoverable = 1;
1720	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1721		recoverable = 0;
1722
1723	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1724	 * error was logged while we had error reporting traps disabled.
1725	 */
1726	if (cheetah_recheck_errors(&local_snapshot)) {
1727		unsigned long new_afsr = local_snapshot.afsr;
1728
1729		/* If we got a new asynchronous error, die... */
1730		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1731				CHAFSR_WDU | CHAFSR_CPU |
1732				CHAFSR_IVU | CHAFSR_UE |
1733				CHAFSR_BERR | CHAFSR_TO))
1734			recoverable = 0;
1735	}
1736
1737	/* Log errors. */
1738	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1739
1740	/* "Recoverable" here means we try to yank the page from ever
1741	 * being newly used again.  This depends upon a few things:
1742	 * 1) Must be main memory, and AFAR must be valid.
1743	 * 2) If we trapped from user, OK.
1744	 * 3) Else, if we trapped from kernel we must find exception
1745	 *    table entry (ie. we have to have been accessing user
1746	 *    space).
1747	 *
1748	 * If AFAR is not in main memory, or we trapped from kernel
1749	 * and cannot find an exception table entry, it is unacceptable
1750	 * to try and continue.
1751	 */
1752	if (recoverable && is_memory) {
1753		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1754			/* OK, usermode access. */
1755			recoverable = 1;
1756		} else {
1757			const struct exception_table_entry *entry;
1758
1759			entry = search_exception_tables(regs->tpc);
1760			if (entry) {
1761				/* OK, kernel access to userspace. */
1762				recoverable = 1;
1763
1764			} else {
1765				/* BAD, privileged state is corrupted. */
1766				recoverable = 0;
1767			}
1768
1769			if (recoverable) {
1770				if (pfn_valid(afar >> PAGE_SHIFT))
1771					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1772				else
1773					recoverable = 0;
1774
1775				/* Only perform fixup if we still have a
1776				 * recoverable condition.
1777				 */
1778				if (recoverable) {
1779					regs->tpc = entry->fixup;
1780					regs->tnpc = regs->tpc + 4;
1781				}
1782			}
1783		}
1784	} else {
1785		recoverable = 0;
1786	}
1787
1788	if (!recoverable)
1789		panic("Irrecoverable deferred error trap.\n");
1790}
1791
1792/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1793 *
1794 * Bit0:	0=dcache,1=icache
1795 * Bit1:	0=recoverable,1=unrecoverable
1796 *
1797 * The hardware has disabled both the I-cache and D-cache in
1798 * the %dcr register.  
1799 */
1800void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1801{
1802	if (type & 0x1)
1803		__cheetah_flush_icache();
1804	else
1805		cheetah_plus_zap_dcache_parity();
1806	cheetah_flush_dcache();
1807
1808	/* Re-enable I-cache/D-cache */
1809	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1810			     "or %%g1, %1, %%g1\n\t"
1811			     "stxa %%g1, [%%g0] %0\n\t"
1812			     "membar #Sync"
1813			     : /* no outputs */
1814			     : "i" (ASI_DCU_CONTROL_REG),
1815			       "i" (DCU_DC | DCU_IC)
1816			     : "g1");
1817
1818	if (type & 0x2) {
1819		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1820		       smp_processor_id(),
1821		       (type & 0x1) ? 'I' : 'D',
1822		       regs->tpc);
1823		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1824		panic("Irrecoverable Cheetah+ parity error.");
1825	}
1826
1827	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1828	       smp_processor_id(),
1829	       (type & 0x1) ? 'I' : 'D',
1830	       regs->tpc);
1831	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1832}
1833
1834struct sun4v_error_entry {
1835	/* Unique error handle */
1836/*0x00*/u64		err_handle;
1837
1838	/* %stick value at the time of the error */
1839/*0x08*/u64		err_stick;
1840
1841/*0x10*/u8		reserved_1[3];
1842
1843	/* Error type */
1844/*0x13*/u8		err_type;
1845#define SUN4V_ERR_TYPE_UNDEFINED	0
1846#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1847#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1848#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1849#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1850#define SUN4V_ERR_TYPE_DUMP_CORE	5
1851#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1852#define SUN4V_ERR_TYPE_NUM		7
1853
1854	/* Error attributes */
1855/*0x14*/u32		err_attrs;
1856#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1857#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1858#define SUN4V_ERR_ATTRS_PIO		0x00000004
1859#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1860#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1861#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1862#define SUN4V_ERR_ATTRS_ASR		0x00000040
1863#define SUN4V_ERR_ATTRS_ASI		0x00000080
1864#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1865#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1866#define SUN4V_ERR_ATTRS_MCD		0x00000800
1867#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1868#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1869#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1870#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1871
1872#define SUN4V_ERR_SPSTATE_FAULTED	0
1873#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1874#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1875
1876#define SUN4V_ERR_MODE_USER		1
1877#define SUN4V_ERR_MODE_PRIV		2
1878
1879	/* Real address of the memory region or PIO transaction */
1880/*0x18*/u64		err_raddr;
1881
1882	/* Size of the operation triggering the error, in bytes */
1883/*0x20*/u32		err_size;
1884
1885	/* ID of the CPU */
1886/*0x24*/u16		err_cpu;
1887
1888	/* Grace periof for shutdown, in seconds */
1889/*0x26*/u16		err_secs;
1890
1891	/* Value of the %asi register */
1892/*0x28*/u8		err_asi;
1893
1894/*0x29*/u8		reserved_2;
1895
1896	/* Value of the ASR register number */
1897/*0x2a*/u16		err_asr;
1898#define SUN4V_ERR_ASR_VALID		0x8000
1899
1900/*0x2c*/u32		reserved_3;
1901/*0x30*/u64		reserved_4;
1902/*0x38*/u64		reserved_5;
1903};
1904
1905static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1906static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1907
1908static const char *sun4v_err_type_to_str(u8 type)
1909{
1910	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1911		"undefined",
1912		"uncorrected resumable",
1913		"precise nonresumable",
1914		"deferred nonresumable",
1915		"shutdown request",
1916		"dump core",
1917		"SP state change",
1918	};
1919
1920	if (type < SUN4V_ERR_TYPE_NUM)
1921		return types[type];
1922
1923	return "unknown";
1924}
1925
1926static void sun4v_emit_err_attr_strings(u32 attrs)
1927{
1928	static const char *attr_names[] = {
1929		"processor",
1930		"memory",
1931		"PIO",
1932		"int-registers",
1933		"fpu-registers",
1934		"shutdown-request",
1935		"ASR",
1936		"ASI",
1937		"priv-reg",
1938	};
1939	static const char *sp_states[] = {
1940		"sp-faulted",
1941		"sp-available",
1942		"sp-not-present",
1943		"sp-state-reserved",
1944	};
1945	static const char *modes[] = {
1946		"mode-reserved0",
1947		"user",
1948		"priv",
1949		"mode-reserved1",
1950	};
1951	u32 sp_state, mode;
1952	int i;
1953
1954	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1955		if (attrs & (1U << i)) {
1956			const char *s = attr_names[i];
1957
1958			pr_cont("%s ", s);
1959		}
1960	}
1961
1962	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1963		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1964	pr_cont("%s ", sp_states[sp_state]);
1965
1966	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1967		SUN4V_ERR_ATTRS_MODE_SHFT);
1968	pr_cont("%s ", modes[mode]);
1969
1970	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1971		pr_cont("res-queue-full ");
1972}
1973
1974/* When the report contains a real-address of "-1" it means that the
1975 * hardware did not provide the address.  So we compute the effective
1976 * address of the load or store instruction at regs->tpc and report
1977 * that.  Usually when this happens it's a PIO and in such a case we
1978 * are using physical addresses with bypass ASIs anyways, so what we
1979 * report here is exactly what we want.
1980 */
1981static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1982{
1983	unsigned int insn;
1984	u64 addr;
1985
1986	if (!(regs->tstate & TSTATE_PRIV))
1987		return;
1988
1989	insn = *(unsigned int *) regs->tpc;
1990
1991	addr = compute_effective_address(regs, insn, 0);
1992
1993	printk("%s: insn effective address [0x%016llx]\n",
1994	       pfx, addr);
1995}
1996
1997static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1998			    int cpu, const char *pfx, atomic_t *ocnt)
1999{
2000	u64 *raw_ptr = (u64 *) ent;
2001	u32 attrs;
2002	int cnt;
2003
2004	printk("%s: Reporting on cpu %d\n", pfx, cpu);
2005	printk("%s: TPC [0x%016lx] <%pS>\n",
2006	       pfx, regs->tpc, (void *) regs->tpc);
2007
2008	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
2009	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
2010	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
2011	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
2012
2013	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
2014	       pfx, ent->err_handle, ent->err_stick);
2015
2016	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
2017
2018	attrs = ent->err_attrs;
2019	printk("%s: attrs [0x%08x] < ", pfx, attrs);
2020	sun4v_emit_err_attr_strings(attrs);
2021	pr_cont(">\n");
2022
2023	/* Various fields in the error report are only valid if
2024	 * certain attribute bits are set.
2025	 */
2026	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
2027		     SUN4V_ERR_ATTRS_PIO |
2028		     SUN4V_ERR_ATTRS_ASI)) {
2029		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
2030
2031		if (ent->err_raddr == ~(u64)0)
2032			sun4v_report_real_raddr(pfx, regs);
2033	}
2034
2035	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2036		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2037
2038	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2039		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2040		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2041		     SUN4V_ERR_ATTRS_PRIV_REG))
2042		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2043
2044	if (attrs & SUN4V_ERR_ATTRS_ASI)
2045		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2046
2047	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2048		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2049		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2050	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2051		printk("%s: reg [0x%04x]\n",
2052		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2053
2054	show_regs(regs);
2055
2056	if ((cnt = atomic_read(ocnt)) != 0) {
2057		atomic_set(ocnt, 0);
2058		wmb();
2059		printk("%s: Queue overflowed %d times.\n",
2060		       pfx, cnt);
2061	}
2062}
2063
2064/* Handle memory corruption detected error which is vectored in
2065 * through resumable error trap.
2066 */
2067void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2068{
2069	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2070		       SIGSEGV) == NOTIFY_STOP)
2071		return;
2072
2073	if (regs->tstate & TSTATE_PRIV) {
2074		/* MCD exception could happen because the task was
2075		 * running a system call with MCD enabled and passed a
2076		 * non-versioned pointer or pointer with bad version
2077		 * tag to the system call. In such cases, hypervisor
2078		 * places the address of offending instruction in the
2079		 * resumable error report. This is a deferred error,
2080		 * so the read/write that caused the trap was potentially
2081		 * retired long time back and we may have no choice
2082		 * but to send SIGSEGV to the process.
2083		 */
2084		const struct exception_table_entry *entry;
2085
2086		entry = search_exception_tables(regs->tpc);
2087		if (entry) {
2088			/* Looks like a bad syscall parameter */
2089#ifdef DEBUG_EXCEPTIONS
2090			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2091				 regs->tpc);
2092			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2093				 ent.err_raddr, entry->fixup);
2094#endif
2095			regs->tpc = entry->fixup;
2096			regs->tnpc = regs->tpc + 4;
2097			return;
2098		}
2099	}
2100
2101	/* Send SIGSEGV to the userspace process with the right signal
2102	 * code
2103	 */
2104	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr,
2105			0, current);
2106}
2107
2108/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2109 * Log the event and clear the first word of the entry.
2110 */
2111void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2112{
2113	enum ctx_state prev_state = exception_enter();
2114	struct sun4v_error_entry *ent, local_copy;
2115	struct trap_per_cpu *tb;
2116	unsigned long paddr;
2117	int cpu;
2118
2119	cpu = get_cpu();
2120
2121	tb = &trap_block[cpu];
2122	paddr = tb->resum_kernel_buf_pa + offset;
2123	ent = __va(paddr);
2124
2125	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2126
2127	/* We have a local copy now, so release the entry.  */
2128	ent->err_handle = 0;
2129	wmb();
2130
2131	put_cpu();
2132
2133	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2134		/* We should really take the seconds field of
2135		 * the error report and use it for the shutdown
2136		 * invocation, but for now do the same thing we
2137		 * do for a DS shutdown request.
2138		 */
2139		pr_info("Shutdown request, %u seconds...\n",
2140			local_copy.err_secs);
2141		orderly_poweroff(true);
2142		goto out;
2143	}
2144
2145	/* If this is a memory corruption detected error vectored in
2146	 * by HV through resumable error trap, call the handler
2147	 */
2148	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2149		do_mcd_err(regs, local_copy);
2150		return;
2151	}
2152
2153	sun4v_log_error(regs, &local_copy, cpu,
2154			KERN_ERR "RESUMABLE ERROR",
2155			&sun4v_resum_oflow_cnt);
2156out:
2157	exception_exit(prev_state);
2158}
2159
2160/* If we try to printk() we'll probably make matters worse, by trying
2161 * to retake locks this cpu already holds or causing more errors. So
2162 * just bump a counter, and we'll report these counter bumps above.
2163 */
2164void sun4v_resum_overflow(struct pt_regs *regs)
2165{
2166	atomic_inc(&sun4v_resum_oflow_cnt);
2167}
2168
2169/* Given a set of registers, get the virtual addressi that was being accessed
2170 * by the faulting instructions at tpc.
2171 */
2172static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2173{
2174	unsigned int insn;
2175
2176	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2177		return compute_effective_address(regs, insn,
2178						 (insn >> 25) & 0x1f);
2179	}
2180	return 0;
2181}
2182
2183/* Attempt to handle non-resumable errors generated from userspace.
2184 * Returns true if the signal was handled, false otherwise.
2185 */
2186bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2187				  struct sun4v_error_entry *ent) {
2188
2189	unsigned int attrs = ent->err_attrs;
2190
2191	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2192		unsigned long addr = ent->err_raddr;
2193		siginfo_t info;
2194
2195		if (addr == ~(u64)0) {
2196			/* This seems highly unlikely to ever occur */
2197			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2198		} else {
2199			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2200							      PAGE_SIZE);
2201
2202			/* Break the unfortunate news. */
2203			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2204				 addr);
2205			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2206				 page_cnt);
2207
2208			while (page_cnt-- > 0) {
2209				if (pfn_valid(addr >> PAGE_SHIFT))
2210					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2211				addr += PAGE_SIZE;
2212			}
2213		}
2214		info.si_signo = SIGKILL;
2215		info.si_errno = 0;
2216		info.si_trapno = 0;
2217		force_sig_info(info.si_signo, &info, current);
2218
2219		return true;
2220	}
2221	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2222		siginfo_t info;
2223
2224		info.si_signo = SIGBUS;
2225		info.si_code = BUS_ADRERR;
2226		info.si_addr = (void __user *)sun4v_get_vaddr(regs);
2227		force_sig_info(info.si_signo, &info, current);
2228
2229		return true;
2230	}
2231
2232	/* Default to doing nothing */
2233	return false;
2234}
2235
2236/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2237 * Log the event, clear the first word of the entry, and die.
2238 */
2239void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2240{
2241	struct sun4v_error_entry *ent, local_copy;
2242	struct trap_per_cpu *tb;
2243	unsigned long paddr;
2244	int cpu;
2245
2246	cpu = get_cpu();
2247
2248	tb = &trap_block[cpu];
2249	paddr = tb->nonresum_kernel_buf_pa + offset;
2250	ent = __va(paddr);
2251
2252	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2253
2254	/* We have a local copy now, so release the entry.  */
2255	ent->err_handle = 0;
2256	wmb();
2257
2258	put_cpu();
2259
2260	if (!(regs->tstate & TSTATE_PRIV) &&
2261	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2262		/* DON'T PANIC: This userspace error was handled. */
2263		return;
2264	}
2265
2266#ifdef CONFIG_PCI
2267	/* Check for the special PCI poke sequence. */
2268	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2269		pci_poke_faulted = 1;
2270		regs->tpc += 4;
2271		regs->tnpc = regs->tpc + 4;
2272		return;
2273	}
2274#endif
2275
2276	sun4v_log_error(regs, &local_copy, cpu,
2277			KERN_EMERG "NON-RESUMABLE ERROR",
2278			&sun4v_nonresum_oflow_cnt);
2279
2280	panic("Non-resumable error.");
2281}
2282
2283/* If we try to printk() we'll probably make matters worse, by trying
2284 * to retake locks this cpu already holds or causing more errors. So
2285 * just bump a counter, and we'll report these counter bumps above.
2286 */
2287void sun4v_nonresum_overflow(struct pt_regs *regs)
2288{
2289	/* XXX Actually even this can make not that much sense.  Perhaps
2290	 * XXX we should just pull the plug and panic directly from here?
2291	 */
2292	atomic_inc(&sun4v_nonresum_oflow_cnt);
2293}
2294
2295static void sun4v_tlb_error(struct pt_regs *regs)
2296{
2297	die_if_kernel("TLB/TSB error", regs);
2298}
2299
2300unsigned long sun4v_err_itlb_vaddr;
2301unsigned long sun4v_err_itlb_ctx;
2302unsigned long sun4v_err_itlb_pte;
2303unsigned long sun4v_err_itlb_error;
2304
2305void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2306{
2307	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2308
2309	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2310	       regs->tpc, tl);
2311	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2312	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2313	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2314	       (void *) regs->u_regs[UREG_I7]);
2315	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2316	       "pte[%lx] error[%lx]\n",
2317	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2318	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2319
2320	sun4v_tlb_error(regs);
2321}
2322
2323unsigned long sun4v_err_dtlb_vaddr;
2324unsigned long sun4v_err_dtlb_ctx;
2325unsigned long sun4v_err_dtlb_pte;
2326unsigned long sun4v_err_dtlb_error;
2327
2328void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2329{
2330	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2331
2332	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2333	       regs->tpc, tl);
2334	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2335	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2336	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2337	       (void *) regs->u_regs[UREG_I7]);
2338	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2339	       "pte[%lx] error[%lx]\n",
2340	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2341	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2342
2343	sun4v_tlb_error(regs);
2344}
2345
2346void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2347{
2348	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2349	       err, op);
2350}
2351
2352void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2353{
2354	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2355	       err, op);
2356}
2357
2358static void do_fpe_common(struct pt_regs *regs)
2359{
2360	if (regs->tstate & TSTATE_PRIV) {
2361		regs->tpc = regs->tnpc;
2362		regs->tnpc += 4;
2363	} else {
2364		unsigned long fsr = current_thread_info()->xfsr[0];
2365		siginfo_t info;
2366
2367		if (test_thread_flag(TIF_32BIT)) {
2368			regs->tpc &= 0xffffffff;
2369			regs->tnpc &= 0xffffffff;
2370		}
2371		info.si_signo = SIGFPE;
2372		info.si_errno = 0;
2373		info.si_addr = (void __user *)regs->tpc;
2374		info.si_trapno = 0;
2375		info.si_code = FPE_FIXME;
2376		if ((fsr & 0x1c000) == (1 << 14)) {
2377			if (fsr & 0x10)
2378				info.si_code = FPE_FLTINV;
2379			else if (fsr & 0x08)
2380				info.si_code = FPE_FLTOVF;
2381			else if (fsr & 0x04)
2382				info.si_code = FPE_FLTUND;
2383			else if (fsr & 0x02)
2384				info.si_code = FPE_FLTDIV;
2385			else if (fsr & 0x01)
2386				info.si_code = FPE_FLTRES;
2387		}
2388		force_sig_info(SIGFPE, &info, current);
 
