Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Cleancache frontend
  3 *
  4 * This code provides the generic "frontend" layer to call a matching
  5 * "backend" driver implementation of cleancache.  See
  6 * Documentation/vm/cleancache.txt for more information.
  7 *
  8 * Copyright (C) 2009-2010 Oracle Corp. All rights reserved.
  9 * Author: Dan Magenheimer
 10 *
 11 * This work is licensed under the terms of the GNU GPL, version 2.
 12 */
 13
 14#include <linux/module.h>
 15#include <linux/fs.h>
 16#include <linux/exportfs.h>
 17#include <linux/mm.h>
 18#include <linux/debugfs.h>
 19#include <linux/cleancache.h>
 20
 21/*
 22 * cleancache_ops is set by cleancache_register_ops to contain the pointers
 23 * to the cleancache "backend" implementation functions.
 24 */
 25static const struct cleancache_ops *cleancache_ops __read_mostly;
 26
 27/*
 28 * Counters available via /sys/kernel/debug/cleancache (if debugfs is
 29 * properly configured.  These are for information only so are not protected
 30 * against increment races.
 31 */
 32static u64 cleancache_succ_gets;
 33static u64 cleancache_failed_gets;
 34static u64 cleancache_puts;
 35static u64 cleancache_invalidates;
 36
 37static void cleancache_register_ops_sb(struct super_block *sb, void *unused)
 38{
 39	switch (sb->cleancache_poolid) {
 40	case CLEANCACHE_NO_BACKEND:
 41		__cleancache_init_fs(sb);
 42		break;
 43	case CLEANCACHE_NO_BACKEND_SHARED:
 44		__cleancache_init_shared_fs(sb);
 45		break;
 46	}
 47}
 48
 49/*
 50 * Register operations for cleancache. Returns 0 on success.
 51 */
 52int cleancache_register_ops(const struct cleancache_ops *ops)
 53{
 54	if (cmpxchg(&cleancache_ops, NULL, ops))
 55		return -EBUSY;
 56
 57	/*
 58	 * A cleancache backend can be built as a module and hence loaded after
 59	 * a cleancache enabled filesystem has called cleancache_init_fs. To
 60	 * handle such a scenario, here we call ->init_fs or ->init_shared_fs
 61	 * for each active super block. To differentiate between local and
 62	 * shared filesystems, we temporarily initialize sb->cleancache_poolid
 63	 * to CLEANCACHE_NO_BACKEND or CLEANCACHE_NO_BACKEND_SHARED
 64	 * respectively in case there is no backend registered at the time
 65	 * cleancache_init_fs or cleancache_init_shared_fs is called.
 66	 *
 67	 * Since filesystems can be mounted concurrently with cleancache
 68	 * backend registration, we have to be careful to guarantee that all
 69	 * cleancache enabled filesystems that has been mounted by the time
 70	 * cleancache_register_ops is called has got and all mounted later will
 71	 * get cleancache_poolid. This is assured by the following statements
 72	 * tied together:
 73	 *
 74	 * a) iterate_supers skips only those super blocks that has started
 75	 *    ->kill_sb
 76	 *
 77	 * b) if iterate_supers encounters a super block that has not finished
 78	 *    ->mount yet, it waits until it is finished
 79	 *
 80	 * c) cleancache_init_fs is called from ->mount and
 81	 *    cleancache_invalidate_fs is called from ->kill_sb
 82	 *
 83	 * d) we call iterate_supers after cleancache_ops has been set
 84	 *
 85	 * From a) it follows that if iterate_supers skips a super block, then
 86	 * either the super block is already dead, in which case we do not need
 87	 * to bother initializing cleancache for it, or it was mounted after we
 88	 * initiated iterate_supers. In the latter case, it must have seen
 89	 * cleancache_ops set according to d) and initialized cleancache from
 90	 * ->mount by itself according to c). This proves that we call
 91	 * ->init_fs at least once for each active super block.
 92	 *
 93	 * From b) and c) it follows that if iterate_supers encounters a super
 94	 * block that has already started ->init_fs, it will wait until ->mount
 95	 * and hence ->init_fs has finished, then check cleancache_poolid, see
 96	 * that it has already been set and therefore do nothing. This proves
 97	 * that we call ->init_fs no more than once for each super block.
