Loading...
1/*
2 * Driver for the Macintosh 68K onboard MACE controller with PSC
3 * driven DMA. The MACE driver code is derived from mace.c. The
4 * Mac68k theory of operation is courtesy of the MacBSD wizards.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * Copyright (C) 1996 Paul Mackerras.
12 * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
13 *
14 * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
15 *
16 * Copyright (C) 2007 Finn Thain
17 *
18 * Converted to DMA API, converted to unified driver model,
19 * sync'd some routines with mace.c and fixed various bugs.
20 */
21
22
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/netdevice.h>
26#include <linux/etherdevice.h>
27#include <linux/delay.h>
28#include <linux/string.h>
29#include <linux/crc32.h>
30#include <linux/bitrev.h>
31#include <linux/dma-mapping.h>
32#include <linux/platform_device.h>
33#include <linux/gfp.h>
34#include <linux/interrupt.h>
35#include <asm/io.h>
36#include <asm/macints.h>
37#include <asm/mac_psc.h>
38#include <asm/page.h>
39#include "mace.h"
40
41static char mac_mace_string[] = "macmace";
42
43#define N_TX_BUFF_ORDER 0
44#define N_TX_RING (1 << N_TX_BUFF_ORDER)
45#define N_RX_BUFF_ORDER 3
46#define N_RX_RING (1 << N_RX_BUFF_ORDER)
47
48#define TX_TIMEOUT HZ
49
50#define MACE_BUFF_SIZE 0x800
51
52/* Chip rev needs workaround on HW & multicast addr change */
53#define BROKEN_ADDRCHG_REV 0x0941
54
55/* The MACE is simply wired down on a Mac68K box */
56
57#define MACE_BASE (void *)(0x50F1C000)
58#define MACE_PROM (void *)(0x50F08001)
59
60struct mace_data {
61 volatile struct mace *mace;
62 unsigned char *tx_ring;
63 dma_addr_t tx_ring_phys;
64 unsigned char *rx_ring;
65 dma_addr_t rx_ring_phys;
66 int dma_intr;
67 int rx_slot, rx_tail;
68 int tx_slot, tx_sloti, tx_count;
69 int chipid;
70 struct device *device;
71};
72
73struct mace_frame {
74 u8 rcvcnt;
75 u8 pad1;
76 u8 rcvsts;
77 u8 pad2;
78 u8 rntpc;
79 u8 pad3;
80 u8 rcvcc;
81 u8 pad4;
82 u32 pad5;
83 u32 pad6;
84 u8 data[1];
85 /* And frame continues.. */
86};
87
88#define PRIV_BYTES sizeof(struct mace_data)
89
90static int mace_open(struct net_device *dev);
91static int mace_close(struct net_device *dev);
92static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
93static void mace_set_multicast(struct net_device *dev);
94static int mace_set_address(struct net_device *dev, void *addr);
95static void mace_reset(struct net_device *dev);
96static irqreturn_t mace_interrupt(int irq, void *dev_id);
97static irqreturn_t mace_dma_intr(int irq, void *dev_id);
98static void mace_tx_timeout(struct net_device *dev);
99static void __mace_set_address(struct net_device *dev, void *addr);
100
101/*
102 * Load a receive DMA channel with a base address and ring length
103 */
104
105static void mace_load_rxdma_base(struct net_device *dev, int set)
106{
107 struct mace_data *mp = netdev_priv(dev);
108
109 psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
110 psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
111 psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
112 psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
113 mp->rx_tail = 0;
114}
115
116/*
117 * Reset the receive DMA subsystem
118 */
119
120static void mace_rxdma_reset(struct net_device *dev)
121{
122 struct mace_data *mp = netdev_priv(dev);
123 volatile struct mace *mace = mp->mace;
124 u8 maccc = mace->maccc;
125
126 mace->maccc = maccc & ~ENRCV;
127
128 psc_write_word(PSC_ENETRD_CTL, 0x8800);
129 mace_load_rxdma_base(dev, 0x00);
130 psc_write_word(PSC_ENETRD_CTL, 0x0400);
131
132 psc_write_word(PSC_ENETRD_CTL, 0x8800);
133 mace_load_rxdma_base(dev, 0x10);
134 psc_write_word(PSC_ENETRD_CTL, 0x0400);
135
136 mace->maccc = maccc;
137 mp->rx_slot = 0;
138
139 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
140 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
141}
142
143/*
144 * Reset the transmit DMA subsystem
145 */
146
147static void mace_txdma_reset(struct net_device *dev)
148{
149 struct mace_data *mp = netdev_priv(dev);
150 volatile struct mace *mace = mp->mace;
151 u8 maccc;
152
153 psc_write_word(PSC_ENETWR_CTL, 0x8800);
154
155 maccc = mace->maccc;
156 mace->maccc = maccc & ~ENXMT;
157
158 mp->tx_slot = mp->tx_sloti = 0;
159 mp->tx_count = N_TX_RING;
160
161 psc_write_word(PSC_ENETWR_CTL, 0x0400);
162 mace->maccc = maccc;
163}
164
165/*
166 * Disable DMA
167 */
168
169static void mace_dma_off(struct net_device *dev)
170{
171 psc_write_word(PSC_ENETRD_CTL, 0x8800);
172 psc_write_word(PSC_ENETRD_CTL, 0x1000);
173 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
174 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
175
176 psc_write_word(PSC_ENETWR_CTL, 0x8800);
177 psc_write_word(PSC_ENETWR_CTL, 0x1000);
178 psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
179 psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
180}
181
182static const struct net_device_ops mace_netdev_ops = {
183 .ndo_open = mace_open,
184 .ndo_stop = mace_close,
185 .ndo_start_xmit = mace_xmit_start,
186 .ndo_tx_timeout = mace_tx_timeout,
187 .ndo_set_rx_mode = mace_set_multicast,
188 .ndo_set_mac_address = mace_set_address,
189 .ndo_validate_addr = eth_validate_addr,
190};
191
192/*
193 * Not really much of a probe. The hardware table tells us if this
194 * model of Macintrash has a MACE (AV macintoshes)
195 */
196
197static int mace_probe(struct platform_device *pdev)
198{
199 int j;
200 struct mace_data *mp;
201 unsigned char *addr;
202 struct net_device *dev;
203 unsigned char checksum = 0;
204 int err;
205
206 dev = alloc_etherdev(PRIV_BYTES);
207 if (!dev)
208 return -ENOMEM;
209
210 mp = netdev_priv(dev);
211
212 mp->device = &pdev->dev;
213 platform_set_drvdata(pdev, dev);
214 SET_NETDEV_DEV(dev, &pdev->dev);
215
216 dev->base_addr = (u32)MACE_BASE;
217 mp->mace = MACE_BASE;
218
219 dev->irq = IRQ_MAC_MACE;
220 mp->dma_intr = IRQ_MAC_MACE_DMA;
221
222 mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
223
224 /*
225 * The PROM contains 8 bytes which total 0xFF when XOR'd
226 * together. Due to the usual peculiar apple brain damage
227 * the bytes are spaced out in a strange boundary and the
228 * bits are reversed.
