Loading...
1/*
2 * CAN bus driver for Bosch M_CAN controller
3 *
4 * Copyright (C) 2014 Freescale Semiconductor, Inc.
5 * Dong Aisheng <b29396@freescale.com>
6 *
7 * Bosch M_CAN user manual can be obtained from:
8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9 * mcan_users_manual_v302.pdf
10 *
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
14 */
15
16#include <linux/clk.h>
17#include <linux/delay.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/netdevice.h>
23#include <linux/of.h>
24#include <linux/of_device.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/iopoll.h>
28#include <linux/can/dev.h>
29#include <linux/pinctrl/consumer.h>
30
31/* napi related */
32#define M_CAN_NAPI_WEIGHT 64
33
34/* message ram configuration data length */
35#define MRAM_CFG_LEN 8
36
37/* registers definition */
38enum m_can_reg {
39 M_CAN_CREL = 0x0,
40 M_CAN_ENDN = 0x4,
41 M_CAN_CUST = 0x8,
42 M_CAN_DBTP = 0xc,
43 M_CAN_TEST = 0x10,
44 M_CAN_RWD = 0x14,
45 M_CAN_CCCR = 0x18,
46 M_CAN_NBTP = 0x1c,
47 M_CAN_TSCC = 0x20,
48 M_CAN_TSCV = 0x24,
49 M_CAN_TOCC = 0x28,
50 M_CAN_TOCV = 0x2c,
51 M_CAN_ECR = 0x40,
52 M_CAN_PSR = 0x44,
53/* TDCR Register only available for version >=3.1.x */
54 M_CAN_TDCR = 0x48,
55 M_CAN_IR = 0x50,
56 M_CAN_IE = 0x54,
57 M_CAN_ILS = 0x58,
58 M_CAN_ILE = 0x5c,
59 M_CAN_GFC = 0x80,
60 M_CAN_SIDFC = 0x84,
61 M_CAN_XIDFC = 0x88,
62 M_CAN_XIDAM = 0x90,
63 M_CAN_HPMS = 0x94,
64 M_CAN_NDAT1 = 0x98,
65 M_CAN_NDAT2 = 0x9c,
66 M_CAN_RXF0C = 0xa0,
67 M_CAN_RXF0S = 0xa4,
68 M_CAN_RXF0A = 0xa8,
69 M_CAN_RXBC = 0xac,
70 M_CAN_RXF1C = 0xb0,
71 M_CAN_RXF1S = 0xb4,
72 M_CAN_RXF1A = 0xb8,
73 M_CAN_RXESC = 0xbc,
74 M_CAN_TXBC = 0xc0,
75 M_CAN_TXFQS = 0xc4,
76 M_CAN_TXESC = 0xc8,
77 M_CAN_TXBRP = 0xcc,
78 M_CAN_TXBAR = 0xd0,
79 M_CAN_TXBCR = 0xd4,
80 M_CAN_TXBTO = 0xd8,
81 M_CAN_TXBCF = 0xdc,
82 M_CAN_TXBTIE = 0xe0,
83 M_CAN_TXBCIE = 0xe4,
84 M_CAN_TXEFC = 0xf0,
85 M_CAN_TXEFS = 0xf4,
86 M_CAN_TXEFA = 0xf8,
87};
88
89/* m_can lec values */
90enum m_can_lec_type {
91 LEC_NO_ERROR = 0,
92 LEC_STUFF_ERROR,
93 LEC_FORM_ERROR,
94 LEC_ACK_ERROR,
95 LEC_BIT1_ERROR,
96 LEC_BIT0_ERROR,
97 LEC_CRC_ERROR,
98 LEC_UNUSED,
99};
100
101enum m_can_mram_cfg {
102 MRAM_SIDF = 0,
103 MRAM_XIDF,
104 MRAM_RXF0,
105 MRAM_RXF1,
106 MRAM_RXB,
107 MRAM_TXE,
108 MRAM_TXB,
109 MRAM_CFG_NUM,
110};
111
112/* Core Release Register (CREL) */
113#define CREL_REL_SHIFT 28
114#define CREL_REL_MASK (0xF << CREL_REL_SHIFT)
115#define CREL_STEP_SHIFT 24
116#define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT)
117#define CREL_SUBSTEP_SHIFT 20
118#define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT)
119
120/* Data Bit Timing & Prescaler Register (DBTP) */
121#define DBTP_TDC BIT(23)
122#define DBTP_DBRP_SHIFT 16
123#define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT)
124#define DBTP_DTSEG1_SHIFT 8
125#define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT)
126#define DBTP_DTSEG2_SHIFT 4
127#define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT)
128#define DBTP_DSJW_SHIFT 0
129#define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT)
130
131/* Transmitter Delay Compensation Register (TDCR) */
132#define TDCR_TDCO_SHIFT 8
133#define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT)
134#define TDCR_TDCF_SHIFT 0
135#define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT)
136
137/* Test Register (TEST) */
138#define TEST_LBCK BIT(4)
139
140/* CC Control Register(CCCR) */
141#define CCCR_CMR_MASK 0x3
142#define CCCR_CMR_SHIFT 10
143#define CCCR_CMR_CANFD 0x1
144#define CCCR_CMR_CANFD_BRS 0x2
145#define CCCR_CMR_CAN 0x3
146#define CCCR_CME_MASK 0x3
147#define CCCR_CME_SHIFT 8
148#define CCCR_CME_CAN 0
149#define CCCR_CME_CANFD 0x1
150#define CCCR_CME_CANFD_BRS 0x2
151#define CCCR_TXP BIT(14)
152#define CCCR_TEST BIT(7)
153#define CCCR_MON BIT(5)
154#define CCCR_CSR BIT(4)
155#define CCCR_CSA BIT(3)
156#define CCCR_ASM BIT(2)
157#define CCCR_CCE BIT(1)
158#define CCCR_INIT BIT(0)
159#define CCCR_CANFD 0x10
160/* for version >=3.1.x */
161#define CCCR_EFBI BIT(13)
162#define CCCR_PXHD BIT(12)
163#define CCCR_BRSE BIT(9)
164#define CCCR_FDOE BIT(8)
165/* only for version >=3.2.x */
166#define CCCR_NISO BIT(15)
167
168/* Nominal Bit Timing & Prescaler Register (NBTP) */
169#define NBTP_NSJW_SHIFT 25
170#define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT)
171#define NBTP_NBRP_SHIFT 16
172#define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT)
173#define NBTP_NTSEG1_SHIFT 8
174#define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT)
175#define NBTP_NTSEG2_SHIFT 0
176#define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT)
177
178/* Error Counter Register(ECR) */
179#define ECR_RP BIT(15)
180#define ECR_REC_SHIFT 8
181#define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
182#define ECR_TEC_SHIFT 0
183#define ECR_TEC_MASK 0xff
184
185/* Protocol Status Register(PSR) */
186#define PSR_BO BIT(7)
187#define PSR_EW BIT(6)
188#define PSR_EP BIT(5)
189#define PSR_LEC_MASK 0x7
190
191/* Interrupt Register(IR) */
192#define IR_ALL_INT 0xffffffff
193
194/* Renamed bits for versions > 3.1.x */
195#define IR_ARA BIT(29)
196#define IR_PED BIT(28)
197#define IR_PEA BIT(27)
198
199/* Bits for version 3.0.x */
200#define IR_STE BIT(31)
201#define IR_FOE BIT(30)
202#define IR_ACKE BIT(29)
203#define IR_BE BIT(28)
204#define IR_CRCE BIT(27)
205#define IR_WDI BIT(26)
206#define IR_BO BIT(25)
207#define IR_EW BIT(24)
208#define IR_EP BIT(23)
209#define IR_ELO BIT(22)
210#define IR_BEU BIT(21)
211#define IR_BEC BIT(20)
212#define IR_DRX BIT(19)
213#define IR_TOO BIT(18)
214#define IR_MRAF BIT(17)
215#define IR_TSW BIT(16)
216#define IR_TEFL BIT(15)
217#define IR_TEFF BIT(14)
218#define IR_TEFW BIT(13)
219#define IR_TEFN BIT(12)
220#define IR_TFE BIT(11)
221#define IR_TCF BIT(10)
222#define IR_TC BIT(9)
223#define IR_HPM BIT(8)
224#define IR_RF1L BIT(7)
225#define IR_RF1F BIT(6)
226#define IR_RF1W BIT(5)
227#define IR_RF1N BIT(4)
228#define IR_RF0L BIT(3)
229#define IR_RF0F BIT(2)
230#define IR_RF0W BIT(1)
231#define IR_RF0N BIT(0)
232#define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
233
234/* Interrupts for version 3.0.x */
235#define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
236#define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
237 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
238 IR_RF1L | IR_RF0L)
239#define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
240/* Interrupts for version >= 3.1.x */
241#define IR_ERR_LEC_31X (IR_PED | IR_PEA)
242#define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
243 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
244 IR_RF1L | IR_RF0L)
245#define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
246
247/* Interrupt Line Select (ILS) */
248#define ILS_ALL_INT0 0x0
249#define ILS_ALL_INT1 0xFFFFFFFF
250
251/* Interrupt Line Enable (ILE) */
252#define ILE_EINT1 BIT(1)
253#define ILE_EINT0 BIT(0)
254
255/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
256#define RXFC_FWM_SHIFT 24
257#define RXFC_FWM_MASK (0x7f << RXFC_FWM_SHIFT)
258#define RXFC_FS_SHIFT 16
259#define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT)
260
261/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
262#define RXFS_RFL BIT(25)
263#define RXFS_FF BIT(24)
264#define RXFS_FPI_SHIFT 16
265#define RXFS_FPI_MASK 0x3f0000
266#define RXFS_FGI_SHIFT 8
267#define RXFS_FGI_MASK 0x3f00
268#define RXFS_FFL_MASK 0x7f
269
270/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
271#define M_CAN_RXESC_8BYTES 0x0
272#define M_CAN_RXESC_64BYTES 0x777
273
274/* Tx Buffer Configuration(TXBC) */
275#define TXBC_NDTB_SHIFT 16
276#define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT)
277#define TXBC_TFQS_SHIFT 24
278#define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT)
279
280/* Tx FIFO/Queue Status (TXFQS) */
281#define TXFQS_TFQF BIT(21)
282#define TXFQS_TFQPI_SHIFT 16
283#define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT)
284#define TXFQS_TFGI_SHIFT 8
285#define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT)
286#define TXFQS_TFFL_SHIFT 0
287#define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT)
288
289/* Tx Buffer Element Size Configuration(TXESC) */
290#define TXESC_TBDS_8BYTES 0x0
291#define TXESC_TBDS_64BYTES 0x7
292
293/* Tx Event FIFO Configuration (TXEFC) */
294#define TXEFC_EFS_SHIFT 16
295#define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT)
296
297/* Tx Event FIFO Status (TXEFS) */
298#define TXEFS_TEFL BIT(25)
299#define TXEFS_EFF BIT(24)
300#define TXEFS_EFGI_SHIFT 8
301#define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT)
302#define TXEFS_EFFL_SHIFT 0
303#define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT)
304
305/* Tx Event FIFO Acknowledge (TXEFA) */
306#define TXEFA_EFAI_SHIFT 0
307#define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT)
308
309/* Message RAM Configuration (in bytes) */
310#define SIDF_ELEMENT_SIZE 4
311#define XIDF_ELEMENT_SIZE 8
312#define RXF0_ELEMENT_SIZE 72
313#define RXF1_ELEMENT_SIZE 72
314#define RXB_ELEMENT_SIZE 72
315#define TXE_ELEMENT_SIZE 8
316#define TXB_ELEMENT_SIZE 72
317
318/* Message RAM Elements */
319#define M_CAN_FIFO_ID 0x0
320#define M_CAN_FIFO_DLC 0x4
321#define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
322
323/* Rx Buffer Element */
324/* R0 */
325#define RX_BUF_ESI BIT(31)
326#define RX_BUF_XTD BIT(30)
327#define RX_BUF_RTR BIT(29)
328/* R1 */
329#define RX_BUF_ANMF BIT(31)
330#define RX_BUF_FDF BIT(21)
331#define RX_BUF_BRS BIT(20)
332
333/* Tx Buffer Element */
334/* T0 */
335#define TX_BUF_ESI BIT(31)
336#define TX_BUF_XTD BIT(30)
337#define TX_BUF_RTR BIT(29)
338/* T1 */
339#define TX_BUF_EFC BIT(23)
340#define TX_BUF_FDF BIT(21)
341#define TX_BUF_BRS BIT(20)
342#define TX_BUF_MM_SHIFT 24
343#define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT)
344
345/* Tx event FIFO Element */
346/* E1 */
347#define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT
348#define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT)
349
350/* address offset and element number for each FIFO/Buffer in the Message RAM */
351struct mram_cfg {
352 u16 off;
353 u8 num;
354};
355
356/* m_can private data structure */
357struct m_can_priv {
358 struct can_priv can; /* must be the first member */
359 struct napi_struct napi;
360 struct net_device *dev;
361 struct device *device;
362 struct clk *hclk;
363 struct clk *cclk;
364 void __iomem *base;
365 u32 irqstatus;
366 int version;
367
368 /* message ram configuration */
369 void __iomem *mram_base;
370 struct mram_cfg mcfg[MRAM_CFG_NUM];
371};
372
373static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
374{
375 return readl(priv->base + reg);
376}
377
378static inline void m_can_write(const struct m_can_priv *priv,
379 enum m_can_reg reg, u32 val)
380{
381 writel(val, priv->base + reg);
382}
383
384static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
385 u32 fgi, unsigned int offset)
386{
387 return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
388 fgi * RXF0_ELEMENT_SIZE + offset);
389}
390
391static inline void m_can_fifo_write(const struct m_can_priv *priv,
392 u32 fpi, unsigned int offset, u32 val)
393{
394 writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
395 fpi * TXB_ELEMENT_SIZE + offset);
396}
397
398static inline u32 m_can_txe_fifo_read(const struct m_can_priv *priv,
399 u32 fgi,
400 u32 offset) {
401 return readl(priv->mram_base + priv->mcfg[MRAM_TXE].off +
402 fgi * TXE_ELEMENT_SIZE + offset);
403}
404
405static inline bool m_can_tx_fifo_full(const struct m_can_priv *priv)
406{
407 return !!(m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQF);
408}
409
410static inline void m_can_config_endisable(const struct m_can_priv *priv,
411 bool enable)
412{
413 u32 cccr = m_can_read(priv, M_CAN_CCCR);
414 u32 timeout = 10;
415 u32 val = 0;
416
417 if (enable) {
418 /* enable m_can configuration */
419 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
420 udelay(5);
421 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
422 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
423 } else {
424 m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
425 }
426
427 /* there's a delay for module initialization */
428 if (enable)
429 val = CCCR_INIT | CCCR_CCE;
430
431 while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
432 if (timeout == 0) {
433 netdev_warn(priv->dev, "Failed to init module\n");
434 return;
435 }
436 timeout--;
437 udelay(1);
438 }
439}
440
441static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
442{
443 /* Only interrupt line 0 is used in this driver */
444 m_can_write(priv, M_CAN_ILE, ILE_EINT0);
445}
446
447static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
448{
449 m_can_write(priv, M_CAN_ILE, 0x0);
450}
451
452static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
453{
454 struct net_device_stats *stats = &dev->stats;
455 struct m_can_priv *priv = netdev_priv(dev);
456 struct canfd_frame *cf;
457 struct sk_buff *skb;
458 u32 id, fgi, dlc;
459 int i;
460
461 /* calculate the fifo get index for where to read data */
462 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
463 dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
464 if (dlc & RX_BUF_FDF)
465 skb = alloc_canfd_skb(dev, &cf);
466 else
467 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
468 if (!skb) {
469 stats->rx_dropped++;
470 return;
471 }
472
473 if (dlc & RX_BUF_FDF)
474 cf->len = can_dlc2len((dlc >> 16) & 0x0F);
475 else
476 cf->len = get_can_dlc((dlc >> 16) & 0x0F);
477
478 id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
479 if (id & RX_BUF_XTD)
480 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
481 else
482 cf->can_id = (id >> 18) & CAN_SFF_MASK;
483
