Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * CAN bus driver for Bosch M_CAN controller
   3 *
   4 * Copyright (C) 2014 Freescale Semiconductor, Inc.
   5 *	Dong Aisheng <b29396@freescale.com>
   6 *
   7 * Bosch M_CAN user manual can be obtained from:
   8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
   9 * mcan_users_manual_v302.pdf
  10 *
  11 * This file is licensed under the terms of the GNU General Public
  12 * License version 2. This program is licensed "as is" without any
  13 * warranty of any kind, whether express or implied.
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/delay.h>
  18#include <linux/interrupt.h>
  19#include <linux/io.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/netdevice.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/iopoll.h>
  28#include <linux/can/dev.h>
  29#include <linux/pinctrl/consumer.h>
  30
  31/* napi related */
  32#define M_CAN_NAPI_WEIGHT	64
  33
  34/* message ram configuration data length */
  35#define MRAM_CFG_LEN	8
  36
  37/* registers definition */
  38enum m_can_reg {
  39	M_CAN_CREL	= 0x0,
  40	M_CAN_ENDN	= 0x4,
  41	M_CAN_CUST	= 0x8,
  42	M_CAN_DBTP	= 0xc,
  43	M_CAN_TEST	= 0x10,
  44	M_CAN_RWD	= 0x14,
  45	M_CAN_CCCR	= 0x18,
  46	M_CAN_NBTP	= 0x1c,
  47	M_CAN_TSCC	= 0x20,
  48	M_CAN_TSCV	= 0x24,
  49	M_CAN_TOCC	= 0x28,
  50	M_CAN_TOCV	= 0x2c,
  51	M_CAN_ECR	= 0x40,
  52	M_CAN_PSR	= 0x44,
  53/* TDCR Register only available for version >=3.1.x */
  54	M_CAN_TDCR	= 0x48,
  55	M_CAN_IR	= 0x50,
  56	M_CAN_IE	= 0x54,
  57	M_CAN_ILS	= 0x58,
  58	M_CAN_ILE	= 0x5c,
  59	M_CAN_GFC	= 0x80,
  60	M_CAN_SIDFC	= 0x84,
  61	M_CAN_XIDFC	= 0x88,
  62	M_CAN_XIDAM	= 0x90,
  63	M_CAN_HPMS	= 0x94,
  64	M_CAN_NDAT1	= 0x98,
  65	M_CAN_NDAT2	= 0x9c,
  66	M_CAN_RXF0C	= 0xa0,
  67	M_CAN_RXF0S	= 0xa4,
  68	M_CAN_RXF0A	= 0xa8,
  69	M_CAN_RXBC	= 0xac,
  70	M_CAN_RXF1C	= 0xb0,
  71	M_CAN_RXF1S	= 0xb4,
  72	M_CAN_RXF1A	= 0xb8,
  73	M_CAN_RXESC	= 0xbc,
  74	M_CAN_TXBC	= 0xc0,
  75	M_CAN_TXFQS	= 0xc4,
  76	M_CAN_TXESC	= 0xc8,
  77	M_CAN_TXBRP	= 0xcc,
  78	M_CAN_TXBAR	= 0xd0,
  79	M_CAN_TXBCR	= 0xd4,
  80	M_CAN_TXBTO	= 0xd8,
  81	M_CAN_TXBCF	= 0xdc,
  82	M_CAN_TXBTIE	= 0xe0,
  83	M_CAN_TXBCIE	= 0xe4,
  84	M_CAN_TXEFC	= 0xf0,
  85	M_CAN_TXEFS	= 0xf4,
  86	M_CAN_TXEFA	= 0xf8,
  87};
  88
  89/* m_can lec values */
  90enum m_can_lec_type {
  91	LEC_NO_ERROR = 0,
  92	LEC_STUFF_ERROR,
  93	LEC_FORM_ERROR,
  94	LEC_ACK_ERROR,
  95	LEC_BIT1_ERROR,
  96	LEC_BIT0_ERROR,
  97	LEC_CRC_ERROR,
  98	LEC_UNUSED,
  99};
 100
 101enum m_can_mram_cfg {
 102	MRAM_SIDF = 0,
 103	MRAM_XIDF,
 104	MRAM_RXF0,
 105	MRAM_RXF1,
 106	MRAM_RXB,
 107	MRAM_TXE,
 108	MRAM_TXB,
 109	MRAM_CFG_NUM,
 110};
 111
 112/* Core Release Register (CREL) */
 113#define CREL_REL_SHIFT		28
 114#define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
 115#define CREL_STEP_SHIFT		24
 116#define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
 117#define CREL_SUBSTEP_SHIFT	20
 118#define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)
 119
 120/* Data Bit Timing & Prescaler Register (DBTP) */
 121#define DBTP_TDC		BIT(23)
 122#define DBTP_DBRP_SHIFT		16
 123#define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
 124#define DBTP_DTSEG1_SHIFT	8
 125#define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
 126#define DBTP_DTSEG2_SHIFT	4
 127#define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
 128#define DBTP_DSJW_SHIFT		0
 129#define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
 130
 131/* Transmitter Delay Compensation Register (TDCR) */
 132#define TDCR_TDCO_SHIFT		8
 133#define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
 134#define TDCR_TDCF_SHIFT		0
 135#define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)
 136
 137/* Test Register (TEST) */
 138#define TEST_LBCK		BIT(4)
 139
 140/* CC Control Register(CCCR) */
 141#define CCCR_CMR_MASK		0x3
 142#define CCCR_CMR_SHIFT		10
 143#define CCCR_CMR_CANFD		0x1
 144#define CCCR_CMR_CANFD_BRS	0x2
 145#define CCCR_CMR_CAN		0x3
 146#define CCCR_CME_MASK		0x3
 147#define CCCR_CME_SHIFT		8
 148#define CCCR_CME_CAN		0
 149#define CCCR_CME_CANFD		0x1
 150#define CCCR_CME_CANFD_BRS	0x2
 151#define CCCR_TXP		BIT(14)
 152#define CCCR_TEST		BIT(7)
 
