Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 as
  6 * published by the Free Software Foundation.
  7 *
  8 * vineetg: May 2011
  9 *  -Refactored get_new_mmu_context( ) to only handle live-mm.
 10 *   retiring-mm handled in other hooks
 11 *
 12 * Vineetg: March 25th, 2008: Bug #92690
 13 *  -Major rewrite of Core ASID allocation routine get_new_mmu_context
 14 *
 15 * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
 16 */
 17
 18#ifndef _ASM_ARC_MMU_CONTEXT_H
 19#define _ASM_ARC_MMU_CONTEXT_H
 20
 21#include <asm/arcregs.h>
 22#include <asm/tlb.h>
 23#include <linux/sched/mm.h>
 24
 25#include <asm-generic/mm_hooks.h>
 26
 27/*		ARC700 ASID Management
 28 *
 29 * ARC MMU provides 8-bit ASID (0..255) to TAG TLB entries, allowing entries
 30 * with same vaddr (different tasks) to co-exit. This provides for
 31 * "Fast Context Switch" i.e. no TLB flush on ctxt-switch
 32 *
 33 * Linux assigns each task a unique ASID. A simple round-robin allocation
 34 * of H/w ASID is done using software tracker @asid_cpu.
 35 * When it reaches max 255, the allocation cycle starts afresh by flushing
 36 * the entire TLB and wrapping ASID back to zero.
 37 *
 38 * A new allocation cycle, post rollover, could potentially reassign an ASID
 39 * to a different task. Thus the rule is to refresh the ASID in a new cycle.
 40 * The 32 bit @asid_cpu (and mm->asid) have 8 bits MMU PID and rest 24 bits
 41 * serve as cycle/generation indicator and natural 32 bit unsigned math
 42 * automagically increments the generation when lower 8 bits rollover.
 43 */
 44
 45#define MM_CTXT_ASID_MASK	0x000000ff /* MMU PID reg :8 bit PID */
 46#define MM_CTXT_CYCLE_MASK	(~MM_CTXT_ASID_MASK)
 47
 48#define MM_CTXT_FIRST_CYCLE	(MM_CTXT_ASID_MASK + 1)
 49#define MM_CTXT_NO_ASID		0UL
 50
 51#define asid_mm(mm, cpu)	mm->context.asid[cpu]
 52#define hw_pid(mm, cpu)		(asid_mm(mm, cpu) & MM_CTXT_ASID_MASK)
 53
 54DECLARE_PER_CPU(unsigned int, asid_cache);
 55#define asid_cpu(cpu)		per_cpu(asid_cache, cpu)
 56
 57/*
 58 * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle)
 59 * Also set the MMU PID register to existing/updated ASID
 60 */
 61static inline void get_new_mmu_context(struct mm_struct *mm)
 62{
 63	const unsigned int cpu = smp_processor_id();
 64	unsigned long flags;
 65
 66	local_irq_save(flags);
 67
 68	/*
 69	 * Move to new ASID if it was not from current alloc-cycle/generation.
 70	 * This is done by ensuring that the generation bits in both mm->ASID
 71	 * and cpu's ASID counter are exactly same.
 72	 *
 73	 * Note: Callers needing new ASID unconditionally, independent of
 74	 * 	 generation, e.g. local_flush_tlb_mm() for forking  parent,
 75	 * 	 first need to destroy the context, setting it to invalid
 76	 * 	 value.
 77	 */
 78	if (!((asid_mm(mm, cpu) ^ asid_cpu(cpu)) & MM_CTXT_CYCLE_MASK))
 79		goto set_hw;
 80
 81	/* move to new ASID and handle rollover */
 82	if (unlikely(!(++asid_cpu(cpu) & MM_CTXT_ASID_MASK))) {
 83
 84		local_flush_tlb_all();
 85
 86		/*
 87		 * Above check for rollover of 8 bit ASID in 32 bit container.
 88		 * If the container itself wrapped around, set it to a non zero
 89		 * "generation" to distinguish from no context
 90		 */
 91		if (!asid_cpu(cpu))
 92			asid_cpu(cpu) = MM_CTXT_FIRST_CYCLE;
 93	}
 94
 95	/* Assign new ASID to tsk */
 96	asid_mm(mm, cpu) = asid_cpu(cpu);
 97
 98set_hw:
 99	write_aux_reg(ARC_REG_PID, hw_pid(mm, cpu) | MMU_ENABLE);
100
101	local_irq_restore(flags);
102}
103
104/*
105 * Initialize the context related info for a new mm_struct
106 * instance.