484 if (id & RX_BUF_ESI) {
485 cf->flags |= CANFD_ESI;
486 netdev_dbg(dev, "ESI Error\n");
487 }
488
489 if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
490 cf->can_id |= CAN_RTR_FLAG;
491 } else {
492 if (dlc & RX_BUF_BRS)
493 cf->flags |= CANFD_BRS;
494
495 for (i = 0; i < cf->len; i += 4)
496 *(u32 *)(cf->data + i) =
497 m_can_fifo_read(priv, fgi,
498 M_CAN_FIFO_DATA(i / 4));
499 }
500
501 /* acknowledge rx fifo 0 */
502 m_can_write(priv, M_CAN_RXF0A, fgi);
503
504 stats->rx_packets++;
505 stats->rx_bytes += cf->len;
506
507 netif_receive_skb(skb);
508}
509
510static int m_can_do_rx_poll(struct net_device *dev, int quota)
511{
512 struct m_can_priv *priv = netdev_priv(dev);
513 u32 pkts = 0;
514 u32 rxfs;
515
516 rxfs = m_can_read(priv, M_CAN_RXF0S);
517 if (!(rxfs & RXFS_FFL_MASK)) {
518 netdev_dbg(dev, "no messages in fifo0\n");
519 return 0;
520 }
521
522 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
523 if (rxfs & RXFS_RFL)
524 netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
525
526 m_can_read_fifo(dev, rxfs);
527
528 quota--;
529 pkts++;
530 rxfs = m_can_read(priv, M_CAN_RXF0S);
531 }
532
533 if (pkts)
534 can_led_event(dev, CAN_LED_EVENT_RX);
535
536 return pkts;
537}
538
539static int m_can_handle_lost_msg(struct net_device *dev)
540{
541 struct net_device_stats *stats = &dev->stats;
542 struct sk_buff *skb;
543 struct can_frame *frame;
544
545 netdev_err(dev, "msg lost in rxf0\n");
546
547 stats->rx_errors++;
548 stats->rx_over_errors++;
549
550 skb = alloc_can_err_skb(dev, &frame);
551 if (unlikely(!skb))
552 return 0;
553
554 frame->can_id |= CAN_ERR_CRTL;
555 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
556
557 netif_receive_skb(skb);
558
559 return 1;
560}
561
562static int m_can_handle_lec_err(struct net_device *dev,
563 enum m_can_lec_type lec_type)
564{
565 struct m_can_priv *priv = netdev_priv(dev);
566 struct net_device_stats *stats = &dev->stats;
567 struct can_frame *cf;
568 struct sk_buff *skb;
569
570 priv->can.can_stats.bus_error++;
571 stats->rx_errors++;
572
573 /* propagate the error condition to the CAN stack */
574 skb = alloc_can_err_skb(dev, &cf);
575 if (unlikely(!skb))
576 return 0;
577
578 /* check for 'last error code' which tells us the
579 * type of the last error to occur on the CAN bus
580 */
581 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
582
583 switch (lec_type) {
584 case LEC_STUFF_ERROR:
585 netdev_dbg(dev, "stuff error\n");
586 cf->data[2] |= CAN_ERR_PROT_STUFF;
587 break;
588 case LEC_FORM_ERROR:
589 netdev_dbg(dev, "form error\n");
590 cf->data[2] |= CAN_ERR_PROT_FORM;
591 break;
592 case LEC_ACK_ERROR:
593 netdev_dbg(dev, "ack error\n");
594 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
595 break;
596 case LEC_BIT1_ERROR:
597 netdev_dbg(dev, "bit1 error\n");
598 cf->data[2] |= CAN_ERR_PROT_BIT1;
599 break;
600 case LEC_BIT0_ERROR:
601 netdev_dbg(dev, "bit0 error\n");
602 cf->data[2] |= CAN_ERR_PROT_BIT0;
603 break;
604 case LEC_CRC_ERROR:
605 netdev_dbg(dev, "CRC error\n");
606 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
607 break;
608 default:
609 break;
610 }
611
612 stats->rx_packets++;
613 stats->rx_bytes += cf->can_dlc;
614 netif_receive_skb(skb);
615
616 return 1;
617}
618
619static int __m_can_get_berr_counter(const struct net_device *dev,
620 struct can_berr_counter *bec)
621{
622 struct m_can_priv *priv = netdev_priv(dev);
623 unsigned int ecr;
624
625 ecr = m_can_read(priv, M_CAN_ECR);
626 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
627 bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
628
629 return 0;
630}
631
632static int m_can_clk_start(struct m_can_priv *priv)
633{
634 int err;
635
636 err = pm_runtime_get_sync(priv->device);
637 if (err)
638 pm_runtime_put_noidle(priv->device);
639
640 return err;
641}
642
643static void m_can_clk_stop(struct m_can_priv *priv)
644{
645 pm_runtime_put_sync(priv->device);
646}
647
648static int m_can_get_berr_counter(const struct net_device *dev,
649 struct can_berr_counter *bec)
650{
651 struct m_can_priv *priv = netdev_priv(dev);
652 int err;
653
654 err = m_can_clk_start(priv);
655 if (err)
656 return err;
657
658 __m_can_get_berr_counter(dev, bec);
659
660 m_can_clk_stop(priv);
661
662 return 0;
663}
664
665static int m_can_handle_state_change(struct net_device *dev,
666 enum can_state new_state)
667{
668 struct m_can_priv *priv = netdev_priv(dev);
669 struct net_device_stats *stats = &dev->stats;
670 struct can_frame *cf;
671 struct sk_buff *skb;
672 struct can_berr_counter bec;
673 unsigned int ecr;
674
675 switch (new_state) {
676 case CAN_STATE_ERROR_ACTIVE:
677 /* error warning state */
678 priv->can.can_stats.error_warning++;
679 priv->can.state = CAN_STATE_ERROR_WARNING;
680 break;
681 case CAN_STATE_ERROR_PASSIVE:
682 /* error passive state */
683 priv->can.can_stats.error_passive++;
684 priv->can.state = CAN_STATE_ERROR_PASSIVE;
685 break;
686 case CAN_STATE_BUS_OFF:
687 /* bus-off state */
688 priv->can.state = CAN_STATE_BUS_OFF;
689 m_can_disable_all_interrupts(priv);
690 priv->can.can_stats.bus_off++;
691 can_bus_off(dev);
692 break;
693 default:
694 break;
695 }
696
697 /* propagate the error condition to the CAN stack */
698 skb = alloc_can_err_skb(dev, &cf);
699 if (unlikely(!skb))
700 return 0;
701
702 __m_can_get_berr_counter(dev, &bec);
703
704 switch (new_state) {
705 case CAN_STATE_ERROR_ACTIVE:
706 /* error warning state */
707 cf->can_id |= CAN_ERR_CRTL;
708 cf->data[1] = (bec.txerr > bec.rxerr) ?
709 CAN_ERR_CRTL_TX_WARNING :
710 CAN_ERR_CRTL_RX_WARNING;
711 cf->data[6] = bec.txerr;
712 cf->data[7] = bec.rxerr;
713 break;
714 case CAN_STATE_ERROR_PASSIVE:
715 /* error passive state */
716 cf->can_id |= CAN_ERR_CRTL;
717 ecr = m_can_read(priv, M_CAN_ECR);
718 if (ecr & ECR_RP)
719 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
720 if (bec.txerr > 127)
721 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
722 cf->data[6] = bec.txerr;
723 cf->data[7] = bec.rxerr;
724 break;
725 case CAN_STATE_BUS_OFF:
726 /* bus-off state */
727 cf->can_id |= CAN_ERR_BUSOFF;
728 break;
729 default:
730 break;
731 }
732
733 stats->rx_packets++;
734 stats->rx_bytes += cf->can_dlc;
735 netif_receive_skb(skb);
736
737 return 1;
738}
739
740static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
741{
742 struct m_can_priv *priv = netdev_priv(dev);
743 int work_done = 0;
744
745 if ((psr & PSR_EW) &&
746 (priv->can.state != CAN_STATE_ERROR_WARNING)) {
747 netdev_dbg(dev, "entered error warning state\n");
748 work_done += m_can_handle_state_change(dev,
749 CAN_STATE_ERROR_WARNING);
750 }
751
752 if ((psr & PSR_EP) &&
753 (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
754 netdev_dbg(dev, "entered error passive state\n");
755 work_done += m_can_handle_state_change(dev,
756 CAN_STATE_ERROR_PASSIVE);
757 }
758
759 if ((psr & PSR_BO) &&
760 (priv->can.state != CAN_STATE_BUS_OFF)) {
761 netdev_dbg(dev, "entered error bus off state\n");
762 work_done += m_can_handle_state_change(dev,
763 CAN_STATE_BUS_OFF);
764 }
765
766 return work_done;
767}
768
769static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
770{
771 if (irqstatus & IR_WDI)
772 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
773 if (irqstatus & IR_ELO)
774 netdev_err(dev, "Error Logging Overflow\n");
775 if (irqstatus & IR_BEU)
776 netdev_err(dev, "Bit Error Uncorrected\n");
777 if (irqstatus & IR_BEC)
778 netdev_err(dev, "Bit Error Corrected\n");
779 if (irqstatus & IR_TOO)
780 netdev_err(dev, "Timeout reached\n");
781 if (irqstatus & IR_MRAF)
782 netdev_err(dev, "Message RAM access failure occurred\n");
783}
784
785static inline bool is_lec_err(u32 psr)
786{
787 psr &= LEC_UNUSED;
788
789 return psr && (psr != LEC_UNUSED);
790}
791
792static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
793 u32 psr)
794{
795 struct m_can_priv *priv = netdev_priv(dev);
796 int work_done = 0;
797
798 if (irqstatus & IR_RF0L)
799 work_done += m_can_handle_lost_msg(dev);
800
801 /* handle lec errors on the bus */
802 if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
803 is_lec_err(psr))
804 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
805
806 /* other unproccessed error interrupts */
807 m_can_handle_other_err(dev, irqstatus);
808
809 return work_done;
810}
811
812static int m_can_poll(struct napi_struct *napi, int quota)
813{
814 struct net_device *dev = napi->dev;
815 struct m_can_priv *priv = netdev_priv(dev);
816 int work_done = 0;
817 u32 irqstatus, psr;
818
819 irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
820 if (!irqstatus)
821 goto end;
822
823 psr = m_can_read(priv, M_CAN_PSR);
824 if (irqstatus & IR_ERR_STATE)
825 work_done += m_can_handle_state_errors(dev, psr);
826
827 if (irqstatus & IR_ERR_BUS_30X)
828 work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
829
830 if (irqstatus & IR_RF0N)
831 work_done += m_can_do_rx_poll(dev, (quota - work_done));
832
833 if (work_done < quota) {
834 napi_complete_done(napi, work_done);
835 m_can_enable_all_interrupts(priv);
836 }
837
838end:
839 return work_done;
840}
841
842static void m_can_echo_tx_event(struct net_device *dev)
843{
844 u32 txe_count = 0;
845 u32 m_can_txefs;
846 u32 fgi = 0;
847 int i = 0;
848 unsigned int msg_mark;
849
850 struct m_can_priv *priv = netdev_priv(dev);
851 struct net_device_stats *stats = &dev->stats;
852
853 /* read tx event fifo status */
854 m_can_txefs = m_can_read(priv, M_CAN_TXEFS);
855
856 /* Get Tx Event fifo element count */
857 txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
858 >> TXEFS_EFFL_SHIFT;
859
860 /* Get and process all sent elements */
861 for (i = 0; i < txe_count; i++) {
862 /* retrieve get index */
863 fgi = (m_can_read(priv, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
864 >> TXEFS_EFGI_SHIFT;
865
866 /* get message marker */
867 msg_mark = (m_can_txe_fifo_read(priv, fgi, 4) &
868 TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
869
870 /* ack txe element */
871 m_can_write(priv, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
872 (fgi << TXEFA_EFAI_SHIFT)));
873
874 /* update stats */
875 stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
876 stats->tx_packets++;
877 }
878}
879
880static irqreturn_t m_can_isr(int irq, void *dev_id)
881{
882 struct net_device *dev = (struct net_device *)dev_id;
883 struct m_can_priv *priv = netdev_priv(dev);
884 struct net_device_stats *stats = &dev->stats;
885 u32 ir;
886
887 ir = m_can_read(priv, M_CAN_IR);
888 if (!ir)
889 return IRQ_NONE;
890
891 /* ACK all irqs */
892 if (ir & IR_ALL_INT)
893 m_can_write(priv, M_CAN_IR, ir);
894
895 /* schedule NAPI in case of
896 * - rx IRQ
897 * - state change IRQ
898 * - bus error IRQ and bus error reporting
899 */
900 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
901 priv->irqstatus = ir;
902 m_can_disable_all_interrupts(priv);
903 napi_schedule(&priv->napi);
904 }
905
906 if (priv->version == 30) {
907 if (ir & IR_TC) {
908 /* Transmission Complete Interrupt*/
909 stats->tx_bytes += can_get_echo_skb(dev, 0);
910 stats->tx_packets++;
911 can_led_event(dev, CAN_LED_EVENT_TX);
912 netif_wake_queue(dev);
913 }
914 } else {
915 if (ir & IR_TEFN) {
916 /* New TX FIFO Element arrived */
917 m_can_echo_tx_event(dev);
918 can_led_event(dev, CAN_LED_EVENT_TX);
919 if (netif_queue_stopped(dev) &&
920 !m_can_tx_fifo_full(priv))
921 netif_wake_queue(dev);
922 }
923 }
924
925 return IRQ_HANDLED;
926}
927
928static const struct can_bittiming_const m_can_bittiming_const_30X = {
929 .name = KBUILD_MODNAME,
930 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
931 .tseg1_max = 64,
932 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
933 .tseg2_max = 16,
934 .sjw_max = 16,
935 .brp_min = 1,
936 .brp_max = 1024,
937 .brp_inc = 1,
938};
939
940static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
941 .name = KBUILD_MODNAME,
942 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
943 .tseg1_max = 16,
944 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
945 .tseg2_max = 8,
946 .sjw_max = 4,
947 .brp_min = 1,
948 .brp_max = 32,
949 .brp_inc = 1,
950};
951
952static const struct can_bittiming_const m_can_bittiming_const_31X = {
953 .name = KBUILD_MODNAME,
954 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
955 .tseg1_max = 256,
956 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
957 .tseg2_max = 128,
958 .sjw_max = 128,
959 .brp_min = 1,
960 .brp_max = 512,
961 .brp_inc = 1,
962};
963
964static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
965 .name = KBUILD_MODNAME,
966 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
967 .tseg1_max = 32,
968 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
969 .tseg2_max = 16,
970 .sjw_max = 16,
971 .brp_min = 1,
972 .brp_max = 32,
973 .brp_inc = 1,
974};
975
976static int m_can_set_bittiming(struct net_device *dev)
977{
978 struct m_can_priv *priv = netdev_priv(dev);
979 const struct can_bittiming *bt = &priv->can.bittiming;
980 const struct can_bittiming *dbt = &priv->can.data_bittiming;
981 u16 brp, sjw, tseg1, tseg2;
982 u32 reg_btp;
983
984 brp = bt->brp - 1;
985 sjw = bt->sjw - 1;
986 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
987 tseg2 = bt->phase_seg2 - 1;
988 reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
989 (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
990 m_can_write(priv, M_CAN_NBTP, reg_btp);
991
992 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
993 reg_btp = 0;
994 brp = dbt->brp - 1;
995 sjw = dbt->sjw - 1;
996 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
997 tseg2 = dbt->phase_seg2 - 1;
998
999 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1000 * This is mentioned in the "Bit Time Requirements for CAN FD"
1001 * paper presented at the International CAN Conference 2013
1002 */
