Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
 
  14#include <linux/slab.h>
  15#include <linux/sched/autogroup.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/coredump.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/numa_balancing.h>
  20#include <linux/sched/stat.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/sched/cputime.h>
 
  24#include <linux/rtmutex.h>
  25#include <linux/init.h>
  26#include <linux/unistd.h>
  27#include <linux/module.h>
  28#include <linux/vmalloc.h>
  29#include <linux/completion.h>
  30#include <linux/personality.h>
  31#include <linux/mempolicy.h>
  32#include <linux/sem.h>
  33#include <linux/file.h>
  34#include <linux/fdtable.h>
  35#include <linux/iocontext.h>
  36#include <linux/key.h>
  37#include <linux/binfmts.h>
  38#include <linux/mman.h>
  39#include <linux/mmu_notifier.h>
  40#include <linux/hmm.h>
  41#include <linux/fs.h>
  42#include <linux/mm.h>
  43#include <linux/vmacache.h>
  44#include <linux/nsproxy.h>
  45#include <linux/capability.h>
  46#include <linux/cpu.h>
  47#include <linux/cgroup.h>
  48#include <linux/security.h>
  49#include <linux/hugetlb.h>
  50#include <linux/seccomp.h>
  51#include <linux/swap.h>
  52#include <linux/syscalls.h>
  53#include <linux/jiffies.h>
  54#include <linux/futex.h>
  55#include <linux/compat.h>
  56#include <linux/kthread.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/rcupdate.h>
  59#include <linux/ptrace.h>
  60#include <linux/mount.h>
  61#include <linux/audit.h>
  62#include <linux/memcontrol.h>
  63#include <linux/ftrace.h>
  64#include <linux/proc_fs.h>
  65#include <linux/profile.h>
  66#include <linux/rmap.h>
  67#include <linux/ksm.h>
  68#include <linux/acct.h>
  69#include <linux/userfaultfd_k.h>
  70#include <linux/tsacct_kern.h>
  71#include <linux/cn_proc.h>
  72#include <linux/freezer.h>
  73#include <linux/delayacct.h>
  74#include <linux/taskstats_kern.h>
  75#include <linux/random.h>
  76#include <linux/tty.h>
  77#include <linux/blkdev.h>
  78#include <linux/fs_struct.h>
  79#include <linux/magic.h>
  80#include <linux/sched/mm.h>
  81#include <linux/perf_event.h>
  82#include <linux/posix-timers.h>
  83#include <linux/user-return-notifier.h>
  84#include <linux/oom.h>
  85#include <linux/khugepaged.h>
  86#include <linux/signalfd.h>
  87#include <linux/uprobes.h>
  88#include <linux/aio.h>
  89#include <linux/compiler.h>
  90#include <linux/sysctl.h>
  91#include <linux/kcov.h>
  92#include <linux/livepatch.h>
  93#include <linux/thread_info.h>
 
 
 
  94
  95#include <asm/pgtable.h>
  96#include <asm/pgalloc.h>
  97#include <linux/uaccess.h>
  98#include <asm/mmu_context.h>
  99#include <asm/cacheflush.h>
 100#include <asm/tlbflush.h>
 101
 102#include <trace/events/sched.h>
 103
 104#define CREATE_TRACE_POINTS
 105#include <trace/events/task.h>
 106
 107/*
 108 * Minimum number of threads to boot the kernel
 109 */
 110#define MIN_THREADS 20
 111
 112/*
 113 * Maximum number of threads
 114 */
 115#define MAX_THREADS FUTEX_TID_MASK
 116
 117/*
 118 * Protected counters by write_lock_irq(&tasklist_lock)
 119 */
 120unsigned long total_forks;	/* Handle normal Linux uptimes. */
 121int nr_threads;			/* The idle threads do not count.. */
 122
 123int max_threads;		/* tunable limit on nr_threads */
 
 
 
 
 
 
 
 
 
 124
 125DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 126
 127__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 128
 129#ifdef CONFIG_PROVE_RCU
 130int lockdep_tasklist_lock_is_held(void)
 131{
 132	return lockdep_is_held(&tasklist_lock);
 133}
 134EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 135#endif /* #ifdef CONFIG_PROVE_RCU */
 136
 137int nr_processes(void)
 138{
 139	int cpu;
 140	int total = 0;
 141
 142	for_each_possible_cpu(cpu)
 143		total += per_cpu(process_counts, cpu);
 144
 145	return total;
 146}
 147
 148void __weak arch_release_task_struct(struct task_struct *tsk)
 149{
 150}
 151
 152#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 153static struct kmem_cache *task_struct_cachep;
 154
 155static inline struct task_struct *alloc_task_struct_node(int node)
 156{
 157	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 158}
 159
 160static inline void free_task_struct(struct task_struct *tsk)
 161{
 162	kmem_cache_free(task_struct_cachep, tsk);
 163}
 164#endif
 165
 166void __weak arch_release_thread_stack(unsigned long *stack)
 167{
 168}
 169
 170#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 171
 172/*
 173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 174 * kmemcache based allocator.
 175 */
 176# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 177
 178#ifdef CONFIG_VMAP_STACK
 179/*
 180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 181 * flush.  Try to minimize the number of calls by caching stacks.
 182 */
 183#define NR_CACHED_STACKS 2
 184static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 185
 186static int free_vm_stack_cache(unsigned int cpu)
 187{
 188	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 189	int i;
 190
 191	for (i = 0; i < NR_CACHED_STACKS; i++) {
 192		struct vm_struct *vm_stack = cached_vm_stacks[i];
 193
 194		if (!vm_stack)
 195			continue;
 196
 197		vfree(vm_stack->addr);
 198		cached_vm_stacks[i] = NULL;
 199	}
 200
 201	return 0;
 202}
 203#endif
 204
 205static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 206{
 207#ifdef CONFIG_VMAP_STACK
 208	void *stack;
 209	int i;
 210
 211	for (i = 0; i < NR_CACHED_STACKS; i++) {
 212		struct vm_struct *s;
 213
 214		s = this_cpu_xchg(cached_stacks[i], NULL);
 215
 216		if (!s)
 217			continue;
 218
 
 
 
 219		/* Clear stale pointers from reused stack. */
 220		memset(s->addr, 0, THREAD_SIZE);
 221
 222		tsk->stack_vm_area = s;
 
 223		return s->addr;
 224	}
 225
 
 
 
 
 
 226	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 227				     VMALLOC_START, VMALLOC_END,
 228				     THREADINFO_GFP,
 229				     PAGE_KERNEL,
 230				     0, node, __builtin_return_address(0));
 231
 232	/*
 233	 * We can't call find_vm_area() in interrupt context, and
 234	 * free_thread_stack() can be called in interrupt context,
 235	 * so cache the vm_struct.
 236	 */
 237	if (stack)
 238		tsk->stack_vm_area = find_vm_area(stack);
 
 
 239	return stack;
 240#else
 241	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 242					     THREAD_SIZE_ORDER);
 243
 244	return page ? page_address(page) : NULL;
 
 
 
 
 245#endif
 246}
 247
 248static inline void free_thread_stack(struct task_struct *tsk)
 249{
 250#ifdef CONFIG_VMAP_STACK
 251	if (task_stack_vm_area(tsk)) {
 
 
 252		int i;
 253
 
 
 
 254		for (i = 0; i < NR_CACHED_STACKS; i++) {
 255			if (this_cpu_cmpxchg(cached_stacks[i],
 256					NULL, tsk->stack_vm_area) != NULL)
 257				continue;
 258
 259			return;
 260		}
 261
 262		vfree_atomic(tsk->stack);
 263		return;
 264	}
 265#endif
 266
 267	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 268}
 269# else
 270static struct kmem_cache *thread_stack_cache;
 271
 272static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 273						  int node)
 274{
 275	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 
 
 
 
 276}
 277
 278static void free_thread_stack(struct task_struct *tsk)
 279{
 280	kmem_cache_free(thread_stack_cache, tsk->stack);
 281}
 282
 283void thread_stack_cache_init(void)
 284{
 285	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 286					THREAD_SIZE, THREAD_SIZE, 0, 0,
 287					THREAD_SIZE, NULL);
 288	BUG_ON(thread_stack_cache == NULL);
 289}
 290# endif
 291#endif
 292
 293/* SLAB cache for signal_struct structures (tsk->signal) */
 294static struct kmem_cache *signal_cachep;
 295
 296/* SLAB cache for sighand_struct structures (tsk->sighand) */
 297struct kmem_cache *sighand_cachep;
 298
 299/* SLAB cache for files_struct structures (tsk->files) */
 300struct kmem_cache *files_cachep;
 301
 302/* SLAB cache for fs_struct structures (tsk->fs) */
 303struct kmem_cache *fs_cachep;
 304
 305/* SLAB cache for vm_area_struct structures */
 306struct kmem_cache *vm_area_cachep;
 307
 308/* SLAB cache for mm_struct structures (tsk->mm) */
 309static struct kmem_cache *mm_cachep;
 310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311static void account_kernel_stack(struct task_struct *tsk, int account)
 312{
 313	void *stack = task_stack_page(tsk);
 314	struct vm_struct *vm = task_stack_vm_area(tsk);
 315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 317
 318	if (vm) {
 319		int i;
 320
 321		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 322
 323		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 324			mod_zone_page_state(page_zone(vm->pages[i]),
 325					    NR_KERNEL_STACK_KB,
 326					    PAGE_SIZE / 1024 * account);
 
 
 
 
 
 
 327		}
 328
 329		/* All stack pages belong to the same memcg. */
 330		mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
 331				     account * (THREAD_SIZE / 1024));
 332	} else {
 333		/*
 334		 * All stack pages are in the same zone and belong to the
 335		 * same memcg.
 336		 */
 337		struct page *first_page = virt_to_page(stack);
 338
 339		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
 340				    THREAD_SIZE / 1024 * account);
 341
 342		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
 343				     account * (THREAD_SIZE / 1024));
 344	}
 
 
 345}
 346
 347static void release_task_stack(struct task_struct *tsk)
 348{
 349	if (WARN_ON(tsk->state != TASK_DEAD))
 350		return;  /* Better to leak the stack than to free prematurely */
 351
 352	account_kernel_stack(tsk, -1);
 353	arch_release_thread_stack(tsk->stack);
 354	free_thread_stack(tsk);
 355	tsk->stack = NULL;
 356#ifdef CONFIG_VMAP_STACK
 357	tsk->stack_vm_area = NULL;
 358#endif
 359}
 360
 361#ifdef CONFIG_THREAD_INFO_IN_TASK
 362void put_task_stack(struct task_struct *tsk)
 363{
 364	if (atomic_dec_and_test(&tsk->stack_refcount))
 365		release_task_stack(tsk);
 366}
 367#endif
 368
 369void free_task(struct task_struct *tsk)
 370{
 
 
 371#ifndef CONFIG_THREAD_INFO_IN_TASK
 372	/*
 373	 * The task is finally done with both the stack and thread_info,
 374	 * so free both.
 375	 */
 376	release_task_stack(tsk);
 377#else
 378	/*
 379	 * If the task had a separate stack allocation, it should be gone
 380	 * by now.
 381	 */
 382	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
 383#endif
 384	rt_mutex_debug_task_free(tsk);
 385	ftrace_graph_exit_task(tsk);
 386	put_seccomp_filter(tsk);
 387	arch_release_task_struct(tsk);
 388	if (tsk->flags & PF_KTHREAD)
 389		free_kthread_struct(tsk);
 390	free_task_struct(tsk);
 391}
 392EXPORT_SYMBOL(free_task);
 393
 394#ifdef CONFIG_MMU
 395static __latent_entropy int dup_mmap(struct mm_struct *mm,
 396					struct mm_struct *oldmm)
 397{
 398	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 399	struct rb_node **rb_link, *rb_parent;
 400	int retval;
 401	unsigned long charge;
 402	LIST_HEAD(uf);
 403
 404	uprobe_start_dup_mmap();
 405	if (down_write_killable(&oldmm->mmap_sem)) {
 406		retval = -EINTR;
 407		goto fail_uprobe_end;
 408	}
 409	flush_cache_dup_mm(oldmm);
 410	uprobe_dup_mmap(oldmm, mm);
 411	/*
 412	 * Not linked in yet - no deadlock potential:
 413	 */
 414	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 415
 416	/* No ordering required: file already has been exposed. */
 417	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 418
 419	mm->total_vm = oldmm->total_vm;
 420	mm->data_vm = oldmm->data_vm;
 421	mm->exec_vm = oldmm->exec_vm;
 422	mm->stack_vm = oldmm->stack_vm;
 423
 424	rb_link = &mm->mm_rb.rb_node;
 425	rb_parent = NULL;
 426	pprev = &mm->mmap;
 427	retval = ksm_fork(mm, oldmm);
 428	if (retval)
 429		goto out;
 430	retval = khugepaged_fork(mm, oldmm);
 431	if (retval)
 432		goto out;
 433
 434	prev = NULL;
 435	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 436		struct file *file;
 437
 438		if (mpnt->vm_flags & VM_DONTCOPY) {
 439			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 440			continue;
 441		}
 442		charge = 0;
 
 
 
 
 
 
 
 
 443		if (mpnt->vm_flags & VM_ACCOUNT) {
 444			unsigned long len = vma_pages(mpnt);
 445
 446			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 447				goto fail_nomem;
 448			charge = len;
 449		}
 450		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 451		if (!tmp)
 452			goto fail_nomem;
 453		*tmp = *mpnt;
 454		INIT_LIST_HEAD(&tmp->anon_vma_chain);
 455		retval = vma_dup_policy(mpnt, tmp);
 456		if (retval)
 457			goto fail_nomem_policy;
 458		tmp->vm_mm = mm;
 459		retval = dup_userfaultfd(tmp, &uf);
 460		if (retval)
 461			goto fail_nomem_anon_vma_fork;
 462		if (tmp->vm_flags & VM_WIPEONFORK) {
 463			/* VM_WIPEONFORK gets a clean slate in the child. */
 
 
 
 
 464			tmp->anon_vma = NULL;
 465			if (anon_vma_prepare(tmp))
 466				goto fail_nomem_anon_vma_fork;
 467		} else if (anon_vma_fork(tmp, mpnt))
 468			goto fail_nomem_anon_vma_fork;
 469		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 470		tmp->vm_next = tmp->vm_prev = NULL;
 471		file = tmp->vm_file;
 472		if (file) {
 473			struct inode *inode = file_inode(file);
 474			struct address_space *mapping = file->f_mapping;
 475
 476			get_file(file);
 477			if (tmp->vm_flags & VM_DENYWRITE)
 478				atomic_dec(&inode->i_writecount);
 479			i_mmap_lock_write(mapping);
 480			if (tmp->vm_flags & VM_SHARED)
 481				atomic_inc(&mapping->i_mmap_writable);
 482			flush_dcache_mmap_lock(mapping);
 483			/* insert tmp into the share list, just after mpnt */
 484			vma_interval_tree_insert_after(tmp, mpnt,
 485					&mapping->i_mmap);
 486			flush_dcache_mmap_unlock(mapping);
 487			i_mmap_unlock_write(mapping);
 488		}
 489
 490		/*
 491		 * Clear hugetlb-related page reserves for children. This only
 492		 * affects MAP_PRIVATE mappings. Faults generated by the child
 493		 * are not guaranteed to succeed, even if read-only
 494		 */
 495		if (is_vm_hugetlb_page(tmp))
 496			reset_vma_resv_huge_pages(tmp);
 497
 498		/*
 499		 * Link in the new vma and copy the page table entries.
 500		 */
 501		*pprev = tmp;
 502		pprev = &tmp->vm_next;
 503		tmp->vm_prev = prev;
 504		prev = tmp;
 505
 506		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 507		rb_link = &tmp->vm_rb.rb_right;
 508		rb_parent = &tmp->vm_rb;
 509
 510		mm->map_count++;
 511		if (!(tmp->vm_flags & VM_WIPEONFORK))
 512			retval = copy_page_range(mm, oldmm, mpnt);
 513
 514		if (tmp->vm_ops && tmp->vm_ops->open)
 515			tmp->vm_ops->open(tmp);
 516
 517		if (retval)
 518			goto out;
 519	}
 520	/* a new mm has just been created */
 521	arch_dup_mmap(oldmm, mm);
 522	retval = 0;
 523out:
 524	up_write(&mm->mmap_sem);
 525	flush_tlb_mm(oldmm);
 526	up_write(&oldmm->mmap_sem);
 527	dup_userfaultfd_complete(&uf);
 528fail_uprobe_end:
 529	uprobe_end_dup_mmap();
 530	return retval;
 531fail_nomem_anon_vma_fork:
 532	mpol_put(vma_policy(tmp));
 533fail_nomem_policy:
 534	kmem_cache_free(vm_area_cachep, tmp);
 535fail_nomem:
 536	retval = -ENOMEM;
 537	vm_unacct_memory(charge);
 538	goto out;
 539}
 540
 541static inline int mm_alloc_pgd(struct mm_struct *mm)
 542{
 543	mm->pgd = pgd_alloc(mm);
 544	if (unlikely(!mm->pgd))
 545		return -ENOMEM;
 546	return 0;
 547}
 548
 549static inline void mm_free_pgd(struct mm_struct *mm)
 550{
 551	pgd_free(mm, mm->pgd);
 552}
 553#else
 554static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 555{
 556	down_write(&oldmm->mmap_sem);
 557	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 558	up_write(&oldmm->mmap_sem);
 559	return 0;
 560}
 561#define mm_alloc_pgd(mm)	(0)
 562#define mm_free_pgd(mm)
 563#endif /* CONFIG_MMU */
 564
 565static void check_mm(struct mm_struct *mm)
 566{
 567	int i;
 568
 
 
 
 569	for (i = 0; i < NR_MM_COUNTERS; i++) {
 570		long x = atomic_long_read(&mm->rss_stat.count[i]);
 571
 572		if (unlikely(x))
 573			printk(KERN_ALERT "BUG: Bad rss-counter state "
 574					  "mm:%p idx:%d val:%ld\n", mm, i, x);
 575	}
 576
 577	if (mm_pgtables_bytes(mm))
 578		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 579				mm_pgtables_bytes(mm));
 580
 581#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 582	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 583#endif
 584}
 585
 586#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 587#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 588
 589/*
 590 * Called when the last reference to the mm
 591 * is dropped: either by a lazy thread or by
 592 * mmput. Free the page directory and the mm.
 593 */
 594void __mmdrop(struct mm_struct *mm)
 595{
 596	BUG_ON(mm == &init_mm);
 597	WARN_ON_ONCE(mm == current->mm);
 598	WARN_ON_ONCE(mm == current->active_mm);
 599	mm_free_pgd(mm);
 600	destroy_context(mm);
 601	hmm_mm_destroy(mm);
 602	mmu_notifier_mm_destroy(mm);
 603	check_mm(mm);
 604	put_user_ns(mm->user_ns);
 605	free_mm(mm);
 606}
 607EXPORT_SYMBOL_GPL(__mmdrop);
 608
 609static void mmdrop_async_fn(struct work_struct *work)
 610{
 611	struct mm_struct *mm;
 612
 613	mm = container_of(work, struct mm_struct, async_put_work);
 614	__mmdrop(mm);
 615}
 616
 617static void mmdrop_async(struct mm_struct *mm)
 618{
 619	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 620		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 621		schedule_work(&mm->async_put_work);
 622	}
 623}
 624
 625static inline void free_signal_struct(struct signal_struct *sig)
 626{
 627	taskstats_tgid_free(sig);
 628	sched_autogroup_exit(sig);
 629	/*
 630	 * __mmdrop is not safe to call from softirq context on x86 due to
 631	 * pgd_dtor so postpone it to the async context
 632	 */
 633	if (sig->oom_mm)
 634		mmdrop_async(sig->oom_mm);
 635	kmem_cache_free(signal_cachep, sig);
 636}
 637
 638static inline void put_signal_struct(struct signal_struct *sig)
 639{
 640	if (atomic_dec_and_test(&sig->sigcnt))
 641		free_signal_struct(sig);
 642}
 643
 644void __put_task_struct(struct task_struct *tsk)
 645{
 646	WARN_ON(!tsk->exit_state);
 647	WARN_ON(atomic_read(&tsk->usage));
 648	WARN_ON(tsk == current);
 649
 650	cgroup_free(tsk);
 651	task_numa_free(tsk);
 652	security_task_free(tsk);
 653	exit_creds(tsk);
 654	delayacct_tsk_free(tsk);
 655	put_signal_struct(tsk->signal);
 656
 657	if (!profile_handoff_task(tsk))
 658		free_task(tsk);
 659}
 660EXPORT_SYMBOL_GPL(__put_task_struct);
 661
 662void __init __weak arch_task_cache_init(void) { }
 663
 664/*
 665 * set_max_threads
 666 */
 667static void set_max_threads(unsigned int max_threads_suggested)
 668{
 669	u64 threads;
 
 670
 671	/*
 672	 * The number of threads shall be limited such that the thread
 673	 * structures may only consume a small part of the available memory.
 674	 */
 675	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
 676		threads = MAX_THREADS;
 677	else
 678		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 679				    (u64) THREAD_SIZE * 8UL);
 680
 681	if (threads > max_threads_suggested)
 682		threads = max_threads_suggested;
 683
 684	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 685}
 686
 687#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 688/* Initialized by the architecture: */
 689int arch_task_struct_size __read_mostly;
 690#endif
 691
 
