Loading...
1/*
2 * TI Common Platform Time Sync
3 *
4 * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20#include <linux/err.h>
21#include <linux/if.h>
22#include <linux/hrtimer.h>
23#include <linux/module.h>
24#include <linux/net_tstamp.h>
25#include <linux/ptp_classify.h>
26#include <linux/time.h>
27#include <linux/uaccess.h>
28#include <linux/workqueue.h>
29#include <linux/if_ether.h>
30#include <linux/if_vlan.h>
31
32#include "cpts.h"
33
34#define CPTS_SKB_TX_WORK_TIMEOUT 1 /* jiffies */
35
36struct cpts_skb_cb_data {
37 unsigned long tmo;
38};
39
40#define cpts_read32(c, r) readl_relaxed(&c->reg->r)
41#define cpts_write32(c, v, r) writel_relaxed(v, &c->reg->r)
42
43static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
44 u16 ts_seqid, u8 ts_msgtype);
45
46static int event_expired(struct cpts_event *event)
47{
48 return time_after(jiffies, event->tmo);
49}
50
51static int event_type(struct cpts_event *event)
52{
53 return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
54}
55
56static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
57{
58 u32 r = cpts_read32(cpts, intstat_raw);
59
60 if (r & TS_PEND_RAW) {
61 *high = cpts_read32(cpts, event_high);
62 *low = cpts_read32(cpts, event_low);
63 cpts_write32(cpts, EVENT_POP, event_pop);
64 return 0;
65 }
66 return -1;
67}
68
69static int cpts_purge_events(struct cpts *cpts)
70{
71 struct list_head *this, *next;
72 struct cpts_event *event;
73 int removed = 0;
74
75 list_for_each_safe(this, next, &cpts->events) {
76 event = list_entry(this, struct cpts_event, list);
77 if (event_expired(event)) {
78 list_del_init(&event->list);
79 list_add(&event->list, &cpts->pool);
80 ++removed;
81 }
82 }
83
84 if (removed)
85 pr_debug("cpts: event pool cleaned up %d\n", removed);
86 return removed ? 0 : -1;
87}
88
89static bool cpts_match_tx_ts(struct cpts *cpts, struct cpts_event *event)
90{
91 struct sk_buff *skb, *tmp;
92 u16 seqid;
93 u8 mtype;
94 bool found = false;
95
96 mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
97 seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
98
99 /* no need to grab txq.lock as access is always done under cpts->lock */
100 skb_queue_walk_safe(&cpts->txq, skb, tmp) {
101 struct skb_shared_hwtstamps ssh;
102 unsigned int class = ptp_classify_raw(skb);
103 struct cpts_skb_cb_data *skb_cb =
104 (struct cpts_skb_cb_data *)skb->cb;
105
106 if (cpts_match(skb, class, seqid, mtype)) {
107 u64 ns = timecounter_cyc2time(&cpts->tc, event->low);
108
109 memset(&ssh, 0, sizeof(ssh));
110 ssh.hwtstamp = ns_to_ktime(ns);
111 skb_tstamp_tx(skb, &ssh);
112 found = true;
113 __skb_unlink(skb, &cpts->txq);
114 dev_consume_skb_any(skb);
115 dev_dbg(cpts->dev, "match tx timestamp mtype %u seqid %04x\n",
116 mtype, seqid);
117 } else if (time_after(jiffies, skb_cb->tmo)) {
118 /* timeout any expired skbs over 1s */
119 dev_dbg(cpts->dev,
120 "expiring tx timestamp mtype %u seqid %04x\n",
121 mtype, seqid);
122 __skb_unlink(skb, &cpts->txq);
123 dev_consume_skb_any(skb);
124 }
125 }
126
127 return found;
128}
129
130/*
131 * Returns zero if matching event type was found.
132 */
133static int cpts_fifo_read(struct cpts *cpts, int match)
134{
135 int i, type = -1;
136 u32 hi, lo;
137 struct cpts_event *event;
138
139 for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
140 if (cpts_fifo_pop(cpts, &hi, &lo))
141 break;
142
143 if (list_empty(&cpts->pool) && cpts_purge_events(cpts)) {
144 pr_err("cpts: event pool empty\n");
145 return -1;
146 }
147
148 event = list_first_entry(&cpts->pool, struct cpts_event, list);
149 event->tmo = jiffies + 2;
150 event->high = hi;
151 event->low = lo;
152 type = event_type(event);
153 switch (type) {
154 case CPTS_EV_TX:
155 if (cpts_match_tx_ts(cpts, event)) {
156 /* if the new event matches an existing skb,
157 * then don't queue it
158 */
159 break;
160 }
161 case CPTS_EV_PUSH:
162 case CPTS_EV_RX:
163 list_del_init(&event->list);
164 list_add_tail(&event->list, &cpts->events);
165 break;
166 case CPTS_EV_ROLL:
167 case CPTS_EV_HALF:
168 case CPTS_EV_HW:
169 break;
170 default:
171 pr_err("cpts: unknown event type\n");
172 break;
173 }
174 if (type == match)
175 break;
176 }
177 return type == match ? 0 : -1;
178}
179
180static u64 cpts_systim_read(const struct cyclecounter *cc)
181{
182 u64 val = 0;
183 struct cpts_event *event;
184 struct list_head *this, *next;
185 struct cpts *cpts = container_of(cc, struct cpts, cc);
186
187 cpts_write32(cpts, TS_PUSH, ts_push);
188 if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
189 pr_err("cpts: unable to obtain a time stamp\n");
190
191 list_for_each_safe(this, next, &cpts->events) {
192 event = list_entry(this, struct cpts_event, list);
193 if (event_type(event) == CPTS_EV_PUSH) {
194 list_del_init(&event->list);
195 list_add(&event->list, &cpts->pool);
196 val = event->low;
197 break;
198 }
199 }
200
201 return val;
202}
203
204/* PTP clock operations */
