Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * drivers/spi/spi-fsl-dspi.c
   3 *
   4 * Copyright 2013 Freescale Semiconductor, Inc.
   5 *
   6 * Freescale DSPI driver
   7 * This file contains a driver for the Freescale DSPI
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/delay.h>
  18#include <linux/dmaengine.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/err.h>
  21#include <linux/errno.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/kernel.h>
  25#include <linux/math64.h>
  26#include <linux/module.h>
  27#include <linux/of.h>
  28#include <linux/of_device.h>
  29#include <linux/pinctrl/consumer.h>
  30#include <linux/platform_device.h>
  31#include <linux/pm_runtime.h>
  32#include <linux/regmap.h>
  33#include <linux/sched.h>
  34#include <linux/spi/spi.h>
  35#include <linux/spi/spi-fsl-dspi.h>
  36#include <linux/spi/spi_bitbang.h>
  37#include <linux/time.h>
  38
  39#define DRIVER_NAME "fsl-dspi"
  40
  41#define TRAN_STATE_RX_VOID		0x01
  42#define TRAN_STATE_TX_VOID		0x02
  43#define TRAN_STATE_WORD_ODD_NUM	0x04
  44
  45#define DSPI_FIFO_SIZE			4
  46#define DSPI_DMA_BUFSIZE		(DSPI_FIFO_SIZE * 1024)
  47
  48#define SPI_MCR		0x00
  49#define SPI_MCR_MASTER		(1 << 31)
  50#define SPI_MCR_PCSIS		(0x3F << 16)
  51#define SPI_MCR_CLR_TXF	(1 << 11)
  52#define SPI_MCR_CLR_RXF	(1 << 10)
  53
  54#define SPI_TCR			0x08
  55#define SPI_TCR_GET_TCNT(x)	(((x) & 0xffff0000) >> 16)
  56
  57#define SPI_CTAR(x)		(0x0c + (((x) & 0x3) * 4))
  58#define SPI_CTAR_FMSZ(x)	(((x) & 0x0000000f) << 27)
  59#define SPI_CTAR_CPOL(x)	((x) << 26)
  60#define SPI_CTAR_CPHA(x)	((x) << 25)
  61#define SPI_CTAR_LSBFE(x)	((x) << 24)
  62#define SPI_CTAR_PCSSCK(x)	(((x) & 0x00000003) << 22)
  63#define SPI_CTAR_PASC(x)	(((x) & 0x00000003) << 20)
  64#define SPI_CTAR_PDT(x)	(((x) & 0x00000003) << 18)
  65#define SPI_CTAR_PBR(x)	(((x) & 0x00000003) << 16)
  66#define SPI_CTAR_CSSCK(x)	(((x) & 0x0000000f) << 12)
  67#define SPI_CTAR_ASC(x)	(((x) & 0x0000000f) << 8)
  68#define SPI_CTAR_DT(x)		(((x) & 0x0000000f) << 4)
  69#define SPI_CTAR_BR(x)		((x) & 0x0000000f)
  70#define SPI_CTAR_SCALE_BITS	0xf
  71
  72#define SPI_CTAR0_SLAVE	0x0c
  73
  74#define SPI_SR			0x2c
  75#define SPI_SR_EOQF		0x10000000
  76#define SPI_SR_TCFQF		0x80000000
  77#define SPI_SR_CLEAR		0xdaad0000
  78
  79#define SPI_RSER_TFFFE		BIT(25)
  80#define SPI_RSER_TFFFD		BIT(24)
  81#define SPI_RSER_RFDFE		BIT(17)
  82#define SPI_RSER_RFDFD		BIT(16)
  83
  84#define SPI_RSER		0x30
  85#define SPI_RSER_EOQFE		0x10000000
  86#define SPI_RSER_TCFQE		0x80000000
  87
  88#define SPI_PUSHR		0x34
  89#define SPI_PUSHR_CONT		(1 << 31)
  90#define SPI_PUSHR_CTAS(x)	(((x) & 0x00000003) << 28)
  91#define SPI_PUSHR_EOQ		(1 << 27)
  92#define SPI_PUSHR_CTCNT	(1 << 26)
  93#define SPI_PUSHR_PCS(x)	(((1 << x) & 0x0000003f) << 16)
  94#define SPI_PUSHR_TXDATA(x)	((x) & 0x0000ffff)
  95
  96#define SPI_PUSHR_SLAVE	0x34
  97
  98#define SPI_POPR		0x38
  99#define SPI_POPR_RXDATA(x)	((x) & 0x0000ffff)
 100
 101#define SPI_TXFR0		0x3c
 102#define SPI_TXFR1		0x40
 103#define SPI_TXFR2		0x44
 104#define SPI_TXFR3		0x48
 105#define SPI_RXFR0		0x7c
 106#define SPI_RXFR1		0x80
 107#define SPI_RXFR2		0x84
 108#define SPI_RXFR3		0x88
 109
 110#define SPI_FRAME_BITS(bits)	SPI_CTAR_FMSZ((bits) - 1)
 111#define SPI_FRAME_BITS_MASK	SPI_CTAR_FMSZ(0xf)
 112#define SPI_FRAME_BITS_16	SPI_CTAR_FMSZ(0xf)
 113#define SPI_FRAME_BITS_8	SPI_CTAR_FMSZ(0x7)
 114
 115#define SPI_CS_INIT		0x01
 116#define SPI_CS_ASSERT		0x02
 117#define SPI_CS_DROP		0x04
 
 
 
 118
 119#define SPI_TCR_TCNT_MAX	0x10000
 120
 121#define DMA_COMPLETION_TIMEOUT	msecs_to_jiffies(3000)
 
 
 
 122
 123struct chip_data {
 124	u32 mcr_val;
 125	u32 ctar_val;
 126	u16 void_write_data;
 127};
 128
 129enum dspi_trans_mode {
 130	DSPI_EOQ_MODE = 0,
 131	DSPI_TCFQ_MODE,
 132	DSPI_DMA_MODE,
 133};
 134
 135struct fsl_dspi_devtype_data {
 136	enum dspi_trans_mode trans_mode;
 137	u8 max_clock_factor;
 
 138};
 139
 140static const struct fsl_dspi_devtype_data vf610_data = {
 141	.trans_mode = DSPI_DMA_MODE,
 142	.max_clock_factor = 2,
 
 
 
 
 
 
 
 
 143};
 144
 145static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
 146	.trans_mode = DSPI_TCFQ_MODE,
 147	.max_clock_factor = 8,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148};
 149
 150static const struct fsl_dspi_devtype_data ls2085a_data = {
 151	.trans_mode = DSPI_TCFQ_MODE,
 152	.max_clock_factor = 8,
 
 
 
 
 
 
 
 
 
 153};
 154
 155static const struct fsl_dspi_devtype_data coldfire_data = {
 156	.trans_mode = DSPI_EOQ_MODE,
 157	.max_clock_factor = 8,
 158};
 159
 160struct fsl_dspi_dma {
 161	/* Length of transfer in words of DSPI_FIFO_SIZE */
 162	u32 curr_xfer_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163
 164	u32 *tx_dma_buf;
 165	struct dma_chan *chan_tx;
 166	dma_addr_t tx_dma_phys;
 167	struct completion cmd_tx_complete;
 168	struct dma_async_tx_descriptor *tx_desc;
 169
 170	u32 *rx_dma_buf;
 171	struct dma_chan *chan_rx;
 172	dma_addr_t rx_dma_phys;
 173	struct completion cmd_rx_complete;
 174	struct dma_async_tx_descriptor *rx_desc;
 175};
 176
 177struct fsl_dspi {
 178	struct spi_master	*master;
 179	struct platform_device	*pdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180
 181	struct regmap		*regmap;
 182	int			irq;
 183	struct clk		*clk;
 184
 185	struct spi_transfer	*cur_transfer;
 186	struct spi_message	*cur_msg;
 187	struct chip_data	*cur_chip;
 188	size_t			len;
 189	void			*tx;
 190	void			*tx_end;
 191	void			*rx;
 192	void			*rx_end;
 193	char			dataflags;
 194	u8			cs;
 195	u16			void_write_data;
 196	u32			cs_change;
 197	const struct fsl_dspi_devtype_data *devtype_data;
 198
 199	wait_queue_head_t	waitq;
 200	u32			waitflags;
 
 
 
 201
 202	u32			spi_tcnt;
 203	struct fsl_dspi_dma	*dma;
 204};
 
 
 205
 206static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word);
 
 
 
 
 207
 208static inline int is_double_byte_mode(struct fsl_dspi *dspi)
 209{
 210	unsigned int val;
 
 211
 212	regmap_read(dspi->regmap, SPI_CTAR(0), &val);
 
 
 
 
 
 
 
 213
 214	return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215}
 216
 217static void dspi_tx_dma_callback(void *arg)
 218{
 219	struct fsl_dspi *dspi = arg;
 220	struct fsl_dspi_dma *dma = dspi->dma;
 221
 222	complete(&dma->cmd_tx_complete);
 223}
 224
 225static void dspi_rx_dma_callback(void *arg)
 226{
 227	struct fsl_dspi *dspi = arg;
 228	struct fsl_dspi_dma *dma = dspi->dma;
 229	int rx_word;
 230	int i;
 231	u16 d;
 232
 233	rx_word = is_double_byte_mode(dspi);
 234
 235	if (!(dspi->dataflags & TRAN_STATE_RX_VOID)) {
 236		for (i = 0; i < dma->curr_xfer_len; i++) {
 237			d = dspi->dma->rx_dma_buf[i];
 238			rx_word ? (*(u16 *)dspi->rx = d) :
 239						(*(u8 *)dspi->rx = d);
 240			dspi->rx += rx_word + 1;
 241		}
 242	}
 243
 244	complete(&dma->cmd_rx_complete);
 245}
 246
 247static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
 248{
 249	struct fsl_dspi_dma *dma = dspi->dma;
 250	struct device *dev = &dspi->pdev->dev;
 