1003 if (dbt->bitrate > 2500000) {
1004 u32 tdco, ssp;
1005
1006 /* Use the same value of secondary sampling point
1007 * as the data sampling point
1008 */
1009 ssp = dbt->sample_point;
1010
1011 /* Equation based on Bosch's M_CAN User Manual's
1012 * Transmitter Delay Compensation Section
1013 */
1014 tdco = (priv->can.clock.freq / 1000) *
1015 ssp / dbt->bitrate;
1016
1017 /* Max valid TDCO value is 127 */
1018 if (tdco > 127) {
1019 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1020 tdco);
1021 tdco = 127;
1022 }
1023
1024 reg_btp |= DBTP_TDC;
1025 m_can_write(priv, M_CAN_TDCR,
1026 tdco << TDCR_TDCO_SHIFT);
1027 }
1028
1029 reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1030 (sjw << DBTP_DSJW_SHIFT) |
1031 (tseg1 << DBTP_DTSEG1_SHIFT) |
1032 (tseg2 << DBTP_DTSEG2_SHIFT);
1033
1034 m_can_write(priv, M_CAN_DBTP, reg_btp);
1035 }
1036
1037 return 0;
1038}
1039
1040/* Configure M_CAN chip:
1041 * - set rx buffer/fifo element size
1042 * - configure rx fifo
1043 * - accept non-matching frame into fifo 0
1044 * - configure tx buffer
1045 * - >= v3.1.x: TX FIFO is used
1046 * - configure mode
1047 * - setup bittiming
1048 */
1049static void m_can_chip_config(struct net_device *dev)
1050{
1051 struct m_can_priv *priv = netdev_priv(dev);
1052 u32 cccr, test;
1053
1054 m_can_config_endisable(priv, true);
1055
1056 /* RX Buffer/FIFO Element Size 64 bytes data field */
1057 m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1058
1059 /* Accept Non-matching Frames Into FIFO 0 */
1060 m_can_write(priv, M_CAN_GFC, 0x0);
1061
1062 if (priv->version == 30) {
1063 /* only support one Tx Buffer currently */
1064 m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1065 priv->mcfg[MRAM_TXB].off);
1066 } else {
1067 /* TX FIFO is used for newer IP Core versions */
1068 m_can_write(priv, M_CAN_TXBC,
1069 (priv->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1070 (priv->mcfg[MRAM_TXB].off));
1071 }
1072
1073 /* support 64 bytes payload */
1074 m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1075
1076 /* TX Event FIFO */
1077 if (priv->version == 30) {
1078 m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1079 priv->mcfg[MRAM_TXE].off);
1080 } else {
1081 /* Full TX Event FIFO is used */
1082 m_can_write(priv, M_CAN_TXEFC,
1083 ((priv->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1084 & TXEFC_EFS_MASK) |
1085 priv->mcfg[MRAM_TXE].off);
1086 }
1087
1088 /* rx fifo configuration, blocking mode, fifo size 1 */
1089 m_can_write(priv, M_CAN_RXF0C,
1090 (priv->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1091 priv->mcfg[MRAM_RXF0].off);
1092
1093 m_can_write(priv, M_CAN_RXF1C,
1094 (priv->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1095 priv->mcfg[MRAM_RXF1].off);
1096
1097 cccr = m_can_read(priv, M_CAN_CCCR);
1098 test = m_can_read(priv, M_CAN_TEST);
1099 test &= ~TEST_LBCK;
1100 if (priv->version == 30) {
1101 /* Version 3.0.x */
1102
1103 cccr &= ~(CCCR_TEST | CCCR_MON |
1104 (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1105 (CCCR_CME_MASK << CCCR_CME_SHIFT));
1106
1107 if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1108 cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1109
1110 } else {
1111 /* Version 3.1.x or 3.2.x */
1112 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE);
1113
1114 /* Only 3.2.x has NISO Bit implemented */
1115 if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1116 cccr |= CCCR_NISO;
1117
1118 if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1119 cccr |= (CCCR_BRSE | CCCR_FDOE);
1120 }
1121
1122 /* Loopback Mode */
1123 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1124 cccr |= CCCR_TEST | CCCR_MON;
1125 test |= TEST_LBCK;
1126 }
1127
1128 /* Enable Monitoring (all versions) */
1129 if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1130 cccr |= CCCR_MON;
1131
1132 /* Write config */
1133 m_can_write(priv, M_CAN_CCCR, cccr);
1134 m_can_write(priv, M_CAN_TEST, test);
1135
1136 /* Enable interrupts */
1137 m_can_write(priv, M_CAN_IR, IR_ALL_INT);
1138 if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1139 if (priv->version == 30)
1140 m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1141 ~(IR_ERR_LEC_30X));
1142 else
1143 m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1144 ~(IR_ERR_LEC_31X));
1145 else
1146 m_can_write(priv, M_CAN_IE, IR_ALL_INT);
1147
1148 /* route all interrupts to INT0 */
1149 m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
1150
1151 /* set bittiming params */
1152 m_can_set_bittiming(dev);
1153
1154 m_can_config_endisable(priv, false);
1155}
1156
1157static void m_can_start(struct net_device *dev)
1158{
1159 struct m_can_priv *priv = netdev_priv(dev);
1160
1161 /* basic m_can configuration */
1162 m_can_chip_config(dev);
1163
1164 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1165
1166 m_can_enable_all_interrupts(priv);
1167}
1168
1169static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1170{
1171 switch (mode) {
1172 case CAN_MODE_START:
1173 m_can_start(dev);
1174 netif_wake_queue(dev);
1175 break;
1176 default:
1177 return -EOPNOTSUPP;
1178 }
1179
1180 return 0;
1181}
1182
1183/* Checks core release number of M_CAN
1184 * returns 0 if an unsupported device is detected
1185 * else it returns the release and step coded as:
1186 * return value = 10 * <release> + 1 * <step>
1187 */
1188static int m_can_check_core_release(void __iomem *m_can_base)
1189{
1190 u32 crel_reg;
1191 u8 rel;
1192 u8 step;
1193 int res;
1194 struct m_can_priv temp_priv = {
1195 .base = m_can_base
1196 };
1197
1198 /* Read Core Release Version and split into version number
1199 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1200 */
1201 crel_reg = m_can_read(&temp_priv, M_CAN_CREL);
1202 rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1203 step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1204
1205 if (rel == 3) {
1206 /* M_CAN v3.x.y: create return value */
1207 res = 30 + step;
1208 } else {
1209 /* Unsupported M_CAN version */
1210 res = 0;
1211 }
1212
1213 return res;
1214}
1215
1216/* Selectable Non ISO support only in version 3.2.x
1217 * This function checks if the bit is writable.
1218 */
1219static bool m_can_niso_supported(const struct m_can_priv *priv)
1220{
1221 u32 cccr_reg, cccr_poll;
1222 int niso_timeout;
1223
1224 m_can_config_endisable(priv, true);
1225 cccr_reg = m_can_read(priv, M_CAN_CCCR);
1226 cccr_reg |= CCCR_NISO;
1227 m_can_write(priv, M_CAN_CCCR, cccr_reg);
1228
1229 niso_timeout = readl_poll_timeout((priv->base + M_CAN_CCCR), cccr_poll,
1230 (cccr_poll == cccr_reg), 0, 10);
1231
1232 /* Clear NISO */
1233 cccr_reg &= ~(CCCR_NISO);
1234 m_can_write(priv, M_CAN_CCCR, cccr_reg);
1235
1236 m_can_config_endisable(priv, false);
1237
1238 /* return false if time out (-ETIMEDOUT), else return true */
1239 return !niso_timeout;
1240}
1241
1242static int m_can_dev_setup(struct platform_device *pdev, struct net_device *dev,
1243 void __iomem *addr)
1244{
1245 struct m_can_priv *priv;
1246 int m_can_version;
1247
1248 m_can_version = m_can_check_core_release(addr);
1249 /* return if unsupported version */
1250 if (!m_can_version) {
1251 dev_err(&pdev->dev, "Unsupported version number: %2d",
1252 m_can_version);
1253 return -EINVAL;
1254 }
1255
1256 priv = netdev_priv(dev);
1257 netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
1258
1259 /* Shared properties of all M_CAN versions */
1260 priv->version = m_can_version;
1261 priv->dev = dev;
1262 priv->base = addr;
1263 priv->can.do_set_mode = m_can_set_mode;
1264 priv->can.do_get_berr_counter = m_can_get_berr_counter;
1265
1266 /* Set M_CAN supported operations */
1267 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1268 CAN_CTRLMODE_LISTENONLY |
1269 CAN_CTRLMODE_BERR_REPORTING |
1270 CAN_CTRLMODE_FD;
1271
1272 /* Set properties depending on M_CAN version */
1273 switch (priv->version) {
1274 case 30:
1275 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1276 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1277 priv->can.bittiming_const = &m_can_bittiming_const_30X;
1278 priv->can.data_bittiming_const =
1279 &m_can_data_bittiming_const_30X;
1280 break;
1281 case 31:
1282 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1283 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1284 priv->can.bittiming_const = &m_can_bittiming_const_31X;
1285 priv->can.data_bittiming_const =
1286 &m_can_data_bittiming_const_31X;
1287 break;
1288 case 32:
1289 priv->can.bittiming_const = &m_can_bittiming_const_31X;
1290 priv->can.data_bittiming_const =
1291 &m_can_data_bittiming_const_31X;
1292 priv->can.ctrlmode_supported |= (m_can_niso_supported(priv)
1293 ? CAN_CTRLMODE_FD_NON_ISO
1294 : 0);
1295 break;
1296 default:
1297 dev_err(&pdev->dev, "Unsupported version number: %2d",
1298 priv->version);
1299 return -EINVAL;
1300 }
1301
1302 return 0;
1303}
1304
1305static int m_can_open(struct net_device *dev)
1306{
1307 struct m_can_priv *priv = netdev_priv(dev);
1308 int err;
1309
1310 err = m_can_clk_start(priv);
1311 if (err)
1312 return err;
1313
1314 /* open the can device */
1315 err = open_candev(dev);
1316 if (err) {
1317 netdev_err(dev, "failed to open can device\n");
1318 goto exit_disable_clks;
1319 }
1320
1321 /* register interrupt handler */
1322 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1323 dev);
1324 if (err < 0) {
1325 netdev_err(dev, "failed to request interrupt\n");
1326 goto exit_irq_fail;
1327 }
1328
1329 /* start the m_can controller */
1330 m_can_start(dev);
1331
1332 can_led_event(dev, CAN_LED_EVENT_OPEN);
1333 napi_enable(&priv->napi);
1334 netif_start_queue(dev);
1335
1336 return 0;
1337
1338exit_irq_fail:
1339 close_candev(dev);
1340exit_disable_clks:
1341 m_can_clk_stop(priv);
1342 return err;
1343}
1344
1345static void m_can_stop(struct net_device *dev)
1346{
1347 struct m_can_priv *priv = netdev_priv(dev);
1348
1349 /* disable all interrupts */
1350 m_can_disable_all_interrupts(priv);
1351
1352 /* set the state as STOPPED */
1353 priv->can.state = CAN_STATE_STOPPED;
1354}
1355
1356static int m_can_close(struct net_device *dev)
1357{
1358 struct m_can_priv *priv = netdev_priv(dev);
1359
1360 netif_stop_queue(dev);
1361 napi_disable(&priv->napi);
1362 m_can_stop(dev);
1363 m_can_clk_stop(priv);
1364 free_irq(dev->irq, dev);
1365 close_candev(dev);
1366 can_led_event(dev, CAN_LED_EVENT_STOP);
1367
1368 return 0;
1369}
1370
1371static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1372{
1373 struct m_can_priv *priv = netdev_priv(dev);
1374 /*get wrap around for loopback skb index */
1375 unsigned int wrap = priv->can.echo_skb_max;
1376 int next_idx;
1377
1378 /* calculate next index */
1379 next_idx = (++putidx >= wrap ? 0 : putidx);
1380
1381 /* check if occupied */
1382 return !!priv->can.echo_skb[next_idx];
1383}
1384
1385static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1386 struct net_device *dev)
1387{
1388 struct m_can_priv *priv = netdev_priv(dev);
1389 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1390 u32 id, cccr, fdflags;
1391 int i;
1392 int putidx;
1393
1394 if (can_dropped_invalid_skb(dev, skb))
1395 return NETDEV_TX_OK;
1396
1397 /* Generate ID field for TX buffer Element */
1398 /* Common to all supported M_CAN versions */
1399 if (cf->can_id & CAN_EFF_FLAG) {
1400 id = cf->can_id & CAN_EFF_MASK;
1401 id |= TX_BUF_XTD;
1402 } else {
1403 id = ((cf->can_id & CAN_SFF_MASK) << 18);
1404 }
1405
1406 if (cf->can_id & CAN_RTR_FLAG)
1407 id |= TX_BUF_RTR;
1408
1409 if (priv->version == 30) {
1410 netif_stop_queue(dev);
1411
1412 /* message ram configuration */
1413 m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
1414 m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC,
1415 can_len2dlc(cf->len) << 16);
1416
1417 for (i = 0; i < cf->len; i += 4)
1418 m_can_fifo_write(priv, 0,
1419 M_CAN_FIFO_DATA(i / 4),
1420 *(u32 *)(cf->data + i));
1421
1422 can_put_echo_skb(skb, dev, 0);
1423
1424 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1425 cccr = m_can_read(priv, M_CAN_CCCR);
1426 cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1427 if (can_is_canfd_skb(skb)) {
1428 if (cf->flags & CANFD_BRS)
1429 cccr |= CCCR_CMR_CANFD_BRS <<
1430 CCCR_CMR_SHIFT;
1431 else
1432 cccr |= CCCR_CMR_CANFD <<
1433 CCCR_CMR_SHIFT;
1434 } else {
1435 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1436 }
1437 m_can_write(priv, M_CAN_CCCR, cccr);
1438 }
1439 m_can_write(priv, M_CAN_TXBTIE, 0x1);
1440 m_can_write(priv, M_CAN_TXBAR, 0x1);
1441 /* End of xmit function for version 3.0.x */
1442 } else {
1443 /* Transmit routine for version >= v3.1.x */
1444
1445 /* Check if FIFO full */
1446 if (m_can_tx_fifo_full(priv)) {
1447 /* This shouldn't happen */
1448 netif_stop_queue(dev);
1449 netdev_warn(dev,
1450 "TX queue active although FIFO is full.");
1451 return NETDEV_TX_BUSY;
1452 }
1453
1454 /* get put index for frame */
1455 putidx = ((m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1456 >> TXFQS_TFQPI_SHIFT);
1457 /* Write ID Field to FIFO Element */
1458 m_can_fifo_write(priv, putidx, M_CAN_FIFO_ID, id);
1459
1460 /* get CAN FD configuration of frame */
1461 fdflags = 0;
1462 if (can_is_canfd_skb(skb)) {
1463 fdflags |= TX_BUF_FDF;
1464 if (cf->flags & CANFD_BRS)
1465 fdflags |= TX_BUF_BRS;
1466 }
1467
1468 /* Construct DLC Field. Also contains CAN-FD configuration
1469 * use put index of fifo as message marker
1470 * it is used in TX interrupt for
1471 * sending the correct echo frame
1472 */
1473 m_can_fifo_write(priv, putidx, M_CAN_FIFO_DLC,
1474 ((putidx << TX_BUF_MM_SHIFT) &
1475 TX_BUF_MM_MASK) |
1476 (can_len2dlc(cf->len) << 16) |
1477 fdflags | TX_BUF_EFC);
1478
1479 for (i = 0; i < cf->len; i += 4)
1480 m_can_fifo_write(priv, putidx, M_CAN_FIFO_DATA(i / 4),
1481 *(u32 *)(cf->data + i));
1482
1483 /* Push loopback echo.