 153#define CCCR_MON		BIT(5)
 154#define CCCR_CSR		BIT(4)
 155#define CCCR_CSA		BIT(3)
 156#define CCCR_ASM		BIT(2)
 157#define CCCR_CCE		BIT(1)
 158#define CCCR_INIT		BIT(0)
 159#define CCCR_CANFD		0x10
 160/* for version >=3.1.x */
 161#define CCCR_EFBI		BIT(13)
 162#define CCCR_PXHD		BIT(12)
 163#define CCCR_BRSE		BIT(9)
 164#define CCCR_FDOE		BIT(8)
 165/* only for version >=3.2.x */
 166#define CCCR_NISO		BIT(15)
 167
 168/* Nominal Bit Timing & Prescaler Register (NBTP) */
 169#define NBTP_NSJW_SHIFT		25
 170#define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
 171#define NBTP_NBRP_SHIFT		16
 172#define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
 173#define NBTP_NTSEG1_SHIFT	8
 174#define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
 175#define NBTP_NTSEG2_SHIFT	0
 176#define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
 177
 178/* Error Counter Register(ECR) */
 179#define ECR_RP			BIT(15)
 180#define ECR_REC_SHIFT		8
 181#define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
 182#define ECR_TEC_SHIFT		0
 183#define ECR_TEC_MASK		0xff
 184
 185/* Protocol Status Register(PSR) */
 186#define PSR_BO		BIT(7)
 187#define PSR_EW		BIT(6)
 188#define PSR_EP		BIT(5)
 189#define PSR_LEC_MASK	0x7
 190
 191/* Interrupt Register(IR) */
 192#define IR_ALL_INT	0xffffffff
 193
 194/* Renamed bits for versions > 3.1.x */
 195#define IR_ARA		BIT(29)
 196#define IR_PED		BIT(28)
 197#define IR_PEA		BIT(27)
 198
 199/* Bits for version 3.0.x */
 200#define IR_STE		BIT(31)
 201#define IR_FOE		BIT(30)
 202#define IR_ACKE		BIT(29)
 203#define IR_BE		BIT(28)
 204#define IR_CRCE		BIT(27)
 205#define IR_WDI		BIT(26)
 206#define IR_BO		BIT(25)
 207#define IR_EW		BIT(24)
 208#define IR_EP		BIT(23)
 209#define IR_ELO		BIT(22)
 210#define IR_BEU		BIT(21)
 211#define IR_BEC		BIT(20)
 212#define IR_DRX		BIT(19)
 213#define IR_TOO		BIT(18)
 214#define IR_MRAF		BIT(17)
 215#define IR_TSW		BIT(16)
 216#define IR_TEFL		BIT(15)
 217#define IR_TEFF		BIT(14)
 218#define IR_TEFW		BIT(13)
 219#define IR_TEFN		BIT(12)
 220#define IR_TFE		BIT(11)
 221#define IR_TCF		BIT(10)
 222#define IR_TC		BIT(9)
 223#define IR_HPM		BIT(8)
 224#define IR_RF1L		BIT(7)
 225#define IR_RF1F		BIT(6)
 226#define IR_RF1W		BIT(5)
 227#define IR_RF1N		BIT(4)
 228#define IR_RF0L		BIT(3)
 229#define IR_RF0F		BIT(2)
 230#define IR_RF0W		BIT(1)
 231#define IR_RF0N		BIT(0)
 232#define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
 233
 234/* Interrupts for version 3.0.x */
 235#define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
 236#define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
 237			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
 238			 IR_RF1L | IR_RF0L)
 239#define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
 240/* Interrupts for version >= 3.1.x */
 241#define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
 242#define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
 243			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
 244			 IR_RF1L | IR_RF0L)
 245#define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
 246
 247/* Interrupt Line Select (ILS) */
 248#define ILS_ALL_INT0	0x0
 249#define ILS_ALL_INT1	0xFFFFFFFF
 250
 251/* Interrupt Line Enable (ILE) */
 252#define ILE_EINT1	BIT(1)
 253#define ILE_EINT0	BIT(0)
 254
 255/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
 256#define RXFC_FWM_SHIFT	24
 257#define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
 258#define RXFC_FS_SHIFT	16
 259#define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
 260