 251	int time_left;
 252	int tx_word;
 253	int i;
 254
 255	tx_word = is_double_byte_mode(dspi);
 256
 257	for (i = 0; i < dma->curr_xfer_len; i++) {
 258		dspi->dma->tx_dma_buf[i] = dspi_data_to_pushr(dspi, tx_word);
 259		if ((dspi->cs_change) && (!dspi->len))
 260			dspi->dma->tx_dma_buf[i] &= ~SPI_PUSHR_CONT;
 261	}
 262
 263	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
 264					dma->tx_dma_phys,
 265					dma->curr_xfer_len *
 266					DMA_SLAVE_BUSWIDTH_4_BYTES,
 267					DMA_MEM_TO_DEV,
 268					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 269	if (!dma->tx_desc) {
 270		dev_err(dev, "Not able to get desc for DMA xfer\n");
 271		return -EIO;
 272	}
 273
 274	dma->tx_desc->callback = dspi_tx_dma_callback;
 275	dma->tx_desc->callback_param = dspi;
 276	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
 277		dev_err(dev, "DMA submit failed\n");
 278		return -EINVAL;
 279	}
 280
 281	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
 282					dma->rx_dma_phys,
 283					dma->curr_xfer_len *
 284					DMA_SLAVE_BUSWIDTH_4_BYTES,
 285					DMA_DEV_TO_MEM,
 286					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 287	if (!dma->rx_desc) {
 288		dev_err(dev, "Not able to get desc for DMA xfer\n");
 289		return -EIO;
 290	}
 291
 292	dma->rx_desc->callback = dspi_rx_dma_callback;
 293	dma->rx_desc->callback_param = dspi;
 294	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
 295		dev_err(dev, "DMA submit failed\n");
 296		return -EINVAL;
 297	}
 298
 299	reinit_completion(&dspi->dma->cmd_rx_complete);
 300	reinit_completion(&dspi->dma->cmd_tx_complete);
 301
 302	dma_async_issue_pending(dma->chan_rx);
 303	dma_async_issue_pending(dma->chan_tx);
 304
 
 
 
 
 
 305	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
 306					DMA_COMPLETION_TIMEOUT);
 307	if (time_left == 0) {
 308		dev_err(dev, "DMA tx timeout\n");
 309		dmaengine_terminate_all(dma->chan_tx);
 310		dmaengine_terminate_all(dma->chan_rx);
 311		return -ETIMEDOUT;
 312	}
 313
 314	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
 315					DMA_COMPLETION_TIMEOUT);
 316	if (time_left == 0) {
 317		dev_err(dev, "DMA rx timeout\n");
 318		dmaengine_terminate_all(dma->chan_tx);
 319		dmaengine_terminate_all(dma->chan_rx);
 320		return -ETIMEDOUT;
 321	}
 322
 323	return 0;
 324}
 325
 
 
 326static int dspi_dma_xfer(struct fsl_dspi *dspi)
 327{
 328	struct fsl_dspi_dma *dma = dspi->dma;
 329	struct device *dev = &dspi->pdev->dev;
 330	int curr_remaining_bytes;
 331	int bytes_per_buffer;
 332	int word = 1;
 333	int ret = 0;
 334
 335	if (is_double_byte_mode(dspi))
 336		word = 2;
 337	curr_remaining_bytes = dspi->len;
 338	bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
 339	while (curr_remaining_bytes) {
 340		/* Check if current transfer fits the DMA buffer */
 341		dma->curr_xfer_len = curr_remaining_bytes / word;
 342		if (dma->curr_xfer_len > bytes_per_buffer)
 343			dma->curr_xfer_len = bytes_per_buffer;
 
 
 
 
 
 344
 345		ret = dspi_next_xfer_dma_submit(dspi);
 346		if (ret) {
 347			dev_err(dev, "DMA transfer failed\n");
 348			goto exit;
 349
 350		} else {
 351			curr_remaining_bytes -= dma->curr_xfer_len * word;
 352			if (curr_remaining_bytes < 0)
 353				curr_remaining_bytes = 0;
 354		}
 355	}
 356
 357exit:
 358	return ret;
 359}
 360
 361static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
 362{
 363	struct fsl_dspi_dma *dma;
 364	struct dma_slave_config cfg;
 365	struct device *dev = &dspi->pdev->dev;
 
 
 366	int ret;
 367
 368	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
 369	if (!dma)
 370		return -ENOMEM;
 371
 372	dma->chan_rx = dma_request_slave_channel(dev, "rx");
 373	if (!dma->chan_rx) {
 374		dev_err(dev, "rx dma channel not available\n");
 375		ret = -ENODEV;
 376		return ret;
 377	}
 378
 379	dma->chan_tx = dma_request_slave_channel(dev, "tx");
 380	if (!dma->chan_tx) {
 381		dev_err(dev, "tx dma channel not available\n");
 382		ret = -ENODEV;
 383		goto err_tx_channel;
 384	}
 385
 386	dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
 387					&dma->tx_dma_phys, GFP_KERNEL);
 
 388	if (!dma->tx_dma_buf) {
 389		ret = -ENOMEM;
 390		goto err_tx_dma_buf;
 391	}
 392
 393	dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
 394					&dma->rx_dma_phys, GFP_KERNEL);
 
 395	if (!dma->rx_dma_buf) {
 396		ret = -ENOMEM;
 397		goto err_rx_dma_buf;
 398	}
 399
 400	cfg.src_addr = phy_addr + SPI_POPR;
 401	cfg.dst_addr = phy_addr + SPI_PUSHR;
 402	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 403	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 404	cfg.src_maxburst = 1;
 405	cfg.dst_maxburst = 1;
 406
 407	cfg.direction = DMA_DEV_TO_MEM;
 408	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
 409	if (ret) {
 410		dev_err(dev, "can't configure rx dma channel\n");
 411		ret = -EINVAL;
 412		goto err_slave_config;
 413	}
 414
 415	cfg.direction = DMA_MEM_TO_DEV;
 416	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
 417	if (ret) {
 418		dev_err(dev, "can't configure tx dma channel\n");
 419		ret = -EINVAL;
 420		goto err_slave_config;
 421	}
 422
 423	dspi->dma = dma;
 424	init_completion(&dma->cmd_tx_complete);
 425	init_completion(&dma->cmd_rx_complete);
 426
 427	return 0;
 428
 429err_slave_config:
 430	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
 431			dma->rx_dma_buf, dma->rx_dma_phys);
 432err_rx_dma_buf:
 433	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
 434			dma->tx_dma_buf, dma->tx_dma_phys);
 435err_tx_dma_buf:
 436	dma_release_channel(dma->chan_tx);
 437err_tx_channel:
 438	dma_release_channel(dma->chan_rx);
 439
 440	devm_kfree(dev, dma);
 441	dspi->dma = NULL;
 442
 443	return ret;
 444}
 445
 446static void dspi_release_dma(struct fsl_dspi *dspi)
 447{
 
 448	struct fsl_dspi_dma *dma = dspi->dma;
 449	struct device *dev = &dspi->pdev->dev;
 450
 451	if (dma) {
 452		if (dma->chan_tx) {
 453			dma_unmap_single(dev, dma->tx_dma_phys,
 454					DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
 455			dma_release_channel(dma->chan_tx);
 456		}
 457
 458		if (dma->chan_rx) {
 459			dma_unmap_single(dev, dma->rx_dma_phys,
 460					DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
 461			dma_release_channel(dma->chan_rx);
 462		}
 
 
 
 
 
 463	}
 464}
 465
 466static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
 467		unsigned long clkrate)
 468{
 469	/* Valid baud rate pre-scaler values */
 470	int pbr_tbl[4] = {2, 3, 5, 7};
 471	int brs[16] = {	2,	4,	6,	8,
 472		16,	32,	64,	128,
 473		256,	512,	1024,	2048,
 474		4096,	8192,	16384,	32768 };
 475	int scale_needed, scale, minscale = INT_MAX;
 476	int i, j;
 477
 478	scale_needed = clkrate / speed_hz;
 479	if (clkrate % speed_hz)
 480		scale_needed++;
 481
 482	for (i = 0; i < ARRAY_SIZE(brs); i++)
 483		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
 484			scale = brs[i] * pbr_tbl[j];
 485			if (scale >= scale_needed) {
 486				if (scale < minscale) {
 487					minscale = scale;
 488					*br = i;
 489					*pbr = j;
 490				}
 491				break;
 492			}
 493		}
 494
 495	if (minscale == INT_MAX) {
 496		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
 497			speed_hz, clkrate);
 498		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
 499		*br =  ARRAY_SIZE(brs) - 1;
 500	}
 501}
 502
 503static void ns_delay_scale(char *psc, char *sc, int delay_ns,
 504		unsigned long clkrate)
 505{
 506	int pscale_tbl[4] = {1, 3, 5, 7};
 507	int scale_needed, scale, minscale = INT_MAX;
 508	int i, j;
 509	u32 remainder;
 
 510
 511	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
 512			&remainder);
 513	if (remainder)
 514		scale_needed++;
 515
 516	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
 517		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
 518			scale = pscale_tbl[i] * (2 << j);
 519			if (scale >= scale_needed) {
 520				if (scale < minscale) {
 521					minscale = scale;
 522					*psc = i;
 523					*sc = j;
 524				}
 525				break;
 526			}
 527		}
 528
 529	if (minscale == INT_MAX) {
 530		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
 531			delay_ns, clkrate);
 532		*psc = ARRAY_SIZE(pscale_tbl) - 1;
 533		*sc = SPI_CTAR_SCALE_BITS;
 534	}
 535}
 536
 537static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word)
 538{
 539	u16 d16;
 
 540
 541	if (!(dspi->dataflags & TRAN_STATE_TX_VOID))
 542		d16 = tx_word ? *(u16 *)dspi->tx : *(u8 *)dspi->tx;
 543	else
 544		d16 = dspi->void_write_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545
 546	dspi->tx += tx_word + 1;
 547	dspi->len -= tx_word + 1;
 
 
 548
 549	return	SPI_PUSHR_TXDATA(d16) |
 550		SPI_PUSHR_PCS(dspi->cs) |
 551		SPI_PUSHR_CTAS(0) |
 552		SPI_PUSHR_CONT;
 
 
 
 
 
 
 
 
 
 
 553}
 554
 555static void dspi_data_from_popr(struct fsl_dspi *dspi, int rx_word)
 556{
 557	u16 d;
 558	unsigned int val;
 559
 560	regmap_read(dspi->regmap, SPI_POPR, &val);
 561	d = SPI_POPR_RXDATA(val);
 
 
 
 
 
 
 
 
 562
 563	if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
 564		rx_word ? (*(u16 *)dspi->rx = d) : (*(u8 *)dspi->rx = d);
 
 565
 566	dspi->rx += rx_word + 1;
 
 567}
 568
 569static int dspi_eoq_write(struct fsl_dspi *dspi)
 570{
 571	int tx_count = 0;
 572	int tx_word;
 573	u32 dspi_pushr = 0;
 574
 575	tx_word = is_double_byte_mode(dspi);
 
 
 
 576
 577	while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
 578		/* If we are in word mode, only have a single byte to transfer
 579		 * switch to byte mode temporarily.  Will switch back at the
 580		 * end of the transfer.
 581		 */
 582		if (tx_word && (dspi->len == 1)) {
 583			dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
 584			regmap_update_bits(dspi->regmap, SPI_CTAR(0),
 585					SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
 586			tx_word = 0;
 587		}
 588
 589		dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
 
 
 
 
 
 
 
 
 
 
 
 
 
 590
 591		if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
 592			/* last transfer in the transfer */
 593			dspi_pushr |= SPI_PUSHR_EOQ;
 594			if ((dspi->cs_change) && (!dspi->len))
 595				dspi_pushr &= ~SPI_PUSHR_CONT;
 596		} else if (tx_word && (dspi->len == 1))
 597			dspi_pushr |= SPI_PUSHR_EOQ;
 598
 599		regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
 