205
206static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
207{
208 u64 adj;
209 u32 diff, mult;
210 int neg_adj = 0;
211 unsigned long flags;
212 struct cpts *cpts = container_of(ptp, struct cpts, info);
213
214 if (ppb < 0) {
215 neg_adj = 1;
216 ppb = -ppb;
217 }
218 mult = cpts->cc_mult;
219 adj = mult;
220 adj *= ppb;
221 diff = div_u64(adj, 1000000000ULL);
222
223 spin_lock_irqsave(&cpts->lock, flags);
224
225 timecounter_read(&cpts->tc);
226
227 cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
228
229 spin_unlock_irqrestore(&cpts->lock, flags);
230
231 return 0;
232}
233
234static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
235{
236 unsigned long flags;
237 struct cpts *cpts = container_of(ptp, struct cpts, info);
238
239 spin_lock_irqsave(&cpts->lock, flags);
240 timecounter_adjtime(&cpts->tc, delta);
241 spin_unlock_irqrestore(&cpts->lock, flags);
242
243 return 0;
244}
245
246static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
247{
248 u64 ns;
249 unsigned long flags;
250 struct cpts *cpts = container_of(ptp, struct cpts, info);
251
252 spin_lock_irqsave(&cpts->lock, flags);
253 ns = timecounter_read(&cpts->tc);
254 spin_unlock_irqrestore(&cpts->lock, flags);
255
256 *ts = ns_to_timespec64(ns);
257
258 return 0;
259}
260
261static int cpts_ptp_settime(struct ptp_clock_info *ptp,
262 const struct timespec64 *ts)
263{
264 u64 ns;
265 unsigned long flags;
266 struct cpts *cpts = container_of(ptp, struct cpts, info);
267
268 ns = timespec64_to_ns(ts);
269
270 spin_lock_irqsave(&cpts->lock, flags);
271 timecounter_init(&cpts->tc, &cpts->cc, ns);
272 spin_unlock_irqrestore(&cpts->lock, flags);
273
274 return 0;
275}
276
277static int cpts_ptp_enable(struct ptp_clock_info *ptp,
278 struct ptp_clock_request *rq, int on)
279{
280 return -EOPNOTSUPP;
281}
282
283static long cpts_overflow_check(struct ptp_clock_info *ptp)
284{
285 struct cpts *cpts = container_of(ptp, struct cpts, info);
286 unsigned long delay = cpts->ov_check_period;
287 struct timespec64 ts;
288 unsigned long flags;
289
290 spin_lock_irqsave(&cpts->lock, flags);
291 ts = ns_to_timespec64(timecounter_read(&cpts->tc));
292
293 if (!skb_queue_empty(&cpts->txq))
294 delay = CPTS_SKB_TX_WORK_TIMEOUT;
295 spin_unlock_irqrestore(&cpts->lock, flags);
296
297 pr_debug("cpts overflow check at %lld.%09lu\n", ts.tv_sec, ts.tv_nsec);
298 return (long)delay;
299}
300
301static const struct ptp_clock_info cpts_info = {
302 .owner = THIS_MODULE,
303 .name = "CTPS timer",
304 .max_adj = 1000000,
305 .n_ext_ts = 0,
306 .n_pins = 0,
307 .pps = 0,
308 .adjfreq = cpts_ptp_adjfreq,
309 .adjtime = cpts_ptp_adjtime,
310 .gettime64 = cpts_ptp_gettime,
311 .settime64 = cpts_ptp_settime,
312 .enable = cpts_ptp_enable,
313 .do_aux_work = cpts_overflow_check,
314};
315
316static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
317 u16 ts_seqid, u8 ts_msgtype)
318{
319 u16 *seqid;
320 unsigned int offset = 0;
321 u8 *msgtype, *data = skb->data;
322
323 if (ptp_class & PTP_CLASS_VLAN)
324 offset += VLAN_HLEN;
325
326 switch (ptp_class & PTP_CLASS_PMASK) {
327 case PTP_CLASS_IPV4:
328 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
329 break;
330 case PTP_CLASS_IPV6:
331 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
332 break;
333 case PTP_CLASS_L2:
334 offset += ETH_HLEN;
335 break;
336 default:
337 return 0;
338 }
339
340 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
341 return 0;
342
343 if (unlikely(ptp_class & PTP_CLASS_V1))
344 msgtype = data + offset + OFF_PTP_CONTROL;
345 else
346 msgtype = data + offset;
347
348 seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
349
350 return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
351}
352
353static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
354{
355 u64 ns = 0;
356 struct cpts_event *event;
357 struct list_head *this, *next;
358 unsigned int class = ptp_classify_raw(skb);
359 unsigned long flags;
360 u16 seqid;
361 u8 mtype;
362
363 if (class == PTP_CLASS_NONE)
364 return 0;
365
366 spin_lock_irqsave(&cpts->lock, flags);
367 cpts_fifo_read(cpts, -1);
368 list_for_each_safe(this, next, &cpts->events) {
369 event = list_entry(this, struct cpts_event, list);
370 if (event_expired(event)) {
371 list_del_init(&event->list);
372 list_add(&event->list, &cpts->pool);
373 continue;
374 }
375 mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
376 seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
377 if (ev_type == event_type(event) &&
378 cpts_match(skb, class, seqid, mtype)) {
379 ns = timecounter_cyc2time(&cpts->tc, event->low);
380 list_del_init(&event->list);
381 list_add(&event->list, &cpts->pool);
382 break;
383 }
384 }
385
386 if (ev_type == CPTS_EV_TX && !ns) {
387 struct cpts_skb_cb_data *skb_cb =
388 (struct cpts_skb_cb_data *)skb->cb;
389 /* Not found, add frame to queue for processing later.
390 * The periodic FIFO check will handle this.
