Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * arch-independent dma-mapping routines
  4 *
  5 * Copyright (c) 2006  SUSE Linux Products GmbH
  6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
  7 */
  8#include <linux/memblock.h> /* for max_pfn */
  9#include <linux/acpi.h>
 10#include <linux/dma-direct.h>
 11#include <linux/dma-noncoherent.h>
 12#include <linux/export.h>
 13#include <linux/gfp.h>
 14#include <linux/of_device.h>
 15#include <linux/slab.h>
 16#include <linux/vmalloc.h>
 17
 18/*
 19 * Managed DMA API
 20 */
 21struct dma_devres {
 22	size_t		size;
 23	void		*vaddr;
 24	dma_addr_t	dma_handle;
 25	unsigned long	attrs;
 26};
 27
 28static void dmam_release(struct device *dev, void *res)
 29{
 30	struct dma_devres *this = res;
 31
 32	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
 33			this->attrs);
 34}
 35
 36static int dmam_match(struct device *dev, void *res, void *match_data)
 37{
 38	struct dma_devres *this = res, *match = match_data;
 39
 40	if (this->vaddr == match->vaddr) {
 41		WARN_ON(this->size != match->size ||
 42			this->dma_handle != match->dma_handle);
 43		return 1;
 44	}
 45	return 0;
 46}
 47
 48/**
 49 * dmam_free_coherent - Managed dma_free_coherent()
 50 * @dev: Device to free coherent memory for
 51 * @size: Size of allocation
 52 * @vaddr: Virtual address of the memory to free
 53 * @dma_handle: DMA handle of the memory to free
 54 *
 55 * Managed dma_free_coherent().
 56 */
 57void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
 58			dma_addr_t dma_handle)
 59{
 60	struct dma_devres match_data = { size, vaddr, dma_handle };
 61
 62	dma_free_coherent(dev, size, vaddr, dma_handle);
 63	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
 64}
 65EXPORT_SYMBOL(dmam_free_coherent);
 66
 67/**
 68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
 69 * @dev: Device to allocate non_coherent memory for
 70 * @size: Size of allocation
 71 * @dma_handle: Out argument for allocated DMA handle
 72 * @gfp: Allocation flags
 73 * @attrs: Flags in the DMA_ATTR_* namespace.
 74 *
 75 * Managed dma_alloc_attrs().  Memory allocated using this function will be
 76 * automatically released on driver detach.
 77 *
 78 * RETURNS:
 79 * Pointer to allocated memory on success, NULL on failure.
 80 */
 81void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 82		gfp_t gfp, unsigned long attrs)
 83{
 84	struct dma_devres *dr;
 85	void *vaddr;
 86
 87	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
 88	if (!dr)
 89		return NULL;
 90
 91	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
 92	if (!vaddr) {
 93		devres_free(dr);
 94		return NULL;
 95	}
 96
 97	dr->vaddr = vaddr;
 98	dr->dma_handle = *dma_handle;
 99	dr->size = size;
100	dr->attrs = attrs;
101
102	devres_add(dev, dr);
103
104	return vaddr;
105}
106EXPORT_SYMBOL(dmam_alloc_attrs);
107
108static bool dma_go_direct(struct device *dev, dma_addr_t mask,
109		const struct dma_map_ops *ops)
110{
111	if (likely(!ops))
112		return true;
113#ifdef CONFIG_DMA_OPS_BYPASS
114	if (dev->dma_ops_bypass)
115		return min_not_zero(mask, dev->bus_dma_limit) >=
116			    dma_direct_get_required_mask(dev);
117#endif
118	return false;
119}
120
121
122/*
123 * Check if the devices uses a direct mapping for streaming DMA operations.
124 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
125 * enough.
126 */
127static inline bool dma_alloc_direct(struct device *dev,
128		const struct dma_map_ops *ops)
129{
130	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
131}
132
133static inline bool dma_map_direct(struct device *dev,
134		const struct dma_map_ops *ops)
135{
136	return dma_go_direct(dev, *dev->dma_mask, ops);
137}
138
139dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
140		size_t offset, size_t size, enum dma_data_direction dir,
141		unsigned long attrs)
142{
143	const struct dma_map_ops *ops = get_dma_ops(dev);
144	dma_addr_t addr;
145
146	BUG_ON(!valid_dma_direction(dir));
147	if (dma_map_direct(dev, ops))
148		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
149	else
150		addr = ops->map_page(dev, page, offset, size, dir, attrs);
151	debug_dma_map_page(dev, page, offset, size, dir, addr);
152
153	return addr;
154}
155EXPORT_SYMBOL(dma_map_page_attrs);
156
157void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
158		enum dma_data_direction dir, unsigned long attrs)
159{
160	const struct dma_map_ops *ops = get_dma_ops(dev);
161
162	BUG_ON(!valid_dma_direction(dir));
163	if (dma_map_direct(dev, ops))
164		dma_direct_unmap_page(dev, addr, size, dir, attrs);
165	else if (ops->unmap_page)
166		ops->unmap_page(dev, addr, size, dir, attrs);
167	debug_dma_unmap_page(dev, addr, size, dir);
168}
169EXPORT_SYMBOL(dma_unmap_page_attrs);
170
171/*
172 * dma_maps_sg_attrs returns 0 on error and > 0 on success.