 
 600
 601		tx_count++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 602	}
 603
 604	return tx_count * (tx_word + 1);
 
 
 
 
 
 
 
 
 
 605}
 606
 607static int dspi_eoq_read(struct fsl_dspi *dspi)
 608{
 609	int rx_count = 0;
 610	int rx_word = is_double_byte_mode(dspi);
 
 
 611
 612	while ((dspi->rx < dspi->rx_end)
 613			&& (rx_count < DSPI_FIFO_SIZE)) {
 614		if (rx_word && (dspi->rx_end - dspi->rx) == 1)
 615			rx_word = 0;
 616
 617		dspi_data_from_popr(dspi, rx_word);
 618		rx_count++;
 619	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620
 621	return rx_count;
 
 622}
 623
 624static int dspi_tcfq_write(struct fsl_dspi *dspi)
 625{
 626	int tx_word;
 627	u32 dspi_pushr = 0;
 628
 629	tx_word = is_double_byte_mode(dspi);
 
 
 630
 631	if (tx_word && (dspi->len == 1)) {
 632		dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
 633		regmap_update_bits(dspi->regmap, SPI_CTAR(0),
 634				SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
 635		tx_word = 0;
 636	}
 
 
 
 637
 638	dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
 
 
 639
 640	if ((dspi->cs_change) && (!dspi->len))
 641		dspi_pushr &= ~SPI_PUSHR_CONT;
 
 642
 643	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
 
 644
 645	return tx_word + 1;
 646}
 647
 648static void dspi_tcfq_read(struct fsl_dspi *dspi)
 649{
 650	int rx_word = is_double_byte_mode(dspi);
 
 
 
 
 651
 652	if (rx_word && (dspi->rx_end - dspi->rx) == 1)
 653		rx_word = 0;
 654
 655	dspi_data_from_popr(dspi, rx_word);
 
 
 
 656}
 657
 658static int dspi_transfer_one_message(struct spi_master *master,
 659		struct spi_message *message)
 660{
 661	struct fsl_dspi *dspi = spi_master_get_devdata(master);
 662	struct spi_device *spi = message->spi;
 663	struct spi_transfer *transfer;
 664	int status = 0;
 665	enum dspi_trans_mode trans_mode;
 666	u32 spi_tcr;
 667
 668	regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
 669	dspi->spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
 670
 671	message->actual_length = 0;
 672
 673	list_for_each_entry(transfer, &message->transfers, transfer_list) {
 674		dspi->cur_transfer = transfer;
 675		dspi->cur_msg = message;
 676		dspi->cur_chip = spi_get_ctldata(spi);
 677		dspi->cs = spi->chip_select;
 678		dspi->cs_change = 0;
 
 679		if (list_is_last(&dspi->cur_transfer->transfer_list,
 680				 &dspi->cur_msg->transfers) || transfer->cs_change)
 681			dspi->cs_change = 1;
 682		dspi->void_write_data = dspi->cur_chip->void_write_data;
 683
 684		dspi->dataflags = 0;
 685		dspi->tx = (void *)transfer->tx_buf;
 686		dspi->tx_end = dspi->tx + transfer->len;
 
 
 
 
 
 
 
 
 
 
 687		dspi->rx = transfer->rx_buf;
 688		dspi->rx_end = dspi->rx + transfer->len;
 689		dspi->len = transfer->len;
 
 690
 691		if (!dspi->rx)
 692			dspi->dataflags |= TRAN_STATE_RX_VOID;
 
 693
 694		if (!dspi->tx)
 695			dspi->dataflags |= TRAN_STATE_TX_VOID;
 696
 697		regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val);
 698		regmap_update_bits(dspi->regmap, SPI_MCR,
 699				SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 700				SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 701		regmap_write(dspi->regmap, SPI_CTAR(0),
 702				dspi->cur_chip->ctar_val);
 703
 704		trans_mode = dspi->devtype_data->trans_mode;
 705		switch (trans_mode) {
 706		case DSPI_EOQ_MODE:
 707			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
 708			dspi_eoq_write(dspi);
 709			break;
 710		case DSPI_TCFQ_MODE:
 711			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
 712			dspi_tcfq_write(dspi);
 713			break;
 714		case DSPI_DMA_MODE:
 715			regmap_write(dspi->regmap, SPI_RSER,
 716				SPI_RSER_TFFFE | SPI_RSER_TFFFD |
 717				SPI_RSER_RFDFE | SPI_RSER_RFDFD);
 718			status = dspi_dma_xfer(dspi);
 719			break;
 720		default:
 721			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
 722				trans_mode);
 723			status = -EINVAL;
 724			goto out;
 725		}
 726
 727		if (trans_mode != DSPI_DMA_MODE) {
 728			if (wait_event_interruptible(dspi->waitq,
 729						dspi->waitflags))
 730				dev_err(&dspi->pdev->dev,
 731					"wait transfer complete fail!\n");
 732			dspi->waitflags = 0;
 
 
 733		}
 
 
 734
 735		if (transfer->delay_usecs)
 736			udelay(transfer->delay_usecs);
 737	}
 738
 739out:
 740	message->status = status;
 741	spi_finalize_current_message(master);
 742
 743	return status;
 744}
 745
 746static int dspi_setup(struct spi_device *spi)
 747{
 748	struct chip_data *chip;
 749	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
 750	struct fsl_dspi_platform_data *pdata;
 751	u32 cs_sck_delay = 0, sck_cs_delay = 0;
 752	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
 753	unsigned char pasc = 0, asc = 0, fmsz = 0;
 
 
 
 754	unsigned long clkrate;
 755
 756	if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
 757		fmsz = spi->bits_per_word - 1;
 758	} else {
 759		pr_err("Invalid wordsize\n");
 760		return -ENODEV;
 761	}
 762
 763	/* Only alloc on first setup */
 764	chip = spi_get_ctldata(spi);
 765	if (chip == NULL) {
 766		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
 767		if (!chip)
 768			return -ENOMEM;
 769	}
 770
 771	pdata = dev_get_platdata(&dspi->pdev->dev);
 772
 773	if (!pdata) {
 774		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
 775				&cs_sck_delay);
 776
 777		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
 778				&sck_cs_delay);
 779	} else {
 780		cs_sck_delay = pdata->cs_sck_delay;
 781		sck_cs_delay = pdata->sck_cs_delay;
 782	}
 783
 784	chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
 785		SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
 786
 787	chip->void_write_data = 0;
 788
 789	clkrate = clk_get_rate(dspi->clk);
 790	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
 791
 792	/* Set PCS to SCK delay scale values */
 793	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
 794
 795	/* Set After SCK delay scale values */
 796	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
 797
 798	chip->ctar_val =  SPI_CTAR_FMSZ(fmsz)
 799		| SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
 800		| SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
 801		| SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
 802		| SPI_CTAR_PCSSCK(pcssck)
 803		| SPI_CTAR_CSSCK(cssck)
 804		| SPI_CTAR_PASC(pasc)
 805		| SPI_CTAR_ASC(asc)
 806		| SPI_CTAR_PBR(pbr)
 807		| SPI_CTAR_BR(br);
 
 
 
 
 
 
 
 808
 809	spi_set_ctldata(spi, chip);
 810
 811	return 0;
 812}
 813
 814static void dspi_cleanup(struct spi_device *spi)
 815{
 816	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
 817
 818	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
 819			spi->master->bus_num, spi->chip_select);
 820
 821	kfree(chip);
 822}
 823
 824static irqreturn_t dspi_interrupt(int irq, void *dev_id)
 825{
 826	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
 827	struct spi_message *msg = dspi->cur_msg;
 828	enum dspi_trans_mode trans_mode;
 829	u32 spi_sr, spi_tcr;
 830	u32 spi_tcnt, tcnt_diff;
 831	int tx_word;
 832
 833	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 834	regmap_write(dspi->regmap, SPI_SR, spi_sr);
 835
 836
 837	if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
 838		tx_word = is_double_byte_mode(dspi);
 839
 840		regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
 841		spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
 842		/*
 843		 * The width of SPI Transfer Counter in SPI_TCR is 16bits,
 844		 * so the max couner is 65535. When the counter reach 65535,
 845		 * it will wrap around, counter reset to zero.
 846		 * spi_tcnt my be less than dspi->spi_tcnt, it means the
 847		 * counter already wrapped around.
 848		 * SPI Transfer Counter is a counter of transmitted frames.
 849		 * The size of frame maybe two bytes.
 850		 */
 851		tcnt_diff = ((spi_tcnt + SPI_TCR_TCNT_MAX) - dspi->spi_tcnt)
 852			% SPI_TCR_TCNT_MAX;
 853		tcnt_diff *= (tx_word + 1);
 854		if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
 855			tcnt_diff--;
 856
 857		msg->actual_length += tcnt_diff;
 858
 859		dspi->spi_tcnt = spi_tcnt;
 860
 861		trans_mode = dspi->devtype_data->trans_mode;
 862		switch (trans_mode) {
 863		case DSPI_EOQ_MODE:
 864			dspi_eoq_read(dspi);
 865			break;
 866		case DSPI_TCFQ_MODE:
 867			dspi_tcfq_read(dspi);
 868			break;
 869		default:
 870			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
 871				trans_mode);
 872				return IRQ_HANDLED;
 873		}
 874
 875		if (!dspi->len) {
 876			if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) {
 877				regmap_update_bits(dspi->regmap,
 878						   SPI_CTAR(0),
 879						   SPI_FRAME_BITS_MASK,
 880						   SPI_FRAME_BITS(16));
 881				dspi->dataflags &= ~TRAN_STATE_WORD_ODD_NUM;
 882			}
 883
 884			dspi->waitflags = 1;
 885			wake_up_interruptible(&dspi->waitq);
 886		} else {
 887			switch (trans_mode) {
 888			case DSPI_EOQ_MODE:
 889				dspi_eoq_write(dspi);
 890				break;
 891			case DSPI_TCFQ_MODE:
 892				dspi_tcfq_write(dspi);
 893				break;
 894			default:
 895				dev_err(&dspi->pdev->dev,
 896					"unsupported trans_mode %u\n",
 897					trans_mode);
 898			}
 899		}
 900	}
 901
 902	return IRQ_HANDLED;
 903}
 904
 905static const struct of_device_id fsl_dspi_dt_ids[] = {
 906	{ .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
 907	{ .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
 908	{ .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909	{ /* sentinel */ }
 910};
 911MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
 912
 913#ifdef CONFIG_PM_SLEEP
 914static int dspi_suspend(struct device *dev)
 915{
 916	struct spi_master *master = dev_get_drvdata(dev);
 917	struct fsl_dspi *dspi = spi_master_get_devdata(master);
 918
 919	spi_master_suspend(master);
 