2389	}
2390}
2391
2392void do_fpieee(struct pt_regs *regs)
2393{
2394	enum ctx_state prev_state = exception_enter();
2395
2396	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2397		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2398		goto out;
2399
2400	do_fpe_common(regs);
2401out:
2402	exception_exit(prev_state);
2403}
2404
2405void do_fpother(struct pt_regs *regs)
2406{
2407	enum ctx_state prev_state = exception_enter();
2408	struct fpustate *f = FPUSTATE;
2409	int ret = 0;
2410
2411	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2412		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2413		goto out;
2414
2415	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2416	case (2 << 14): /* unfinished_FPop */
2417	case (3 << 14): /* unimplemented_FPop */
2418		ret = do_mathemu(regs, f, false);
2419		break;
2420	}
2421	if (ret)
2422		goto out;
2423	do_fpe_common(regs);
2424out:
2425	exception_exit(prev_state);
2426}
2427
2428void do_tof(struct pt_regs *regs)
2429{
2430	enum ctx_state prev_state = exception_enter();
2431	siginfo_t info;
2432
2433	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2434		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2435		goto out;
2436
2437	if (regs->tstate & TSTATE_PRIV)
2438		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2439	if (test_thread_flag(TIF_32BIT)) {
2440		regs->tpc &= 0xffffffff;
2441		regs->tnpc &= 0xffffffff;
2442	}
2443	info.si_signo = SIGEMT;
2444	info.si_errno = 0;
2445	info.si_code = EMT_TAGOVF;
2446	info.si_addr = (void __user *)regs->tpc;
2447	info.si_trapno = 0;
2448	force_sig_info(SIGEMT, &info, current);
2449out:
2450	exception_exit(prev_state);
2451}
2452
2453void do_div0(struct pt_regs *regs)
2454{
2455	enum ctx_state prev_state = exception_enter();
2456	siginfo_t info;
2457
2458	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2459		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2460		goto out;
2461
2462	if (regs->tstate & TSTATE_PRIV)
2463		die_if_kernel("TL0: Kernel divide by zero.", regs);
2464	if (test_thread_flag(TIF_32BIT)) {
2465		regs->tpc &= 0xffffffff;
2466		regs->tnpc &= 0xffffffff;
2467	}
2468	info.si_signo = SIGFPE;
2469	info.si_errno = 0;
2470	info.si_code = FPE_INTDIV;
2471	info.si_addr = (void __user *)regs->tpc;
2472	info.si_trapno = 0;
2473	force_sig_info(SIGFPE, &info, current);
2474out:
2475	exception_exit(prev_state);
2476}
2477
2478static void instruction_dump(unsigned int *pc)
2479{
2480	int i;
2481
2482	if ((((unsigned long) pc) & 3))
2483		return;
2484
2485	printk("Instruction DUMP:");
2486	for (i = -3; i < 6; i++)
2487		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2488	printk("\n");
2489}
2490
2491static void user_instruction_dump(unsigned int __user *pc)
2492{
2493	int i;
2494	unsigned int buf[9];
2495	
2496	if ((((unsigned long) pc) & 3))
2497		return;
2498		
2499	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2500		return;
2501
2502	printk("Instruction DUMP:");
2503	for (i = 0; i < 9; i++)
2504		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2505	printk("\n");
2506}
2507
2508void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2509{
2510	unsigned long fp, ksp;
2511	struct thread_info *tp;
2512	int count = 0;
2513#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2514	int graph = 0;
2515#endif
2516
2517	ksp = (unsigned long) _ksp;
2518	if (!tsk)
2519		tsk = current;
2520	tp = task_thread_info(tsk);
2521	if (ksp == 0UL) {
2522		if (tsk == current)
2523			asm("mov %%fp, %0" : "=r" (ksp));
2524		else
2525			ksp = tp->ksp;
2526	}
2527	if (tp == current_thread_info())
2528		flushw_all();
2529
2530	fp = ksp + STACK_BIAS;
2531
2532	printk("Call Trace:\n");
2533	do {
2534		struct sparc_stackf *sf;
2535		struct pt_regs *regs;
2536		unsigned long pc;
2537
2538		if (!kstack_valid(tp, fp))
2539			break;
2540		sf = (struct sparc_stackf *) fp;
2541		regs = (struct pt_regs *) (sf + 1);
2542
2543		if (kstack_is_trap_frame(tp, regs)) {
2544			if (!(regs->tstate & TSTATE_PRIV))
2545				break;
2546			pc = regs->tpc;
2547			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2548		} else {
2549			pc = sf->callers_pc;
2550			fp = (unsigned long)sf->fp + STACK_BIAS;
2551		}
2552
2553		printk(" [%016lx] %pS\n", pc, (void *) pc);
2554#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2555		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2556			int index = tsk->curr_ret_stack;
2557			if (tsk->ret_stack && index >= graph) {
2558				pc = tsk->ret_stack[index - graph].ret;
2559				printk(" [%016lx] %pS\n", pc, (void *) pc);
 