 98	 *
 99	 * Combined together, the last two paragraphs prove the function
100	 * correctness.
101	 *
102	 * Note that various cleancache callbacks may proceed before this
103	 * function is called or even concurrently with it, but since
104	 * CLEANCACHE_NO_BACKEND is negative, they will all result in a noop
105	 * until the corresponding ->init_fs has been actually called and
106	 * cleancache_ops has been set.
107	 */
108	iterate_supers(cleancache_register_ops_sb, NULL);
109	return 0;
110}
111EXPORT_SYMBOL(cleancache_register_ops);
112
113/* Called by a cleancache-enabled filesystem at time of mount */
114void __cleancache_init_fs(struct super_block *sb)
115{
116	int pool_id = CLEANCACHE_NO_BACKEND;
117
118	if (cleancache_ops) {
119		pool_id = cleancache_ops->init_fs(PAGE_SIZE);
120		if (pool_id < 0)
121			pool_id = CLEANCACHE_NO_POOL;
122	}
123	sb->cleancache_poolid = pool_id;
124}
125EXPORT_SYMBOL(__cleancache_init_fs);
126
127/* Called by a cleancache-enabled clustered filesystem at time of mount */
128void __cleancache_init_shared_fs(struct super_block *sb)
129{
130	int pool_id = CLEANCACHE_NO_BACKEND_SHARED;
131
132	if (cleancache_ops) {
133		pool_id = cleancache_ops->init_shared_fs(&sb->s_uuid, PAGE_SIZE);
134		if (pool_id < 0)
135			pool_id = CLEANCACHE_NO_POOL;
136	}
137	sb->cleancache_poolid = pool_id;
138}
139EXPORT_SYMBOL(__cleancache_init_shared_fs);
140
141/*
142 * If the filesystem uses exportable filehandles, use the filehandle as
143 * the key, else use the inode number.
144 */
145static int cleancache_get_key(struct inode *inode,
146			      struct cleancache_filekey *key)
147{
148	int (*fhfn)(struct inode *, __u32 *fh, int *, struct inode *);
149	int len = 0, maxlen = CLEANCACHE_KEY_MAX;
150	struct super_block *sb = inode->i_sb;
151
152	key->u.ino = inode->i_ino;
153	if (sb->s_export_op != NULL) {
154		fhfn = sb->s_export_op->encode_fh;
155		if  (fhfn) {
156			len = (*fhfn)(inode, &key->u.fh[0], &maxlen, NULL);
157			if (len <= FILEID_ROOT || len == FILEID_INVALID)
158				return -1;
159			if (maxlen > CLEANCACHE_KEY_MAX)
160				return -1;
161		}
162	}
163	return 0;
164}
165
166/*
167 * "Get" data from cleancache associated with the poolid/inode/index
168 * that were specified when the data was put to cleanache and, if
169 * successful, use it to fill the specified page with data and return 0.
170 * The pageframe is unchanged and returns -1 if the get fails.
171 * Page must be locked by caller.
172 *
173 * The function has two checks before any action is taken - whether
174 * a backend is registered and whether the sb->cleancache_poolid
175 * is correct.
176 */
177int __cleancache_get_page(struct page *page)
178{
179	int ret = -1;
180	int pool_id;
181	struct cleancache_filekey key = { .u.key = { 0 } };
182
183	if (!cleancache_ops) {
184		cleancache_failed_gets++;
185		goto out;
186	}
187
188	VM_BUG_ON_PAGE(!PageLocked(page), page);
189	pool_id = page->mapping->host->i_sb->cleancache_poolid;
190	if (pool_id < 0)
191		goto out;
192
193	if (cleancache_get_key(page->mapping->host, &key) < 0)
194		goto out;
195
196	ret = cleancache_ops->get_page(pool_id, key, page->index, page);
197	if (ret == 0)
198		cleancache_succ_gets++;
199	else
200		cleancache_failed_gets++;
201out:
202	return ret;
203}
204EXPORT_SYMBOL(__cleancache_get_page);
205
206/*
207 * "Put" data from a page to cleancache and associate it with the
208 * (previously-obtained per-filesystem) poolid and the page's,
209 * inode and page index.  Page must be locked.  Note that a put_page
210 * always "succeeds", though a subsequent get_page may succeed or fail.