391 */
392 skb_get(skb);
393 /* get the timestamp for timeouts */
394 skb_cb->tmo = jiffies + msecs_to_jiffies(100);
395 __skb_queue_tail(&cpts->txq, skb);
396 ptp_schedule_worker(cpts->clock, 0);
397 }
398 spin_unlock_irqrestore(&cpts->lock, flags);
399
400 return ns;
401}
402
403void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
404{
405 u64 ns;
406 struct skb_shared_hwtstamps *ssh;
407
408 if (!cpts->rx_enable)
409 return;
410 ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
411 if (!ns)
412 return;
413 ssh = skb_hwtstamps(skb);
414 memset(ssh, 0, sizeof(*ssh));
415 ssh->hwtstamp = ns_to_ktime(ns);
416}
417EXPORT_SYMBOL_GPL(cpts_rx_timestamp);
418
419void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
420{
421 u64 ns;
422 struct skb_shared_hwtstamps ssh;
423
424 if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
425 return;
426 ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
427 if (!ns)
428 return;
429 memset(&ssh, 0, sizeof(ssh));
430 ssh.hwtstamp = ns_to_ktime(ns);
431 skb_tstamp_tx(skb, &ssh);
432}
433EXPORT_SYMBOL_GPL(cpts_tx_timestamp);
434
435int cpts_register(struct cpts *cpts)
436{
437 int err, i;
438
439 skb_queue_head_init(&cpts->txq);
440 INIT_LIST_HEAD(&cpts->events);
441 INIT_LIST_HEAD(&cpts->pool);
442 for (i = 0; i < CPTS_MAX_EVENTS; i++)
443 list_add(&cpts->pool_data[i].list, &cpts->pool);
444
445 clk_enable(cpts->refclk);
446
447 cpts_write32(cpts, CPTS_EN, control);
448 cpts_write32(cpts, TS_PEND_EN, int_enable);
449
450 timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real()));
451
452 cpts->clock = ptp_clock_register(&cpts->info, cpts->dev);
453 if (IS_ERR(cpts->clock)) {
454 err = PTR_ERR(cpts->clock);
455 cpts->clock = NULL;
456 goto err_ptp;
457 }
458 cpts->phc_index = ptp_clock_index(cpts->clock);
459
460 ptp_schedule_worker(cpts->clock, cpts->ov_check_period);
461 return 0;
462
463err_ptp:
464 clk_disable(cpts->refclk);
465 return err;
466}
467EXPORT_SYMBOL_GPL(cpts_register);
468
469void cpts_unregister(struct cpts *cpts)
470{
471 if (WARN_ON(!cpts->clock))
472 return;
473
474 ptp_clock_unregister(cpts->clock);
475 cpts->clock = NULL;
476
477 cpts_write32(cpts, 0, int_enable);
478 cpts_write32(cpts, 0, control);
479
480 /* Drop all packet */
481 skb_queue_purge(&cpts->txq);
482
483 clk_disable(cpts->refclk);
484}
485EXPORT_SYMBOL_GPL(cpts_unregister);
486
487static void cpts_calc_mult_shift(struct cpts *cpts)
488{
489 u64 frac, maxsec, ns;
490 u32 freq;
491
492 freq = clk_get_rate(cpts->refclk);
493
494 /* Calc the maximum number of seconds which we can run before
495 * wrapping around.
496 */
497 maxsec = cpts->cc.mask;
498 do_div(maxsec, freq);
499 /* limit conversation rate to 10 sec as higher values will produce
500 * too small mult factors and so reduce the conversion accuracy
501 */
502 if (maxsec > 10)
503 maxsec = 10;
504
505 /* Calc overflow check period (maxsec / 2) */
506 cpts->ov_check_period = (HZ * maxsec) / 2;
507 dev_info(cpts->dev, "cpts: overflow check period %lu (jiffies)\n",
508 cpts->ov_check_period);
509
510 if (cpts->cc.mult || cpts->cc.shift)
511 return;
512
513 clocks_calc_mult_shift(&cpts->cc.mult, &cpts->cc.shift,
514 freq, NSEC_PER_SEC, maxsec);
515
516 frac = 0;
517 ns = cyclecounter_cyc2ns(&cpts->cc, freq, cpts->cc.mask, &frac);
518
519 dev_info(cpts->dev,
520 "CPTS: ref_clk_freq:%u calc_mult:%u calc_shift:%u error:%lld nsec/sec\n",
521 freq, cpts->cc.mult, cpts->cc.shift, (ns - NSEC_PER_SEC));
522}
523
524static int cpts_of_parse(struct cpts *cpts, struct device_node *node)
525{
526 int ret = -EINVAL;
527 u32 prop;
528
529 if (!of_property_read_u32(node, "cpts_clock_mult", &prop))
530 cpts->cc.mult = prop;
531
532 if (!of_property_read_u32(node, "cpts_clock_shift", &prop))
533 cpts->cc.shift = prop;
534
535 if ((cpts->cc.mult && !cpts->cc.shift) ||
536 (!cpts->cc.mult && cpts->cc.shift))
537 goto of_error;
538
539 return 0;
540
541of_error:
542 dev_err(cpts->dev, "CPTS: Missing property in the DT.\n");
543 return ret;
544}
545
546struct cpts *cpts_create(struct device *dev, void __iomem *regs,
547 struct device_node *node)
548{
549 struct cpts *cpts;
550 int ret;
551
552 cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL);
553 if (!cpts)
554 return ERR_PTR(-ENOMEM);
555
556 cpts->dev = dev;
557 cpts->reg = (struct cpsw_cpts __iomem *)regs;
558 spin_lock_init(&cpts->lock);
559
560 ret = cpts_of_parse(cpts, node);
561 if (ret)
562 return ERR_PTR(ret);
563
564 cpts->refclk = devm_clk_get(dev, "cpts");
565 if (IS_ERR(cpts->refclk)) {
566 dev_err(dev, "Failed to get cpts refclk\n");
567 return ERR_PTR(PTR_ERR(cpts->refclk));
568 }
569
570 clk_prepare(cpts->refclk);
571
572 cpts->cc.read = cpts_systim_read;
573 cpts->cc.mask = CLOCKSOURCE_MASK(32);
574 cpts->info = cpts_info;
575
576 cpts_calc_mult_shift(cpts);
577 /* save cc.mult original value as it can be modified
578 * by cpts_ptp_adjfreq().