 692static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 693{
 694	/* Fetch thread_struct whitelist for the architecture. */
 695	arch_thread_struct_whitelist(offset, size);
 696
 697	/*
 698	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 699	 * adjust offset to position of thread_struct in task_struct.
 700	 */
 701	if (unlikely(*size == 0))
 702		*offset = 0;
 703	else
 704		*offset += offsetof(struct task_struct, thread);
 705}
 
 706
 707void __init fork_init(void)
 708{
 709	int i;
 710#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 711#ifndef ARCH_MIN_TASKALIGN
 712#define ARCH_MIN_TASKALIGN	0
 713#endif
 714	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 715	unsigned long useroffset, usersize;
 716
 717	/* create a slab on which task_structs can be allocated */
 718	task_struct_whitelist(&useroffset, &usersize);
 719	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 720			arch_task_struct_size, align,
 721			SLAB_PANIC|SLAB_ACCOUNT,
 722			useroffset, usersize, NULL);
 723#endif
 724
 725	/* do the arch specific task caches init */
 726	arch_task_cache_init();
 727
 728	set_max_threads(MAX_THREADS);
 729
 730	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 731	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 732	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 733		init_task.signal->rlim[RLIMIT_NPROC];
 734
 735	for (i = 0; i < UCOUNT_COUNTS; i++) {
 736		init_user_ns.ucount_max[i] = max_threads/2;
 737	}
 738
 739#ifdef CONFIG_VMAP_STACK
 740	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 741			  NULL, free_vm_stack_cache);
 742#endif
 743
 
 
 744	lockdep_init_task(&init_task);
 
 745}
 746
 747int __weak arch_dup_task_struct(struct task_struct *dst,
 748					       struct task_struct *src)
 749{
 750	*dst = *src;
 751	return 0;
 752}
 753
 754void set_task_stack_end_magic(struct task_struct *tsk)
 755{
 756	unsigned long *stackend;
 757
 758	stackend = end_of_stack(tsk);
 759	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 760}
 761
 762static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 763{
 764	struct task_struct *tsk;
 765	unsigned long *stack;
 766	struct vm_struct *stack_vm_area;
 767	int err;
 768
 769	if (node == NUMA_NO_NODE)
 770		node = tsk_fork_get_node(orig);
 771	tsk = alloc_task_struct_node(node);
 772	if (!tsk)
 773		return NULL;
 774
 775	stack = alloc_thread_stack_node(tsk, node);
 776	if (!stack)
 777		goto free_tsk;
 778
 
 
 
 779	stack_vm_area = task_stack_vm_area(tsk);
 780
 781	err = arch_dup_task_struct(tsk, orig);
 782
 783	/*
 784	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
 785	 * sure they're properly initialized before using any stack-related
 786	 * functions again.
 787	 */
 788	tsk->stack = stack;
 789#ifdef CONFIG_VMAP_STACK
 790	tsk->stack_vm_area = stack_vm_area;
 791#endif
 792#ifdef CONFIG_THREAD_INFO_IN_TASK
 793	atomic_set(&tsk->stack_refcount, 1);
 794#endif
 795
 796	if (err)
 797		goto free_stack;
 798
 
 
 
 
 799#ifdef CONFIG_SECCOMP
 800	/*
 801	 * We must handle setting up seccomp filters once we're under
 802	 * the sighand lock in case orig has changed between now and
 803	 * then. Until then, filter must be NULL to avoid messing up
 804	 * the usage counts on the error path calling free_task.
 805	 */
 806	tsk->seccomp.filter = NULL;
 807#endif
 808
 809	setup_thread_stack(tsk, orig);
 810	clear_user_return_notifier(tsk);
 811	clear_tsk_need_resched(tsk);
 812	set_task_stack_end_magic(tsk);
 813
 814#ifdef CONFIG_CC_STACKPROTECTOR
 815	tsk->stack_canary = get_random_canary();
 816#endif
 
 
 817
 818	/*
 819	 * One for us, one for whoever does the "release_task()" (usually
 820	 * parent)
 821	 */
 822	atomic_set(&tsk->usage, 2);
 
 
 823#ifdef CONFIG_BLK_DEV_IO_TRACE
 824	tsk->btrace_seq = 0;
 825#endif
 826	tsk->splice_pipe = NULL;
 827	tsk->task_frag.page = NULL;
 828	tsk->wake_q.next = NULL;
 829
 830	account_kernel_stack(tsk, 1);
 831
 832	kcov_task_init(tsk);
 833
 834#ifdef CONFIG_FAULT_INJECTION
 835	tsk->fail_nth = 0;
 836#endif
 837
 
 
 
 
 
 
 
 
 838	return tsk;
 839
 840free_stack:
 841	free_thread_stack(tsk);
 842free_tsk:
 843	free_task_struct(tsk);
 844	return NULL;
 845}
 846
 847__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 848
 849static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 850
 851static int __init coredump_filter_setup(char *s)
 852{
 853	default_dump_filter =
 854		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 855		MMF_DUMP_FILTER_MASK;
 856	return 1;
 857}
 858
 859__setup("coredump_filter=", coredump_filter_setup);
 860
 861#include <linux/init_task.h>
 862
 863static void mm_init_aio(struct mm_struct *mm)
 864{
 865#ifdef CONFIG_AIO
 866	spin_lock_init(&mm->ioctx_lock);
 867	mm->ioctx_table = NULL;
 868#endif
 869}
 870
 
 
 
 
 
 
 
 
 
 871static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 872{
 873#ifdef CONFIG_MEMCG
 874	mm->owner = p;
 875#endif
 876}
 877
 878static void mm_init_uprobes_state(struct mm_struct *mm)
 879{
 880#ifdef CONFIG_UPROBES
 881	mm->uprobes_state.xol_area = NULL;
 882#endif
 883}
 884
 885static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
 886	struct user_namespace *user_ns)
 887{
 888	mm->mmap = NULL;
 889	mm->mm_rb = RB_ROOT;
 890	mm->vmacache_seqnum = 0;
 891	atomic_set(&mm->mm_users, 1);
 892	atomic_set(&mm->mm_count, 1);
 893	init_rwsem(&mm->mmap_sem);
 894	INIT_LIST_HEAD(&mm->mmlist);
 895	mm->core_state = NULL;
 896	mm_pgtables_bytes_init(mm);
 897	mm->map_count = 0;
 898	mm->locked_vm = 0;
 899	mm->pinned_vm = 0;
 
 900	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 901	spin_lock_init(&mm->page_table_lock);
 
 902	mm_init_cpumask(mm);
 903	mm_init_aio(mm);
 904	mm_init_owner(mm, p);
 905	RCU_INIT_POINTER(mm->exe_file, NULL);
 906	mmu_notifier_mm_init(mm);
 907	hmm_mm_init(mm);
 908	init_tlb_flush_pending(mm);
 909#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 910	mm->pmd_huge_pte = NULL;
 911#endif
 912	mm_init_uprobes_state(mm);
 913
 914	if (current->mm) {
 915		mm->flags = current->mm->flags & MMF_INIT_MASK;
 916		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 917	} else {
 918		mm->flags = default_dump_filter;
 919		mm->def_flags = 0;
 920	}
 921
 922	if (mm_alloc_pgd(mm))
 923		goto fail_nopgd;
 924
 925	if (init_new_context(p, mm))
 926		goto fail_nocontext;
 927
 928	mm->user_ns = get_user_ns(user_ns);
 929	return mm;
 930
 931fail_nocontext:
 932	mm_free_pgd(mm);
 933fail_nopgd:
 934	free_mm(mm);
 935	return NULL;
 936}
 937
 938/*
 939 * Allocate and initialize an mm_struct.
 940 */
 941struct mm_struct *mm_alloc(void)
 942{
 943	struct mm_struct *mm;
 944
 945	mm = allocate_mm();
 946	if (!mm)
 947		return NULL;
 948
 949	memset(mm, 0, sizeof(*mm));
 950	return mm_init(mm, current, current_user_ns());
 951}
 952
 953static inline void __mmput(struct mm_struct *mm)
 954{
 955	VM_BUG_ON(atomic_read(&mm->mm_users));
 956
 957	uprobe_clear_state(mm);
 958	exit_aio(mm);
 959	ksm_exit(mm);
 960	khugepaged_exit(mm); /* must run before exit_mmap */
 961	exit_mmap(mm);
 962	mm_put_huge_zero_page(mm);
 963	set_mm_exe_file(mm, NULL);
 964	if (!list_empty(&mm->mmlist)) {
 965		spin_lock(&mmlist_lock);
 966		list_del(&mm->mmlist);
 967		spin_unlock(&mmlist_lock);
 968	}
 969	if (mm->binfmt)
 970		module_put(mm->binfmt->module);
 971	mmdrop(mm);
 972}
 973
 974/*
 975 * Decrement the use count and release all resources for an mm.
 976 */
 977void mmput(struct mm_struct *mm)
 978{
 979	might_sleep();
 980
 981	if (atomic_dec_and_test(&mm->mm_users))
 982		__mmput(mm);
 983}
 984EXPORT_SYMBOL_GPL(mmput);
 985
 986#ifdef CONFIG_MMU
 987static void mmput_async_fn(struct work_struct *work)
 988{
 989	struct mm_struct *mm = container_of(work, struct mm_struct,
 990					    async_put_work);
 991
 992	__mmput(mm);
 993}
 994
 995void mmput_async(struct mm_struct *mm)
 996{
 997	if (atomic_dec_and_test(&mm->mm_users)) {
 998		INIT_WORK(&mm->async_put_work, mmput_async_fn);
 999		schedule_work(&mm->async_put_work);
1000	}
1001}
1002#endif
1003
1004/**
1005 * set_mm_exe_file - change a reference to the mm's executable file
1006 *
1007 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1008 *
1009 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1010 * invocations: in mmput() nobody alive left, in execve task is single
1011 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1012 * mm->exe_file, but does so without using set_mm_exe_file() in order
1013 * to do avoid the need for any locks.
1014 */
1015void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1016{
1017	struct file *old_exe_file;
1018
1019	/*
1020	 * It is safe to dereference the exe_file without RCU as
1021	 * this function is only called if nobody else can access
1022	 * this mm -- see comment above for justification.
1023	 */
1024	old_exe_file = rcu_dereference_raw(mm->exe_file);
1025
1026	if (new_exe_file)
1027		get_file(new_exe_file);
1028	rcu_assign_pointer(mm->exe_file, new_exe_file);
1029	if (old_exe_file)
1030		fput(old_exe_file);
1031}
1032
1033/**
1034 * get_mm_exe_file - acquire a reference to the mm's executable file
1035 *
1036 * Returns %NULL if mm has no associated executable file.
1037 * User must release file via fput().
1038 */
1039struct file *get_mm_exe_file(struct mm_struct *mm)
1040{
1041	struct file *exe_file;
1042
1043	rcu_read_lock();
1044	exe_file = rcu_dereference(mm->exe_file);
1045	if (exe_file && !get_file_rcu(exe_file))
1046		exe_file = NULL;
1047	rcu_read_unlock();
1048	return exe_file;
1049}
1050EXPORT_SYMBOL(get_mm_exe_file);
1051
1052/**
1053 * get_task_exe_file - acquire a reference to the task's executable file
1054 *
1055 * Returns %NULL if task's mm (if any) has no associated executable file or
1056 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1057 * User must release file via fput().
1058 */
1059struct file *get_task_exe_file(struct task_struct *task)
1060{
1061	struct file *exe_file = NULL;
1062	struct mm_struct *mm;
1063
1064	task_lock(task);
1065	mm = task->mm;
1066	if (mm) {
1067		if (!(task->flags & PF_KTHREAD))
1068			exe_file = get_mm_exe_file(mm);
1069	}
1070	task_unlock(task);
1071	return exe_file;
1072}
1073EXPORT_SYMBOL(get_task_exe_file);
1074
1075/**
1076 * get_task_mm - acquire a reference to the task's mm
1077 *
1078 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1079 * this kernel workthread has transiently adopted a user mm with use_mm,
1080 * to do its AIO) is not set and if so returns a reference to it, after
1081 * bumping up the use count.  User must release the mm via mmput()
1082 * after use.  Typically used by /proc and ptrace.
1083 */
1084struct mm_struct *get_task_mm(struct task_struct *task)
1085{
1086	struct mm_struct *mm;
1087
1088	task_lock(task);
1089	mm = task->mm;
1090	if (mm) {
1091		if (task->flags & PF_KTHREAD)
1092			mm = NULL;
1093		else
1094			mmget(mm);
1095	}
1096	task_unlock(task);
1097	return mm;
1098}
1099EXPORT_SYMBOL_GPL(get_task_mm);
1100
1101struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1102{
1103	struct mm_struct *mm;
1104	int err;
1105
1106	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1107	if (err)
1108		return ERR_PTR(err);
1109
1110	mm = get_task_mm(task);
1111	if (mm && mm != current->mm &&
1112			!ptrace_may_access(task, mode)) {
1113		mmput(mm);
1114		mm = ERR_PTR(-EACCES);
1115	}
1116	mutex_unlock(&task->signal->cred_guard_mutex);
1117
1118	return mm;
1119}
1120
1121static void complete_vfork_done(struct task_struct *tsk)
1122{
1123	struct completion *vfork;
1124
1125	task_lock(tsk);
1126	vfork = tsk->vfork_done;
1127	if (likely(vfork)) {
1128		tsk->vfork_done = NULL;
1129		complete(vfork);
1130	}
1131	task_unlock(tsk);
1132}
1133
1134static int wait_for_vfork_done(struct task_struct *child,
1135				struct completion *vfork)
1136{
1137	int killed;
1138
1139	freezer_do_not_count();
 
1140	killed = wait_for_completion_killable(vfork);
 
1141	freezer_count();
1142
1143	if (killed) {
1144		task_lock(child);
1145		child->vfork_done = NULL;
1146		task_unlock(child);
1147	}
1148
1149	put_task_struct(child);
1150	return killed;
1151}
1152
1153/* Please note the differences between mmput and mm_release.
1154 * mmput is called whenever we stop holding onto a mm_struct,
1155 * error success whatever.
1156 *
1157 * mm_release is called after a mm_struct has been removed
1158 * from the current process.
1159 *
1160 * This difference is important for error handling, when we
1161 * only half set up a mm_struct for a new process and need to restore
1162 * the old one.  Because we mmput the new mm_struct before
1163 * restoring the old one. . .
1164 * Eric Biederman 10 January 1998
1165 */
1166void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1167{
1168	/* Get rid of any futexes when releasing the mm */
1169#ifdef CONFIG_FUTEX
1170	if (unlikely(tsk->robust_list)) {
1171		exit_robust_list(tsk);
1172		tsk->robust_list = NULL;
1173	}
1174#ifdef CONFIG_COMPAT
1175	if (unlikely(tsk->compat_robust_list)) {
1176		compat_exit_robust_list(tsk);
1177		tsk->compat_robust_list = NULL;
1178	}
1179#endif
1180	if (unlikely(!list_empty(&tsk->pi_state_list)))
1181		exit_pi_state_list(tsk);
1182#endif
1183
1184	uprobe_free_utask(tsk);
1185
1186	/* Get rid of any cached register state */
1187	deactivate_mm(tsk, mm);
1188
1189	/*
1190	 * Signal userspace if we're not exiting with a core dump
1191	 * because we want to leave the value intact for debugging
1192	 * purposes.
1193	 */
1194	if (tsk->clear_child_tid) {
1195		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1196		    atomic_read(&mm->mm_users) > 1) {
1197			/*
1198			 * We don't check the error code - if userspace has
1199			 * not set up a proper pointer then tough luck.
1200			 */
1201			put_user(0, tsk->clear_child_tid);
1202			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1203					1, NULL, NULL, 0, 0);
1204		}
1205		tsk->clear_child_tid = NULL;
1206	}
1207
1208	/*
1209	 * All done, finally we can wake up parent and return this mm to him.
1210	 * Also kthread_stop() uses this completion for synchronization.
1211	 */
1212	if (tsk->vfork_done)
1213		complete_vfork_done(tsk);
1214}
1215
1216/*
1217 * Allocate a new mm structure and copy contents from the
1218 * mm structure of the passed in task structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219 */
1220static struct mm_struct *dup_mm(struct task_struct *tsk)
 
1221{
1222	struct mm_struct *mm, *oldmm = current->mm;
1223	int err;
1224
1225	mm = allocate_mm();
1226	if (!mm)
1227		goto fail_nomem;
1228
1229	memcpy(mm, oldmm, sizeof(*mm));
1230
1231	if (!mm_init(mm, tsk, mm->user_ns))
1232		goto fail_nomem;
1233
1234	err = dup_mmap(mm, oldmm);
1235	if (err)
1236		goto free_pt;
1237
1238	mm->hiwater_rss = get_mm_rss(mm);
1239	mm->hiwater_vm = mm->total_vm;
1240
1241	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1242		goto free_pt;
1243
1244	return mm;
1245
1246free_pt:
1247	/* don't put binfmt in mmput, we haven't got module yet */
1248	mm->binfmt = NULL;
 
1249	mmput(mm);
1250
1251fail_nomem:
1252	return NULL;
1253}
1254
1255static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1256{
1257	struct mm_struct *mm, *oldmm;
1258	int retval;
1259
1260	tsk->min_flt = tsk->maj_flt = 0;
1261	tsk->nvcsw = tsk->nivcsw = 0;
1262#ifdef CONFIG_DETECT_HUNG_TASK
1263	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 
1264#endif
1265
1266	tsk->mm = NULL;
1267	tsk->active_mm = NULL;
1268
1269	/*
1270	 * Are we cloning a kernel thread?
1271	 *
1272	 * We need to steal a active VM for that..
1273	 */
1274	oldmm = current->mm;
1275	if (!oldmm)
1276		return 0;
1277
1278	/* initialize the new vmacache entries */
1279	vmacache_flush(tsk);
1280
1281	if (clone_flags & CLONE_VM) {
1282		mmget(oldmm);
1283		mm = oldmm;
1284		goto good_mm;
1285	}
1286
1287	retval = -ENOMEM;
1288	mm = dup_mm(tsk);
1289	if (!mm)
1290		goto fail_nomem;
1291
1292good_mm:
1293	tsk->mm = mm;
1294	tsk->active_mm = mm;
1295	return 0;
1296
1297fail_nomem:
1298	return retval;
1299}
1300
1301static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1302{
1303	struct fs_struct *fs = current->fs;
1304	if (clone_flags & CLONE_FS) {
1305		/* tsk->fs is already what we want */
1306		spin_lock(&fs->lock);
1307		if (fs->in_exec) {
1308			spin_unlock(&fs->lock);
1309			return -EAGAIN;
1310		}
1311		fs->users++;
1312		spin_unlock(&fs->lock);
1313		return 0;
1314	}
1315	tsk->fs = copy_fs_struct(fs);
1316	if (!tsk->fs)
1317		return -ENOMEM;
1318	return 0;
1319}
1320
1321static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1322{
1323	struct files_struct *oldf, *newf;
1324	int error = 0;
1325
1326	/*
1327	 * A background process may not have any files ...
1328	 */
1329	oldf = current->files;
1330	if (!oldf)
1331		goto out;
1332
1333	if (clone_flags & CLONE_FILES) {
1334		atomic_inc(&oldf->count);
1335		goto out;
1336	}
1337
1338	newf = dup_fd(oldf, &error);
1339	if (!newf)
1340		goto out;
1341
1342	tsk->files = newf;
1343	error = 0;
1344out:
1345	return error;
1346}
1347
1348static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1349{
1350#ifdef CONFIG_BLOCK
1351	struct io_context *ioc = current->io_context;
1352	struct io_context *new_ioc;
1353
1354	if (!ioc)
1355		return 0;
1356	/*
1357	 * Share io context with parent, if CLONE_IO is set
1358	 */
1359	if (clone_flags & CLONE_IO) {
1360		ioc_task_link(ioc);
1361		tsk->io_context = ioc;
1362	} else if (ioprio_valid(ioc->ioprio)) {
1363		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1364		if (unlikely(!new_ioc))
1365			return -ENOMEM;
1366
1367		new_ioc->ioprio = ioc->ioprio;
1368		put_io_context(new_ioc);
1369	}
1370#endif
1371	return 0;
1372}
1373
1374static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1375{
1376	struct sighand_struct *sig;
1377
1378	if (clone_flags & CLONE_SIGHAND) {
1379		atomic_inc(&current->sighand->count);
1380		return 0;
1381	}
1382	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1383	rcu_assign_pointer(tsk->sighand, sig);
1384	if (!sig)
1385		return -ENOMEM;
1386
1387	atomic_set(&sig->count, 1);
 
1388	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
 
 
 
 
 
 
1389	return 0;
1390}
1391
1392void __cleanup_sighand(struct sighand_struct *sighand)
1393{
1394	if (atomic_dec_and_test(&sighand->count)) {
1395		signalfd_cleanup(sighand);
1396		/*
1397		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1398		 * without an RCU grace period, see __lock_task_sighand().
1399		 */
1400		kmem_cache_free(sighand_cachep, sighand);
1401	}
1402}
1403
1404#ifdef CONFIG_POSIX_TIMERS
1405/*
1406 * Initialize POSIX timer handling for a thread group.
1407 */
1408static void posix_cpu_timers_init_group(struct signal_struct *sig)
1409{
 