229 */
230
231 addr = MACE_PROM;
232
233 for (j = 0; j < 6; ++j) {
234 u8 v = bitrev8(addr[j<<4]);
235 checksum ^= v;
236 dev->dev_addr[j] = v;
237 }
238 for (; j < 8; ++j) {
239 checksum ^= bitrev8(addr[j<<4]);
240 }
241
242 if (checksum != 0xFF) {
243 free_netdev(dev);
244 return -ENODEV;
245 }
246
247 dev->netdev_ops = &mace_netdev_ops;
248 dev->watchdog_timeo = TX_TIMEOUT;
249
250 pr_info("Onboard MACE, hardware address %pM, chip revision 0x%04X\n",
251 dev->dev_addr, mp->chipid);
252
253 err = register_netdev(dev);
254 if (!err)
255 return 0;
256
257 free_netdev(dev);
258 return err;
259}
260
261/*
262 * Reset the chip.
263 */
264
265static void mace_reset(struct net_device *dev)
266{
267 struct mace_data *mp = netdev_priv(dev);
268 volatile struct mace *mb = mp->mace;
269 int i;
270
271 /* soft-reset the chip */
272 i = 200;
273 while (--i) {
274 mb->biucc = SWRST;
275 if (mb->biucc & SWRST) {
276 udelay(10);
277 continue;
278 }
279 break;
280 }
281 if (!i) {
282 printk(KERN_ERR "macmace: cannot reset chip!\n");
283 return;
284 }
285
286 mb->maccc = 0; /* turn off tx, rx */
287 mb->imr = 0xFF; /* disable all intrs for now */
288 i = mb->ir;
289
290 mb->biucc = XMTSP_64;
291 mb->utr = RTRD;
292 mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
293
294 mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
295 mb->rcvfc = 0;
296
297 /* load up the hardware address */
298 __mace_set_address(dev, dev->dev_addr);
299
300 /* clear the multicast filter */
301 if (mp->chipid == BROKEN_ADDRCHG_REV)
302 mb->iac = LOGADDR;
303 else {
304 mb->iac = ADDRCHG | LOGADDR;
305 while ((mb->iac & ADDRCHG) != 0)
306 ;
307 }
308 for (i = 0; i < 8; ++i)
309 mb->ladrf = 0;
310
311 /* done changing address */
312 if (mp->chipid != BROKEN_ADDRCHG_REV)
313 mb->iac = 0;
314
315 mb->plscc = PORTSEL_AUI;
316}
317
318/*
319 * Load the address on a mace controller.
320 */
321
322static void __mace_set_address(struct net_device *dev, void *addr)
323{
324 struct mace_data *mp = netdev_priv(dev);
325 volatile struct mace *mb = mp->mace;
326 unsigned char *p = addr;
327 int i;
328
329 /* load up the hardware address */
330 if (mp->chipid == BROKEN_ADDRCHG_REV)
331 mb->iac = PHYADDR;
332 else {
333 mb->iac = ADDRCHG | PHYADDR;
334 while ((mb->iac & ADDRCHG) != 0)
335 ;
336 }
337 for (i = 0; i < 6; ++i)
338 mb->padr = dev->dev_addr[i] = p[i];
339 if (mp->chipid != BROKEN_ADDRCHG_REV)
340 mb->iac = 0;
341}
342
343static int mace_set_address(struct net_device *dev, void *addr)
344{
345 struct mace_data *mp = netdev_priv(dev);
346 volatile struct mace *mb = mp->mace;
347 unsigned long flags;
348 u8 maccc;
349
350 local_irq_save(flags);
351
352 maccc = mb->maccc;
353
354 __mace_set_address(dev, addr);
355
356 mb->maccc = maccc;
357
358 local_irq_restore(flags);
359
360 return 0;
361}
362
363/*
364 * Open the Macintosh MACE. Most of this is playing with the DMA
365 * engine. The ethernet chip is quite friendly.