579 */
580 cpts->cc_mult = cpts->cc.mult;
581
582 return cpts;
583}
584EXPORT_SYMBOL_GPL(cpts_create);
585
586void cpts_release(struct cpts *cpts)
587{
588 if (!cpts)
589 return;
590
591 if (WARN_ON(!cpts->refclk))
592 return;
593
594 clk_unprepare(cpts->refclk);
595}
596EXPORT_SYMBOL_GPL(cpts_release);
597
598MODULE_LICENSE("GPL v2");
599MODULE_DESCRIPTION("TI CPTS driver");
600MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * TI Common Platform Time Sync
4 *
5 * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
6 *
7 */
8#include <linux/clk-provider.h>
9#include <linux/err.h>
10#include <linux/if.h>
11#include <linux/hrtimer.h>
12#include <linux/module.h>
13#include <linux/net_tstamp.h>
14#include <linux/ptp_classify.h>
15#include <linux/time.h>
16#include <linux/uaccess.h>
17#include <linux/workqueue.h>
18#include <linux/if_ether.h>
19#include <linux/if_vlan.h>
20
21#include "cpts.h"
22
23#define CPTS_SKB_TX_WORK_TIMEOUT 1 /* jiffies */
24#define CPTS_SKB_RX_TX_TMO 100 /*ms */
25#define CPTS_EVENT_RX_TX_TIMEOUT (100) /* ms */
26
27struct cpts_skb_cb_data {
28 u32 skb_mtype_seqid;
29 unsigned long tmo;
30};
31
32#define cpts_read32(c, r) readl_relaxed(&c->reg->r)
33#define cpts_write32(c, v, r) writel_relaxed(v, &c->reg->r)
34
35static int cpts_event_port(struct cpts_event *event)
36{
37 return (event->high >> PORT_NUMBER_SHIFT) & PORT_NUMBER_MASK;
38}
39
40static int event_expired(struct cpts_event *event)
41{
42 return time_after(jiffies, event->tmo);
43}
44
45static int event_type(struct cpts_event *event)
46{
47 return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
48}
49
50static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
51{
52 u32 r = cpts_read32(cpts, intstat_raw);
53
54 if (r & TS_PEND_RAW) {
55 *high = cpts_read32(cpts, event_high);
56 *low = cpts_read32(cpts, event_low);
57 cpts_write32(cpts, EVENT_POP, event_pop);
58 return 0;
59 }
60 return -1;
61}
62
63static int cpts_purge_events(struct cpts *cpts)
64{
65 struct list_head *this, *next;
66 struct cpts_event *event;
67 int removed = 0;
68
69 list_for_each_safe(this, next, &cpts->events) {
70 event = list_entry(this, struct cpts_event, list);
71 if (event_expired(event)) {
72 list_del_init(&event->list);
73 list_add(&event->list, &cpts->pool);
74 ++removed;
75 }
76 }
77
78 if (removed)
79 dev_dbg(cpts->dev, "cpts: event pool cleaned up %d\n", removed);
80 return removed ? 0 : -1;
81}
82
83static void cpts_purge_txq(struct cpts *cpts)
84{
85 struct cpts_skb_cb_data *skb_cb;
86 struct sk_buff *skb, *tmp;
87 int removed = 0;
88
89 skb_queue_walk_safe(&cpts->txq, skb, tmp) {
90 skb_cb = (struct cpts_skb_cb_data *)skb->cb;
91 if (time_after(jiffies, skb_cb->tmo)) {
92 __skb_unlink(skb, &cpts->txq);
93 dev_consume_skb_any(skb);
94 ++removed;
95 }
96 }
97
98 if (removed)
99 dev_dbg(cpts->dev, "txq cleaned up %d\n", removed);
100}
101
102/*
103 * Returns zero if matching event type was found.
104 */
105static int cpts_fifo_read(struct cpts *cpts, int match)
106{
107 struct ptp_clock_event pevent;
108 bool need_schedule = false;
109 struct cpts_event *event;
110 unsigned long flags;
111 int i, type = -1;
112 u32 hi, lo;
113
114 spin_lock_irqsave(&cpts->lock, flags);
115
116 for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
117 if (cpts_fifo_pop(cpts, &hi, &lo))
118 break;
119
120 if (list_empty(&cpts->pool) && cpts_purge_events(cpts)) {
121 dev_warn(cpts->dev, "cpts: event pool empty\n");
122 break;
123 }
124
125 event = list_first_entry(&cpts->pool, struct cpts_event, list);
126 event->high = hi;
127 event->low = lo;
128 event->timestamp = timecounter_cyc2time(&cpts->tc, event->low);
129 type = event_type(event);
130
131 dev_dbg(cpts->dev, "CPTS_EV: %d high:%08X low:%08x\n",
132 type, event->high, event->low);
133 switch (type) {
134 case CPTS_EV_PUSH:
135 WRITE_ONCE(cpts->cur_timestamp, lo);
136 timecounter_read(&cpts->tc);
137 if (cpts->mult_new) {
138 cpts->cc.mult = cpts->mult_new;
139 cpts->mult_new = 0;
140 }
141 if (!cpts->irq_poll)
142 complete(&cpts->ts_push_complete);
143 break;
144 case CPTS_EV_TX:
145 case CPTS_EV_RX:
146 event->tmo = jiffies +
147 msecs_to_jiffies(CPTS_EVENT_RX_TX_TIMEOUT);
148
149 list_del_init(&event->list);
150 list_add_tail(&event->list, &cpts->events);
151 need_schedule = true;