107 */
108static inline int
109init_new_context(struct task_struct *tsk, struct mm_struct *mm)
110{
111	int i;
112
113	for_each_possible_cpu(i)
114		asid_mm(mm, i) = MM_CTXT_NO_ASID;
115
116	return 0;
117}
118
119static inline void destroy_context(struct mm_struct *mm)
120{
121	unsigned long flags;
122
123	/* Needed to elide CONFIG_DEBUG_PREEMPT warning */
124	local_irq_save(flags);
125	asid_mm(mm, smp_processor_id()) = MM_CTXT_NO_ASID;
126	local_irq_restore(flags);
127}
128
129/* Prepare the MMU for task: setup PID reg with allocated ASID
130    If task doesn't have an ASID (never alloc or stolen, get a new ASID)
131*/
132static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
133			     struct task_struct *tsk)
134{
135	const int cpu = smp_processor_id();
136
137	/*
138	 * Note that the mm_cpumask is "aggregating" only, we don't clear it
139	 * for the switched-out task, unlike some other arches.
140	 * It is used to enlist cpus for sending TLB flush IPIs and not sending
141	 * it to CPUs where a task once ran-on, could cause stale TLB entry
142	 * re-use, specially for a multi-threaded task.
143	 * e.g. T1 runs on C1, migrates to C3. T2 running on C2 munmaps.
144	 *      For a non-aggregating mm_cpumask, IPI not sent C1, and if T1
145	 *      were to re-migrate to C1, it could access the unmapped region
146	 *      via any existing stale TLB entries.
147	 */
148	cpumask_set_cpu(cpu, mm_cpumask(next));
149
150#ifndef CONFIG_SMP
151	/* PGD cached in MMU reg to avoid 3 mem lookups: task->mm->pgd */
152	write_aux_reg(ARC_REG_SCRATCH_DATA0, next->pgd);
153#endif
154
155	get_new_mmu_context(next);
156}
157
158/*
159 * Called at the time of execve() to get a new ASID
160 * Note the subtlety here: get_new_mmu_context() behaves differently here
161 * vs. in switch_mm(). Here it always returns a new ASID, because mm has
162 * an unallocated "initial" value, while in latter, it moves to a new ASID,
163 * only if it was unallocated
164 */
165#define activate_mm(prev, next)		switch_mm(prev, next, NULL)
166
167/* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping
168 * for retiring-mm. However destroy_context( ) still needs to do that because
169 * between mm_release( ) = >deactive_mm( ) and
170 * mmput => .. => __mmdrop( ) => destroy_context( )
171 * there is a good chance that task gets sched-out/in, making it's ASID valid
172 * again (this teased me for a whole day).
173 */
174#define deactivate_mm(tsk, mm)   do { } while (0)
175
176#define enter_lazy_tlb(mm, tsk)
177
178#endif /* __ASM_ARC_MMU_CONTEXT_H */
v5.9
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  4 *
 
 
 
 
  5 * vineetg: May 2011
  6 *  -Refactored get_new_mmu_context( ) to only handle live-mm.
  7 *   retiring-mm handled in other hooks
  8 *
  9 * Vineetg: March 25th, 2008: Bug #92690
 10 *  -Major rewrite of Core ASID allocation routine get_new_mmu_context
 11 *
 12 * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
 13 */
 14
 15#ifndef _ASM_ARC_MMU_CONTEXT_H
 16#define _ASM_ARC_MMU_CONTEXT_H
 17
 18#include <asm/arcregs.h>
 19#include <asm/tlb.h>
 20#include <linux/sched/mm.h>
 21
 22#include <asm-generic/mm_hooks.h>
 23
 24/*		ARC700 ASID Management
 25 *
 26 * ARC MMU provides 8-bit ASID (0..255) to TAG TLB entries, allowing entries
 27 * with same vaddr (different tasks) to co-exit. This provides for
 28 * "Fast Context Switch" i.e. no TLB flush on ctxt-switch
 29 *
 30 * Linux assigns each task a unique ASID. A simple round-robin allocation
 31 * of H/w ASID is done using software tracker @asid_cpu.
 32 * When it reaches max 255, the allocation cycle starts afresh by flushing
 33 * the entire TLB and wrapping ASID back to zero.
 34 *
 35 * A new allocation cycle, post rollover, could potentially reassign an ASID
 36 * to a different task. Thus the rule is to refresh the ASID in a new cycle.
 37 * The 32 bit @asid_cpu (and mm->asid) have 8 bits MMU PID and rest 24 bits
 38 * serve as cycle/generation indicator and natural 32 bit unsigned math
 39 * automagically increments the generation when lower 8 bits rollover.
 40 */
 41
 42#define MM_CTXT_ASID_MASK	0x000000ff /* MMU PID reg :8 bit PID */
 43#define MM_CTXT_CYCLE_MASK	(~MM_CTXT_ASID_MASK)
 44
 45#define MM_CTXT_FIRST_CYCLE	(MM_CTXT_ASID_MASK + 1)
 46#define MM_CTXT_NO_ASID		0UL
 47
 48#define asid_mm(mm, cpu)	mm->context.asid[cpu]
 49#define hw_pid(mm, cpu)		(asid_mm(mm, cpu) & MM_CTXT_ASID_MASK)
 50
 51DECLARE_PER_CPU(unsigned int, asid_cache);
 52#define asid_cpu(cpu)		per_cpu(asid_cache, cpu)
 53
 54/*
 55 * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle)
 56 * Also set the MMU PID register to existing/updated ASID
 57 */
 58static inline void get_new_mmu_context(struct mm_struct *mm)
 59{
 60	const unsigned int cpu = smp_processor_id();
 61	unsigned long flags;
 62
 63	local_irq_save(flags);
 64
 65	/*
 66	 * Move to new ASID if it was not from current alloc-cycle/generation.