366 */
367
368static int mace_open(struct net_device *dev)
369{
370 struct mace_data *mp = netdev_priv(dev);
371 volatile struct mace *mb = mp->mace;
372
373 /* reset the chip */
374 mace_reset(dev);
375
376 if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
377 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
378 return -EAGAIN;
379 }
380 if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
381 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
382 free_irq(dev->irq, dev);
383 return -EAGAIN;
384 }
385
386 /* Allocate the DMA ring buffers */
387
388 mp->tx_ring = dma_alloc_coherent(mp->device,
389 N_TX_RING * MACE_BUFF_SIZE,
390 &mp->tx_ring_phys, GFP_KERNEL);
391 if (mp->tx_ring == NULL)
392 goto out1;
393
394 mp->rx_ring = dma_alloc_coherent(mp->device,
395 N_RX_RING * MACE_BUFF_SIZE,
396 &mp->rx_ring_phys, GFP_KERNEL);
397 if (mp->rx_ring == NULL)
398 goto out2;
399
400 mace_dma_off(dev);
401
402 /* Not sure what these do */
403
404 psc_write_word(PSC_ENETWR_CTL, 0x9000);
405 psc_write_word(PSC_ENETRD_CTL, 0x9000);
406 psc_write_word(PSC_ENETWR_CTL, 0x0400);
407 psc_write_word(PSC_ENETRD_CTL, 0x0400);
408
409 mace_rxdma_reset(dev);
410 mace_txdma_reset(dev);
411
412 /* turn it on! */
413 mb->maccc = ENXMT | ENRCV;
414 /* enable all interrupts except receive interrupts */
415 mb->imr = RCVINT;
416 return 0;
417
418out2:
419 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
420 mp->tx_ring, mp->tx_ring_phys);
421out1:
422 free_irq(dev->irq, dev);
423 free_irq(mp->dma_intr, dev);
424 return -ENOMEM;
425}
426
427/*
428 * Shut down the mace and its interrupt channel
429 */
430
431static int mace_close(struct net_device *dev)
432{
433 struct mace_data *mp = netdev_priv(dev);
434 volatile struct mace *mb = mp->mace;
435
436 mb->maccc = 0; /* disable rx and tx */
437 mb->imr = 0xFF; /* disable all irqs */
438 mace_dma_off(dev); /* disable rx and tx dma */
439
440 return 0;
441}
442
443/*
444 * Transmit a frame
445 */
446
447static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
448{
449 struct mace_data *mp = netdev_priv(dev);
450 unsigned long flags;
451
452 /* Stop the queue since there's only the one buffer */
453
454 local_irq_save(flags);
455 netif_stop_queue(dev);
456 if (!mp->tx_count) {
457 printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
458 local_irq_restore(flags);
459 return NETDEV_TX_BUSY;
460 }
461 mp->tx_count--;
462 local_irq_restore(flags);
463
464 dev->stats.tx_packets++;
465 dev->stats.tx_bytes += skb->len;
466
467 /* We need to copy into our xmit buffer to take care of alignment and caching issues */
468 skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
469
470 /* load the Tx DMA and fire it off */
471
472 psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
473 psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
474 psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
475
476 mp->tx_slot ^= 0x10;
477
478 dev_kfree_skb(skb);
479
480 return NETDEV_TX_OK;
481}
482
483static void mace_set_multicast(struct net_device *dev)
484{
485 struct mace_data *mp = netdev_priv(dev);
486 volatile struct mace *mb = mp->mace;
487 int i;
488 u32 crc;
489 u8 maccc;
490 unsigned long flags;
491
492 local_irq_save(flags);
493 maccc = mb->maccc;
494 mb->maccc &= ~PROM;
495
496 if (dev->flags & IFF_PROMISC) {
497 mb->maccc |= PROM;
498 } else {
499 unsigned char multicast_filter[8];
500 struct netdev_hw_addr *ha;
501
502 if (dev->flags & IFF_ALLMULTI) {
503 for (i = 0; i < 8; i++) {
504 multicast_filter[i] = 0xFF;
505 }
506 } else {
507 for (i = 0; i < 8; i++)
508 multicast_filter[i] = 0;
509 netdev_for_each_mc_addr(ha, dev) {
510 crc = ether_crc_le(6, ha->addr);
511 /* bit number in multicast_filter */
512 i = crc >> 26;
513 multicast_filter[i >> 3] |= 1 << (i & 7);
514 }
515 }
516
517 if (mp->chipid == BROKEN_ADDRCHG_REV)
518 mb->iac = LOGADDR;
519 else {
520 mb->iac = ADDRCHG | LOGADDR;
521 while ((mb->iac & ADDRCHG) != 0)
522 ;
523 }
524 for (i = 0; i < 8; ++i)
525 mb->ladrf = multicast_filter[i];
526 if (mp->chipid != BROKEN_ADDRCHG_REV)
527 mb->iac = 0;
528 }
529
530 mb->maccc = maccc;
531 local_irq_restore(flags);
532}
533
534static void mace_handle_misc_intrs(struct net_device *dev, int intr)
535{
536 struct mace_data *mp = netdev_priv(dev);
537 volatile struct mace *mb = mp->mace;
538 static int mace_babbles, mace_jabbers;
539
540 if (intr & MPCO)
541 dev->stats.rx_missed_errors += 256;
542 dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */
543 if (intr & RNTPCO)
544 dev->stats.rx_length_errors += 256;
545 dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
546 if (intr & CERR)
547 ++dev->stats.tx_heartbeat_errors;
548 if (intr & BABBLE)
549 if (mace_babbles++ < 4)
550 printk(KERN_DEBUG "macmace: babbling transmitter\n");
551 if (intr & JABBER)
552 if (mace_jabbers++ < 4)
553 printk(KERN_DEBUG "macmace: jabbering transceiver\n");
554}
555
556static irqreturn_t mace_interrupt(int irq, void *dev_id)
557{
558 struct net_device *dev = (struct net_device *) dev_id;
559 struct mace_data *mp = netdev_priv(dev);
560 volatile struct mace *mb = mp->mace;
561 int intr, fs;
562 unsigned long flags;
563
564 /* don't want the dma interrupt handler to fire */
565 local_irq_save(flags);
566
567 intr = mb->ir; /* read interrupt register */
568 mace_handle_misc_intrs(dev, intr);
569
570 if (intr & XMTINT) {
571 fs = mb->xmtfs;
572 if ((fs & XMTSV) == 0) {
573 printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
574 mace_reset(dev);
575 /*
576 * XXX mace likes to hang the machine after a xmtfs error.