 
 920	clk_disable_unprepare(dspi->clk);
 921
 922	pinctrl_pm_select_sleep_state(dev);
 923
 924	return 0;
 925}
 926
 927static int dspi_resume(struct device *dev)
 928{
 929	struct spi_master *master = dev_get_drvdata(dev);
 930	struct fsl_dspi *dspi = spi_master_get_devdata(master);
 931	int ret;
 932
 933	pinctrl_pm_select_default_state(dev);
 934
 935	ret = clk_prepare_enable(dspi->clk);
 936	if (ret)
 937		return ret;
 938	spi_master_resume(master);
 
 
 939
 940	return 0;
 941}
 942#endif /* CONFIG_PM_SLEEP */
 943
 944static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
 945
 
 
 
 
 
 
 
 
 
 
 
 946static const struct regmap_config dspi_regmap_config = {
 947	.reg_bits = 32,
 948	.val_bits = 32,
 949	.reg_stride = 4,
 950	.max_register = 0x88,
 
 
 
 
 
 
 
 
 951};
 952
 953static void dspi_init(struct fsl_dspi *dspi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954{
 
 
 
 
 
 
 
 
 
 
 
 955	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956}
 957
 958static int dspi_probe(struct platform_device *pdev)
 959{
 960	struct device_node *np = pdev->dev.of_node;
 961	struct spi_master *master;
 
 
 
 962	struct fsl_dspi *dspi;
 963	struct resource *res;
 964	void __iomem *base;
 965	struct fsl_dspi_platform_data *pdata;
 966	int ret = 0, cs_num, bus_num;
 967
 968	master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
 969	if (!master)
 970		return -ENOMEM;
 971
 972	dspi = spi_master_get_devdata(master);
 
 
 
 
 
 
 973	dspi->pdev = pdev;
 974	dspi->master = master;
 975
 976	master->transfer = NULL;
 977	master->setup = dspi_setup;
 978	master->transfer_one_message = dspi_transfer_one_message;
 979	master->dev.of_node = pdev->dev.of_node;
 980
 981	master->cleanup = dspi_cleanup;
 982	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
 983	master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
 984					SPI_BPW_MASK(16);
 985
 986	pdata = dev_get_platdata(&pdev->dev);
 987	if (pdata) {
 988		master->num_chipselect = pdata->cs_num;
 989		master->bus_num = pdata->bus_num;
 990
 991		dspi->devtype_data = &coldfire_data;
 
 
 992	} else {
 993
 994		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
 995		if (ret < 0) {
 996			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
 997			goto out_master_put;
 998		}
 999		master->num_chipselect = cs_num;
1000
1001		ret = of_property_read_u32(np, "bus-num", &bus_num);
1002		if (ret < 0) {
1003			dev_err(&pdev->dev, "can't get bus-num\n");
1004			goto out_master_put;
1005		}
1006		master->bus_num = bus_num;
1007
1008		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1009		if (!dspi->devtype_data) {
1010			dev_err(&pdev->dev, "can't get devtype_data\n");
1011			ret = -EFAULT;
1012			goto out_master_put;
1013		}
 
 
 
 
 
 
 
 
 
1014	}
1015
 
 
 
 
 
1016	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1017	base = devm_ioremap_resource(&pdev->dev, res);
1018	if (IS_ERR(base)) {
1019		ret = PTR_ERR(base);
1020		goto out_master_put;
1021	}
1022
1023	dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, NULL, base,
1024						&dspi_regmap_config);
 
 
 
1025	if (IS_ERR(dspi->regmap)) {
1026		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1027				PTR_ERR(dspi->regmap));
1028		ret = PTR_ERR(dspi->regmap);
1029		goto out_master_put;
1030	}
1031
1032	dspi_init(dspi);
1033	dspi->irq = platform_get_irq(pdev, 0);
1034	if (dspi->irq < 0) {
1035		dev_err(&pdev->dev, "can't get platform irq\n");
1036		ret = dspi->irq;
1037		goto out_master_put;
1038	}
1039
1040	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
1041			pdev->name, dspi);
1042	if (ret < 0) {
1043		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1044		goto out_master_put;
1045	}
1046
1047	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1048	if (IS_ERR(dspi->clk)) {
1049		ret = PTR_ERR(dspi->clk);
1050		dev_err(&pdev->dev, "unable to get clock\n");
1051		goto out_master_put;
1052	}
1053	ret = clk_prepare_enable(dspi->clk);
1054	if (ret)
1055		goto out_master_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056
1057	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1058		ret = dspi_request_dma(dspi, res->start);
1059		if (ret < 0) {
1060			dev_err(&pdev->dev, "can't get dma channels\n");
1061			goto out_clk_put;
1062		}
1063	}
1064
1065	master->max_speed_hz =
1066		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1067
1068	init_waitqueue_head(&dspi->waitq);
1069	platform_set_drvdata(pdev, master);
1070
1071	ret = spi_register_master(master);
1072	if (ret != 0) {
1073		dev_err(&pdev->dev, "Problem registering DSPI master\n");
1074		goto out_clk_put;
1075	}
1076
1077	return ret;
1078
 
 
 
1079out_clk_put:
1080	clk_disable_unprepare(dspi->clk);
1081out_master_put:
1082	spi_master_put(master);
1083
1084	return ret;
1085}
1086
1087static int dspi_remove(struct platform_device *pdev)
1088{
1089	struct spi_master *master = platform_get_drvdata(pdev);
1090	struct fsl_dspi *dspi = spi_master_get_devdata(master);
1091
1092	/* Disconnect from the SPI framework */
 
 
 
 
 
 
 
 
 
 
1093	dspi_release_dma(dspi);
 
 
1094	clk_disable_unprepare(dspi->clk);
1095	spi_unregister_master(dspi->master);
1096
1097	return 0;
1098}
1099
 
 
 
 
 
1100static struct platform_driver fsl_dspi_driver = {
1101	.driver.name    = DRIVER_NAME,
1102	.driver.of_match_table = fsl_dspi_dt_ids,
1103	.driver.owner   = THIS_MODULE,
1104	.driver.pm = &dspi_pm,
1105	.probe          = dspi_probe,
1106	.remove		= dspi_remove,
 
1107};
1108module_platform_driver(fsl_dspi_driver);
1109
1110MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1111MODULE_LICENSE("GPL");
1112MODULE_ALIAS("platform:" DRIVER_NAME);
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// Copyright 2013 Freescale Semiconductor, Inc.
   4// Copyright 2020 NXP
   5//
   6// Freescale DSPI driver
   7// This file contains a driver for the Freescale DSPI
 
 
 
 
 
 
 
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/dma-mapping.h>
 
 
  13#include <linux/interrupt.h>
 
  14#include <linux/kernel.h>
 
  15#include <linux/module.h>
 
  16#include <linux/of_device.h>
  17#include <linux/pinctrl/consumer.h>
 
 
  18#include <linux/regmap.h>
 
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-fsl-dspi.h>
 
 
  21
  22#define DRIVER_NAME			"fsl-dspi"
  23
  24#define SPI_MCR				0x00
  25#define SPI_MCR_MASTER			BIT(31)
  26#define SPI_MCR_PCSIS(x)		((x) << 16)
  27#define SPI_MCR_CLR_TXF			BIT(11)
  28#define SPI_MCR_CLR_RXF			BIT(10)
  29#define SPI_MCR_XSPI			BIT(3)
  30#define SPI_MCR_DIS_TXF			BIT(13)
  31#define SPI_MCR_DIS_RXF			BIT(12)
  32#define SPI_MCR_HALT			BIT(0)
  33
  34#define SPI_TCR				0x08
  35#define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
  36
  37#define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
  38#define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
  39#define SPI_CTAR_CPOL			BIT(26)
  40#define SPI_CTAR_CPHA			BIT(25)
  41#define SPI_CTAR_LSBFE			BIT(24)
  42#define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
  43#define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
  44#define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
  45#define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
  46#define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
  47#define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
  48#define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
  49#define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
  50#define SPI_CTAR_SCALE_BITS		0xf
  51
  52#define SPI_CTAR0_SLAVE			0x0c
  53
  54#define SPI_SR				0x2c
  55#define SPI_SR_TCFQF			BIT(31)
  56#define SPI_SR_EOQF			BIT(28)
  57#define SPI_SR_TFUF			BIT(27)
  58#define SPI_SR_TFFF			BIT(25)
  59#define SPI_SR_CMDTCF			BIT(23)
  60#define SPI_SR_SPEF			BIT(21)
  61#define SPI_SR_RFOF			BIT(19)
  62#define SPI_SR_TFIWF			BIT(18)
  63#define SPI_SR_RFDF			BIT(17)
  64#define SPI_SR_CMDFFF			BIT(16)
  65#define SPI_SR_CLEAR			(SPI_SR_TCFQF | SPI_SR_EOQF | \
  66					SPI_SR_TFUF | SPI_SR_TFFF | \
  67					SPI_SR_CMDTCF | SPI_SR_SPEF | \
  68					SPI_SR_RFOF | SPI_SR_TFIWF | \
  69					SPI_SR_RFDF | SPI_SR_CMDFFF)
  70
  71#define SPI_RSER_TFFFE			BIT(25)
  72#define SPI_RSER_TFFFD			BIT(24)
  73#define SPI_RSER_RFDFE			BIT(17)
  74#define SPI_RSER_RFDFD			BIT(16)
  75
  76#define SPI_RSER			0x30
  77#define SPI_RSER_TCFQE			BIT(31)
  78#define SPI_RSER_EOQFE			BIT(28)
  79#define SPI_RSER_CMDTCFE		BIT(23)
  80
  81#define SPI_PUSHR			0x34
  82#define SPI_PUSHR_CMD_CONT		BIT(15)
  83#define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
  84#define SPI_PUSHR_CMD_EOQ		BIT(11)
  85#define SPI_PUSHR_CMD_CTCNT		BIT(10)
  86#define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
  87
  88#define SPI_PUSHR_SLAVE			0x34
  89
  90#define SPI_POPR			0x38
  91
  92#define SPI_TXFR0			0x3c
  93#define SPI_TXFR1			0x40
  94#define SPI_TXFR2			0x44
  95#define SPI_TXFR3			0x48
  96#define SPI_RXFR0			0x7c
  97#define SPI_RXFR1			0x80
  98#define SPI_RXFR2			0x84
  99#define SPI_RXFR3			0x88
 100
 101#define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
 102#define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
 103#define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
 104
 105#define SPI_SREX			0x13c
 106
 107#define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
 108#define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
 109
 110#define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
 111
 112struct chip_data {
 113	u32			ctar_val;
 
