Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * kexec.c - kexec system call core code.
   3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/capability.h>
  12#include <linux/mm.h>
  13#include <linux/file.h>
  14#include <linux/slab.h>
  15#include <linux/fs.h>
  16#include <linux/kexec.h>
  17#include <linux/mutex.h>
  18#include <linux/list.h>
  19#include <linux/highmem.h>
  20#include <linux/syscalls.h>
  21#include <linux/reboot.h>
  22#include <linux/ioport.h>
  23#include <linux/hardirq.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/utsname.h>
  27#include <linux/numa.h>
  28#include <linux/suspend.h>
  29#include <linux/device.h>
  30#include <linux/freezer.h>
  31#include <linux/pm.h>
  32#include <linux/cpu.h>
  33#include <linux/uaccess.h>
  34#include <linux/io.h>
  35#include <linux/console.h>
  36#include <linux/vmalloc.h>
  37#include <linux/swap.h>
  38#include <linux/syscore_ops.h>
  39#include <linux/compiler.h>
  40#include <linux/hugetlb.h>
  41#include <linux/frame.h>
  42
  43#include <asm/page.h>
  44#include <asm/sections.h>
  45
  46#include <crypto/hash.h>
  47#include <crypto/sha.h>
  48#include "kexec_internal.h"
  49
  50DEFINE_MUTEX(kexec_mutex);
  51
  52/* Per cpu memory for storing cpu states in case of system crash. */
  53note_buf_t __percpu *crash_notes;
  54
  55/* Flag to indicate we are going to kexec a new kernel */
  56bool kexec_in_progress = false;
  57
  58
  59/* Location of the reserved area for the crash kernel */
  60struct resource crashk_res = {
  61	.name  = "Crash kernel",
  62	.start = 0,
  63	.end   = 0,
  64	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  65	.desc  = IORES_DESC_CRASH_KERNEL
  66};
  67struct resource crashk_low_res = {
  68	.name  = "Crash kernel",
  69	.start = 0,
  70	.end   = 0,
  71	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  72	.desc  = IORES_DESC_CRASH_KERNEL
  73};
  74
  75int kexec_should_crash(struct task_struct *p)
  76{
  77	/*
  78	 * If crash_kexec_post_notifiers is enabled, don't run
  79	 * crash_kexec() here yet, which must be run after panic
  80	 * notifiers in panic().
  81	 */
  82	if (crash_kexec_post_notifiers)
  83		return 0;
  84	/*
  85	 * There are 4 panic() calls in do_exit() path, each of which
  86	 * corresponds to each of these 4 conditions.
  87	 */
  88	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  89		return 1;
  90	return 0;
  91}
  92
  93int kexec_crash_loaded(void)
  94{
  95	return !!kexec_crash_image;
  96}
  97EXPORT_SYMBOL_GPL(kexec_crash_loaded);
  98
  99/*
 100 * When kexec transitions to the new kernel there is a one-to-one
 101 * mapping between physical and virtual addresses.  On processors
 102 * where you can disable the MMU this is trivial, and easy.  For
 103 * others it is still a simple predictable page table to setup.
 104 *
 105 * In that environment kexec copies the new kernel to its final
 106 * resting place.  This means I can only support memory whose
 107 * physical address can fit in an unsigned long.  In particular
 108 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 109 * If the assembly stub has more restrictive requirements
 110 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 111 * defined more restrictively in <asm/kexec.h>.
 112 *
 113 * The code for the transition from the current kernel to the
 114 * the new kernel is placed in the control_code_buffer, whose size
 115 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 116 * page of memory is necessary, but some architectures require more.
 117 * Because this memory must be identity mapped in the transition from
 118 * virtual to physical addresses it must live in the range
 119 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 120 * modifiable.
 121 *
 122 * The assembly stub in the control code buffer is passed a linked list
 123 * of descriptor pages detailing the source pages of the new kernel,
 124 * and the destination addresses of those source pages.  As this data
 125 * structure is not used in the context of the current OS, it must
 126 * be self-contained.
 127 *
 128 * The code has been made to work with highmem pages and will use a
 129 * destination page in its final resting place (if it happens
 130 * to allocate it).  The end product of this is that most of the
 131 * physical address space, and most of RAM can be used.
 132 *
 133 * Future directions include:
 134 *  - allocating a page table with the control code buffer identity
 135 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 136 *    reliable.
 137 */
 138
 139/*
 140 * KIMAGE_NO_DEST is an impossible destination address..., for
 141 * allocating pages whose destination address we do not care about.
 142 */
 143#define KIMAGE_NO_DEST (-1UL)
 144#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
 145
 146static struct page *kimage_alloc_page(struct kimage *image,
 147				       gfp_t gfp_mask,
 148				       unsigned long dest);
 149
 150int sanity_check_segment_list(struct kimage *image)
 151{
 152	int i;
 153	unsigned long nr_segments = image->nr_segments;
 154	unsigned long total_pages = 0;
 
 155
 156	/*
 157	 * Verify we have good destination addresses.  The caller is
 158	 * responsible for making certain we don't attempt to load
 159	 * the new image into invalid or reserved areas of RAM.  This
 160	 * just verifies it is an address we can use.
 161	 *
 162	 * Since the kernel does everything in page size chunks ensure
 163	 * the destination addresses are page aligned.  Too many
 164	 * special cases crop of when we don't do this.  The most
 165	 * insidious is getting overlapping destination addresses
 166	 * simply because addresses are changed to page size
 167	 * granularity.
 168	 */
 169	for (i = 0; i < nr_segments; i++) {
 170		unsigned long mstart, mend;
 171
 172		mstart = image->segment[i].mem;
 173		mend   = mstart + image->segment[i].memsz;
 174		if (mstart > mend)
 175			return -EADDRNOTAVAIL;
 176		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 177			return -EADDRNOTAVAIL;
 178		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 179			return -EADDRNOTAVAIL;
 180	}
 181
 182	/* Verify our destination addresses do not overlap.
 183	 * If we alloed overlapping destination addresses
 184	 * through very weird things can happen with no
 185	 * easy explanation as one segment stops on another.
 186	 */
 187	for (i = 0; i < nr_segments; i++) {
 188		unsigned long mstart, mend;
 189		unsigned long j;
 190
 191		mstart = image->segment[i].mem;
 192		mend   = mstart + image->segment[i].memsz;
 193		for (j = 0; j < i; j++) {
 194			unsigned long pstart, pend;
 195
 196			pstart = image->segment[j].mem;
 197			pend   = pstart + image->segment[j].memsz;
 198			/* Do the segments overlap ? */
 199			if ((mend > pstart) && (mstart < pend))
 200				return -EINVAL;
 201		}
 202	}
 203
 204	/* Ensure our buffer sizes are strictly less than
 205	 * our memory sizes.  This should always be the case,
 206	 * and it is easier to check up front than to be surprised
 207	 * later on.
 208	 */
 209	for (i = 0; i < nr_segments; i++) {
 210		if (image->segment[i].bufsz > image->segment[i].memsz)
 211			return -EINVAL;
 212	}
 213
 214	/*
 215	 * Verify that no more than half of memory will be consumed. If the
 216	 * request from userspace is too large, a large amount of time will be
 217	 * wasted allocating pages, which can cause a soft lockup.
 218	 */
 219	for (i = 0; i < nr_segments; i++) {
 220		if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
 221			return -EINVAL;
 222
 223		total_pages += PAGE_COUNT(image->segment[i].memsz);
 224	}
 225
 226	if (total_pages > totalram_pages / 2)
 227		return -EINVAL;
 228
 229	/*
 230	 * Verify we have good destination addresses.  Normally
 231	 * the caller is responsible for making certain we don't
 232	 * attempt to load the new image into invalid or reserved
 233	 * areas of RAM.  But crash kernels are preloaded into a
 234	 * reserved area of ram.  We must ensure the addresses
 235	 * are in the reserved area otherwise preloading the
 236	 * kernel could corrupt things.