577 * This is hard to reproduce, resetting *may* help
578 */
579 }
580 /* dma should have finished */
581 if (!mp->tx_count) {
582 printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
583 }
584 /* Update stats */
585 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
586 ++dev->stats.tx_errors;
587 if (fs & LCAR)
588 ++dev->stats.tx_carrier_errors;
589 else if (fs & (UFLO|LCOL|RTRY)) {
590 ++dev->stats.tx_aborted_errors;
591 if (mb->xmtfs & UFLO) {
592 dev->stats.tx_fifo_errors++;
593 mace_txdma_reset(dev);
594 }
595 }
596 }
597 }
598
599 if (mp->tx_count)
600 netif_wake_queue(dev);
601
602 local_irq_restore(flags);
603
604 return IRQ_HANDLED;
605}
606
607static void mace_tx_timeout(struct net_device *dev)
608{
609 struct mace_data *mp = netdev_priv(dev);
610 volatile struct mace *mb = mp->mace;
611 unsigned long flags;
612
613 local_irq_save(flags);
614
615 /* turn off both tx and rx and reset the chip */
616 mb->maccc = 0;
617 printk(KERN_ERR "macmace: transmit timeout - resetting\n");
618 mace_txdma_reset(dev);
619 mace_reset(dev);
620
621 /* restart rx dma */
622 mace_rxdma_reset(dev);
623
624 mp->tx_count = N_TX_RING;
625 netif_wake_queue(dev);
626
627 /* turn it on! */
628 mb->maccc = ENXMT | ENRCV;
629 /* enable all interrupts except receive interrupts */
630 mb->imr = RCVINT;
631
632 local_irq_restore(flags);
633}
634
635/*
636 * Handle a newly arrived frame
637 */
638
639static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
640{
641 struct sk_buff *skb;
642 unsigned int frame_status = mf->rcvsts;
643
644 if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
645 dev->stats.rx_errors++;
646 if (frame_status & RS_OFLO)
647 dev->stats.rx_fifo_errors++;
648 if (frame_status & RS_CLSN)
649 dev->stats.collisions++;
650 if (frame_status & RS_FRAMERR)
651 dev->stats.rx_frame_errors++;
652 if (frame_status & RS_FCSERR)
653 dev->stats.rx_crc_errors++;
654 } else {
655 unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
656
657 skb = netdev_alloc_skb(dev, frame_length + 2);
658 if (!skb) {
659 dev->stats.rx_dropped++;
660 return;
661 }
662 skb_reserve(skb, 2);
663 skb_put_data(skb, mf->data, frame_length);
664
665 skb->protocol = eth_type_trans(skb, dev);
666 netif_rx(skb);
667 dev->stats.rx_packets++;
668 dev->stats.rx_bytes += frame_length;
669 }
670}
671
672/*
673 * The PSC has passed us a DMA interrupt event.
674 */
675
676static irqreturn_t mace_dma_intr(int irq, void *dev_id)
677{
678 struct net_device *dev = (struct net_device *) dev_id;
679 struct mace_data *mp = netdev_priv(dev);
680 int left, head;
681 u16 status;
682 u32 baka;
683
684 /* Not sure what this does */
685
686 while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
687 if (!(baka & 0x60000000)) return IRQ_NONE;
688
689 /*
690 * Process the read queue
691 */
692
693 status = psc_read_word(PSC_ENETRD_CTL);
694
695 if (status & 0x2000) {
696 mace_rxdma_reset(dev);
697 } else if (status & 0x0100) {
698 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
699
700 left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
701 head = N_RX_RING - left;
702
703 /* Loop through the ring buffer and process new packages */
704
705 while (mp->rx_tail < head) {
706 mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
707 + (mp->rx_tail * MACE_BUFF_SIZE)));
708 mp->rx_tail++;
709 }
710
711 /* If we're out of buffers in this ring then switch to */
712 /* the other set, otherwise just reactivate this one. */
713
714 if (!left) {
715 mace_load_rxdma_base(dev, mp->rx_slot);
716 mp->rx_slot ^= 0x10;
717 } else {
718 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
719 }
720 }
721
722 /*
723 * Process the write queue
724 */
725
726 status = psc_read_word(PSC_ENETWR_CTL);
727
728 if (status & 0x2000) {
729 mace_txdma_reset(dev);
730 } else if (status & 0x0100) {
731 psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
732 mp->tx_sloti ^= 0x10;
733 mp->tx_count++;
734 }
735 return IRQ_HANDLED;
736}
737
738MODULE_LICENSE("GPL");
739MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
740MODULE_ALIAS("platform:macmace");
741
742static int mac_mace_device_remove(struct platform_device *pdev)
743{
744 struct net_device *dev = platform_get_drvdata(pdev);
745 struct mace_data *mp = netdev_priv(dev);
746
747 unregister_netdev(dev);
748
749 free_irq(dev->irq, dev);
750 free_irq(IRQ_MAC_MACE_DMA, dev);
751
752 dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
753 mp->rx_ring, mp->rx_ring_phys);
754 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
755 mp->tx_ring, mp->tx_ring_phys);
756
757 free_netdev(dev);
758
759 return 0;
760}
761
762static struct platform_driver mac_mace_driver = {
763 .probe = mace_probe,
764 .remove = mac_mace_device_remove,
765 .driver = {
766 .name = mac_mace_string,
767 },
768};
769
770module_platform_driver(mac_mace_driver);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for the Macintosh 68K onboard MACE controller with PSC
4 * driven DMA. The MACE driver code is derived from mace.c. The
5 * Mac68k theory of operation is courtesy of the MacBSD wizards.