211 *
212 * The function has two checks before any action is taken - whether
213 * a backend is registered and whether the sb->cleancache_poolid
214 * is correct.
215 */
216void __cleancache_put_page(struct page *page)
217{
218	int pool_id;
219	struct cleancache_filekey key = { .u.key = { 0 } };
220
221	if (!cleancache_ops) {
222		cleancache_puts++;
223		return;
224	}
225
226	VM_BUG_ON_PAGE(!PageLocked(page), page);
227	pool_id = page->mapping->host->i_sb->cleancache_poolid;
228	if (pool_id >= 0 &&
229		cleancache_get_key(page->mapping->host, &key) >= 0) {
230		cleancache_ops->put_page(pool_id, key, page->index, page);
231		cleancache_puts++;
232	}
233}
234EXPORT_SYMBOL(__cleancache_put_page);
235
236/*
237 * Invalidate any data from cleancache associated with the poolid and the
238 * page's inode and page index so that a subsequent "get" will fail.
239 *
240 * The function has two checks before any action is taken - whether
241 * a backend is registered and whether the sb->cleancache_poolid
242 * is correct.
243 */
244void __cleancache_invalidate_page(struct address_space *mapping,
245					struct page *page)
246{
247	/* careful... page->mapping is NULL sometimes when this is called */
248	int pool_id = mapping->host->i_sb->cleancache_poolid;
249	struct cleancache_filekey key = { .u.key = { 0 } };
250
251	if (!cleancache_ops)
252		return;
253
254	if (pool_id >= 0) {
255		VM_BUG_ON_PAGE(!PageLocked(page), page);
256		if (cleancache_get_key(mapping->host, &key) >= 0) {
257			cleancache_ops->invalidate_page(pool_id,
258					key, page->index);
259			cleancache_invalidates++;
260		}
261	}
262}
263EXPORT_SYMBOL(__cleancache_invalidate_page);
264
265/*
266 * Invalidate all data from cleancache associated with the poolid and the
267 * mappings's inode so that all subsequent gets to this poolid/inode
268 * will fail.
269 *
270 * The function has two checks before any action is taken - whether
271 * a backend is registered and whether the sb->cleancache_poolid
272 * is correct.
273 */
274void __cleancache_invalidate_inode(struct address_space *mapping)
275{
276	int pool_id = mapping->host->i_sb->cleancache_poolid;
277	struct cleancache_filekey key = { .u.key = { 0 } };
278
279	if (!cleancache_ops)
280		return;
281
282	if (pool_id >= 0 && cleancache_get_key(mapping->host, &key) >= 0)
283		cleancache_ops->invalidate_inode(pool_id, key);
284}
285EXPORT_SYMBOL(__cleancache_invalidate_inode);
286
287/*
288 * Called by any cleancache-enabled filesystem at time of unmount;
289 * note that pool_id is surrendered and may be returned by a subsequent
290 * cleancache_init_fs or cleancache_init_shared_fs.
291 */
292void __cleancache_invalidate_fs(struct super_block *sb)
293{
294	int pool_id;
295
296	pool_id = sb->cleancache_poolid;
297	sb->cleancache_poolid = CLEANCACHE_NO_POOL;
298
299	if (cleancache_ops && pool_id >= 0)
300		cleancache_ops->invalidate_fs(pool_id);
301}
302EXPORT_SYMBOL(__cleancache_invalidate_fs);
303
304static int __init init_cleancache(void)
305{
306#ifdef CONFIG_DEBUG_FS
307	struct dentry *root = debugfs_create_dir("cleancache", NULL);
308	if (root == NULL)
309		return -ENXIO;
310	debugfs_create_u64("succ_gets", S_IRUGO, root, &cleancache_succ_gets);
311	debugfs_create_u64("failed_gets", S_IRUGO,
312				root, &cleancache_failed_gets);
313	debugfs_create_u64("puts", S_IRUGO, root, &cleancache_puts);
314	debugfs_create_u64("invalidates", S_IRUGO,
315				root, &cleancache_invalidates);
316#endif
317	return 0;
318}
319module_init(init_cleancache)
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Cleancache frontend
  4 *
  5 * This code provides the generic "frontend" layer to call a matching
  6 * "backend" driver implementation of cleancache.  See
  7 * Documentation/vm/cleancache.rst for more information.