1484 * Will be looped back on TX interrupt based on message marker
1485 */
1486 can_put_echo_skb(skb, dev, putidx);
1487
1488 /* Enable TX FIFO element to start transfer */
1489 m_can_write(priv, M_CAN_TXBAR, (1 << putidx));
1490
1491 /* stop network queue if fifo full */
1492 if (m_can_tx_fifo_full(priv) ||
1493 m_can_next_echo_skb_occupied(dev, putidx))
1494 netif_stop_queue(dev);
1495 }
1496
1497 return NETDEV_TX_OK;
1498}
1499
1500static const struct net_device_ops m_can_netdev_ops = {
1501 .ndo_open = m_can_open,
1502 .ndo_stop = m_can_close,
1503 .ndo_start_xmit = m_can_start_xmit,
1504 .ndo_change_mtu = can_change_mtu,
1505};
1506
1507static int register_m_can_dev(struct net_device *dev)
1508{
1509 dev->flags |= IFF_ECHO; /* we support local echo */
1510 dev->netdev_ops = &m_can_netdev_ops;
1511
1512 return register_candev(dev);
1513}
1514
1515static void m_can_init_ram(struct m_can_priv *priv)
1516{
1517 int end, i, start;
1518
1519 /* initialize the entire Message RAM in use to avoid possible
1520 * ECC/parity checksum errors when reading an uninitialized buffer
1521 */
1522 start = priv->mcfg[MRAM_SIDF].off;
1523 end = priv->mcfg[MRAM_TXB].off +
1524 priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1525 for (i = start; i < end; i += 4)
1526 writel(0x0, priv->mram_base + i);
1527}
1528
1529static void m_can_of_parse_mram(struct m_can_priv *priv,
1530 const u32 *mram_config_vals)
1531{
1532 priv->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1533 priv->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1534 priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
1535 priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1536 priv->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1537 priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
1538 priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1539 priv->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1540 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1541 priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
1542 priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1543 priv->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1544 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1545 priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
1546 priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1547 priv->mcfg[MRAM_RXB].num = mram_config_vals[5];
1548 priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
1549 priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1550 priv->mcfg[MRAM_TXE].num = mram_config_vals[6];
1551 priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
1552 priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1553 priv->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1554 (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1555
1556 dev_dbg(priv->device,
1557 "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1558 priv->mram_base,
1559 priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
1560 priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
1561 priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
1562 priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
1563 priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
1564 priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
1565 priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
1566
1567 m_can_init_ram(priv);
1568}
1569
1570static int m_can_plat_probe(struct platform_device *pdev)
1571{
1572 struct net_device *dev;
1573 struct m_can_priv *priv;
1574 struct resource *res;
1575 void __iomem *addr;
1576 void __iomem *mram_addr;
1577 struct clk *hclk, *cclk;
1578 int irq, ret;
1579 struct device_node *np;
1580 u32 mram_config_vals[MRAM_CFG_LEN];
1581 u32 tx_fifo_size;
1582
1583 np = pdev->dev.of_node;
1584
1585 hclk = devm_clk_get(&pdev->dev, "hclk");
1586 cclk = devm_clk_get(&pdev->dev, "cclk");
1587
1588 if (IS_ERR(hclk) || IS_ERR(cclk)) {
1589 dev_err(&pdev->dev, "no clock found\n");
1590 ret = -ENODEV;
1591 goto failed_ret;
1592 }
1593
1594 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
1595 addr = devm_ioremap_resource(&pdev->dev, res);
1596 irq = platform_get_irq_byname(pdev, "int0");
1597
1598 if (IS_ERR(addr) || irq < 0) {
1599 ret = -EINVAL;
1600 goto failed_ret;
1601 }
1602
1603 /* message ram could be shared */
1604 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
1605 if (!res) {
1606 ret = -ENODEV;
1607 goto failed_ret;
1608 }
1609
1610 mram_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1611 if (!mram_addr) {
1612 ret = -ENOMEM;
1613 goto failed_ret;
1614 }
1615
1616 /* get message ram configuration */
1617 ret = of_property_read_u32_array(np, "bosch,mram-cfg",
1618 mram_config_vals,
1619 sizeof(mram_config_vals) / 4);
1620 if (ret) {
1621 dev_err(&pdev->dev, "Could not get Message RAM configuration.");
1622 goto failed_ret;
1623 }
1624
1625 /* Get TX FIFO size
1626 * Defines the total amount of echo buffers for loopback
1627 */
1628 tx_fifo_size = mram_config_vals[7];
1629
1630 /* allocate the m_can device */
1631 dev = alloc_candev(sizeof(*priv), tx_fifo_size);
1632 if (!dev) {
1633 ret = -ENOMEM;
1634 goto failed_ret;
1635 }
1636
1637 priv = netdev_priv(dev);
1638 dev->irq = irq;
1639 priv->device = &pdev->dev;
1640 priv->hclk = hclk;
1641 priv->cclk = cclk;
1642 priv->can.clock.freq = clk_get_rate(cclk);
1643 priv->mram_base = mram_addr;
1644
1645 m_can_of_parse_mram(priv, mram_config_vals);
1646
1647 platform_set_drvdata(pdev, dev);
1648 SET_NETDEV_DEV(dev, &pdev->dev);
1649
1650 /* Enable clocks. Necessary to read Core Release in order to determine
1651 * M_CAN version
1652 */
1653 pm_runtime_enable(&pdev->dev);
1654 ret = m_can_clk_start(priv);
1655 if (ret)
1656 goto pm_runtime_fail;
1657
1658 ret = m_can_dev_setup(pdev, dev, addr);
1659 if (ret)
1660 goto clk_disable;
1661
1662 ret = register_m_can_dev(dev);
1663 if (ret) {
1664 dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
1665 KBUILD_MODNAME, ret);
1666 goto clk_disable;
1667 }
1668
1669 devm_can_led_init(dev);
1670
1671 of_can_transceiver(dev);
1672
1673 dev_info(&pdev->dev, "%s device registered (irq=%d, version=%d)\n",
1674 KBUILD_MODNAME, dev->irq, priv->version);
1675
1676 /* Probe finished
1677 * Stop clocks. They will be reactivated once the M_CAN device is opened
1678 */
1679clk_disable:
1680 m_can_clk_stop(priv);
1681pm_runtime_fail:
1682 if (ret) {
1683 pm_runtime_disable(&pdev->dev);
1684 free_candev(dev);
1685 }
1686failed_ret:
1687 return ret;
1688}
1689
1690/* TODO: runtime PM with power down or sleep mode */
1691
1692static __maybe_unused int m_can_suspend(struct device *dev)
1693{
1694 struct net_device *ndev = dev_get_drvdata(dev);
1695 struct m_can_priv *priv = netdev_priv(ndev);
1696
1697 if (netif_running(ndev)) {
1698 netif_stop_queue(ndev);
1699 netif_device_detach(ndev);
1700 m_can_stop(ndev);
1701 m_can_clk_stop(priv);
1702 }
1703
1704 pinctrl_pm_select_sleep_state(dev);
1705
1706 priv->can.state = CAN_STATE_SLEEPING;
1707
1708 return 0;
1709}
1710
1711static __maybe_unused int m_can_resume(struct device *dev)
1712{
1713 struct net_device *ndev = dev_get_drvdata(dev);
1714 struct m_can_priv *priv = netdev_priv(ndev);
1715
1716 pinctrl_pm_select_default_state(dev);
1717
1718 m_can_init_ram(priv);
1719
1720 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1721
1722 if (netif_running(ndev)) {
1723 int ret;
1724
1725 ret = m_can_clk_start(priv);
1726 if (ret)
1727 return ret;
1728
1729 m_can_start(ndev);
1730 netif_device_attach(ndev);
1731 netif_start_queue(ndev);
1732 }
1733
1734 return 0;
1735}
1736
1737static void unregister_m_can_dev(struct net_device *dev)
1738{
1739 unregister_candev(dev);
1740}
1741
1742static int m_can_plat_remove(struct platform_device *pdev)
1743{
1744 struct net_device *dev = platform_get_drvdata(pdev);
1745
1746 unregister_m_can_dev(dev);
1747
1748 pm_runtime_disable(&pdev->dev);
1749
1750 platform_set_drvdata(pdev, NULL);
1751
1752 free_candev(dev);
1753
1754 return 0;
1755}
1756
1757static int __maybe_unused m_can_runtime_suspend(struct device *dev)
1758{
1759 struct net_device *ndev = dev_get_drvdata(dev);
1760 struct m_can_priv *priv = netdev_priv(ndev);
1761
1762 clk_disable_unprepare(priv->cclk);
1763 clk_disable_unprepare(priv->hclk);
1764
1765 return 0;
1766}
1767
1768static int __maybe_unused m_can_runtime_resume(struct device *dev)
1769{
1770 struct net_device *ndev = dev_get_drvdata(dev);
1771 struct m_can_priv *priv = netdev_priv(ndev);
1772 int err;
1773
1774 err = clk_prepare_enable(priv->hclk);
1775 if (err)
1776 return err;
1777
1778 err = clk_prepare_enable(priv->cclk);
1779 if (err)
1780 clk_disable_unprepare(priv->hclk);
1781
1782 return err;
1783}
1784
1785static const struct dev_pm_ops m_can_pmops = {
1786 SET_RUNTIME_PM_OPS(m_can_runtime_suspend,
1787 m_can_runtime_resume, NULL)
1788 SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
1789};
1790
1791static const struct of_device_id m_can_of_table[] = {
1792 { .compatible = "bosch,m_can", .data = NULL },
1793 { /* sentinel */ },
1794};
1795MODULE_DEVICE_TABLE(of, m_can_of_table);
1796
1797static struct platform_driver m_can_plat_driver = {
1798 .driver = {
1799 .name = KBUILD_MODNAME,
1800 .of_match_table = m_can_of_table,
1801 .pm = &m_can_pmops,
1802 },
1803 .probe = m_can_plat_probe,
1804 .remove = m_can_plat_remove,
1805};
1806
1807module_platform_driver(m_can_plat_driver);
1808
1809MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1810MODULE_LICENSE("GPL v2");
1811MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1// SPDX-License-Identifier: GPL-2.0
2// CAN bus driver for Bosch M_CAN controller
3// Copyright (C) 2014 Freescale Semiconductor, Inc.