6 *
7 * Copyright (C) 1996 Paul Mackerras.
8 * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
9 *
10 * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
11 *
12 * Copyright (C) 2007 Finn Thain
13 *
14 * Converted to DMA API, converted to unified driver model,
15 * sync'd some routines with mace.c and fixed various bugs.
16 */
17
18
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/netdevice.h>
22#include <linux/etherdevice.h>
23#include <linux/delay.h>
24#include <linux/string.h>
25#include <linux/crc32.h>
26#include <linux/bitrev.h>
27#include <linux/dma-mapping.h>
28#include <linux/platform_device.h>
29#include <linux/gfp.h>
30#include <linux/interrupt.h>
31#include <asm/io.h>
32#include <asm/macints.h>
33#include <asm/mac_psc.h>
34#include <asm/page.h>
35#include "mace.h"
36
37static char mac_mace_string[] = "macmace";
38
39#define N_TX_BUFF_ORDER 0
40#define N_TX_RING (1 << N_TX_BUFF_ORDER)
41#define N_RX_BUFF_ORDER 3
42#define N_RX_RING (1 << N_RX_BUFF_ORDER)
43
44#define TX_TIMEOUT HZ
45
46#define MACE_BUFF_SIZE 0x800
47
48/* Chip rev needs workaround on HW & multicast addr change */
49#define BROKEN_ADDRCHG_REV 0x0941
50
51/* The MACE is simply wired down on a Mac68K box */
52
53#define MACE_BASE (void *)(0x50F1C000)
54#define MACE_PROM (void *)(0x50F08001)
55
56struct mace_data {
57 volatile struct mace *mace;
58 unsigned char *tx_ring;
59 dma_addr_t tx_ring_phys;
60 unsigned char *rx_ring;
61 dma_addr_t rx_ring_phys;
62 int dma_intr;
63 int rx_slot, rx_tail;
64 int tx_slot, tx_sloti, tx_count;
65 int chipid;
66 struct device *device;
67};
68
69struct mace_frame {
70 u8 rcvcnt;
71 u8 pad1;
72 u8 rcvsts;
73 u8 pad2;
74 u8 rntpc;
75 u8 pad3;
76 u8 rcvcc;
77 u8 pad4;
78 u32 pad5;
79 u32 pad6;
80 u8 data[1];
81 /* And frame continues.. */
82};
83
84#define PRIV_BYTES sizeof(struct mace_data)
85
86static int mace_open(struct net_device *dev);
87static int mace_close(struct net_device *dev);
88static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
89static void mace_set_multicast(struct net_device *dev);
90static int mace_set_address(struct net_device *dev, void *addr);
91static void mace_reset(struct net_device *dev);
92static irqreturn_t mace_interrupt(int irq, void *dev_id);
93static irqreturn_t mace_dma_intr(int irq, void *dev_id);
94static void mace_tx_timeout(struct net_device *dev, unsigned int txqueue);
95static void __mace_set_address(struct net_device *dev, void *addr);
96
97/*
98 * Load a receive DMA channel with a base address and ring length
99 */
100
101static void mace_load_rxdma_base(struct net_device *dev, int set)
102{
103 struct mace_data *mp = netdev_priv(dev);
104
105 psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
106 psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
107 psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
108 psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
109 mp->rx_tail = 0;
110}
111
112/*
113 * Reset the receive DMA subsystem
114 */
115
116static void mace_rxdma_reset(struct net_device *dev)
117{
118 struct mace_data *mp = netdev_priv(dev);
119 volatile struct mace *mace = mp->mace;
120 u8 maccc = mace->maccc;
121
122 mace->maccc = maccc & ~ENRCV;
123
124 psc_write_word(PSC_ENETRD_CTL, 0x8800);
125 mace_load_rxdma_base(dev, 0x00);
126 psc_write_word(PSC_ENETRD_CTL, 0x0400);
127
128 psc_write_word(PSC_ENETRD_CTL, 0x8800);
129 mace_load_rxdma_base(dev, 0x10);
130 psc_write_word(PSC_ENETRD_CTL, 0x0400);
131
132 mace->maccc = maccc;
133 mp->rx_slot = 0;
134
135 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
136 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
137}
138
139/*
140 * Reset the transmit DMA subsystem
141 */
142
143static void mace_txdma_reset(struct net_device *dev)
144{
145 struct mace_data *mp = netdev_priv(dev);
146 volatile struct mace *mace = mp->mace;
147 u8 maccc;
148
149 psc_write_word(PSC_ENETWR_CTL, 0x8800);
150
151 maccc = mace->maccc;
152 mace->maccc = maccc & ~ENXMT;
153
154 mp->tx_slot = mp->tx_sloti = 0;
155 mp->tx_count = N_TX_RING;
156
157 psc_write_word(PSC_ENETWR_CTL, 0x0400);
158 mace->maccc = maccc;
159}
160
161/*
162 * Disable DMA
163 */
164
165static void mace_dma_off(struct net_device *dev)
166{
167 psc_write_word(PSC_ENETRD_CTL, 0x8800);
168 psc_write_word(PSC_ENETRD_CTL, 0x1000);
169 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
170 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
171
172 psc_write_word(PSC_ENETWR_CTL, 0x8800);
173 psc_write_word(PSC_ENETWR_CTL, 0x1000);
174 psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
175 psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
176}
177
178static const struct net_device_ops mace_netdev_ops = {
179 .ndo_open = mace_open,
180 .ndo_stop = mace_close,
181 .ndo_start_xmit = mace_xmit_start,
182 .ndo_tx_timeout = mace_tx_timeout,
183 .ndo_set_rx_mode = mace_set_multicast,
184 .ndo_set_mac_address = mace_set_address,
185 .ndo_validate_addr = eth_validate_addr,
186};
187
188/*
189 * Not really much of a probe. The hardware table tells us if this
190 * model of Macintrash has a MACE (AV macintoshes)
191 */
192
193static int mace_probe(struct platform_device *pdev)
194{
195 int j;
196 struct mace_data *mp;
197 unsigned char *addr;
198 struct net_device *dev;
199 unsigned char checksum = 0;
200 int err;
201
202 dev = alloc_etherdev(PRIV_BYTES);
203 if (!dev)
204 return -ENOMEM;
205
206 mp = netdev_priv(dev);
207
208 mp->device = &pdev->dev;
209 platform_set_drvdata(pdev, dev);
210 SET_NETDEV_DEV(dev, &pdev->dev);
211
212 dev->base_addr = (u32)MACE_BASE;
213 mp->mace = MACE_BASE;
214
215 dev->irq = IRQ_MAC_MACE;
216 mp->dma_intr = IRQ_MAC_MACE_DMA;
217
218 mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
219
220 /*
221 * The PROM contains 8 bytes which total 0xFF when XOR'd
222 * together. Due to the usual peculiar apple brain damage
223 * the bytes are spaced out in a strange boundary and the
224 * bits are reversed.