  8 *
  9 * Copyright (C) 2009-2010 Oracle Corp. All rights reserved.
 10 * Author: Dan Magenheimer
 
 
 11 */
 12
 13#include <linux/module.h>
 14#include <linux/fs.h>
 15#include <linux/exportfs.h>
 16#include <linux/mm.h>
 17#include <linux/debugfs.h>
 18#include <linux/cleancache.h>
 19
 20/*
 21 * cleancache_ops is set by cleancache_register_ops to contain the pointers
 22 * to the cleancache "backend" implementation functions.
 23 */
 24static const struct cleancache_ops *cleancache_ops __read_mostly;
 25
 26/*
 27 * Counters available via /sys/kernel/debug/cleancache (if debugfs is
 28 * properly configured.  These are for information only so are not protected
 29 * against increment races.
 30 */
 31static u64 cleancache_succ_gets;
 32static u64 cleancache_failed_gets;
 33static u64 cleancache_puts;
 34static u64 cleancache_invalidates;
 35
 36static void cleancache_register_ops_sb(struct super_block *sb, void *unused)
 37{
 38	switch (sb->cleancache_poolid) {
 39	case CLEANCACHE_NO_BACKEND:
 40		__cleancache_init_fs(sb);
 41		break;
 42	case CLEANCACHE_NO_BACKEND_SHARED:
 43		__cleancache_init_shared_fs(sb);
 44		break;
 45	}
 46}
 47
 48/*
 49 * Register operations for cleancache. Returns 0 on success.
 50 */
 51int cleancache_register_ops(const struct cleancache_ops *ops)
 52{
 53	if (cmpxchg(&cleancache_ops, NULL, ops))
 54		return -EBUSY;
 55
 56	/*
 57	 * A cleancache backend can be built as a module and hence loaded after
 58	 * a cleancache enabled filesystem has called cleancache_init_fs. To
 59	 * handle such a scenario, here we call ->init_fs or ->init_shared_fs
 60	 * for each active super block. To differentiate between local and
 61	 * shared filesystems, we temporarily initialize sb->cleancache_poolid
 62	 * to CLEANCACHE_NO_BACKEND or CLEANCACHE_NO_BACKEND_SHARED
 63	 * respectively in case there is no backend registered at the time
 64	 * cleancache_init_fs or cleancache_init_shared_fs is called.
 65	 *
 66	 * Since filesystems can be mounted concurrently with cleancache
 67	 * backend registration, we have to be careful to guarantee that all
 68	 * cleancache enabled filesystems that has been mounted by the time
 69	 * cleancache_register_ops is called has got and all mounted later will
 70	 * get cleancache_poolid. This is assured by the following statements
 71	 * tied together:
 72	 *
 73	 * a) iterate_supers skips only those super blocks that has started
 74	 *    ->kill_sb
 75	 *
 76	 * b) if iterate_supers encounters a super block that has not finished
 77	 *    ->mount yet, it waits until it is finished
 78	 *
 79	 * c) cleancache_init_fs is called from ->mount and
 80	 *    cleancache_invalidate_fs is called from ->kill_sb
 81	 *
 82	 * d) we call iterate_supers after cleancache_ops has been set
 83	 *
 84	 * From a) it follows that if iterate_supers skips a super block, then
 85	 * either the super block is already dead, in which case we do not need
 86	 * to bother initializing cleancache for it, or it was mounted after we
 87	 * initiated iterate_supers. In the latter case, it must have seen
 88	 * cleancache_ops set according to d) and initialized cleancache from
 89	 * ->mount by itself according to c). This proves that we call
 90	 * ->init_fs at least once for each active super block.
 91	 *
 92	 * From b) and c) it follows that if iterate_supers encounters a super
 93	 * block that has already started ->init_fs, it will wait until ->mount
 94	 * and hence ->init_fs has finished, then check cleancache_poolid, see
 95	 * that it has already been set and therefore do nothing. This proves
 96	 * that we call ->init_fs no more than once for each super block.