1410	unsigned long cpu_limit;
1411
1412	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1413	if (cpu_limit != RLIM_INFINITY) {
1414		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1415		sig->cputimer.running = true;
1416	}
1417
1418	/* The timer lists. */
1419	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1420	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1421	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1422}
1423#else
1424static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1425#endif
1426
1427static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1428{
1429	struct signal_struct *sig;
1430
1431	if (clone_flags & CLONE_THREAD)
1432		return 0;
1433
1434	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1435	tsk->signal = sig;
1436	if (!sig)
1437		return -ENOMEM;
1438
1439	sig->nr_threads = 1;
1440	atomic_set(&sig->live, 1);
1441	atomic_set(&sig->sigcnt, 1);
1442
1443	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1444	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1445	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1446
1447	init_waitqueue_head(&sig->wait_chldexit);
1448	sig->curr_target = tsk;
1449	init_sigpending(&sig->shared_pending);
 
1450	seqlock_init(&sig->stats_lock);
1451	prev_cputime_init(&sig->prev_cputime);
1452
1453#ifdef CONFIG_POSIX_TIMERS
1454	INIT_LIST_HEAD(&sig->posix_timers);
1455	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1456	sig->real_timer.function = it_real_fn;
1457#endif
1458
1459	task_lock(current->group_leader);
1460	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1461	task_unlock(current->group_leader);
1462
1463	posix_cpu_timers_init_group(sig);
1464
1465	tty_audit_fork(sig);
1466	sched_autogroup_fork(sig);
1467
1468	sig->oom_score_adj = current->signal->oom_score_adj;
1469	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1470
1471	mutex_init(&sig->cred_guard_mutex);
 
1472
1473	return 0;
1474}
1475
1476static void copy_seccomp(struct task_struct *p)
1477{
1478#ifdef CONFIG_SECCOMP
1479	/*
1480	 * Must be called with sighand->lock held, which is common to
1481	 * all threads in the group. Holding cred_guard_mutex is not
1482	 * needed because this new task is not yet running and cannot
1483	 * be racing exec.
1484	 */
1485	assert_spin_locked(&current->sighand->siglock);
1486
1487	/* Ref-count the new filter user, and assign it. */
1488	get_seccomp_filter(current);
1489	p->seccomp = current->seccomp;
1490
1491	/*
1492	 * Explicitly enable no_new_privs here in case it got set
1493	 * between the task_struct being duplicated and holding the
1494	 * sighand lock. The seccomp state and nnp must be in sync.
1495	 */
1496	if (task_no_new_privs(current))
1497		task_set_no_new_privs(p);
1498
1499	/*
1500	 * If the parent gained a seccomp mode after copying thread
1501	 * flags and between before we held the sighand lock, we have
1502	 * to manually enable the seccomp thread flag here.
1503	 */
1504	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1505		set_tsk_thread_flag(p, TIF_SECCOMP);
1506#endif
1507}
1508
1509SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1510{
1511	current->clear_child_tid = tidptr;
1512
1513	return task_pid_vnr(current);
1514}
1515
1516static void rt_mutex_init_task(struct task_struct *p)
1517{
1518	raw_spin_lock_init(&p->pi_lock);
1519#ifdef CONFIG_RT_MUTEXES
1520	p->pi_waiters = RB_ROOT_CACHED;
1521	p->pi_top_task = NULL;
1522	p->pi_blocked_on = NULL;
1523#endif
1524}
1525
1526#ifdef CONFIG_POSIX_TIMERS
1527/*
1528 * Initialize POSIX timer handling for a single task.
1529 */
1530static void posix_cpu_timers_init(struct task_struct *tsk)
1531{
1532	tsk->cputime_expires.prof_exp = 0;
1533	tsk->cputime_expires.virt_exp = 0;
1534	tsk->cputime_expires.sched_exp = 0;
1535	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1536	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1537	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1538}
1539#else
1540static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1541#endif
1542
1543static inline void
1544init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1545{
1546	 task->pids[type].pid = pid;
 
 
 
1547}
1548
1549static inline void rcu_copy_process(struct task_struct *p)
1550{
1551#ifdef CONFIG_PREEMPT_RCU
1552	p->rcu_read_lock_nesting = 0;
1553	p->rcu_read_unlock_special.s = 0;
1554	p->rcu_blocked_node = NULL;
1555	INIT_LIST_HEAD(&p->rcu_node_entry);
1556#endif /* #ifdef CONFIG_PREEMPT_RCU */
1557#ifdef CONFIG_TASKS_RCU
1558	p->rcu_tasks_holdout = false;
1559	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1560	p->rcu_tasks_idle_cpu = -1;
1561#endif /* #ifdef CONFIG_TASKS_RCU */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562}
1563
1564/*
1565 * This creates a new process as a copy of the old one,
1566 * but does not actually start it yet.
1567 *
1568 * It copies the registers, and all the appropriate
1569 * parts of the process environment (as per the clone
1570 * flags). The actual kick-off is left to the caller.
1571 */
1572static __latent_entropy struct task_struct *copy_process(
1573					unsigned long clone_flags,
1574					unsigned long stack_start,
1575					unsigned long stack_size,
1576					int __user *child_tidptr,
1577					struct pid *pid,
1578					int trace,
1579					unsigned long tls,
1580					int node)
1581{
1582	int retval;
1583	struct task_struct *p;
 
 
 
 
1584
1585	/*
1586	 * Don't allow sharing the root directory with processes in a different
1587	 * namespace
1588	 */
1589	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1590		return ERR_PTR(-EINVAL);
1591
1592	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1593		return ERR_PTR(-EINVAL);
1594
1595	/*
1596	 * Thread groups must share signals as well, and detached threads
1597	 * can only be started up within the thread group.
1598	 */
1599	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1600		return ERR_PTR(-EINVAL);
1601
1602	/*
1603	 * Shared signal handlers imply shared VM. By way of the above,
1604	 * thread groups also imply shared VM. Blocking this case allows
1605	 * for various simplifications in other code.
1606	 */
1607	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1608		return ERR_PTR(-EINVAL);
1609
1610	/*
1611	 * Siblings of global init remain as zombies on exit since they are
1612	 * not reaped by their parent (swapper). To solve this and to avoid
1613	 * multi-rooted process trees, prevent global and container-inits
1614	 * from creating siblings.
1615	 */
1616	if ((clone_flags & CLONE_PARENT) &&
1617				current->signal->flags & SIGNAL_UNKILLABLE)
1618		return ERR_PTR(-EINVAL);
1619
1620	/*
1621	 * If the new process will be in a different pid or user namespace
1622	 * do not allow it to share a thread group with the forking task.
1623	 */
1624	if (clone_flags & CLONE_THREAD) {
1625		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1626		    (task_active_pid_ns(current) !=
1627				current->nsproxy->pid_ns_for_children))
1628			return ERR_PTR(-EINVAL);
1629	}
1630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631	retval = -ENOMEM;
1632	p = dup_task_struct(current, node);
1633	if (!p)
1634		goto fork_out;
1635
1636	/*
1637	 * This _must_ happen before we call free_task(), i.e. before we jump
1638	 * to any of the bad_fork_* labels. This is to avoid freeing
1639	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1640	 * kernel threads (PF_KTHREAD).
1641	 */
1642	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1643	/*
1644	 * Clear TID on mm_release()?
1645	 */
1646	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1647
1648	ftrace_graph_init_task(p);
1649
1650	rt_mutex_init_task(p);
1651
 
1652#ifdef CONFIG_PROVE_LOCKING
1653	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1654	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1655#endif
1656	retval = -EAGAIN;
1657	if (atomic_read(&p->real_cred->user->processes) >=
1658			task_rlimit(p, RLIMIT_NPROC)) {
1659		if (p->real_cred->user != INIT_USER &&
1660		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1661			goto bad_fork_free;
1662	}
1663	current->flags &= ~PF_NPROC_EXCEEDED;
1664
1665	retval = copy_creds(p, clone_flags);
1666	if (retval < 0)
1667		goto bad_fork_free;
1668
1669	/*
1670	 * If multiple threads are within copy_process(), then this check
1671	 * triggers too late. This doesn't hurt, the check is only there
1672	 * to stop root fork bombs.
1673	 */
1674	retval = -EAGAIN;
1675	if (nr_threads >= max_threads)
1676		goto bad_fork_cleanup_count;
1677
1678	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1679	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1680	p->flags |= PF_FORKNOEXEC;
1681	INIT_LIST_HEAD(&p->children);
1682	INIT_LIST_HEAD(&p->sibling);
1683	rcu_copy_process(p);
1684	p->vfork_done = NULL;
1685	spin_lock_init(&p->alloc_lock);
1686
1687	init_sigpending(&p->pending);
1688
1689	p->utime = p->stime = p->gtime = 0;
1690#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1691	p->utimescaled = p->stimescaled = 0;
1692#endif
1693	prev_cputime_init(&p->prev_cputime);
1694
1695#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1696	seqcount_init(&p->vtime.seqcount);
1697	p->vtime.starttime = 0;
1698	p->vtime.state = VTIME_INACTIVE;
1699#endif
1700
1701#if defined(SPLIT_RSS_COUNTING)
1702	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1703#endif
1704
1705	p->default_timer_slack_ns = current->timer_slack_ns;
1706
 
 
 
 
1707	task_io_accounting_init(&p->ioac);
1708	acct_clear_integrals(p);
1709
1710	posix_cpu_timers_init(p);
1711
1712	p->start_time = ktime_get_ns();
1713	p->real_start_time = ktime_get_boot_ns();
1714	p->io_context = NULL;
1715	p->audit_context = NULL;
1716	cgroup_fork(p);
1717#ifdef CONFIG_NUMA
1718	p->mempolicy = mpol_dup(p->mempolicy);
1719	if (IS_ERR(p->mempolicy)) {
1720		retval = PTR_ERR(p->mempolicy);
1721		p->mempolicy = NULL;
1722		goto bad_fork_cleanup_threadgroup_lock;
1723	}
1724#endif
1725#ifdef CONFIG_CPUSETS
1726	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1727	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1728	seqcount_init(&p->mems_allowed_seq);
1729#endif
1730#ifdef CONFIG_TRACE_IRQFLAGS
1731	p->irq_events = 0;
1732	p->hardirqs_enabled = 0;
1733	p->hardirq_enable_ip = 0;
1734	p->hardirq_enable_event = 0;
1735	p->hardirq_disable_ip = _THIS_IP_;
1736	p->hardirq_disable_event = 0;
1737	p->softirqs_enabled = 1;
1738	p->softirq_enable_ip = _THIS_IP_;
1739	p->softirq_enable_event = 0;
1740	p->softirq_disable_ip = 0;
1741	p->softirq_disable_event = 0;
1742	p->hardirq_context = 0;
1743	p->softirq_context = 0;
1744#endif
1745
1746	p->pagefault_disabled = 0;
1747
1748#ifdef CONFIG_LOCKDEP
1749	p->lockdep_depth = 0; /* no locks held yet */
1750	p->curr_chain_key = 0;
1751	p->lockdep_recursion = 0;
1752	lockdep_init_task(p);
1753#endif
1754
1755#ifdef CONFIG_DEBUG_MUTEXES
1756	p->blocked_on = NULL; /* not blocked yet */
1757#endif
1758#ifdef CONFIG_BCACHE
1759	p->sequential_io	= 0;
1760	p->sequential_io_avg	= 0;
1761#endif
1762
1763	/* Perform scheduler related setup. Assign this task to a CPU. */
1764	retval = sched_fork(clone_flags, p);
1765	if (retval)
1766		goto bad_fork_cleanup_policy;
1767
1768	retval = perf_event_init_task(p);
1769	if (retval)
1770		goto bad_fork_cleanup_policy;
1771	retval = audit_alloc(p);
1772	if (retval)
1773		goto bad_fork_cleanup_perf;
1774	/* copy all the process information */
1775	shm_init_task(p);
1776	retval = security_task_alloc(p, clone_flags);
1777	if (retval)
1778		goto bad_fork_cleanup_audit;
1779	retval = copy_semundo(clone_flags, p);
1780	if (retval)
1781		goto bad_fork_cleanup_security;
1782	retval = copy_files(clone_flags, p);
1783	if (retval)
1784		goto bad_fork_cleanup_semundo;
1785	retval = copy_fs(clone_flags, p);
1786	if (retval)
1787		goto bad_fork_cleanup_files;
1788	retval = copy_sighand(clone_flags, p);
1789	if (retval)
1790		goto bad_fork_cleanup_fs;
1791	retval = copy_signal(clone_flags, p);
1792	if (retval)
1793		goto bad_fork_cleanup_sighand;
1794	retval = copy_mm(clone_flags, p);
1795	if (retval)
1796		goto bad_fork_cleanup_signal;
1797	retval = copy_namespaces(clone_flags, p);
1798	if (retval)
1799		goto bad_fork_cleanup_mm;
1800	retval = copy_io(clone_flags, p);
1801	if (retval)
1802		goto bad_fork_cleanup_namespaces;
1803	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1804	if (retval)
1805		goto bad_fork_cleanup_io;
1806
 
 
1807	if (pid != &init_struct_pid) {
1808		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
 
1809		if (IS_ERR(pid)) {
1810			retval = PTR_ERR(pid);
1811			goto bad_fork_cleanup_thread;
1812		}
1813	}
1814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815#ifdef CONFIG_BLOCK
1816	p->plug = NULL;
1817#endif
1818#ifdef CONFIG_FUTEX
1819	p->robust_list = NULL;
1820#ifdef CONFIG_COMPAT
1821	p->compat_robust_list = NULL;
1822#endif
1823	INIT_LIST_HEAD(&p->pi_state_list);
1824	p->pi_state_cache = NULL;
1825#endif
1826	/*
1827	 * sigaltstack should be cleared when sharing the same VM
1828	 */
1829	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1830		sas_ss_reset(p);
1831
1832	/*
1833	 * Syscall tracing and stepping should be turned off in the
1834	 * child regardless of CLONE_PTRACE.
1835	 */
1836	user_disable_single_step(p);
1837	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1838#ifdef TIF_SYSCALL_EMU
1839	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1840#endif
1841	clear_all_latency_tracing(p);
1842
1843	/* ok, now we should be set up.. */
1844	p->pid = pid_nr(pid);
1845	if (clone_flags & CLONE_THREAD) {
1846		p->exit_signal = -1;
1847		p->group_leader = current->group_leader;
1848		p->tgid = current->tgid;
1849	} else {
1850		if (clone_flags & CLONE_PARENT)
1851			p->exit_signal = current->group_leader->exit_signal;
1852		else
1853			p->exit_signal = (clone_flags & CSIGNAL);
1854		p->group_leader = p;
1855		p->tgid = p->pid;
1856	}
1857
1858	p->nr_dirtied = 0;
1859	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1860	p->dirty_paused_when = 0;
1861
1862	p->pdeath_signal = 0;
1863	INIT_LIST_HEAD(&p->thread_group);
1864	p->task_works = NULL;
1865
1866	cgroup_threadgroup_change_begin(current);
1867	/*
1868	 * Ensure that the cgroup subsystem policies allow the new process to be
1869	 * forked. It should be noted the the new process's css_set can be changed
1870	 * between here and cgroup_post_fork() if an organisation operation is in
1871	 * progress.
1872	 */
1873	retval = cgroup_can_fork(p);
1874	if (retval)
1875		goto bad_fork_free_pid;
 
 
 
 
 
 
 
 
 
 
 
1876
1877	/*
1878	 * Make it visible to the rest of the system, but dont wake it up yet.
1879	 * Need tasklist lock for parent etc handling!
1880	 */
1881	write_lock_irq(&tasklist_lock);
1882
1883	/* CLONE_PARENT re-uses the old parent */
1884	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1885		p->real_parent = current->real_parent;
1886		p->parent_exec_id = current->parent_exec_id;
1887	} else {
1888		p->real_parent = current;
1889		p->parent_exec_id = current->self_exec_id;
1890	}
1891
1892	klp_copy_process(p);
1893
1894	spin_lock(&current->sighand->siglock);
1895
1896	/*
1897	 * Copy seccomp details explicitly here, in case they were changed
1898	 * before holding sighand lock.
1899	 */
1900	copy_seccomp(p);
1901
1902	/*
1903	 * Process group and session signals need to be delivered to just the
1904	 * parent before the fork or both the parent and the child after the
1905	 * fork. Restart if a signal comes in before we add the new process to
1906	 * it's process group.
1907	 * A fatal signal pending means that current will exit, so the new
1908	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1909	*/
1910	recalc_sigpending();
1911	if (signal_pending(current)) {
1912		retval = -ERESTARTNOINTR;
1913		goto bad_fork_cancel_cgroup;
1914	}
1915	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1916		retval = -ENOMEM;
1917		goto bad_fork_cancel_cgroup;
1918	}
1919
 
 
 
 
 
 
 
 
 
 
 
1920	if (likely(p->pid)) {
1921		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1922
1923		init_task_pid(p, PIDTYPE_PID, pid);
1924		if (thread_group_leader(p)) {
 
1925			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1926			init_task_pid(p, PIDTYPE_SID, task_session(current));
1927
1928			if (is_child_reaper(pid)) {
1929				ns_of_pid(pid)->child_reaper = p;
1930				p->signal->flags |= SIGNAL_UNKILLABLE;
1931			}
1932
1933			p->signal->leader_pid = pid;
1934			p->signal->tty = tty_kref_get(current->signal->tty);
1935			/*
1936			 * Inherit has_child_subreaper flag under the same
1937			 * tasklist_lock with adding child to the process tree
1938			 * for propagate_has_child_subreaper optimization.
1939			 */
1940			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1941							 p->real_parent->signal->is_child_subreaper;
1942			list_add_tail(&p->sibling, &p->real_parent->children);
1943			list_add_tail_rcu(&p->tasks, &init_task.tasks);
 
1944			attach_pid(p, PIDTYPE_PGID);
1945			attach_pid(p, PIDTYPE_SID);
1946			__this_cpu_inc(process_counts);
1947		} else {
1948			current->signal->nr_threads++;
1949			atomic_inc(&current->signal->live);
1950			atomic_inc(&current->signal->sigcnt);
 
1951			list_add_tail_rcu(&p->thread_group,
1952					  &p->group_leader->thread_group);
1953			list_add_tail_rcu(&p->thread_node,
1954					  &p->signal->thread_head);
1955		}
1956		attach_pid(p, PIDTYPE_PID);
1957		nr_threads++;
1958	}
1959
1960	total_forks++;
 
1961	spin_unlock(&current->sighand->siglock);
1962	syscall_tracepoint_update(p);
1963	write_unlock_irq(&tasklist_lock);
1964
1965	proc_fork_connector(p);
1966	cgroup_post_fork(p);
1967	cgroup_threadgroup_change_end(current);
1968	perf_event_fork(p);
1969
1970	trace_task_newtask(p, clone_flags);
1971	uprobe_copy_process(p, clone_flags);
1972
1973	return p;
1974
1975bad_fork_cancel_cgroup:
1976	spin_unlock(&current->sighand->siglock);
1977	write_unlock_irq(&tasklist_lock);
1978	cgroup_cancel_fork(p);
 
 
 
 
 
1979bad_fork_free_pid:
1980	cgroup_threadgroup_change_end(current);
1981	if (pid != &init_struct_pid)
1982		free_pid(pid);
1983bad_fork_cleanup_thread:
1984	exit_thread(p);
1985bad_fork_cleanup_io:
1986	if (p->io_context)
1987		exit_io_context(p);
1988bad_fork_cleanup_namespaces:
1989	exit_task_namespaces(p);
1990bad_fork_cleanup_mm:
1991	if (p->mm)
 
1992		mmput(p->mm);
 
1993bad_fork_cleanup_signal:
1994	if (!(clone_flags & CLONE_THREAD))
1995		free_signal_struct(p->signal);
1996bad_fork_cleanup_sighand:
1997	__cleanup_sighand(p->sighand);
1998bad_fork_cleanup_fs:
1999	exit_fs(p); /* blocking */
2000bad_fork_cleanup_files:
2001	exit_files(p); /* blocking */
2002bad_fork_cleanup_semundo:
2003	exit_sem(p);
2004bad_fork_cleanup_security:
2005	security_task_free(p);
2006bad_fork_cleanup_audit:
2007	audit_free(p);
2008bad_fork_cleanup_perf:
2009	perf_event_free_task(p);
2010bad_fork_cleanup_policy:
2011	lockdep_free_task(p);
2012#ifdef CONFIG_NUMA
2013	mpol_put(p->mempolicy);
2014bad_fork_cleanup_threadgroup_lock:
2015#endif
2016	delayacct_tsk_free(p);
2017bad_fork_cleanup_count:
2018	atomic_dec(&p->cred->user->processes);
2019	exit_creds(p);
2020bad_fork_free:
2021	p->state = TASK_DEAD;
2022	put_task_stack(p);
2023	free_task(p);
2024fork_out:
 
 
 
2025	return ERR_PTR(retval);
2026}
2027
2028static inline void init_idle_pids(struct pid_link *links)
2029{
2030	enum pid_type type;
2031
2032	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2033		INIT_HLIST_NODE(&links[type].node); /* not really needed */
2034		links[type].pid = &init_struct_pid;
2035	}
2036}
2037
2038struct task_struct *fork_idle(int cpu)
2039{
2040	struct task_struct *task;
2041	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2042			    cpu_to_node(cpu));
 
 
 
2043	if (!IS_ERR(task)) {
2044		init_idle_pids(task->pids);
2045		init_idle(task, cpu);
2046	}
2047
2048	return task;
2049}
2050
 
 
 
 
 
2051/*
2052 *  Ok, this is the main fork-routine.
2053 *
2054 * It copies the process, and if successful kick-starts
2055 * it and waits for it to finish using the VM if required.
 