 261/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
 262#define RXFS_RFL	BIT(25)
 263#define RXFS_FF		BIT(24)
 264#define RXFS_FPI_SHIFT	16
 265#define RXFS_FPI_MASK	0x3f0000
 266#define RXFS_FGI_SHIFT	8
 267#define RXFS_FGI_MASK	0x3f00
 268#define RXFS_FFL_MASK	0x7f
 269
 270/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
 271#define M_CAN_RXESC_8BYTES	0x0
 272#define M_CAN_RXESC_64BYTES	0x777
 273
 274/* Tx Buffer Configuration(TXBC) */
 275#define TXBC_NDTB_SHIFT		16
 276#define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
 277#define TXBC_TFQS_SHIFT		24
 278#define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)
 279
 280/* Tx FIFO/Queue Status (TXFQS) */
 281#define TXFQS_TFQF		BIT(21)
 282#define TXFQS_TFQPI_SHIFT	16
 283#define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
 284#define TXFQS_TFGI_SHIFT	8
 285#define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
 286#define TXFQS_TFFL_SHIFT	0
 287#define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
 288
 289/* Tx Buffer Element Size Configuration(TXESC) */
 290#define TXESC_TBDS_8BYTES	0x0
 291#define TXESC_TBDS_64BYTES	0x7
 292
 293/* Tx Event FIFO Configuration (TXEFC) */
 294#define TXEFC_EFS_SHIFT		16
 295#define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)
 296
 297/* Tx Event FIFO Status (TXEFS) */
 298#define TXEFS_TEFL		BIT(25)
 299#define TXEFS_EFF		BIT(24)
 300#define TXEFS_EFGI_SHIFT	8
 301#define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
 302#define TXEFS_EFFL_SHIFT	0
 303#define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)
 304
 305/* Tx Event FIFO Acknowledge (TXEFA) */
 306#define TXEFA_EFAI_SHIFT	0
 307#define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
 308
 309/* Message RAM Configuration (in bytes) */
 310#define SIDF_ELEMENT_SIZE	4
 311#define XIDF_ELEMENT_SIZE	8
 312#define RXF0_ELEMENT_SIZE	72
 313#define RXF1_ELEMENT_SIZE	72
 314#define RXB_ELEMENT_SIZE	72
 315#define TXE_ELEMENT_SIZE	8
 316#define TXB_ELEMENT_SIZE	72
 317
 318/* Message RAM Elements */
 319#define M_CAN_FIFO_ID		0x0
 320#define M_CAN_FIFO_DLC		0x4
 321#define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
 322
 323/* Rx Buffer Element */
 324/* R0 */
 325#define RX_BUF_ESI		BIT(31)
 326#define RX_BUF_XTD		BIT(30)
 327#define RX_BUF_RTR		BIT(29)
 328/* R1 */
 329#define RX_BUF_ANMF		BIT(31)
 330#define RX_BUF_FDF		BIT(21)
 331#define RX_BUF_BRS		BIT(20)
 332
 333/* Tx Buffer Element */
 334/* T0 */
 335#define TX_BUF_ESI		BIT(31)
 336#define TX_BUF_XTD		BIT(30)
 337#define TX_BUF_RTR		BIT(29)
 338/* T1 */
 339#define TX_BUF_EFC		BIT(23)
 340#define TX_BUF_FDF		BIT(21)
 341#define TX_BUF_BRS		BIT(20)
 342#define TX_BUF_MM_SHIFT		24
 343#define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
 344
 345/* Tx event FIFO Element */
 346/* E1 */
 347#define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
 348#define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)
 349
 350/* address offset and element number for each FIFO/Buffer in the Message RAM */
 351struct mram_cfg {
 352	u16 off;
 353	u8  num;
 354};
 355
 356/* m_can private data structure */
 357struct m_can_priv {
 358	struct can_priv can;	/* must be the first member */
 359	struct napi_struct napi;
 360	struct net_device *dev;
 361	struct device *device;
 362	struct clk *hclk;
 363	struct clk *cclk;
 364	void __iomem *base;
 365	u32 irqstatus;
 366	int version;
 367
 368	/* message ram configuration */
 369	void __iomem *mram_base;
 370	struct mram_cfg mcfg[MRAM_CFG_NUM];
 371};
 372
 373static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
 