 97	 *
 98	 * Combined together, the last two paragraphs prove the function
 99	 * correctness.
100	 *
101	 * Note that various cleancache callbacks may proceed before this
102	 * function is called or even concurrently with it, but since
103	 * CLEANCACHE_NO_BACKEND is negative, they will all result in a noop
104	 * until the corresponding ->init_fs has been actually called and
105	 * cleancache_ops has been set.
106	 */
107	iterate_supers(cleancache_register_ops_sb, NULL);
108	return 0;
109}
110EXPORT_SYMBOL(cleancache_register_ops);
111
112/* Called by a cleancache-enabled filesystem at time of mount */
113void __cleancache_init_fs(struct super_block *sb)
114{
115	int pool_id = CLEANCACHE_NO_BACKEND;
116
117	if (cleancache_ops) {
118		pool_id = cleancache_ops->init_fs(PAGE_SIZE);
119		if (pool_id < 0)
120			pool_id = CLEANCACHE_NO_POOL;
121	}
122	sb->cleancache_poolid = pool_id;
123}
124EXPORT_SYMBOL(__cleancache_init_fs);
125
126/* Called by a cleancache-enabled clustered filesystem at time of mount */
127void __cleancache_init_shared_fs(struct super_block *sb)
128{
129	int pool_id = CLEANCACHE_NO_BACKEND_SHARED;
130
131	if (cleancache_ops) {
132		pool_id = cleancache_ops->init_shared_fs(&sb->s_uuid, PAGE_SIZE);
133		if (pool_id < 0)
134			pool_id = CLEANCACHE_NO_POOL;
135	}
136	sb->cleancache_poolid = pool_id;
137}
138EXPORT_SYMBOL(__cleancache_init_shared_fs);
139
140/*
141 * If the filesystem uses exportable filehandles, use the filehandle as
142 * the key, else use the inode number.
143 */
144static int cleancache_get_key(struct inode *inode,
145			      struct cleancache_filekey *key)
146{
147	int (*fhfn)(struct inode *, __u32 *fh, int *, struct inode *);
148	int len = 0, maxlen = CLEANCACHE_KEY_MAX;
149	struct super_block *sb = inode->i_sb;
150
151	key->u.ino = inode->i_ino;
152	if (sb->s_export_op != NULL) {
153		fhfn = sb->s_export_op->encode_fh;
154		if  (fhfn) {
155			len = (*fhfn)(inode, &key->u.fh[0], &maxlen, NULL);
156			if (len <= FILEID_ROOT || len == FILEID_INVALID)
157				return -1;
158			if (maxlen > CLEANCACHE_KEY_MAX)
159				return -1;
160		}
161	}
162	return 0;
163}
164
165/*
166 * "Get" data from cleancache associated with the poolid/inode/index
167 * that were specified when the data was put to cleanache and, if
168 * successful, use it to fill the specified page with data and return 0.
169 * The pageframe is unchanged and returns -1 if the get fails.
170 * Page must be locked by caller.
171 *
172 * The function has two checks before any action is taken - whether
173 * a backend is registered and whether the sb->cleancache_poolid
174 * is correct.
175 */
176int __cleancache_get_page(struct page *page)
177{
178	int ret = -1;
179	int pool_id;
180	struct cleancache_filekey key = { .u.key = { 0 } };
181
182	if (!cleancache_ops) {
183		cleancache_failed_gets++;
184		goto out;
185	}
186
187	VM_BUG_ON_PAGE(!PageLocked(page), page);
188	pool_id = page->mapping->host->i_sb->cleancache_poolid;
189	if (pool_id < 0)
190		goto out;
191
192	if (cleancache_get_key(page->mapping->host, &key) < 0)
193		goto out;
194
195	ret = cleancache_ops->get_page(pool_id, key, page->index, page);
196	if (ret == 0)
197		cleancache_succ_gets++;
198	else
199		cleancache_failed_gets++;
200out:
201	return ret;
202}
203EXPORT_SYMBOL(__cleancache_get_page);
204
205/*
206 * "Put" data from a page to cleancache and associate it with the
207 * (previously-obtained per-filesystem) poolid and the page's,
208 * inode and page index.  Page must be locked.  Note that a put_page
209 * always "succeeds", though a subsequent get_page may succeed or fail.