 
 114};
 115
 116enum dspi_trans_mode {
 117	DSPI_EOQ_MODE = 0,
 118	DSPI_XSPI_MODE,
 119	DSPI_DMA_MODE,
 120};
 121
 122struct fsl_dspi_devtype_data {
 123	enum dspi_trans_mode	trans_mode;
 124	u8			max_clock_factor;
 125	int			fifo_size;
 126};
 127
 128enum {
 129	LS1021A,
 130	LS1012A,
 131	LS1028A,
 132	LS1043A,
 133	LS1046A,
 134	LS2080A,
 135	LS2085A,
 136	LX2160A,
 137	MCF5441X,
 138	VF610,
 139};
 140
 141static const struct fsl_dspi_devtype_data devtype_data[] = {
 142	[VF610] = {
 143		.trans_mode		= DSPI_DMA_MODE,
 144		.max_clock_factor	= 2,
 145		.fifo_size		= 4,
 146	},
 147	[LS1021A] = {
 148		/* Has A-011218 DMA erratum */
 149		.trans_mode		= DSPI_XSPI_MODE,
 150		.max_clock_factor	= 8,
 151		.fifo_size		= 4,
 152	},
 153	[LS1012A] = {
 154		/* Has A-011218 DMA erratum */
 155		.trans_mode		= DSPI_XSPI_MODE,
 156		.max_clock_factor	= 8,
 157		.fifo_size		= 16,
 158	},
 159	[LS1028A] = {
 160		.trans_mode		= DSPI_XSPI_MODE,
 161		.max_clock_factor	= 8,
 162		.fifo_size		= 4,
 163	},
 164	[LS1043A] = {
 165		/* Has A-011218 DMA erratum */
 166		.trans_mode		= DSPI_XSPI_MODE,
 167		.max_clock_factor	= 8,
 168		.fifo_size		= 16,
 169	},
 170	[LS1046A] = {
 171		/* Has A-011218 DMA erratum */
 172		.trans_mode		= DSPI_XSPI_MODE,
 173		.max_clock_factor	= 8,
 174		.fifo_size		= 16,
 175	},
 176	[LS2080A] = {
 177		.trans_mode		= DSPI_XSPI_MODE,
 178		.max_clock_factor	= 8,
 179		.fifo_size		= 4,
 180	},
 181	[LS2085A] = {
 182		.trans_mode		= DSPI_XSPI_MODE,
 183		.max_clock_factor	= 8,
 184		.fifo_size		= 4,
 185	},
 186	[LX2160A] = {
 187		.trans_mode		= DSPI_XSPI_MODE,
 188		.max_clock_factor	= 8,
 189		.fifo_size		= 4,
 190	},
 191	[MCF5441X] = {
 192		.trans_mode		= DSPI_EOQ_MODE,
 193		.max_clock_factor	= 8,
 194		.fifo_size		= 16,
 195	},
 196};
 197
 198struct fsl_dspi_dma {
 199	u32					*tx_dma_buf;
 200	struct dma_chan				*chan_tx;
 201	dma_addr_t				tx_dma_phys;
 202	struct completion			cmd_tx_complete;
 203	struct dma_async_tx_descriptor		*tx_desc;
 204
 205	u32					*rx_dma_buf;
 206	struct dma_chan				*chan_rx;
 207	dma_addr_t				rx_dma_phys;
 208	struct completion			cmd_rx_complete;
 209	struct dma_async_tx_descriptor		*rx_desc;
 210};
 211
 212struct fsl_dspi {
 213	struct spi_controller			*ctlr;
 214	struct platform_device			*pdev;
 
 215
 216	struct regmap				*regmap;
 217	struct regmap				*regmap_pushr;
 218	int					irq;
 219	struct clk				*clk;
 220
 221	struct spi_transfer			*cur_transfer;
 222	struct spi_message			*cur_msg;
 223	struct chip_data			*cur_chip;
 224	size_t					progress;
 225	size_t					len;
 226	const void				*tx;
 227	void					*rx;
 228	u16					tx_cmd;
 229	const struct fsl_dspi_devtype_data	*devtype_data;
 230
 231	struct completion			xfer_done;
 232
 233	struct fsl_dspi_dma			*dma;
 234
 235	int					oper_word_size;
 236	int					oper_bits_per_word;
 237
 238	int					words_in_flight;
 239
 240	/*
 241	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
 242	 * individually (in XSPI mode)
 243	 */
 244	int					pushr_cmd;
 245	int					pushr_tx;
 246
 247	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
 248	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
 
 
 
 
 
 
 
 
 
 249};
 250
 251static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 252{
 253	switch (dspi->oper_word_size) {
 254	case 1:
 255		*txdata = *(u8 *)dspi->tx;
 256		break;
 257	case 2:
 258		*txdata = *(u16 *)dspi->tx;
 259		break;
 260	case 4:
 261		*txdata = *(u32 *)dspi->tx;
 262		break;
 263	}
 264	dspi->tx += dspi->oper_word_size;
 265}
 266
 267static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 268{
 269	switch (dspi->oper_word_size) {
 270	case 1:
 271		*(u8 *)dspi->rx = rxdata;
 272		break;
 273	case 2:
 274		*(u16 *)dspi->rx = rxdata;
 275		break;
 276	case 4:
 277		*(u32 *)dspi->rx = rxdata;
 278		break;
 279	}
 280	dspi->rx += dspi->oper_word_size;
 281}
 282
 283static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 284{
 285	*txdata = cpu_to_be32(*(u32 *)dspi->tx);
 286	dspi->tx += sizeof(u32);
 287}
 
 
 
 
 
 
 
 
 
 
 
 
 288
 289static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 290{
 291	*(u32 *)dspi->rx = be32_to_cpu(rxdata);
 292	dspi->rx += sizeof(u32);
 293}
 294
 295static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 296{
 297	*txdata = cpu_to_be16(*(u16 *)dspi->tx);
 298	dspi->tx += sizeof(u16);
 299}
 300
 301static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 302{
 303	*(u16 *)dspi->rx = be16_to_cpu(rxdata);
 304	dspi->rx += sizeof(u16);
 305}
 306
 307static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 308{
 309	u16 hi = *(u16 *)dspi->tx;
 310	u16 lo = *(u16 *)(dspi->tx + 2);
 311
 312	*txdata = (u32)hi << 16 | lo;
 313	dspi->tx += sizeof(u32);
 314}
 315
 316static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 317{
 318	u16 hi = rxdata & 0xffff;
 319	u16 lo = rxdata >> 16;
 320
 321	*(u16 *)dspi->rx = lo;
 322	*(u16 *)(dspi->rx + 2) = hi;
 323	dspi->rx += sizeof(u32);
 324}
 325
 326/*
 327 * Pop one word from the TX buffer for pushing into the
 328 * PUSHR register (TX FIFO)
 329 */
 330static u32 dspi_pop_tx(struct fsl_dspi *dspi)
 331{
 332	u32 txdata = 0;
 333
 334	if (dspi->tx)
 335		dspi->host_to_dev(dspi, &txdata);
 336	dspi->len -= dspi->oper_word_size;
 337	return txdata;
 338}
 339
 340/* Prepare one TX FIFO entry (txdata plus cmd) */
 341static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
 342{
 343	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
 344
 345	if (spi_controller_is_slave(dspi->ctlr))
 346		return data;
 347
 348	if (dspi->len > 0)
 349		cmd |= SPI_PUSHR_CMD_CONT;
 350	return cmd << 16 | data;
 351}
 352
 353/* Push one word to the RX buffer from the POPR register (RX FIFO) */
 354static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
 355{
 356	if (!dspi->rx)
 357		return;
 358	dspi->dev_to_host(dspi, rxdata);
 359}
 360
 361static void dspi_tx_dma_callback(void *arg)
 362{
 363	struct fsl_dspi *dspi = arg;
 364	struct fsl_dspi_dma *dma = dspi->dma;
 365
 366	complete(&dma->cmd_tx_complete);
 367}
 368
 369static void dspi_rx_dma_callback(void *arg)
 370{
 371	struct fsl_dspi *dspi = arg;
 372	struct fsl_dspi_dma *dma = dspi->dma;
 
 373	int i;
 
 
 
 374
 375	if (dspi->rx) {
 376		for (i = 0; i < dspi->words_in_flight; i++)
 377			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
 
 
 
 
 378	}
 379
 380	complete(&dma->cmd_rx_complete);
 381}
 382
 383static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
 384{
 
 385	struct device *dev = &dspi->pdev->dev;
 386	struct fsl_dspi_dma *dma = dspi->dma;
 387	int time_left;
 
 388	int i;
 389
 390	for (i = 0; i < dspi->words_in_flight; i++)
 391		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
 
 
 
 
 
 392
 393	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
 394					dma->tx_dma_phys,
 395					dspi->words_in_flight *
 396					DMA_SLAVE_BUSWIDTH_4_BYTES,
 397					DMA_MEM_TO_DEV,
 398					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 399	if (!dma->tx_desc) {
 400		dev_err(dev, "Not able to get desc for DMA xfer\n");
 401		return -EIO;
 402	}
 403
 404	dma->tx_desc->callback = dspi_tx_dma_callback;
 405	dma->tx_desc->callback_param = dspi;
 406	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
 407		dev_err(dev, "DMA submit failed\n");
 408		return -EINVAL;
 409	}
 410
 411	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
 412					dma->rx_dma_phys,
 413					dspi->words_in_flight *
 414					DMA_SLAVE_BUSWIDTH_4_BYTES,
 415					DMA_DEV_TO_MEM,
 416					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 417	if (!dma->rx_desc) {
 418		dev_err(dev, "Not able to get desc for DMA xfer\n");
 419		return -EIO;
 420	}
 421
 422	dma->rx_desc->callback = dspi_rx_dma_callback;
 423	dma->rx_desc->callback_param = dspi;
 424	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
 425		dev_err(dev, "DMA submit failed\n");
 426		return -EINVAL;
 427	}
 428
 429	reinit_completion(&dspi->dma->cmd_rx_complete);
 430	reinit_completion(&dspi->dma->cmd_tx_complete);
 431
 432	dma_async_issue_pending(dma->chan_rx);
 433	dma_async_issue_pending(dma->chan_tx);
 434
 435	if (spi_controller_is_slave(dspi->ctlr)) {
 436		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
 437		return 0;
 438	}
 439
 440	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
 441						DMA_COMPLETION_TIMEOUT);
 442	if (time_left == 0) {
 443		dev_err(dev, "DMA tx timeout\n");
 444		dmaengine_terminate_all(dma->chan_tx);
 445		dmaengine_terminate_all(dma->chan_rx);
 446		return -ETIMEDOUT;
 447	}
 448
 449	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
 450						DMA_COMPLETION_TIMEOUT);
 451	if (time_left == 0) {
 452		dev_err(dev, "DMA rx timeout\n");
 453		dmaengine_terminate_all(dma->chan_tx);
 454		dmaengine_terminate_all(dma->chan_rx);
 455		return -ETIMEDOUT;
 456	}
 457
 458	return 0;
 459}
 460
 461static void dspi_setup_accel(struct fsl_dspi *dspi);
 462
 463static int dspi_dma_xfer(struct fsl_dspi *dspi)
 464{
 465	struct spi_message *message = dspi->cur_msg;
 466	struct device *dev = &dspi->pdev->dev;
 