4// Dong Aisheng <b29396@freescale.com>
5// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6
7/* Bosch M_CAN user manual can be obtained from:
8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9 * mcan_users_manual_v302.pdf
10 */
11
12#include <linux/interrupt.h>
13#include <linux/io.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/netdevice.h>
17#include <linux/of.h>
18#include <linux/of_device.h>
19#include <linux/platform_device.h>
20#include <linux/pm_runtime.h>
21#include <linux/iopoll.h>
22#include <linux/can/dev.h>
23#include <linux/pinctrl/consumer.h>
24
25#include "m_can.h"
26
27/* registers definition */
28enum m_can_reg {
29 M_CAN_CREL = 0x0,
30 M_CAN_ENDN = 0x4,
31 M_CAN_CUST = 0x8,
32 M_CAN_DBTP = 0xc,
33 M_CAN_TEST = 0x10,
34 M_CAN_RWD = 0x14,
35 M_CAN_CCCR = 0x18,
36 M_CAN_NBTP = 0x1c,
37 M_CAN_TSCC = 0x20,
38 M_CAN_TSCV = 0x24,
39 M_CAN_TOCC = 0x28,
40 M_CAN_TOCV = 0x2c,
41 M_CAN_ECR = 0x40,
42 M_CAN_PSR = 0x44,
43/* TDCR Register only available for version >=3.1.x */
44 M_CAN_TDCR = 0x48,
45 M_CAN_IR = 0x50,
46 M_CAN_IE = 0x54,
47 M_CAN_ILS = 0x58,
48 M_CAN_ILE = 0x5c,
49 M_CAN_GFC = 0x80,
50 M_CAN_SIDFC = 0x84,
51 M_CAN_XIDFC = 0x88,
52 M_CAN_XIDAM = 0x90,
53 M_CAN_HPMS = 0x94,
54 M_CAN_NDAT1 = 0x98,
55 M_CAN_NDAT2 = 0x9c,
56 M_CAN_RXF0C = 0xa0,
57 M_CAN_RXF0S = 0xa4,
58 M_CAN_RXF0A = 0xa8,
59 M_CAN_RXBC = 0xac,
60 M_CAN_RXF1C = 0xb0,
61 M_CAN_RXF1S = 0xb4,
62 M_CAN_RXF1A = 0xb8,
63 M_CAN_RXESC = 0xbc,
64 M_CAN_TXBC = 0xc0,
65 M_CAN_TXFQS = 0xc4,
66 M_CAN_TXESC = 0xc8,
67 M_CAN_TXBRP = 0xcc,
68 M_CAN_TXBAR = 0xd0,
69 M_CAN_TXBCR = 0xd4,
70 M_CAN_TXBTO = 0xd8,
71 M_CAN_TXBCF = 0xdc,
72 M_CAN_TXBTIE = 0xe0,
73 M_CAN_TXBCIE = 0xe4,
74 M_CAN_TXEFC = 0xf0,
75 M_CAN_TXEFS = 0xf4,
76 M_CAN_TXEFA = 0xf8,
77};
78
79/* napi related */
80#define M_CAN_NAPI_WEIGHT 64
81
82/* message ram configuration data length */
83#define MRAM_CFG_LEN 8
84
85/* Core Release Register (CREL) */
86#define CREL_REL_SHIFT 28
87#define CREL_REL_MASK (0xF << CREL_REL_SHIFT)
88#define CREL_STEP_SHIFT 24
89#define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT)
90#define CREL_SUBSTEP_SHIFT 20
91#define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT)
92
93/* Data Bit Timing & Prescaler Register (DBTP) */
94#define DBTP_TDC BIT(23)
95#define DBTP_DBRP_SHIFT 16
96#define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT)
97#define DBTP_DTSEG1_SHIFT 8
98#define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT)
99#define DBTP_DTSEG2_SHIFT 4
100#define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT)
101#define DBTP_DSJW_SHIFT 0
102#define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT)
103
104/* Transmitter Delay Compensation Register (TDCR) */
105#define TDCR_TDCO_SHIFT 8
106#define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT)
107#define TDCR_TDCF_SHIFT 0
108#define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT)
109
110/* Test Register (TEST) */
111#define TEST_LBCK BIT(4)
112
113/* CC Control Register(CCCR) */
114#define CCCR_CMR_MASK 0x3
115#define CCCR_CMR_SHIFT 10
116#define CCCR_CMR_CANFD 0x1
117#define CCCR_CMR_CANFD_BRS 0x2
118#define CCCR_CMR_CAN 0x3
119#define CCCR_CME_MASK 0x3
120#define CCCR_CME_SHIFT 8
121#define CCCR_CME_CAN 0
122#define CCCR_CME_CANFD 0x1
123#define CCCR_CME_CANFD_BRS 0x2
124#define CCCR_TXP BIT(14)
125#define CCCR_TEST BIT(7)
126#define CCCR_DAR BIT(6)
127#define CCCR_MON BIT(5)
128#define CCCR_CSR BIT(4)
129#define CCCR_CSA BIT(3)
130#define CCCR_ASM BIT(2)
131#define CCCR_CCE BIT(1)
132#define CCCR_INIT BIT(0)
133#define CCCR_CANFD 0x10
134/* for version >=3.1.x */
135#define CCCR_EFBI BIT(13)
136#define CCCR_PXHD BIT(12)
137#define CCCR_BRSE BIT(9)
138#define CCCR_FDOE BIT(8)
139/* only for version >=3.2.x */
140#define CCCR_NISO BIT(15)
141
142/* Nominal Bit Timing & Prescaler Register (NBTP) */
143#define NBTP_NSJW_SHIFT 25
144#define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT)
145#define NBTP_NBRP_SHIFT 16
146#define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT)
147#define NBTP_NTSEG1_SHIFT 8
148#define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT)
149#define NBTP_NTSEG2_SHIFT 0
150#define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT)
151
152/* Error Counter Register(ECR) */
153#define ECR_RP BIT(15)
154#define ECR_REC_SHIFT 8
155#define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
156#define ECR_TEC_SHIFT 0
157#define ECR_TEC_MASK 0xff
158
159/* Protocol Status Register(PSR) */
160#define PSR_BO BIT(7)
161#define PSR_EW BIT(6)
162#define PSR_EP BIT(5)
163#define PSR_LEC_MASK 0x7
164
165/* Interrupt Register(IR) */
166#define IR_ALL_INT 0xffffffff
167
168/* Renamed bits for versions > 3.1.x */
169#define IR_ARA BIT(29)
170#define IR_PED BIT(28)
171#define IR_PEA BIT(27)
172
173/* Bits for version 3.0.x */
174#define IR_STE BIT(31)
175#define IR_FOE BIT(30)
176#define IR_ACKE BIT(29)
177#define IR_BE BIT(28)
178#define IR_CRCE BIT(27)
179#define IR_WDI BIT(26)
180#define IR_BO BIT(25)
181#define IR_EW BIT(24)
182#define IR_EP BIT(23)
183#define IR_ELO BIT(22)
184#define IR_BEU BIT(21)
185#define IR_BEC BIT(20)
186#define IR_DRX BIT(19)
187#define IR_TOO BIT(18)
188#define IR_MRAF BIT(17)
189#define IR_TSW BIT(16)
190#define IR_TEFL BIT(15)
191#define IR_TEFF BIT(14)
192#define IR_TEFW BIT(13)
193#define IR_TEFN BIT(12)
194#define IR_TFE BIT(11)
195#define IR_TCF BIT(10)
196#define IR_TC BIT(9)
197#define IR_HPM BIT(8)
198#define IR_RF1L BIT(7)
199#define IR_RF1F BIT(6)
200#define IR_RF1W BIT(5)
201#define IR_RF1N BIT(4)
202#define IR_RF0L BIT(3)
203#define IR_RF0F BIT(2)
204#define IR_RF0W BIT(1)
205#define IR_RF0N BIT(0)
206#define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
207
208/* Interrupts for version 3.0.x */
209#define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
210#define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
211 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
212 IR_RF1L | IR_RF0L)
213#define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
214/* Interrupts for version >= 3.1.x */
215#define IR_ERR_LEC_31X (IR_PED | IR_PEA)
216#define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
217 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
218 IR_RF1L | IR_RF0L)
219#define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
220
221/* Interrupt Line Select (ILS) */
222#define ILS_ALL_INT0 0x0
223#define ILS_ALL_INT1 0xFFFFFFFF
224
225/* Interrupt Line Enable (ILE) */
226#define ILE_EINT1 BIT(1)
227#define ILE_EINT0 BIT(0)
228
229/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
230#define RXFC_FWM_SHIFT 24
231#define RXFC_FWM_MASK (0x7f << RXFC_FWM_SHIFT)
232#define RXFC_FS_SHIFT 16
233#define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT)
234
235/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
236#define RXFS_RFL BIT(25)
237#define RXFS_FF BIT(24)
238#define RXFS_FPI_SHIFT 16
239#define RXFS_FPI_MASK 0x3f0000
240#define RXFS_FGI_SHIFT 8
241#define RXFS_FGI_MASK 0x3f00
242#define RXFS_FFL_MASK 0x7f
243
244/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
245#define M_CAN_RXESC_8BYTES 0x0
246#define M_CAN_RXESC_64BYTES 0x777
247
248/* Tx Buffer Configuration(TXBC) */
249#define TXBC_NDTB_SHIFT 16
250#define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT)
251#define TXBC_TFQS_SHIFT 24
252#define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT)
253
254/* Tx FIFO/Queue Status (TXFQS) */
255#define TXFQS_TFQF BIT(21)
256#define TXFQS_TFQPI_SHIFT 16
257#define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT)
258#define TXFQS_TFGI_SHIFT 8
259#define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT)
260#define TXFQS_TFFL_SHIFT 0
261#define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT)
262
263/* Tx Buffer Element Size Configuration(TXESC) */
264#define TXESC_TBDS_8BYTES 0x0
265#define TXESC_TBDS_64BYTES 0x7
266
267/* Tx Event FIFO Configuration (TXEFC) */
268#define TXEFC_EFS_SHIFT 16
269#define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT)
270
271/* Tx Event FIFO Status (TXEFS) */
272#define TXEFS_TEFL BIT(25)
273#define TXEFS_EFF BIT(24)
274#define TXEFS_EFGI_SHIFT 8
275#define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT)
276#define TXEFS_EFFL_SHIFT 0
277#define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT)
278
279/* Tx Event FIFO Acknowledge (TXEFA) */
280#define TXEFA_EFAI_SHIFT 0
281#define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT)
282
283/* Message RAM Configuration (in bytes) */
284#define SIDF_ELEMENT_SIZE 4
285#define XIDF_ELEMENT_SIZE 8
286#define RXF0_ELEMENT_SIZE 72
287#define RXF1_ELEMENT_SIZE 72
288#define RXB_ELEMENT_SIZE 72
289#define TXE_ELEMENT_SIZE 8
290#define TXB_ELEMENT_SIZE 72
291
292/* Message RAM Elements */
293#define M_CAN_FIFO_ID 0x0
294#define M_CAN_FIFO_DLC 0x4
295#define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
296
297/* Rx Buffer Element */
298/* R0 */
299#define RX_BUF_ESI BIT(31)
300#define RX_BUF_XTD BIT(30)
301#define RX_BUF_RTR BIT(29)
302/* R1 */
303#define RX_BUF_ANMF BIT(31)
304#define RX_BUF_FDF BIT(21)
305#define RX_BUF_BRS BIT(20)
306
307/* Tx Buffer Element */
308/* T0 */
309#define TX_BUF_ESI BIT(31)
310#define TX_BUF_XTD BIT(30)
311#define TX_BUF_RTR BIT(29)
312/* T1 */
313#define TX_BUF_EFC BIT(23)
314#define TX_BUF_FDF BIT(21)
315#define TX_BUF_BRS BIT(20)
316#define TX_BUF_MM_SHIFT 24
317#define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT)
318
319/* Tx event FIFO Element */
320/* E1 */
321#define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT
322#define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT)
323
324static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
325{
326 return cdev->ops->read_reg(cdev, reg);
327}
328
329static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
330 u32 val)
331{
332 cdev->ops->write_reg(cdev, reg, val);
333}
334
335static u32 m_can_fifo_read(struct m_can_classdev *cdev,
336 u32 fgi, unsigned int offset)
337{
338 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
339 offset;
340
341 return cdev->ops->read_fifo(cdev, addr_offset);
342}
343
344static void m_can_fifo_write(struct m_can_classdev *cdev,
345 u32 fpi, unsigned int offset, u32 val)
346{
347 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
348 offset;
349
350 cdev->ops->write_fifo(cdev, addr_offset, val);
351}
352
353static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
354 u32 fpi, u32 val)
355{
356 cdev->ops->write_fifo(cdev, fpi, val);
357}
358
359static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
360{
361 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
362 offset;
363
364 return cdev->ops->read_fifo(cdev, addr_offset);
365}
366
367static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
368{
369 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
370}
371
372void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
373{
374 u32 cccr = m_can_read(cdev, M_CAN_CCCR);
375 u32 timeout = 10;
376 u32 val = 0;
377
378 /* Clear the Clock stop request if it was set */
379 if (cccr & CCCR_CSR)
380 cccr &= ~CCCR_CSR;
381
382 if (enable) {
383 /* Clear the Clock stop request if it was set */
384 if (cccr & CCCR_CSR)
385 cccr &= ~CCCR_CSR;
386
387 /* enable m_can configuration */
388 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
389 udelay(5);
390 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
391 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
392 } else {
393 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
394 }
395
396 /* there's a delay for module initialization */
397 if (enable)
398 val = CCCR_INIT | CCCR_CCE;
399
400 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
401 if (timeout == 0) {
402 netdev_warn(cdev->net, "Failed to init module\n");
403 return;
404 }
405 timeout--;
406 udelay(1);
407 }
408}
409
410static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
411{
412 /* Only interrupt line 0 is used in this driver */