210 *
211 * The function has two checks before any action is taken - whether
212 * a backend is registered and whether the sb->cleancache_poolid
213 * is correct.
214 */
215void __cleancache_put_page(struct page *page)
216{
217	int pool_id;
218	struct cleancache_filekey key = { .u.key = { 0 } };
219
220	if (!cleancache_ops) {
221		cleancache_puts++;
222		return;
223	}
224
225	VM_BUG_ON_PAGE(!PageLocked(page), page);
226	pool_id = page->mapping->host->i_sb->cleancache_poolid;
227	if (pool_id >= 0 &&
228		cleancache_get_key(page->mapping->host, &key) >= 0) {
229		cleancache_ops->put_page(pool_id, key, page->index, page);
230		cleancache_puts++;
231	}
232}
233EXPORT_SYMBOL(__cleancache_put_page);
234
235/*
236 * Invalidate any data from cleancache associated with the poolid and the
237 * page's inode and page index so that a subsequent "get" will fail.
238 *
239 * The function has two checks before any action is taken - whether
240 * a backend is registered and whether the sb->cleancache_poolid
241 * is correct.
242 */
243void __cleancache_invalidate_page(struct address_space *mapping,
244					struct page *page)
245{
246	/* careful... page->mapping is NULL sometimes when this is called */
247	int pool_id = mapping->host->i_sb->cleancache_poolid;
248	struct cleancache_filekey key = { .u.key = { 0 } };
249
250	if (!cleancache_ops)
251		return;
252
253	if (pool_id >= 0) {
254		VM_BUG_ON_PAGE(!PageLocked(page), page);
255		if (cleancache_get_key(mapping->host, &key) >= 0) {
256			cleancache_ops->invalidate_page(pool_id,
257					key, page->index);
258			cleancache_invalidates++;
259		}
260	}
261}
262EXPORT_SYMBOL(__cleancache_invalidate_page);
263
264/*
265 * Invalidate all data from cleancache associated with the poolid and the
266 * mappings's inode so that all subsequent gets to this poolid/inode
267 * will fail.
268 *
269 * The function has two checks before any action is taken - whether
270 * a backend is registered and whether the sb->cleancache_poolid
271 * is correct.
272 */
273void __cleancache_invalidate_inode(struct address_space *mapping)
274{
275	int pool_id = mapping->host->i_sb->cleancache_poolid;
276	struct cleancache_filekey key = { .u.key = { 0 } };
277
278	if (!cleancache_ops)
279		return;
280
281	if (pool_id >= 0 && cleancache_get_key(mapping->host, &key) >= 0)
282		cleancache_ops->invalidate_inode(pool_id, key);
283}
284EXPORT_SYMBOL(__cleancache_invalidate_inode);
285
286/*
287 * Called by any cleancache-enabled filesystem at time of unmount;
288 * note that pool_id is surrendered and may be returned by a subsequent
289 * cleancache_init_fs or cleancache_init_shared_fs.
290 */
291void __cleancache_invalidate_fs(struct super_block *sb)
292{
293	int pool_id;
294
295	pool_id = sb->cleancache_poolid;
296	sb->cleancache_poolid = CLEANCACHE_NO_POOL;
297
298	if (cleancache_ops && pool_id >= 0)
299		cleancache_ops->invalidate_fs(pool_id);
300}
301EXPORT_SYMBOL(__cleancache_invalidate_fs);
302
303static int __init init_cleancache(void)
304{
305#ifdef CONFIG_DEBUG_FS
306	struct dentry *root = debugfs_create_dir("cleancache", NULL);
307
308	debugfs_create_u64("succ_gets", 0444, root, &cleancache_succ_gets);
309	debugfs_create_u64("failed_gets", 0444, root, &cleancache_failed_gets);
310	debugfs_create_u64("puts", 0444, root, &cleancache_puts);
311	debugfs_create_u64("invalidates", 0444, root, &cleancache_invalidates);
 
 
 
312#endif
313	return 0;
314}
315module_init(init_cleancache)