2560				graph++;
2561			}
2562		}
2563#endif
2564	} while (++count < 16);
2565}
2566
2567static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2568{
2569	unsigned long fp = rw->ins[6];
2570
2571	if (!fp)
2572		return NULL;
2573
2574	return (struct reg_window *) (fp + STACK_BIAS);
2575}
2576
2577void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2578{
2579	static int die_counter;
2580	int count = 0;
2581	
2582	/* Amuse the user. */
2583	printk(
2584"              \\|/ ____ \\|/\n"
2585"              \"@'/ .. \\`@\"\n"
2586"              /_| \\__/ |_\\\n"
2587"                 \\__U_/\n");
2588
2589	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2590	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2591	__asm__ __volatile__("flushw");
2592	show_regs(regs);
2593	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2594	if (regs->tstate & TSTATE_PRIV) {
2595		struct thread_info *tp = current_thread_info();
2596		struct reg_window *rw = (struct reg_window *)
2597			(regs->u_regs[UREG_FP] + STACK_BIAS);
2598
2599		/* Stop the back trace when we hit userland or we
2600		 * find some badly aligned kernel stack.
2601		 */
2602		while (rw &&
2603		       count++ < 30 &&
2604		       kstack_valid(tp, (unsigned long) rw)) {
2605			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2606			       (void *) rw->ins[7]);
2607
2608			rw = kernel_stack_up(rw);
2609		}
2610		instruction_dump ((unsigned int *) regs->tpc);
2611	} else {
2612		if (test_thread_flag(TIF_32BIT)) {
2613			regs->tpc &= 0xffffffff;
2614			regs->tnpc &= 0xffffffff;
2615		}
2616		user_instruction_dump ((unsigned int __user *) regs->tpc);
2617	}
2618	if (panic_on_oops)
2619		panic("Fatal exception");
2620	if (regs->tstate & TSTATE_PRIV)
2621		do_exit(SIGKILL);
2622	do_exit(SIGSEGV);
2623}
2624EXPORT_SYMBOL(die_if_kernel);
2625
2626#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2627#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2628
2629void do_illegal_instruction(struct pt_regs *regs)
2630{
2631	enum ctx_state prev_state = exception_enter();
2632	unsigned long pc = regs->tpc;
2633	unsigned long tstate = regs->tstate;
2634	u32 insn;
2635	siginfo_t info;
2636
2637	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2638		       0, 0x10, SIGILL) == NOTIFY_STOP)
2639		goto out;
2640
2641	if (tstate & TSTATE_PRIV)
2642		die_if_kernel("Kernel illegal instruction", regs);
2643	if (test_thread_flag(TIF_32BIT))
2644		pc = (u32)pc;
2645	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2646		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2647			if (handle_popc(insn, regs))
2648				goto out;
2649		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2650			if (handle_ldf_stq(insn, regs))
2651				goto out;
2652		} else if (tlb_type == hypervisor) {
2653			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2654				if (!vis_emul(regs, insn))
2655					goto out;
2656			} else {
2657				struct fpustate *f = FPUSTATE;
2658
2659				/* On UltraSPARC T2 and later, FPU insns which
2660				 * are not implemented in HW signal an illegal
2661				 * instruction trap and do not set the FP Trap
2662				 * Trap in the %fsr to unimplemented_FPop.
2663				 */
2664				if (do_mathemu(regs, f, true))
2665					goto out;
2666			}
2667		}
2668	}
2669	info.si_signo = SIGILL;
2670	info.si_errno = 0;
2671	info.si_code = ILL_ILLOPC;
2672	info.si_addr = (void __user *)pc;
2673	info.si_trapno = 0;
2674	force_sig_info(SIGILL, &info, current);
2675out:
2676	exception_exit(prev_state);
2677}
2678
2679void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2680{
2681	enum ctx_state prev_state = exception_enter();
2682	siginfo_t info;
2683
2684	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2685		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2686		goto out;
2687
2688	if (regs->tstate & TSTATE_PRIV) {
2689		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2690		goto out;
2691	}
2692	if (is_no_fault_exception(regs))
2693		return;
2694
2695	info.si_signo = SIGBUS;
2696	info.si_errno = 0;
2697	info.si_code = BUS_ADRALN;
2698	info.si_addr = (void __user *)sfar;
2699	info.si_trapno = 0;
2700	force_sig_info(SIGBUS, &info, current);
2701out:
2702	exception_exit(prev_state);
2703}
2704
2705void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2706{
2707	siginfo_t info;
2708
2709	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2710		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2711		return;
2712
2713	if (regs->tstate & TSTATE_PRIV) {
2714		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2715		return;
2716	}
2717	if (is_no_fault_exception(regs))
2718		return;
2719
2720	info.si_signo = SIGBUS;
2721	info.si_errno = 0;
2722	info.si_code = BUS_ADRALN;
2723	info.si_addr = (void __user *) addr;
2724	info.si_trapno = 0;
2725	force_sig_info(SIGBUS, &info, current);
2726}
2727
2728/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2729 * tag mismatch.
2730 *
2731 * ADI version tag mismatch on a load from memory always results in a
2732 * precise exception. Tag mismatch on a store to memory will result in
2733 * precise exception if MCDPER or PMCDPER is set to 1.
2734 */
2735void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2736				      unsigned long context)
2737{
2738	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2739		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2740		return;
2741
2742	if (regs->tstate & TSTATE_PRIV) {
2743		/* MCD exception could happen because the task was running
2744		 * a system call with MCD enabled and passed a non-versioned
2745		 * pointer or pointer with bad version tag to  the system
2746		 * call.
2747		 */
2748		const struct exception_table_entry *entry;
2749
2750		entry = search_exception_tables(regs->tpc);
2751		if (entry) {
2752			/* Looks like a bad syscall parameter */
2753#ifdef DEBUG_EXCEPTIONS
2754			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2755				 regs->tpc);
2756			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2757				 regs->tpc, entry->fixup);
2758#endif
2759			regs->tpc = entry->fixup;
2760			regs->tnpc = regs->tpc + 4;
2761			return;
2762		}
2763		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2764			 __func__, addr, context);
2765		die_if_kernel("MCD precise", regs);
2766	}
2767
2768	if (test_thread_flag(TIF_32BIT)) {
2769		regs->tpc &= 0xffffffff;
2770		regs->tnpc &= 0xffffffff;
2771	}
2772	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0, current);
2773}
2774
2775void do_privop(struct pt_regs *regs)
2776{
2777	enum ctx_state prev_state = exception_enter();
2778	siginfo_t info;
2779
2780	if (notify_die(DIE_TRAP, "privileged operation", regs,
2781		       0, 0x11, SIGILL) == NOTIFY_STOP)
2782		goto out;
2783
2784	if (test_thread_flag(TIF_32BIT)) {
2785		regs->tpc &= 0xffffffff;
2786		regs->tnpc &= 0xffffffff;
2787	}
2788	info.si_signo = SIGILL;
2789	info.si_errno = 0;
2790	info.si_code = ILL_PRVOPC;
2791	info.si_addr = (void __user *)regs->tpc;
2792	info.si_trapno = 0;
2793	force_sig_info(SIGILL, &info, current);
2794out:
2795	exception_exit(prev_state);
2796}
2797
2798void do_privact(struct pt_regs *regs)
2799{
2800	do_privop(regs);
2801}
2802
2803/* Trap level 1 stuff or other traps we should never see... */
2804void do_cee(struct pt_regs *regs)
2805{
2806	exception_enter();
2807	die_if_kernel("TL0: Cache Error Exception", regs);
2808}
2809
2810void do_div0_tl1(struct pt_regs *regs)
2811{
2812	exception_enter();
2813	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2814	die_if_kernel("TL1: DIV0 Exception", regs);
2815}
2816
2817void do_fpieee_tl1(struct pt_regs *regs)
2818{
2819	exception_enter();
2820	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2821	die_if_kernel("TL1: FPU IEEE Exception", regs);
2822}
2823
2824void do_fpother_tl1(struct pt_regs *regs)
2825{
2826	exception_enter();
2827	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2828	die_if_kernel("TL1: FPU Other Exception", regs);
2829}
2830
2831void do_ill_tl1(struct pt_regs *regs)
2832{
2833	exception_enter();
2834	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2835	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2836}
2837
2838void do_irq_tl1(struct pt_regs *regs)
2839{
2840	exception_enter();
2841	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2842	die_if_kernel("TL1: IRQ Exception", regs);
2843}
2844
2845void do_lddfmna_tl1(struct pt_regs *regs)
2846{
2847	exception_enter();
2848	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2849	die_if_kernel("TL1: LDDF Exception", regs);
2850}
2851
2852void do_stdfmna_tl1(struct pt_regs *regs)
2853{
2854	exception_enter();
2855	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2856	die_if_kernel("TL1: STDF Exception", regs);
2857}
2858
2859void do_paw(struct pt_regs *regs)
2860{
2861	exception_enter();
2862	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2863}
2864
2865void do_paw_tl1(struct pt_regs *regs)
2866{
2867	exception_enter();
2868	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2869	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2870}
2871
2872void do_vaw(struct pt_regs *regs)
2873{
2874	exception_enter();
2875	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2876}
2877
2878void do_vaw_tl1(struct pt_regs *regs)
2879{
2880	exception_enter();
2881	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2882	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2883}
2884
2885void do_tof_tl1(struct pt_regs *regs)
2886{
2887	exception_enter();
2888	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2889	die_if_kernel("TL1: Tag Overflow Exception", regs);
2890}
2891
2892void do_getpsr(struct pt_regs *regs)
2893{
2894	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2895	regs->tpc   = regs->tnpc;
2896	regs->tnpc += 4;
2897	if (test_thread_flag(TIF_32BIT)) {
2898		regs->tpc &= 0xffffffff;
2899		regs->tnpc &= 0xffffffff;
2900	}
2901}
2902
2903u64 cpu_mondo_counter[NR_CPUS] = {0};
2904struct trap_per_cpu trap_block[NR_CPUS];
2905EXPORT_SYMBOL(trap_block);
2906
2907/* This can get invoked before sched_init() so play it super safe
2908 * and use hard_smp_processor_id().
2909 */
2910void notrace init_cur_cpu_trap(struct thread_info *t)
2911{
2912	int cpu = hard_smp_processor_id();
2913	struct trap_per_cpu *p = &trap_block[cpu];
2914
2915	p->thread = t;
2916	p->pgd_paddr = 0;
2917}
2918
2919extern void thread_info_offsets_are_bolixed_dave(void);
2920extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2921extern void tsb_config_offsets_are_bolixed_dave(void);
2922
2923/* Only invoked on boot processor. */
2924void __init trap_init(void)
2925{
2926	/* Compile time sanity check. */
2927	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2928		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2929		     TI_CPU != offsetof(struct thread_info, cpu) ||
2930		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2931		     TI_KSP != offsetof(struct thread_info, ksp) ||
2932		     TI_FAULT_ADDR != offsetof(struct thread_info,
2933					       fault_address) ||
2934		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2935		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2936		     TI_REG_WINDOW != offsetof(struct thread_info,
2937					       reg_window) ||
2938		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2939					       rwbuf_stkptrs) ||
2940		     TI_GSR != offsetof(struct thread_info, gsr) ||
2941		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2942		     TI_PRE_COUNT != offsetof(struct thread_info,
2943					      preempt_count) ||
2944		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2945		     TI_CURRENT_DS != offsetof(struct thread_info,
2946						current_ds) ||
2947		     TI_KUNA_REGS != offsetof(struct thread_info,
2948					      kern_una_regs) ||
2949		     TI_KUNA_INSN != offsetof(struct thread_info,
2950					      kern_una_insn) ||
2951		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2952		     (TI_FPREGS & (64 - 1)));
2953
2954	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2955						     thread) ||
2956		     (TRAP_PER_CPU_PGD_PADDR !=
2957		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2958		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2959		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2960		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2961		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2962		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2963		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2964		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2965		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2966		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2967		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2968		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2969		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2970		     (TRAP_PER_CPU_FAULT_INFO !=
2971		      offsetof(struct trap_per_cpu, fault_info)) ||
2972		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2973		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2974		     (TRAP_PER_CPU_CPU_LIST_PA !=
2975		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2976		     (TRAP_PER_CPU_TSB_HUGE !=
2977		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2978		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2979		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2980		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2981		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2982		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2983		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2984		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2985		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2986		     (TRAP_PER_CPU_RESUM_QMASK !=
2987		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2988		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2989		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2990		     (TRAP_PER_CPU_PER_CPU_BASE !=
2991		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2992
2993	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2994		      offsetof(struct tsb_config, tsb)) ||
2995		     (TSB_CONFIG_RSS_LIMIT !=
2996		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2997		     (TSB_CONFIG_NENTRIES !=
2998		      offsetof(struct tsb_config, tsb_nentries)) ||
2999		     (TSB_CONFIG_REG_VAL !=
3000		      offsetof(struct tsb_config, tsb_reg_val)) ||
3001		     (TSB_CONFIG_MAP_VADDR !=
3002		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
3003		     (TSB_CONFIG_MAP_PTE !=
3004		      offsetof(struct tsb_config, tsb_map_pte)));
3005
3006	/* Attach to the address space of init_task.  On SMP we
3007	 * do this in smp.c:smp_callin for other cpus.
3008	 */
3009	mmgrab(&init_mm);
3010	current->active_mm = &init_mm;
3011}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* arch/sparc64/kernel/traps.c
   3 *
   4 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
   5 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
   6 */
   7
   8/*
   9 * I like traps on v9, :))))
  10 */
  11
  12#include <linux/extable.h>
  13#include <linux/sched/mm.h>
  14#include <linux/sched/debug.h>
  15#include <linux/linkage.h>
  16#include <linux/kernel.h>
  17#include <linux/signal.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/init.h>
  21#include <linux/kallsyms.h>
  22#include <linux/kdebug.h>
  23#include <linux/ftrace.h>
  24#include <linux/reboot.h>
  25#include <linux/gfp.h>
  26#include <linux/context_tracking.h>
  27
  28#include <asm/smp.h>
  29#include <asm/delay.h>
  30#include <asm/ptrace.h>
  31#include <asm/oplib.h>
  32#include <asm/page.h>
 
  33#include <asm/unistd.h>
  34#include <linux/uaccess.h>
  35#include <asm/fpumacro.h>
  36#include <asm/lsu.h>
  37#include <asm/dcu.h>
  38#include <asm/estate.h>
  39#include <asm/chafsr.h>
  40#include <asm/sfafsr.h>
  41#include <asm/psrcompat.h>
  42#include <asm/processor.h>
  43#include <asm/timer.h>
  44#include <asm/head.h>
  45#include <asm/prom.h>
  46#include <asm/memctrl.h>
  47#include <asm/cacheflush.h>
  48#include <asm/setup.h>
  49
  50#include "entry.h"
  51#include "kernel.h"
  52#include "kstack.h"
  53
  54/* When an irrecoverable trap occurs at tl > 0, the trap entry
  55 * code logs the trap state registers at every level in the trap
  56 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
  57 * is as follows:
  58 */
  59struct tl1_traplog {
  60	struct {
  61		unsigned long tstate;
  62		unsigned long tpc;
  63		unsigned long tnpc;
  64		unsigned long tt;
  65	} trapstack[4];
  66	unsigned long tl;
  67};
  68
  69static void dump_tl1_traplog(struct tl1_traplog *p)
  70{
  71	int i, limit;
  72
  73	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
  74	       "dumping track stack.\n", p->tl);
  75
  76	limit = (tlb_type == hypervisor) ? 2 : 4;
  77	for (i = 0; i < limit; i++) {
  78		printk(KERN_EMERG
  79		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
  80		       "TNPC[%016lx] TT[%lx]\n",
  81		       i + 1,
  82		       p->trapstack[i].tstate, p->trapstack[i].tpc,
  83		       p->trapstack[i].tnpc, p->trapstack[i].tt);
  84		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
  85	}
  86}
  87
  88void bad_trap(struct pt_regs *regs, long lvl)
  89{
  90	char buffer[36];
 
  91
  92	if (notify_die(DIE_TRAP, "bad trap", regs,
  93		       0, lvl, SIGTRAP) == NOTIFY_STOP)
  94		return;
  95
  96	if (lvl < 0x100) {
  97		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
  98		die_if_kernel(buffer, regs);
  99	}
 100
 101	lvl -= 0x100;
 102	if (regs->tstate & TSTATE_PRIV) {
 103		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
 104		die_if_kernel(buffer, regs);
 105	}
 106	if (test_thread_flag(TIF_32BIT)) {
 107		regs->tpc &= 0xffffffff;
 108		regs->tnpc &= 0xffffffff;
 109	}
 110	force_sig_fault(SIGILL, ILL_ILLTRP,
 111			(void __user *)regs->tpc, lvl);
 
 
 
 
 112}
 113
 114void bad_trap_tl1(struct pt_regs *regs, long lvl)
 115{
 116	char buffer[36];
 117	
 118	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
 119		       0, lvl, SIGTRAP) == NOTIFY_STOP)
 120		return;
 121
 122	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 123
 124	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
 125	die_if_kernel (buffer, regs);
 126}
 127
 128#ifdef CONFIG_DEBUG_BUGVERBOSE
 129void do_BUG(const char *file, int line)
 130{
 131	bust_spinlocks(1);
 132	printk("kernel BUG at %s:%d!\n", file, line);
 133}
 134EXPORT_SYMBOL(do_BUG);
 135#endif
 136
 137static DEFINE_SPINLOCK(dimm_handler_lock);
 138static dimm_printer_t dimm_handler;
 139
 140static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
 141{
 142	unsigned long flags;
 143	int ret = -ENODEV;
 144
 145	spin_lock_irqsave(&dimm_handler_lock, flags);
 146	if (dimm_handler) {
 147		ret = dimm_handler(synd_code, paddr, buf, buflen);
 148	} else if (tlb_type == spitfire) {
 149		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
 150			ret = -EINVAL;
 151		else
 152			ret = 0;
 153	} else
 154		ret = -ENODEV;
 155	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 156
 157	return ret;
 158}
 159
 160int register_dimm_printer(dimm_printer_t func)
 161{
 162	unsigned long flags;
 163	int ret = 0;
 164
 165	spin_lock_irqsave(&dimm_handler_lock, flags);
 166	if (!dimm_handler)
 167		dimm_handler = func;
 168	else
 169		ret = -EEXIST;
 170	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 171
 172	return ret;
 173}
 174EXPORT_SYMBOL_GPL(register_dimm_printer);
 175
 176void unregister_dimm_printer(dimm_printer_t func)
 177{
 178	unsigned long flags;
 179
 180	spin_lock_irqsave(&dimm_handler_lock, flags);
 181	if (dimm_handler == func)
 182		dimm_handler = NULL;
 183	spin_unlock_irqrestore(&dimm_handler_lock, flags);
 184}
 185EXPORT_SYMBOL_GPL(unregister_dimm_printer);
 186
 187void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 188{
 189	enum ctx_state prev_state = exception_enter();
 
 190
 191	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 192		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 193		goto out;
 194
 195	if (regs->tstate & TSTATE_PRIV) {
 196		printk("spitfire_insn_access_exception: SFSR[%016lx] "
 197		       "SFAR[%016lx], going.\n", sfsr, sfar);
 198		die_if_kernel("Iax", regs);
 199	}
 200	if (test_thread_flag(TIF_32BIT)) {
 201		regs->tpc &= 0xffffffff;
 202		regs->tnpc &= 0xffffffff;
 203	}
 204	force_sig_fault(SIGSEGV, SEGV_MAPERR,
 205			(void __user *)regs->tpc, 0);
 
 
 
 
 206out:
 207	exception_exit(prev_state);
 208}
 209
 210void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 211{
 212	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 213		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 214		return;
 215
 216	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 217	spitfire_insn_access_exception(regs, sfsr, sfar);
 218}
 219
 220void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 221{
 222	unsigned short type = (type_ctx >> 16);
 223	unsigned short ctx  = (type_ctx & 0xffff);
 
 224
 225	if (notify_die(DIE_TRAP, "instruction access exception", regs,
 226		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 227		return;
 228
 229	if (regs->tstate & TSTATE_PRIV) {
 230		printk("sun4v_insn_access_exception: ADDR[%016lx] "
 231		       "CTX[%04x] TYPE[%04x], going.\n",
 232		       addr, ctx, type);
 233		die_if_kernel("Iax", regs);
 234	}
 235
 236	if (test_thread_flag(TIF_32BIT)) {
 237		regs->tpc &= 0xffffffff;
 238		regs->tnpc &= 0xffffffff;
 239	}
 240	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr, 0);
 
 
 
 
 
 241}
 242
 243void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 244{
 245	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
 246		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 247		return;
 248
 249	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 250	sun4v_insn_access_exception(regs, addr, type_ctx);
 251}
 252
 253bool is_no_fault_exception(struct pt_regs *regs)
 254{
 255	unsigned char asi;
 256	u32 insn;
 257
 258	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
 259		return false;
 260
 261	/*
 262	 * Must do a little instruction decoding here in order to
 263	 * decide on a course of action. The bits of interest are:
 264	 *  insn[31:30] = op, where 3 indicates the load/store group
 265	 *  insn[24:19] = op3, which identifies individual opcodes
 266	 *  insn[13] indicates an immediate offset
 267	 *  op3[4]=1 identifies alternate space instructions
 268	 *  op3[5:4]=3 identifies floating point instructions
 269	 *  op3[2]=1 identifies stores
 270	 * See "Opcode Maps" in the appendix of any Sparc V9
 271	 * architecture spec for full details.
 272	 */
 273	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
 274		if (insn & 0x2000)		    /* immediate offset */
 275			asi = (regs->tstate >> 24); /* saved %asi       */
 276		else
 277			asi = (insn >> 5);	    /* immediate asi    */
 278		if ((asi & 0xf2) == ASI_PNF) {
 279			if (insn & 0x1000000) {     /* op3[5:4]=3       */
 280				handle_ldf_stq(insn, regs);
 281				return true;
 282			} else if (insn & 0x200000) { /* op3[2], stores */
 283				return false;
 284			}
 285			handle_ld_nf(insn, regs);
 286			return true;
 287		}
 288	}
 289	return false;
 290}
 291
 292void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 293{
 294	enum ctx_state prev_state = exception_enter();
 