 
2056 */
2057long _do_fork(unsigned long clone_flags,
2058	      unsigned long stack_start,
2059	      unsigned long stack_size,
2060	      int __user *parent_tidptr,
2061	      int __user *child_tidptr,
2062	      unsigned long tls)
2063{
 
2064	struct completion vfork;
2065	struct pid *pid;
2066	struct task_struct *p;
2067	int trace = 0;
2068	long nr;
2069
2070	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2071	 * Determine whether and which event to report to ptracer.  When
2072	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2073	 * requested, no event is reported; otherwise, report if the event
2074	 * for the type of forking is enabled.
2075	 */
2076	if (!(clone_flags & CLONE_UNTRACED)) {
2077		if (clone_flags & CLONE_VFORK)
2078			trace = PTRACE_EVENT_VFORK;
2079		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2080			trace = PTRACE_EVENT_CLONE;
2081		else
2082			trace = PTRACE_EVENT_FORK;
2083
2084		if (likely(!ptrace_event_enabled(current, trace)))
2085			trace = 0;
2086	}
2087
2088	p = copy_process(clone_flags, stack_start, stack_size,
2089			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2090	add_latent_entropy();
2091
2092	if (IS_ERR(p))
2093		return PTR_ERR(p);
2094
2095	/*
2096	 * Do this prior waking up the new thread - the thread pointer
2097	 * might get invalid after that point, if the thread exits quickly.
2098	 */
2099	trace_sched_process_fork(current, p);
2100
2101	pid = get_task_pid(p, PIDTYPE_PID);
2102	nr = pid_vnr(pid);
2103
2104	if (clone_flags & CLONE_PARENT_SETTID)
2105		put_user(nr, parent_tidptr);
2106
2107	if (clone_flags & CLONE_VFORK) {
2108		p->vfork_done = &vfork;
2109		init_completion(&vfork);
2110		get_task_struct(p);
2111	}
2112
2113	wake_up_new_task(p);
2114
2115	/* forking complete and child started to run, tell ptracer */
2116	if (unlikely(trace))
2117		ptrace_event_pid(trace, pid);
2118
2119	if (clone_flags & CLONE_VFORK) {
2120		if (!wait_for_vfork_done(p, &vfork))
2121			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2122	}
2123
2124	put_pid(pid);
2125	return nr;
2126}
2127
2128#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2129/* For compatibility with architectures that call do_fork directly rather than
2130 * using the syscall entry points below. */
2131long do_fork(unsigned long clone_flags,
2132	      unsigned long stack_start,
2133	      unsigned long stack_size,
2134	      int __user *parent_tidptr,
2135	      int __user *child_tidptr)
2136{
2137	return _do_fork(clone_flags, stack_start, stack_size,
2138			parent_tidptr, child_tidptr, 0);
2139}
2140#endif
2141
2142/*
2143 * Create a kernel thread.
2144 */
2145pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2146{
2147	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2148		(unsigned long)arg, NULL, NULL, 0);
 
 
 
 
 
 
 
2149}
2150
2151#ifdef __ARCH_WANT_SYS_FORK
2152SYSCALL_DEFINE0(fork)
2153{
2154#ifdef CONFIG_MMU
2155	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
 
 
 
 
2156#else
2157	/* can not support in nommu mode */
2158	return -EINVAL;
2159#endif
2160}
2161#endif
2162
2163#ifdef __ARCH_WANT_SYS_VFORK
2164SYSCALL_DEFINE0(vfork)
2165{
2166	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2167			0, NULL, NULL, 0);
 
 
 
 
2168}
2169#endif
2170
2171#ifdef __ARCH_WANT_SYS_CLONE
2172#ifdef CONFIG_CLONE_BACKWARDS
2173SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2174		 int __user *, parent_tidptr,
2175		 unsigned long, tls,
2176		 int __user *, child_tidptr)
2177#elif defined(CONFIG_CLONE_BACKWARDS2)
2178SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2179		 int __user *, parent_tidptr,
2180		 int __user *, child_tidptr,
2181		 unsigned long, tls)
2182#elif defined(CONFIG_CLONE_BACKWARDS3)
2183SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2184		int, stack_size,
2185		int __user *, parent_tidptr,
2186		int __user *, child_tidptr,
2187		unsigned long, tls)
2188#else
2189SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2190		 int __user *, parent_tidptr,
2191		 int __user *, child_tidptr,
2192		 unsigned long, tls)
2193#endif
2194{
2195	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196}
2197#endif
2198
2199void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2200{
2201	struct task_struct *leader, *parent, *child;
2202	int res;
2203
2204	read_lock(&tasklist_lock);
2205	leader = top = top->group_leader;
2206down:
2207	for_each_thread(leader, parent) {
2208		list_for_each_entry(child, &parent->children, sibling) {
2209			res = visitor(child, data);
2210			if (res) {
2211				if (res < 0)
2212					goto out;
2213				leader = child;
2214				goto down;
2215			}
2216up:
2217			;
2218		}
2219	}
2220
2221	if (leader != top) {
2222		child = leader;
2223		parent = child->real_parent;
2224		leader = parent->group_leader;
2225		goto up;
2226	}
2227out:
2228	read_unlock(&tasklist_lock);
2229}
2230
2231#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2232#define ARCH_MIN_MMSTRUCT_ALIGN 0
2233#endif
2234
2235static void sighand_ctor(void *data)
2236{
2237	struct sighand_struct *sighand = data;
2238
2239	spin_lock_init(&sighand->siglock);
2240	init_waitqueue_head(&sighand->signalfd_wqh);
2241}
2242
2243void __init proc_caches_init(void)
2244{
 
 
2245	sighand_cachep = kmem_cache_create("sighand_cache",
2246			sizeof(struct sighand_struct), 0,
2247			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2248			SLAB_ACCOUNT, sighand_ctor);
2249	signal_cachep = kmem_cache_create("signal_cache",
2250			sizeof(struct signal_struct), 0,
2251			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2252			NULL);
2253	files_cachep = kmem_cache_create("files_cache",
2254			sizeof(struct files_struct), 0,
2255			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2256			NULL);
2257	fs_cachep = kmem_cache_create("fs_cache",
2258			sizeof(struct fs_struct), 0,
2259			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2260			NULL);
 
2261	/*
2262	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2263	 * whole struct cpumask for the OFFSTACK case. We could change
2264	 * this to *only* allocate as much of it as required by the
2265	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2266	 * is at the end of the structure, exactly for that reason.
2267	 */
 
 
2268	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2269			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2270			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2271			offsetof(struct mm_struct, saved_auxv),
2272			sizeof_field(struct mm_struct, saved_auxv),
2273			NULL);
2274	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2275	mmap_init();
2276	nsproxy_cache_init();
2277}
2278
2279/*
2280 * Check constraints on flags passed to the unshare system call.
2281 */
2282static int check_unshare_flags(unsigned long unshare_flags)
2283{
2284	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2285				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2286				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2287				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
 
2288		return -EINVAL;
2289	/*
2290	 * Not implemented, but pretend it works if there is nothing
2291	 * to unshare.  Note that unsharing the address space or the
2292	 * signal handlers also need to unshare the signal queues (aka
2293	 * CLONE_THREAD).
2294	 */
2295	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2296		if (!thread_group_empty(current))
2297			return -EINVAL;
2298	}
2299	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2300		if (atomic_read(&current->sighand->count) > 1)
2301			return -EINVAL;
2302	}
2303	if (unshare_flags & CLONE_VM) {
2304		if (!current_is_single_threaded())
2305			return -EINVAL;
2306	}
2307
2308	return 0;
2309}
2310
2311/*
2312 * Unshare the filesystem structure if it is being shared
2313 */
2314static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2315{
2316	struct fs_struct *fs = current->fs;
2317
2318	if (!(unshare_flags & CLONE_FS) || !fs)
2319		return 0;
2320
2321	/* don't need lock here; in the worst case we'll do useless copy */
2322	if (fs->users == 1)
2323		return 0;
2324
2325	*new_fsp = copy_fs_struct(fs);
2326	if (!*new_fsp)
2327		return -ENOMEM;
2328
2329	return 0;
2330}
2331
2332/*
2333 * Unshare file descriptor table if it is being shared
2334 */
2335static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
 
2336{
2337	struct files_struct *fd = current->files;
2338	int error = 0;
2339
2340	if ((unshare_flags & CLONE_FILES) &&
2341	    (fd && atomic_read(&fd->count) > 1)) {
2342		*new_fdp = dup_fd(fd, &error);
2343		if (!*new_fdp)
2344			return error;
2345	}
2346
2347	return 0;
2348}
2349
2350/*
2351 * unshare allows a process to 'unshare' part of the process
2352 * context which was originally shared using clone.  copy_*
2353 * functions used by do_fork() cannot be used here directly
2354 * because they modify an inactive task_struct that is being
2355 * constructed. Here we are modifying the current, active,
2356 * task_struct.
2357 */
2358int ksys_unshare(unsigned long unshare_flags)
2359{
2360	struct fs_struct *fs, *new_fs = NULL;
2361	struct files_struct *fd, *new_fd = NULL;
2362	struct cred *new_cred = NULL;
2363	struct nsproxy *new_nsproxy = NULL;
2364	int do_sysvsem = 0;
2365	int err;
2366
2367	/*
2368	 * If unsharing a user namespace must also unshare the thread group
2369	 * and unshare the filesystem root and working directories.
2370	 */
2371	if (unshare_flags & CLONE_NEWUSER)
2372		unshare_flags |= CLONE_THREAD | CLONE_FS;
2373	/*
2374	 * If unsharing vm, must also unshare signal handlers.
2375	 */
2376	if (unshare_flags & CLONE_VM)
2377		unshare_flags |= CLONE_SIGHAND;
2378	/*
2379	 * If unsharing a signal handlers, must also unshare the signal queues.
2380	 */
2381	if (unshare_flags & CLONE_SIGHAND)
2382		unshare_flags |= CLONE_THREAD;
2383	/*
2384	 * If unsharing namespace, must also unshare filesystem information.
2385	 */
2386	if (unshare_flags & CLONE_NEWNS)
2387		unshare_flags |= CLONE_FS;
2388
2389	err = check_unshare_flags(unshare_flags);
2390	if (err)
2391		goto bad_unshare_out;
2392	/*
2393	 * CLONE_NEWIPC must also detach from the undolist: after switching
2394	 * to a new ipc namespace, the semaphore arrays from the old
2395	 * namespace are unreachable.
2396	 */
2397	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2398		do_sysvsem = 1;
2399	err = unshare_fs(unshare_flags, &new_fs);
2400	if (err)
2401		goto bad_unshare_out;
2402	err = unshare_fd(unshare_flags, &new_fd);
2403	if (err)
2404		goto bad_unshare_cleanup_fs;
2405	err = unshare_userns(unshare_flags, &new_cred);
2406	if (err)
2407		goto bad_unshare_cleanup_fd;
2408	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2409					 new_cred, new_fs);
2410	if (err)
2411		goto bad_unshare_cleanup_cred;
2412
2413	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2414		if (do_sysvsem) {
2415			/*
2416			 * CLONE_SYSVSEM is equivalent to sys_exit().
2417			 */
2418			exit_sem(current);
2419		}
2420		if (unshare_flags & CLONE_NEWIPC) {
2421			/* Orphan segments in old ns (see sem above). */
2422			exit_shm(current);
2423			shm_init_task(current);
2424		}
2425
2426		if (new_nsproxy)
2427			switch_task_namespaces(current, new_nsproxy);
2428
2429		task_lock(current);
2430
2431		if (new_fs) {
2432			fs = current->fs;
2433			spin_lock(&fs->lock);
2434			current->fs = new_fs;
2435			if (--fs->users)
2436				new_fs = NULL;
2437			else
2438				new_fs = fs;
2439			spin_unlock(&fs->lock);
2440		}
2441
2442		if (new_fd) {
2443			fd = current->files;
2444			current->files = new_fd;
2445			new_fd = fd;
2446		}
2447
2448		task_unlock(current);
2449
2450		if (new_cred) {
2451			/* Install the new user namespace */
2452			commit_creds(new_cred);
2453			new_cred = NULL;
2454		}
2455	}
2456
2457	perf_event_namespaces(current);
2458
2459bad_unshare_cleanup_cred:
2460	if (new_cred)
2461		put_cred(new_cred);
2462bad_unshare_cleanup_fd:
2463	if (new_fd)
2464		put_files_struct(new_fd);
2465
2466bad_unshare_cleanup_fs:
2467	if (new_fs)
2468		free_fs_struct(new_fs);
2469
2470bad_unshare_out:
2471	return err;
2472}
2473
2474SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2475{
2476	return ksys_unshare(unshare_flags);
2477}
2478
2479/*
2480 *	Helper to unshare the files of the current task.
2481 *	We don't want to expose copy_files internals to
2482 *	the exec layer of the kernel.
2483 */
2484
2485int unshare_files(struct files_struct **displaced)
2486{
2487	struct task_struct *task = current;
2488	struct files_struct *copy = NULL;
2489	int error;
2490
2491	error = unshare_fd(CLONE_FILES, &copy);
2492	if (error || !copy) {
2493		*displaced = NULL;
2494		return error;
2495	}
2496	*displaced = task->files;
2497	task_lock(task);
2498	task->files = copy;
2499	task_unlock(task);
2500	return 0;
2501}
2502
2503int sysctl_max_threads(struct ctl_table *table, int write,
2504		       void __user *buffer, size_t *lenp, loff_t *ppos)
2505{
2506	struct ctl_table t;
2507	int ret;
2508	int threads = max_threads;
2509	int min = MIN_THREADS;
2510	int max = MAX_THREADS;
2511
2512	t = *table;
2513	t.data = &threads;
2514	t.extra1 = &min;
2515	t.extra2 = &max;
2516
2517	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2518	if (ret || !write)
2519		return ret;
2520
2521	set_max_threads(threads);
2522
2523	return 0;
2524}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/binfmts.h>
  41#include <linux/mman.h>
  42#include <linux/mmu_notifier.h>
 
  43#include <linux/fs.h>
  44#include <linux/mm.h>
  45#include <linux/vmacache.h>
  46#include <linux/nsproxy.h>
  47#include <linux/capability.h>
  48#include <linux/cpu.h>
  49#include <linux/cgroup.h>
  50#include <linux/security.h>
  51#include <linux/hugetlb.h>
  52#include <linux/seccomp.h>
  53#include <linux/swap.h>
  54#include <linux/syscalls.h>
  55#include <linux/jiffies.h>
  56#include <linux/futex.h>
  57#include <linux/compat.h>
  58#include <linux/kthread.h>
  59#include <linux/task_io_accounting_ops.h>
  60#include <linux/rcupdate.h>
  61#include <linux/ptrace.h>
  62#include <linux/mount.h>
  63#include <linux/audit.h>
  64#include <linux/memcontrol.h>
  65#include <linux/ftrace.h>
  66#include <linux/proc_fs.h>
  67#include <linux/profile.h>
  68#include <linux/rmap.h>
  69#include <linux/ksm.h>
  70#include <linux/acct.h>
  71#include <linux/userfaultfd_k.h>
  72#include <linux/tsacct_kern.h>
  73#include <linux/cn_proc.h>
  74#include <linux/freezer.h>
  75#include <linux/delayacct.h>
  76#include <linux/taskstats_kern.h>
  77#include <linux/random.h>
  78#include <linux/tty.h>
  79#include <linux/blkdev.h>
  80#include <linux/fs_struct.h>
  81#include <linux/magic.h>
 
  82#include <linux/perf_event.h>
  83#include <linux/posix-timers.h>
  84#include <linux/user-return-notifier.h>
  85#include <linux/oom.h>
  86#include <linux/khugepaged.h>
  87#include <linux/signalfd.h>
  88#include <linux/uprobes.h>
  89#include <linux/aio.h>
  90#include <linux/compiler.h>
  91#include <linux/sysctl.h>
  92#include <linux/kcov.h>
  93#include <linux/livepatch.h>
  94#include <linux/thread_info.h>
  95#include <linux/stackleak.h>
  96#include <linux/kasan.h>
  97#include <linux/scs.h>
  98
 
  99#include <asm/pgalloc.h>
 100#include <linux/uaccess.h>
 101#include <asm/mmu_context.h>
 102#include <asm/cacheflush.h>
 103#include <asm/tlbflush.h>
 104
 105#include <trace/events/sched.h>
 106
 107#define CREATE_TRACE_POINTS
 108#include <trace/events/task.h>
 109
 110/*
 111 * Minimum number of threads to boot the kernel
 112 */
 113#define MIN_THREADS 20
 114
 115/*
 116 * Maximum number of threads
 117 */
 118#define MAX_THREADS FUTEX_TID_MASK
 119
 120/*
 121 * Protected counters by write_lock_irq(&tasklist_lock)
 122 */
 123unsigned long total_forks;	/* Handle normal Linux uptimes. */
 124int nr_threads;			/* The idle threads do not count.. */
 125
 126static int max_threads;		/* tunable limit on nr_threads */
 127
 128#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 129
 130static const char * const resident_page_types[] = {
 131	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 132	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 133	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 134	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 135};
 136
 137DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 138
 139__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 140
 141#ifdef CONFIG_PROVE_RCU
 142int lockdep_tasklist_lock_is_held(void)
 143{
 144	return lockdep_is_held(&tasklist_lock);
 145}
 146EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 147#endif /* #ifdef CONFIG_PROVE_RCU */
 148
 149int nr_processes(void)
 150{
 151	int cpu;
 152	int total = 0;
 153
 154	for_each_possible_cpu(cpu)
 155		total += per_cpu(process_counts, cpu);
 156
 157	return total;
 158}
 159
 160void __weak arch_release_task_struct(struct task_struct *tsk)
 161{
 162}
 163
 164#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 165static struct kmem_cache *task_struct_cachep;
 166
 167static inline struct task_struct *alloc_task_struct_node(int node)
 168{
 169	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 170}
 171
 172static inline void free_task_struct(struct task_struct *tsk)
 173{
 174	kmem_cache_free(task_struct_cachep, tsk);
 175}
 176#endif
 177
 
 
 