152 break;
153 case CPTS_EV_ROLL:
154 case CPTS_EV_HALF:
155 break;
156 case CPTS_EV_HW:
157 pevent.timestamp = event->timestamp;
158 pevent.type = PTP_CLOCK_EXTTS;
159 pevent.index = cpts_event_port(event) - 1;
160 ptp_clock_event(cpts->clock, &pevent);
161 break;
162 default:
163 dev_err(cpts->dev, "cpts: unknown event type\n");
164 break;
165 }
166 if (type == match)
167 break;
168 }
169
170 spin_unlock_irqrestore(&cpts->lock, flags);
171
172 if (!cpts->irq_poll && need_schedule)
173 ptp_schedule_worker(cpts->clock, 0);
174
175 return type == match ? 0 : -1;
176}
177
178void cpts_misc_interrupt(struct cpts *cpts)
179{
180 cpts_fifo_read(cpts, -1);
181}
182EXPORT_SYMBOL_GPL(cpts_misc_interrupt);
183
184static u64 cpts_systim_read(const struct cyclecounter *cc)
185{
186 struct cpts *cpts = container_of(cc, struct cpts, cc);
187
188 return READ_ONCE(cpts->cur_timestamp);
189}
190
191static void cpts_update_cur_time(struct cpts *cpts, int match,
192 struct ptp_system_timestamp *sts)
193{
194 unsigned long flags;
195
196 reinit_completion(&cpts->ts_push_complete);
197
198 /* use spin_lock_irqsave() here as it has to run very fast */
199 spin_lock_irqsave(&cpts->lock, flags);
200 ptp_read_system_prets(sts);
201 cpts_write32(cpts, TS_PUSH, ts_push);
202 cpts_read32(cpts, ts_push);
203 ptp_read_system_postts(sts);
204 spin_unlock_irqrestore(&cpts->lock, flags);
205
206 if (cpts->irq_poll && cpts_fifo_read(cpts, match) && match != -1)
207 dev_err(cpts->dev, "cpts: unable to obtain a time stamp\n");
208
209 if (!cpts->irq_poll &&
210 !wait_for_completion_timeout(&cpts->ts_push_complete, HZ))
211 dev_err(cpts->dev, "cpts: obtain a time stamp timeout\n");
212}
213
214/* PTP clock operations */
215
216static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
217{
218 struct cpts *cpts = container_of(ptp, struct cpts, info);
219 int neg_adj = 0;
220 u32 diff, mult;
221 u64 adj;
222
223 if (ppb < 0) {
224 neg_adj = 1;
225 ppb = -ppb;
226 }
227 mult = cpts->cc_mult;
228 adj = mult;
229 adj *= ppb;
230 diff = div_u64(adj, 1000000000ULL);
231
232 mutex_lock(&cpts->ptp_clk_mutex);
233
234 cpts->mult_new = neg_adj ? mult - diff : mult + diff;
235
236 cpts_update_cur_time(cpts, CPTS_EV_PUSH, NULL);
237
238 mutex_unlock(&cpts->ptp_clk_mutex);
239 return 0;
240}
241
242static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
243{
244 struct cpts *cpts = container_of(ptp, struct cpts, info);
245
246 mutex_lock(&cpts->ptp_clk_mutex);
247 timecounter_adjtime(&cpts->tc, delta);
248 mutex_unlock(&cpts->ptp_clk_mutex);
249
250 return 0;
251}
252
253static int cpts_ptp_gettimeex(struct ptp_clock_info *ptp,
254 struct timespec64 *ts,
255 struct ptp_system_timestamp *sts)
256{
257 struct cpts *cpts = container_of(ptp, struct cpts, info);
258 u64 ns;
259
260 mutex_lock(&cpts->ptp_clk_mutex);
261
262 cpts_update_cur_time(cpts, CPTS_EV_PUSH, sts);
263
264 ns = timecounter_read(&cpts->tc);
265 mutex_unlock(&cpts->ptp_clk_mutex);
266
267 *ts = ns_to_timespec64(ns);
268
269 return 0;
270}
271
272static int cpts_ptp_settime(struct ptp_clock_info *ptp,
273 const struct timespec64 *ts)
274{
275 struct cpts *cpts = container_of(ptp, struct cpts, info);
276 u64 ns;
277
278 ns = timespec64_to_ns(ts);
279
280 mutex_lock(&cpts->ptp_clk_mutex);
281 timecounter_init(&cpts->tc, &cpts->cc, ns);
282 mutex_unlock(&cpts->ptp_clk_mutex);
283
284 return 0;
285}
286
287static int cpts_extts_enable(struct cpts *cpts, u32 index, int on)
288{
289 u32 v;
290
291 if (((cpts->hw_ts_enable & BIT(index)) >> index) == on)
292 return 0;
293
294 mutex_lock(&cpts->ptp_clk_mutex);
295
296 v = cpts_read32(cpts, control);
297 if (on) {
298 v |= BIT(8 + index);
299 cpts->hw_ts_enable |= BIT(index);
300 } else {
301 v &= ~BIT(8 + index);
302 cpts->hw_ts_enable &= ~BIT(index);
303 }
304 cpts_write32(cpts, v, control);
305
306 mutex_unlock(&cpts->ptp_clk_mutex);
307
308 return 0;
309}
310
311static int cpts_ptp_enable(struct ptp_clock_info *ptp,
312 struct ptp_clock_request *rq, int on)
313{
314 struct cpts *cpts = container_of(ptp, struct cpts, info);
315
316 switch (rq->type) {
317 case PTP_CLK_REQ_EXTTS:
318 return cpts_extts_enable(cpts, rq->extts.index, on);
319 default:
320 break;
321 }
322
323 return -EOPNOTSUPP;
324}
325