413 m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
414}
415
416static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
417{
418 m_can_write(cdev, M_CAN_ILE, 0x0);
419}
420
421static void m_can_clean(struct net_device *net)
422{
423 struct m_can_classdev *cdev = netdev_priv(net);
424
425 if (cdev->tx_skb) {
426 int putidx = 0;
427
428 net->stats.tx_errors++;
429 if (cdev->version > 30)
430 putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
431 TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);
432
433 can_free_echo_skb(cdev->net, putidx);
434 cdev->tx_skb = NULL;
435 }
436}
437
438static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
439{
440 struct net_device_stats *stats = &dev->stats;
441 struct m_can_classdev *cdev = netdev_priv(dev);
442 struct canfd_frame *cf;
443 struct sk_buff *skb;
444 u32 id, fgi, dlc;
445 int i;
446
447 /* calculate the fifo get index for where to read data */
448 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
449 dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
450 if (dlc & RX_BUF_FDF)
451 skb = alloc_canfd_skb(dev, &cf);
452 else
453 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
454 if (!skb) {
455 stats->rx_dropped++;
456 return;
457 }
458
459 if (dlc & RX_BUF_FDF)
460 cf->len = can_dlc2len((dlc >> 16) & 0x0F);
461 else
462 cf->len = get_can_dlc((dlc >> 16) & 0x0F);
463
464 id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
465 if (id & RX_BUF_XTD)
466 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
467 else
468 cf->can_id = (id >> 18) & CAN_SFF_MASK;
469
470 if (id & RX_BUF_ESI) {
471 cf->flags |= CANFD_ESI;
472 netdev_dbg(dev, "ESI Error\n");
473 }
474
475 if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
476 cf->can_id |= CAN_RTR_FLAG;
477 } else {
478 if (dlc & RX_BUF_BRS)
479 cf->flags |= CANFD_BRS;
480
481 for (i = 0; i < cf->len; i += 4)
482 *(u32 *)(cf->data + i) =
483 m_can_fifo_read(cdev, fgi,
484 M_CAN_FIFO_DATA(i / 4));
485 }
486
487 /* acknowledge rx fifo 0 */
488 m_can_write(cdev, M_CAN_RXF0A, fgi);
489
490 stats->rx_packets++;
491 stats->rx_bytes += cf->len;
492
493 netif_receive_skb(skb);
494}
495
496static int m_can_do_rx_poll(struct net_device *dev, int quota)
497{
498 struct m_can_classdev *cdev = netdev_priv(dev);
499 u32 pkts = 0;
500 u32 rxfs;
501
502 rxfs = m_can_read(cdev, M_CAN_RXF0S);
503 if (!(rxfs & RXFS_FFL_MASK)) {
504 netdev_dbg(dev, "no messages in fifo0\n");
505 return 0;
506 }
507
508 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
509 if (rxfs & RXFS_RFL)
510 netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
511
512 m_can_read_fifo(dev, rxfs);
513
514 quota--;
515 pkts++;
516 rxfs = m_can_read(cdev, M_CAN_RXF0S);
517 }
518
519 if (pkts)
520 can_led_event(dev, CAN_LED_EVENT_RX);
521
522 return pkts;
523}
524
525static int m_can_handle_lost_msg(struct net_device *dev)
526{
527 struct net_device_stats *stats = &dev->stats;
528 struct sk_buff *skb;
529 struct can_frame *frame;
530
531 netdev_err(dev, "msg lost in rxf0\n");
532
533 stats->rx_errors++;
534 stats->rx_over_errors++;
535
536 skb = alloc_can_err_skb(dev, &frame);
537 if (unlikely(!skb))
538 return 0;
539
540 frame->can_id |= CAN_ERR_CRTL;
541 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
542
543 netif_receive_skb(skb);
544
545 return 1;
546}
547
548static int m_can_handle_lec_err(struct net_device *dev,
549 enum m_can_lec_type lec_type)
550{
551 struct m_can_classdev *cdev = netdev_priv(dev);
552 struct net_device_stats *stats = &dev->stats;
553 struct can_frame *cf;
554 struct sk_buff *skb;
555
556 cdev->can.can_stats.bus_error++;
557 stats->rx_errors++;
558
559 /* propagate the error condition to the CAN stack */
560 skb = alloc_can_err_skb(dev, &cf);
561 if (unlikely(!skb))
562 return 0;
563
564 /* check for 'last error code' which tells us the
565 * type of the last error to occur on the CAN bus
566 */
567 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
568
569 switch (lec_type) {
570 case LEC_STUFF_ERROR:
571 netdev_dbg(dev, "stuff error\n");
572 cf->data[2] |= CAN_ERR_PROT_STUFF;
573 break;
574 case LEC_FORM_ERROR:
575 netdev_dbg(dev, "form error\n");
576 cf->data[2] |= CAN_ERR_PROT_FORM;
577 break;
578 case LEC_ACK_ERROR:
579 netdev_dbg(dev, "ack error\n");
580 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
581 break;
582 case LEC_BIT1_ERROR:
583 netdev_dbg(dev, "bit1 error\n");
584 cf->data[2] |= CAN_ERR_PROT_BIT1;
585 break;
586 case LEC_BIT0_ERROR:
587 netdev_dbg(dev, "bit0 error\n");
588 cf->data[2] |= CAN_ERR_PROT_BIT0;
589 break;
590 case LEC_CRC_ERROR:
591 netdev_dbg(dev, "CRC error\n");
592 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
593 break;
594 default:
595 break;
596 }
597
598 stats->rx_packets++;
599 stats->rx_bytes += cf->can_dlc;
600 netif_receive_skb(skb);
601
602 return 1;
603}
604
605static int __m_can_get_berr_counter(const struct net_device *dev,
606 struct can_berr_counter *bec)
607{
608 struct m_can_classdev *cdev = netdev_priv(dev);
609 unsigned int ecr;
610
611 ecr = m_can_read(cdev, M_CAN_ECR);
612 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
613 bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
614
615 return 0;
616}
617
618static int m_can_clk_start(struct m_can_classdev *cdev)
619{
620 int err;
621
622 if (cdev->pm_clock_support == 0)
623 return 0;
624
625 err = pm_runtime_get_sync(cdev->dev);
626 if (err < 0) {
627 pm_runtime_put_noidle(cdev->dev);
628 return err;
629 }
630
631 return 0;
632}
633
634static void m_can_clk_stop(struct m_can_classdev *cdev)
635{
636 if (cdev->pm_clock_support)
637 pm_runtime_put_sync(cdev->dev);
638}
639
640static int m_can_get_berr_counter(const struct net_device *dev,
641 struct can_berr_counter *bec)
642{
643 struct m_can_classdev *cdev = netdev_priv(dev);
644 int err;
645
646 err = m_can_clk_start(cdev);
647 if (err)
648 return err;
649
650 __m_can_get_berr_counter(dev, bec);
651
652 m_can_clk_stop(cdev);
653
654 return 0;
655}
656
657static int m_can_handle_state_change(struct net_device *dev,
658 enum can_state new_state)
659{
660 struct m_can_classdev *cdev = netdev_priv(dev);
661 struct net_device_stats *stats = &dev->stats;
662 struct can_frame *cf;
663 struct sk_buff *skb;
664 struct can_berr_counter bec;
665 unsigned int ecr;
666
667 switch (new_state) {
668 case CAN_STATE_ERROR_ACTIVE:
669 /* error warning state */
670 cdev->can.can_stats.error_warning++;
671 cdev->can.state = CAN_STATE_ERROR_WARNING;
672 break;
673 case CAN_STATE_ERROR_PASSIVE:
674 /* error passive state */
675 cdev->can.can_stats.error_passive++;
676 cdev->can.state = CAN_STATE_ERROR_PASSIVE;
677 break;
678 case CAN_STATE_BUS_OFF:
679 /* bus-off state */
680 cdev->can.state = CAN_STATE_BUS_OFF;
681 m_can_disable_all_interrupts(cdev);
682 cdev->can.can_stats.bus_off++;
683 can_bus_off(dev);
684 break;
685 default:
686 break;
687 }
688
689 /* propagate the error condition to the CAN stack */
690 skb = alloc_can_err_skb(dev, &cf);
691 if (unlikely(!skb))
692 return 0;
693
694 __m_can_get_berr_counter(dev, &bec);
695
696 switch (new_state) {
697 case CAN_STATE_ERROR_ACTIVE:
698 /* error warning state */
699 cf->can_id |= CAN_ERR_CRTL;
700 cf->data[1] = (bec.txerr > bec.rxerr) ?
701 CAN_ERR_CRTL_TX_WARNING :
702 CAN_ERR_CRTL_RX_WARNING;
703 cf->data[6] = bec.txerr;
704 cf->data[7] = bec.rxerr;
705 break;
706 case CAN_STATE_ERROR_PASSIVE:
707 /* error passive state */
708 cf->can_id |= CAN_ERR_CRTL;
709 ecr = m_can_read(cdev, M_CAN_ECR);
710 if (ecr & ECR_RP)
711 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
712 if (bec.txerr > 127)
713 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
714 cf->data[6] = bec.txerr;
715 cf->data[7] = bec.rxerr;
716 break;
717 case CAN_STATE_BUS_OFF:
718 /* bus-off state */
719 cf->can_id |= CAN_ERR_BUSOFF;
720 break;
721 default:
722 break;
723 }
724
725 stats->rx_packets++;
726 stats->rx_bytes += cf->can_dlc;
727 netif_receive_skb(skb);
728
729 return 1;
730}
731
732static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
733{
734 struct m_can_classdev *cdev = netdev_priv(dev);
735 int work_done = 0;
736
737 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
738 netdev_dbg(dev, "entered error warning state\n");
739 work_done += m_can_handle_state_change(dev,
740 CAN_STATE_ERROR_WARNING);
741 }
742
743 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
744 netdev_dbg(dev, "entered error passive state\n");
745 work_done += m_can_handle_state_change(dev,
746 CAN_STATE_ERROR_PASSIVE);
747 }
748
749 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
750 netdev_dbg(dev, "entered error bus off state\n");
751 work_done += m_can_handle_state_change(dev,
752 CAN_STATE_BUS_OFF);
753 }
754
755 return work_done;
756}
757
758static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
759{
760 if (irqstatus & IR_WDI)
761 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
762 if (irqstatus & IR_ELO)
763 netdev_err(dev, "Error Logging Overflow\n");
764 if (irqstatus & IR_BEU)
765 netdev_err(dev, "Bit Error Uncorrected\n");
766 if (irqstatus & IR_BEC)
767 netdev_err(dev, "Bit Error Corrected\n");
768 if (irqstatus & IR_TOO)
769 netdev_err(dev, "Timeout reached\n");
770 if (irqstatus & IR_MRAF)
771 netdev_err(dev, "Message RAM access failure occurred\n");
772}
773
774static inline bool is_lec_err(u32 psr)
775{
776 psr &= LEC_UNUSED;
777
778 return psr && (psr != LEC_UNUSED);
779}
780
781static inline bool m_can_is_protocol_err(u32 irqstatus)
782{
783 return irqstatus & IR_ERR_LEC_31X;
784}
785
786static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
787{
788 struct net_device_stats *stats = &dev->stats;
789 struct m_can_classdev *cdev = netdev_priv(dev);
790 struct can_frame *cf;
791 struct sk_buff *skb;
792
793 /* propagate the error condition to the CAN stack */
794 skb = alloc_can_err_skb(dev, &cf);
795
796 /* update tx error stats since there is protocol error */
797 stats->tx_errors++;
798
799 /* update arbitration lost status */
800 if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
801 netdev_dbg(dev, "Protocol error in Arbitration fail\n");
802 cdev->can.can_stats.arbitration_lost++;
803 if (skb) {
804 cf->can_id |= CAN_ERR_LOSTARB;
805 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
806 }
807 }
808
809 if (unlikely(!skb)) {
810 netdev_dbg(dev, "allocation of skb failed\n");
811 return 0;
812 }
813 netif_receive_skb(skb);
814
815 return 1;
816}
817
818static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
819 u32 psr)
820{
821 struct m_can_classdev *cdev = netdev_priv(dev);
822 int work_done = 0;
823
824 if (irqstatus & IR_RF0L)
825 work_done += m_can_handle_lost_msg(dev);
826
827 /* handle lec errors on the bus */
828 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
829 is_lec_err(psr))
830 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
831
832 /* handle protocol errors in arbitration phase */
833 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
834 m_can_is_protocol_err(irqstatus))
835 work_done += m_can_handle_protocol_error(dev, irqstatus);
836
837 /* other unproccessed error interrupts */
838 m_can_handle_other_err(dev, irqstatus);
839
840 return work_done;
841}
842
843static int m_can_rx_handler(struct net_device *dev, int quota)
844{
845 struct m_can_classdev *cdev = netdev_priv(dev);
846 int work_done = 0;
847 u32 irqstatus, psr;
848
849 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
850 if (!irqstatus)
851 goto end;
852
853 /* Errata workaround for issue "Needless activation of MRAF irq"
854 * During frame reception while the MCAN is in Error Passive state
855 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
856 * it may happen that MCAN_IR.MRAF is set although there was no
857 * Message RAM access failure.
858 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
859 * The Message RAM Access Failure interrupt routine needs to check
860 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
861 * In this case, reset MCAN_IR.MRAF. No further action is required.