 237	 */
 238
 239	if (image->type == KEXEC_TYPE_CRASH) {
 240		for (i = 0; i < nr_segments; i++) {
 241			unsigned long mstart, mend;
 242
 243			mstart = image->segment[i].mem;
 244			mend = mstart + image->segment[i].memsz - 1;
 245			/* Ensure we are within the crash kernel limits */
 246			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
 247			    (mend > phys_to_boot_phys(crashk_res.end)))
 248				return -EADDRNOTAVAIL;
 249		}
 250	}
 251
 252	return 0;
 253}
 254
 255struct kimage *do_kimage_alloc_init(void)
 256{
 257	struct kimage *image;
 258
 259	/* Allocate a controlling structure */
 260	image = kzalloc(sizeof(*image), GFP_KERNEL);
 261	if (!image)
 262		return NULL;
 263
 264	image->head = 0;
 265	image->entry = &image->head;
 266	image->last_entry = &image->head;
 267	image->control_page = ~0; /* By default this does not apply */
 268	image->type = KEXEC_TYPE_DEFAULT;
 269
 270	/* Initialize the list of control pages */
 271	INIT_LIST_HEAD(&image->control_pages);
 272
 273	/* Initialize the list of destination pages */
 274	INIT_LIST_HEAD(&image->dest_pages);
 275
 276	/* Initialize the list of unusable pages */
 277	INIT_LIST_HEAD(&image->unusable_pages);
 278
 279	return image;
 280}
 281
 282int kimage_is_destination_range(struct kimage *image,
 283					unsigned long start,
 284					unsigned long end)
 285{
 286	unsigned long i;
 287
 288	for (i = 0; i < image->nr_segments; i++) {
 289		unsigned long mstart, mend;
 290
 291		mstart = image->segment[i].mem;
 292		mend = mstart + image->segment[i].memsz;
 293		if ((end > mstart) && (start < mend))
 294			return 1;
 295	}
 296
 297	return 0;
 298}
 299
 300static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 301{
 302	struct page *pages;
 303
 
 
 304	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
 305	if (pages) {
 306		unsigned int count, i;
 307
 308		pages->mapping = NULL;
 309		set_page_private(pages, order);
 310		count = 1 << order;
 311		for (i = 0; i < count; i++)
 312			SetPageReserved(pages + i);
 313
 314		arch_kexec_post_alloc_pages(page_address(pages), count,
 315					    gfp_mask);
 316
 317		if (gfp_mask & __GFP_ZERO)
 318			for (i = 0; i < count; i++)
 319				clear_highpage(pages + i);
 320	}
 321
 322	return pages;
 323}
 324
 325static void kimage_free_pages(struct page *page)
 326{
 327	unsigned int order, count, i;
 328
 329	order = page_private(page);
 330	count = 1 << order;
 331
 332	arch_kexec_pre_free_pages(page_address(page), count);
 333
 334	for (i = 0; i < count; i++)
 335		ClearPageReserved(page + i);
 336	__free_pages(page, order);
 337}
 338
 339void kimage_free_page_list(struct list_head *list)
 340{
 341	struct page *page, *next;
 342
 343	list_for_each_entry_safe(page, next, list, lru) {
 344		list_del(&page->lru);
 345		kimage_free_pages(page);
 346	}
 347}
 348
 349static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 350							unsigned int order)
 351{
 352	/* Control pages are special, they are the intermediaries
 353	 * that are needed while we copy the rest of the pages
 354	 * to their final resting place.  As such they must
 355	 * not conflict with either the destination addresses
 356	 * or memory the kernel is already using.
 357	 *
 358	 * The only case where we really need more than one of
 359	 * these are for architectures where we cannot disable
 360	 * the MMU and must instead generate an identity mapped
 361	 * page table for all of the memory.
 362	 *
 363	 * At worst this runs in O(N) of the image size.
 364	 */
 365	struct list_head extra_pages;
 366	struct page *pages;
 367	unsigned int count;
 368
 369	count = 1 << order;
 370	INIT_LIST_HEAD(&extra_pages);
 371
 372	/* Loop while I can allocate a page and the page allocated
 373	 * is a destination page.
 374	 */
 375	do {
 376		unsigned long pfn, epfn, addr, eaddr;
 377
 378		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
 379		if (!pages)
 380			break;
 381		pfn   = page_to_boot_pfn(pages);
 382		epfn  = pfn + count;
 383		addr  = pfn << PAGE_SHIFT;
 384		eaddr = epfn << PAGE_SHIFT;
 385		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 386			      kimage_is_destination_range(image, addr, eaddr)) {
 387			list_add(&pages->lru, &extra_pages);
 388			pages = NULL;
 389		}
 390	} while (!pages);
 391
 392	if (pages) {
 393		/* Remember the allocated page... */
 394		list_add(&pages->lru, &image->control_pages);
 395
 396		/* Because the page is already in it's destination
 397		 * location we will never allocate another page at
 398		 * that address.  Therefore kimage_alloc_pages
 399		 * will not return it (again) and we don't need
 400		 * to give it an entry in image->segment[].
 401		 */
 402	}
 403	/* Deal with the destination pages I have inadvertently allocated.
 404	 *
 405	 * Ideally I would convert multi-page allocations into single
 406	 * page allocations, and add everything to image->dest_pages.
 407	 *
 408	 * For now it is simpler to just free the pages.
 409	 */
 410	kimage_free_page_list(&extra_pages);
 411
 412	return pages;
 413}
 414
 415static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 416						      unsigned int order)
 417{
 418	/* Control pages are special, they are the intermediaries
 419	 * that are needed while we copy the rest of the pages
 420	 * to their final resting place.  As such they must
 421	 * not conflict with either the destination addresses
 422	 * or memory the kernel is already using.
 423	 *
 424	 * Control pages are also the only pags we must allocate
 425	 * when loading a crash kernel.  All of the other pages
 426	 * are specified by the segments and we just memcpy
 427	 * into them directly.
 428	 *
 429	 * The only case where we really need more than one of
 430	 * these are for architectures where we cannot disable
 431	 * the MMU and must instead generate an identity mapped
 432	 * page table for all of the memory.
 433	 *
 434	 * Given the low demand this implements a very simple
 435	 * allocator that finds the first hole of the appropriate
 436	 * size in the reserved memory region, and allocates all
 437	 * of the memory up to and including the hole.
 438	 */
 439	unsigned long hole_start, hole_end, size;
 440	struct page *pages;
 441
 442	pages = NULL;
 443	size = (1 << order) << PAGE_SHIFT;
 444	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
 445	hole_end   = hole_start + size - 1;
 446	while (hole_end <= crashk_res.end) {
 447		unsigned long i;
 448
 449		cond_resched();
 450
 451		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 452			break;
 453		/* See if I overlap any of the segments */
 454		for (i = 0; i < image->nr_segments; i++) {
 455			unsigned long mstart, mend;
 456
 457			mstart = image->segment[i].mem;
 458			mend   = mstart + image->segment[i].memsz - 1;
 459			if ((hole_end >= mstart) && (hole_start <= mend)) {
 460				/* Advance the hole to the end of the segment */
 461				hole_start = (mend + (size - 1)) & ~(size - 1);
 462				hole_end   = hole_start + size - 1;
 463				break;
 464			}
 465		}
 466		/* If I don't overlap any segments I have found my hole! */
 467		if (i == image->nr_segments) {
 468			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 469			image->control_page = hole_end;
 470			break;
 471		}
 472	}
 473
 
 
 
 
 474	return pages;
 475}
 476
 477
 478struct page *kimage_alloc_control_pages(struct kimage *image,
 479					 unsigned int order)
 480{
 481	struct page *pages = NULL;
 482
 483	switch (image->type) {
 484	case KEXEC_TYPE_DEFAULT:
 485		pages = kimage_alloc_normal_control_pages(image, order);
 486		break;
 487	case KEXEC_TYPE_CRASH:
 488		pages = kimage_alloc_crash_control_pages(image, order);
 489		break;
 490	}
 491
 492	return pages;
 493}
 494
 495int kimage_crash_copy_vmcoreinfo(struct kimage *image)
 496{
 497	struct page *vmcoreinfo_page;
 498	void *safecopy;
 499
 500	if (image->type != KEXEC_TYPE_CRASH)
 501		return 0;
 502
 503	/*
 504	 * For kdump, allocate one vmcoreinfo safe copy from the
 505	 * crash memory. as we have arch_kexec_protect_crashkres()
 506	 * after kexec syscall, we naturally protect it from write
 507	 * (even read) access under kernel direct mapping. But on
 508	 * the other hand, we still need to operate it when crash
 509	 * happens to generate vmcoreinfo note, hereby we rely on
 510	 * vmap for this purpose.
 511	 */
 512	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
 513	if (!vmcoreinfo_page) {
 514		pr_warn("Could not allocate vmcoreinfo buffer\n");
 515		return -ENOMEM;
 516	}
 517	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
 518	if (!safecopy) {
 519		pr_warn("Could not vmap vmcoreinfo buffer\n");
 520		return -ENOMEM;
 521	}
 522
 523	image->vmcoreinfo_data_copy = safecopy;
 524	crash_update_vmcoreinfo_safecopy(safecopy);
 525
 526	return 0;
 527}
 528
 529static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 530{
 531	if (*image->entry != 0)
 532		image->entry++;
 533
 534	if (image->entry == image->last_entry) {
 535		kimage_entry_t *ind_page;
 536		struct page *page;
 537
 538		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 539		if (!page)
 540			return -ENOMEM;
 541
 542		ind_page = page_address(page);
 543		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
 544		image->entry = ind_page;
 545		image->last_entry = ind_page +
 546				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 547	}
 548	*image->entry = entry;
 549	image->entry++;
 550	*image->entry = 0;
 551
 552	return 0;
 553}
 554
 555static int kimage_set_destination(struct kimage *image,
 556				   unsigned long destination)
 557{
 558	int result;
 559
 560	destination &= PAGE_MASK;
 561	result = kimage_add_entry(image, destination | IND_DESTINATION);
 562
 563	return result;
 564}
 565
 566
 567static int kimage_add_page(struct kimage *image, unsigned long page)
 568{
 569	int result;
 570
 571	page &= PAGE_MASK;
 572	result = kimage_add_entry(image, page | IND_SOURCE);
 573
 574	return result;
 575}
 576
 577
 578static void kimage_free_extra_pages(struct kimage *image)
 579{
 580	/* Walk through and free any extra destination pages I may have */
 581	kimage_free_page_list(&image->dest_pages);
 582
 583	/* Walk through and free any unusable pages I have cached */
 584	kimage_free_page_list(&image->unusable_pages);
 585
 586}
 
 
 
 
 
 
 587void kimage_terminate(struct kimage *image)
 588{
 589	if (*image->entry != 0)
 590		image->entry++;
 591
 592	*image->entry = IND_DONE;
 593}
 594
 595#define for_each_kimage_entry(image, ptr, entry) \
 596	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 597		ptr = (entry & IND_INDIRECTION) ? \
 598			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
 599
 600static void kimage_free_entry(kimage_entry_t entry)
 601{
 602	struct page *page;
 603
 604	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
 605	kimage_free_pages(page);
 606}
 607
 608void kimage_free(struct kimage *image)
 609{
 610	kimage_entry_t *ptr, entry;
 611	kimage_entry_t ind = 0;
 612
 613	if (!image)
 614		return;
 615
 616	if (image->vmcoreinfo_data_copy) {
 617		crash_update_vmcoreinfo_safecopy(NULL);
 618		vunmap(image->vmcoreinfo_data_copy);
 619	}
 620
 621	kimage_free_extra_pages(image);
 622	for_each_kimage_entry(image, ptr, entry) {
 623		if (entry & IND_INDIRECTION) {
 624			/* Free the previous indirection page */
 625			if (ind & IND_INDIRECTION)
 626				kimage_free_entry(ind);
 627			/* Save this indirection page until we are
 628			 * done with it.