 374{
 375	return readl(priv->base + reg);
 376}
 377
 378static inline void m_can_write(const struct m_can_priv *priv,
 379			       enum m_can_reg reg, u32 val)
 380{
 381	writel(val, priv->base + reg);
 
 
 
 382}
 383
 384static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
 385				  u32 fgi, unsigned int offset)
 386{
 387	return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
 388		     fgi * RXF0_ELEMENT_SIZE + offset);
 
 
 389}
 390
 391static inline void m_can_fifo_write(const struct m_can_priv *priv,
 392				    u32 fpi, unsigned int offset, u32 val)
 393{
 394	writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
 395	       fpi * TXB_ELEMENT_SIZE + offset);
 396}
 397
 398static inline u32 m_can_txe_fifo_read(const struct m_can_priv *priv,
 399				      u32 fgi,
 400				      u32 offset) {
 401	return readl(priv->mram_base + priv->mcfg[MRAM_TXE].off +
 402			fgi * TXE_ELEMENT_SIZE + offset);
 
 403}
 404
 405static inline bool m_can_tx_fifo_full(const struct m_can_priv *priv)
 406{
 407		return !!(m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQF);
 408}
 409
 410static inline void m_can_config_endisable(const struct m_can_priv *priv,
 411					  bool enable)
 412{
 413	u32 cccr = m_can_read(priv, M_CAN_CCCR);
 414	u32 timeout = 10;
 415	u32 val = 0;
 416
 
 
 
 
 417	if (enable) {
 
 
 