 
 178#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 179
 180/*
 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 182 * kmemcache based allocator.
 183 */
 184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 185
 186#ifdef CONFIG_VMAP_STACK
 187/*
 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 189 * flush.  Try to minimize the number of calls by caching stacks.
 190 */
 191#define NR_CACHED_STACKS 2
 192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 193
 194static int free_vm_stack_cache(unsigned int cpu)
 195{
 196	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 197	int i;
 198
 199	for (i = 0; i < NR_CACHED_STACKS; i++) {
 200		struct vm_struct *vm_stack = cached_vm_stacks[i];
 201
 202		if (!vm_stack)
 203			continue;
 204
 205		vfree(vm_stack->addr);
 206		cached_vm_stacks[i] = NULL;
 207	}
 208
 209	return 0;
 210}
 211#endif
 212
 213static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 214{
 215#ifdef CONFIG_VMAP_STACK
 216	void *stack;
 217	int i;
 218
 219	for (i = 0; i < NR_CACHED_STACKS; i++) {
 220		struct vm_struct *s;
 221
 222		s = this_cpu_xchg(cached_stacks[i], NULL);
 223
 224		if (!s)
 225			continue;
 226
 227		/* Clear the KASAN shadow of the stack. */
 228		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
 229
 230		/* Clear stale pointers from reused stack. */
 231		memset(s->addr, 0, THREAD_SIZE);
 232
 233		tsk->stack_vm_area = s;
 234		tsk->stack = s->addr;
 235		return s->addr;
 236	}
 237
 238	/*
 239	 * Allocated stacks are cached and later reused by new threads,
 240	 * so memcg accounting is performed manually on assigning/releasing
 241	 * stacks to tasks. Drop __GFP_ACCOUNT.
 242	 */
 243	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 244				     VMALLOC_START, VMALLOC_END,
 245				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 246				     PAGE_KERNEL,
 247				     0, node, __builtin_return_address(0));
 248
 249	/*
 250	 * We can't call find_vm_area() in interrupt context, and
 251	 * free_thread_stack() can be called in interrupt context,
 252	 * so cache the vm_struct.
 253	 */
 254	if (stack) {
 255		tsk->stack_vm_area = find_vm_area(stack);
 256		tsk->stack = stack;
 257	}
 258	return stack;
 259#else
 260	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 261					     THREAD_SIZE_ORDER);
 262
 263	if (likely(page)) {
 264		tsk->stack = kasan_reset_tag(page_address(page));
 265		return tsk->stack;
 266	}
 267	return NULL;
 268#endif
 269}
 270
 271static inline void free_thread_stack(struct task_struct *tsk)
 272{
 273#ifdef CONFIG_VMAP_STACK
 274	struct vm_struct *vm = task_stack_vm_area(tsk);
 275
 276	if (vm) {
 277		int i;
 278
 279		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 280			memcg_kmem_uncharge_page(vm->pages[i], 0);
 281
 282		for (i = 0; i < NR_CACHED_STACKS; i++) {
 283			if (this_cpu_cmpxchg(cached_stacks[i],
 284					NULL, tsk->stack_vm_area) != NULL)
 285				continue;
 286
 287			return;
 288		}
 289
 290		vfree_atomic(tsk->stack);
 291		return;
 292	}
 293#endif
 294
 295	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 296}
 297# else
 298static struct kmem_cache *thread_stack_cache;
 299
 300static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 301						  int node)
 302{
 303	unsigned long *stack;
 304	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 305	stack = kasan_reset_tag(stack);
 306	tsk->stack = stack;
 307	return stack;
 308}
 309
 310static void free_thread_stack(struct task_struct *tsk)
 311{
 312	kmem_cache_free(thread_stack_cache, tsk->stack);
 313}
 314
 315void thread_stack_cache_init(void)
 316{
 317	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 318					THREAD_SIZE, THREAD_SIZE, 0, 0,
 319					THREAD_SIZE, NULL);
 320	BUG_ON(thread_stack_cache == NULL);
 321}
 322# endif
 323#endif
 324
 325/* SLAB cache for signal_struct structures (tsk->signal) */
 326static struct kmem_cache *signal_cachep;
 327
 328/* SLAB cache for sighand_struct structures (tsk->sighand) */
 329struct kmem_cache *sighand_cachep;
 330
 331/* SLAB cache for files_struct structures (tsk->files) */
 332struct kmem_cache *files_cachep;
 333
 334/* SLAB cache for fs_struct structures (tsk->fs) */
 335struct kmem_cache *fs_cachep;
 336
 337/* SLAB cache for vm_area_struct structures */
 338static struct kmem_cache *vm_area_cachep;
 339
 340/* SLAB cache for mm_struct structures (tsk->mm) */
 341static struct kmem_cache *mm_cachep;
 342
 343struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 344{
 345	struct vm_area_struct *vma;
 346
 347	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 348	if (vma)
 349		vma_init(vma, mm);
 350	return vma;
 351}
 352
 353struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 354{
 355	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 356
 357	if (new) {
 358		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 359		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 360		/*
 361		 * orig->shared.rb may be modified concurrently, but the clone
 362		 * will be reinitialized.
 363		 */
 364		*new = data_race(*orig);
 365		INIT_LIST_HEAD(&new->anon_vma_chain);
 366		new->vm_next = new->vm_prev = NULL;
 367	}
 368	return new;
 369}
 370
 371void vm_area_free(struct vm_area_struct *vma)
 372{
 373	kmem_cache_free(vm_area_cachep, vma);
 374}
 375
 376static void account_kernel_stack(struct task_struct *tsk, int account)
 377{
 378	void *stack = task_stack_page(tsk);
 379	struct vm_struct *vm = task_stack_vm_area(tsk);
 380
 381
 382	/* All stack pages are in the same node. */
 383	if (vm)
 384		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
 385				      account * (THREAD_SIZE / 1024));
 386	else
 387		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
 388				      account * (THREAD_SIZE / 1024));
 389}
 390
 391static int memcg_charge_kernel_stack(struct task_struct *tsk)
 392{
 393#ifdef CONFIG_VMAP_STACK
 394	struct vm_struct *vm = task_stack_vm_area(tsk);
 395	int ret;
 396
 397	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 398
 399	if (vm) {
 400		int i;
 401
 402		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 403
 404		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 405			/*
 406			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
 407			 * pointer is NULL, and memcg_kmem_uncharge_page() in
 408			 * free_thread_stack() will ignore this page.
 409			 */
 410			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
 411						     0);
 412			if (ret)
 413				return ret;
 414		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415	}
 416#endif
 417	return 0;
 418}
 419
 420static void release_task_stack(struct task_struct *tsk)
 421{
 422	if (WARN_ON(tsk->state != TASK_DEAD))
 423		return;  /* Better to leak the stack than to free prematurely */
 424
 425	account_kernel_stack(tsk, -1);
 
 426	free_thread_stack(tsk);
 427	tsk->stack = NULL;
 428#ifdef CONFIG_VMAP_STACK
 429	tsk->stack_vm_area = NULL;
 430#endif
 431}
 432
 433#ifdef CONFIG_THREAD_INFO_IN_TASK
 434void put_task_stack(struct task_struct *tsk)
 435{
 436	if (refcount_dec_and_test(&tsk->stack_refcount))
 437		release_task_stack(tsk);
 438}
 439#endif
 440
 441void free_task(struct task_struct *tsk)
 442{
 443	scs_release(tsk);
 444
 445#ifndef CONFIG_THREAD_INFO_IN_TASK
 446	/*
 447	 * The task is finally done with both the stack and thread_info,
 448	 * so free both.
 449	 */
 450	release_task_stack(tsk);
 451#else
 452	/*
 453	 * If the task had a separate stack allocation, it should be gone
 454	 * by now.
 455	 */
 456	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 457#endif
 458	rt_mutex_debug_task_free(tsk);
 459	ftrace_graph_exit_task(tsk);
 
 460	arch_release_task_struct(tsk);
 461	if (tsk->flags & PF_KTHREAD)
 462		free_kthread_struct(tsk);
 463	free_task_struct(tsk);
 464}
 465EXPORT_SYMBOL(free_task);
 466
 467#ifdef CONFIG_MMU
 468static __latent_entropy int dup_mmap(struct mm_struct *mm,
 469					struct mm_struct *oldmm)
 470{
 471	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 472	struct rb_node **rb_link, *rb_parent;
 473	int retval;
 474	unsigned long charge;
 475	LIST_HEAD(uf);
 476
 477	uprobe_start_dup_mmap();
 478	if (mmap_write_lock_killable(oldmm)) {
 479		retval = -EINTR;
 480		goto fail_uprobe_end;
 481	}
 482	flush_cache_dup_mm(oldmm);
 483	uprobe_dup_mmap(oldmm, mm);
 484	/*
 485	 * Not linked in yet - no deadlock potential:
 486	 */
 487	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 488
 489	/* No ordering required: file already has been exposed. */
 490	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 491
 492	mm->total_vm = oldmm->total_vm;
 493	mm->data_vm = oldmm->data_vm;
 494	mm->exec_vm = oldmm->exec_vm;
 495	mm->stack_vm = oldmm->stack_vm;
 496
 497	rb_link = &mm->mm_rb.rb_node;
 498	rb_parent = NULL;
 499	pprev = &mm->mmap;
 500	retval = ksm_fork(mm, oldmm);
 501	if (retval)
 502		goto out;
 503	retval = khugepaged_fork(mm, oldmm);
 504	if (retval)
 505		goto out;
 506
 507	prev = NULL;
 508	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 509		struct file *file;
 510
 511		if (mpnt->vm_flags & VM_DONTCOPY) {
 512			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 513			continue;
 514		}
 515		charge = 0;
 516		/*
 517		 * Don't duplicate many vmas if we've been oom-killed (for
 518		 * example)
 519		 */
 520		if (fatal_signal_pending(current)) {
 521			retval = -EINTR;
 522			goto out;
 523		}
 524		if (mpnt->vm_flags & VM_ACCOUNT) {
 525			unsigned long len = vma_pages(mpnt);
 526
 527			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 528				goto fail_nomem;
 529			charge = len;
 530		}
 531		tmp = vm_area_dup(mpnt);
 532		if (!tmp)
 533			goto fail_nomem;
 
 
 534		retval = vma_dup_policy(mpnt, tmp);
 535		if (retval)
 536			goto fail_nomem_policy;
 537		tmp->vm_mm = mm;
 538		retval = dup_userfaultfd(tmp, &uf);
 539		if (retval)
 540			goto fail_nomem_anon_vma_fork;
 541		if (tmp->vm_flags & VM_WIPEONFORK) {
 542			/*
 543			 * VM_WIPEONFORK gets a clean slate in the child.
 544			 * Don't prepare anon_vma until fault since we don't
 545			 * copy page for current vma.
 546			 */
 547			tmp->anon_vma = NULL;
 
 
 548		} else if (anon_vma_fork(tmp, mpnt))
 549			goto fail_nomem_anon_vma_fork;
 550		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 
 551		file = tmp->vm_file;
 552		if (file) {
 553			struct inode *inode = file_inode(file);
 554			struct address_space *mapping = file->f_mapping;
 555
 556			get_file(file);
 557			if (tmp->vm_flags & VM_DENYWRITE)
 558				atomic_dec(&inode->i_writecount);
 559			i_mmap_lock_write(mapping);
 560			if (tmp->vm_flags & VM_SHARED)
 561				atomic_inc(&mapping->i_mmap_writable);
 562			flush_dcache_mmap_lock(mapping);
 563			/* insert tmp into the share list, just after mpnt */
 564			vma_interval_tree_insert_after(tmp, mpnt,
 565					&mapping->i_mmap);
 566			flush_dcache_mmap_unlock(mapping);
 567			i_mmap_unlock_write(mapping);
 568		}
 569
 570		/*
 571		 * Clear hugetlb-related page reserves for children. This only
 572		 * affects MAP_PRIVATE mappings. Faults generated by the child
 573		 * are not guaranteed to succeed, even if read-only
 574		 */
 575		if (is_vm_hugetlb_page(tmp))
 576			reset_vma_resv_huge_pages(tmp);
 577
 578		/*
 579		 * Link in the new vma and copy the page table entries.
 580		 */
 581		*pprev = tmp;
 582		pprev = &tmp->vm_next;
 583		tmp->vm_prev = prev;
 584		prev = tmp;
 585
 586		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 587		rb_link = &tmp->vm_rb.rb_right;
 588		rb_parent = &tmp->vm_rb;
 589
 590		mm->map_count++;
 591		if (!(tmp->vm_flags & VM_WIPEONFORK))
 592			retval = copy_page_range(mm, oldmm, mpnt, tmp);
 593
 594		if (tmp->vm_ops && tmp->vm_ops->open)
 595			tmp->vm_ops->open(tmp);
 596
 597		if (retval)
 598			goto out;
 599	}
 600	/* a new mm has just been created */
 601	retval = arch_dup_mmap(oldmm, mm);
 
 602out:
 603	mmap_write_unlock(mm);
 604	flush_tlb_mm(oldmm);
 605	mmap_write_unlock(oldmm);
 606	dup_userfaultfd_complete(&uf);
 607fail_uprobe_end:
 608	uprobe_end_dup_mmap();
 609	return retval;
 610fail_nomem_anon_vma_fork:
 611	mpol_put(vma_policy(tmp));
 612fail_nomem_policy:
 613	vm_area_free(tmp);
 614fail_nomem:
 615	retval = -ENOMEM;
 616	vm_unacct_memory(charge);
 617	goto out;
 618}
 619
 620static inline int mm_alloc_pgd(struct mm_struct *mm)
 621{
 622	mm->pgd = pgd_alloc(mm);
 623	if (unlikely(!mm->pgd))
 624		return -ENOMEM;
 625	return 0;
 626}
 627
 628static inline void mm_free_pgd(struct mm_struct *mm)
 629{
 630	pgd_free(mm, mm->pgd);
 631}
 632#else
 633static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 634{
 635	mmap_write_lock(oldmm);
 636	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 637	mmap_write_unlock(oldmm);
 638	return 0;
 639}
 640#define mm_alloc_pgd(mm)	(0)
 641#define mm_free_pgd(mm)
 642#endif /* CONFIG_MMU */
 643
 644static void check_mm(struct mm_struct *mm)
 645{
 646	int i;
 647
 648	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 649			 "Please make sure 'struct resident_page_types[]' is updated as well");
 650
 651	for (i = 0; i < NR_MM_COUNTERS; i++) {
 652		long x = atomic_long_read(&mm->rss_stat.count[i]);
 653
 654		if (unlikely(x))
 655			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 656				 mm, resident_page_types[i], x);
 657	}
 658
 659	if (mm_pgtables_bytes(mm))
 660		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 661				mm_pgtables_bytes(mm));
 662
 663#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 664	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 665#endif
 666}
 667
 668#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 669#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 670
 671/*
 672 * Called when the last reference to the mm
 673 * is dropped: either by a lazy thread or by
 674 * mmput. Free the page directory and the mm.
 675 */
 676void __mmdrop(struct mm_struct *mm)
 677{
 678	BUG_ON(mm == &init_mm);
 679	WARN_ON_ONCE(mm == current->mm);
 680	WARN_ON_ONCE(mm == current->active_mm);
 681	mm_free_pgd(mm);
 682	destroy_context(mm);
 683	mmu_notifier_subscriptions_destroy(mm);
 
 684	check_mm(mm);
 685	put_user_ns(mm->user_ns);
 686	free_mm(mm);
 687}
 688EXPORT_SYMBOL_GPL(__mmdrop);
 689
 690static void mmdrop_async_fn(struct work_struct *work)
 691{
 692	struct mm_struct *mm;
 693
 694	mm = container_of(work, struct mm_struct, async_put_work);
 695	__mmdrop(mm);
 696}
 697
 698static void mmdrop_async(struct mm_struct *mm)
 699{
 700	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 701		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 702		schedule_work(&mm->async_put_work);
 703	}
 704}
 705
 706static inline void free_signal_struct(struct signal_struct *sig)
 707{
 708	taskstats_tgid_free(sig);
 709	sched_autogroup_exit(sig);
 710	/*
 711	 * __mmdrop is not safe to call from softirq context on x86 due to
 712	 * pgd_dtor so postpone it to the async context
 713	 */
 714	if (sig->oom_mm)
 715		mmdrop_async(sig->oom_mm);
 716	kmem_cache_free(signal_cachep, sig);
 717}
 718
 719static inline void put_signal_struct(struct signal_struct *sig)
 720{
 721	if (refcount_dec_and_test(&sig->sigcnt))
 722		free_signal_struct(sig);
 723}
 724
 725void __put_task_struct(struct task_struct *tsk)
 726{
 727	WARN_ON(!tsk->exit_state);
 728	WARN_ON(refcount_read(&tsk->usage));
 729	WARN_ON(tsk == current);
 730
 731	cgroup_free(tsk);
 732	task_numa_free(tsk, true);
 733	security_task_free(tsk);
 734	exit_creds(tsk);
 735	delayacct_tsk_free(tsk);
 736	put_signal_struct(tsk->signal);
 737
 738	if (!profile_handoff_task(tsk))
 739		free_task(tsk);
 740}
 741EXPORT_SYMBOL_GPL(__put_task_struct);
 742
 743void __init __weak arch_task_cache_init(void) { }
 744
 745/*
 746 * set_max_threads
 747 */
 748static void set_max_threads(unsigned int max_threads_suggested)
 749{
 750	u64 threads;
 751	unsigned long nr_pages = totalram_pages();
 752
 753	/*
 754	 * The number of threads shall be limited such that the thread
 755	 * structures may only consume a small part of the available memory.
 756	 */
 757	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 758		threads = MAX_THREADS;
 759	else
 760		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 761				    (u64) THREAD_SIZE * 8UL);
 762
 763	if (threads > max_threads_suggested)
 764		threads = max_threads_suggested;
 765
 766	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 767}
 768
 769#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 770/* Initialized by the architecture: */
 771int arch_task_struct_size __read_mostly;
 772#endif
 773
 774#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 775static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 776{
 777	/* Fetch thread_struct whitelist for the architecture. */
 778	arch_thread_struct_whitelist(offset, size);
 779
 780	/*
 781	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 782	 * adjust offset to position of thread_struct in task_struct.
 783	 */
 784	if (unlikely(*size == 0))
 785		*offset = 0;
 786	else
 787		*offset += offsetof(struct task_struct, thread);
 788}
 789#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 790
 791void __init fork_init(void)
 792{
 793	int i;
 794#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 795#ifndef ARCH_MIN_TASKALIGN
 796#define ARCH_MIN_TASKALIGN	0
 797#endif
 798	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 799	unsigned long useroffset, usersize;
 800
 801	/* create a slab on which task_structs can be allocated */
 802	task_struct_whitelist(&useroffset, &usersize);
 803	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 804			arch_task_struct_size, align,
 805			SLAB_PANIC|SLAB_ACCOUNT,
 806			useroffset, usersize, NULL);
 807#endif
 808
 809	/* do the arch specific task caches init */
 810	arch_task_cache_init();
 811
 812	set_max_threads(MAX_THREADS);
 813
 814	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 815	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 816	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 817		init_task.signal->rlim[RLIMIT_NPROC];
 818
 819	for (i = 0; i < UCOUNT_COUNTS; i++) {
 820		init_user_ns.ucount_max[i] = max_threads/2;
 821	}
 822
 823#ifdef CONFIG_VMAP_STACK
 824	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 825			  NULL, free_vm_stack_cache);
 826#endif
 827
 828	scs_init();
 829
 830	lockdep_init_task(&init_task);
 831	uprobes_init();
 832}
 833
 834int __weak arch_dup_task_struct(struct task_struct *dst,
 835					       struct task_struct *src)
 836{
 837	*dst = *src;
 838	return 0;
 839}
 840
 841void set_task_stack_end_magic(struct task_struct *tsk)
 842{
 843	unsigned long *stackend;
 844
 845	stackend = end_of_stack(tsk);
 846	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 847}
 848
 849static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 850{
 851	struct task_struct *tsk;
 852	unsigned long *stack;
 853	struct vm_struct *stack_vm_area __maybe_unused;
 854	int err;
 855
 856	if (node == NUMA_NO_NODE)
 857		node = tsk_fork_get_node(orig);
 858	tsk = alloc_task_struct_node(node);
 859	if (!tsk)
 860		return NULL;
 861
 862	stack = alloc_thread_stack_node(tsk, node);
 863	if (!stack)
 864		goto free_tsk;
 865
 866	if (memcg_charge_kernel_stack(tsk))
 867		goto free_stack;
 868
 869	stack_vm_area = task_stack_vm_area(tsk);
 870
 871	err = arch_dup_task_struct(tsk, orig);
 872
 873	/*
 874	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
 875	 * sure they're properly initialized before using any stack-related
 876	 * functions again.
 877	 */
 878	tsk->stack = stack;
 879#ifdef CONFIG_VMAP_STACK
 880	tsk->stack_vm_area = stack_vm_area;
 881#endif
 882#ifdef CONFIG_THREAD_INFO_IN_TASK
 883	refcount_set(&tsk->stack_refcount, 1);
 884#endif
 885
 886	if (err)
 887		goto free_stack;
 888
 889	err = scs_prepare(tsk, node);
 890	if (err)
 891		goto free_stack;
 892
 893#ifdef CONFIG_SECCOMP
 894	/*
 895	 * We must handle setting up seccomp filters once we're under
 896	 * the sighand lock in case orig has changed between now and
 897	 * then. Until then, filter must be NULL to avoid messing up
 898	 * the usage counts on the error path calling free_task.
 899	 */
 900	tsk->seccomp.filter = NULL;
 901#endif
 902
 903	setup_thread_stack(tsk, orig);
 904	clear_user_return_notifier(tsk);
 905	clear_tsk_need_resched(tsk);
 906	set_task_stack_end_magic(tsk);
 907
 908#ifdef CONFIG_STACKPROTECTOR
 909	tsk->stack_canary = get_random_canary();
 910#endif
 911	if (orig->cpus_ptr == &orig->cpus_mask)
 912		tsk->cpus_ptr = &tsk->cpus_mask;
 913
 914	/*
 915	 * One for the user space visible state that goes away when reaped.
 916	 * One for the scheduler.
 917	 */
 918	refcount_set(&tsk->rcu_users, 2);
 919	/* One for the rcu users */
 920	refcount_set(&tsk->usage, 1);
 921#ifdef CONFIG_BLK_DEV_IO_TRACE
 922	tsk->btrace_seq = 0;
 923#endif
 924	tsk->splice_pipe = NULL;
 925	tsk->task_frag.page = NULL;
 926	tsk->wake_q.next = NULL;
 927
 928	account_kernel_stack(tsk, 1);
 929
 930	kcov_task_init(tsk);
 931
 932#ifdef CONFIG_FAULT_INJECTION
 933	tsk->fail_nth = 0;
 934#endif
 935
 936#ifdef CONFIG_BLK_CGROUP
 937	tsk->throttle_queue = NULL;
 938	tsk->use_memdelay = 0;
 939#endif
 940
 941#ifdef CONFIG_MEMCG
 942	tsk->active_memcg = NULL;
 943#endif
 944	return tsk;
 945
 946free_stack:
 947	free_thread_stack(tsk);
 948free_tsk:
 949	free_task_struct(tsk);
 950	return NULL;
 951}
 952
 953__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 954
 955static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 956
 957static int __init coredump_filter_setup(char *s)
 958{
 959	default_dump_filter =
 960		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 961		MMF_DUMP_FILTER_MASK;
 962	return 1;
 963}
 964
 965__setup("coredump_filter=", coredump_filter_setup);
 966
 967#include <linux/init_task.h>
 968
 969static void mm_init_aio(struct mm_struct *mm)
 970{
 971#ifdef CONFIG_AIO
 972	spin_lock_init(&mm->ioctx_lock);
 973	mm->ioctx_table = NULL;
 974#endif
 975}
 976
 977static __always_inline void mm_clear_owner(struct mm_struct *mm,
 978					   struct task_struct *p)
 979{
 980#ifdef CONFIG_MEMCG
 981	if (mm->owner == p)
 982		WRITE_ONCE(mm->owner, NULL);
 983#endif
 984}
 985
 986static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 987{
 988#ifdef CONFIG_MEMCG
 989	mm->owner = p;
 990#endif
 991}
 992
 993static void mm_init_uprobes_state(struct mm_struct *mm)
 994{
 995#ifdef CONFIG_UPROBES
 996	mm->uprobes_state.xol_area = NULL;
 997#endif
 998}
 999
1000static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1001	struct user_namespace *user_ns)
1002{
1003	mm->mmap = NULL;
1004	mm->mm_rb = RB_ROOT;
1005	mm->vmacache_seqnum = 0;
1006	atomic_set(&mm->mm_users, 1);
1007	atomic_set(&mm->mm_count, 1);
1008	mmap_init_lock(mm);
1009	INIT_LIST_HEAD(&mm->mmlist);
1010	mm->core_state = NULL;
1011	mm_pgtables_bytes_init(mm);
1012	mm->map_count = 0;
1013	mm->locked_vm = 0;
1014	atomic_set(&mm->has_pinned, 0);
1015	atomic64_set(&mm->pinned_vm, 0);
1016	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1017	spin_lock_init(&mm->page_table_lock);
1018	spin_lock_init(&mm->arg_lock);
1019	mm_init_cpumask(mm);
1020	mm_init_aio(mm);
1021	mm_init_owner(mm, p);
1022	RCU_INIT_POINTER(mm->exe_file, NULL);
1023	mmu_notifier_subscriptions_init(mm);
 