 629			 */
 630			ind = entry;
 631		} else if (entry & IND_SOURCE)
 632			kimage_free_entry(entry);
 633	}
 634	/* Free the final indirection page */
 635	if (ind & IND_INDIRECTION)
 636		kimage_free_entry(ind);
 637
 638	/* Handle any machine specific cleanup */
 639	machine_kexec_cleanup(image);
 640
 641	/* Free the kexec control pages... */
 642	kimage_free_page_list(&image->control_pages);
 643
 644	/*
 645	 * Free up any temporary buffers allocated. This might hit if
 646	 * error occurred much later after buffer allocation.
 647	 */
 648	if (image->file_mode)
 649		kimage_file_post_load_cleanup(image);
 650
 651	kfree(image);
 652}
 653
 654static kimage_entry_t *kimage_dst_used(struct kimage *image,
 655					unsigned long page)
 656{
 657	kimage_entry_t *ptr, entry;
 658	unsigned long destination = 0;
 659
 660	for_each_kimage_entry(image, ptr, entry) {
 661		if (entry & IND_DESTINATION)
 662			destination = entry & PAGE_MASK;
 663		else if (entry & IND_SOURCE) {
 664			if (page == destination)
 665				return ptr;
 666			destination += PAGE_SIZE;
 667		}
 668	}
 669
 670	return NULL;
 671}
 672
 673static struct page *kimage_alloc_page(struct kimage *image,
 674					gfp_t gfp_mask,
 675					unsigned long destination)
 676{
 677	/*
 678	 * Here we implement safeguards to ensure that a source page
 679	 * is not copied to its destination page before the data on
 680	 * the destination page is no longer useful.
 681	 *
 682	 * To do this we maintain the invariant that a source page is
 683	 * either its own destination page, or it is not a
 684	 * destination page at all.
 685	 *
 686	 * That is slightly stronger than required, but the proof
 687	 * that no problems will not occur is trivial, and the
 688	 * implementation is simply to verify.
 689	 *
 690	 * When allocating all pages normally this algorithm will run
 691	 * in O(N) time, but in the worst case it will run in O(N^2)
 692	 * time.   If the runtime is a problem the data structures can
 693	 * be fixed.
 694	 */
 695	struct page *page;
 696	unsigned long addr;
 697
 698	/*
 699	 * Walk through the list of destination pages, and see if I
 700	 * have a match.
 701	 */
 702	list_for_each_entry(page, &image->dest_pages, lru) {
 703		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 704		if (addr == destination) {
 705			list_del(&page->lru);
 706			return page;
 707		}
 708	}
 709	page = NULL;
 710	while (1) {
 711		kimage_entry_t *old;
 712
 713		/* Allocate a page, if we run out of memory give up */
 714		page = kimage_alloc_pages(gfp_mask, 0);
 715		if (!page)
 716			return NULL;
 717		/* If the page cannot be used file it away */
 718		if (page_to_boot_pfn(page) >
 719				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 720			list_add(&page->lru, &image->unusable_pages);
 721			continue;
 722		}
 723		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 724
 725		/* If it is the destination page we want use it */
 726		if (addr == destination)
 727			break;
 728
 729		/* If the page is not a destination page use it */
 730		if (!kimage_is_destination_range(image, addr,
 731						  addr + PAGE_SIZE))
 732			break;
 733
 734		/*
 735		 * I know that the page is someones destination page.
 736		 * See if there is already a source page for this
 737		 * destination page.  And if so swap the source pages.
 738		 */
 739		old = kimage_dst_used(image, addr);
 740		if (old) {
 741			/* If so move it */
 742			unsigned long old_addr;
 743			struct page *old_page;
 744
 745			old_addr = *old & PAGE_MASK;
 746			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
 747			copy_highpage(page, old_page);
 748			*old = addr | (*old & ~PAGE_MASK);
 749
 750			/* The old page I have found cannot be a
 751			 * destination page, so return it if it's
 752			 * gfp_flags honor the ones passed in.
 753			 */
 754			if (!(gfp_mask & __GFP_HIGHMEM) &&
 755			    PageHighMem(old_page)) {
 756				kimage_free_pages(old_page);
 757				continue;
 758			}
 759			addr = old_addr;
 760			page = old_page;
 761			break;
 762		}
 763		/* Place the page on the destination list, to be used later */
 764		list_add(&page->lru, &image->dest_pages);
 765	}
 766
 767	return page;
 768}
 769
 770static int kimage_load_normal_segment(struct kimage *image,
 771					 struct kexec_segment *segment)
 772{
 773	unsigned long maddr;
 774	size_t ubytes, mbytes;
 775	int result;
 776	unsigned char __user *buf = NULL;
 777	unsigned char *kbuf = NULL;
 778
 779	result = 0;
 780	if (image->file_mode)
 781		kbuf = segment->kbuf;
 782	else
 783		buf = segment->buf;
 784	ubytes = segment->bufsz;
 785	mbytes = segment->memsz;
 786	maddr = segment->mem;
 787
 788	result = kimage_set_destination(image, maddr);
 789	if (result < 0)
 790		goto out;
 791
 792	while (mbytes) {
 793		struct page *page;
 794		char *ptr;
 795		size_t uchunk, mchunk;
 796
 797		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 798		if (!page) {
 799			result  = -ENOMEM;
 800			goto out;
 801		}
 802		result = kimage_add_page(image, page_to_boot_pfn(page)
 803								<< PAGE_SHIFT);
 804		if (result < 0)
 805			goto out;
 806
 807		ptr = kmap(page);
 808		/* Start with a clear page */
 809		clear_page(ptr);
 810		ptr += maddr & ~PAGE_MASK;
 811		mchunk = min_t(size_t, mbytes,
 812				PAGE_SIZE - (maddr & ~PAGE_MASK));
 813		uchunk = min(ubytes, mchunk);
 814
 815		/* For file based kexec, source pages are in kernel memory */
 816		if (image->file_mode)
 817			memcpy(ptr, kbuf, uchunk);
 818		else
 819			result = copy_from_user(ptr, buf, uchunk);
 820		kunmap(page);
 821		if (result) {
 822			result = -EFAULT;
 823			goto out;
 824		}
 825		ubytes -= uchunk;
 826		maddr  += mchunk;
 827		if (image->file_mode)
 828			kbuf += mchunk;
 829		else
 830			buf += mchunk;
 831		mbytes -= mchunk;
 
 
 832	}
 833out:
 834	return result;
 835}
 836
 837static int kimage_load_crash_segment(struct kimage *image,
 838					struct kexec_segment *segment)
 839{
 840	/* For crash dumps kernels we simply copy the data from
 841	 * user space to it's destination.
 842	 * We do things a page at a time for the sake of kmap.
 843	 */
 844	unsigned long maddr;
 845	size_t ubytes, mbytes;
 846	int result;
 847	unsigned char __user *buf = NULL;
 848	unsigned char *kbuf = NULL;
 849
 850	result = 0;
 851	if (image->file_mode)
 852		kbuf = segment->kbuf;
 853	else
 854		buf = segment->buf;
 855	ubytes = segment->bufsz;
 856	mbytes = segment->memsz;
 857	maddr = segment->mem;
 858	while (mbytes) {
 859		struct page *page;
 860		char *ptr;
 861		size_t uchunk, mchunk;
 862
 863		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
 864		if (!page) {
 865			result  = -ENOMEM;
 866			goto out;
 867		}
 
 868		ptr = kmap(page);
 869		ptr += maddr & ~PAGE_MASK;
 870		mchunk = min_t(size_t, mbytes,
 871				PAGE_SIZE - (maddr & ~PAGE_MASK));
 872		uchunk = min(ubytes, mchunk);
 873		if (mchunk > uchunk) {
 874			/* Zero the trailing part of the page */
 875			memset(ptr + uchunk, 0, mchunk - uchunk);
 876		}
 877
 878		/* For file based kexec, source pages are in kernel memory */
 879		if (image->file_mode)
 880			memcpy(ptr, kbuf, uchunk);
 881		else
 882			result = copy_from_user(ptr, buf, uchunk);
 883		kexec_flush_icache_page(page);
 884		kunmap(page);
 
 885		if (result) {
 886			result = -EFAULT;
 887			goto out;
 888		}
 889		ubytes -= uchunk;
 890		maddr  += mchunk;
 891		if (image->file_mode)
 892			kbuf += mchunk;
 893		else
 894			buf += mchunk;
 895		mbytes -= mchunk;
 
 
 896	}
 897out:
 898	return result;
 899}
 900
 901int kimage_load_segment(struct kimage *image,
 902				struct kexec_segment *segment)
 903{
 904	int result = -ENOMEM;
 905
 906	switch (image->type) {
 907	case KEXEC_TYPE_DEFAULT:
 908		result = kimage_load_normal_segment(image, segment);
 909		break;
 910	case KEXEC_TYPE_CRASH:
 911		result = kimage_load_crash_segment(image, segment);
 912		break;
 913	}
 914
 915	return result;
 916}
 917
 918struct kimage *kexec_image;
 919struct kimage *kexec_crash_image;
 920int kexec_load_disabled;
 921
 922/*
 923 * No panic_cpu check version of crash_kexec().  This function is called
 924 * only when panic_cpu holds the current CPU number; this is the only CPU
 925 * which processes crash_kexec routines.