173 * It should never return a value < 0.
174 */
175int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
176		enum dma_data_direction dir, unsigned long attrs)
177{
178	const struct dma_map_ops *ops = get_dma_ops(dev);
179	int ents;
180
181	BUG_ON(!valid_dma_direction(dir));
182	if (dma_map_direct(dev, ops))
183		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
184	else
185		ents = ops->map_sg(dev, sg, nents, dir, attrs);
186	BUG_ON(ents < 0);
187	debug_dma_map_sg(dev, sg, nents, ents, dir);
188
189	return ents;
190}
191EXPORT_SYMBOL(dma_map_sg_attrs);
192
193void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
194				      int nents, enum dma_data_direction dir,
195				      unsigned long attrs)
196{
197	const struct dma_map_ops *ops = get_dma_ops(dev);
198
199	BUG_ON(!valid_dma_direction(dir));
200	debug_dma_unmap_sg(dev, sg, nents, dir);
201	if (dma_map_direct(dev, ops))
202		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
203	else if (ops->unmap_sg)
204		ops->unmap_sg(dev, sg, nents, dir, attrs);
205}
206EXPORT_SYMBOL(dma_unmap_sg_attrs);
207
208dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
209		size_t size, enum dma_data_direction dir, unsigned long attrs)
210{
211	const struct dma_map_ops *ops = get_dma_ops(dev);
212	dma_addr_t addr = DMA_MAPPING_ERROR;
213
214	BUG_ON(!valid_dma_direction(dir));
215
216	/* Don't allow RAM to be mapped */
217	if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
218		return DMA_MAPPING_ERROR;
219
220	if (dma_map_direct(dev, ops))
221		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
222	else if (ops->map_resource)
223		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
224
225	debug_dma_map_resource(dev, phys_addr, size, dir, addr);
226	return addr;
227}
228EXPORT_SYMBOL(dma_map_resource);
229
230void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
231		enum dma_data_direction dir, unsigned long attrs)
232{
233	const struct dma_map_ops *ops = get_dma_ops(dev);
234
235	BUG_ON(!valid_dma_direction(dir));
236	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
237		ops->unmap_resource(dev, addr, size, dir, attrs);
238	debug_dma_unmap_resource(dev, addr, size, dir);
239}
240EXPORT_SYMBOL(dma_unmap_resource);
241
242void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
243		enum dma_data_direction dir)
244{
245	const struct dma_map_ops *ops = get_dma_ops(dev);
246
247	BUG_ON(!valid_dma_direction(dir));
248	if (dma_map_direct(dev, ops))
249		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
250	else if (ops->sync_single_for_cpu)
251		ops->sync_single_for_cpu(dev, addr, size, dir);
252	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
253}
254EXPORT_SYMBOL(dma_sync_single_for_cpu);
255
256void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
257		size_t size, enum dma_data_direction dir)
258{
259	const struct dma_map_ops *ops = get_dma_ops(dev);
260
261	BUG_ON(!valid_dma_direction(dir));
262	if (dma_map_direct(dev, ops))
263		dma_direct_sync_single_for_device(dev, addr, size, dir);
264	else if (ops->sync_single_for_device)
265		ops->sync_single_for_device(dev, addr, size, dir);
266	debug_dma_sync_single_for_device(dev, addr, size, dir);
267}
268EXPORT_SYMBOL(dma_sync_single_for_device);
269
270void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
271		    int nelems, enum dma_data_direction dir)
272{
273	const struct dma_map_ops *ops = get_dma_ops(dev);
274
275	BUG_ON(!valid_dma_direction(dir));
276	if (dma_map_direct(dev, ops))
277		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
278	else if (ops->sync_sg_for_cpu)
279		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
280	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
281}
282EXPORT_SYMBOL(dma_sync_sg_for_cpu);
283
284void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
285		       int nelems, enum dma_data_direction dir)
286{
287	const struct dma_map_ops *ops = get_dma_ops(dev);
288
289	BUG_ON(!valid_dma_direction(dir));
290	if (dma_map_direct(dev, ops))
291		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
292	else if (ops->sync_sg_for_device)
293		ops->sync_sg_for_device(dev, sg, nelems, dir);
294	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
295}
296EXPORT_SYMBOL(dma_sync_sg_for_device);
297
298/*
299 * Create scatter-list for the already allocated DMA buffer.