1024	init_tlb_flush_pending(mm);
1025#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1026	mm->pmd_huge_pte = NULL;
1027#endif
1028	mm_init_uprobes_state(mm);
1029
1030	if (current->mm) {
1031		mm->flags = current->mm->flags & MMF_INIT_MASK;
1032		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1033	} else {
1034		mm->flags = default_dump_filter;
1035		mm->def_flags = 0;
1036	}
1037
1038	if (mm_alloc_pgd(mm))
1039		goto fail_nopgd;
1040
1041	if (init_new_context(p, mm))
1042		goto fail_nocontext;
1043
1044	mm->user_ns = get_user_ns(user_ns);
1045	return mm;
1046
1047fail_nocontext:
1048	mm_free_pgd(mm);
1049fail_nopgd:
1050	free_mm(mm);
1051	return NULL;
1052}
1053
1054/*
1055 * Allocate and initialize an mm_struct.
1056 */
1057struct mm_struct *mm_alloc(void)
1058{
1059	struct mm_struct *mm;
1060
1061	mm = allocate_mm();
1062	if (!mm)
1063		return NULL;
1064
1065	memset(mm, 0, sizeof(*mm));
1066	return mm_init(mm, current, current_user_ns());
1067}
1068
1069static inline void __mmput(struct mm_struct *mm)
1070{
1071	VM_BUG_ON(atomic_read(&mm->mm_users));
1072
1073	uprobe_clear_state(mm);
1074	exit_aio(mm);
1075	ksm_exit(mm);
1076	khugepaged_exit(mm); /* must run before exit_mmap */
1077	exit_mmap(mm);
1078	mm_put_huge_zero_page(mm);
1079	set_mm_exe_file(mm, NULL);
1080	if (!list_empty(&mm->mmlist)) {
1081		spin_lock(&mmlist_lock);
1082		list_del(&mm->mmlist);
1083		spin_unlock(&mmlist_lock);
1084	}
1085	if (mm->binfmt)
1086		module_put(mm->binfmt->module);
1087	mmdrop(mm);
1088}
1089
1090/*
1091 * Decrement the use count and release all resources for an mm.
1092 */
1093void mmput(struct mm_struct *mm)
1094{
1095	might_sleep();
1096
1097	if (atomic_dec_and_test(&mm->mm_users))
1098		__mmput(mm);
1099}
1100EXPORT_SYMBOL_GPL(mmput);
1101
1102#ifdef CONFIG_MMU
1103static void mmput_async_fn(struct work_struct *work)
1104{
1105	struct mm_struct *mm = container_of(work, struct mm_struct,
1106					    async_put_work);
1107
1108	__mmput(mm);
1109}
1110
1111void mmput_async(struct mm_struct *mm)
1112{
1113	if (atomic_dec_and_test(&mm->mm_users)) {
1114		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1115		schedule_work(&mm->async_put_work);
1116	}
1117}
1118#endif
1119
1120/**
1121 * set_mm_exe_file - change a reference to the mm's executable file
1122 *
1123 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1124 *
1125 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1126 * invocations: in mmput() nobody alive left, in execve task is single
1127 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1128 * mm->exe_file, but does so without using set_mm_exe_file() in order
1129 * to do avoid the need for any locks.
1130 */
1131void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1132{
1133	struct file *old_exe_file;
1134
1135	/*
1136	 * It is safe to dereference the exe_file without RCU as
1137	 * this function is only called if nobody else can access
1138	 * this mm -- see comment above for justification.
1139	 */
1140	old_exe_file = rcu_dereference_raw(mm->exe_file);
1141
1142	if (new_exe_file)
1143		get_file(new_exe_file);
1144	rcu_assign_pointer(mm->exe_file, new_exe_file);
1145	if (old_exe_file)
1146		fput(old_exe_file);
1147}
1148
1149/**
1150 * get_mm_exe_file - acquire a reference to the mm's executable file
1151 *
1152 * Returns %NULL if mm has no associated executable file.
1153 * User must release file via fput().
1154 */
1155struct file *get_mm_exe_file(struct mm_struct *mm)
1156{
1157	struct file *exe_file;
1158
1159	rcu_read_lock();
1160	exe_file = rcu_dereference(mm->exe_file);
1161	if (exe_file && !get_file_rcu(exe_file))
1162		exe_file = NULL;
1163	rcu_read_unlock();
1164	return exe_file;
1165}
1166EXPORT_SYMBOL(get_mm_exe_file);
1167
1168/**
1169 * get_task_exe_file - acquire a reference to the task's executable file
1170 *
1171 * Returns %NULL if task's mm (if any) has no associated executable file or
1172 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1173 * User must release file via fput().
1174 */
1175struct file *get_task_exe_file(struct task_struct *task)
1176{
1177	struct file *exe_file = NULL;
1178	struct mm_struct *mm;
1179
1180	task_lock(task);
1181	mm = task->mm;
1182	if (mm) {
1183		if (!(task->flags & PF_KTHREAD))
1184			exe_file = get_mm_exe_file(mm);
1185	}
1186	task_unlock(task);
1187	return exe_file;
1188}
1189EXPORT_SYMBOL(get_task_exe_file);
1190
1191/**
1192 * get_task_mm - acquire a reference to the task's mm
1193 *
1194 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1195 * this kernel workthread has transiently adopted a user mm with use_mm,
1196 * to do its AIO) is not set and if so returns a reference to it, after
1197 * bumping up the use count.  User must release the mm via mmput()
1198 * after use.  Typically used by /proc and ptrace.
1199 */
1200struct mm_struct *get_task_mm(struct task_struct *task)
1201{
1202	struct mm_struct *mm;
1203
1204	task_lock(task);
1205	mm = task->mm;
1206	if (mm) {
1207		if (task->flags & PF_KTHREAD)
1208			mm = NULL;
1209		else
1210			mmget(mm);
1211	}
1212	task_unlock(task);
1213	return mm;
1214}
1215EXPORT_SYMBOL_GPL(get_task_mm);
1216
1217struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1218{
1219	struct mm_struct *mm;
1220	int err;
1221
1222	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1223	if (err)
1224		return ERR_PTR(err);
1225
1226	mm = get_task_mm(task);
1227	if (mm && mm != current->mm &&
1228			!ptrace_may_access(task, mode)) {
1229		mmput(mm);
1230		mm = ERR_PTR(-EACCES);
1231	}
1232	mutex_unlock(&task->signal->exec_update_mutex);
1233
1234	return mm;
1235}
1236
1237static void complete_vfork_done(struct task_struct *tsk)
1238{
1239	struct completion *vfork;
1240
1241	task_lock(tsk);
1242	vfork = tsk->vfork_done;
1243	if (likely(vfork)) {
1244		tsk->vfork_done = NULL;
1245		complete(vfork);
1246	}
1247	task_unlock(tsk);
1248}
1249
1250static int wait_for_vfork_done(struct task_struct *child,
1251				struct completion *vfork)
1252{
1253	int killed;
1254
1255	freezer_do_not_count();
1256	cgroup_enter_frozen();
1257	killed = wait_for_completion_killable(vfork);
1258	cgroup_leave_frozen(false);
1259	freezer_count();
1260
1261	if (killed) {
1262		task_lock(child);
1263		child->vfork_done = NULL;
1264		task_unlock(child);
1265	}
1266
1267	put_task_struct(child);
1268	return killed;
1269}
1270
1271/* Please note the differences between mmput and mm_release.
1272 * mmput is called whenever we stop holding onto a mm_struct,
1273 * error success whatever.
1274 *
1275 * mm_release is called after a mm_struct has been removed
1276 * from the current process.
1277 *
1278 * This difference is important for error handling, when we
1279 * only half set up a mm_struct for a new process and need to restore
1280 * the old one.  Because we mmput the new mm_struct before
1281 * restoring the old one. . .
1282 * Eric Biederman 10 January 1998
1283 */
1284static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1285{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286	uprobe_free_utask(tsk);
1287
1288	/* Get rid of any cached register state */
1289	deactivate_mm(tsk, mm);
1290
1291	/*
1292	 * Signal userspace if we're not exiting with a core dump
1293	 * because we want to leave the value intact for debugging
1294	 * purposes.
1295	 */
1296	if (tsk->clear_child_tid) {
1297		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1298		    atomic_read(&mm->mm_users) > 1) {
1299			/*
1300			 * We don't check the error code - if userspace has
1301			 * not set up a proper pointer then tough luck.
1302			 */
1303			put_user(0, tsk->clear_child_tid);
1304			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1305					1, NULL, NULL, 0, 0);
1306		}
1307		tsk->clear_child_tid = NULL;
1308	}
1309
1310	/*
1311	 * All done, finally we can wake up parent and return this mm to him.
1312	 * Also kthread_stop() uses this completion for synchronization.
1313	 */
1314	if (tsk->vfork_done)
1315		complete_vfork_done(tsk);
1316}
1317
1318void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1319{
1320	futex_exit_release(tsk);
1321	mm_release(tsk, mm);
1322}
1323
1324void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1325{
1326	futex_exec_release(tsk);
1327	mm_release(tsk, mm);
1328}
1329
1330/**
1331 * dup_mm() - duplicates an existing mm structure
1332 * @tsk: the task_struct with which the new mm will be associated.
1333 * @oldmm: the mm to duplicate.
1334 *
1335 * Allocates a new mm structure and duplicates the provided @oldmm structure
1336 * content into it.
1337 *
1338 * Return: the duplicated mm or NULL on failure.
1339 */
1340static struct mm_struct *dup_mm(struct task_struct *tsk,
1341				struct mm_struct *oldmm)
1342{
1343	struct mm_struct *mm;
1344	int err;
1345
1346	mm = allocate_mm();
1347	if (!mm)
1348		goto fail_nomem;
1349
1350	memcpy(mm, oldmm, sizeof(*mm));
1351
1352	if (!mm_init(mm, tsk, mm->user_ns))
1353		goto fail_nomem;
1354
1355	err = dup_mmap(mm, oldmm);
1356	if (err)
1357		goto free_pt;
1358
1359	mm->hiwater_rss = get_mm_rss(mm);
1360	mm->hiwater_vm = mm->total_vm;
1361
1362	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1363		goto free_pt;
1364
1365	return mm;
1366
1367free_pt:
1368	/* don't put binfmt in mmput, we haven't got module yet */
1369	mm->binfmt = NULL;
1370	mm_init_owner(mm, NULL);
1371	mmput(mm);
1372
1373fail_nomem:
1374	return NULL;
1375}
1376
1377static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1378{
1379	struct mm_struct *mm, *oldmm;
1380	int retval;
1381
1382	tsk->min_flt = tsk->maj_flt = 0;
1383	tsk->nvcsw = tsk->nivcsw = 0;
1384#ifdef CONFIG_DETECT_HUNG_TASK
1385	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1386	tsk->last_switch_time = 0;
1387#endif
1388
1389	tsk->mm = NULL;
1390	tsk->active_mm = NULL;
1391
1392	/*
1393	 * Are we cloning a kernel thread?
1394	 *
1395	 * We need to steal a active VM for that..
1396	 */
1397	oldmm = current->mm;
1398	if (!oldmm)
1399		return 0;
1400
1401	/* initialize the new vmacache entries */
1402	vmacache_flush(tsk);
1403
1404	if (clone_flags & CLONE_VM) {
1405		mmget(oldmm);
1406		mm = oldmm;
1407		goto good_mm;
1408	}
1409
1410	retval = -ENOMEM;
1411	mm = dup_mm(tsk, current->mm);
1412	if (!mm)
1413		goto fail_nomem;
1414
1415good_mm:
1416	tsk->mm = mm;
1417	tsk->active_mm = mm;
1418	return 0;
1419
1420fail_nomem:
1421	return retval;
1422}
1423
1424static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1425{
1426	struct fs_struct *fs = current->fs;
1427	if (clone_flags & CLONE_FS) {
1428		/* tsk->fs is already what we want */
1429		spin_lock(&fs->lock);
1430		if (fs->in_exec) {
1431			spin_unlock(&fs->lock);
1432			return -EAGAIN;
1433		}
1434		fs->users++;
1435		spin_unlock(&fs->lock);
1436		return 0;
1437	}
1438	tsk->fs = copy_fs_struct(fs);
1439	if (!tsk->fs)
1440		return -ENOMEM;
1441	return 0;
1442}
1443
1444static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1445{
1446	struct files_struct *oldf, *newf;
1447	int error = 0;
1448
1449	/*
1450	 * A background process may not have any files ...
1451	 */
1452	oldf = current->files;
1453	if (!oldf)
1454		goto out;
1455
1456	if (clone_flags & CLONE_FILES) {
1457		atomic_inc(&oldf->count);
1458		goto out;
1459	}
1460
1461	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1462	if (!newf)
1463		goto out;
1464
1465	tsk->files = newf;
1466	error = 0;
1467out:
1468	return error;
1469}
1470
1471static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1472{
1473#ifdef CONFIG_BLOCK
1474	struct io_context *ioc = current->io_context;
1475	struct io_context *new_ioc;
1476
1477	if (!ioc)
1478		return 0;
1479	/*
1480	 * Share io context with parent, if CLONE_IO is set
1481	 */
1482	if (clone_flags & CLONE_IO) {
1483		ioc_task_link(ioc);
1484		tsk->io_context = ioc;
1485	} else if (ioprio_valid(ioc->ioprio)) {
1486		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1487		if (unlikely(!new_ioc))
1488			return -ENOMEM;
1489
1490		new_ioc->ioprio = ioc->ioprio;
1491		put_io_context(new_ioc);
1492	}
1493#endif
1494	return 0;
1495}
1496
1497static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1498{
1499	struct sighand_struct *sig;
1500
1501	if (clone_flags & CLONE_SIGHAND) {
1502		refcount_inc(&current->sighand->count);
1503		return 0;
1504	}
1505	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1506	RCU_INIT_POINTER(tsk->sighand, sig);
1507	if (!sig)
1508		return -ENOMEM;
1509
1510	refcount_set(&sig->count, 1);
1511	spin_lock_irq(&current->sighand->siglock);
1512	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1513	spin_unlock_irq(&current->sighand->siglock);
1514
1515	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1516	if (clone_flags & CLONE_CLEAR_SIGHAND)
1517		flush_signal_handlers(tsk, 0);
1518
1519	return 0;
1520}
1521
1522void __cleanup_sighand(struct sighand_struct *sighand)
1523{
1524	if (refcount_dec_and_test(&sighand->count)) {
1525		signalfd_cleanup(sighand);
1526		/*
1527		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1528		 * without an RCU grace period, see __lock_task_sighand().
1529		 */
1530		kmem_cache_free(sighand_cachep, sighand);
1531	}
1532}
1533
 
1534/*
1535 * Initialize POSIX timer handling for a thread group.
1536 */
1537static void posix_cpu_timers_init_group(struct signal_struct *sig)
1538{
1539	struct posix_cputimers *pct = &sig->posix_cputimers;
1540	unsigned long cpu_limit;
1541
1542	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1543	posix_cputimers_group_init(pct, cpu_limit);
 
 
 
 
 
 
 
 
1544}
 
 
 
1545
1546static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1547{
1548	struct signal_struct *sig;
1549
1550	if (clone_flags & CLONE_THREAD)
1551		return 0;
1552
1553	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1554	tsk->signal = sig;
1555	if (!sig)
1556		return -ENOMEM;
1557
1558	sig->nr_threads = 1;
1559	atomic_set(&sig->live, 1);
1560	refcount_set(&sig->sigcnt, 1);
1561
1562	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1563	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1564	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1565
1566	init_waitqueue_head(&sig->wait_chldexit);
1567	sig->curr_target = tsk;
1568	init_sigpending(&sig->shared_pending);
1569	INIT_HLIST_HEAD(&sig->multiprocess);
1570	seqlock_init(&sig->stats_lock);
1571	prev_cputime_init(&sig->prev_cputime);
1572
1573#ifdef CONFIG_POSIX_TIMERS
1574	INIT_LIST_HEAD(&sig->posix_timers);
1575	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1576	sig->real_timer.function = it_real_fn;
1577#endif
1578
1579	task_lock(current->group_leader);
1580	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1581	task_unlock(current->group_leader);
1582
1583	posix_cpu_timers_init_group(sig);
1584
1585	tty_audit_fork(sig);
1586	sched_autogroup_fork(sig);
1587
1588	sig->oom_score_adj = current->signal->oom_score_adj;
1589	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1590
1591	mutex_init(&sig->cred_guard_mutex);
1592	mutex_init(&sig->exec_update_mutex);
1593
1594	return 0;
1595}
1596
1597static void copy_seccomp(struct task_struct *p)
1598{
1599#ifdef CONFIG_SECCOMP
1600	/*
1601	 * Must be called with sighand->lock held, which is common to
1602	 * all threads in the group. Holding cred_guard_mutex is not
1603	 * needed because this new task is not yet running and cannot
1604	 * be racing exec.
1605	 */
1606	assert_spin_locked(&current->sighand->siglock);
1607
1608	/* Ref-count the new filter user, and assign it. */
1609	get_seccomp_filter(current);
1610	p->seccomp = current->seccomp;
1611
1612	/*
1613	 * Explicitly enable no_new_privs here in case it got set
1614	 * between the task_struct being duplicated and holding the
1615	 * sighand lock. The seccomp state and nnp must be in sync.
1616	 */
1617	if (task_no_new_privs(current))
1618		task_set_no_new_privs(p);
1619
1620	/*
1621	 * If the parent gained a seccomp mode after copying thread
1622	 * flags and between before we held the sighand lock, we have
1623	 * to manually enable the seccomp thread flag here.
1624	 */
1625	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1626		set_tsk_thread_flag(p, TIF_SECCOMP);
1627#endif
1628}
1629
1630SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1631{
1632	current->clear_child_tid = tidptr;
1633
1634	return task_pid_vnr(current);
1635}
1636
1637static void rt_mutex_init_task(struct task_struct *p)
1638{
1639	raw_spin_lock_init(&p->pi_lock);
1640#ifdef CONFIG_RT_MUTEXES
1641	p->pi_waiters = RB_ROOT_CACHED;
1642	p->pi_top_task = NULL;
1643	p->pi_blocked_on = NULL;
1644#endif
1645}
1646
1647static inline void init_task_pid_links(struct task_struct *task)
 
 
 
 
1648{
1649	enum pid_type type;
1650
1651	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1652		INIT_HLIST_NODE(&task->pid_links[type]);
1653	}
 
1654}
 
 
 