 926 */
 927void __noclone __crash_kexec(struct pt_regs *regs)
 928{
 929	/* Take the kexec_mutex here to prevent sys_kexec_load
 930	 * running on one cpu from replacing the crash kernel
 931	 * we are using after a panic on a different cpu.
 932	 *
 933	 * If the crash kernel was not located in a fixed area
 934	 * of memory the xchg(&kexec_crash_image) would be
 935	 * sufficient.  But since I reuse the memory...
 936	 */
 937	if (mutex_trylock(&kexec_mutex)) {
 938		if (kexec_crash_image) {
 939			struct pt_regs fixed_regs;
 940
 941			crash_setup_regs(&fixed_regs, regs);
 942			crash_save_vmcoreinfo();
 943			machine_crash_shutdown(&fixed_regs);
 944			machine_kexec(kexec_crash_image);
 945		}
 946		mutex_unlock(&kexec_mutex);
 947	}
 948}
 949STACK_FRAME_NON_STANDARD(__crash_kexec);
 950
 951void crash_kexec(struct pt_regs *regs)
 952{
 953	int old_cpu, this_cpu;
 954
 955	/*
 956	 * Only one CPU is allowed to execute the crash_kexec() code as with
 957	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
 958	 * may stop each other.  To exclude them, we use panic_cpu here too.
 959	 */
 960	this_cpu = raw_smp_processor_id();
 961	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
 962	if (old_cpu == PANIC_CPU_INVALID) {
 963		/* This is the 1st CPU which comes here, so go ahead. */
 964		printk_safe_flush_on_panic();
 965		__crash_kexec(regs);
 966
 967		/*
 968		 * Reset panic_cpu to allow another panic()/crash_kexec()
 969		 * call.
 970		 */
 971		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
 972	}
 973}
 974
 975size_t crash_get_memory_size(void)
 976{
 977	size_t size = 0;
 978
 979	mutex_lock(&kexec_mutex);
 980	if (crashk_res.end != crashk_res.start)
 981		size = resource_size(&crashk_res);
 982	mutex_unlock(&kexec_mutex);
 983	return size;
 984}
 985
 986void __weak crash_free_reserved_phys_range(unsigned long begin,
 987					   unsigned long end)
 988{
 989	unsigned long addr;
 990
 991	for (addr = begin; addr < end; addr += PAGE_SIZE)
 992		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
 993}
 994
 995int crash_shrink_memory(unsigned long new_size)
 996{
 997	int ret = 0;
 998	unsigned long start, end;
 999	unsigned long old_size;
1000	struct resource *ram_res;
1001
1002	mutex_lock(&kexec_mutex);
1003
1004	if (kexec_crash_image) {
1005		ret = -ENOENT;
1006		goto unlock;
1007	}
1008	start = crashk_res.start;
1009	end = crashk_res.end;
1010	old_size = (end == 0) ? 0 : end - start + 1;
1011	if (new_size >= old_size) {
1012		ret = (new_size == old_size) ? 0 : -EINVAL;
1013		goto unlock;
1014	}
1015
1016	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1017	if (!ram_res) {
1018		ret = -ENOMEM;
1019		goto unlock;
1020	}
1021
1022	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1023	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1024
1025	crash_free_reserved_phys_range(end, crashk_res.end);
1026
1027	if ((start == end) && (crashk_res.parent != NULL))
1028		release_resource(&crashk_res);
1029
1030	ram_res->start = end;
1031	ram_res->end = crashk_res.end;
1032	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1033	ram_res->name = "System RAM";
1034
1035	crashk_res.end = end - 1;
1036
1037	insert_resource(&iomem_resource, ram_res);
1038
1039unlock:
1040	mutex_unlock(&kexec_mutex);
1041	return ret;
1042}
1043
1044void crash_save_cpu(struct pt_regs *regs, int cpu)
1045{
1046	struct elf_prstatus prstatus;
1047	u32 *buf;
1048
1049	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1050		return;
1051
1052	/* Using ELF notes here is opportunistic.
1053	 * I need a well defined structure format
1054	 * for the data I pass, and I need tags
1055	 * on the data to indicate what information I have
1056	 * squirrelled away.  ELF notes happen to provide
1057	 * all of that, so there is no need to invent something new.
1058	 */
1059	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1060	if (!buf)
1061		return;
1062	memset(&prstatus, 0, sizeof(prstatus));
1063	prstatus.pr_pid = current->pid;
1064	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1065	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1066			      &prstatus, sizeof(prstatus));
1067	final_note(buf);
1068}
1069
1070static int __init crash_notes_memory_init(void)
1071{
1072	/* Allocate memory for saving cpu registers. */
1073	size_t size, align;
1074
1075	/*
1076	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1077	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1078	 * pages are also on 2 continuous physical pages. In this case the
1079	 * 2nd part of crash_notes in 2nd page could be lost since only the
1080	 * starting address and size of crash_notes are exported through sysfs.
1081	 * Here round up the size of crash_notes to the nearest power of two
1082	 * and pass it to __alloc_percpu as align value. This can make sure
1083	 * crash_notes is allocated inside one physical page.
1084	 */
1085	size = sizeof(note_buf_t);
1086	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1087
1088	/*
1089	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1090	 * definitely will be in 2 pages with that.
1091	 */
1092	BUILD_BUG_ON(size > PAGE_SIZE);
1093
1094	crash_notes = __alloc_percpu(size, align);
1095	if (!crash_notes) {
1096		pr_warn("Memory allocation for saving cpu register states failed\n");
1097		return -ENOMEM;
1098	}
1099	return 0;
1100}
1101subsys_initcall(crash_notes_memory_init);
1102
1103
1104/*
1105 * Move into place and start executing a preloaded standalone
1106 * executable.  If nothing was preloaded return an error.
1107 */
1108int kernel_kexec(void)
1109{
1110	int error = 0;
1111
1112	if (!mutex_trylock(&kexec_mutex))
1113		return -EBUSY;
1114	if (!kexec_image) {
1115		error = -EINVAL;
1116		goto Unlock;
1117	}
1118
1119#ifdef CONFIG_KEXEC_JUMP
1120	if (kexec_image->preserve_context) {
1121		lock_system_sleep();
1122		pm_prepare_console();
1123		error = freeze_processes();
1124		if (error) {
1125			error = -EBUSY;
1126			goto Restore_console;
1127		}
1128		suspend_console();
1129		error = dpm_suspend_start(PMSG_FREEZE);
1130		if (error)
1131			goto Resume_console;
1132		/* At this point, dpm_suspend_start() has been called,
1133		 * but *not* dpm_suspend_end(). We *must* call
1134		 * dpm_suspend_end() now.  Otherwise, drivers for
1135		 * some devices (e.g. interrupt controllers) become
1136		 * desynchronized with the actual state of the
1137		 * hardware at resume time, and evil weirdness ensues.
1138		 */
1139		error = dpm_suspend_end(PMSG_FREEZE);
1140		if (error)
1141			goto Resume_devices;
1142		error = disable_nonboot_cpus();
1143		if (error)
1144			goto Enable_cpus;
1145		local_irq_disable();
1146		error = syscore_suspend();
1147		if (error)
1148			goto Enable_irqs;
1149	} else
1150#endif
1151	{
1152		kexec_in_progress = true;
1153		kernel_restart_prepare(NULL);
1154		migrate_to_reboot_cpu();
1155
1156		/*
1157		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1158		 * no further code needs to use CPU hotplug (which is true in
1159		 * the reboot case). However, the kexec path depends on using
1160		 * CPU hotplug again; so re-enable it here.
1161		 */
1162		cpu_hotplug_enable();
1163		pr_emerg("Starting new kernel\n");
1164		machine_shutdown();
1165	}
1166
1167	machine_kexec(kexec_image);
1168
1169#ifdef CONFIG_KEXEC_JUMP
1170	if (kexec_image->preserve_context) {
1171		syscore_resume();
1172 Enable_irqs:
1173		local_irq_enable();
1174 Enable_cpus:
1175		enable_nonboot_cpus();
1176		dpm_resume_start(PMSG_RESTORE);
1177 Resume_devices:
1178		dpm_resume_end(PMSG_RESTORE);
1179 Resume_console:
1180		resume_console();
1181		thaw_processes();
1182 Restore_console:
1183		pm_restore_console();
1184		unlock_system_sleep();
1185	}
1186#endif
1187
1188 Unlock:
1189	mutex_unlock(&kexec_mutex);
1190	return error;
1191}
1192
1193/*
1194 * Protection mechanism for crashkernel reserved memory after
1195 * the kdump kernel is loaded.
1196 *
1197 * Provide an empty default implementation here -- architecture
1198 * code may override this
1199 */
1200void __weak arch_kexec_protect_crashkres(void)
1201{}
1202
1203void __weak arch_kexec_unprotect_crashkres(void)
1204{}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec.c - kexec system call core code.