 
 418		/* enable m_can configuration */
 419		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
 420		udelay(5);
 421		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
 422		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
 423	} else {
 424		m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
 425	}
 426
 427	/* there's a delay for module initialization */
 428	if (enable)
 429		val = CCCR_INIT | CCCR_CCE;
 430
 431	while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
 432		if (timeout == 0) {
 433			netdev_warn(priv->dev, "Failed to init module\n");
 434			return;
 435		}
 436		timeout--;
 437		udelay(1);
 438	}
 439}
 440
 441static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
 442{
 443	/* Only interrupt line 0 is used in this driver */
 444	m_can_write(priv, M_CAN_ILE, ILE_EINT0);
 445}
 446
 447static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
 448{
 449	m_can_write(priv, M_CAN_ILE, 0x0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450}
 451
 452static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
 453{
 454	struct net_device_stats *stats = &dev->stats;
 455	struct m_can_priv *priv = netdev_priv(dev);
 456	struct canfd_frame *cf;
 457	struct sk_buff *skb;
 458	u32 id, fgi, dlc;
 459	int i;
 460
 461	/* calculate the fifo get index for where to read data */
 462	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
 463	dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
 464	if (dlc & RX_BUF_FDF)
 465		skb = alloc_canfd_skb(dev, &cf);
 466	else
 467		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
 468	if (!skb) {
 469		stats->rx_dropped++;
 470		return;
 471	}
 472
 473	if (dlc & RX_BUF_FDF)
 474		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
 475	else
 476		cf->len = get_can_dlc((dlc >> 16) & 0x0F);
 477
 478	id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
 479	if (id & RX_BUF_XTD)
 480		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
 481	else
 482		cf->can_id = (id >> 18) & CAN_SFF_MASK;
 483
 484	if (id & RX_BUF_ESI) {
 485		cf->flags |= CANFD_ESI;
 486		netdev_dbg(dev, "ESI Error\n");
 487	}
 488
 489	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
 490		cf->can_id |= CAN_RTR_FLAG;
 491	} else {
 492		if (dlc & RX_BUF_BRS)
 493			cf->flags |= CANFD_BRS;
 494
 495		for (i = 0; i < cf->len; i += 4)
 496			*(u32 *)(cf->data + i) =
 497				m_can_fifo_read(priv, fgi,
 498						M_CAN_FIFO_DATA(i / 4));
 499	}
 500
 501	/* acknowledge rx fifo 0 */
 502	m_can_write(priv, M_CAN_RXF0A, fgi);
 503
 504	stats->rx_packets++;
 505	stats->rx_bytes += cf->len;
 506
 507	netif_receive_skb(skb);
 508}
 509
 510static int m_can_do_rx_poll(struct net_device *dev, int quota)
 511{
 512	struct m_can_priv *priv = netdev_priv(dev);
 513	u32 pkts = 0;
 514	u32 rxfs;
 515
 516	rxfs = m_can_read(priv, M_CAN_RXF0S);
 517	if (!(rxfs & RXFS_FFL_MASK)) {
 518		netdev_dbg(dev, "no messages in fifo0\n");
 519		return 0;
 520	}
 521
 522	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