 
 
 467	int ret = 0;
 468
 469	/*
 470	 * dspi->len gets decremented by dspi_pop_tx_pushr in
 471	 * dspi_next_xfer_dma_submit
 472	 */
 473	while (dspi->len) {
 474		/* Figure out operational bits-per-word for this chunk */
 475		dspi_setup_accel(dspi);
 476
 477		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
 478		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
 479			dspi->words_in_flight = dspi->devtype_data->fifo_size;
 480
 481		message->actual_length += dspi->words_in_flight *
 482					  dspi->oper_word_size;
 483
 484		ret = dspi_next_xfer_dma_submit(dspi);
 485		if (ret) {
 486			dev_err(dev, "DMA transfer failed\n");
 487			break;
 
 
 
 
 
 488		}
 489	}
 490
 
 491	return ret;
 492}
 493
 494static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
 495{
 496	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 
 497	struct device *dev = &dspi->pdev->dev;
 498	struct dma_slave_config cfg;
 499	struct fsl_dspi_dma *dma;
 500	int ret;
 501
 502	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
 503	if (!dma)
 504		return -ENOMEM;
 505
 506	dma->chan_rx = dma_request_chan(dev, "rx");
 507	if (IS_ERR(dma->chan_rx)) {
 508		dev_err(dev, "rx dma channel not available\n");
 509		ret = PTR_ERR(dma->chan_rx);
 510		return ret;
 511	}
 512
 513	dma->chan_tx = dma_request_chan(dev, "tx");
 514	if (IS_ERR(dma->chan_tx)) {
 515		dev_err(dev, "tx dma channel not available\n");
 516		ret = PTR_ERR(dma->chan_tx);
 517		goto err_tx_channel;
 518	}
 519
 520	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
 521					     dma_bufsize, &dma->tx_dma_phys,
 522					     GFP_KERNEL);
 523	if (!dma->tx_dma_buf) {
 524		ret = -ENOMEM;
 525		goto err_tx_dma_buf;
 526	}
 527
 528	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
 529					     dma_bufsize, &dma->rx_dma_phys,
 530					     GFP_KERNEL);
 531	if (!dma->rx_dma_buf) {
 532		ret = -ENOMEM;
 533		goto err_rx_dma_buf;
 534	}
 535
 536	cfg.src_addr = phy_addr + SPI_POPR;
 537	cfg.dst_addr = phy_addr + SPI_PUSHR;
 538	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 539	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 540	cfg.src_maxburst = 1;
 541	cfg.dst_maxburst = 1;
 542
 543	cfg.direction = DMA_DEV_TO_MEM;
 544	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
 545	if (ret) {
 546		dev_err(dev, "can't configure rx dma channel\n");
 547		ret = -EINVAL;
 548		goto err_slave_config;
 549	}
 550
 551	cfg.direction = DMA_MEM_TO_DEV;
 552	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
 553	if (ret) {
 554		dev_err(dev, "can't configure tx dma channel\n");
 555		ret = -EINVAL;
 556		goto err_slave_config;
 557	}
 558
 559	dspi->dma = dma;
 560	init_completion(&dma->cmd_tx_complete);
 561	init_completion(&dma->cmd_rx_complete);
 562
 563	return 0;
 564
 565err_slave_config:
 566	dma_free_coherent(dma->chan_rx->device->dev,
 567			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
 568err_rx_dma_buf:
 569	dma_free_coherent(dma->chan_tx->device->dev,
 570			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
 571err_tx_dma_buf:
 572	dma_release_channel(dma->chan_tx);
 573err_tx_channel:
 574	dma_release_channel(dma->chan_rx);
 575
 576	devm_kfree(dev, dma);
 577	dspi->dma = NULL;
 578
 579	return ret;
 580}
 581
 582static void dspi_release_dma(struct fsl_dspi *dspi)
 583{
 584	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 585	struct fsl_dspi_dma *dma = dspi->dma;
 
 586
 587	if (!dma)
 588		return;
 
 
 
 
 589
 590	if (dma->chan_tx) {
 591		dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
 592				  dma->tx_dma_buf, dma->tx_dma_phys);
 593		dma_release_channel(dma->chan_tx);
 594	}
 595
 596	if (dma->chan_rx) {
 597		dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
 598				  dma->rx_dma_buf, dma->rx_dma_phys);
 599		dma_release_channel(dma->chan_rx);
 600	}
 601}
 602
 603static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
 604			   unsigned long clkrate)
 605{
 606	/* Valid baud rate pre-scaler values */
 607	int pbr_tbl[4] = {2, 3, 5, 7};
 608	int brs[16] = {	2,	4,	6,	8,
 609			16,	32,	64,	128,
 610			256,	512,	1024,	2048,
 611			4096,	8192,	16384,	32768 };
 612	int scale_needed, scale, minscale = INT_MAX;
 613	int i, j;
 614
 615	scale_needed = clkrate / speed_hz;
 616	if (clkrate % speed_hz)
 617		scale_needed++;
 618
 619	for (i = 0; i < ARRAY_SIZE(brs); i++)
 620		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
 621			scale = brs[i] * pbr_tbl[j];
 622			if (scale >= scale_needed) {
 623				if (scale < minscale) {
 624					minscale = scale;
 625					*br = i;
 626					*pbr = j;
 627				}
 628				break;
 629			}
 630		}
 631
 632	if (minscale == INT_MAX) {
 633		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
 634			speed_hz, clkrate);
 635		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
 636		*br =  ARRAY_SIZE(brs) - 1;
 637	}
 638}
 639
 640static void ns_delay_scale(char *psc, char *sc, int delay_ns,
 641			   unsigned long clkrate)
 642{
 
 643	int scale_needed, scale, minscale = INT_MAX;
 644	int pscale_tbl[4] = {1, 3, 5, 7};
 645	u32 remainder;
 646	int i, j;
 647
 648	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
 649				   &remainder);
 650	if (remainder)
 651		scale_needed++;
 652
 653	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
 654		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
 655			scale = pscale_tbl[i] * (2 << j);
 656			if (scale >= scale_needed) {
 657				if (scale < minscale) {
 658					minscale = scale;
 659					*psc = i;
 660					*sc = j;
 661				}
 662				break;
 663			}
 664		}
 665
 666	if (minscale == INT_MAX) {
 667		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
 668			delay_ns, clkrate);
 669		*psc = ARRAY_SIZE(pscale_tbl) - 1;
 670		*sc = SPI_CTAR_SCALE_BITS;
 671	}
 672}
 673
 674static void dspi_pushr_write(struct fsl_dspi *dspi)
 675{
 676	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
 677}
 678
 679static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
 680{
 681	/*
 682	 * The only time when the PCS doesn't need continuation after this word
 683	 * is when it's last. We need to look ahead, because we actually call
 684	 * dspi_pop_tx (the function that decrements dspi->len) _after_
 685	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
 686	 * word is enough. If there's more to transmit than that,
 687	 * dspi_xspi_write will know to split the FIFO writes in 2, and
 688	 * generate a new PUSHR command with the final word that will have PCS
 689	 * deasserted (not continued) here.
 690	 */
 691	if (dspi->len > dspi->oper_word_size)
 692		cmd |= SPI_PUSHR_CMD_CONT;
 693	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
 694}
 695
 696static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
 697{
 698	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
 699}
 700
 701static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
 702{
 703	int num_bytes = num_words * dspi->oper_word_size;
 704	u16 tx_cmd = dspi->tx_cmd;
 705
 706	/*
 707	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
 708	 * and cs_change does not want the PCS to stay on), then we need a new
 709	 * PUSHR command, since this one (for the body of the buffer)
 710	 * necessarily has the CONT bit set.
 711	 * So send one word less during this go, to force a split and a command
 712	 * with a single word next time, when CONT will be unset.
 713	 */
 714	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
 715		tx_cmd |= SPI_PUSHR_CMD_EOQ;
 716
 717	/* Update CTARE */
 718	regmap_write(dspi->regmap, SPI_CTARE(0),
 719		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
 720		     SPI_CTARE_DTCP(num_words));
 721
 722	/*
 723	 * Write the CMD FIFO entry first, and then the two
 724	 * corresponding TX FIFO entries (or one...).
 725	 */
 726	dspi_pushr_cmd_write(dspi, tx_cmd);
 727
 728	/* Fill TX FIFO with as many transfers as possible */
 729	while (num_words--) {
 730		u32 data = dspi_pop_tx(dspi);
 731
 732		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
 733		if (dspi->oper_bits_per_word > 16)
 734			dspi_pushr_txdata_write(dspi, data >> 16);
 735	}
 736}
 737
 738static void dspi_eoq_fifo_write(struct fsl_dspi *dspi, int num_words)
 739{
 740	u16 xfer_cmd = dspi->tx_cmd;
 
 741
 742	/* Fill TX FIFO with as many transfers as possible */
 743	while (num_words--) {
 744		dspi->tx_cmd = xfer_cmd;
 745		/* Request EOQF for last transfer in FIFO */
 746		if (num_words == 0)
 747			dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
 748		/* Write combined TX FIFO and CMD FIFO entry */
 749		dspi_pushr_write(dspi);
 750	}
 751}
 752
 753static u32 dspi_popr_read(struct fsl_dspi *dspi)
 754{
 755	u32 rxdata = 0;
 756
 757	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
 758	return rxdata;
 759}
 760
 761static void dspi_fifo_read(struct fsl_dspi *dspi)
 762{
 763	int num_fifo_entries = dspi->words_in_flight;
 
 
 764
 765	/* Read one FIFO entry and push to rx buffer */
 766	while (num_fifo_entries--)
 767		dspi_push_rx(dspi, dspi_popr_read(dspi));
 768}
 769
 770static void dspi_setup_accel(struct fsl_dspi *dspi)
 771{
 772	struct spi_transfer *xfer = dspi->cur_transfer;
 773	bool odd = !!(dspi->len & 1);
 
 
 
 
 
 
 