862 */
863 if (cdev->version <= 31 && irqstatus & IR_MRAF &&
864 m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
865 struct can_berr_counter bec;
866
867 __m_can_get_berr_counter(dev, &bec);
868 if (bec.rxerr == 127) {
869 m_can_write(cdev, M_CAN_IR, IR_MRAF);
870 irqstatus &= ~IR_MRAF;
871 }
872 }
873
874 psr = m_can_read(cdev, M_CAN_PSR);
875
876 if (irqstatus & IR_ERR_STATE)
877 work_done += m_can_handle_state_errors(dev, psr);
878
879 if (irqstatus & IR_ERR_BUS_30X)
880 work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
881
882 if (irqstatus & IR_RF0N)
883 work_done += m_can_do_rx_poll(dev, (quota - work_done));
884end:
885 return work_done;
886}
887
888static int m_can_rx_peripheral(struct net_device *dev)
889{
890 struct m_can_classdev *cdev = netdev_priv(dev);
891
892 m_can_rx_handler(dev, 1);
893
894 m_can_enable_all_interrupts(cdev);
895
896 return 0;
897}
898
899static int m_can_poll(struct napi_struct *napi, int quota)
900{
901 struct net_device *dev = napi->dev;
902 struct m_can_classdev *cdev = netdev_priv(dev);
903 int work_done;
904
905 work_done = m_can_rx_handler(dev, quota);
906 if (work_done < quota) {
907 napi_complete_done(napi, work_done);
908 m_can_enable_all_interrupts(cdev);
909 }
910
911 return work_done;
912}
913
914static void m_can_echo_tx_event(struct net_device *dev)
915{
916 u32 txe_count = 0;
917 u32 m_can_txefs;
918 u32 fgi = 0;
919 int i = 0;
920 unsigned int msg_mark;
921
922 struct m_can_classdev *cdev = netdev_priv(dev);
923 struct net_device_stats *stats = &dev->stats;
924
925 /* read tx event fifo status */
926 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
927
928 /* Get Tx Event fifo element count */
929 txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
930 >> TXEFS_EFFL_SHIFT;
931
932 /* Get and process all sent elements */
933 for (i = 0; i < txe_count; i++) {
934 /* retrieve get index */
935 fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
936 >> TXEFS_EFGI_SHIFT;
937
938 /* get message marker */
939 msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
940 TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
941
942 /* ack txe element */
943 m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
944 (fgi << TXEFA_EFAI_SHIFT)));
945
946 /* update stats */
947 stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
948 stats->tx_packets++;
949 }
950}
951
952static irqreturn_t m_can_isr(int irq, void *dev_id)
953{
954 struct net_device *dev = (struct net_device *)dev_id;
955 struct m_can_classdev *cdev = netdev_priv(dev);
956 struct net_device_stats *stats = &dev->stats;
957 u32 ir;
958
959 ir = m_can_read(cdev, M_CAN_IR);
960 if (!ir)
961 return IRQ_NONE;
962
963 /* ACK all irqs */
964 if (ir & IR_ALL_INT)
965 m_can_write(cdev, M_CAN_IR, ir);
966
967 if (cdev->ops->clear_interrupts)
968 cdev->ops->clear_interrupts(cdev);
969
970 /* schedule NAPI in case of
971 * - rx IRQ
972 * - state change IRQ
973 * - bus error IRQ and bus error reporting
974 */
975 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
976 cdev->irqstatus = ir;
977 m_can_disable_all_interrupts(cdev);
978 if (!cdev->is_peripheral)
979 napi_schedule(&cdev->napi);
980 else
981 m_can_rx_peripheral(dev);
982 }
983
984 if (cdev->version == 30) {
985 if (ir & IR_TC) {
986 /* Transmission Complete Interrupt*/
987 stats->tx_bytes += can_get_echo_skb(dev, 0);
988 stats->tx_packets++;
989 can_led_event(dev, CAN_LED_EVENT_TX);
990 netif_wake_queue(dev);
991 }
992 } else {
993 if (ir & IR_TEFN) {
994 /* New TX FIFO Element arrived */
995 m_can_echo_tx_event(dev);
996 can_led_event(dev, CAN_LED_EVENT_TX);
997 if (netif_queue_stopped(dev) &&
998 !m_can_tx_fifo_full(cdev))
999 netif_wake_queue(dev);
1000 }
1001 }
1002
1003 return IRQ_HANDLED;
1004}
1005
1006static const struct can_bittiming_const m_can_bittiming_const_30X = {
1007 .name = KBUILD_MODNAME,
1008 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1009 .tseg1_max = 64,
1010 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1011 .tseg2_max = 16,
1012 .sjw_max = 16,
1013 .brp_min = 1,
1014 .brp_max = 1024,
1015 .brp_inc = 1,
1016};
1017
1018static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1019 .name = KBUILD_MODNAME,
1020 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1021 .tseg1_max = 16,
1022 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1023 .tseg2_max = 8,
1024 .sjw_max = 4,
1025 .brp_min = 1,
1026 .brp_max = 32,
1027 .brp_inc = 1,
1028};
1029
1030static const struct can_bittiming_const m_can_bittiming_const_31X = {
1031 .name = KBUILD_MODNAME,
1032 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1033 .tseg1_max = 256,
1034 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1035 .tseg2_max = 128,
1036 .sjw_max = 128,
1037 .brp_min = 1,
1038 .brp_max = 512,
1039 .brp_inc = 1,
1040};
1041
1042static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1043 .name = KBUILD_MODNAME,
1044 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
1045 .tseg1_max = 32,
1046 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1047 .tseg2_max = 16,
1048 .sjw_max = 16,
1049 .brp_min = 1,
1050 .brp_max = 32,
1051 .brp_inc = 1,
1052};
1053
1054static int m_can_set_bittiming(struct net_device *dev)
1055{
1056 struct m_can_classdev *cdev = netdev_priv(dev);
1057 const struct can_bittiming *bt = &cdev->can.bittiming;
1058 const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1059 u16 brp, sjw, tseg1, tseg2;
1060 u32 reg_btp;
1061
1062 brp = bt->brp - 1;
1063 sjw = bt->sjw - 1;
1064 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1065 tseg2 = bt->phase_seg2 - 1;
1066 reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1067 (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1068 m_can_write(cdev, M_CAN_NBTP, reg_btp);
1069
1070 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1071 reg_btp = 0;
1072 brp = dbt->brp - 1;
1073 sjw = dbt->sjw - 1;
1074 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1075 tseg2 = dbt->phase_seg2 - 1;
1076
1077 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1078 * This is mentioned in the "Bit Time Requirements for CAN FD"
1079 * paper presented at the International CAN Conference 2013
1080 */
1081 if (dbt->bitrate > 2500000) {
1082 u32 tdco, ssp;
1083
1084 /* Use the same value of secondary sampling point
1085 * as the data sampling point
1086 */
1087 ssp = dbt->sample_point;
1088
1089 /* Equation based on Bosch's M_CAN User Manual's
1090 * Transmitter Delay Compensation Section
1091 */
1092 tdco = (cdev->can.clock.freq / 1000) *
1093 ssp / dbt->bitrate;
1094
1095 /* Max valid TDCO value is 127 */
1096 if (tdco > 127) {
1097 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1098 tdco);
1099 tdco = 127;
1100 }
1101
1102 reg_btp |= DBTP_TDC;
1103 m_can_write(cdev, M_CAN_TDCR,
1104 tdco << TDCR_TDCO_SHIFT);
1105 }
1106
1107 reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1108 (sjw << DBTP_DSJW_SHIFT) |
1109 (tseg1 << DBTP_DTSEG1_SHIFT) |
1110 (tseg2 << DBTP_DTSEG2_SHIFT);
1111
1112 m_can_write(cdev, M_CAN_DBTP, reg_btp);
1113 }
1114
1115 return 0;
1116}
1117
1118/* Configure M_CAN chip:
1119 * - set rx buffer/fifo element size
1120 * - configure rx fifo
1121 * - accept non-matching frame into fifo 0
1122 * - configure tx buffer
1123 * - >= v3.1.x: TX FIFO is used
1124 * - configure mode
1125 * - setup bittiming
1126 */
1127static void m_can_chip_config(struct net_device *dev)
1128{
1129 struct m_can_classdev *cdev = netdev_priv(dev);
1130 u32 cccr, test;
1131
1132 m_can_config_endisable(cdev, true);
1133
1134 /* RX Buffer/FIFO Element Size 64 bytes data field */
1135 m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1136
1137 /* Accept Non-matching Frames Into FIFO 0 */
1138 m_can_write(cdev, M_CAN_GFC, 0x0);
1139
1140 if (cdev->version == 30) {
1141 /* only support one Tx Buffer currently */
1142 m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1143 cdev->mcfg[MRAM_TXB].off);
1144 } else {
1145 /* TX FIFO is used for newer IP Core versions */
1146 m_can_write(cdev, M_CAN_TXBC,
1147 (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1148 (cdev->mcfg[MRAM_TXB].off));
1149 }
1150
1151 /* support 64 bytes payload */
1152 m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1153
1154 /* TX Event FIFO */
1155 if (cdev->version == 30) {
1156 m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1157 cdev->mcfg[MRAM_TXE].off);
1158 } else {
1159 /* Full TX Event FIFO is used */
1160 m_can_write(cdev, M_CAN_TXEFC,
1161 ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1162 & TXEFC_EFS_MASK) |
1163 cdev->mcfg[MRAM_TXE].off);
1164 }
1165
1166 /* rx fifo configuration, blocking mode, fifo size 1 */
1167 m_can_write(cdev, M_CAN_RXF0C,
1168 (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1169 cdev->mcfg[MRAM_RXF0].off);
1170
1171 m_can_write(cdev, M_CAN_RXF1C,
1172 (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1173 cdev->mcfg[MRAM_RXF1].off);
1174
1175 cccr = m_can_read(cdev, M_CAN_CCCR);
1176 test = m_can_read(cdev, M_CAN_TEST);
1177 test &= ~TEST_LBCK;
1178 if (cdev->version == 30) {
1179 /* Version 3.0.x */
1180
1181 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1182 (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1183 (CCCR_CME_MASK << CCCR_CME_SHIFT));
1184
1185 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1186 cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1187
1188 } else {
1189 /* Version 3.1.x or 3.2.x */
1190 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1191 CCCR_NISO | CCCR_DAR);
1192
1193 /* Only 3.2.x has NISO Bit implemented */
1194 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1195 cccr |= CCCR_NISO;
1196
1197 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1198 cccr |= (CCCR_BRSE | CCCR_FDOE);
1199 }
1200
1201 /* Loopback Mode */
1202 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1203 cccr |= CCCR_TEST | CCCR_MON;
1204 test |= TEST_LBCK;
1205 }
1206
1207 /* Enable Monitoring (all versions) */
1208 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1209 cccr |= CCCR_MON;
1210
1211 /* Disable Auto Retransmission (all versions) */
1212 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1213 cccr |= CCCR_DAR;
1214
1215 /* Write config */
1216 m_can_write(cdev, M_CAN_CCCR, cccr);
1217 m_can_write(cdev, M_CAN_TEST, test);
1218
1219 /* Enable interrupts */
1220 m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1221 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1222 if (cdev->version == 30)
1223 m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1224 ~(IR_ERR_LEC_30X));
1225 else
1226 m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1227 ~(IR_ERR_LEC_31X));
1228 else
1229 m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1230
1231 /* route all interrupts to INT0 */
1232 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1233
1234 /* set bittiming params */
1235 m_can_set_bittiming(dev);
1236
1237 m_can_config_endisable(cdev, false);
1238
1239 if (cdev->ops->init)
1240 cdev->ops->init(cdev);
1241}
1242
1243static void m_can_start(struct net_device *dev)
1244{
1245 struct m_can_classdev *cdev = netdev_priv(dev);
1246
1247 /* basic m_can configuration */
1248 m_can_chip_config(dev);
1249
1250 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1251
1252 m_can_enable_all_interrupts(cdev);
1253}
1254
1255static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1256{
1257 switch (mode) {
1258 case CAN_MODE_START:
1259 m_can_clean(dev);
1260 m_can_start(dev);
1261 netif_wake_queue(dev);
1262 break;
1263 default:
1264 return -EOPNOTSUPP;
1265 }
1266
1267 return 0;
1268}
1269
1270/* Checks core release number of M_CAN
1271 * returns 0 if an unsupported device is detected
1272 * else it returns the release and step coded as:
1273 * return value = 10 * <release> + 1 * <step>
1274 */
1275static int m_can_check_core_release(struct m_can_classdev *cdev)
1276{
1277 u32 crel_reg;
1278 u8 rel;
1279 u8 step;
1280 int res;
1281
1282 /* Read Core Release Version and split into version number
1283 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1284 */
1285 crel_reg = m_can_read(cdev, M_CAN_CREL);
1286 rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1287 step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1288
1289 if (rel == 3) {
1290 /* M_CAN v3.x.y: create return value */
1291 res = 30 + step;
1292 } else {
1293 /* Unsupported M_CAN version */
1294 res = 0;
1295 }
1296
1297 return res;
1298}
1299
1300/* Selectable Non ISO support only in version 3.2.x
1301 * This function checks if the bit is writable.