 523		if (rxfs & RXFS_RFL)
 524			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
 525
 526		m_can_read_fifo(dev, rxfs);
 527
 528		quota--;
 529		pkts++;
 530		rxfs = m_can_read(priv, M_CAN_RXF0S);
 531	}
 532
 533	if (pkts)
 534		can_led_event(dev, CAN_LED_EVENT_RX);
 535
 536	return pkts;
 537}
 538
 539static int m_can_handle_lost_msg(struct net_device *dev)
 540{
 541	struct net_device_stats *stats = &dev->stats;
 542	struct sk_buff *skb;
 543	struct can_frame *frame;
 544
 545	netdev_err(dev, "msg lost in rxf0\n");
 546
 547	stats->rx_errors++;
 548	stats->rx_over_errors++;
 549
 550	skb = alloc_can_err_skb(dev, &frame);
 551	if (unlikely(!skb))
 552		return 0;
 553
 554	frame->can_id |= CAN_ERR_CRTL;
 555	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 556
 557	netif_receive_skb(skb);
 558
 559	return 1;
 560}
 561
 562static int m_can_handle_lec_err(struct net_device *dev,
 563				enum m_can_lec_type lec_type)
 564{
 565	struct m_can_priv *priv = netdev_priv(dev);
 566	struct net_device_stats *stats = &dev->stats;
 567	struct can_frame *cf;
 568	struct sk_buff *skb;
 569
 570	priv->can.can_stats.bus_error++;
 571	stats->rx_errors++;
 572
 573	/* propagate the error condition to the CAN stack */
 574	skb = alloc_can_err_skb(dev, &cf);
 575	if (unlikely(!skb))
 576		return 0;
 577
 578	/* check for 'last error code' which tells us the
 579	 * type of the last error to occur on the CAN bus
 580	 */
 581	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 582
 583	switch (lec_type) {
 584	case LEC_STUFF_ERROR:
 585		netdev_dbg(dev, "stuff error\n");
 586		cf->data[2] |= CAN_ERR_PROT_STUFF;
 587		break;
 588	case LEC_FORM_ERROR:
 589		netdev_dbg(dev, "form error\n");
 590		cf->data[2] |= CAN_ERR_PROT_FORM;
 591		break;
 592	case LEC_ACK_ERROR:
 593		netdev_dbg(dev, "ack error\n");
 594		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
 595		break;
 596	case LEC_BIT1_ERROR:
 597		netdev_dbg(dev, "bit1 error\n");
 598		cf->data[2] |= CAN_ERR_PROT_BIT1;
 599		break;
 600	case LEC_BIT0_ERROR:
 601		netdev_dbg(dev, "bit0 error\n");
 602		cf->data[2] |= CAN_ERR_PROT_BIT0;
 603		break;
 604	case LEC_CRC_ERROR:
 605		netdev_dbg(dev, "CRC error\n");
 606		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
 607		break;
 608	default:
 609		break;
 610	}
 611
 612	stats->rx_packets++;
 613	stats->rx_bytes += cf->can_dlc;
 614	netif_receive_skb(skb);
 615
 616	return 1;
 617}
 618
 619static int __m_can_get_berr_counter(const struct net_device *dev,
 620				    struct can_berr_counter *bec)
 621{
 622	struct m_can_priv *priv = netdev_priv(dev);
 623	unsigned int ecr;
 624
 625	ecr = m_can_read(priv, M_CAN_ECR);
 626	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
 627	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
 628
 629	return 0;
 630}
 631
 632static int m_can_clk_start(struct m_can_priv *priv)
 633{
 634	int err;
 635
 636	err = pm_runtime_get_sync(priv->device);
 637	if (err)
 638		pm_runtime_put_noidle(priv->device);
 639
 640	return err;
 