1655
1656static inline void
1657init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1658{
1659	if (type == PIDTYPE_PID)
1660		task->thread_pid = pid;
1661	else
1662		task->signal->pids[type] = pid;
1663}
1664
1665static inline void rcu_copy_process(struct task_struct *p)
1666{
1667#ifdef CONFIG_PREEMPT_RCU
1668	p->rcu_read_lock_nesting = 0;
1669	p->rcu_read_unlock_special.s = 0;
1670	p->rcu_blocked_node = NULL;
1671	INIT_LIST_HEAD(&p->rcu_node_entry);
1672#endif /* #ifdef CONFIG_PREEMPT_RCU */
1673#ifdef CONFIG_TASKS_RCU
1674	p->rcu_tasks_holdout = false;
1675	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1676	p->rcu_tasks_idle_cpu = -1;
1677#endif /* #ifdef CONFIG_TASKS_RCU */
1678#ifdef CONFIG_TASKS_TRACE_RCU
1679	p->trc_reader_nesting = 0;
1680	p->trc_reader_special.s = 0;
1681	INIT_LIST_HEAD(&p->trc_holdout_list);
1682#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1683}
1684
1685struct pid *pidfd_pid(const struct file *file)
1686{
1687	if (file->f_op == &pidfd_fops)
1688		return file->private_data;
1689
1690	return ERR_PTR(-EBADF);
1691}
1692
1693static int pidfd_release(struct inode *inode, struct file *file)
1694{
1695	struct pid *pid = file->private_data;
1696
1697	file->private_data = NULL;
1698	put_pid(pid);
1699	return 0;
1700}
1701
1702#ifdef CONFIG_PROC_FS
1703/**
1704 * pidfd_show_fdinfo - print information about a pidfd
1705 * @m: proc fdinfo file
1706 * @f: file referencing a pidfd
1707 *
1708 * Pid:
1709 * This function will print the pid that a given pidfd refers to in the
1710 * pid namespace of the procfs instance.
1711 * If the pid namespace of the process is not a descendant of the pid
1712 * namespace of the procfs instance 0 will be shown as its pid. This is
1713 * similar to calling getppid() on a process whose parent is outside of
1714 * its pid namespace.
1715 *
1716 * NSpid:
1717 * If pid namespaces are supported then this function will also print
1718 * the pid of a given pidfd refers to for all descendant pid namespaces
1719 * starting from the current pid namespace of the instance, i.e. the
1720 * Pid field and the first entry in the NSpid field will be identical.
1721 * If the pid namespace of the process is not a descendant of the pid
1722 * namespace of the procfs instance 0 will be shown as its first NSpid
1723 * entry and no others will be shown.
1724 * Note that this differs from the Pid and NSpid fields in
1725 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1726 * the  pid namespace of the procfs instance. The difference becomes
1727 * obvious when sending around a pidfd between pid namespaces from a
1728 * different branch of the tree, i.e. where no ancestoral relation is
1729 * present between the pid namespaces:
1730 * - create two new pid namespaces ns1 and ns2 in the initial pid
1731 *   namespace (also take care to create new mount namespaces in the
1732 *   new pid namespace and mount procfs)
1733 * - create a process with a pidfd in ns1
1734 * - send pidfd from ns1 to ns2
1735 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1736 *   have exactly one entry, which is 0
1737 */
1738static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1739{
1740	struct pid *pid = f->private_data;
1741	struct pid_namespace *ns;
1742	pid_t nr = -1;
1743
1744	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1745		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1746		nr = pid_nr_ns(pid, ns);
1747	}
1748
1749	seq_put_decimal_ll(m, "Pid:\t", nr);
1750
1751#ifdef CONFIG_PID_NS
1752	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1753	if (nr > 0) {
1754		int i;
1755
1756		/* If nr is non-zero it means that 'pid' is valid and that
1757		 * ns, i.e. the pid namespace associated with the procfs
1758		 * instance, is in the pid namespace hierarchy of pid.
1759		 * Start at one below the already printed level.
1760		 */
1761		for (i = ns->level + 1; i <= pid->level; i++)
1762			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1763	}
1764#endif
1765	seq_putc(m, '\n');
1766}
1767#endif
1768
1769/*
1770 * Poll support for process exit notification.
1771 */
1772static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1773{
1774	struct pid *pid = file->private_data;
1775	__poll_t poll_flags = 0;
1776
1777	poll_wait(file, &pid->wait_pidfd, pts);
1778
1779	/*
1780	 * Inform pollers only when the whole thread group exits.
1781	 * If the thread group leader exits before all other threads in the
1782	 * group, then poll(2) should block, similar to the wait(2) family.
1783	 */
1784	if (thread_group_exited(pid))
1785		poll_flags = EPOLLIN | EPOLLRDNORM;
1786
1787	return poll_flags;
1788}
1789
1790const struct file_operations pidfd_fops = {
1791	.release = pidfd_release,
1792	.poll = pidfd_poll,
1793#ifdef CONFIG_PROC_FS
1794	.show_fdinfo = pidfd_show_fdinfo,
1795#endif
1796};
1797
1798static void __delayed_free_task(struct rcu_head *rhp)
1799{
1800	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1801
1802	free_task(tsk);
1803}
1804
1805static __always_inline void delayed_free_task(struct task_struct *tsk)
1806{
1807	if (IS_ENABLED(CONFIG_MEMCG))
1808		call_rcu(&tsk->rcu, __delayed_free_task);
1809	else
1810		free_task(tsk);
1811}
1812
1813/*
1814 * This creates a new process as a copy of the old one,
1815 * but does not actually start it yet.
1816 *
1817 * It copies the registers, and all the appropriate
1818 * parts of the process environment (as per the clone
1819 * flags). The actual kick-off is left to the caller.
1820 */
1821static __latent_entropy struct task_struct *copy_process(
 
 
 
 
1822					struct pid *pid,
1823					int trace,
1824					int node,
1825					struct kernel_clone_args *args)
1826{
1827	int pidfd = -1, retval;
1828	struct task_struct *p;
1829	struct multiprocess_signals delayed;
1830	struct file *pidfile = NULL;
1831	u64 clone_flags = args->flags;
1832	struct nsproxy *nsp = current->nsproxy;
1833
1834	/*
1835	 * Don't allow sharing the root directory with processes in a different
1836	 * namespace
1837	 */
1838	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1839		return ERR_PTR(-EINVAL);
1840
1841	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1842		return ERR_PTR(-EINVAL);
1843
1844	/*
1845	 * Thread groups must share signals as well, and detached threads
1846	 * can only be started up within the thread group.
1847	 */
1848	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1849		return ERR_PTR(-EINVAL);
1850
1851	/*
1852	 * Shared signal handlers imply shared VM. By way of the above,
1853	 * thread groups also imply shared VM. Blocking this case allows
1854	 * for various simplifications in other code.
1855	 */
1856	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1857		return ERR_PTR(-EINVAL);
1858
1859	/*
1860	 * Siblings of global init remain as zombies on exit since they are
1861	 * not reaped by their parent (swapper). To solve this and to avoid
1862	 * multi-rooted process trees, prevent global and container-inits
1863	 * from creating siblings.
1864	 */
1865	if ((clone_flags & CLONE_PARENT) &&
1866				current->signal->flags & SIGNAL_UNKILLABLE)
1867		return ERR_PTR(-EINVAL);
1868
1869	/*
1870	 * If the new process will be in a different pid or user namespace
1871	 * do not allow it to share a thread group with the forking task.
1872	 */
1873	if (clone_flags & CLONE_THREAD) {
1874		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1875		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
 
1876			return ERR_PTR(-EINVAL);
1877	}
1878
1879	/*
1880	 * If the new process will be in a different time namespace
1881	 * do not allow it to share VM or a thread group with the forking task.
1882	 */
1883	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1884		if (nsp->time_ns != nsp->time_ns_for_children)
1885			return ERR_PTR(-EINVAL);
1886	}
1887
1888	if (clone_flags & CLONE_PIDFD) {
1889		/*
1890		 * - CLONE_DETACHED is blocked so that we can potentially
1891		 *   reuse it later for CLONE_PIDFD.
1892		 * - CLONE_THREAD is blocked until someone really needs it.
1893		 */
1894		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1895			return ERR_PTR(-EINVAL);
1896	}
1897
1898	/*
1899	 * Force any signals received before this point to be delivered
1900	 * before the fork happens.  Collect up signals sent to multiple
1901	 * processes that happen during the fork and delay them so that
1902	 * they appear to happen after the fork.
1903	 */
1904	sigemptyset(&delayed.signal);
1905	INIT_HLIST_NODE(&delayed.node);
1906
1907	spin_lock_irq(&current->sighand->siglock);
1908	if (!(clone_flags & CLONE_THREAD))
1909		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1910	recalc_sigpending();
1911	spin_unlock_irq(&current->sighand->siglock);
1912	retval = -ERESTARTNOINTR;
1913	if (signal_pending(current))
1914		goto fork_out;
1915
1916	retval = -ENOMEM;
1917	p = dup_task_struct(current, node);
1918	if (!p)
1919		goto fork_out;
1920
1921	/*
1922	 * This _must_ happen before we call free_task(), i.e. before we jump
1923	 * to any of the bad_fork_* labels. This is to avoid freeing
1924	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1925	 * kernel threads (PF_KTHREAD).
1926	 */
1927	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1928	/*
1929	 * Clear TID on mm_release()?
1930	 */
1931	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1932
1933	ftrace_graph_init_task(p);
1934
1935	rt_mutex_init_task(p);
1936
1937	lockdep_assert_irqs_enabled();
1938#ifdef CONFIG_PROVE_LOCKING
 
1939	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1940#endif
1941	retval = -EAGAIN;
1942	if (atomic_read(&p->real_cred->user->processes) >=
1943			task_rlimit(p, RLIMIT_NPROC)) {
1944		if (p->real_cred->user != INIT_USER &&
1945		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1946			goto bad_fork_free;
1947	}
1948	current->flags &= ~PF_NPROC_EXCEEDED;
1949
1950	retval = copy_creds(p, clone_flags);
1951	if (retval < 0)
1952		goto bad_fork_free;
1953
1954	/*
1955	 * If multiple threads are within copy_process(), then this check
1956	 * triggers too late. This doesn't hurt, the check is only there
1957	 * to stop root fork bombs.
1958	 */
1959	retval = -EAGAIN;
1960	if (data_race(nr_threads >= max_threads))
1961		goto bad_fork_cleanup_count;
1962
1963	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1964	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1965	p->flags |= PF_FORKNOEXEC;
1966	INIT_LIST_HEAD(&p->children);
1967	INIT_LIST_HEAD(&p->sibling);
1968	rcu_copy_process(p);
1969	p->vfork_done = NULL;
1970	spin_lock_init(&p->alloc_lock);
1971
1972	init_sigpending(&p->pending);
1973
1974	p->utime = p->stime = p->gtime = 0;
1975#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1976	p->utimescaled = p->stimescaled = 0;
1977#endif
1978	prev_cputime_init(&p->prev_cputime);
1979
1980#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1981	seqcount_init(&p->vtime.seqcount);
1982	p->vtime.starttime = 0;
1983	p->vtime.state = VTIME_INACTIVE;
1984#endif
1985
1986#if defined(SPLIT_RSS_COUNTING)
1987	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1988#endif
1989
1990	p->default_timer_slack_ns = current->timer_slack_ns;
1991
1992#ifdef CONFIG_PSI
1993	p->psi_flags = 0;
1994#endif
1995
1996	task_io_accounting_init(&p->ioac);
1997	acct_clear_integrals(p);
1998
1999	posix_cputimers_init(&p->posix_cputimers);
2000
 
 
2001	p->io_context = NULL;
2002	audit_set_context(p, NULL);
2003	cgroup_fork(p);
2004#ifdef CONFIG_NUMA
2005	p->mempolicy = mpol_dup(p->mempolicy);
2006	if (IS_ERR(p->mempolicy)) {
2007		retval = PTR_ERR(p->mempolicy);
2008		p->mempolicy = NULL;
2009		goto bad_fork_cleanup_threadgroup_lock;
2010	}
2011#endif
2012#ifdef CONFIG_CPUSETS
2013	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2014	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2015	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2016#endif
2017#ifdef CONFIG_TRACE_IRQFLAGS
2018	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2019	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2020	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2021	p->softirqs_enabled		= 1;
2022	p->softirq_context		= 0;
 
 
 
 
 
 
 
 
2023#endif
2024
2025	p->pagefault_disabled = 0;
2026
2027#ifdef CONFIG_LOCKDEP
 
 
 
2028	lockdep_init_task(p);
2029#endif
2030
2031#ifdef CONFIG_DEBUG_MUTEXES
2032	p->blocked_on = NULL; /* not blocked yet */
2033#endif
2034#ifdef CONFIG_BCACHE
2035	p->sequential_io	= 0;
2036	p->sequential_io_avg	= 0;
2037#endif
2038
2039	/* Perform scheduler related setup. Assign this task to a CPU. */
2040	retval = sched_fork(clone_flags, p);
2041	if (retval)
2042		goto bad_fork_cleanup_policy;
2043
2044	retval = perf_event_init_task(p);
2045	if (retval)
2046		goto bad_fork_cleanup_policy;
2047	retval = audit_alloc(p);
2048	if (retval)
2049		goto bad_fork_cleanup_perf;
2050	/* copy all the process information */
2051	shm_init_task(p);
2052	retval = security_task_alloc(p, clone_flags);
2053	if (retval)
2054		goto bad_fork_cleanup_audit;
2055	retval = copy_semundo(clone_flags, p);
2056	if (retval)
2057		goto bad_fork_cleanup_security;
2058	retval = copy_files(clone_flags, p);
2059	if (retval)
2060		goto bad_fork_cleanup_semundo;
2061	retval = copy_fs(clone_flags, p);
2062	if (retval)
2063		goto bad_fork_cleanup_files;
2064	retval = copy_sighand(clone_flags, p);
2065	if (retval)
2066		goto bad_fork_cleanup_fs;
2067	retval = copy_signal(clone_flags, p);
2068	if (retval)
2069		goto bad_fork_cleanup_sighand;
2070	retval = copy_mm(clone_flags, p);
2071	if (retval)
2072		goto bad_fork_cleanup_signal;
2073	retval = copy_namespaces(clone_flags, p);
2074	if (retval)
2075		goto bad_fork_cleanup_mm;
2076	retval = copy_io(clone_flags, p);
2077	if (retval)
2078		goto bad_fork_cleanup_namespaces;
2079	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2080	if (retval)
2081		goto bad_fork_cleanup_io;
2082
2083	stackleak_task_init(p);
2084
2085	if (pid != &init_struct_pid) {
2086		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2087				args->set_tid_size);
2088		if (IS_ERR(pid)) {
2089			retval = PTR_ERR(pid);
2090			goto bad_fork_cleanup_thread;
2091		}
2092	}
2093
2094	/*
2095	 * This has to happen after we've potentially unshared the file
2096	 * descriptor table (so that the pidfd doesn't leak into the child
2097	 * if the fd table isn't shared).
2098	 */
2099	if (clone_flags & CLONE_PIDFD) {
2100		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2101		if (retval < 0)
2102			goto bad_fork_free_pid;
2103
2104		pidfd = retval;
2105
2106		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2107					      O_RDWR | O_CLOEXEC);
2108		if (IS_ERR(pidfile)) {
2109			put_unused_fd(pidfd);
2110			retval = PTR_ERR(pidfile);
2111			goto bad_fork_free_pid;
2112		}
2113		get_pid(pid);	/* held by pidfile now */
2114
2115		retval = put_user(pidfd, args->pidfd);
2116		if (retval)
2117			goto bad_fork_put_pidfd;
2118	}
2119
2120#ifdef CONFIG_BLOCK
2121	p->plug = NULL;
2122#endif
2123	futex_init_task(p);
2124
 
 
 
 
 
 
2125	/*
2126	 * sigaltstack should be cleared when sharing the same VM
2127	 */
2128	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2129		sas_ss_reset(p);
2130
2131	/*
2132	 * Syscall tracing and stepping should be turned off in the
2133	 * child regardless of CLONE_PTRACE.
2134	 */
2135	user_disable_single_step(p);
2136	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2137#ifdef TIF_SYSCALL_EMU
2138	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2139#endif
2140	clear_tsk_latency_tracing(p);
2141
2142	/* ok, now we should be set up.. */
2143	p->pid = pid_nr(pid);
2144	if (clone_flags & CLONE_THREAD) {
2145		p->exit_signal = -1;
2146		p->group_leader = current->group_leader;
2147		p->tgid = current->tgid;
2148	} else {
2149		if (clone_flags & CLONE_PARENT)
2150			p->exit_signal = current->group_leader->exit_signal;
2151		else
2152			p->exit_signal = args->exit_signal;
2153		p->group_leader = p;
2154		p->tgid = p->pid;
2155	}
2156
2157	p->nr_dirtied = 0;
2158	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2159	p->dirty_paused_when = 0;
2160
2161	p->pdeath_signal = 0;
2162	INIT_LIST_HEAD(&p->thread_group);
2163	p->task_works = NULL;
2164
 
2165	/*
2166	 * Ensure that the cgroup subsystem policies allow the new process to be
2167	 * forked. It should be noted the the new process's css_set can be changed
2168	 * between here and cgroup_post_fork() if an organisation operation is in
2169	 * progress.
2170	 */
2171	retval = cgroup_can_fork(p, args);
2172	if (retval)
2173		goto bad_fork_put_pidfd;
2174
2175	/*
2176	 * From this point on we must avoid any synchronous user-space
2177	 * communication until we take the tasklist-lock. In particular, we do
2178	 * not want user-space to be able to predict the process start-time by
2179	 * stalling fork(2) after we recorded the start_time but before it is
2180	 * visible to the system.
2181	 */
2182
2183	p->start_time = ktime_get_ns();
2184	p->start_boottime = ktime_get_boottime_ns();
2185
2186	/*
2187	 * Make it visible to the rest of the system, but dont wake it up yet.
2188	 * Need tasklist lock for parent etc handling!
2189	 */
2190	write_lock_irq(&tasklist_lock);
2191
2192	/* CLONE_PARENT re-uses the old parent */
2193	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2194		p->real_parent = current->real_parent;
2195		p->parent_exec_id = current->parent_exec_id;
2196	} else {
2197		p->real_parent = current;
2198		p->parent_exec_id = current->self_exec_id;
2199	}
2200
2201	klp_copy_process(p);
2202
2203	spin_lock(&current->sighand->siglock);
2204
2205	/*
2206	 * Copy seccomp details explicitly here, in case they were changed
2207	 * before holding sighand lock.
2208	 */
2209	copy_seccomp(p);
2210
2211	rseq_fork(p, clone_flags);
2212
2213	/* Don't start children in a dying pid namespace */
 
 
 
 
 
 
 
 
 
 
2214	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2215		retval = -ENOMEM;
2216		goto bad_fork_cancel_cgroup;
2217	}
2218
2219	/* Let kill terminate clone/fork in the middle */
2220	if (fatal_signal_pending(current)) {
2221		retval = -EINTR;
2222		goto bad_fork_cancel_cgroup;
2223	}
2224
2225	/* past the last point of failure */
2226	if (pidfile)
2227		fd_install(pidfd, pidfile);
2228
2229	init_task_pid_links(p);
2230	if (likely(p->pid)) {
2231		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2232
2233		init_task_pid(p, PIDTYPE_PID, pid);
2234		if (thread_group_leader(p)) {
2235			init_task_pid(p, PIDTYPE_TGID, pid);
2236			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2237			init_task_pid(p, PIDTYPE_SID, task_session(current));
2238
2239			if (is_child_reaper(pid)) {
2240				ns_of_pid(pid)->child_reaper = p;
2241				p->signal->flags |= SIGNAL_UNKILLABLE;
2242			}
2243			p->signal->shared_pending.signal = delayed.signal;
 
2244			p->signal->tty = tty_kref_get(current->signal->tty);
2245			/*
2246			 * Inherit has_child_subreaper flag under the same
2247			 * tasklist_lock with adding child to the process tree
2248			 * for propagate_has_child_subreaper optimization.
2249			 */
2250			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2251							 p->real_parent->signal->is_child_subreaper;
2252			list_add_tail(&p->sibling, &p->real_parent->children);
2253			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2254			attach_pid(p, PIDTYPE_TGID);
2255			attach_pid(p, PIDTYPE_PGID);
2256			attach_pid(p, PIDTYPE_SID);
2257			__this_cpu_inc(process_counts);
2258		} else {
2259			current->signal->nr_threads++;
2260			atomic_inc(&current->signal->live);
2261			refcount_inc(&current->signal->sigcnt);
2262			task_join_group_stop(p);
2263			list_add_tail_rcu(&p->thread_group,
2264					  &p->group_leader->thread_group);
2265			list_add_tail_rcu(&p->thread_node,
2266					  &p->signal->thread_head);
2267		}
2268		attach_pid(p, PIDTYPE_PID);
2269		nr_threads++;
2270	}
 
2271	total_forks++;
2272	hlist_del_init(&delayed.node);
2273	spin_unlock(&current->sighand->siglock);
2274	syscall_tracepoint_update(p);
2275	write_unlock_irq(&tasklist_lock);
2276
2277	proc_fork_connector(p);
2278	sched_post_fork(p);
2279	cgroup_post_fork(p, args);
2280	perf_event_fork(p);
2281
2282	trace_task_newtask(p, clone_flags);
2283	uprobe_copy_process(p, clone_flags);
2284
2285	return p;
2286
2287bad_fork_cancel_cgroup:
2288	spin_unlock(&current->sighand->siglock);
2289	write_unlock_irq(&tasklist_lock);
2290	cgroup_cancel_fork(p, args);
2291bad_fork_put_pidfd:
2292	if (clone_flags & CLONE_PIDFD) {
2293		fput(pidfile);
2294		put_unused_fd(pidfd);
2295	}
2296bad_fork_free_pid:
 