300 */
301int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
302		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
303		 unsigned long attrs)
304{
305	struct page *page = virt_to_page(cpu_addr);
306	int ret;
307
308	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
309	if (!ret)
310		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
311	return ret;
312}
313
314/*
315 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
316 * that the intention is to allow exporting memory allocated via the
317 * coherent DMA APIs through the dma_buf API, which only accepts a
318 * scattertable.  This presents a couple of problems:
319 * 1. Not all memory allocated via the coherent DMA APIs is backed by
320 *    a struct page
321 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
322 *    as we will try to flush the memory through a different alias to that
323 *    actually being used (and the flushes are redundant.)
324 */
325int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
326		void *cpu_addr, dma_addr_t dma_addr, size_t size,
327		unsigned long attrs)
328{
329	const struct dma_map_ops *ops = get_dma_ops(dev);
330
331	if (dma_alloc_direct(dev, ops))
332		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
333				size, attrs);
334	if (!ops->get_sgtable)
335		return -ENXIO;
336	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
337}
338EXPORT_SYMBOL(dma_get_sgtable_attrs);
339
340#ifdef CONFIG_MMU
341/*
342 * Return the page attributes used for mapping dma_alloc_* memory, either in
343 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
344 */
345pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
346{
347	if (force_dma_unencrypted(dev))
348		prot = pgprot_decrypted(prot);
349	if (dev_is_dma_coherent(dev) ||
350	    (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
351             (attrs & DMA_ATTR_NON_CONSISTENT)))
352		return prot;
353#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
354	if (attrs & DMA_ATTR_WRITE_COMBINE)
355		return pgprot_writecombine(prot);
356#endif
357	return pgprot_dmacoherent(prot);
358}
359#endif /* CONFIG_MMU */
360
361/*
362 * Create userspace mapping for the DMA-coherent memory.
363 */
364int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
365		void *cpu_addr, dma_addr_t dma_addr, size_t size,
366		unsigned long attrs)
367{
368#ifdef CONFIG_MMU
369	unsigned long user_count = vma_pages(vma);
370	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
371	unsigned long off = vma->vm_pgoff;
372	int ret = -ENXIO;
373
374	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
375
376	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
377		return ret;
378
379	if (off >= count || user_count > count - off)
380		return -ENXIO;
381
382	return remap_pfn_range(vma, vma->vm_start,
383			page_to_pfn(virt_to_page(cpu_addr)) + vma->vm_pgoff,
384			user_count << PAGE_SHIFT, vma->vm_page_prot);
385#else
386	return -ENXIO;
387#endif /* CONFIG_MMU */
388}
389
390/**
391 * dma_can_mmap - check if a given device supports dma_mmap_*
392 * @dev: device to check
393 *
394 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
395 * map DMA allocations to userspace.
396 */
397bool dma_can_mmap(struct device *dev)
398{
399	const struct dma_map_ops *ops = get_dma_ops(dev);
400
401	if (dma_alloc_direct(dev, ops))
402		return dma_direct_can_mmap(dev);
403	return ops->mmap != NULL;
404}
405EXPORT_SYMBOL_GPL(dma_can_mmap);
406
407/**
408 * dma_mmap_attrs - map a coherent DMA allocation into user space
409 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
410 * @vma: vm_area_struct describing requested user mapping
411 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
412 * @dma_addr: device-view address returned from dma_alloc_attrs
413 * @size: size of memory originally requested in dma_alloc_attrs
414 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
415 *
416 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
417 * space.  The coherent DMA buffer must not be freed by the driver until the
418 * user space mapping has been released.
419 */
420int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
421		void *cpu_addr, dma_addr_t dma_addr, size_t size,
422		unsigned long attrs)
423{
424	const struct dma_map_ops *ops = get_dma_ops(dev);
425
426	if (dma_alloc_direct(dev, ops))
427		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
428				attrs);
429	if (!ops->mmap)
430		return -ENXIO;
431	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
432}
433EXPORT_SYMBOL(dma_mmap_attrs);
434
435u64 dma_get_required_mask(struct device *dev)
436{
437	const struct dma_map_ops *ops = get_dma_ops(dev);
438
439	if (dma_alloc_direct(dev, ops))
440		return dma_direct_get_required_mask(dev);
441	if (ops->get_required_mask)
442		return ops->get_required_mask(dev);
443
444	/*
445	 * We require every DMA ops implementation to at least support a 32-bit
446	 * DMA mask (and use bounce buffering if that isn't supported in
447	 * hardware).  As the direct mapping code has its own routine to
448	 * actually report an optimal mask we default to 32-bit here as that
449	 * is the right thing for most IOMMUs, and at least not actively
450	 * harmful in general.