225 */
226
227 addr = MACE_PROM;
228
229 for (j = 0; j < 6; ++j) {
230 u8 v = bitrev8(addr[j<<4]);
231 checksum ^= v;
232 dev->dev_addr[j] = v;
233 }
234 for (; j < 8; ++j) {
235 checksum ^= bitrev8(addr[j<<4]);
236 }
237
238 if (checksum != 0xFF) {
239 free_netdev(dev);
240 return -ENODEV;
241 }
242
243 dev->netdev_ops = &mace_netdev_ops;
244 dev->watchdog_timeo = TX_TIMEOUT;
245
246 pr_info("Onboard MACE, hardware address %pM, chip revision 0x%04X\n",
247 dev->dev_addr, mp->chipid);
248
249 err = register_netdev(dev);
250 if (!err)
251 return 0;
252
253 free_netdev(dev);
254 return err;
255}
256
257/*
258 * Reset the chip.
259 */
260
261static void mace_reset(struct net_device *dev)
262{
263 struct mace_data *mp = netdev_priv(dev);
264 volatile struct mace *mb = mp->mace;
265 int i;
266
267 /* soft-reset the chip */
268 i = 200;
269 while (--i) {
270 mb->biucc = SWRST;
271 if (mb->biucc & SWRST) {
272 udelay(10);
273 continue;
274 }
275 break;
276 }
277 if (!i) {
278 printk(KERN_ERR "macmace: cannot reset chip!\n");
279 return;
280 }
281
282 mb->maccc = 0; /* turn off tx, rx */
283 mb->imr = 0xFF; /* disable all intrs for now */
284 i = mb->ir;
285
286 mb->biucc = XMTSP_64;
287 mb->utr = RTRD;
288 mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
289
290 mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
291 mb->rcvfc = 0;
292
293 /* load up the hardware address */
294 __mace_set_address(dev, dev->dev_addr);
295
296 /* clear the multicast filter */
297 if (mp->chipid == BROKEN_ADDRCHG_REV)
298 mb->iac = LOGADDR;
299 else {
300 mb->iac = ADDRCHG | LOGADDR;
301 while ((mb->iac & ADDRCHG) != 0)
302 ;
303 }
304 for (i = 0; i < 8; ++i)
305 mb->ladrf = 0;
306
307 /* done changing address */
308 if (mp->chipid != BROKEN_ADDRCHG_REV)
309 mb->iac = 0;
310
311 mb->plscc = PORTSEL_AUI;
312}
313
314/*
315 * Load the address on a mace controller.
316 */
317
318static void __mace_set_address(struct net_device *dev, void *addr)
319{
320 struct mace_data *mp = netdev_priv(dev);
321 volatile struct mace *mb = mp->mace;
322 unsigned char *p = addr;
323 int i;
324
325 /* load up the hardware address */
326 if (mp->chipid == BROKEN_ADDRCHG_REV)
327 mb->iac = PHYADDR;
328 else {
329 mb->iac = ADDRCHG | PHYADDR;
330 while ((mb->iac & ADDRCHG) != 0)
331 ;
332 }
333 for (i = 0; i < 6; ++i)
334 mb->padr = dev->dev_addr[i] = p[i];
335 if (mp->chipid != BROKEN_ADDRCHG_REV)
336 mb->iac = 0;
337}
338
339static int mace_set_address(struct net_device *dev, void *addr)
340{
341 struct mace_data *mp = netdev_priv(dev);
342 volatile struct mace *mb = mp->mace;
343 unsigned long flags;
344 u8 maccc;
345
346 local_irq_save(flags);
347
348 maccc = mb->maccc;
349
350 __mace_set_address(dev, addr);
351
352 mb->maccc = maccc;
353
354 local_irq_restore(flags);
355
356 return 0;
357}
358
359/*
360 * Open the Macintosh MACE. Most of this is playing with the DMA
361 * engine. The ethernet chip is quite friendly.