2297	if (pid != &init_struct_pid)
2298		free_pid(pid);
2299bad_fork_cleanup_thread:
2300	exit_thread(p);
2301bad_fork_cleanup_io:
2302	if (p->io_context)
2303		exit_io_context(p);
2304bad_fork_cleanup_namespaces:
2305	exit_task_namespaces(p);
2306bad_fork_cleanup_mm:
2307	if (p->mm) {
2308		mm_clear_owner(p->mm, p);
2309		mmput(p->mm);
2310	}
2311bad_fork_cleanup_signal:
2312	if (!(clone_flags & CLONE_THREAD))
2313		free_signal_struct(p->signal);
2314bad_fork_cleanup_sighand:
2315	__cleanup_sighand(p->sighand);
2316bad_fork_cleanup_fs:
2317	exit_fs(p); /* blocking */
2318bad_fork_cleanup_files:
2319	exit_files(p); /* blocking */
2320bad_fork_cleanup_semundo:
2321	exit_sem(p);
2322bad_fork_cleanup_security:
2323	security_task_free(p);
2324bad_fork_cleanup_audit:
2325	audit_free(p);
2326bad_fork_cleanup_perf:
2327	perf_event_free_task(p);
2328bad_fork_cleanup_policy:
2329	lockdep_free_task(p);
2330#ifdef CONFIG_NUMA
2331	mpol_put(p->mempolicy);
2332bad_fork_cleanup_threadgroup_lock:
2333#endif
2334	delayacct_tsk_free(p);
2335bad_fork_cleanup_count:
2336	atomic_dec(&p->cred->user->processes);
2337	exit_creds(p);
2338bad_fork_free:
2339	p->state = TASK_DEAD;
2340	put_task_stack(p);
2341	delayed_free_task(p);
2342fork_out:
2343	spin_lock_irq(&current->sighand->siglock);
2344	hlist_del_init(&delayed.node);
2345	spin_unlock_irq(&current->sighand->siglock);
2346	return ERR_PTR(retval);
2347}
2348
2349static inline void init_idle_pids(struct task_struct *idle)
2350{
2351	enum pid_type type;
2352
2353	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2354		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2355		init_task_pid(idle, type, &init_struct_pid);
2356	}
2357}
2358
2359struct task_struct *fork_idle(int cpu)
2360{
2361	struct task_struct *task;
2362	struct kernel_clone_args args = {
2363		.flags = CLONE_VM,
2364	};
2365
2366	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2367	if (!IS_ERR(task)) {
2368		init_idle_pids(task);
2369		init_idle(task, cpu);
2370	}
2371
2372	return task;
2373}
2374
2375struct mm_struct *copy_init_mm(void)
2376{
2377	return dup_mm(NULL, &init_mm);
2378}
2379
2380/*
2381 *  Ok, this is the main fork-routine.
2382 *
2383 * It copies the process, and if successful kick-starts
2384 * it and waits for it to finish using the VM if required.
2385 *
2386 * args->exit_signal is expected to be checked for sanity by the caller.
2387 */
2388long _do_fork(struct kernel_clone_args *args)
 
 
 
 
 
2389{
2390	u64 clone_flags = args->flags;
2391	struct completion vfork;
2392	struct pid *pid;
2393	struct task_struct *p;
2394	int trace = 0;
2395	long nr;
2396
2397	/*
2398	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2399	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2400	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2401	 * field in struct clone_args and it still doesn't make sense to have
2402	 * them both point at the same memory location. Performing this check
2403	 * here has the advantage that we don't need to have a separate helper
2404	 * to check for legacy clone().
2405	 */
2406	if ((args->flags & CLONE_PIDFD) &&
2407	    (args->flags & CLONE_PARENT_SETTID) &&
2408	    (args->pidfd == args->parent_tid))
2409		return -EINVAL;
2410
2411	/*
2412	 * Determine whether and which event to report to ptracer.  When
2413	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2414	 * requested, no event is reported; otherwise, report if the event
2415	 * for the type of forking is enabled.
2416	 */
2417	if (!(clone_flags & CLONE_UNTRACED)) {
2418		if (clone_flags & CLONE_VFORK)
2419			trace = PTRACE_EVENT_VFORK;
2420		else if (args->exit_signal != SIGCHLD)
2421			trace = PTRACE_EVENT_CLONE;
2422		else
2423			trace = PTRACE_EVENT_FORK;
2424
2425		if (likely(!ptrace_event_enabled(current, trace)))
2426			trace = 0;
2427	}
2428
2429	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
 
2430	add_latent_entropy();
2431
2432	if (IS_ERR(p))
2433		return PTR_ERR(p);
2434
2435	/*
2436	 * Do this prior waking up the new thread - the thread pointer
2437	 * might get invalid after that point, if the thread exits quickly.
2438	 */
2439	trace_sched_process_fork(current, p);
2440
2441	pid = get_task_pid(p, PIDTYPE_PID);
2442	nr = pid_vnr(pid);
2443
2444	if (clone_flags & CLONE_PARENT_SETTID)
2445		put_user(nr, args->parent_tid);
2446
2447	if (clone_flags & CLONE_VFORK) {
2448		p->vfork_done = &vfork;
2449		init_completion(&vfork);
2450		get_task_struct(p);
2451	}
2452
2453	wake_up_new_task(p);
2454
2455	/* forking complete and child started to run, tell ptracer */
2456	if (unlikely(trace))
2457		ptrace_event_pid(trace, pid);
2458
2459	if (clone_flags & CLONE_VFORK) {
2460		if (!wait_for_vfork_done(p, &vfork))
2461			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2462	}
2463
2464	put_pid(pid);
2465	return nr;
2466}
2467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2468/*
2469 * Create a kernel thread.
2470 */
2471pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2472{
2473	struct kernel_clone_args args = {
2474		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2475				    CLONE_UNTRACED) & ~CSIGNAL),
2476		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2477		.stack		= (unsigned long)fn,
2478		.stack_size	= (unsigned long)arg,
2479	};
2480
2481	return _do_fork(&args);
2482}
2483
2484#ifdef __ARCH_WANT_SYS_FORK
2485SYSCALL_DEFINE0(fork)
2486{
2487#ifdef CONFIG_MMU
2488	struct kernel_clone_args args = {
2489		.exit_signal = SIGCHLD,
2490	};
2491
2492	return _do_fork(&args);
2493#else
2494	/* can not support in nommu mode */
2495	return -EINVAL;
2496#endif
2497}
2498#endif
2499
2500#ifdef __ARCH_WANT_SYS_VFORK
2501SYSCALL_DEFINE0(vfork)
2502{
2503	struct kernel_clone_args args = {
2504		.flags		= CLONE_VFORK | CLONE_VM,
2505		.exit_signal	= SIGCHLD,
2506	};
2507
2508	return _do_fork(&args);
2509}
2510#endif
2511
2512#ifdef __ARCH_WANT_SYS_CLONE
2513#ifdef CONFIG_CLONE_BACKWARDS
2514SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2515		 int __user *, parent_tidptr,
2516		 unsigned long, tls,
2517		 int __user *, child_tidptr)
2518#elif defined(CONFIG_CLONE_BACKWARDS2)
2519SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2520		 int __user *, parent_tidptr,
2521		 int __user *, child_tidptr,
2522		 unsigned long, tls)
2523#elif defined(CONFIG_CLONE_BACKWARDS3)
2524SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2525		int, stack_size,
2526		int __user *, parent_tidptr,
2527		int __user *, child_tidptr,
2528		unsigned long, tls)
2529#else
2530SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2531		 int __user *, parent_tidptr,
2532		 int __user *, child_tidptr,
2533		 unsigned long, tls)
2534#endif
2535{
2536	struct kernel_clone_args args = {
2537		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2538		.pidfd		= parent_tidptr,
2539		.child_tid	= child_tidptr,
2540		.parent_tid	= parent_tidptr,
2541		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2542		.stack		= newsp,
2543		.tls		= tls,
2544	};
2545
2546	return _do_fork(&args);
2547}
2548#endif
2549
2550#ifdef __ARCH_WANT_SYS_CLONE3
2551
2552noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2553					      struct clone_args __user *uargs,
2554					      size_t usize)
2555{
2556	int err;
2557	struct clone_args args;
2558	pid_t *kset_tid = kargs->set_tid;
2559
2560	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2561		     CLONE_ARGS_SIZE_VER0);
2562	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2563		     CLONE_ARGS_SIZE_VER1);
2564	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2565		     CLONE_ARGS_SIZE_VER2);
2566	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2567
2568	if (unlikely(usize > PAGE_SIZE))
2569		return -E2BIG;
2570	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2571		return -EINVAL;
2572
2573	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2574	if (err)
2575		return err;
2576
2577	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2578		return -EINVAL;
2579
2580	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2581		return -EINVAL;
2582
2583	if (unlikely(args.set_tid && args.set_tid_size == 0))
2584		return -EINVAL;
2585
2586	/*
2587	 * Verify that higher 32bits of exit_signal are unset and that
2588	 * it is a valid signal
2589	 */
2590	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2591		     !valid_signal(args.exit_signal)))
2592		return -EINVAL;
2593
2594	if ((args.flags & CLONE_INTO_CGROUP) &&
2595	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2596		return -EINVAL;
2597
2598	*kargs = (struct kernel_clone_args){
2599		.flags		= args.flags,
2600		.pidfd		= u64_to_user_ptr(args.pidfd),
2601		.child_tid	= u64_to_user_ptr(args.child_tid),
2602		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2603		.exit_signal	= args.exit_signal,
2604		.stack		= args.stack,
2605		.stack_size	= args.stack_size,
2606		.tls		= args.tls,
2607		.set_tid_size	= args.set_tid_size,
2608		.cgroup		= args.cgroup,
2609	};
2610
2611	if (args.set_tid &&
2612		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2613			(kargs->set_tid_size * sizeof(pid_t))))
2614		return -EFAULT;
2615
2616	kargs->set_tid = kset_tid;
2617
2618	return 0;
2619}
2620
2621/**
2622 * clone3_stack_valid - check and prepare stack
2623 * @kargs: kernel clone args
2624 *
2625 * Verify that the stack arguments userspace gave us are sane.
2626 * In addition, set the stack direction for userspace since it's easy for us to
2627 * determine.
2628 */
2629static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2630{
2631	if (kargs->stack == 0) {
2632		if (kargs->stack_size > 0)
2633			return false;
2634	} else {
2635		if (kargs->stack_size == 0)
2636			return false;
2637
2638		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2639			return false;
2640
2641#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2642		kargs->stack += kargs->stack_size;
2643#endif
2644	}
2645
2646	return true;
2647}
2648
2649static bool clone3_args_valid(struct kernel_clone_args *kargs)
2650{
2651	/* Verify that no unknown flags are passed along. */
2652	if (kargs->flags &
2653	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2654		return false;
2655
2656	/*
2657	 * - make the CLONE_DETACHED bit reuseable for clone3
2658	 * - make the CSIGNAL bits reuseable for clone3
2659	 */
2660	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2661		return false;
2662
2663	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2664	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2665		return false;
2666
2667	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2668	    kargs->exit_signal)
2669		return false;
2670
2671	if (!clone3_stack_valid(kargs))
2672		return false;
2673
2674	return true;
2675}
2676
2677/**
2678 * clone3 - create a new process with specific properties
2679 * @uargs: argument structure
2680 * @size:  size of @uargs
2681 *
2682 * clone3() is the extensible successor to clone()/clone2().
2683 * It takes a struct as argument that is versioned by its size.
2684 *
2685 * Return: On success, a positive PID for the child process.
2686 *         On error, a negative errno number.
2687 */
2688SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2689{
2690	int err;
2691
2692	struct kernel_clone_args kargs;
2693	pid_t set_tid[MAX_PID_NS_LEVEL];
2694
2695	kargs.set_tid = set_tid;
2696
2697	err = copy_clone_args_from_user(&kargs, uargs, size);
2698	if (err)
2699		return err;
2700
2701	if (!clone3_args_valid(&kargs))
2702		return -EINVAL;
2703
2704	return _do_fork(&kargs);
2705}
2706#endif
2707
2708void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2709{
2710	struct task_struct *leader, *parent, *child;
2711	int res;
2712
2713	read_lock(&tasklist_lock);
2714	leader = top = top->group_leader;
2715down:
2716	for_each_thread(leader, parent) {
2717		list_for_each_entry(child, &parent->children, sibling) {
2718			res = visitor(child, data);
2719			if (res) {
2720				if (res < 0)
2721					goto out;
2722				leader = child;
2723				goto down;
2724			}
2725up:
2726			;
2727		}
2728	}
2729
2730	if (leader != top) {
2731		child = leader;
2732		parent = child->real_parent;
2733		leader = parent->group_leader;
2734		goto up;
2735	}
2736out:
2737	read_unlock(&tasklist_lock);
2738}
2739
2740#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2741#define ARCH_MIN_MMSTRUCT_ALIGN 0
2742#endif
2743
2744static void sighand_ctor(void *data)
2745{
2746	struct sighand_struct *sighand = data;
2747
2748	spin_lock_init(&sighand->siglock);
2749	init_waitqueue_head(&sighand->signalfd_wqh);
2750}
2751
2752void __init proc_caches_init(void)
2753{
2754	unsigned int mm_size;
2755
2756	sighand_cachep = kmem_cache_create("sighand_cache",
2757			sizeof(struct sighand_struct), 0,
2758			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2759			SLAB_ACCOUNT, sighand_ctor);
2760	signal_cachep = kmem_cache_create("signal_cache",
2761			sizeof(struct signal_struct), 0,
2762			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2763			NULL);
2764	files_cachep = kmem_cache_create("files_cache",
2765			sizeof(struct files_struct), 0,
2766			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2767			NULL);
2768	fs_cachep = kmem_cache_create("fs_cache",
2769			sizeof(struct fs_struct), 0,
2770			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2771			NULL);
2772
2773	/*
2774	 * The mm_cpumask is located at the end of mm_struct, and is
2775	 * dynamically sized based on the maximum CPU number this system
2776	 * can have, taking hotplug into account (nr_cpu_ids).
 
 
2777	 */
2778	mm_size = sizeof(struct mm_struct) + cpumask_size();
2779
2780	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2781			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2782			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2783			offsetof(struct mm_struct, saved_auxv),
2784			sizeof_field(struct mm_struct, saved_auxv),
2785			NULL);
2786	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2787	mmap_init();
2788	nsproxy_cache_init();
2789}
2790
2791/*
2792 * Check constraints on flags passed to the unshare system call.
2793 */
2794static int check_unshare_flags(unsigned long unshare_flags)
2795{
2796	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2797				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2798				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2799				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2800				CLONE_NEWTIME))
2801		return -EINVAL;
2802	/*
2803	 * Not implemented, but pretend it works if there is nothing
2804	 * to unshare.  Note that unsharing the address space or the
2805	 * signal handlers also need to unshare the signal queues (aka
2806	 * CLONE_THREAD).
2807	 */
2808	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2809		if (!thread_group_empty(current))
2810			return -EINVAL;
2811	}
2812	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2813		if (refcount_read(&current->sighand->count) > 1)
2814			return -EINVAL;
2815	}
2816	if (unshare_flags & CLONE_VM) {
2817		if (!current_is_single_threaded())
2818			return -EINVAL;
2819	}
2820
2821	return 0;
2822}
2823
2824/*
2825 * Unshare the filesystem structure if it is being shared
2826 */
2827static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2828{
2829	struct fs_struct *fs = current->fs;
2830
2831	if (!(unshare_flags & CLONE_FS) || !fs)
2832		return 0;
2833
2834	/* don't need lock here; in the worst case we'll do useless copy */
2835	if (fs->users == 1)
2836		return 0;
2837
2838	*new_fsp = copy_fs_struct(fs);
2839	if (!*new_fsp)
2840		return -ENOMEM;
2841
2842	return 0;
2843}
2844
2845/*
2846 * Unshare file descriptor table if it is being shared
2847 */
2848int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2849	       struct files_struct **new_fdp)
2850{
2851	struct files_struct *fd = current->files;
2852	int error = 0;
2853
2854	if ((unshare_flags & CLONE_FILES) &&
2855	    (fd && atomic_read(&fd->count) > 1)) {
2856		*new_fdp = dup_fd(fd, max_fds, &error);
2857		if (!*new_fdp)
2858			return error;
2859	}
2860
2861	return 0;
2862}
2863
2864/*
2865 * unshare allows a process to 'unshare' part of the process
2866 * context which was originally shared using clone.  copy_*
2867 * functions used by _do_fork() cannot be used here directly
2868 * because they modify an inactive task_struct that is being
2869 * constructed. Here we are modifying the current, active,
2870 * task_struct.
2871 */
2872int ksys_unshare(unsigned long unshare_flags)
2873{
2874	struct fs_struct *fs, *new_fs = NULL;
2875	struct files_struct *fd, *new_fd = NULL;
2876	struct cred *new_cred = NULL;
2877	struct nsproxy *new_nsproxy = NULL;
2878	int do_sysvsem = 0;
2879	int err;
2880
2881	/*
2882	 * If unsharing a user namespace must also unshare the thread group
2883	 * and unshare the filesystem root and working directories.
2884	 */
2885	if (unshare_flags & CLONE_NEWUSER)
2886		unshare_flags |= CLONE_THREAD | CLONE_FS;
2887	/*
2888	 * If unsharing vm, must also unshare signal handlers.
2889	 */
2890	if (unshare_flags & CLONE_VM)
2891		unshare_flags |= CLONE_SIGHAND;
2892	/*
2893	 * If unsharing a signal handlers, must also unshare the signal queues.
2894	 */
2895	if (unshare_flags & CLONE_SIGHAND)
2896		unshare_flags |= CLONE_THREAD;
2897	/*
2898	 * If unsharing namespace, must also unshare filesystem information.
2899	 */
2900	if (unshare_flags & CLONE_NEWNS)
2901		unshare_flags |= CLONE_FS;
2902
2903	err = check_unshare_flags(unshare_flags);
2904	if (err)
2905		goto bad_unshare_out;
2906	/*
2907	 * CLONE_NEWIPC must also detach from the undolist: after switching
2908	 * to a new ipc namespace, the semaphore arrays from the old
2909	 * namespace are unreachable.
2910	 */
2911	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2912		do_sysvsem = 1;
2913	err = unshare_fs(unshare_flags, &new_fs);
2914	if (err)
2915		goto bad_unshare_out;
2916	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2917	if (err)
2918		goto bad_unshare_cleanup_fs;
2919	err = unshare_userns(unshare_flags, &new_cred);
2920	if (err)
2921		goto bad_unshare_cleanup_fd;
2922	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2923					 new_cred, new_fs);
2924	if (err)
2925		goto bad_unshare_cleanup_cred;
2926
2927	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2928		if (do_sysvsem) {
2929			/*
2930			 * CLONE_SYSVSEM is equivalent to sys_exit().
2931			 */
2932			exit_sem(current);
2933		}
2934		if (unshare_flags & CLONE_NEWIPC) {
2935			/* Orphan segments in old ns (see sem above). */
2936			exit_shm(current);
2937			shm_init_task(current);
2938		}
2939
2940		if (new_nsproxy)
2941			switch_task_namespaces(current, new_nsproxy);
2942
2943		task_lock(current);
2944
2945		if (new_fs) {
2946			fs = current->fs;
2947			spin_lock(&fs->lock);
2948			current->fs = new_fs;
2949			if (--fs->users)
2950				new_fs = NULL;
2951			else
2952				new_fs = fs;
2953			spin_unlock(&fs->lock);
2954		}
2955
2956		if (new_fd) {
2957			fd = current->files;
2958			current->files = new_fd;
2959			new_fd = fd;
2960		}
2961
2962		task_unlock(current);
2963
2964		if (new_cred) {
2965			/* Install the new user namespace */
2966			commit_creds(new_cred);
2967			new_cred = NULL;
2968		}
2969	}
2970
2971	perf_event_namespaces(current);
2972
2973bad_unshare_cleanup_cred:
2974	if (new_cred)
2975		put_cred(new_cred);
2976bad_unshare_cleanup_fd:
2977	if (new_fd)
2978		put_files_struct(new_fd);
2979
2980bad_unshare_cleanup_fs:
2981	if (new_fs)
2982		free_fs_struct(new_fs);
2983
2984bad_unshare_out:
2985	return err;
2986}
2987
2988SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2989{
2990	return ksys_unshare(unshare_flags);
2991}
2992
2993/*
2994 *	Helper to unshare the files of the current task.
2995 *	We don't want to expose copy_files internals to
2996 *	the exec layer of the kernel.
2997 */
2998
2999int unshare_files(struct files_struct **displaced)
3000{
3001	struct task_struct *task = current;
3002	struct files_struct *copy = NULL;
3003	int error;
3004
3005	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3006	if (error || !copy) {
3007		*displaced = NULL;
3008		return error;
3009	}
3010	*displaced = task->files;
3011	task_lock(task);
3012	task->files = copy;
3013	task_unlock(task);
3014	return 0;
3015}
3016
3017int sysctl_max_threads(struct ctl_table *table, int write,
3018		       void *buffer, size_t *lenp, loff_t *ppos)
3019{
3020	struct ctl_table t;
3021	int ret;
3022	int threads = max_threads;
3023	int min = 1;
3024	int max = MAX_THREADS;
3025
3026	t = *table;
3027	t.data = &threads;
3028	t.extra1 = &min;
3029	t.extra2 = &max;
3030
3031	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3032	if (ret || !write)
3033		return ret;
3034
3035	max_threads = threads;
3036
3037	return 0;
3038}