326static bool cpts_match_tx_ts(struct cpts *cpts, struct cpts_event *event)
327{
328 struct sk_buff_head txq_list;
329 struct sk_buff *skb, *tmp;
330 unsigned long flags;
331 bool found = false;
332 u32 mtype_seqid;
333
334 mtype_seqid = event->high &
335 ((MESSAGE_TYPE_MASK << MESSAGE_TYPE_SHIFT) |
336 (SEQUENCE_ID_MASK << SEQUENCE_ID_SHIFT) |
337 (EVENT_TYPE_MASK << EVENT_TYPE_SHIFT));
338
339 __skb_queue_head_init(&txq_list);
340
341 spin_lock_irqsave(&cpts->txq.lock, flags);
342 skb_queue_splice_init(&cpts->txq, &txq_list);
343 spin_unlock_irqrestore(&cpts->txq.lock, flags);
344
345 skb_queue_walk_safe(&txq_list, skb, tmp) {
346 struct skb_shared_hwtstamps ssh;
347 struct cpts_skb_cb_data *skb_cb =
348 (struct cpts_skb_cb_data *)skb->cb;
349
350 if (mtype_seqid == skb_cb->skb_mtype_seqid) {
351 memset(&ssh, 0, sizeof(ssh));
352 ssh.hwtstamp = ns_to_ktime(event->timestamp);
353 skb_tstamp_tx(skb, &ssh);
354 found = true;
355 __skb_unlink(skb, &txq_list);
356 dev_consume_skb_any(skb);
357 dev_dbg(cpts->dev, "match tx timestamp mtype_seqid %08x\n",
358 mtype_seqid);
359 break;
360 }
361
362 if (time_after(jiffies, skb_cb->tmo)) {
363 /* timeout any expired skbs over 1s */
364 dev_dbg(cpts->dev, "expiring tx timestamp from txq\n");
365 __skb_unlink(skb, &txq_list);
366 dev_consume_skb_any(skb);
367 }
368 }
369
370 spin_lock_irqsave(&cpts->txq.lock, flags);
371 skb_queue_splice(&txq_list, &cpts->txq);
372 spin_unlock_irqrestore(&cpts->txq.lock, flags);
373
374 return found;
375}
376
377static void cpts_process_events(struct cpts *cpts)
378{
379 struct list_head *this, *next;
380 struct cpts_event *event;
381 LIST_HEAD(events_free);
382 unsigned long flags;
383 LIST_HEAD(events);
384
385 spin_lock_irqsave(&cpts->lock, flags);
386 list_splice_init(&cpts->events, &events);
387 spin_unlock_irqrestore(&cpts->lock, flags);
388
389 list_for_each_safe(this, next, &events) {
390 event = list_entry(this, struct cpts_event, list);
391 if (cpts_match_tx_ts(cpts, event) ||
392 time_after(jiffies, event->tmo)) {
393 list_del_init(&event->list);
394 list_add(&event->list, &events_free);
395 }
396 }
397
398 spin_lock_irqsave(&cpts->lock, flags);
399 list_splice_tail(&events, &cpts->events);
400 list_splice_tail(&events_free, &cpts->pool);
401 spin_unlock_irqrestore(&cpts->lock, flags);
402}
403
404static long cpts_overflow_check(struct ptp_clock_info *ptp)
405{
406 struct cpts *cpts = container_of(ptp, struct cpts, info);
407 unsigned long delay = cpts->ov_check_period;
408 unsigned long flags;
409 u64 ns;
410
411 mutex_lock(&cpts->ptp_clk_mutex);
412
413 cpts_update_cur_time(cpts, -1, NULL);
414 ns = timecounter_read(&cpts->tc);
415
416 cpts_process_events(cpts);
417
418 spin_lock_irqsave(&cpts->txq.lock, flags);
419 if (!skb_queue_empty(&cpts->txq)) {
420 cpts_purge_txq(cpts);
421 if (!skb_queue_empty(&cpts->txq))
422 delay = CPTS_SKB_TX_WORK_TIMEOUT;
423 }
424 spin_unlock_irqrestore(&cpts->txq.lock, flags);
425
426 dev_dbg(cpts->dev, "cpts overflow check at %lld\n", ns);
427 mutex_unlock(&cpts->ptp_clk_mutex);
428 return (long)delay;
429}
430
431static const struct ptp_clock_info cpts_info = {
432 .owner = THIS_MODULE,
433 .name = "CTPS timer",
434 .max_adj = 1000000,
435 .n_ext_ts = 0,
436 .n_pins = 0,
437 .pps = 0,
438 .adjfreq = cpts_ptp_adjfreq,
439 .adjtime = cpts_ptp_adjtime,
440 .gettimex64 = cpts_ptp_gettimeex,
441 .settime64 = cpts_ptp_settime,
442 .enable = cpts_ptp_enable,
443 .do_aux_work = cpts_overflow_check,
444};
445
446static int cpts_skb_get_mtype_seqid(struct sk_buff *skb, u32 *mtype_seqid)
447{
448 unsigned int ptp_class = ptp_classify_raw(skb);
449 u8 *msgtype, *data = skb->data;
450 unsigned int offset = 0;
451 u16 *seqid;
452
453 if (ptp_class == PTP_CLASS_NONE)
454 return 0;
455
456 if (ptp_class & PTP_CLASS_VLAN)
457 offset += VLAN_HLEN;
458
459 switch (ptp_class & PTP_CLASS_PMASK) {
460 case PTP_CLASS_IPV4:
461 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
462 break;
463 case PTP_CLASS_IPV6:
464 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
465 break;
466 case PTP_CLASS_L2:
467 offset += ETH_HLEN;
468 break;
469 default:
470 return 0;
471 }
472
473 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
474 return 0;
475
476 if (unlikely(ptp_class & PTP_CLASS_V1))
477 msgtype = data + offset + OFF_PTP_CONTROL;