 295
 296	if (notify_die(DIE_TRAP, "data access exception", regs,
 297		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 298		goto out;
 299
 300	if (regs->tstate & TSTATE_PRIV) {
 301		/* Test if this comes from uaccess places. */
 302		const struct exception_table_entry *entry;
 303
 304		entry = search_exception_tables(regs->tpc);
 305		if (entry) {
 306			/* Ouch, somebody is trying VM hole tricks on us... */
 307#ifdef DEBUG_EXCEPTIONS
 308			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 309			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 310			       regs->tpc, entry->fixup);
 311#endif
 312			regs->tpc = entry->fixup;
 313			regs->tnpc = regs->tpc + 4;
 314			goto out;
 315		}
 316		/* Shit... */
 317		printk("spitfire_data_access_exception: SFSR[%016lx] "
 318		       "SFAR[%016lx], going.\n", sfsr, sfar);
 319		die_if_kernel("Dax", regs);
 320	}
 321
 322	if (is_no_fault_exception(regs))
 323		return;
 324
 325	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar, 0);
 
 
 
 
 
 326out:
 327	exception_exit(prev_state);
 328}
 329
 330void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
 331{
 332	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 333		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
 334		return;
 335
 336	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 337	spitfire_data_access_exception(regs, sfsr, sfar);
 338}
 339
 340void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 341{
 342	unsigned short type = (type_ctx >> 16);
 343	unsigned short ctx  = (type_ctx & 0xffff);
 344
 345	if (notify_die(DIE_TRAP, "data access exception", regs,
 346		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 347		return;
 348
 349	if (regs->tstate & TSTATE_PRIV) {
 350		/* Test if this comes from uaccess places. */
 351		const struct exception_table_entry *entry;
 352
 353		entry = search_exception_tables(regs->tpc);
 354		if (entry) {
 355			/* Ouch, somebody is trying VM hole tricks on us... */
 356#ifdef DEBUG_EXCEPTIONS
 357			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
 358			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
 359			       regs->tpc, entry->fixup);
 360#endif
 361			regs->tpc = entry->fixup;
 362			regs->tnpc = regs->tpc + 4;
 363			return;
 364		}
 365		printk("sun4v_data_access_exception: ADDR[%016lx] "
 366		       "CTX[%04x] TYPE[%04x], going.\n",
 367		       addr, ctx, type);
 368		die_if_kernel("Dax", regs);
 369	}
 370
 371	if (test_thread_flag(TIF_32BIT)) {
 372		regs->tpc &= 0xffffffff;
 373		regs->tnpc &= 0xffffffff;
 374	}
 375	if (is_no_fault_exception(regs))
 376		return;
 377
 378	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
 379	 * is vectored thorugh data access exception trap with fault type
 380	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
 381	 * Accessing an address with invalid ASI for the address, for
 382	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
 383	 * when TTE.mcd is not set for the VA, is also vectored into
 384	 * kerbel by HV as data access exception with fault type set to
 385	 * HV_FAULT_TYPE_INV_ASI.
 386	 */
 387	switch (type) {
 388	case HV_FAULT_TYPE_INV_ASI:
 389		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0);
 
 390		break;
 391	case HV_FAULT_TYPE_MCD_DIS:
 392		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0);
 
 393		break;
 394	default:
 395		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0);
 
 396		break;
 397	}
 398}
 399
 400void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
 401{
 402	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
 403		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
 404		return;
 405
 406	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 407	sun4v_data_access_exception(regs, addr, type_ctx);
 408}
 409
 410#ifdef CONFIG_PCI
 411#include "pci_impl.h"
 412#endif
 413
 414/* When access exceptions happen, we must do this. */
 415static void spitfire_clean_and_reenable_l1_caches(void)
 416{
 417	unsigned long va;
 418
 419	if (tlb_type != spitfire)
 420		BUG();
 421
 422	/* Clean 'em. */
 423	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
 424		spitfire_put_icache_tag(va, 0x0);
 425		spitfire_put_dcache_tag(va, 0x0);
 426	}
 427
 428	/* Re-enable in LSU. */
 429	__asm__ __volatile__("flush %%g6\n\t"
 430			     "membar #Sync\n\t"
 431			     "stxa %0, [%%g0] %1\n\t"
 432			     "membar #Sync"
 433			     : /* no outputs */
 434			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
 435				    LSU_CONTROL_IM | LSU_CONTROL_DM),
 436			     "i" (ASI_LSU_CONTROL)
 437			     : "memory");
 438}
 439
 440static void spitfire_enable_estate_errors(void)
 441{
 442	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
 443			     "membar	#Sync"
 444			     : /* no outputs */
 445			     : "r" (ESTATE_ERR_ALL),
 446			       "i" (ASI_ESTATE_ERROR_EN));
 447}
 448
 449static char ecc_syndrome_table[] = {
 450	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
 451	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
 452	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
 453	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
 454	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
 455	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
 456	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
 457	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
 458	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
 459	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
 460	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
 461	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 462	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
 463	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
 464	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
 465	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 466	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
 467	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
 468	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
 469	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
 470	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
 471	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
 472	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
 473	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
 474	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
 475	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
 476	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
 477	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 478	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
 479	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
 480	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
 481	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
 482};
 483
 484static char *syndrome_unknown = "<Unknown>";
 485
 486static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
 487{
 488	unsigned short scode;
 489	char memmod_str[64], *p;
 490
 491	if (udbl & bit) {
 492		scode = ecc_syndrome_table[udbl & 0xff];
 493		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 494			p = syndrome_unknown;
 495		else
 496			p = memmod_str;
 497		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
 498		       "Memory Module \"%s\"\n",
 499		       smp_processor_id(), scode, p);
 500	}
 501
 502	if (udbh & bit) {
 503		scode = ecc_syndrome_table[udbh & 0xff];
 504		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
 505			p = syndrome_unknown;
 506		else
 507			p = memmod_str;
 508		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
 509		       "Memory Module \"%s\"\n",
 510		       smp_processor_id(), scode, p);
 511	}
 512
 513}
 514
 515static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
 516{
 517
 518	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
 519	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
 520	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
 521
 522	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
 523
 524	/* We always log it, even if someone is listening for this
 525	 * trap.
 526	 */
 527	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
 528		   0, TRAP_TYPE_CEE, SIGTRAP);
 529
 530	/* The Correctable ECC Error trap does not disable I/D caches.  So
 531	 * we only have to restore the ESTATE Error Enable register.
 532	 */
 533	spitfire_enable_estate_errors();
 534}
 535
 536static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
 537{
 
 
 538	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
 539	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
 540	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
 541
 542	/* XXX add more human friendly logging of the error status
 543	 * XXX as is implemented for cheetah
 544	 */
 545
 546	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
 547
 548	/* We always log it, even if someone is listening for this
 549	 * trap.
 550	 */
 551	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
 552		   0, tt, SIGTRAP);
 553
 554	if (regs->tstate & TSTATE_PRIV) {
 555		if (tl1)
 556			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
 557		die_if_kernel("UE", regs);
 558	}
 559
 560	/* XXX need more intelligent processing here, such as is implemented
 561	 * XXX for cheetah errors, in fact if the E-cache still holds the
 562	 * XXX line with bad parity this will loop
 563	 */
 564
 565	spitfire_clean_and_reenable_l1_caches();
 566	spitfire_enable_estate_errors();
 567
 568	if (test_thread_flag(TIF_32BIT)) {
 569		regs->tpc &= 0xffffffff;
 570		regs->tnpc &= 0xffffffff;
 571	}
 572	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0, 0);
 
 
 
 
 