   4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
 
 
 
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/capability.h>
  10#include <linux/mm.h>
  11#include <linux/file.h>
  12#include <linux/slab.h>
  13#include <linux/fs.h>
  14#include <linux/kexec.h>
  15#include <linux/mutex.h>
  16#include <linux/list.h>
  17#include <linux/highmem.h>
  18#include <linux/syscalls.h>
  19#include <linux/reboot.h>
  20#include <linux/ioport.h>
  21#include <linux/hardirq.h>
  22#include <linux/elf.h>
  23#include <linux/elfcore.h>
  24#include <linux/utsname.h>
  25#include <linux/numa.h>
  26#include <linux/suspend.h>
  27#include <linux/device.h>
  28#include <linux/freezer.h>
  29#include <linux/pm.h>
  30#include <linux/cpu.h>
  31#include <linux/uaccess.h>
  32#include <linux/io.h>
  33#include <linux/console.h>
  34#include <linux/vmalloc.h>
  35#include <linux/swap.h>
  36#include <linux/syscore_ops.h>
  37#include <linux/compiler.h>
  38#include <linux/hugetlb.h>
  39#include <linux/frame.h>
  40
  41#include <asm/page.h>
  42#include <asm/sections.h>
  43
  44#include <crypto/hash.h>
  45#include <crypto/sha.h>
  46#include "kexec_internal.h"
  47
  48DEFINE_MUTEX(kexec_mutex);
  49
  50/* Per cpu memory for storing cpu states in case of system crash. */
  51note_buf_t __percpu *crash_notes;
  52
  53/* Flag to indicate we are going to kexec a new kernel */
  54bool kexec_in_progress = false;
  55
  56
  57/* Location of the reserved area for the crash kernel */
  58struct resource crashk_res = {
  59	.name  = "Crash kernel",
  60	.start = 0,
  61	.end   = 0,
  62	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  63	.desc  = IORES_DESC_CRASH_KERNEL
  64};
  65struct resource crashk_low_res = {
  66	.name  = "Crash kernel",
  67	.start = 0,
  68	.end   = 0,
  69	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  70	.desc  = IORES_DESC_CRASH_KERNEL
  71};
  72
  73int kexec_should_crash(struct task_struct *p)
  74{
  75	/*
  76	 * If crash_kexec_post_notifiers is enabled, don't run
  77	 * crash_kexec() here yet, which must be run after panic
  78	 * notifiers in panic().
  79	 */
  80	if (crash_kexec_post_notifiers)
  81		return 0;
  82	/*
  83	 * There are 4 panic() calls in do_exit() path, each of which
  84	 * corresponds to each of these 4 conditions.
  85	 */
  86	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  87		return 1;
  88	return 0;
  89}
  90
  91int kexec_crash_loaded(void)
  92{
  93	return !!kexec_crash_image;
  94}
  95EXPORT_SYMBOL_GPL(kexec_crash_loaded);
  96
  97/*
  98 * When kexec transitions to the new kernel there is a one-to-one
  99 * mapping between physical and virtual addresses.  On processors
 100 * where you can disable the MMU this is trivial, and easy.  For
 101 * others it is still a simple predictable page table to setup.
 102 *
 103 * In that environment kexec copies the new kernel to its final
 104 * resting place.  This means I can only support memory whose
 105 * physical address can fit in an unsigned long.  In particular
 106 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 107 * If the assembly stub has more restrictive requirements
 108 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 109 * defined more restrictively in <asm/kexec.h>.
 110 *
 111 * The code for the transition from the current kernel to the
 112 * the new kernel is placed in the control_code_buffer, whose size
 113 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 114 * page of memory is necessary, but some architectures require more.
 115 * Because this memory must be identity mapped in the transition from
 116 * virtual to physical addresses it must live in the range
 117 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 118 * modifiable.
 119 *
 120 * The assembly stub in the control code buffer is passed a linked list
 121 * of descriptor pages detailing the source pages of the new kernel,
 122 * and the destination addresses of those source pages.  As this data
 123 * structure is not used in the context of the current OS, it must
 124 * be self-contained.
 125 *
 126 * The code has been made to work with highmem pages and will use a
 127 * destination page in its final resting place (if it happens
 128 * to allocate it).  The end product of this is that most of the
 129 * physical address space, and most of RAM can be used.
 130 *
 131 * Future directions include:
 132 *  - allocating a page table with the control code buffer identity
 133 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 134 *    reliable.
 135 */
 136
 137/*
 138 * KIMAGE_NO_DEST is an impossible destination address..., for
 139 * allocating pages whose destination address we do not care about.
 140 */
 141#define KIMAGE_NO_DEST (-1UL)
 142#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
 143
 144static struct page *kimage_alloc_page(struct kimage *image,
 145				       gfp_t gfp_mask,
 146				       unsigned long dest);
 147
 148int sanity_check_segment_list(struct kimage *image)
 149{
 150	int i;
 151	unsigned long nr_segments = image->nr_segments;
 152	unsigned long total_pages = 0;
 153	unsigned long nr_pages = totalram_pages();
 154
 155	/*
 156	 * Verify we have good destination addresses.  The caller is
 157	 * responsible for making certain we don't attempt to load
 158	 * the new image into invalid or reserved areas of RAM.  This
 159	 * just verifies it is an address we can use.
 160	 *
 161	 * Since the kernel does everything in page size chunks ensure
 162	 * the destination addresses are page aligned.  Too many
 163	 * special cases crop of when we don't do this.  The most
 164	 * insidious is getting overlapping destination addresses
 165	 * simply because addresses are changed to page size
 166	 * granularity.
 167	 */
 168	for (i = 0; i < nr_segments; i++) {
 169		unsigned long mstart, mend;
 170
 171		mstart = image->segment[i].mem;
 172		mend   = mstart + image->segment[i].memsz;
 173		if (mstart > mend)
 174			return -EADDRNOTAVAIL;
 175		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 176			return -EADDRNOTAVAIL;
 177		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 178			return -EADDRNOTAVAIL;
 179	}
 180
 181	/* Verify our destination addresses do not overlap.
 182	 * If we alloed overlapping destination addresses
 183	 * through very weird things can happen with no
 184	 * easy explanation as one segment stops on another.
 185	 */
 186	for (i = 0; i < nr_segments; i++) {
 187		unsigned long mstart, mend;
 188		unsigned long j;
 189
 190		mstart = image->segment[i].mem;
 191		mend   = mstart + image->segment[i].memsz;
 192		for (j = 0; j < i; j++) {
 193			unsigned long pstart, pend;
 194
 195			pstart = image->segment[j].mem;
 196			pend   = pstart + image->segment[j].memsz;
 197			/* Do the segments overlap ? */
 198			if ((mend > pstart) && (mstart < pend))
 199				return -EINVAL;
 200		}
 201	}
 202
 203	/* Ensure our buffer sizes are strictly less than
 204	 * our memory sizes.  This should always be the case,
 205	 * and it is easier to check up front than to be surprised
 206	 * later on.
 207	 */
 208	for (i = 0; i < nr_segments; i++) {
 209		if (image->segment[i].bufsz > image->segment[i].memsz)
 210			return -EINVAL;
 211	}
 212
 213	/*
 214	 * Verify that no more than half of memory will be consumed. If the
 215	 * request from userspace is too large, a large amount of time will be
 216	 * wasted allocating pages, which can cause a soft lockup.
 217	 */
 218	for (i = 0; i < nr_segments; i++) {
 219		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
 220			return -EINVAL;
 221
 222		total_pages += PAGE_COUNT(image->segment[i].memsz);
 223	}
 224
 225	if (total_pages > nr_pages / 2)
 226		return -EINVAL;
 227
 228	/*
 229	 * Verify we have good destination addresses.  Normally
 230	 * the caller is responsible for making certain we don't
 231	 * attempt to load the new image into invalid or reserved
 232	 * areas of RAM.  But crash kernels are preloaded into a
 233	 * reserved area of ram.  We must ensure the addresses
 234	 * are in the reserved area otherwise preloading the
 235	 * kernel could corrupt things.