478 else
479 msgtype = data + offset;
480
481 seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
482 *mtype_seqid = (*msgtype & MESSAGE_TYPE_MASK) << MESSAGE_TYPE_SHIFT;
483 *mtype_seqid |= (ntohs(*seqid) & SEQUENCE_ID_MASK) << SEQUENCE_ID_SHIFT;
484
485 return 1;
486}
487
488static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb,
489 int ev_type, u32 skb_mtype_seqid)
490{
491 struct list_head *this, *next;
492 struct cpts_event *event;
493 unsigned long flags;
494 u32 mtype_seqid;
495 u64 ns = 0;
496
497 cpts_fifo_read(cpts, -1);
498 spin_lock_irqsave(&cpts->lock, flags);
499 list_for_each_safe(this, next, &cpts->events) {
500 event = list_entry(this, struct cpts_event, list);
501 if (event_expired(event)) {
502 list_del_init(&event->list);
503 list_add(&event->list, &cpts->pool);
504 continue;
505 }
506
507 mtype_seqid = event->high &
508 ((MESSAGE_TYPE_MASK << MESSAGE_TYPE_SHIFT) |
509 (SEQUENCE_ID_MASK << SEQUENCE_ID_SHIFT) |
510 (EVENT_TYPE_MASK << EVENT_TYPE_SHIFT));
511
512 if (mtype_seqid == skb_mtype_seqid) {
513 ns = event->timestamp;
514 list_del_init(&event->list);
515 list_add(&event->list, &cpts->pool);
516 break;
517 }
518 }
519 spin_unlock_irqrestore(&cpts->lock, flags);
520
521 return ns;
522}
523
524void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
525{
526 struct cpts_skb_cb_data *skb_cb = (struct cpts_skb_cb_data *)skb->cb;
527 struct skb_shared_hwtstamps *ssh;
528 int ret;
529 u64 ns;
530
531 ret = cpts_skb_get_mtype_seqid(skb, &skb_cb->skb_mtype_seqid);
532 if (!ret)
533 return;
534
535 skb_cb->skb_mtype_seqid |= (CPTS_EV_RX << EVENT_TYPE_SHIFT);
536
537 dev_dbg(cpts->dev, "%s mtype seqid %08x\n",
538 __func__, skb_cb->skb_mtype_seqid);
539
540 ns = cpts_find_ts(cpts, skb, CPTS_EV_RX, skb_cb->skb_mtype_seqid);
541 if (!ns)
542 return;
543 ssh = skb_hwtstamps(skb);
544 memset(ssh, 0, sizeof(*ssh));
545 ssh->hwtstamp = ns_to_ktime(ns);
546}
547EXPORT_SYMBOL_GPL(cpts_rx_timestamp);
548
549void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
550{
551 struct cpts_skb_cb_data *skb_cb = (struct cpts_skb_cb_data *)skb->cb;
552 int ret;
553
554 if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
555 return;
556
557 ret = cpts_skb_get_mtype_seqid(skb, &skb_cb->skb_mtype_seqid);
558 if (!ret)
559 return;
560
561 skb_cb->skb_mtype_seqid |= (CPTS_EV_TX << EVENT_TYPE_SHIFT);
562
563 dev_dbg(cpts->dev, "%s mtype seqid %08x\n",
564 __func__, skb_cb->skb_mtype_seqid);
565
566 /* Always defer TX TS processing to PTP worker */
567 skb_get(skb);
568 /* get the timestamp for timeouts */
569 skb_cb->tmo = jiffies + msecs_to_jiffies(CPTS_SKB_RX_TX_TMO);
570 skb_queue_tail(&cpts->txq, skb);
571 ptp_schedule_worker(cpts->clock, 0);
572}
573EXPORT_SYMBOL_GPL(cpts_tx_timestamp);
574
575int cpts_register(struct cpts *cpts)
576{
577 int err, i;
578
579 skb_queue_head_init(&cpts->txq);
580 INIT_LIST_HEAD(&cpts->events);
581 INIT_LIST_HEAD(&cpts->pool);
582 for (i = 0; i < CPTS_MAX_EVENTS; i++)
583 list_add(&cpts->pool_data[i].list, &cpts->pool);
584
585 clk_enable(cpts->refclk);
586
587 cpts_write32(cpts, CPTS_EN, control);
588 cpts_write32(cpts, TS_PEND_EN, int_enable);
589
590 timecounter_init(&cpts->tc, &cpts->cc, ktime_get_real_ns());
591
592 cpts->clock = ptp_clock_register(&cpts->info, cpts->dev);
593 if (IS_ERR(cpts->clock)) {
594 err = PTR_ERR(cpts->clock);
595 cpts->clock = NULL;
596 goto err_ptp;
597 }
598 cpts->phc_index = ptp_clock_index(cpts->clock);
599
600 ptp_schedule_worker(cpts->clock, cpts->ov_check_period);
601 return 0;
602
603err_ptp:
604 clk_disable(cpts->refclk);
605 return err;
606}
607EXPORT_SYMBOL_GPL(cpts_register);
608
609void cpts_unregister(struct cpts *cpts)
610{
611 if (WARN_ON(!cpts->clock))
612 return;
613
614 ptp_clock_unregister(cpts->clock);
615 cpts->clock = NULL;
616
617 cpts_write32(cpts, 0, int_enable);
618 cpts_write32(cpts, 0, control);
619
620 /* Drop all packet */
621 skb_queue_purge(&cpts->txq);
622
623 clk_disable(cpts->refclk);
624}
625EXPORT_SYMBOL_GPL(cpts_unregister);
626
627static void cpts_calc_mult_shift(struct cpts *cpts)
628{
629 u64 frac, maxsec, ns;
630 u32 freq;
631
632 freq = clk_get_rate(cpts->refclk);
633
634 /* Calc the maximum number of seconds which we can run before
635 * wrapping around.