 573}
 574
 575void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
 576{
 577	unsigned long afsr, tt, udbh, udbl;
 578	int tl1;
 579
 580	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
 581	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
 582	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
 583	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
 584	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
 585
 586#ifdef CONFIG_PCI
 587	if (tt == TRAP_TYPE_DAE &&
 588	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
 589		spitfire_clean_and_reenable_l1_caches();
 590		spitfire_enable_estate_errors();
 591
 592		pci_poke_faulted = 1;
 593		regs->tnpc = regs->tpc + 4;
 594		return;
 595	}
 596#endif
 597
 598	if (afsr & SFAFSR_UE)
 599		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
 600
 601	if (tt == TRAP_TYPE_CEE) {
 602		/* Handle the case where we took a CEE trap, but ACK'd
 603		 * only the UE state in the UDB error registers.
 604		 */
 605		if (afsr & SFAFSR_UE) {
 606			if (udbh & UDBE_CE) {
 607				__asm__ __volatile__(
 608					"stxa	%0, [%1] %2\n\t"
 609					"membar	#Sync"
 610					: /* no outputs */
 611					: "r" (udbh & UDBE_CE),
 612					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
 613			}
 614			if (udbl & UDBE_CE) {
 615				__asm__ __volatile__(
 616					"stxa	%0, [%1] %2\n\t"
 617					"membar	#Sync"
 618					: /* no outputs */
 619					: "r" (udbl & UDBE_CE),
 620					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
 621			}
 622		}
 623
 624		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
 625	}
 626}
 627
 628int cheetah_pcache_forced_on;
 629
 630void cheetah_enable_pcache(void)
 631{
 632	unsigned long dcr;
 633
 634	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
 635	       smp_processor_id());
 636
 637	__asm__ __volatile__("ldxa [%%g0] %1, %0"
 638			     : "=r" (dcr)
 639			     : "i" (ASI_DCU_CONTROL_REG));
 640	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
 641	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
 642			     "membar #Sync"
 643			     : /* no outputs */
 644			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
 645}
 646
 647/* Cheetah error trap handling. */
 648static unsigned long ecache_flush_physbase;
 649static unsigned long ecache_flush_linesize;
 650static unsigned long ecache_flush_size;
 651
 652/* This table is ordered in priority of errors and matches the
 653 * AFAR overwrite policy as well.
 654 */
 655
 656struct afsr_error_table {
 657	unsigned long mask;
 658	const char *name;
 659};
 660
 661static const char CHAFSR_PERR_msg[] =
 662	"System interface protocol error";
 663static const char CHAFSR_IERR_msg[] =
 664	"Internal processor error";
 665static const char CHAFSR_ISAP_msg[] =
 666	"System request parity error on incoming address";
 667static const char CHAFSR_UCU_msg[] =
 668	"Uncorrectable E-cache ECC error for ifetch/data";
 669static const char CHAFSR_UCC_msg[] =
 670	"SW Correctable E-cache ECC error for ifetch/data";
 671static const char CHAFSR_UE_msg[] =
 672	"Uncorrectable system bus data ECC error for read";
 673static const char CHAFSR_EDU_msg[] =
 674	"Uncorrectable E-cache ECC error for stmerge/blkld";
 675static const char CHAFSR_EMU_msg[] =
 676	"Uncorrectable system bus MTAG error";
 677static const char CHAFSR_WDU_msg[] =
 678	"Uncorrectable E-cache ECC error for writeback";
 679static const char CHAFSR_CPU_msg[] =
 680	"Uncorrectable ECC error for copyout";
 681static const char CHAFSR_CE_msg[] =
 682	"HW corrected system bus data ECC error for read";
 683static const char CHAFSR_EDC_msg[] =
 684	"HW corrected E-cache ECC error for stmerge/blkld";
 685static const char CHAFSR_EMC_msg[] =
 686	"HW corrected system bus MTAG ECC error";
 687static const char CHAFSR_WDC_msg[] =
 688	"HW corrected E-cache ECC error for writeback";
 689static const char CHAFSR_CPC_msg[] =
 690	"HW corrected ECC error for copyout";
 691static const char CHAFSR_TO_msg[] =
 692	"Unmapped error from system bus";
 693static const char CHAFSR_BERR_msg[] =
 694	"Bus error response from system bus";
 695static const char CHAFSR_IVC_msg[] =
 696	"HW corrected system bus data ECC error for ivec read";
 697static const char CHAFSR_IVU_msg[] =
 698	"Uncorrectable system bus data ECC error for ivec read";
 699static struct afsr_error_table __cheetah_error_table[] = {
 700	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 701	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 702	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 703	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 704	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 705	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 706	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 707	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 708	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 709	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 710	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 711	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 712	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 713	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 714	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 715	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 716	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 717	/* These two do not update the AFAR. */
 718	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 719	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 720	{	0,		NULL			},
 721};
 722static const char CHPAFSR_DTO_msg[] =
 723	"System bus unmapped error for prefetch/storequeue-read";
 724static const char CHPAFSR_DBERR_msg[] =
 725	"System bus error for prefetch/storequeue-read";
 726static const char CHPAFSR_THCE_msg[] =
 727	"Hardware corrected E-cache Tag ECC error";
 728static const char CHPAFSR_TSCE_msg[] =
 729	"SW handled correctable E-cache Tag ECC error";
 730static const char CHPAFSR_TUE_msg[] =
 731	"Uncorrectable E-cache Tag ECC error";
 732static const char CHPAFSR_DUE_msg[] =
 733	"System bus uncorrectable data ECC error due to prefetch/store-fill";
 734static struct afsr_error_table __cheetah_plus_error_table[] = {
 735	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 736	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 737	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 738	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 739	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 740	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 741	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 742	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
 743	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 744	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 745	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 746	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 747	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
 748	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 749	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 750	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 751	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 752	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
 753	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
 754	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
 755	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
 756	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
 757	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
 758	/* These two do not update the AFAR. */
 759	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
 760	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 761	{	0,		NULL			},
 762};
 763static const char JPAFSR_JETO_msg[] =
 764	"System interface protocol error, hw timeout caused";
 765static const char JPAFSR_SCE_msg[] =
 766	"Parity error on system snoop results";
 767static const char JPAFSR_JEIC_msg[] =
 768	"System interface protocol error, illegal command detected";
 769static const char JPAFSR_JEIT_msg[] =
 770	"System interface protocol error, illegal ADTYPE detected";
 771static const char JPAFSR_OM_msg[] =
 772	"Out of range memory error has occurred";
 773static const char JPAFSR_ETP_msg[] =
 774	"Parity error on L2 cache tag SRAM";
 775static const char JPAFSR_UMS_msg[] =
 776	"Error due to unsupported store";
 777static const char JPAFSR_RUE_msg[] =
 778	"Uncorrectable ECC error from remote cache/memory";
 779static const char JPAFSR_RCE_msg[] =
 780	"Correctable ECC error from remote cache/memory";
 781static const char JPAFSR_BP_msg[] =
 782	"JBUS parity error on returned read data";
 783static const char JPAFSR_WBP_msg[] =
 784	"JBUS parity error on data for writeback or block store";
 785static const char JPAFSR_FRC_msg[] =
 786	"Foreign read to DRAM incurring correctable ECC error";
 787static const char JPAFSR_FRU_msg[] =
 788	"Foreign read to DRAM incurring uncorrectable ECC error";
 789static struct afsr_error_table __jalapeno_error_table[] = {
 790	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
 791	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
 792	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
 793	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
 794	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
 795	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
 796	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
 797	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
 798	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
 799	{	CHAFSR_UE,	CHAFSR_UE_msg		},
 800	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
 801	{	JPAFSR_OM,	JPAFSR_OM_msg		},
 802	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
 803	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
 804	{	CHAFSR_CE,	CHAFSR_CE_msg		},
 805	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
 806	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
 807	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
 808	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
 809	{	CHAFSR_TO,	CHAFSR_TO_msg		},
 810	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
 811	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
 812	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
 813	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
 814	{	JPAFSR_BP,	JPAFSR_BP_msg		},
 815	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
 816	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
 817	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
 818	/* These two do not update the AFAR. */
 819	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
 820	{	0,		NULL			},
 821};
 822static struct afsr_error_table *cheetah_error_table;
 823static unsigned long cheetah_afsr_errors;
 824
 825struct cheetah_err_info *cheetah_error_log;
 826
 827static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
 828{
 829	struct cheetah_err_info *p;
 830	int cpu = smp_processor_id();
 831
 832	if (!cheetah_error_log)
 833		return NULL;
 834
 835	p = cheetah_error_log + (cpu * 2);
 836	if ((afsr & CHAFSR_TL1) != 0UL)
 837		p++;
 838
 839	return p;
 840}
 841
 842extern unsigned int tl0_icpe[], tl1_icpe[];
 843extern unsigned int tl0_dcpe[], tl1_dcpe[];
 844extern unsigned int tl0_fecc[], tl1_fecc[];
 845extern unsigned int tl0_cee[], tl1_cee[];
 846extern unsigned int tl0_iae[], tl1_iae[];
 847extern unsigned int tl0_dae[], tl1_dae[];
 848extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
 849extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
 850extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
 851extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
 852extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
 853
 854void __init cheetah_ecache_flush_init(void)
 855{
 856	unsigned long largest_size, smallest_linesize, order, ver;
 857	int i, sz;
 858
 859	/* Scan all cpu device tree nodes, note two values:
 860	 * 1) largest E-cache size
 861	 * 2) smallest E-cache line size
 862	 */
 863	largest_size = 0UL;
 864	smallest_linesize = ~0UL;
 865
 866	for (i = 0; i < NR_CPUS; i++) {
 867		unsigned long val;
 868
 869		val = cpu_data(i).ecache_size;
 870		if (!val)
 871			continue;
 872
 873		if (val > largest_size)
 874			largest_size = val;
 875
 876		val = cpu_data(i).ecache_line_size;
 877		if (val < smallest_linesize)
 878			smallest_linesize = val;
 879
 880	}
 881
 882	if (largest_size == 0UL || smallest_linesize == ~0UL) {
 883		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
 884			    "parameters.\n");
 885		prom_halt();
 886	}
 887
 888	ecache_flush_size = (2 * largest_size);
 889	ecache_flush_linesize = smallest_linesize;
 890
 891	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
 892
 893	if (ecache_flush_physbase == ~0UL) {
 894		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
 895			    "contiguous physical memory.\n",
 896			    ecache_flush_size);
 897		prom_halt();
 898	}
 899
 900	/* Now allocate error trap reporting scoreboard. */
 901	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
 902	for (order = 0; order < MAX_ORDER; order++) {
 903		if ((PAGE_SIZE << order) >= sz)
 904			break;
 905	}
 906	cheetah_error_log = (struct cheetah_err_info *)
 907		__get_free_pages(GFP_KERNEL, order);
 908	if (!cheetah_error_log) {
 909		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
 910			    "error logging scoreboard (%d bytes).\n", sz);
 911		prom_halt();
 912	}
 913	memset(cheetah_error_log, 0, PAGE_SIZE << order);
 914
 915	/* Mark all AFSRs as invalid so that the trap handler will
 916	 * log new new information there.
 917	 */
 918	for (i = 0; i < 2 * NR_CPUS; i++)
 919		cheetah_error_log[i].afsr = CHAFSR_INVALID;
 920
 921	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 922	if ((ver >> 32) == __JALAPENO_ID ||
 923	    (ver >> 32) == __SERRANO_ID) {
 924		cheetah_error_table = &__jalapeno_error_table[0];
 925		cheetah_afsr_errors = JPAFSR_ERRORS;
 926	} else if ((ver >> 32) == 0x003e0015) {
 927		cheetah_error_table = &__cheetah_plus_error_table[0];
 928		cheetah_afsr_errors = CHPAFSR_ERRORS;
 929	} else {
 930		cheetah_error_table = &__cheetah_error_table[0];
 931		cheetah_afsr_errors = CHAFSR_ERRORS;
 932	}
 933
 934	/* Now patch trap tables. */
 935	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
 936	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
 937	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
 938	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
 939	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
 940	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 941	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
 942	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
 943	if (tlb_type == cheetah_plus) {
 944		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
 945		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
 946		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
 947		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
 948	}
 949	flushi(PAGE_OFFSET);
 950}
 951
 952static void cheetah_flush_ecache(void)
 953{
 954	unsigned long flush_base = ecache_flush_physbase;
 955	unsigned long flush_linesize = ecache_flush_linesize;
 956	unsigned long flush_size = ecache_flush_size;
 957
 958	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
 959			     "   bne,pt	%%xcc, 1b\n\t"
 960			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
 961			     : "=&r" (flush_size)
 962			     : "0" (flush_size), "r" (flush_base),
 963			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
 964}
 965
 966static void cheetah_flush_ecache_line(unsigned long physaddr)
 967{
 968	unsigned long alias;
 969
 970	physaddr &= ~(8UL - 1UL);
 971	physaddr = (ecache_flush_physbase +
 972		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
 973	alias = physaddr + (ecache_flush_size >> 1UL);
 974	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
 975			     "ldxa [%1] %2, %%g0\n\t"
 976			     "membar #Sync"
 977			     : /* no outputs */
 978			     : "r" (physaddr), "r" (alias),
 979			       "i" (ASI_PHYS_USE_EC));
 980}
 981
 982/* Unfortunately, the diagnostic access to the I-cache tags we need to
 983 * use to clear the thing interferes with I-cache coherency transactions.
 984 *
 985 * So we must only flush the I-cache when it is disabled.
 986 */
 987static void __cheetah_flush_icache(void)
 988{
 989	unsigned int icache_size, icache_line_size;
 990	unsigned long addr;
 991
 992	icache_size = local_cpu_data().icache_size;
 993	icache_line_size = local_cpu_data().icache_line_size;
 994
 995	/* Clear the valid bits in all the tags. */
 996	for (addr = 0; addr < icache_size; addr += icache_line_size) {
 997		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 998				     "membar #Sync"
 999				     : /* no outputs */
1000				     : "r" (addr | (2 << 3)),
1001				       "i" (ASI_IC_TAG));
1002	}
1003}
1004
1005static void cheetah_flush_icache(void)
1006{
1007	unsigned long dcu_save;
1008
1009	/* Save current DCU, disable I-cache. */
1010	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1011			     "or %0, %2, %%g1\n\t"
1012			     "stxa %%g1, [%%g0] %1\n\t"
1013			     "membar #Sync"
1014			     : "=r" (dcu_save)
1015			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1016			     : "g1");
1017
1018	__cheetah_flush_icache();
1019
1020	/* Restore DCU register */
1021	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1022			     "membar #Sync"
1023			     : /* no outputs */
1024			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1025}
1026
1027static void cheetah_flush_dcache(void)
1028{
1029	unsigned int dcache_size, dcache_line_size;
1030	unsigned long addr;
1031
1032	dcache_size = local_cpu_data().dcache_size;
1033	dcache_line_size = local_cpu_data().dcache_line_size;
1034
1035	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1036		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1037				     "membar #Sync"
1038				     : /* no outputs */
1039				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1040	}
1041}
1042
1043/* In order to make the even parity correct we must do two things.
1044 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1045 * Next, we clear out all 32-bytes of data for that line.  Data of
1046 * all-zero + tag parity value of zero == correct parity.
1047 */
1048static void cheetah_plus_zap_dcache_parity(void)
1049{
1050	unsigned int dcache_size, dcache_line_size;
1051	unsigned long addr;
1052
1053	dcache_size = local_cpu_data().dcache_size;
1054	dcache_line_size = local_cpu_data().dcache_line_size;
1055
1056	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1057		unsigned long tag = (addr >> 14);
1058		unsigned long line;
1059
1060		__asm__ __volatile__("membar	#Sync\n\t"
1061				     "stxa	%0, [%1] %2\n\t"
1062				     "membar	#Sync"
1063				     : /* no outputs */
1064				     : "r" (tag), "r" (addr),
1065				       "i" (ASI_DCACHE_UTAG));
1066		for (line = addr; line < addr + dcache_line_size; line += 8)
1067			__asm__ __volatile__("membar	#Sync\n\t"
1068					     "stxa	%%g0, [%0] %1\n\t"
1069					     "membar	#Sync"
1070					     : /* no outputs */
1071					     : "r" (line),
1072					       "i" (ASI_DCACHE_DATA));
1073	}
1074}
1075
1076/* Conversion tables used to frob Cheetah AFSR syndrome values into
1077 * something palatable to the memory controller driver get_unumber
1078 * routine.
1079 */
1080#define MT0	137
1081#define MT1	138
1082#define MT2	139
1083#define NONE	254
1084#define MTC0	140
1085#define MTC1	141
1086#define MTC2	142
1087#define MTC3	143
1088#define C0	128
1089#define C1	129
1090#define C2	130
1091#define C3	131
1092#define C4	132
1093#define C5	133
1094#define C6	134
1095#define C7	135
1096#define C8	136
1097#define M2	144
1098#define M3	145
1099#define M4	146
1100#define M	147
1101static unsigned char cheetah_ecc_syntab[] = {
1102/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1103/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1104/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1105/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1106/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1107/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1108/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1109/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1110/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1111/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1112/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1113/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1114/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1115/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1116/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1117/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1118/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1119/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1120/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1121/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1122/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1123/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1124/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1125/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1126/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1127/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1128/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1129/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1130/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1131/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1132/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1133/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1134};
1135static unsigned char cheetah_mtag_syntab[] = {
1136       NONE, MTC0,
1137       MTC1, NONE,
1138       MTC2, NONE,
1139       NONE, MT0,
1140       MTC3, NONE,
1141       NONE, MT1,
1142       NONE, MT2,
1143       NONE, NONE
1144};
1145
1146/* Return the highest priority error conditon mentioned. */
1147static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1148{
1149	unsigned long tmp = 0;
1150	int i;
1151
1152	for (i = 0; cheetah_error_table[i].mask; i++) {
1153		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1154			return tmp;
1155	}
1156	return tmp;
1157}
1158
1159static const char *cheetah_get_string(unsigned long bit)
1160{
1161	int i;
1162
1163	for (i = 0; cheetah_error_table[i].mask; i++) {
1164		if ((bit & cheetah_error_table[i].mask) != 0UL)
1165			return cheetah_error_table[i].name;
1166	}
1167	return "???";
1168}
1169
1170static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1171			       unsigned long afsr, unsigned long afar, int recoverable)
1172{
1173	unsigned long hipri;
1174	char unum[256];
1175
1176	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1177	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1178	       afsr, afar,
1179	       (afsr & CHAFSR_TL1) ? 1 : 0);
1180	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1181	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1182	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1183	printk("%s" "ERROR(%d): ",
1184	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1185	printk("TPC<%pS>\n", (void *) regs->tpc);
1186	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1187	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1188	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1189	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1190	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1191	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1192	hipri = cheetah_get_hipri(afsr);
1193	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1194	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1195	       hipri, cheetah_get_string(hipri));
1196
1197	/* Try to get unumber if relevant. */
1198#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1199			 CHAFSR_CPC | CHAFSR_CPU | \
1200			 CHAFSR_UE  | CHAFSR_CE  | \
1201			 CHAFSR_EDC | CHAFSR_EDU  | \
1202			 CHAFSR_UCC | CHAFSR_UCU  | \
1203			 CHAFSR_WDU | CHAFSR_WDC)
1204#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1205	if (afsr & ESYND_ERRORS) {
1206		int syndrome;
1207		int ret;
1208
1209		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1210		syndrome = cheetah_ecc_syntab[syndrome];
1211		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1212		if (ret != -1)
1213			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1214			       (recoverable ? KERN_WARNING : KERN_CRIT),
1215			       smp_processor_id(), unum);
1216	} else if (afsr & MSYND_ERRORS) {
1217		int syndrome;
1218		int ret;
1219
1220		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1221		syndrome = cheetah_mtag_syntab[syndrome];
1222		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1223		if (ret != -1)
1224			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1225			       (recoverable ? KERN_WARNING : KERN_CRIT),
1226			       smp_processor_id(), unum);
1227	}
1228
1229	/* Now dump the cache snapshots. */
1230	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1231	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1232	       (int) info->dcache_index,
1233	       info->dcache_tag,
1234	       info->dcache_utag,
1235	       info->dcache_stag);
1236	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1237	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1238	       info->dcache_data[0],
1239	       info->dcache_data[1],
1240	       info->dcache_data[2],
1241	       info->dcache_data[3]);
1242	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1243	       "u[%016llx] l[%016llx]\n",
1244	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1245	       (int) info->icache_index,
1246	       info->icache_tag,
1247	       info->icache_utag,
1248	       info->icache_stag,
1249	       info->icache_upper,
1250	       info->icache_lower);
1251	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1252	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1253	       info->icache_data[0],
1254	       info->icache_data[1],
1255	       info->icache_data[2],
1256	       info->icache_data[3]);
1257	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1258	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1259	       info->icache_data[4],
1260	       info->icache_data[5],
1261	       info->icache_data[6],
1262	       info->icache_data[7]);
1263	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1264	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1265	       (int) info->ecache_index, info->ecache_tag);
1266	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1267	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1268	       info->ecache_data[0],
1269	       info->ecache_data[1],
1270	       info->ecache_data[2],
1271	       info->ecache_data[3]);
1272
1273	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1274	while (afsr != 0UL) {
1275		unsigned long bit = cheetah_get_hipri(afsr);
1276
1277		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1278		       (recoverable ? KERN_WARNING : KERN_CRIT),
1279		       bit, cheetah_get_string(bit));
1280
1281		afsr &= ~bit;
1282	}
1283
1284	if (!recoverable)
1285		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1286}
1287
1288static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1289{
1290	unsigned long afsr, afar;