 236	 */
 237
 238	if (image->type == KEXEC_TYPE_CRASH) {
 239		for (i = 0; i < nr_segments; i++) {
 240			unsigned long mstart, mend;
 241
 242			mstart = image->segment[i].mem;
 243			mend = mstart + image->segment[i].memsz - 1;
 244			/* Ensure we are within the crash kernel limits */
 245			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
 246			    (mend > phys_to_boot_phys(crashk_res.end)))
 247				return -EADDRNOTAVAIL;
 248		}
 249	}
 250
 251	return 0;
 252}
 253
 254struct kimage *do_kimage_alloc_init(void)
 255{
 256	struct kimage *image;
 257
 258	/* Allocate a controlling structure */
 259	image = kzalloc(sizeof(*image), GFP_KERNEL);
 260	if (!image)
 261		return NULL;
 262
 263	image->head = 0;
 264	image->entry = &image->head;
 265	image->last_entry = &image->head;
 266	image->control_page = ~0; /* By default this does not apply */
 267	image->type = KEXEC_TYPE_DEFAULT;
 268
 269	/* Initialize the list of control pages */
 270	INIT_LIST_HEAD(&image->control_pages);
 271
 272	/* Initialize the list of destination pages */
 273	INIT_LIST_HEAD(&image->dest_pages);
 274
 275	/* Initialize the list of unusable pages */
 276	INIT_LIST_HEAD(&image->unusable_pages);
 277
 278	return image;
 279}
 280
 281int kimage_is_destination_range(struct kimage *image,
 282					unsigned long start,
 283					unsigned long end)
 284{
 285	unsigned long i;
 286
 287	for (i = 0; i < image->nr_segments; i++) {
 288		unsigned long mstart, mend;
 289
 290		mstart = image->segment[i].mem;
 291		mend = mstart + image->segment[i].memsz;
 292		if ((end > mstart) && (start < mend))
 293			return 1;
 294	}
 295
 296	return 0;
 297}
 298
 299static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 300{
 301	struct page *pages;
 302
 303	if (fatal_signal_pending(current))
 304		return NULL;
 305	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
 306	if (pages) {
 307		unsigned int count, i;
 308
 309		pages->mapping = NULL;
 310		set_page_private(pages, order);
 311		count = 1 << order;
 312		for (i = 0; i < count; i++)
 313			SetPageReserved(pages + i);
 314
 315		arch_kexec_post_alloc_pages(page_address(pages), count,
 316					    gfp_mask);
 317
 318		if (gfp_mask & __GFP_ZERO)
 319			for (i = 0; i < count; i++)
 320				clear_highpage(pages + i);
 321	}
 322
 323	return pages;
 324}
 325
 326static void kimage_free_pages(struct page *page)
 327{
 328	unsigned int order, count, i;
 329
 330	order = page_private(page);
 331	count = 1 << order;
 332
 333	arch_kexec_pre_free_pages(page_address(page), count);
 334
 335	for (i = 0; i < count; i++)
 336		ClearPageReserved(page + i);
 337	__free_pages(page, order);
 338}
 339
 340void kimage_free_page_list(struct list_head *list)
 341{
 342	struct page *page, *next;
 343
 344	list_for_each_entry_safe(page, next, list, lru) {
 345		list_del(&page->lru);
 346		kimage_free_pages(page);
 347	}
 348}
 349
 350static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 351							unsigned int order)
 352{
 353	/* Control pages are special, they are the intermediaries
 354	 * that are needed while we copy the rest of the pages
 355	 * to their final resting place.  As such they must
 356	 * not conflict with either the destination addresses
 357	 * or memory the kernel is already using.
 358	 *
 359	 * The only case where we really need more than one of
 360	 * these are for architectures where we cannot disable
 361	 * the MMU and must instead generate an identity mapped
 362	 * page table for all of the memory.
 363	 *
 364	 * At worst this runs in O(N) of the image size.
 365	 */
 366	struct list_head extra_pages;
 367	struct page *pages;
 368	unsigned int count;
 369
 370	count = 1 << order;
 371	INIT_LIST_HEAD(&extra_pages);
 372
 373	/* Loop while I can allocate a page and the page allocated
 374	 * is a destination page.
 375	 */
 376	do {
 377		unsigned long pfn, epfn, addr, eaddr;
 378
 379		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
 380		if (!pages)
 381			break;
 382		pfn   = page_to_boot_pfn(pages);
 383		epfn  = pfn + count;
 384		addr  = pfn << PAGE_SHIFT;
 385		eaddr = epfn << PAGE_SHIFT;
 386		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 387			      kimage_is_destination_range(image, addr, eaddr)) {
 388			list_add(&pages->lru, &extra_pages);
 389			pages = NULL;
 390		}
 391	} while (!pages);
 392
 393	if (pages) {
 394		/* Remember the allocated page... */
 395		list_add(&pages->lru, &image->control_pages);
 396
 397		/* Because the page is already in it's destination
 398		 * location we will never allocate another page at
 399		 * that address.  Therefore kimage_alloc_pages
 400		 * will not return it (again) and we don't need
 401		 * to give it an entry in image->segment[].
 402		 */
 403	}
 404	/* Deal with the destination pages I have inadvertently allocated.
 405	 *
 406	 * Ideally I would convert multi-page allocations into single
 407	 * page allocations, and add everything to image->dest_pages.
 408	 *
 409	 * For now it is simpler to just free the pages.
 410	 */
 411	kimage_free_page_list(&extra_pages);
 412
 413	return pages;
 414}
 415
 416static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 417						      unsigned int order)
 418{
 419	/* Control pages are special, they are the intermediaries
 420	 * that are needed while we copy the rest of the pages
 421	 * to their final resting place.  As such they must
 422	 * not conflict with either the destination addresses
 423	 * or memory the kernel is already using.
 424	 *
 425	 * Control pages are also the only pags we must allocate
 426	 * when loading a crash kernel.  All of the other pages
 427	 * are specified by the segments and we just memcpy
 428	 * into them directly.
 429	 *
 430	 * The only case where we really need more than one of
 431	 * these are for architectures where we cannot disable
 432	 * the MMU and must instead generate an identity mapped
 433	 * page table for all of the memory.
 434	 *
 435	 * Given the low demand this implements a very simple
 436	 * allocator that finds the first hole of the appropriate
 437	 * size in the reserved memory region, and allocates all
 438	 * of the memory up to and including the hole.
 439	 */
 440	unsigned long hole_start, hole_end, size;
 441	struct page *pages;
 442
 443	pages = NULL;
 444	size = (1 << order) << PAGE_SHIFT;
 445	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
 446	hole_end   = hole_start + size - 1;
 447	while (hole_end <= crashk_res.end) {
 448		unsigned long i;
 449
 450		cond_resched();
 451
 452		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 453			break;
 454		/* See if I overlap any of the segments */
 455		for (i = 0; i < image->nr_segments; i++) {
 456			unsigned long mstart, mend;
 457
 458			mstart = image->segment[i].mem;
 459			mend   = mstart + image->segment[i].memsz - 1;
 460			if ((hole_end >= mstart) && (hole_start <= mend)) {
 461				/* Advance the hole to the end of the segment */
 462				hole_start = (mend + (size - 1)) & ~(size - 1);
 463				hole_end   = hole_start + size - 1;
 464				break;
 465			}
 466		}
 467		/* If I don't overlap any segments I have found my hole! */
 468		if (i == image->nr_segments) {
 469			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 470			image->control_page = hole_end;
 471			break;
 472		}
 473	}
 474
 475	/* Ensure that these pages are decrypted if SME is enabled. */
 476	if (pages)
 477		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
 478
 479	return pages;
 480}
 481
 482
 483struct page *kimage_alloc_control_pages(struct kimage *image,
 484					 unsigned int order)
 485{
 486	struct page *pages = NULL;
 487
 488	switch (image->type) {
 489	case KEXEC_TYPE_DEFAULT:
 490		pages = kimage_alloc_normal_control_pages(image, order);
 491		break;
 492	case KEXEC_TYPE_CRASH:
 493		pages = kimage_alloc_crash_control_pages(image, order);
 494		break;
 495	}
 496
 497	return pages;
 498}
 499
 500int kimage_crash_copy_vmcoreinfo(struct kimage *image)
 501{
 502	struct page *vmcoreinfo_page;
 503	void *safecopy;
 504
 505	if (image->type != KEXEC_TYPE_CRASH)
 506		return 0;
 507
 508	/*
 509	 * For kdump, allocate one vmcoreinfo safe copy from the
 510	 * crash memory. as we have arch_kexec_protect_crashkres()
 511	 * after kexec syscall, we naturally protect it from write
 512	 * (even read) access under kernel direct mapping. But on
 513	 * the other hand, we still need to operate it when crash
 514	 * happens to generate vmcoreinfo note, hereby we rely on
 515	 * vmap for this purpose.
 516	 */
 517	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
 518	if (!vmcoreinfo_page) {
 519		pr_warn("Could not allocate vmcoreinfo buffer\n");
 520		return -ENOMEM;
 521	}
 522	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
 523	if (!safecopy) {
 524		pr_warn("Could not vmap vmcoreinfo buffer\n");
 525		return -ENOMEM;
 526	}
 527
 528	image->vmcoreinfo_data_copy = safecopy;
 529	crash_update_vmcoreinfo_safecopy(safecopy);
 530
 531	return 0;
 532}
 533
 534static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 535{
 536	if (*image->entry != 0)
 537		image->entry++;
 538
 539	if (image->entry == image->last_entry) {
 540		kimage_entry_t *ind_page;
 541		struct page *page;
 542
 543		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 544		if (!page)
 545			return -ENOMEM;
 546
 547		ind_page = page_address(page);
 548		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
 549		image->entry = ind_page;
 550		image->last_entry = ind_page +
 551				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 552	}
 553	*image->entry = entry;
 554	image->entry++;
 555	*image->entry = 0;
 556
 557	return 0;
 558}
 559
 560static int kimage_set_destination(struct kimage *image,
 561				   unsigned long destination)
 562{
 563	int result;
 564
 565	destination &= PAGE_MASK;
 566	result = kimage_add_entry(image, destination | IND_DESTINATION);
 567
 568	return result;
 569}
 570
 571
 572static int kimage_add_page(struct kimage *image, unsigned long page)
 573{
 574	int result;
 575
 576	page &= PAGE_MASK;
 577	result = kimage_add_entry(image, page | IND_SOURCE);
 578
 579	return result;
 580}
 581
 582
 583static void kimage_free_extra_pages(struct kimage *image)
 584{
 585	/* Walk through and free any extra destination pages I may have */
 586	kimage_free_page_list(&image->dest_pages);
 587
 588	/* Walk through and free any unusable pages I have cached */
 589	kimage_free_page_list(&image->unusable_pages);
 590
 591}
 592
 593int __weak machine_kexec_post_load(struct kimage *image)
 594{
 595	return 0;
 596}
 597
 598void kimage_terminate(struct kimage *image)
 599{
 600	if (*image->entry != 0)
 601		image->entry++;
 602
 603	*image->entry = IND_DONE;
 604}
 605
 606#define for_each_kimage_entry(image, ptr, entry) \
 607	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 608		ptr = (entry & IND_INDIRECTION) ? \
 609			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
 610
 611static void kimage_free_entry(kimage_entry_t entry)
 612{
 613	struct page *page;
 614
 615	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
 616	kimage_free_pages(page);
 617}
 618
 619void kimage_free(struct kimage *image)
 620{
 621	kimage_entry_t *ptr, entry;
 622	kimage_entry_t ind = 0;
 623
 624	if (!image)
 625		return;
 626
 627	if (image->vmcoreinfo_data_copy) {
 628		crash_update_vmcoreinfo_safecopy(NULL);
 629		vunmap(image->vmcoreinfo_data_copy);
 630	}
 631
 632	kimage_free_extra_pages(image);
 633	for_each_kimage_entry(image, ptr, entry) {
 634		if (entry & IND_INDIRECTION) {
 635			/* Free the previous indirection page */
 636			if (ind & IND_INDIRECTION)
 637				kimage_free_entry(ind);
 638			/* Save this indirection page until we are
 639			 * done with it.