 774
 775	/* No accel for frames not multiple of 8 bits at the moment */
 776	if (xfer->bits_per_word % 8)
 777		goto no_accel;
 778
 779	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
 780		dspi->oper_bits_per_word = 16;
 781	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
 782		dspi->oper_bits_per_word = 8;
 783	} else {
 784		/* Start off with maximum supported by hardware */
 785		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
 786			dspi->oper_bits_per_word = 32;
 787		else
 788			dspi->oper_bits_per_word = 16;
 789
 790		/*
 791		 * And go down only if the buffer can't be sent with
 792		 * words this big
 793		 */
 794		do {
 795			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
 796				break;
 797
 798			dspi->oper_bits_per_word /= 2;
 799		} while (dspi->oper_bits_per_word > 8);
 800	}
 801
 802	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
 803		dspi->dev_to_host = dspi_8on32_dev_to_host;
 804		dspi->host_to_dev = dspi_8on32_host_to_dev;
 805	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
 806		dspi->dev_to_host = dspi_8on16_dev_to_host;
 807		dspi->host_to_dev = dspi_8on16_host_to_dev;
 808	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
 809		dspi->dev_to_host = dspi_16on32_dev_to_host;
 810		dspi->host_to_dev = dspi_16on32_host_to_dev;
 811	} else {
 812no_accel:
 813		dspi->dev_to_host = dspi_native_dev_to_host;
 814		dspi->host_to_dev = dspi_native_host_to_dev;
 815		dspi->oper_bits_per_word = xfer->bits_per_word;
 816	}
 817
 818	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
 819
 820	/*
 821	 * Update CTAR here (code is common for EOQ, XSPI and DMA modes).
 822	 * We will update CTARE in the portion specific to XSPI, when we
 823	 * also know the preload value (DTCP).
 824	 */
 825	regmap_write(dspi->regmap, SPI_CTAR(0),
 826		     dspi->cur_chip->ctar_val |
 827		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
 828}
 829
 830static void dspi_fifo_write(struct fsl_dspi *dspi)
 831{
 832	int num_fifo_entries = dspi->devtype_data->fifo_size;
 833	struct spi_transfer *xfer = dspi->cur_transfer;
 834	struct spi_message *msg = dspi->cur_msg;
 835	int num_words, num_bytes;
 836
 837	dspi_setup_accel(dspi);
 
 
 
 838
 839	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
 840	if (dspi->oper_word_size == 4)
 841		num_fifo_entries /= 2;
 842
 843	/*
 844	 * Integer division intentionally trims off odd (or non-multiple of 4)
 845	 * numbers of bytes at the end of the buffer, which will be sent next
 846	 * time using a smaller oper_word_size.
 847	 */
 848	num_words = dspi->len / dspi->oper_word_size;
 849	if (num_words > num_fifo_entries)
 850		num_words = num_fifo_entries;
 851
 852	/* Update total number of bytes that were transferred */
 853	num_bytes = num_words * dspi->oper_word_size;
 854	msg->actual_length += num_bytes;
 855	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
 856
 857	/*
 858	 * Update shared variable for use in the next interrupt (both in
 859	 * dspi_fifo_read and in dspi_fifo_write).
 860	 */
 861	dspi->words_in_flight = num_words;
 862
 863	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
 864
 865	if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE)
 866		dspi_eoq_fifo_write(dspi, num_words);
 867	else
 868		dspi_xspi_fifo_write(dspi, num_words);
 869	/*
 870	 * Everything after this point is in a potential race with the next
 871	 * interrupt, so we must never use dspi->words_in_flight again since it
 872	 * might already be modified by the next dspi_fifo_write.
 873	 */
 874
 875	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
 876				dspi->progress, !dspi->irq);
 877}
 878
 879static int dspi_rxtx(struct fsl_dspi *dspi)
 880{
 881	dspi_fifo_read(dspi);
 
 882
 883	if (!dspi->len)
 884		/* Success! */
 885		return 0;
 886
 887	dspi_fifo_write(dspi);
 888
 889	return -EINPROGRESS;
 890}
 891
 892static int dspi_poll(struct fsl_dspi *dspi)
 893{
 894	int tries = 1000;
 895	u32 spi_sr;
 896
 897	do {
 898		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 899		regmap_write(dspi->regmap, SPI_SR, spi_sr);
 900
 901		if (spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF))
 902			break;
 903	} while (--tries);
 904
 905	if (!tries)
 906		return -ETIMEDOUT;
 907
 908	return dspi_rxtx(dspi);
 909}
 910
 911static irqreturn_t dspi_interrupt(int irq, void *dev_id)
 912{
 913	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
 914	u32 spi_sr;
 915
 916	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 917	regmap_write(dspi->regmap, SPI_SR, spi_sr);
 918
 919	if (!(spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF)))
 920		return IRQ_NONE;
 921
 922	if (dspi_rxtx(dspi) == 0)
 923		complete(&dspi->xfer_done);
 924
 925	return IRQ_HANDLED;
 926}
 927
 928static int dspi_transfer_one_message(struct spi_controller *ctlr,
 929				     struct spi_message *message)
 930{
 931	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
 932	struct spi_device *spi = message->spi;
 933	struct spi_transfer *transfer;
 934	int status = 0;
 
 
 
 
 
 935
 936	message->actual_length = 0;
 937
 938	list_for_each_entry(transfer, &message->transfers, transfer_list) {
 939		dspi->cur_transfer = transfer;
 940		dspi->cur_msg = message;
 941		dspi->cur_chip = spi_get_ctldata(spi);
 942		/* Prepare command word for CMD FIFO */
 943		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
 944			       SPI_PUSHR_CMD_PCS(spi->chip_select);
 945		if (list_is_last(&dspi->cur_transfer->transfer_list,
 946				 &dspi->cur_msg->transfers)) {
 947			/* Leave PCS activated after last transfer when
 948			 * cs_change is set.
 949			 */
 950			if (transfer->cs_change)
 951				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 952		} else {
 953			/* Keep PCS active between transfers in same message
 954			 * when cs_change is not set, and de-activate PCS
 955			 * between transfers in the same message when
 956			 * cs_change is set.
 957			 */
 958			if (!transfer->cs_change)
 959				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 960		}
 961
 962		dspi->tx = transfer->tx_buf;
 963		dspi->rx = transfer->rx_buf;
 
 964		dspi->len = transfer->len;
 965		dspi->progress = 0;
 966
 967		regmap_update_bits(dspi->regmap, SPI_MCR,
 968				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 969				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 970
 971		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
 972				       dspi->progress, !dspi->irq);
 973
 974		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975			status = dspi_dma_xfer(dspi);
 976		} else {
 977			dspi_fifo_write(dspi);
 
 
 
 
 
 978
 979			if (dspi->irq) {
 980				wait_for_completion(&dspi->xfer_done);
 981				reinit_completion(&dspi->xfer_done);
 982			} else {
 983				do {
 984					status = dspi_poll(dspi);
 985				} while (status == -EINPROGRESS);
 986			}
 987		}
 988		if (status)
 989			break;
 990
 991		spi_transfer_delay_exec(transfer);
 
 992	}
 993
 
 994	message->status = status;
 995	spi_finalize_current_message(ctlr);
 996
 997	return status;
 998}
 999
1000static int dspi_setup(struct spi_device *spi)
1001{
1002	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
 
 
 
1003	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
1004	u32 cs_sck_delay = 0, sck_cs_delay = 0;
1005	struct fsl_dspi_platform_data *pdata;
1006	unsigned char pasc = 0, asc = 0;
1007	struct chip_data *chip;
1008	unsigned long clkrate;
1009
 
 
 
 
 
 
 
1010	/* Only alloc on first setup */
1011	chip = spi_get_ctldata(spi);
1012	if (chip == NULL) {
1013		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1014		if (!chip)
1015			return -ENOMEM;
1016	}
1017
1018	pdata = dev_get_platdata(&dspi->pdev->dev);
1019
1020	if (!pdata) {
1021		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
1022				     &cs_sck_delay);
1023
1024		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1025				     &sck_cs_delay);
1026	} else {
1027		cs_sck_delay = pdata->cs_sck_delay;
1028		sck_cs_delay = pdata->sck_cs_delay;
1029	}
1030
 
 
 
 
 