1291	int ret = 0;
1292
1293	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1294			     : "=r" (afsr)
1295			     : "i" (ASI_AFSR));
1296	if ((afsr & cheetah_afsr_errors) != 0) {
1297		if (logp != NULL) {
1298			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1299					     : "=r" (afar)
1300					     : "i" (ASI_AFAR));
1301			logp->afsr = afsr;
1302			logp->afar = afar;
1303		}
1304		ret = 1;
1305	}
1306	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1307			     "membar #Sync\n\t"
1308			     : : "r" (afsr), "i" (ASI_AFSR));
1309
1310	return ret;
1311}
1312
1313void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1314{
1315	struct cheetah_err_info local_snapshot, *p;
1316	int recoverable;
1317
1318	/* Flush E-cache */
1319	cheetah_flush_ecache();
1320
1321	p = cheetah_get_error_log(afsr);
1322	if (!p) {
1323		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1324			    afsr, afar);
1325		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1326			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1327		prom_halt();
1328	}
1329
1330	/* Grab snapshot of logged error. */
1331	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1332
1333	/* If the current trap snapshot does not match what the
1334	 * trap handler passed along into our args, big trouble.
1335	 * In such a case, mark the local copy as invalid.
1336	 *
1337	 * Else, it matches and we mark the afsr in the non-local
1338	 * copy as invalid so we may log new error traps there.
1339	 */
1340	if (p->afsr != afsr || p->afar != afar)
1341		local_snapshot.afsr = CHAFSR_INVALID;
1342	else
1343		p->afsr = CHAFSR_INVALID;
1344
1345	cheetah_flush_icache();
1346	cheetah_flush_dcache();
1347
1348	/* Re-enable I-cache/D-cache */
1349	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1350			     "or %%g1, %1, %%g1\n\t"
1351			     "stxa %%g1, [%%g0] %0\n\t"
1352			     "membar #Sync"
1353			     : /* no outputs */
1354			     : "i" (ASI_DCU_CONTROL_REG),
1355			       "i" (DCU_DC | DCU_IC)
1356			     : "g1");
1357
1358	/* Re-enable error reporting */
1359	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1360			     "or %%g1, %1, %%g1\n\t"
1361			     "stxa %%g1, [%%g0] %0\n\t"
1362			     "membar #Sync"
1363			     : /* no outputs */
1364			     : "i" (ASI_ESTATE_ERROR_EN),
1365			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1366			     : "g1");
1367
1368	/* Decide if we can continue after handling this trap and
1369	 * logging the error.
1370	 */
1371	recoverable = 1;
1372	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1373		recoverable = 0;
1374
1375	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1376	 * error was logged while we had error reporting traps disabled.
1377	 */
1378	if (cheetah_recheck_errors(&local_snapshot)) {
1379		unsigned long new_afsr = local_snapshot.afsr;
1380
1381		/* If we got a new asynchronous error, die... */
1382		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1383				CHAFSR_WDU | CHAFSR_CPU |
1384				CHAFSR_IVU | CHAFSR_UE |
1385				CHAFSR_BERR | CHAFSR_TO))
1386			recoverable = 0;
1387	}
1388
1389	/* Log errors. */
1390	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1391
1392	if (!recoverable)
1393		panic("Irrecoverable Fast-ECC error trap.\n");
1394
1395	/* Flush E-cache to kick the error trap handlers out. */
1396	cheetah_flush_ecache();
1397}
1398
1399/* Try to fix a correctable error by pushing the line out from
1400 * the E-cache.  Recheck error reporting registers to see if the
1401 * problem is intermittent.
1402 */
1403static int cheetah_fix_ce(unsigned long physaddr)
1404{
1405	unsigned long orig_estate;
1406	unsigned long alias1, alias2;
1407	int ret;
1408
1409	/* Make sure correctable error traps are disabled. */
1410	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1411			     "andn	%0, %1, %%g1\n\t"
1412			     "stxa	%%g1, [%%g0] %2\n\t"
1413			     "membar	#Sync"
1414			     : "=&r" (orig_estate)
1415			     : "i" (ESTATE_ERROR_CEEN),
1416			       "i" (ASI_ESTATE_ERROR_EN)
1417			     : "g1");
1418
1419	/* We calculate alias addresses that will force the
1420	 * cache line in question out of the E-cache.  Then
1421	 * we bring it back in with an atomic instruction so
1422	 * that we get it in some modified/exclusive state,
1423	 * then we displace it again to try and get proper ECC
1424	 * pushed back into the system.
1425	 */
1426	physaddr &= ~(8UL - 1UL);
1427	alias1 = (ecache_flush_physbase +
1428		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1429	alias2 = alias1 + (ecache_flush_size >> 1);
1430	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1431			     "ldxa	[%1] %3, %%g0\n\t"
1432			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1433			     "ldxa	[%0] %3, %%g0\n\t"
1434			     "ldxa	[%1] %3, %%g0\n\t"
1435			     "membar	#Sync"
1436			     : /* no outputs */
1437			     : "r" (alias1), "r" (alias2),
1438			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1439
1440	/* Did that trigger another error? */
1441	if (cheetah_recheck_errors(NULL)) {
1442		/* Try one more time. */
1443		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1444				     "membar #Sync"
1445				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1446		if (cheetah_recheck_errors(NULL))
1447			ret = 2;
1448		else
1449			ret = 1;
1450	} else {
1451		/* No new error, intermittent problem. */
1452		ret = 0;
1453	}
1454
1455	/* Restore error enables. */
1456	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1457			     "membar	#Sync"
1458			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1459
1460	return ret;
1461}
1462
1463/* Return non-zero if PADDR is a valid physical memory address. */
1464static int cheetah_check_main_memory(unsigned long paddr)
1465{
1466	unsigned long vaddr = PAGE_OFFSET + paddr;
1467
1468	if (vaddr > (unsigned long) high_memory)
1469		return 0;
1470
1471	return kern_addr_valid(vaddr);
1472}
1473
1474void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1475{
1476	struct cheetah_err_info local_snapshot, *p;
1477	int recoverable, is_memory;
1478
1479	p = cheetah_get_error_log(afsr);
1480	if (!p) {
1481		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1482			    afsr, afar);
1483		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1484			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1485		prom_halt();
1486	}
1487
1488	/* Grab snapshot of logged error. */
1489	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1490
1491	/* If the current trap snapshot does not match what the
1492	 * trap handler passed along into our args, big trouble.
1493	 * In such a case, mark the local copy as invalid.
1494	 *
1495	 * Else, it matches and we mark the afsr in the non-local
1496	 * copy as invalid so we may log new error traps there.
1497	 */
1498	if (p->afsr != afsr || p->afar != afar)
1499		local_snapshot.afsr = CHAFSR_INVALID;
1500	else
1501		p->afsr = CHAFSR_INVALID;
1502
1503	is_memory = cheetah_check_main_memory(afar);
1504
1505	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1506		/* XXX Might want to log the results of this operation
1507		 * XXX somewhere... -DaveM
1508		 */
1509		cheetah_fix_ce(afar);
1510	}
1511
1512	{
1513		int flush_all, flush_line;
1514
1515		flush_all = flush_line = 0;
1516		if ((afsr & CHAFSR_EDC) != 0UL) {
1517			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1518				flush_line = 1;
1519			else
1520				flush_all = 1;
1521		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1522			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1523				flush_line = 1;
1524			else
1525				flush_all = 1;
1526		}
1527
1528		/* Trap handler only disabled I-cache, flush it. */
1529		cheetah_flush_icache();
1530
1531		/* Re-enable I-cache */
1532		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1533				     "or %%g1, %1, %%g1\n\t"
1534				     "stxa %%g1, [%%g0] %0\n\t"
1535				     "membar #Sync"
1536				     : /* no outputs */
1537				     : "i" (ASI_DCU_CONTROL_REG),
1538				     "i" (DCU_IC)
1539				     : "g1");
1540
1541		if (flush_all)
1542			cheetah_flush_ecache();
1543		else if (flush_line)
1544			cheetah_flush_ecache_line(afar);
1545	}
1546
1547	/* Re-enable error reporting */
1548	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1549			     "or %%g1, %1, %%g1\n\t"
1550			     "stxa %%g1, [%%g0] %0\n\t"
1551			     "membar #Sync"
1552			     : /* no outputs */
1553			     : "i" (ASI_ESTATE_ERROR_EN),
1554			       "i" (ESTATE_ERROR_CEEN)
1555			     : "g1");
1556
1557	/* Decide if we can continue after handling this trap and
1558	 * logging the error.
1559	 */
1560	recoverable = 1;
1561	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1562		recoverable = 0;
1563
1564	/* Re-check AFSR/AFAR */
1565	(void) cheetah_recheck_errors(&local_snapshot);
1566
1567	/* Log errors. */
1568	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1569
1570	if (!recoverable)
1571		panic("Irrecoverable Correctable-ECC error trap.\n");
1572}
1573
1574void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1575{
1576	struct cheetah_err_info local_snapshot, *p;
1577	int recoverable, is_memory;
1578
1579#ifdef CONFIG_PCI
1580	/* Check for the special PCI poke sequence. */
1581	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1582		cheetah_flush_icache();
1583		cheetah_flush_dcache();
1584
1585		/* Re-enable I-cache/D-cache */
1586		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1587				     "or %%g1, %1, %%g1\n\t"
1588				     "stxa %%g1, [%%g0] %0\n\t"
1589				     "membar #Sync"
1590				     : /* no outputs */
1591				     : "i" (ASI_DCU_CONTROL_REG),
1592				       "i" (DCU_DC | DCU_IC)
1593				     : "g1");
1594
1595		/* Re-enable error reporting */
1596		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1597				     "or %%g1, %1, %%g1\n\t"
1598				     "stxa %%g1, [%%g0] %0\n\t"
1599				     "membar #Sync"
1600				     : /* no outputs */
1601				     : "i" (ASI_ESTATE_ERROR_EN),
1602				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1603				     : "g1");
1604
1605		(void) cheetah_recheck_errors(NULL);
1606
1607		pci_poke_faulted = 1;
1608		regs->tpc += 4;
1609		regs->tnpc = regs->tpc + 4;
1610		return;
1611	}
1612#endif
1613
1614	p = cheetah_get_error_log(afsr);
1615	if (!p) {
1616		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1617			    afsr, afar);
1618		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1619			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1620		prom_halt();
1621	}
1622
1623	/* Grab snapshot of logged error. */
1624	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1625
1626	/* If the current trap snapshot does not match what the
1627	 * trap handler passed along into our args, big trouble.
1628	 * In such a case, mark the local copy as invalid.
1629	 *
1630	 * Else, it matches and we mark the afsr in the non-local
1631	 * copy as invalid so we may log new error traps there.
1632	 */
1633	if (p->afsr != afsr || p->afar != afar)
1634		local_snapshot.afsr = CHAFSR_INVALID;
1635	else
1636		p->afsr = CHAFSR_INVALID;
1637
1638	is_memory = cheetah_check_main_memory(afar);
1639
1640	{
1641		int flush_all, flush_line;
1642
1643		flush_all = flush_line = 0;
1644		if ((afsr & CHAFSR_EDU) != 0UL) {
1645			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1646				flush_line = 1;
1647			else
1648				flush_all = 1;
1649		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1650			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1651				flush_line = 1;
1652			else
1653				flush_all = 1;
1654		}
1655
1656		cheetah_flush_icache();
1657		cheetah_flush_dcache();
1658
1659		/* Re-enable I/D caches */
1660		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1661				     "or %%g1, %1, %%g1\n\t"
1662				     "stxa %%g1, [%%g0] %0\n\t"
1663				     "membar #Sync"
1664				     : /* no outputs */
1665				     : "i" (ASI_DCU_CONTROL_REG),
1666				     "i" (DCU_IC | DCU_DC)
1667				     : "g1");
1668
1669		if (flush_all)
1670			cheetah_flush_ecache();
1671		else if (flush_line)
1672			cheetah_flush_ecache_line(afar);
1673	}
1674
1675	/* Re-enable error reporting */
1676	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1677			     "or %%g1, %1, %%g1\n\t"
1678			     "stxa %%g1, [%%g0] %0\n\t"
1679			     "membar #Sync"
1680			     : /* no outputs */
1681			     : "i" (ASI_ESTATE_ERROR_EN),
1682			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1683			     : "g1");
1684
1685	/* Decide if we can continue after handling this trap and
1686	 * logging the error.
1687	 */
1688	recoverable = 1;
1689	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1690		recoverable = 0;
1691
1692	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1693	 * error was logged while we had error reporting traps disabled.
1694	 */
1695	if (cheetah_recheck_errors(&local_snapshot)) {
1696		unsigned long new_afsr = local_snapshot.afsr;
1697
1698		/* If we got a new asynchronous error, die... */
1699		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1700				CHAFSR_WDU | CHAFSR_CPU |
1701				CHAFSR_IVU | CHAFSR_UE |
1702				CHAFSR_BERR | CHAFSR_TO))
1703			recoverable = 0;
1704	}
1705
1706	/* Log errors. */
1707	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1708
1709	/* "Recoverable" here means we try to yank the page from ever
1710	 * being newly used again.  This depends upon a few things:
1711	 * 1) Must be main memory, and AFAR must be valid.
1712	 * 2) If we trapped from user, OK.
1713	 * 3) Else, if we trapped from kernel we must find exception
1714	 *    table entry (ie. we have to have been accessing user
1715	 *    space).
1716	 *
1717	 * If AFAR is not in main memory, or we trapped from kernel
1718	 * and cannot find an exception table entry, it is unacceptable
1719	 * to try and continue.
1720	 */
1721	if (recoverable && is_memory) {
1722		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1723			/* OK, usermode access. */
1724			recoverable = 1;
1725		} else {
1726			const struct exception_table_entry *entry;
1727
1728			entry = search_exception_tables(regs->tpc);
1729			if (entry) {
1730				/* OK, kernel access to userspace. */
1731				recoverable = 1;
1732
1733			} else {
1734				/* BAD, privileged state is corrupted. */
1735				recoverable = 0;
1736			}
1737
1738			if (recoverable) {
1739				if (pfn_valid(afar >> PAGE_SHIFT))
1740					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1741				else
1742					recoverable = 0;
1743
1744				/* Only perform fixup if we still have a
1745				 * recoverable condition.
1746				 */
1747				if (recoverable) {
1748					regs->tpc = entry->fixup;
1749					regs->tnpc = regs->tpc + 4;
1750				}
1751			}
1752		}
1753	} else {
1754		recoverable = 0;
1755	}
1756
1757	if (!recoverable)
1758		panic("Irrecoverable deferred error trap.\n");
1759}
1760
1761/* Handle a D/I cache parity error trap.  TYPE is encoded as:
1762 *
1763 * Bit0:	0=dcache,1=icache
1764 * Bit1:	0=recoverable,1=unrecoverable
1765 *
1766 * The hardware has disabled both the I-cache and D-cache in
1767 * the %dcr register.  
1768 */
1769void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1770{
1771	if (type & 0x1)
1772		__cheetah_flush_icache();
1773	else
1774		cheetah_plus_zap_dcache_parity();
1775	cheetah_flush_dcache();
1776
1777	/* Re-enable I-cache/D-cache */
1778	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1779			     "or %%g1, %1, %%g1\n\t"
1780			     "stxa %%g1, [%%g0] %0\n\t"
1781			     "membar #Sync"
1782			     : /* no outputs */
1783			     : "i" (ASI_DCU_CONTROL_REG),
1784			       "i" (DCU_DC | DCU_IC)
1785			     : "g1");
1786
1787	if (type & 0x2) {
1788		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1789		       smp_processor_id(),
1790		       (type & 0x1) ? 'I' : 'D',
1791		       regs->tpc);
1792		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1793		panic("Irrecoverable Cheetah+ parity error.");
1794	}
1795
1796	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1797	       smp_processor_id(),
1798	       (type & 0x1) ? 'I' : 'D',
1799	       regs->tpc);
1800	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1801}
1802
1803struct sun4v_error_entry {
1804	/* Unique error handle */
1805/*0x00*/u64		err_handle;
1806
1807	/* %stick value at the time of the error */
1808/*0x08*/u64		err_stick;
1809
1810/*0x10*/u8		reserved_1[3];
1811
1812	/* Error type */
1813/*0x13*/u8		err_type;
1814#define SUN4V_ERR_TYPE_UNDEFINED	0
1815#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1816#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1817#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1818#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1819#define SUN4V_ERR_TYPE_DUMP_CORE	5
1820#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1821#define SUN4V_ERR_TYPE_NUM		7
1822
1823	/* Error attributes */
1824/*0x14*/u32		err_attrs;
1825#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1826#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1827#define SUN4V_ERR_ATTRS_PIO		0x00000004
1828#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1829#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1830#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1831#define SUN4V_ERR_ATTRS_ASR		0x00000040
1832#define SUN4V_ERR_ATTRS_ASI		0x00000080
1833#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1834#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1835#define SUN4V_ERR_ATTRS_MCD		0x00000800
1836#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1837#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1838#define SUN4V_ERR_ATTRS_MODE_SHFT	24
1839#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1840
1841#define SUN4V_ERR_SPSTATE_FAULTED	0
1842#define SUN4V_ERR_SPSTATE_AVAILABLE	1
1843#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1844
1845#define SUN4V_ERR_MODE_USER		1
1846#define SUN4V_ERR_MODE_PRIV		2
1847
1848	/* Real address of the memory region or PIO transaction */
1849/*0x18*/u64		err_raddr;
1850
1851	/* Size of the operation triggering the error, in bytes */
1852/*0x20*/u32		err_size;
1853
1854	/* ID of the CPU */
1855/*0x24*/u16		err_cpu;
1856
1857	/* Grace periof for shutdown, in seconds */
1858/*0x26*/u16		err_secs;
1859
1860	/* Value of the %asi register */
1861/*0x28*/u8		err_asi;
1862
1863/*0x29*/u8		reserved_2;
1864
1865	/* Value of the ASR register number */
1866/*0x2a*/u16		err_asr;
1867#define SUN4V_ERR_ASR_VALID		0x8000
1868
1869/*0x2c*/u32		reserved_3;
1870/*0x30*/u64		reserved_4;
1871/*0x38*/u64		reserved_5;
1872};
1873
1874static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1875static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1876
1877static const char *sun4v_err_type_to_str(u8 type)
1878{
1879	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1880		"undefined",
1881		"uncorrected resumable",
1882		"precise nonresumable",
1883		"deferred nonresumable",
1884		"shutdown request",
1885		"dump core",
1886		"SP state change",
1887	};
1888
1889	if (type < SUN4V_ERR_TYPE_NUM)
1890		return types[type];
1891
1892	return "unknown";
1893}
1894
1895static void sun4v_emit_err_attr_strings(u32 attrs)
1896{
1897	static const char *attr_names[] = {
1898		"processor",
1899		"memory",
1900		"PIO",
1901		"int-registers",
1902		"fpu-registers",
1903		"shutdown-request",
1904		"ASR",
1905		"ASI",
1906		"priv-reg",
1907	};
1908	static const char *sp_states[] = {
1909		"sp-faulted",
1910		"sp-available",
1911		"sp-not-present",
1912		"sp-state-reserved",
1913	};
1914	static const char *modes[] = {
1915		"mode-reserved0",
1916		"user",
1917		"priv",
1918		"mode-reserved1",
1919	};
1920	u32 sp_state, mode;
1921	int i;
1922
1923	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1924		if (attrs & (1U << i)) {
1925			const char *s = attr_names[i];
1926
1927			pr_cont("%s ", s);
1928		}
1929	}
1930
1931	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1932		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1933	pr_cont("%s ", sp_states[sp_state]);
1934
1935	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1936		SUN4V_ERR_ATTRS_MODE_SHFT);
1937	pr_cont("%s ", modes[mode]);
1938
1939	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1940		pr_cont("res-queue-full ");
1941}
1942
1943/* When the report contains a real-address of "-1" it means that the
1944 * hardware did not provide the address.  So we compute the effective
1945 * address of the load or store instruction at regs->tpc and report
1946 * that.  Usually when this happens it's a PIO and in such a case we
1947 * are using physical addresses with bypass ASIs anyways, so what we
1948 * report here is exactly what we want.
1949 */
1950static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1951{
1952	unsigned int insn;
1953	u64 addr;
1954
1955	if (!(regs->tstate & TSTATE_PRIV))
1956		return;
1957
1958	insn = *(unsigned int *) regs->tpc;
1959
1960	addr = compute_effective_address(regs, insn, 0);
1961
1962	printk("%s: insn effective address [0x%016llx]\n",
1963	       pfx, addr);
1964}
1965
1966static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1967			    int cpu, const char *pfx, atomic_t *ocnt)
1968{
1969	u64 *raw_ptr = (u64 *) ent;
1970	u32 attrs;
1971	int cnt;
1972
1973	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1974	printk("%s: TPC [0x%016lx] <%pS>\n",
1975	       pfx, regs->tpc, (void *) regs->tpc);
1976
1977	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1978	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1979	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1980	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1981
1982	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1983	       pfx, ent->err_handle, ent->err_stick);
1984
1985	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1986
1987	attrs = ent->err_attrs;
1988	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1989	sun4v_emit_err_attr_strings(attrs);
1990	pr_cont(">\n");
1991
1992	/* Various fields in the error report are only valid if
1993	 * certain attribute bits are set.
1994	 */
1995	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1996		     SUN4V_ERR_ATTRS_PIO |
1997		     SUN4V_ERR_ATTRS_ASI)) {
1998		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1999
2000		if (ent->err_raddr == ~(u64)0)
2001			sun4v_report_real_raddr(pfx, regs);
2002	}
2003
2004	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2005		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2006
2007	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2008		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2009		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2010		     SUN4V_ERR_ATTRS_PRIV_REG))
2011		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2012
2013	if (attrs & SUN4V_ERR_ATTRS_ASI)
2014		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2015
2016	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2017		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2018		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2019	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2020		printk("%s: reg [0x%04x]\n",
2021		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2022
2023	show_regs(regs);
2024
2025	if ((cnt = atomic_read(ocnt)) != 0) {
2026		atomic_set(ocnt, 0);
2027		wmb();
2028		printk("%s: Queue overflowed %d times.\n",
2029		       pfx, cnt);
2030	}
2031}
2032
2033/* Handle memory corruption detected error which is vectored in
2034 * through resumable error trap.
2035 */
2036void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2037{
2038	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2039		       SIGSEGV) == NOTIFY_STOP)
2040		return;
2041
2042	if (regs->tstate & TSTATE_PRIV) {
2043		/* MCD exception could happen because the task was
2044		 * running a system call with MCD enabled and passed a
2045		 * non-versioned pointer or pointer with bad version
2046		 * tag to the system call. In such cases, hypervisor
2047		 * places the address of offending instruction in the
2048		 * resumable error report. This is a deferred error,
2049		 * so the read/write that caused the trap was potentially
2050		 * retired long time back and we may have no choice
2051		 * but to send SIGSEGV to the process.
2052		 */
2053		const struct exception_table_entry *entry;
2054
2055		entry = search_exception_tables(regs->tpc);
2056		if (entry) {
2057			/* Looks like a bad syscall parameter */
2058#ifdef DEBUG_EXCEPTIONS
2059			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2060				 regs->tpc);
2061			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2062				 ent.err_raddr, entry->fixup);
2063#endif
2064			regs->tpc = entry->fixup;
2065			regs->tnpc = regs->tpc + 4;
2066			return;
2067		}
2068	}
2069
2070	/* Send SIGSEGV to the userspace process with the right signal
2071	 * code
2072	 */
2073	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr,
2074			0);
2075}
2076
2077/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2078 * Log the event and clear the first word of the entry.
2079 */
2080void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2081{
2082	enum ctx_state prev_state = exception_enter();
2083	struct sun4v_error_entry *ent, local_copy;
2084	struct trap_per_cpu *tb;
2085	unsigned long paddr;
2086	int cpu;
2087
2088	cpu = get_cpu();
2089
2090	tb = &trap_block[cpu];
2091	paddr = tb->resum_kernel_buf_pa + offset;
2092	ent = __va(paddr);
2093
2094	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2095
2096	/* We have a local copy now, so release the entry.  */
2097	ent->err_handle = 0;
2098	wmb();
2099
2100	put_cpu();
2101
2102	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2103		/* We should really take the seconds field of
2104		 * the error report and use it for the shutdown
2105		 * invocation, but for now do the same thing we
2106		 * do for a DS shutdown request.
2107		 */
2108		pr_info("Shutdown request, %u seconds...\n",
2109			local_copy.err_secs);
2110		orderly_poweroff(true);
2111		goto out;
2112	}
2113
2114	/* If this is a memory corruption detected error vectored in
2115	 * by HV through resumable error trap, call the handler
2116	 */
2117	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2118		do_mcd_err(regs, local_copy);
2119		return;
2120	}
2121
2122	sun4v_log_error(regs, &local_copy, cpu,
2123			KERN_ERR "RESUMABLE ERROR",
2124			&sun4v_resum_oflow_cnt);
2125out:
2126	exception_exit(prev_state);
2127}
2128
2129/* If we try to printk() we'll probably make matters worse, by trying
2130 * to retake locks this cpu already holds or causing more errors. So
2131 * just bump a counter, and we'll report these counter bumps above.
2132 */
2133void sun4v_resum_overflow(struct pt_regs *regs)
2134{
2135	atomic_inc(&sun4v_resum_oflow_cnt);
2136}
2137
2138/* Given a set of registers, get the virtual addressi that was being accessed
2139 * by the faulting instructions at tpc.
2140 */
2141static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2142{
2143	unsigned int insn;
2144
2145	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2146		return compute_effective_address(regs, insn,
2147						 (insn >> 25) & 0x1f);
2148	}
2149	return 0;
2150}
2151
2152/* Attempt to handle non-resumable errors generated from userspace.
2153 * Returns true if the signal was handled, false otherwise.
2154 */
2155bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2156				  struct sun4v_error_entry *ent) {
2157
2158	unsigned int attrs = ent->err_attrs;
2159
2160	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2161		unsigned long addr = ent->err_raddr;
 