 640			 */
 641			ind = entry;
 642		} else if (entry & IND_SOURCE)
 643			kimage_free_entry(entry);
 644	}
 645	/* Free the final indirection page */
 646	if (ind & IND_INDIRECTION)
 647		kimage_free_entry(ind);
 648
 649	/* Handle any machine specific cleanup */
 650	machine_kexec_cleanup(image);
 651
 652	/* Free the kexec control pages... */
 653	kimage_free_page_list(&image->control_pages);
 654
 655	/*
 656	 * Free up any temporary buffers allocated. This might hit if
 657	 * error occurred much later after buffer allocation.
 658	 */
 659	if (image->file_mode)
 660		kimage_file_post_load_cleanup(image);
 661
 662	kfree(image);
 663}
 664
 665static kimage_entry_t *kimage_dst_used(struct kimage *image,
 666					unsigned long page)
 667{
 668	kimage_entry_t *ptr, entry;
 669	unsigned long destination = 0;
 670
 671	for_each_kimage_entry(image, ptr, entry) {
 672		if (entry & IND_DESTINATION)
 673			destination = entry & PAGE_MASK;
 674		else if (entry & IND_SOURCE) {
 675			if (page == destination)
 676				return ptr;
 677			destination += PAGE_SIZE;
 678		}
 679	}
 680
 681	return NULL;
 682}
 683
 684static struct page *kimage_alloc_page(struct kimage *image,
 685					gfp_t gfp_mask,
 686					unsigned long destination)
 687{
 688	/*
 689	 * Here we implement safeguards to ensure that a source page
 690	 * is not copied to its destination page before the data on
 691	 * the destination page is no longer useful.
 692	 *
 693	 * To do this we maintain the invariant that a source page is
 694	 * either its own destination page, or it is not a
 695	 * destination page at all.
 696	 *
 697	 * That is slightly stronger than required, but the proof
 698	 * that no problems will not occur is trivial, and the
 699	 * implementation is simply to verify.
 700	 *
 701	 * When allocating all pages normally this algorithm will run
 702	 * in O(N) time, but in the worst case it will run in O(N^2)
 703	 * time.   If the runtime is a problem the data structures can
 704	 * be fixed.
 705	 */
 706	struct page *page;
 707	unsigned long addr;
 708
 709	/*
 710	 * Walk through the list of destination pages, and see if I
 711	 * have a match.
 712	 */
 713	list_for_each_entry(page, &image->dest_pages, lru) {
 714		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 715		if (addr == destination) {
 716			list_del(&page->lru);
 717			return page;
 718		}
 719	}
 720	page = NULL;
 721	while (1) {
 722		kimage_entry_t *old;
 723
 724		/* Allocate a page, if we run out of memory give up */
 725		page = kimage_alloc_pages(gfp_mask, 0);
 726		if (!page)
 727			return NULL;
 728		/* If the page cannot be used file it away */
 729		if (page_to_boot_pfn(page) >
 730				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 731			list_add(&page->lru, &image->unusable_pages);
 732			continue;
 733		}
 734		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 735
 736		/* If it is the destination page we want use it */
 737		if (addr == destination)
 738			break;
 739
 740		/* If the page is not a destination page use it */
 741		if (!kimage_is_destination_range(image, addr,
 742						  addr + PAGE_SIZE))
 743			break;
 744
 745		/*
 746		 * I know that the page is someones destination page.
 747		 * See if there is already a source page for this
 748		 * destination page.  And if so swap the source pages.
 749		 */
 750		old = kimage_dst_used(image, addr);
 751		if (old) {
 752			/* If so move it */
 753			unsigned long old_addr;
 754			struct page *old_page;
 755
 756			old_addr = *old & PAGE_MASK;
 757			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
 758			copy_highpage(page, old_page);
 759			*old = addr | (*old & ~PAGE_MASK);
 760
 761			/* The old page I have found cannot be a
 762			 * destination page, so return it if it's
 763			 * gfp_flags honor the ones passed in.
 764			 */
 765			if (!(gfp_mask & __GFP_HIGHMEM) &&
 766			    PageHighMem(old_page)) {
 767				kimage_free_pages(old_page);
 768				continue;
 769			}
 770			addr = old_addr;
 771			page = old_page;
 772			break;
 773		}
 774		/* Place the page on the destination list, to be used later */
 775		list_add(&page->lru, &image->dest_pages);
 776	}
 777
 778	return page;
 779}
 780
 781static int kimage_load_normal_segment(struct kimage *image,
 782					 struct kexec_segment *segment)
 783{
 784	unsigned long maddr;
 785	size_t ubytes, mbytes;
 786	int result;
 787	unsigned char __user *buf = NULL;
 788	unsigned char *kbuf = NULL;
 789
 790	result = 0;
 791	if (image->file_mode)
 792		kbuf = segment->kbuf;
 793	else
 794		buf = segment->buf;
 795	ubytes = segment->bufsz;
 796	mbytes = segment->memsz;
 797	maddr = segment->mem;
 798
 799	result = kimage_set_destination(image, maddr);
 800	if (result < 0)
 801		goto out;
 802
 803	while (mbytes) {
 804		struct page *page;
 805		char *ptr;
 806		size_t uchunk, mchunk;
 807
 808		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 809		if (!page) {
 810			result  = -ENOMEM;
 811			goto out;
 812		}
 813		result = kimage_add_page(image, page_to_boot_pfn(page)
 814								<< PAGE_SHIFT);
 815		if (result < 0)
 816			goto out;
 817
 818		ptr = kmap(page);
 819		/* Start with a clear page */
 820		clear_page(ptr);
 821		ptr += maddr & ~PAGE_MASK;
 822		mchunk = min_t(size_t, mbytes,
 823				PAGE_SIZE - (maddr & ~PAGE_MASK));
 824		uchunk = min(ubytes, mchunk);
 825
 826		/* For file based kexec, source pages are in kernel memory */
 827		if (image->file_mode)
 828			memcpy(ptr, kbuf, uchunk);
 829		else
 830			result = copy_from_user(ptr, buf, uchunk);
 831		kunmap(page);
 832		if (result) {
 833			result = -EFAULT;
 834			goto out;
 835		}
 836		ubytes -= uchunk;
 837		maddr  += mchunk;
 838		if (image->file_mode)
 839			kbuf += mchunk;
 840		else
 841			buf += mchunk;
 842		mbytes -= mchunk;
 843
 844		cond_resched();
 845	}
 846out:
 847	return result;
 848}
 849
 850static int kimage_load_crash_segment(struct kimage *image,
 851					struct kexec_segment *segment)
 852{
 853	/* For crash dumps kernels we simply copy the data from
 854	 * user space to it's destination.
 855	 * We do things a page at a time for the sake of kmap.
 856	 */
 857	unsigned long maddr;
 858	size_t ubytes, mbytes;
 859	int result;
 860	unsigned char __user *buf = NULL;
 861	unsigned char *kbuf = NULL;
 862
 863	result = 0;
 864	if (image->file_mode)
 865		kbuf = segment->kbuf;
 866	else
 867		buf = segment->buf;
 868	ubytes = segment->bufsz;
 869	mbytes = segment->memsz;
 870	maddr = segment->mem;
 871	while (mbytes) {
 872		struct page *page;
 873		char *ptr;
 874		size_t uchunk, mchunk;
 875
 876		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
 877		if (!page) {
 878			result  = -ENOMEM;
 879			goto out;
 880		}
 881		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
 882		ptr = kmap(page);
 883		ptr += maddr & ~PAGE_MASK;
 884		mchunk = min_t(size_t, mbytes,
 885				PAGE_SIZE - (maddr & ~PAGE_MASK));
 886		uchunk = min(ubytes, mchunk);
 887		if (mchunk > uchunk) {
 888			/* Zero the trailing part of the page */
 889			memset(ptr + uchunk, 0, mchunk - uchunk);
 890		}
 891
 892		/* For file based kexec, source pages are in kernel memory */
 893		if (image->file_mode)
 894			memcpy(ptr, kbuf, uchunk);
 895		else
 896			result = copy_from_user(ptr, buf, uchunk);
 897		kexec_flush_icache_page(page);
 898		kunmap(page);
 899		arch_kexec_pre_free_pages(page_address(page), 1);
 900		if (result) {
 901			result = -EFAULT;
 902			goto out;
 903		}
 904		ubytes -= uchunk;
 905		maddr  += mchunk;
 906		if (image->file_mode)
 907			kbuf += mchunk;
 908		else
 909			buf += mchunk;
 910		mbytes -= mchunk;
 911
 912		cond_resched();
 913	}
 914out:
 915	return result;
 916}
 917
 918int kimage_load_segment(struct kimage *image,
 919				struct kexec_segment *segment)
 920{
 921	int result = -ENOMEM;
 922
 923	switch (image->type) {
 924	case KEXEC_TYPE_DEFAULT:
 925		result = kimage_load_normal_segment(image, segment);
 926		break;
 927	case KEXEC_TYPE_CRASH:
 928		result = kimage_load_crash_segment(image, segment);
 929		break;
 930	}
 931
 932	return result;
 933}
 934
 935struct kimage *kexec_image;
 936struct kimage *kexec_crash_image;
 937int kexec_load_disabled;
 938
 939/*
 940 * No panic_cpu check version of crash_kexec().  This function is called
 941 * only when panic_cpu holds the current CPU number; this is the only CPU
 942 * which processes crash_kexec routines.