362 */
363
364static int mace_open(struct net_device *dev)
365{
366 struct mace_data *mp = netdev_priv(dev);
367 volatile struct mace *mb = mp->mace;
368
369 /* reset the chip */
370 mace_reset(dev);
371
372 if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
373 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
374 return -EAGAIN;
375 }
376 if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
377 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
378 free_irq(dev->irq, dev);
379 return -EAGAIN;
380 }
381
382 /* Allocate the DMA ring buffers */
383
384 mp->tx_ring = dma_alloc_coherent(mp->device,
385 N_TX_RING * MACE_BUFF_SIZE,
386 &mp->tx_ring_phys, GFP_KERNEL);
387 if (mp->tx_ring == NULL)
388 goto out1;
389
390 mp->rx_ring = dma_alloc_coherent(mp->device,
391 N_RX_RING * MACE_BUFF_SIZE,
392 &mp->rx_ring_phys, GFP_KERNEL);
393 if (mp->rx_ring == NULL)
394 goto out2;
395
396 mace_dma_off(dev);
397
398 /* Not sure what these do */
399
400 psc_write_word(PSC_ENETWR_CTL, 0x9000);
401 psc_write_word(PSC_ENETRD_CTL, 0x9000);
402 psc_write_word(PSC_ENETWR_CTL, 0x0400);
403 psc_write_word(PSC_ENETRD_CTL, 0x0400);
404
405 mace_rxdma_reset(dev);
406 mace_txdma_reset(dev);
407
408 /* turn it on! */
409 mb->maccc = ENXMT | ENRCV;
410 /* enable all interrupts except receive interrupts */
411 mb->imr = RCVINT;
412 return 0;
413
414out2:
415 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
416 mp->tx_ring, mp->tx_ring_phys);
417out1:
418 free_irq(dev->irq, dev);
419 free_irq(mp->dma_intr, dev);
420 return -ENOMEM;
421}
422
423/*
424 * Shut down the mace and its interrupt channel
425 */
426
427static int mace_close(struct net_device *dev)
428{
429 struct mace_data *mp = netdev_priv(dev);
430 volatile struct mace *mb = mp->mace;
431
432 mb->maccc = 0; /* disable rx and tx */
433 mb->imr = 0xFF; /* disable all irqs */
434 mace_dma_off(dev); /* disable rx and tx dma */
435
436 return 0;
437}
438
439/*
440 * Transmit a frame
441 */
442
443static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
444{
445 struct mace_data *mp = netdev_priv(dev);
446 unsigned long flags;
447
448 /* Stop the queue since there's only the one buffer */
449
450 local_irq_save(flags);
451 netif_stop_queue(dev);
452 if (!mp->tx_count) {
453 printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
454 local_irq_restore(flags);
455 return NETDEV_TX_BUSY;
456 }
457 mp->tx_count--;
458 local_irq_restore(flags);
459
460 dev->stats.tx_packets++;
461 dev->stats.tx_bytes += skb->len;
462
463 /* We need to copy into our xmit buffer to take care of alignment and caching issues */
464 skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
465
466 /* load the Tx DMA and fire it off */
467
468 psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
469 psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
470 psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
471
472 mp->tx_slot ^= 0x10;
473
474 dev_kfree_skb(skb);
475
476 return NETDEV_TX_OK;
477}
478
479static void mace_set_multicast(struct net_device *dev)
480{
481 struct mace_data *mp = netdev_priv(dev);
482 volatile struct mace *mb = mp->mace;
483 int i;
484 u32 crc;
485 u8 maccc;
486 unsigned long flags;
487
488 local_irq_save(flags);
489 maccc = mb->maccc;
490 mb->maccc &= ~PROM;
491
492 if (dev->flags & IFF_PROMISC) {
493 mb->maccc |= PROM;
494 } else {
495 unsigned char multicast_filter[8];
496 struct netdev_hw_addr *ha;
497
498 if (dev->flags & IFF_ALLMULTI) {
499 for (i = 0; i < 8; i++) {
500 multicast_filter[i] = 0xFF;
501 }
502 } else {
503 for (i = 0; i < 8; i++)
504 multicast_filter[i] = 0;
505 netdev_for_each_mc_addr(ha, dev) {
506 crc = ether_crc_le(6, ha->addr);
507 /* bit number in multicast_filter */
508 i = crc >> 26;
509 multicast_filter[i >> 3] |= 1 << (i & 7);
510 }
511 }
512
513 if (mp->chipid == BROKEN_ADDRCHG_REV)
514 mb->iac = LOGADDR;
515 else {
516 mb->iac = ADDRCHG | LOGADDR;
517 while ((mb->iac & ADDRCHG) != 0)
518 ;
519 }
520 for (i = 0; i < 8; ++i)
521 mb->ladrf = multicast_filter[i];
522 if (mp->chipid != BROKEN_ADDRCHG_REV)
523 mb->iac = 0;
524 }
525
526 mb->maccc = maccc;
527 local_irq_restore(flags);
528}
529
530static void mace_handle_misc_intrs(struct net_device *dev, int intr)
531{
532 struct mace_data *mp = netdev_priv(dev);
533 volatile struct mace *mb = mp->mace;
534 static int mace_babbles, mace_jabbers;
535
536 if (intr & MPCO)
537 dev->stats.rx_missed_errors += 256;
538 dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */
539 if (intr & RNTPCO)
540 dev->stats.rx_length_errors += 256;
541 dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
542 if (intr & CERR)
543 ++dev->stats.tx_heartbeat_errors;
544 if (intr & BABBLE)
545 if (mace_babbles++ < 4)
546 printk(KERN_DEBUG "macmace: babbling transmitter\n");
547 if (intr & JABBER)
548 if (mace_jabbers++ < 4)
549 printk(KERN_DEBUG "macmace: jabbering transceiver\n");
550}
551
552static irqreturn_t mace_interrupt(int irq, void *dev_id)
553{
554 struct net_device *dev = (struct net_device *) dev_id;
555 struct mace_data *mp = netdev_priv(dev);
556 volatile struct mace *mb = mp->mace;
557 int intr, fs;
558 unsigned long flags;
559
560 /* don't want the dma interrupt handler to fire */
561 local_irq_save(flags);
562
563 intr = mb->ir; /* read interrupt register */
564 mace_handle_misc_intrs(dev, intr);
565
566 if (intr & XMTINT) {
567 fs = mb->xmtfs;
568 if ((fs & XMTSV) == 0) {
569 printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
570 mace_reset(dev);
571 /*
572 * XXX mace likes to hang the machine after a xmtfs error.