2162
2163		if (addr == ~(u64)0) {
2164			/* This seems highly unlikely to ever occur */
2165			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2166		} else {
2167			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2168							      PAGE_SIZE);
2169
2170			/* Break the unfortunate news. */
2171			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2172				 addr);
2173			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2174				 page_cnt);
2175
2176			while (page_cnt-- > 0) {
2177				if (pfn_valid(addr >> PAGE_SHIFT))
2178					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2179				addr += PAGE_SIZE;
2180			}
2181		}
2182		force_sig(SIGKILL);
 
 
 
2183
2184		return true;
2185	}
2186	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2187		force_sig_fault(SIGBUS, BUS_ADRERR,
2188				(void __user *)sun4v_get_vaddr(regs), 0);
 
 
 
 
 
2189		return true;
2190	}
2191
2192	/* Default to doing nothing */
2193	return false;
2194}
2195
2196/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2197 * Log the event, clear the first word of the entry, and die.
2198 */
2199void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2200{
2201	struct sun4v_error_entry *ent, local_copy;
2202	struct trap_per_cpu *tb;
2203	unsigned long paddr;
2204	int cpu;
2205
2206	cpu = get_cpu();
2207
2208	tb = &trap_block[cpu];
2209	paddr = tb->nonresum_kernel_buf_pa + offset;
2210	ent = __va(paddr);
2211
2212	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2213
2214	/* We have a local copy now, so release the entry.  */
2215	ent->err_handle = 0;
2216	wmb();
2217
2218	put_cpu();
2219
2220	if (!(regs->tstate & TSTATE_PRIV) &&
2221	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2222		/* DON'T PANIC: This userspace error was handled. */
2223		return;
2224	}
2225
2226#ifdef CONFIG_PCI
2227	/* Check for the special PCI poke sequence. */
2228	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2229		pci_poke_faulted = 1;
2230		regs->tpc += 4;
2231		regs->tnpc = regs->tpc + 4;
2232		return;
2233	}
2234#endif
2235
2236	sun4v_log_error(regs, &local_copy, cpu,
2237			KERN_EMERG "NON-RESUMABLE ERROR",
2238			&sun4v_nonresum_oflow_cnt);
2239
2240	panic("Non-resumable error.");
2241}
2242
2243/* If we try to printk() we'll probably make matters worse, by trying
2244 * to retake locks this cpu already holds or causing more errors. So
2245 * just bump a counter, and we'll report these counter bumps above.
2246 */
2247void sun4v_nonresum_overflow(struct pt_regs *regs)
2248{
2249	/* XXX Actually even this can make not that much sense.  Perhaps
2250	 * XXX we should just pull the plug and panic directly from here?
2251	 */
2252	atomic_inc(&sun4v_nonresum_oflow_cnt);
2253}
2254
2255static void sun4v_tlb_error(struct pt_regs *regs)
2256{
2257	die_if_kernel("TLB/TSB error", regs);
2258}
2259
2260unsigned long sun4v_err_itlb_vaddr;
2261unsigned long sun4v_err_itlb_ctx;
2262unsigned long sun4v_err_itlb_pte;
2263unsigned long sun4v_err_itlb_error;
2264
2265void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2266{
2267	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2268
2269	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2270	       regs->tpc, tl);
2271	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2272	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2273	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2274	       (void *) regs->u_regs[UREG_I7]);
2275	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2276	       "pte[%lx] error[%lx]\n",
2277	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2278	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2279
2280	sun4v_tlb_error(regs);
2281}
2282
2283unsigned long sun4v_err_dtlb_vaddr;
2284unsigned long sun4v_err_dtlb_ctx;
2285unsigned long sun4v_err_dtlb_pte;
2286unsigned long sun4v_err_dtlb_error;
2287
2288void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2289{
2290	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2291
2292	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2293	       regs->tpc, tl);
2294	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2295	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2296	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2297	       (void *) regs->u_regs[UREG_I7]);
2298	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2299	       "pte[%lx] error[%lx]\n",
2300	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2301	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2302
2303	sun4v_tlb_error(regs);
2304}
2305
2306void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2307{
2308	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2309	       err, op);
2310}
2311
2312void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2313{
2314	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2315	       err, op);
2316}
2317
2318static void do_fpe_common(struct pt_regs *regs)
2319{
2320	if (regs->tstate & TSTATE_PRIV) {
2321		regs->tpc = regs->tnpc;
2322		regs->tnpc += 4;
2323	} else {
2324		unsigned long fsr = current_thread_info()->xfsr[0];
2325		int code;
2326
2327		if (test_thread_flag(TIF_32BIT)) {
2328			regs->tpc &= 0xffffffff;
2329			regs->tnpc &= 0xffffffff;
2330		}
2331		code = FPE_FLTUNK;
 
 
 
 
2332		if ((fsr & 0x1c000) == (1 << 14)) {
2333			if (fsr & 0x10)
2334				code = FPE_FLTINV;
2335			else if (fsr & 0x08)
2336				code = FPE_FLTOVF;
2337			else if (fsr & 0x04)
2338				code = FPE_FLTUND;
2339			else if (fsr & 0x02)
2340				code = FPE_FLTDIV;
2341			else if (fsr & 0x01)
2342				code = FPE_FLTRES;
2343		}
2344		force_sig_fault(SIGFPE, code,
2345				(void __user *)regs->tpc, 0);
2346	}
2347}
2348
2349void do_fpieee(struct pt_regs *regs)
2350{
2351	enum ctx_state prev_state = exception_enter();
2352
2353	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2354		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2355		goto out;
2356
2357	do_fpe_common(regs);
2358out:
2359	exception_exit(prev_state);
2360}
2361
2362void do_fpother(struct pt_regs *regs)
2363{
2364	enum ctx_state prev_state = exception_enter();
2365	struct fpustate *f = FPUSTATE;
2366	int ret = 0;
2367
2368	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2369		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2370		goto out;
2371
2372	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2373	case (2 << 14): /* unfinished_FPop */
2374	case (3 << 14): /* unimplemented_FPop */
2375		ret = do_mathemu(regs, f, false);
2376		break;
2377	}
2378	if (ret)
2379		goto out;
2380	do_fpe_common(regs);
2381out:
2382	exception_exit(prev_state);
2383}
2384
2385void do_tof(struct pt_regs *regs)
2386{
2387	enum ctx_state prev_state = exception_enter();
 
2388
2389	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2390		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2391		goto out;
2392
2393	if (regs->tstate & TSTATE_PRIV)
2394		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2395	if (test_thread_flag(TIF_32BIT)) {
2396		regs->tpc &= 0xffffffff;
2397		regs->tnpc &= 0xffffffff;
2398	}
2399	force_sig_fault(SIGEMT, EMT_TAGOVF,
2400			(void __user *)regs->tpc, 0);
 