451	 */
452	return DMA_BIT_MASK(32);
453}
454EXPORT_SYMBOL_GPL(dma_get_required_mask);
455
456void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
457		gfp_t flag, unsigned long attrs)
458{
459	const struct dma_map_ops *ops = get_dma_ops(dev);
460	void *cpu_addr;
461
462	WARN_ON_ONCE(!dev->coherent_dma_mask);
463
464	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
465		return cpu_addr;
466
467	/* let the implementation decide on the zone to allocate from: */
468	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
469
470	if (dma_alloc_direct(dev, ops))
471		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
472	else if (ops->alloc)
473		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
474	else
475		return NULL;
476
477	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
478	return cpu_addr;
479}
480EXPORT_SYMBOL(dma_alloc_attrs);
481
482void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
483		dma_addr_t dma_handle, unsigned long attrs)
484{
485	const struct dma_map_ops *ops = get_dma_ops(dev);
486
487	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
488		return;
489	/*
490	 * On non-coherent platforms which implement DMA-coherent buffers via
491	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
492	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
493	 * sleep on some machines, and b) an indication that the driver is
494	 * probably misusing the coherent API anyway.
495	 */
496	WARN_ON(irqs_disabled());
497
498	if (!cpu_addr)
499		return;
500
501	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
502	if (dma_alloc_direct(dev, ops))
503		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
504	else if (ops->free)
505		ops->free(dev, size, cpu_addr, dma_handle, attrs);
506}
507EXPORT_SYMBOL(dma_free_attrs);
508
509int dma_supported(struct device *dev, u64 mask)
510{
511	const struct dma_map_ops *ops = get_dma_ops(dev);
512
513	/*
514	 * ->dma_supported sets the bypass flag, so we must always call
515	 * into the method here unless the device is truly direct mapped.
516	 */
517	if (!ops)
518		return dma_direct_supported(dev, mask);
519	if (!ops->dma_supported)
520		return 1;
521	return ops->dma_supported(dev, mask);
522}
523EXPORT_SYMBOL(dma_supported);
524
525#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
526void arch_dma_set_mask(struct device *dev, u64 mask);
527#else
528#define arch_dma_set_mask(dev, mask)	do { } while (0)
529#endif
530
531int dma_set_mask(struct device *dev, u64 mask)
532{
533	/*
534	 * Truncate the mask to the actually supported dma_addr_t width to
535	 * avoid generating unsupportable addresses.
536	 */
537	mask = (dma_addr_t)mask;
538
539	if (!dev->dma_mask || !dma_supported(dev, mask))
540		return -EIO;
541
542	arch_dma_set_mask(dev, mask);
543	*dev->dma_mask = mask;
544	return 0;
545}
546EXPORT_SYMBOL(dma_set_mask);
547
548#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
549int dma_set_coherent_mask(struct device *dev, u64 mask)
550{
551	/*
552	 * Truncate the mask to the actually supported dma_addr_t width to
553	 * avoid generating unsupportable addresses.
554	 */
555	mask = (dma_addr_t)mask;
556
557	if (!dma_supported(dev, mask))
558		return -EIO;
559
560	dev->coherent_dma_mask = mask;
561	return 0;
562}
563EXPORT_SYMBOL(dma_set_coherent_mask);
564#endif
565
566void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
567		enum dma_data_direction dir)
568{
569	const struct dma_map_ops *ops = get_dma_ops(dev);
570
571	BUG_ON(!valid_dma_direction(dir));
572
573	if (dma_alloc_direct(dev, ops))
574		arch_dma_cache_sync(dev, vaddr, size, dir);
575	else if (ops->cache_sync)
576		ops->cache_sync(dev, vaddr, size, dir);
577}
578EXPORT_SYMBOL(dma_cache_sync);
579
580size_t dma_max_mapping_size(struct device *dev)
581{
582	const struct dma_map_ops *ops = get_dma_ops(dev);
583	size_t size = SIZE_MAX;
584
585	if (dma_map_direct(dev, ops))
586		size = dma_direct_max_mapping_size(dev);
587	else if (ops && ops->max_mapping_size)
588		size = ops->max_mapping_size(dev);
589
590	return size;
591}
592EXPORT_SYMBOL_GPL(dma_max_mapping_size);
593
594bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
595{
596	const struct dma_map_ops *ops = get_dma_ops(dev);
597
598	if (dma_map_direct(dev, ops))
599		return dma_direct_need_sync(dev, dma_addr);
600	return ops->sync_single_for_cpu || ops->sync_single_for_device;
601}
602EXPORT_SYMBOL_GPL(dma_need_sync);
603
604unsigned long dma_get_merge_boundary(struct device *dev)
605{
606	const struct dma_map_ops *ops = get_dma_ops(dev);
607
608	if (!ops || !ops->get_merge_boundary)
609		return 0;	/* can't merge */
610
611	return ops->get_merge_boundary(dev);
612}
613EXPORT_SYMBOL_GPL(dma_get_merge_boundary);