1031	clkrate = clk_get_rate(dspi->clk);
1032	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1033
1034	/* Set PCS to SCK delay scale values */
1035	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1036
1037	/* Set After SCK delay scale values */
1038	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1039
1040	chip->ctar_val = 0;
1041	if (spi->mode & SPI_CPOL)
1042		chip->ctar_val |= SPI_CTAR_CPOL;
1043	if (spi->mode & SPI_CPHA)
1044		chip->ctar_val |= SPI_CTAR_CPHA;
1045
1046	if (!spi_controller_is_slave(dspi->ctlr)) {
1047		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1048				  SPI_CTAR_CSSCK(cssck) |
1049				  SPI_CTAR_PASC(pasc) |
1050				  SPI_CTAR_ASC(asc) |
1051				  SPI_CTAR_PBR(pbr) |
1052				  SPI_CTAR_BR(br);
1053
1054		if (spi->mode & SPI_LSB_FIRST)
1055			chip->ctar_val |= SPI_CTAR_LSBFE;
1056	}
1057
1058	spi_set_ctldata(spi, chip);
1059
1060	return 0;
1061}
1062
1063static void dspi_cleanup(struct spi_device *spi)
1064{
1065	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
1066
1067	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1068		spi->controller->bus_num, spi->chip_select);
1069
1070	kfree(chip);
1071}
1072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073static const struct of_device_id fsl_dspi_dt_ids[] = {
1074	{
1075		.compatible = "fsl,vf610-dspi",
1076		.data = &devtype_data[VF610],
1077	}, {
1078		.compatible = "fsl,ls1021a-v1.0-dspi",
1079		.data = &devtype_data[LS1021A],
1080	}, {
1081		.compatible = "fsl,ls1012a-dspi",
1082		.data = &devtype_data[LS1012A],
1083	}, {
1084		.compatible = "fsl,ls1028a-dspi",
1085		.data = &devtype_data[LS1028A],
1086	}, {
1087		.compatible = "fsl,ls1043a-dspi",
1088		.data = &devtype_data[LS1043A],
1089	}, {
1090		.compatible = "fsl,ls1046a-dspi",
1091		.data = &devtype_data[LS1046A],
1092	}, {
1093		.compatible = "fsl,ls2080a-dspi",
1094		.data = &devtype_data[LS2080A],
1095	}, {
1096		.compatible = "fsl,ls2085a-dspi",
1097		.data = &devtype_data[LS2085A],
1098	}, {
1099		.compatible = "fsl,lx2160a-dspi",
1100		.data = &devtype_data[LX2160A],
1101	},
1102	{ /* sentinel */ }
1103};
1104MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1105
1106#ifdef CONFIG_PM_SLEEP
1107static int dspi_suspend(struct device *dev)
1108{
1109	struct spi_controller *ctlr = dev_get_drvdata(dev);
1110	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1111
1112	if (dspi->irq)
1113		disable_irq(dspi->irq);
1114	spi_controller_suspend(ctlr);
1115	clk_disable_unprepare(dspi->clk);
1116
1117	pinctrl_pm_select_sleep_state(dev);
1118
1119	return 0;
1120}
1121
1122static int dspi_resume(struct device *dev)
1123{
1124	struct spi_controller *ctlr = dev_get_drvdata(dev);
1125	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1126	int ret;
1127
1128	pinctrl_pm_select_default_state(dev);
1129
1130	ret = clk_prepare_enable(dspi->clk);
1131	if (ret)
1132		return ret;
1133	spi_controller_resume(ctlr);
1134	if (dspi->irq)
1135		enable_irq(dspi->irq);
1136
1137	return 0;
1138}
1139#endif /* CONFIG_PM_SLEEP */
1140
1141static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1142
1143static const struct regmap_range dspi_volatile_ranges[] = {
1144	regmap_reg_range(SPI_MCR, SPI_TCR),
1145	regmap_reg_range(SPI_SR, SPI_SR),
1146	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1147};
1148
1149static const struct regmap_access_table dspi_volatile_table = {
1150	.yes_ranges	= dspi_volatile_ranges,
1151	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
1152};
1153
1154static const struct regmap_config dspi_regmap_config = {
1155	.reg_bits	= 32,
1156	.val_bits	= 32,
1157	.reg_stride	= 4,
1158	.max_register	= 0x88,
1159	.volatile_table	= &dspi_volatile_table,
1160};
1161
1162static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1163	regmap_reg_range(SPI_MCR, SPI_TCR),
1164	regmap_reg_range(SPI_SR, SPI_SR),
1165	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1166	regmap_reg_range(SPI_SREX, SPI_SREX),
1167};
1168
1169static const struct regmap_access_table dspi_xspi_volatile_table = {
1170	.yes_ranges	= dspi_xspi_volatile_ranges,
1171	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
1172};
1173
1174static const struct regmap_config dspi_xspi_regmap_config[] = {
1175	{
1176		.reg_bits	= 32,
1177		.val_bits	= 32,
1178		.reg_stride	= 4,
1179		.max_register	= 0x13c,
1180		.volatile_table	= &dspi_xspi_volatile_table,
1181	},
1182	{
1183		.name		= "pushr",
1184		.reg_bits	= 16,
1185		.val_bits	= 16,
1186		.reg_stride	= 2,
1187		.max_register	= 0x2,
1188	},
1189};
1190
1191static int dspi_init(struct fsl_dspi *dspi)
1192{
1193	unsigned int mcr;
1194
1195	/* Set idle states for all chip select signals to high */
1196	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->num_chipselect - 1, 0));
1197
1198	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1199		mcr |= SPI_MCR_XSPI;
1200	if (!spi_controller_is_slave(dspi->ctlr))
1201		mcr |= SPI_MCR_MASTER;
1202
1203	regmap_write(dspi->regmap, SPI_MCR, mcr);
1204	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1205
1206	switch (dspi->devtype_data->trans_mode) {
1207	case DSPI_EOQ_MODE:
1208		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
1209		break;
1210	case DSPI_XSPI_MODE:
1211		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1212		break;
1213	case DSPI_DMA_MODE:
1214		regmap_write(dspi->regmap, SPI_RSER,
1215			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1216			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1217		break;
1218	default:
1219		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1220			dspi->devtype_data->trans_mode);
1221		return -EINVAL;
1222	}
1223
1224	return 0;
1225}
1226
1227static int dspi_slave_abort(struct spi_master *master)
1228{
1229	struct fsl_dspi *dspi = spi_master_get_devdata(master);
1230
1231	/*
1232	 * Terminate all pending DMA transactions for the SPI working
1233	 * in SLAVE mode.
1234	 */
1235	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1236		dmaengine_terminate_sync(dspi->dma->chan_rx);
1237		dmaengine_terminate_sync(dspi->dma->chan_tx);
1238	}
1239
1240	/* Clear the internal DSPI RX and TX FIFO buffers */
1241	regmap_update_bits(dspi->regmap, SPI_MCR,
1242			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1243			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1244
1245	return 0;
1246}
1247
1248/*
1249 * EOQ mode will inevitably deassert its PCS signal on last word in a queue
1250 * (hardware limitation), so we need to inform the spi_device that larger
1251 * buffers than the FIFO size are going to have the chip select randomly
1252 * toggling, so it has a chance to adapt its message sizes.
1253 */
1254static size_t dspi_max_message_size(struct spi_device *spi)
1255{
1256	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1257
1258	if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE)
1259		return dspi->devtype_data->fifo_size;
1260
1261	return SIZE_MAX;
1262}
1263
1264static int dspi_probe(struct platform_device *pdev)
1265{
1266	struct device_node *np = pdev->dev.of_node;
1267	const struct regmap_config *regmap_config;
1268	struct fsl_dspi_platform_data *pdata;
1269	struct spi_controller *ctlr;
1270	int ret, cs_num, bus_num = -1;
1271	struct fsl_dspi *dspi;
1272	struct resource *res;
1273	void __iomem *base;
1274	bool big_endian;
 
1275
1276	dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1277	if (!dspi)
1278		return -ENOMEM;
1279
1280	ctlr = spi_alloc_master(&pdev->dev, 0);
1281	if (!ctlr)
1282		return -ENOMEM;
1283
1284	spi_controller_set_devdata(ctlr, dspi);
1285	platform_set_drvdata(pdev, dspi);
1286
1287	dspi->pdev = pdev;
1288	dspi->ctlr = ctlr;
1289
1290	ctlr->setup = dspi_setup;
1291	ctlr->transfer_one_message = dspi_transfer_one_message;
1292	ctlr->max_message_size = dspi_max_message_size;
1293	ctlr->dev.of_node = pdev->dev.of_node;
1294
1295	ctlr->cleanup = dspi_cleanup;
1296	ctlr->slave_abort = dspi_slave_abort;
1297	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
 
1298
1299	pdata = dev_get_platdata(&pdev->dev);
1300	if (pdata) {
1301		ctlr->num_chipselect = pdata->cs_num;
1302		ctlr->bus_num = pdata->bus_num;
1303
1304		/* Only Coldfire uses platform data */
1305		dspi->devtype_data = &devtype_data[MCF5441X];
1306		big_endian = true;
1307	} else {
1308
1309		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1310		if (ret < 0) {
1311			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1312			goto out_ctlr_put;
1313		}
1314		ctlr->num_chipselect = cs_num;
1315
1316		of_property_read_u32(np, "bus-num", &bus_num);
1317		ctlr->bus_num = bus_num;
1318
1319		if (of_property_read_bool(np, "spi-slave"))
1320			ctlr->slave = true;
 
1321
1322		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1323		if (!dspi->devtype_data) {
1324			dev_err(&pdev->dev, "can't get devtype_data\n");
1325			ret = -EFAULT;
1326			goto out_ctlr_put;
1327		}
1328
1329		big_endian = of_device_is_big_endian(np);
1330	}
1331	if (big_endian) {
1332		dspi->pushr_cmd = 0;
1333		dspi->pushr_tx = 2;
1334	} else {
1335		dspi->pushr_cmd = 2;
1336		dspi->pushr_tx = 0;
1337	}
1338
1339	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1340		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1341	else
1342		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1343
1344	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1345	base = devm_ioremap_resource(&pdev->dev, res);
1346	if (IS_ERR(base)) {
1347		ret = PTR_ERR(base);
1348		goto out_ctlr_put;
1349	}
1350
1351	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1352		regmap_config = &dspi_xspi_regmap_config[0];
1353	else
1354		regmap_config = &dspi_regmap_config;
1355	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1356	if (IS_ERR(dspi->regmap)) {
1357		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1358				PTR_ERR(dspi->regmap));
1359		ret = PTR_ERR(dspi->regmap);
1360		goto out_ctlr_put;
1361	}
1362
1363	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1364		dspi->regmap_pushr = devm_regmap_init_mmio(
1365			&pdev->dev, base + SPI_PUSHR,
1366			&dspi_xspi_regmap_config[1]);
1367		if (IS_ERR(dspi->regmap_pushr)) {
1368			dev_err(&pdev->dev,
1369				"failed to init pushr regmap: %ld\n",
1370				PTR_ERR(dspi->regmap_pushr));
1371			ret = PTR_ERR(dspi->regmap_pushr);
1372			goto out_ctlr_put;
1373		}
 
 
1374	}
1375
1376	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1377	if (IS_ERR(dspi->clk)) {
1378		ret = PTR_ERR(dspi->clk);
1379		dev_err(&pdev->dev, "unable to get clock\n");
1380		goto out_ctlr_put;
1381	}
1382	ret = clk_prepare_enable(dspi->clk);
1383	if (ret)
1384		goto out_ctlr_put;
1385
1386	ret = dspi_init(dspi);
1387	if (ret)
1388		goto out_clk_put;
1389
1390	dspi->irq = platform_get_irq(pdev, 0);
1391	if (dspi->irq <= 0) {
1392		dev_info(&pdev->dev,
1393			 "can't get platform irq, using poll mode\n");
1394		dspi->irq = 0;
1395		goto poll_mode;
1396	}
1397
1398	init_completion(&dspi->xfer_done);
1399
1400	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1401				   IRQF_SHARED, pdev->name, dspi);
1402	if (ret < 0) {
1403		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1404		goto out_clk_put;
1405	}
1406
1407poll_mode:
1408
1409	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1410		ret = dspi_request_dma(dspi, res->start);
1411		if (ret < 0) {
1412			dev_err(&pdev->dev, "can't get dma channels\n");
1413			goto out_free_irq;
1414		}
1415	}
1416
1417	ctlr->max_speed_hz =
1418		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1419
1420	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1421		ctlr->ptp_sts_supported = true;
1422
1423	ret = spi_register_controller(ctlr);
1424	if (ret != 0) {
1425		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1426		goto out_free_irq;
1427	}
1428
1429	return ret;
1430
1431out_free_irq:
1432	if (dspi->irq)
1433		free_irq(dspi->irq, dspi);
1434out_clk_put:
1435	clk_disable_unprepare(dspi->clk);
1436out_ctlr_put:
1437	spi_controller_put(ctlr);
1438
1439	return ret;
1440}
1441
1442static int dspi_remove(struct platform_device *pdev)
1443{
1444	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
 
1445
1446	/* Disconnect from the SPI framework */
1447	spi_unregister_controller(dspi->ctlr);
1448
1449	/* Disable RX and TX */
1450	regmap_update_bits(dspi->regmap, SPI_MCR,
1451			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1452			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1453
1454	/* Stop Running */
1455	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1456
1457	dspi_release_dma(dspi);
1458	if (dspi->irq)
1459		free_irq(dspi->irq, dspi);
1460	clk_disable_unprepare(dspi->clk);
 
1461
1462	return 0;
1463}
1464
1465static void dspi_shutdown(struct platform_device *pdev)
1466{
1467	dspi_remove(pdev);
1468}
1469
1470static struct platform_driver fsl_dspi_driver = {
1471	.driver.name		= DRIVER_NAME,
1472	.driver.of_match_table	= fsl_dspi_dt_ids,
1473	.driver.owner		= THIS_MODULE,
1474	.driver.pm		= &dspi_pm,
1475	.probe			= dspi_probe,
1476	.remove			= dspi_remove,
1477	.shutdown		= dspi_shutdown,
1478};
1479module_platform_driver(fsl_dspi_driver);
1480
1481MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1482MODULE_LICENSE("GPL");
1483MODULE_ALIAS("platform:" DRIVER_NAME);