 943 */
 944void __noclone __crash_kexec(struct pt_regs *regs)
 945{
 946	/* Take the kexec_mutex here to prevent sys_kexec_load
 947	 * running on one cpu from replacing the crash kernel
 948	 * we are using after a panic on a different cpu.
 949	 *
 950	 * If the crash kernel was not located in a fixed area
 951	 * of memory the xchg(&kexec_crash_image) would be
 952	 * sufficient.  But since I reuse the memory...
 953	 */
 954	if (mutex_trylock(&kexec_mutex)) {
 955		if (kexec_crash_image) {
 956			struct pt_regs fixed_regs;
 957
 958			crash_setup_regs(&fixed_regs, regs);
 959			crash_save_vmcoreinfo();
 960			machine_crash_shutdown(&fixed_regs);
 961			machine_kexec(kexec_crash_image);
 962		}
 963		mutex_unlock(&kexec_mutex);
 964	}
 965}
 966STACK_FRAME_NON_STANDARD(__crash_kexec);
 967
 968void crash_kexec(struct pt_regs *regs)
 969{
 970	int old_cpu, this_cpu;
 971
 972	/*
 973	 * Only one CPU is allowed to execute the crash_kexec() code as with
 974	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
 975	 * may stop each other.  To exclude them, we use panic_cpu here too.
 976	 */
 977	this_cpu = raw_smp_processor_id();
 978	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
 979	if (old_cpu == PANIC_CPU_INVALID) {
 980		/* This is the 1st CPU which comes here, so go ahead. */
 981		printk_safe_flush_on_panic();
 982		__crash_kexec(regs);
 983
 984		/*
 985		 * Reset panic_cpu to allow another panic()/crash_kexec()
 986		 * call.
 987		 */
 988		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
 989	}
 990}
 991
 992size_t crash_get_memory_size(void)
 993{
 994	size_t size = 0;
 995
 996	mutex_lock(&kexec_mutex);
 997	if (crashk_res.end != crashk_res.start)
 998		size = resource_size(&crashk_res);
 999	mutex_unlock(&kexec_mutex);
1000	return size;
1001}
1002
1003void __weak crash_free_reserved_phys_range(unsigned long begin,
1004					   unsigned long end)
1005{
1006	unsigned long addr;
1007
1008	for (addr = begin; addr < end; addr += PAGE_SIZE)
1009		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1010}
1011
1012int crash_shrink_memory(unsigned long new_size)
1013{
1014	int ret = 0;
1015	unsigned long start, end;
1016	unsigned long old_size;
1017	struct resource *ram_res;
1018
1019	mutex_lock(&kexec_mutex);
1020
1021	if (kexec_crash_image) {
1022		ret = -ENOENT;
1023		goto unlock;
1024	}
1025	start = crashk_res.start;
1026	end = crashk_res.end;
1027	old_size = (end == 0) ? 0 : end - start + 1;
1028	if (new_size >= old_size) {
1029		ret = (new_size == old_size) ? 0 : -EINVAL;
1030		goto unlock;
1031	}
1032
1033	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1034	if (!ram_res) {
1035		ret = -ENOMEM;
1036		goto unlock;
1037	}
1038
1039	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1040	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1041
1042	crash_free_reserved_phys_range(end, crashk_res.end);
1043
1044	if ((start == end) && (crashk_res.parent != NULL))
1045		release_resource(&crashk_res);
1046
1047	ram_res->start = end;
1048	ram_res->end = crashk_res.end;
1049	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1050	ram_res->name = "System RAM";
1051
1052	crashk_res.end = end - 1;
1053
1054	insert_resource(&iomem_resource, ram_res);
1055
1056unlock:
1057	mutex_unlock(&kexec_mutex);
1058	return ret;
1059}
1060
1061void crash_save_cpu(struct pt_regs *regs, int cpu)
1062{
1063	struct elf_prstatus prstatus;
1064	u32 *buf;
1065
1066	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1067		return;
1068
1069	/* Using ELF notes here is opportunistic.
1070	 * I need a well defined structure format
1071	 * for the data I pass, and I need tags
1072	 * on the data to indicate what information I have
1073	 * squirrelled away.  ELF notes happen to provide
1074	 * all of that, so there is no need to invent something new.
1075	 */
1076	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1077	if (!buf)
1078		return;
1079	memset(&prstatus, 0, sizeof(prstatus));
1080	prstatus.pr_pid = current->pid;
1081	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1082	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1083			      &prstatus, sizeof(prstatus));
1084	final_note(buf);
1085}
1086
1087static int __init crash_notes_memory_init(void)
1088{
1089	/* Allocate memory for saving cpu registers. */
1090	size_t size, align;
1091
1092	/*
1093	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1094	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1095	 * pages are also on 2 continuous physical pages. In this case the
1096	 * 2nd part of crash_notes in 2nd page could be lost since only the
1097	 * starting address and size of crash_notes are exported through sysfs.
1098	 * Here round up the size of crash_notes to the nearest power of two
1099	 * and pass it to __alloc_percpu as align value. This can make sure
1100	 * crash_notes is allocated inside one physical page.
1101	 */
1102	size = sizeof(note_buf_t);
1103	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1104
1105	/*
1106	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1107	 * definitely will be in 2 pages with that.
1108	 */
1109	BUILD_BUG_ON(size > PAGE_SIZE);
1110
1111	crash_notes = __alloc_percpu(size, align);
1112	if (!crash_notes) {
1113		pr_warn("Memory allocation for saving cpu register states failed\n");
1114		return -ENOMEM;
1115	}
1116	return 0;
1117}
1118subsys_initcall(crash_notes_memory_init);
1119
1120
1121/*
1122 * Move into place and start executing a preloaded standalone
1123 * executable.  If nothing was preloaded return an error.
1124 */
1125int kernel_kexec(void)
1126{
1127	int error = 0;
1128
1129	if (!mutex_trylock(&kexec_mutex))
1130		return -EBUSY;
1131	if (!kexec_image) {
1132		error = -EINVAL;
1133		goto Unlock;
1134	}
1135
1136#ifdef CONFIG_KEXEC_JUMP
1137	if (kexec_image->preserve_context) {
1138		lock_system_sleep();
1139		pm_prepare_console();
1140		error = freeze_processes();
1141		if (error) {
1142			error = -EBUSY;
1143			goto Restore_console;
1144		}
1145		suspend_console();
1146		error = dpm_suspend_start(PMSG_FREEZE);
1147		if (error)
1148			goto Resume_console;
1149		/* At this point, dpm_suspend_start() has been called,
1150		 * but *not* dpm_suspend_end(). We *must* call
1151		 * dpm_suspend_end() now.  Otherwise, drivers for
1152		 * some devices (e.g. interrupt controllers) become
1153		 * desynchronized with the actual state of the
1154		 * hardware at resume time, and evil weirdness ensues.
1155		 */
1156		error = dpm_suspend_end(PMSG_FREEZE);
1157		if (error)
1158			goto Resume_devices;
1159		error = suspend_disable_secondary_cpus();
1160		if (error)
1161			goto Enable_cpus;
1162		local_irq_disable();
1163		error = syscore_suspend();
1164		if (error)
1165			goto Enable_irqs;
1166	} else
1167#endif
1168	{
1169		kexec_in_progress = true;
1170		kernel_restart_prepare(NULL);
1171		migrate_to_reboot_cpu();
1172
1173		/*
1174		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1175		 * no further code needs to use CPU hotplug (which is true in
1176		 * the reboot case). However, the kexec path depends on using
1177		 * CPU hotplug again; so re-enable it here.
1178		 */
1179		cpu_hotplug_enable();
1180		pr_notice("Starting new kernel\n");
1181		machine_shutdown();
1182	}
1183
1184	machine_kexec(kexec_image);
1185
1186#ifdef CONFIG_KEXEC_JUMP
1187	if (kexec_image->preserve_context) {
1188		syscore_resume();
1189 Enable_irqs:
1190		local_irq_enable();
1191 Enable_cpus:
1192		suspend_enable_secondary_cpus();
1193		dpm_resume_start(PMSG_RESTORE);
1194 Resume_devices:
1195		dpm_resume_end(PMSG_RESTORE);
1196 Resume_console:
1197		resume_console();
1198		thaw_processes();
1199 Restore_console:
1200		pm_restore_console();
1201		unlock_system_sleep();
1202	}
1203#endif
1204
1205 Unlock:
1206	mutex_unlock(&kexec_mutex);
1207	return error;
1208}
1209
1210/*
1211 * Protection mechanism for crashkernel reserved memory after
1212 * the kdump kernel is loaded.
1213 *
1214 * Provide an empty default implementation here -- architecture
1215 * code may override this
1216 */
1217void __weak arch_kexec_protect_crashkres(void)
1218{}
1219
1220void __weak arch_kexec_unprotect_crashkres(void)
1221{}