573 * This is hard to reproduce, resetting *may* help
574 */
575 }
576 /* dma should have finished */
577 if (!mp->tx_count) {
578 printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
579 }
580 /* Update stats */
581 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
582 ++dev->stats.tx_errors;
583 if (fs & LCAR)
584 ++dev->stats.tx_carrier_errors;
585 else if (fs & (UFLO|LCOL|RTRY)) {
586 ++dev->stats.tx_aborted_errors;
587 if (mb->xmtfs & UFLO) {
588 dev->stats.tx_fifo_errors++;
589 mace_txdma_reset(dev);
590 }
591 }
592 }
593 }
594
595 if (mp->tx_count)
596 netif_wake_queue(dev);
597
598 local_irq_restore(flags);
599
600 return IRQ_HANDLED;
601}
602
603static void mace_tx_timeout(struct net_device *dev, unsigned int txqueue)
604{
605 struct mace_data *mp = netdev_priv(dev);
606 volatile struct mace *mb = mp->mace;
607 unsigned long flags;
608
609 local_irq_save(flags);
610
611 /* turn off both tx and rx and reset the chip */
612 mb->maccc = 0;
613 printk(KERN_ERR "macmace: transmit timeout - resetting\n");
614 mace_txdma_reset(dev);
615 mace_reset(dev);
616
617 /* restart rx dma */
618 mace_rxdma_reset(dev);
619
620 mp->tx_count = N_TX_RING;
621 netif_wake_queue(dev);
622
623 /* turn it on! */
624 mb->maccc = ENXMT | ENRCV;
625 /* enable all interrupts except receive interrupts */
626 mb->imr = RCVINT;
627
628 local_irq_restore(flags);
629}
630
631/*
632 * Handle a newly arrived frame
633 */
634
635static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
636{
637 struct sk_buff *skb;
638 unsigned int frame_status = mf->rcvsts;
639
640 if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
641 dev->stats.rx_errors++;
642 if (frame_status & RS_OFLO)
643 dev->stats.rx_fifo_errors++;
644 if (frame_status & RS_CLSN)
645 dev->stats.collisions++;
646 if (frame_status & RS_FRAMERR)
647 dev->stats.rx_frame_errors++;
648 if (frame_status & RS_FCSERR)
649 dev->stats.rx_crc_errors++;
650 } else {
651 unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
652
653 skb = netdev_alloc_skb(dev, frame_length + 2);
654 if (!skb) {
655 dev->stats.rx_dropped++;
656 return;
657 }
658 skb_reserve(skb, 2);
659 skb_put_data(skb, mf->data, frame_length);
660
661 skb->protocol = eth_type_trans(skb, dev);
662 netif_rx(skb);
663 dev->stats.rx_packets++;
664 dev->stats.rx_bytes += frame_length;
665 }
666}
667
668/*
669 * The PSC has passed us a DMA interrupt event.
670 */
671
672static irqreturn_t mace_dma_intr(int irq, void *dev_id)
673{
674 struct net_device *dev = (struct net_device *) dev_id;
675 struct mace_data *mp = netdev_priv(dev);
676 int left, head;
677 u16 status;
678 u32 baka;
679
680 /* Not sure what this does */
681
682 while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
683 if (!(baka & 0x60000000)) return IRQ_NONE;
684
685 /*
686 * Process the read queue
687 */
688
689 status = psc_read_word(PSC_ENETRD_CTL);
690
691 if (status & 0x2000) {
692 mace_rxdma_reset(dev);
693 } else if (status & 0x0100) {
694 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
695
696 left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
697 head = N_RX_RING - left;
698
699 /* Loop through the ring buffer and process new packages */
700
701 while (mp->rx_tail < head) {
702 mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
703 + (mp->rx_tail * MACE_BUFF_SIZE)));
704 mp->rx_tail++;
705 }
706
707 /* If we're out of buffers in this ring then switch to */
708 /* the other set, otherwise just reactivate this one. */
709
710 if (!left) {
711 mace_load_rxdma_base(dev, mp->rx_slot);
712 mp->rx_slot ^= 0x10;
713 } else {
714 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
715 }
716 }
717
718 /*
719 * Process the write queue
720 */
721
722 status = psc_read_word(PSC_ENETWR_CTL);
723
724 if (status & 0x2000) {
725 mace_txdma_reset(dev);
726 } else if (status & 0x0100) {
727 psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
728 mp->tx_sloti ^= 0x10;
729 mp->tx_count++;
730 }
731 return IRQ_HANDLED;
732}
733
734MODULE_LICENSE("GPL");
735MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
736MODULE_ALIAS("platform:macmace");
737
738static int mac_mace_device_remove(struct platform_device *pdev)
739{
740 struct net_device *dev = platform_get_drvdata(pdev);
741 struct mace_data *mp = netdev_priv(dev);
742
743 unregister_netdev(dev);
744
745 free_irq(dev->irq, dev);
746 free_irq(IRQ_MAC_MACE_DMA, dev);
747
748 dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
749 mp->rx_ring, mp->rx_ring_phys);
750 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
751 mp->tx_ring, mp->tx_ring_phys);
752
753 free_netdev(dev);
754
755 return 0;
756}
757
758static struct platform_driver mac_mace_driver = {
759 .probe = mace_probe,
760 .remove = mac_mace_device_remove,
761 .driver = {
762 .name = mac_mace_string,
763 },
764};
765
766module_platform_driver(mac_mace_driver);