1302 */
1303static bool m_can_niso_supported(struct m_can_classdev *cdev)
1304{
1305 u32 cccr_reg, cccr_poll = 0;
1306 int niso_timeout = -ETIMEDOUT;
1307 int i;
1308
1309 m_can_config_endisable(cdev, true);
1310 cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1311 cccr_reg |= CCCR_NISO;
1312 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1313
1314 for (i = 0; i <= 10; i++) {
1315 cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1316 if (cccr_poll == cccr_reg) {
1317 niso_timeout = 0;
1318 break;
1319 }
1320
1321 usleep_range(1, 5);
1322 }
1323
1324 /* Clear NISO */
1325 cccr_reg &= ~(CCCR_NISO);
1326 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1327
1328 m_can_config_endisable(cdev, false);
1329
1330 /* return false if time out (-ETIMEDOUT), else return true */
1331 return !niso_timeout;
1332}
1333
1334static int m_can_dev_setup(struct m_can_classdev *m_can_dev)
1335{
1336 struct net_device *dev = m_can_dev->net;
1337 int m_can_version;
1338
1339 m_can_version = m_can_check_core_release(m_can_dev);
1340 /* return if unsupported version */
1341 if (!m_can_version) {
1342 dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1343 m_can_version);
1344 return -EINVAL;
1345 }
1346
1347 if (!m_can_dev->is_peripheral)
1348 netif_napi_add(dev, &m_can_dev->napi,
1349 m_can_poll, M_CAN_NAPI_WEIGHT);
1350
1351 /* Shared properties of all M_CAN versions */
1352 m_can_dev->version = m_can_version;
1353 m_can_dev->can.do_set_mode = m_can_set_mode;
1354 m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
1355
1356 /* Set M_CAN supported operations */
1357 m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1358 CAN_CTRLMODE_LISTENONLY |
1359 CAN_CTRLMODE_BERR_REPORTING |
1360 CAN_CTRLMODE_FD |
1361 CAN_CTRLMODE_ONE_SHOT;
1362
1363 /* Set properties depending on M_CAN version */
1364 switch (m_can_dev->version) {
1365 case 30:
1366 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1367 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1368 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1369 m_can_dev->bit_timing : &m_can_bittiming_const_30X;
1370
1371 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1372 m_can_dev->data_timing :
1373 &m_can_data_bittiming_const_30X;
1374 break;
1375 case 31:
1376 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1377 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1378 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1379 m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1380
1381 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1382 m_can_dev->data_timing :
1383 &m_can_data_bittiming_const_31X;
1384 break;
1385 case 32:
1386 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1387 m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1388
1389 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1390 m_can_dev->data_timing :
1391 &m_can_data_bittiming_const_31X;
1392
1393 m_can_dev->can.ctrlmode_supported |=
1394 (m_can_niso_supported(m_can_dev)
1395 ? CAN_CTRLMODE_FD_NON_ISO
1396 : 0);
1397 break;
1398 default:
1399 dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1400 m_can_dev->version);
1401 return -EINVAL;
1402 }
1403
1404 if (m_can_dev->ops->init)
1405 m_can_dev->ops->init(m_can_dev);
1406
1407 return 0;
1408}
1409
1410static void m_can_stop(struct net_device *dev)
1411{
1412 struct m_can_classdev *cdev = netdev_priv(dev);
1413
1414 /* disable all interrupts */
1415 m_can_disable_all_interrupts(cdev);
1416
1417 /* set the state as STOPPED */
1418 cdev->can.state = CAN_STATE_STOPPED;
1419}
1420
1421static int m_can_close(struct net_device *dev)
1422{
1423 struct m_can_classdev *cdev = netdev_priv(dev);
1424
1425 netif_stop_queue(dev);
1426
1427 if (!cdev->is_peripheral)
1428 napi_disable(&cdev->napi);
1429
1430 m_can_stop(dev);
1431 m_can_clk_stop(cdev);
1432 free_irq(dev->irq, dev);
1433
1434 if (cdev->is_peripheral) {
1435 cdev->tx_skb = NULL;
1436 destroy_workqueue(cdev->tx_wq);
1437 cdev->tx_wq = NULL;
1438 }
1439
1440 close_candev(dev);
1441 can_led_event(dev, CAN_LED_EVENT_STOP);
1442
1443 return 0;
1444}
1445
1446static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1447{
1448 struct m_can_classdev *cdev = netdev_priv(dev);
1449 /*get wrap around for loopback skb index */
1450 unsigned int wrap = cdev->can.echo_skb_max;
1451 int next_idx;
1452
1453 /* calculate next index */
1454 next_idx = (++putidx >= wrap ? 0 : putidx);
1455
1456 /* check if occupied */
1457 return !!cdev->can.echo_skb[next_idx];
1458}
1459
1460static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1461{
1462 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1463 struct net_device *dev = cdev->net;
1464 struct sk_buff *skb = cdev->tx_skb;
1465 u32 id, cccr, fdflags;
1466 int i;
1467 int putidx;
1468
1469 /* Generate ID field for TX buffer Element */
1470 /* Common to all supported M_CAN versions */
1471 if (cf->can_id & CAN_EFF_FLAG) {
1472 id = cf->can_id & CAN_EFF_MASK;
1473 id |= TX_BUF_XTD;
1474 } else {
1475 id = ((cf->can_id & CAN_SFF_MASK) << 18);
1476 }
1477
1478 if (cf->can_id & CAN_RTR_FLAG)
1479 id |= TX_BUF_RTR;
1480
1481 if (cdev->version == 30) {
1482 netif_stop_queue(dev);
1483
1484 /* message ram configuration */
1485 m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
1486 m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1487 can_len2dlc(cf->len) << 16);
1488
1489 for (i = 0; i < cf->len; i += 4)
1490 m_can_fifo_write(cdev, 0,
1491 M_CAN_FIFO_DATA(i / 4),
1492 *(u32 *)(cf->data + i));
1493
1494 can_put_echo_skb(skb, dev, 0);
1495
1496 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1497 cccr = m_can_read(cdev, M_CAN_CCCR);
1498 cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1499 if (can_is_canfd_skb(skb)) {
1500 if (cf->flags & CANFD_BRS)
1501 cccr |= CCCR_CMR_CANFD_BRS <<
1502 CCCR_CMR_SHIFT;
1503 else
1504 cccr |= CCCR_CMR_CANFD <<
1505 CCCR_CMR_SHIFT;
1506 } else {
1507 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1508 }
1509 m_can_write(cdev, M_CAN_CCCR, cccr);
1510 }
1511 m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1512 m_can_write(cdev, M_CAN_TXBAR, 0x1);
1513 /* End of xmit function for version 3.0.x */
1514 } else {
1515 /* Transmit routine for version >= v3.1.x */
1516
1517 /* Check if FIFO full */
1518 if (m_can_tx_fifo_full(cdev)) {
1519 /* This shouldn't happen */
1520 netif_stop_queue(dev);
1521 netdev_warn(dev,
1522 "TX queue active although FIFO is full.");
1523
1524 if (cdev->is_peripheral) {
1525 kfree_skb(skb);
1526 dev->stats.tx_dropped++;
1527 return NETDEV_TX_OK;
1528 } else {
1529 return NETDEV_TX_BUSY;
1530 }
1531 }
1532
1533 /* get put index for frame */
1534 putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1535 >> TXFQS_TFQPI_SHIFT);
1536 /* Write ID Field to FIFO Element */
1537 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1538
1539 /* get CAN FD configuration of frame */
1540 fdflags = 0;
1541 if (can_is_canfd_skb(skb)) {
1542 fdflags |= TX_BUF_FDF;
1543 if (cf->flags & CANFD_BRS)
1544 fdflags |= TX_BUF_BRS;
1545 }
1546
1547 /* Construct DLC Field. Also contains CAN-FD configuration
1548 * use put index of fifo as message marker
1549 * it is used in TX interrupt for
1550 * sending the correct echo frame
1551 */
1552 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1553 ((putidx << TX_BUF_MM_SHIFT) &
1554 TX_BUF_MM_MASK) |
1555 (can_len2dlc(cf->len) << 16) |
1556 fdflags | TX_BUF_EFC);
1557
1558 for (i = 0; i < cf->len; i += 4)
1559 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1560 *(u32 *)(cf->data + i));
1561
1562 /* Push loopback echo.
1563 * Will be looped back on TX interrupt based on message marker
1564 */
1565 can_put_echo_skb(skb, dev, putidx);
1566
1567 /* Enable TX FIFO element to start transfer */
1568 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1569
1570 /* stop network queue if fifo full */
1571 if (m_can_tx_fifo_full(cdev) ||
1572 m_can_next_echo_skb_occupied(dev, putidx))
1573 netif_stop_queue(dev);
1574 }
1575
1576 return NETDEV_TX_OK;
1577}
1578
1579static void m_can_tx_work_queue(struct work_struct *ws)
1580{
1581 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1582 tx_work);
1583
1584 m_can_tx_handler(cdev);
1585 cdev->tx_skb = NULL;
1586}
1587
1588static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1589 struct net_device *dev)
1590{
1591 struct m_can_classdev *cdev = netdev_priv(dev);
1592
1593 if (can_dropped_invalid_skb(dev, skb))
1594 return NETDEV_TX_OK;
1595
1596 if (cdev->is_peripheral) {
1597 if (cdev->tx_skb) {
1598 netdev_err(dev, "hard_xmit called while tx busy\n");
1599 return NETDEV_TX_BUSY;
1600 }
1601
1602 if (cdev->can.state == CAN_STATE_BUS_OFF) {
1603 m_can_clean(dev);
1604 } else {
1605 /* Need to stop the queue to avoid numerous requests
1606 * from being sent. Suggested improvement is to create
1607 * a queueing mechanism that will queue the skbs and
1608 * process them in order.
1609 */
1610 cdev->tx_skb = skb;
1611 netif_stop_queue(cdev->net);
1612 queue_work(cdev->tx_wq, &cdev->tx_work);
1613 }
1614 } else {
1615 cdev->tx_skb = skb;
1616 return m_can_tx_handler(cdev);
1617 }
1618
1619 return NETDEV_TX_OK;
1620}
1621
1622static int m_can_open(struct net_device *dev)
1623{
1624 struct m_can_classdev *cdev = netdev_priv(dev);
1625 int err;
1626
1627 err = m_can_clk_start(cdev);
1628 if (err)
1629 return err;
1630
1631 /* open the can device */
1632 err = open_candev(dev);
1633 if (err) {
1634 netdev_err(dev, "failed to open can device\n");
1635 goto exit_disable_clks;
1636 }
1637
1638 /* register interrupt handler */
1639 if (cdev->is_peripheral) {
1640 cdev->tx_skb = NULL;
1641 cdev->tx_wq = alloc_workqueue("mcan_wq",
1642 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1643 if (!cdev->tx_wq) {
1644 err = -ENOMEM;
1645 goto out_wq_fail;
1646 }
1647
1648 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1649
1650 err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1651 IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
1652 dev->name, dev);
1653 } else {
1654 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1655 dev);
1656 }
1657
1658 if (err < 0) {
1659 netdev_err(dev, "failed to request interrupt\n");
1660 goto exit_irq_fail;
1661 }
1662
1663 /* start the m_can controller */
1664 m_can_start(dev);
1665
1666 can_led_event(dev, CAN_LED_EVENT_OPEN);
1667
1668 if (!cdev->is_peripheral)
1669 napi_enable(&cdev->napi);
1670
1671 netif_start_queue(dev);
1672
1673 return 0;
1674
1675exit_irq_fail:
1676 if (cdev->is_peripheral)
1677 destroy_workqueue(cdev->tx_wq);
1678out_wq_fail:
1679 close_candev(dev);
1680exit_disable_clks:
1681 m_can_clk_stop(cdev);
1682 return err;
1683}
1684
1685static const struct net_device_ops m_can_netdev_ops = {
1686 .ndo_open = m_can_open,
1687 .ndo_stop = m_can_close,
1688 .ndo_start_xmit = m_can_start_xmit,
1689 .ndo_change_mtu = can_change_mtu,
1690};
1691
1692static int register_m_can_dev(struct net_device *dev)
1693{
1694 dev->flags |= IFF_ECHO; /* we support local echo */
1695 dev->netdev_ops = &m_can_netdev_ops;
1696
1697 return register_candev(dev);
1698}
1699
1700static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1701 const u32 *mram_config_vals)
1702{
1703 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1704 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1705 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1706 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1707 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1708 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1709 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1710 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1711 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1712 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1713 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1714 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1715 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1716 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1717 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1718 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1719 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1720 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1721 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1722 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1723 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1724 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1725 (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1726
1727 dev_dbg(cdev->dev,
1728 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1729 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1730 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1731 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1732 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1733 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1734 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1735 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1736}
1737
1738void m_can_init_ram(struct m_can_classdev *cdev)
1739{
1740 int end, i, start;
1741
1742 /* initialize the entire Message RAM in use to avoid possible
1743 * ECC/parity checksum errors when reading an uninitialized buffer
1744 */
1745 start = cdev->mcfg[MRAM_SIDF].off;
1746 end = cdev->mcfg[MRAM_TXB].off +
1747 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1748
1749 for (i = start; i < end; i += 4)
1750 m_can_fifo_write_no_off(cdev, i, 0x0);
1751}
1752EXPORT_SYMBOL_GPL(m_can_init_ram);
1753
1754int m_can_class_get_clocks(struct m_can_classdev *m_can_dev)
1755{
1756 int ret = 0;
1757
1758 m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
1759 m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
1760
1761 if (IS_ERR(m_can_dev->cclk)) {
1762 dev_err(m_can_dev->dev, "no clock found\n");
1763 ret = -ENODEV;
1764 }
1765
1766 return ret;
1767}
1768EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1769
1770struct m_can_classdev *m_can_class_allocate_dev(struct device *dev)
1771{
1772 struct m_can_classdev *class_dev = NULL;
1773 u32 mram_config_vals[MRAM_CFG_LEN];
1774 struct net_device *net_dev;
1775 u32 tx_fifo_size;
1776 int ret;
1777
1778 ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1779 "bosch,mram-cfg",
1780 mram_config_vals,
1781 sizeof(mram_config_vals) / 4);
1782 if (ret) {
1783 dev_err(dev, "Could not get Message RAM configuration.");
1784 goto out;
1785 }
1786
1787 /* Get TX FIFO size
1788 * Defines the total amount of echo buffers for loopback
1789 */
1790 tx_fifo_size = mram_config_vals[7];
1791
1792 /* allocate the m_can device */
1793 net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
1794 if (!net_dev) {
1795 dev_err(dev, "Failed to allocate CAN device");
1796 goto out;
1797 }
1798
1799 class_dev = netdev_priv(net_dev);
1800 if (!class_dev) {
1801 dev_err(dev, "Failed to init netdev cdevate");
1802 goto out;
1803 }
1804
1805 class_dev->net = net_dev;
1806 class_dev->dev = dev;
1807 SET_NETDEV_DEV(net_dev, dev);
1808
1809 m_can_of_parse_mram(class_dev, mram_config_vals);
1810out:
1811 return class_dev;
1812}
1813EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1814
1815int m_can_class_register(struct m_can_classdev *m_can_dev)
1816{
1817 int ret;
1818
1819 if (m_can_dev->pm_clock_support) {
1820 pm_runtime_enable(m_can_dev->dev);
1821 ret = m_can_clk_start(m_can_dev);
1822 if (ret)
1823 goto pm_runtime_fail;
1824 }
1825
1826 ret = m_can_dev_setup(m_can_dev);
1827 if (ret)
1828 goto clk_disable;
1829
1830 ret = register_m_can_dev(m_can_dev->net);
1831 if (ret) {
1832 dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
1833 m_can_dev->net->name, ret);
1834 goto clk_disable;
1835 }
1836
1837 devm_can_led_init(m_can_dev->net);
1838
1839 of_can_transceiver(m_can_dev->net);
1840
1841 dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
1842 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
1843
1844 /* Probe finished
1845 * Stop clocks. They will be reactivated once the M_CAN device is opened
1846 */
1847clk_disable:
1848 m_can_clk_stop(m_can_dev);
1849pm_runtime_fail:
1850 if (ret) {
1851 if (m_can_dev->pm_clock_support)
1852 pm_runtime_disable(m_can_dev->dev);
1853 free_candev(m_can_dev->net);
1854 }
1855
1856 return ret;
1857}
1858EXPORT_SYMBOL_GPL(m_can_class_register);
1859
1860int m_can_class_suspend(struct device *dev)
1861{
1862 struct net_device *ndev = dev_get_drvdata(dev);
1863 struct m_can_classdev *cdev = netdev_priv(ndev);
1864
1865 if (netif_running(ndev)) {
1866 netif_stop_queue(ndev);
1867 netif_device_detach(ndev);
1868 m_can_stop(ndev);
1869 m_can_clk_stop(cdev);
1870 }
1871
1872 pinctrl_pm_select_sleep_state(dev);
1873
1874 cdev->can.state = CAN_STATE_SLEEPING;
1875
1876 return 0;
1877}
1878EXPORT_SYMBOL_GPL(m_can_class_suspend);
1879
1880int m_can_class_resume(struct device *dev)
1881{
1882 struct net_device *ndev = dev_get_drvdata(dev);
1883 struct m_can_classdev *cdev = netdev_priv(ndev);
1884
1885 pinctrl_pm_select_default_state(dev);
1886
1887 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1888
1889 if (netif_running(ndev)) {
1890 int ret;
1891
1892 ret = m_can_clk_start(cdev);
1893 if (ret)
1894 return ret;
1895
1896 m_can_init_ram(cdev);
1897 m_can_start(ndev);
1898 netif_device_attach(ndev);
1899 netif_start_queue(ndev);
1900 }
1901
1902 return 0;
1903}
1904EXPORT_SYMBOL_GPL(m_can_class_resume);
1905
1906void m_can_class_unregister(struct m_can_classdev *m_can_dev)
1907{
1908 unregister_candev(m_can_dev->net);
1909
1910 m_can_clk_stop(m_can_dev);
1911
1912 free_candev(m_can_dev->net);
1913}
1914EXPORT_SYMBOL_GPL(m_can_class_unregister);
1915
1916MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1917MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1918MODULE_LICENSE("GPL v2");
1919MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");