636 */
637 maxsec = cpts->cc.mask;
638 do_div(maxsec, freq);
639 /* limit conversation rate to 10 sec as higher values will produce
640 * too small mult factors and so reduce the conversion accuracy
641 */
642 if (maxsec > 10)
643 maxsec = 10;
644
645 /* Calc overflow check period (maxsec / 2) */
646 cpts->ov_check_period = (HZ * maxsec) / 2;
647 dev_info(cpts->dev, "cpts: overflow check period %lu (jiffies)\n",
648 cpts->ov_check_period);
649
650 if (cpts->cc.mult || cpts->cc.shift)
651 return;
652
653 clocks_calc_mult_shift(&cpts->cc.mult, &cpts->cc.shift,
654 freq, NSEC_PER_SEC, maxsec);
655
656 frac = 0;
657 ns = cyclecounter_cyc2ns(&cpts->cc, freq, cpts->cc.mask, &frac);
658
659 dev_info(cpts->dev,
660 "CPTS: ref_clk_freq:%u calc_mult:%u calc_shift:%u error:%lld nsec/sec\n",
661 freq, cpts->cc.mult, cpts->cc.shift, (ns - NSEC_PER_SEC));
662}
663
664static int cpts_of_mux_clk_setup(struct cpts *cpts, struct device_node *node)
665{
666 struct device_node *refclk_np;
667 const char **parent_names;
668 unsigned int num_parents;
669 struct clk_hw *clk_hw;
670 int ret = -EINVAL;
671 u32 *mux_table;
672
673 refclk_np = of_get_child_by_name(node, "cpts-refclk-mux");
674 if (!refclk_np)
675 /* refclk selection supported not for all SoCs */
676 return 0;
677
678 num_parents = of_clk_get_parent_count(refclk_np);
679 if (num_parents < 1) {
680 dev_err(cpts->dev, "mux-clock %s must have parents\n",
681 refclk_np->name);
682 goto mux_fail;
683 }
684
685 parent_names = devm_kzalloc(cpts->dev, (sizeof(char *) * num_parents),
686 GFP_KERNEL);
687
688 mux_table = devm_kzalloc(cpts->dev, sizeof(*mux_table) * num_parents,
689 GFP_KERNEL);
690 if (!mux_table || !parent_names) {
691 ret = -ENOMEM;
692 goto mux_fail;
693 }
694
695 of_clk_parent_fill(refclk_np, parent_names, num_parents);
696
697 ret = of_property_read_variable_u32_array(refclk_np, "ti,mux-tbl",
698 mux_table,
699 num_parents, num_parents);
700 if (ret < 0)
701 goto mux_fail;
702
703 clk_hw = clk_hw_register_mux_table(cpts->dev, refclk_np->name,
704 parent_names, num_parents,
705 0,
706 &cpts->reg->rftclk_sel, 0, 0x1F,
707 0, mux_table, NULL);
708 if (IS_ERR(clk_hw)) {
709 ret = PTR_ERR(clk_hw);
710 goto mux_fail;
711 }
712
713 ret = devm_add_action_or_reset(cpts->dev,
714 (void(*)(void *))clk_hw_unregister_mux,
715 clk_hw);
716 if (ret) {
717 dev_err(cpts->dev, "add clkmux unreg action %d", ret);
718 goto mux_fail;
719 }
720
721 ret = of_clk_add_hw_provider(refclk_np, of_clk_hw_simple_get, clk_hw);
722 if (ret)
723 goto mux_fail;
724
725 ret = devm_add_action_or_reset(cpts->dev,
726 (void(*)(void *))of_clk_del_provider,
727 refclk_np);
728 if (ret) {
729 dev_err(cpts->dev, "add clkmux provider unreg action %d", ret);
730 goto mux_fail;
731 }
732
733 return ret;
734
735mux_fail:
736 of_node_put(refclk_np);
737 return ret;
738}
739
740static int cpts_of_parse(struct cpts *cpts, struct device_node *node)
741{
742 int ret = -EINVAL;
743 u32 prop;
744
745 if (!of_property_read_u32(node, "cpts_clock_mult", &prop))
746 cpts->cc.mult = prop;
747
748 if (!of_property_read_u32(node, "cpts_clock_shift", &prop))
749 cpts->cc.shift = prop;
750
751 if ((cpts->cc.mult && !cpts->cc.shift) ||
752 (!cpts->cc.mult && cpts->cc.shift))
753 goto of_error;
754
755 return cpts_of_mux_clk_setup(cpts, node);
756
757of_error:
758 dev_err(cpts->dev, "CPTS: Missing property in the DT.\n");
759 return ret;
760}
761
762struct cpts *cpts_create(struct device *dev, void __iomem *regs,
763 struct device_node *node, u32 n_ext_ts)
764{
765 struct cpts *cpts;
766 int ret;
767
768 cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL);
769 if (!cpts)
770 return ERR_PTR(-ENOMEM);
771
772 cpts->dev = dev;
773 cpts->reg = (struct cpsw_cpts __iomem *)regs;
774 cpts->irq_poll = true;
775 spin_lock_init(&cpts->lock);
776 mutex_init(&cpts->ptp_clk_mutex);
777 init_completion(&cpts->ts_push_complete);
778
779 ret = cpts_of_parse(cpts, node);
780 if (ret)
781 return ERR_PTR(ret);
782
783 cpts->refclk = devm_get_clk_from_child(dev, node, "cpts");
784 if (IS_ERR(cpts->refclk))
785 /* try get clk from dev node for compatibility */
786 cpts->refclk = devm_clk_get(dev, "cpts");
787
788 if (IS_ERR(cpts->refclk)) {
789 dev_err(dev, "Failed to get cpts refclk %ld\n",
790 PTR_ERR(cpts->refclk));
791 return ERR_CAST(cpts->refclk);
792 }
793
794 ret = clk_prepare(cpts->refclk);
795 if (ret)
796 return ERR_PTR(ret);
797
798 cpts->cc.read = cpts_systim_read;
799 cpts->cc.mask = CLOCKSOURCE_MASK(32);
800 cpts->info = cpts_info;
801
802 if (n_ext_ts)
803 cpts->info.n_ext_ts = n_ext_ts;
804
805 cpts_calc_mult_shift(cpts);
806 /* save cc.mult original value as it can be modified
807 * by cpts_ptp_adjfreq().
808 */
809 cpts->cc_mult = cpts->cc.mult;
810
811 return cpts;
812}
813EXPORT_SYMBOL_GPL(cpts_create);
814
815void cpts_release(struct cpts *cpts)
816{
817 if (!cpts)
818 return;
819
820 if (WARN_ON(!cpts->refclk))
821 return;
822
823 clk_unprepare(cpts->refclk);
824}
825EXPORT_SYMBOL_GPL(cpts_release);
826
827MODULE_LICENSE("GPL v2");
828MODULE_DESCRIPTION("TI CPTS driver");
829MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");