 
 
 
2401out:
2402	exception_exit(prev_state);
2403}
2404
2405void do_div0(struct pt_regs *regs)
2406{
2407	enum ctx_state prev_state = exception_enter();
 
2408
2409	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2410		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2411		goto out;
2412
2413	if (regs->tstate & TSTATE_PRIV)
2414		die_if_kernel("TL0: Kernel divide by zero.", regs);
2415	if (test_thread_flag(TIF_32BIT)) {
2416		regs->tpc &= 0xffffffff;
2417		regs->tnpc &= 0xffffffff;
2418	}
2419	force_sig_fault(SIGFPE, FPE_INTDIV,
2420			(void __user *)regs->tpc, 0);
 
 
 
 
2421out:
2422	exception_exit(prev_state);
2423}
2424
2425static void instruction_dump(unsigned int *pc)
2426{
2427	int i;
2428
2429	if ((((unsigned long) pc) & 3))
2430		return;
2431
2432	printk("Instruction DUMP:");
2433	for (i = -3; i < 6; i++)
2434		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2435	printk("\n");
2436}
2437
2438static void user_instruction_dump(unsigned int __user *pc)
2439{
2440	int i;
2441	unsigned int buf[9];
2442	
2443	if ((((unsigned long) pc) & 3))
2444		return;
2445		
2446	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2447		return;
2448
2449	printk("Instruction DUMP:");
2450	for (i = 0; i < 9; i++)
2451		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2452	printk("\n");
2453}
2454
2455void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2456{
2457	unsigned long fp, ksp;
2458	struct thread_info *tp;
2459	int count = 0;
2460#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2461	int graph = 0;
2462#endif
2463
2464	ksp = (unsigned long) _ksp;
2465	if (!tsk)
2466		tsk = current;
2467	tp = task_thread_info(tsk);
2468	if (ksp == 0UL) {
2469		if (tsk == current)
2470			asm("mov %%fp, %0" : "=r" (ksp));
2471		else
2472			ksp = tp->ksp;
2473	}
2474	if (tp == current_thread_info())
2475		flushw_all();
2476
2477	fp = ksp + STACK_BIAS;
2478
2479	printk("%sCall Trace:\n", loglvl);
2480	do {
2481		struct sparc_stackf *sf;
2482		struct pt_regs *regs;
2483		unsigned long pc;
2484
2485		if (!kstack_valid(tp, fp))
2486			break;
2487		sf = (struct sparc_stackf *) fp;
2488		regs = (struct pt_regs *) (sf + 1);
2489
2490		if (kstack_is_trap_frame(tp, regs)) {
2491			if (!(regs->tstate & TSTATE_PRIV))
2492				break;
2493			pc = regs->tpc;
2494			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2495		} else {
2496			pc = sf->callers_pc;
2497			fp = (unsigned long)sf->fp + STACK_BIAS;
2498		}
2499
2500		print_ip_sym(loglvl, pc);
2501#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2502		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2503			struct ftrace_ret_stack *ret_stack;
2504			ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2505			if (ret_stack) {
2506				pc = ret_stack->ret;
2507				print_ip_sym(loglvl, pc);
2508				graph++;
2509			}
2510		}
2511#endif
2512	} while (++count < 16);
2513}
2514
2515static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2516{
2517	unsigned long fp = rw->ins[6];
2518
2519	if (!fp)
2520		return NULL;
2521
2522	return (struct reg_window *) (fp + STACK_BIAS);
2523}
2524
2525void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2526{
2527	static int die_counter;
2528	int count = 0;
2529	
2530	/* Amuse the user. */
2531	printk(
2532"              \\|/ ____ \\|/\n"
2533"              \"@'/ .. \\`@\"\n"
2534"              /_| \\__/ |_\\\n"
2535"                 \\__U_/\n");
2536
2537	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2538	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2539	__asm__ __volatile__("flushw");
2540	show_regs(regs);
2541	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2542	if (regs->tstate & TSTATE_PRIV) {
2543		struct thread_info *tp = current_thread_info();
2544		struct reg_window *rw = (struct reg_window *)
2545			(regs->u_regs[UREG_FP] + STACK_BIAS);
2546
2547		/* Stop the back trace when we hit userland or we
2548		 * find some badly aligned kernel stack.
2549		 */
2550		while (rw &&
2551		       count++ < 30 &&
2552		       kstack_valid(tp, (unsigned long) rw)) {
2553			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2554			       (void *) rw->ins[7]);
2555
2556			rw = kernel_stack_up(rw);
2557		}
2558		instruction_dump ((unsigned int *) regs->tpc);
2559	} else {
2560		if (test_thread_flag(TIF_32BIT)) {
2561			regs->tpc &= 0xffffffff;
2562			regs->tnpc &= 0xffffffff;
2563		}
2564		user_instruction_dump ((unsigned int __user *) regs->tpc);
2565	}
2566	if (panic_on_oops)
2567		panic("Fatal exception");
2568	if (regs->tstate & TSTATE_PRIV)
2569		do_exit(SIGKILL);
2570	do_exit(SIGSEGV);
2571}
2572EXPORT_SYMBOL(die_if_kernel);
2573
2574#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2575#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2576
2577void do_illegal_instruction(struct pt_regs *regs)
2578{
2579	enum ctx_state prev_state = exception_enter();
2580	unsigned long pc = regs->tpc;
2581	unsigned long tstate = regs->tstate;
2582	u32 insn;
 
2583
2584	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2585		       0, 0x10, SIGILL) == NOTIFY_STOP)
2586		goto out;
2587
2588	if (tstate & TSTATE_PRIV)
2589		die_if_kernel("Kernel illegal instruction", regs);
2590	if (test_thread_flag(TIF_32BIT))
2591		pc = (u32)pc;
2592	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2593		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2594			if (handle_popc(insn, regs))
2595				goto out;
2596		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2597			if (handle_ldf_stq(insn, regs))
2598				goto out;
2599		} else if (tlb_type == hypervisor) {
2600			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2601				if (!vis_emul(regs, insn))
2602					goto out;
2603			} else {
2604				struct fpustate *f = FPUSTATE;
2605
2606				/* On UltraSPARC T2 and later, FPU insns which
2607				 * are not implemented in HW signal an illegal
2608				 * instruction trap and do not set the FP Trap
2609				 * Trap in the %fsr to unimplemented_FPop.
2610				 */
2611				if (do_mathemu(regs, f, true))
2612					goto out;
2613			}
2614		}
2615	}
2616	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc, 0);
 
 
 
 
 
2617out:
2618	exception_exit(prev_state);
2619}
2620
2621void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2622{
2623	enum ctx_state prev_state = exception_enter();
 
2624
2625	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2626		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2627		goto out;
2628
2629	if (regs->tstate & TSTATE_PRIV) {
2630		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2631		goto out;
2632	}
2633	if (is_no_fault_exception(regs))
2634		return;
2635
2636	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar, 0);
 
 
 
 
 
2637out:
2638	exception_exit(prev_state);
2639}
2640
2641void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2642{
 
 
2643	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2644		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2645		return;
2646
2647	if (regs->tstate & TSTATE_PRIV) {
2648		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2649		return;
2650	}
2651	if (is_no_fault_exception(regs))
2652		return;
2653
2654	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr, 0);
 
 
 
 
 
2655}
2656
2657/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2658 * tag mismatch.
2659 *
2660 * ADI version tag mismatch on a load from memory always results in a
2661 * precise exception. Tag mismatch on a store to memory will result in
2662 * precise exception if MCDPER or PMCDPER is set to 1.
2663 */
2664void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2665				      unsigned long context)
2666{
2667	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2668		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2669		return;
2670
2671	if (regs->tstate & TSTATE_PRIV) {
2672		/* MCD exception could happen because the task was running
2673		 * a system call with MCD enabled and passed a non-versioned
2674		 * pointer or pointer with bad version tag to  the system
2675		 * call.
2676		 */
2677		const struct exception_table_entry *entry;
2678
2679		entry = search_exception_tables(regs->tpc);
2680		if (entry) {
2681			/* Looks like a bad syscall parameter */
2682#ifdef DEBUG_EXCEPTIONS
2683			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2684				 regs->tpc);
2685			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2686				 regs->tpc, entry->fixup);
2687#endif
2688			regs->tpc = entry->fixup;
2689			regs->tnpc = regs->tpc + 4;
2690			return;
2691		}
2692		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2693			 __func__, addr, context);
2694		die_if_kernel("MCD precise", regs);
2695	}
2696
2697	if (test_thread_flag(TIF_32BIT)) {
2698		regs->tpc &= 0xffffffff;
2699		regs->tnpc &= 0xffffffff;
2700	}
2701	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0);
2702}
2703
2704void do_privop(struct pt_regs *regs)
2705{
2706	enum ctx_state prev_state = exception_enter();
 
2707
2708	if (notify_die(DIE_TRAP, "privileged operation", regs,
2709		       0, 0x11, SIGILL) == NOTIFY_STOP)
2710		goto out;
2711
2712	if (test_thread_flag(TIF_32BIT)) {
2713		regs->tpc &= 0xffffffff;
2714		regs->tnpc &= 0xffffffff;
2715	}
2716	force_sig_fault(SIGILL, ILL_PRVOPC,
2717			(void __user *)regs->tpc, 0);
 
 
 
 
2718out:
2719	exception_exit(prev_state);
2720}
2721
2722void do_privact(struct pt_regs *regs)
2723{
2724	do_privop(regs);
2725}
2726
2727/* Trap level 1 stuff or other traps we should never see... */
2728void do_cee(struct pt_regs *regs)
2729{
2730	exception_enter();
2731	die_if_kernel("TL0: Cache Error Exception", regs);
2732}
2733
2734void do_div0_tl1(struct pt_regs *regs)
2735{
2736	exception_enter();
2737	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2738	die_if_kernel("TL1: DIV0 Exception", regs);
2739}
2740
2741void do_fpieee_tl1(struct pt_regs *regs)
2742{
2743	exception_enter();
2744	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2745	die_if_kernel("TL1: FPU IEEE Exception", regs);
2746}
2747
2748void do_fpother_tl1(struct pt_regs *regs)
2749{
2750	exception_enter();
2751	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2752	die_if_kernel("TL1: FPU Other Exception", regs);
2753}
2754
2755void do_ill_tl1(struct pt_regs *regs)
2756{
2757	exception_enter();
2758	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2759	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2760}
2761
2762void do_irq_tl1(struct pt_regs *regs)
2763{
2764	exception_enter();
2765	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2766	die_if_kernel("TL1: IRQ Exception", regs);
2767}
2768
2769void do_lddfmna_tl1(struct pt_regs *regs)
2770{
2771	exception_enter();
2772	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2773	die_if_kernel("TL1: LDDF Exception", regs);
2774}
2775
2776void do_stdfmna_tl1(struct pt_regs *regs)
2777{
2778	exception_enter();
2779	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2780	die_if_kernel("TL1: STDF Exception", regs);
2781}
2782
2783void do_paw(struct pt_regs *regs)
2784{
2785	exception_enter();
2786	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2787}
2788
2789void do_paw_tl1(struct pt_regs *regs)
2790{
2791	exception_enter();
2792	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2793	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2794}
2795
2796void do_vaw(struct pt_regs *regs)
2797{
2798	exception_enter();
2799	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2800}
2801
2802void do_vaw_tl1(struct pt_regs *regs)
2803{
2804	exception_enter();
2805	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2806	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2807}
2808
2809void do_tof_tl1(struct pt_regs *regs)
2810{
2811	exception_enter();
2812	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2813	die_if_kernel("TL1: Tag Overflow Exception", regs);
2814}
2815
2816void do_getpsr(struct pt_regs *regs)
2817{
2818	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2819	regs->tpc   = regs->tnpc;
2820	regs->tnpc += 4;
2821	if (test_thread_flag(TIF_32BIT)) {
2822		regs->tpc &= 0xffffffff;
2823		regs->tnpc &= 0xffffffff;
2824	}
2825}
2826
2827u64 cpu_mondo_counter[NR_CPUS] = {0};
2828struct trap_per_cpu trap_block[NR_CPUS];
2829EXPORT_SYMBOL(trap_block);
2830
2831/* This can get invoked before sched_init() so play it super safe
2832 * and use hard_smp_processor_id().
2833 */
2834void notrace init_cur_cpu_trap(struct thread_info *t)
2835{
2836	int cpu = hard_smp_processor_id();
2837	struct trap_per_cpu *p = &trap_block[cpu];
2838
2839	p->thread = t;
2840	p->pgd_paddr = 0;
2841}
2842
2843extern void thread_info_offsets_are_bolixed_dave(void);
2844extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2845extern void tsb_config_offsets_are_bolixed_dave(void);
2846
2847/* Only invoked on boot processor. */
2848void __init trap_init(void)
2849{
2850	/* Compile time sanity check. */
2851	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2852		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2853		     TI_CPU != offsetof(struct thread_info, cpu) ||
2854		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2855		     TI_KSP != offsetof(struct thread_info, ksp) ||
2856		     TI_FAULT_ADDR != offsetof(struct thread_info,
2857					       fault_address) ||
2858		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2859		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2860		     TI_REG_WINDOW != offsetof(struct thread_info,
2861					       reg_window) ||
2862		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2863					       rwbuf_stkptrs) ||
2864		     TI_GSR != offsetof(struct thread_info, gsr) ||
2865		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2866		     TI_PRE_COUNT != offsetof(struct thread_info,
2867					      preempt_count) ||
2868		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2869		     TI_CURRENT_DS != offsetof(struct thread_info,
2870						current_ds) ||
2871		     TI_KUNA_REGS != offsetof(struct thread_info,
2872					      kern_una_regs) ||
2873		     TI_KUNA_INSN != offsetof(struct thread_info,
2874					      kern_una_insn) ||
2875		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2876		     (TI_FPREGS & (64 - 1)));
2877
2878	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2879						     thread) ||
2880		     (TRAP_PER_CPU_PGD_PADDR !=
2881		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2882		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2883		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2884		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2885		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2886		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2887		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2888		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2889		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2890		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2891		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2892		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2893		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2894		     (TRAP_PER_CPU_FAULT_INFO !=
2895		      offsetof(struct trap_per_cpu, fault_info)) ||
2896		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2897		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2898		     (TRAP_PER_CPU_CPU_LIST_PA !=
2899		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2900		     (TRAP_PER_CPU_TSB_HUGE !=
2901		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2902		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2903		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2904		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2905		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2906		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2907		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2908		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2909		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2910		     (TRAP_PER_CPU_RESUM_QMASK !=
2911		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2912		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2913		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2914		     (TRAP_PER_CPU_PER_CPU_BASE !=
2915		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2916
2917	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2918		      offsetof(struct tsb_config, tsb)) ||
2919		     (TSB_CONFIG_RSS_LIMIT !=
2920		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2921		     (TSB_CONFIG_NENTRIES !=
2922		      offsetof(struct tsb_config, tsb_nentries)) ||
2923		     (TSB_CONFIG_REG_VAL !=
2924		      offsetof(struct tsb_config, tsb_reg_val)) ||
2925		     (TSB_CONFIG_MAP_VADDR !=
2926		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2927		     (TSB_CONFIG_MAP_PTE !=
2928		      offsetof(struct tsb_config, tsb_map_pte)));
2929
2930	/* Attach to the address space of init_task.  On SMP we
2931	 * do this in smp.c:smp_callin for other cpus.
2932	 */
2933	mmgrab(&init_mm);
2934	current->active_mm = &init_mm;
2935}