 67	 * This is done by ensuring that the generation bits in both mm->ASID
 68	 * and cpu's ASID counter are exactly same.
 69	 *
 70	 * Note: Callers needing new ASID unconditionally, independent of
 71	 * 	 generation, e.g. local_flush_tlb_mm() for forking  parent,
 72	 * 	 first need to destroy the context, setting it to invalid
 73	 * 	 value.
 74	 */
 75	if (!((asid_mm(mm, cpu) ^ asid_cpu(cpu)) & MM_CTXT_CYCLE_MASK))
 76		goto set_hw;
 77
 78	/* move to new ASID and handle rollover */
 79	if (unlikely(!(++asid_cpu(cpu) & MM_CTXT_ASID_MASK))) {
 80
 81		local_flush_tlb_all();
 82
 83		/*
 84		 * Above check for rollover of 8 bit ASID in 32 bit container.
 85		 * If the container itself wrapped around, set it to a non zero
 86		 * "generation" to distinguish from no context
 87		 */
 88		if (!asid_cpu(cpu))
 89			asid_cpu(cpu) = MM_CTXT_FIRST_CYCLE;
 90	}
 91
 92	/* Assign new ASID to tsk */
 93	asid_mm(mm, cpu) = asid_cpu(cpu);
 94
 95set_hw:
 96	write_aux_reg(ARC_REG_PID, hw_pid(mm, cpu) | MMU_ENABLE);
 97
 98	local_irq_restore(flags);
 99}
100
101/*
102 * Initialize the context related info for a new mm_struct
103 * instance.
104 */
105static inline int
106init_new_context(struct task_struct *tsk, struct mm_struct *mm)
107{
108	int i;
109
110	for_each_possible_cpu(i)
111		asid_mm(mm, i) = MM_CTXT_NO_ASID;
112
113	return 0;
114}
115
116static inline void destroy_context(struct mm_struct *mm)
117{
118	unsigned long flags;
119
120	/* Needed to elide CONFIG_DEBUG_PREEMPT warning */
121	local_irq_save(flags);
122	asid_mm(mm, smp_processor_id()) = MM_CTXT_NO_ASID;
123	local_irq_restore(flags);
124}
125
126/* Prepare the MMU for task: setup PID reg with allocated ASID
127    If task doesn't have an ASID (never alloc or stolen, get a new ASID)
128*/
129static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
130			     struct task_struct *tsk)
131{
132	const int cpu = smp_processor_id();
133
134	/*
135	 * Note that the mm_cpumask is "aggregating" only, we don't clear it
136	 * for the switched-out task, unlike some other arches.
137	 * It is used to enlist cpus for sending TLB flush IPIs and not sending
138	 * it to CPUs where a task once ran-on, could cause stale TLB entry
139	 * re-use, specially for a multi-threaded task.
140	 * e.g. T1 runs on C1, migrates to C3. T2 running on C2 munmaps.
141	 *      For a non-aggregating mm_cpumask, IPI not sent C1, and if T1
142	 *      were to re-migrate to C1, it could access the unmapped region
143	 *      via any existing stale TLB entries.
144	 */
145	cpumask_set_cpu(cpu, mm_cpumask(next));
146
147#ifdef ARC_USE_SCRATCH_REG
148	/* PGD cached in MMU reg to avoid 3 mem lookups: task->mm->pgd */
149	write_aux_reg(ARC_REG_SCRATCH_DATA0, next->pgd);
150#endif
151
152	get_new_mmu_context(next);
153}
154
155/*
156 * Called at the time of execve() to get a new ASID
157 * Note the subtlety here: get_new_mmu_context() behaves differently here
158 * vs. in switch_mm(). Here it always returns a new ASID, because mm has
159 * an unallocated "initial" value, while in latter, it moves to a new ASID,
160 * only if it was unallocated
161 */
162#define activate_mm(prev, next)		switch_mm(prev, next, NULL)
163
164/* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping
165 * for retiring-mm. However destroy_context( ) still needs to do that because
166 * between mm_release( ) = >deactive_mm( ) and
167 * mmput => .. => __mmdrop( ) => destroy_context( )
168 * there is a good chance that task gets sched-out/in, making it's ASID valid
169 * again (this teased me for a whole day).
170 */
171#define deactivate_mm(tsk, mm)   do { } while (0)
172
173#define enter_lazy_tlb(mm, tsk)
174
175#endif /* __ASM_ARC_MMU_CONTEXT_H */