 
 
 
 
 
 641}
 642
 643static void m_can_clk_stop(struct m_can_priv *priv)
 644{
 645	pm_runtime_put_sync(priv->device);
 
 646}
 647
 648static int m_can_get_berr_counter(const struct net_device *dev,
 649				  struct can_berr_counter *bec)
 650{
 651	struct m_can_priv *priv = netdev_priv(dev);
 652	int err;
 653
 654	err = m_can_clk_start(priv);
 655	if (err)
 656		return err;
 657
 658	__m_can_get_berr_counter(dev, bec);
 659
 660	m_can_clk_stop(priv);
 661
 662	return 0;
 663}
 664
 665static int m_can_handle_state_change(struct net_device *dev,
 666				     enum can_state new_state)
 667{
 668	struct m_can_priv *priv = netdev_priv(dev);
 669	struct net_device_stats *stats = &dev->stats;
 670	struct can_frame *cf;
 671	struct sk_buff *skb;
 672	struct can_berr_counter bec;
 673	unsigned int ecr;
 674
 675	switch (new_state) {
 676	case CAN_STATE_ERROR_ACTIVE:
 677		/* error warning state */
 678		priv->can.can_stats.error_warning++;
 679		priv->can.state = CAN_STATE_ERROR_WARNING;
 680		break;
 681	case CAN_STATE_ERROR_PASSIVE:
 682		/* error passive state */
 683		priv->can.can_stats.error_passive++;
 684		priv->can.state = CAN_STATE_ERROR_PASSIVE;
 685		break;
 686	case CAN_STATE_BUS_OFF:
 687		/* bus-off state */
 688		priv->can.state = CAN_STATE_BUS_OFF;
 689		m_can_disable_all_interrupts(priv);
 690		priv->can.can_stats.bus_off++;
 691		can_bus_off(dev);
 692		break;
 693	default:
 694		break;
 695	}
 696
 697	/* propagate the error condition to the CAN stack */
 698	skb = alloc_can_err_skb(dev, &cf);
 699	if (unlikely(!skb))
 700		return 0;
 701
 702	__m_can_get_berr_counter(dev, &bec);
 703
 704	switch (new_state) {
 705	case CAN_STATE_ERROR_ACTIVE:
 706		/* error warning state */
 707		cf->can_id |= CAN_ERR_CRTL;
 708		cf->data[1] = (bec.txerr > bec.rxerr) ?
 709			CAN_ERR_CRTL_TX_WARNING :
 710			CAN_ERR_CRTL_RX_WARNING;
 711		cf->data[6] = bec.txerr;
 712		cf->data[7] = bec.rxerr;
 713		break;
 714	case CAN_STATE_ERROR_PASSIVE:
 715		/* error passive state */
 716		cf->can_id |= CAN_ERR_CRTL;
 717		ecr = m_can_read(priv, M_CAN_ECR);
 718		if (ecr & ECR_RP)
 719			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 720		if (bec.txerr > 127)
 721			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 722		cf->data[6] = bec.txerr;
 723		cf->data[7] = bec.rxerr;
 724		break;
 725	case CAN_STATE_BUS_OFF:
 726		/* bus-off state */
 727		cf->can_id |= CAN_ERR_BUSOFF;
 728		break;
 729	default:
 730		break;
 731	}
 732
 733	stats->rx_packets++;
 734	stats->rx_bytes += cf->can_dlc;
 735	netif_receive_skb(skb);
 736
 737	return 1;
 738}
 739
 740static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
 741{
 742	struct m_can_priv *priv = netdev_priv(dev);
 743	int work_done = 0;
 744
 745	if ((psr & PSR_EW) &&
 746	    (priv->can.state != CAN_STATE_ERROR_WARNING)) {
 747		netdev_dbg(dev, "entered error warning state\n");
 748		work_done += m_can_handle_state_change(dev,
 749						       CAN_STATE_ERROR_WARNING);
 750	}
 751
 752	if ((psr & PSR_EP) &&
 753	    (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
 754		netdev_dbg(dev, "entered error passive state\n");
 755		work_done += m_can_handle_state_change(dev,
 756						       CAN_STATE_ERROR_PASSIVE);
 757	}
 758
 759	if ((psr & PSR_BO) &&
 760	    (priv->can.state != CAN_STATE_BUS_OFF)) {
 761		netdev_dbg(dev, "entered error bus off state\n");
 762		work_done += m_can_handle_state_change(dev,
 763						       CAN_STATE_BUS_OFF);
 764	}
 765
 766	return work_done;
 767}
 768
 769static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
 770{
 771	if (irqstatus & IR_WDI)
 772		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
 773	if (irqstatus & IR_ELO)
 774		netdev_err(dev, "Error Logging Overflow\n");
 775	if (irqstatus & IR_BEU)
 776		netdev_err(dev, "Bit Error Uncorrected\n");
 777	if (irqstatus & IR_BEC)
 778		netdev_err(dev, "Bit Error Corrected\n");
 779	if (irqstatus & IR_TOO)
 780		netdev_err(dev, "Timeout reached\n");
 781	if (irqstatus & IR_MRAF)
 782		netdev_err(dev, "Message RAM access failure occurred\n");
 783}
 784
 785static inline bool is_lec_err(u32 psr)
 786{
 787	psr &= LEC_UNUSED;
 788
 789	return psr && (psr != LEC_UNUSED);
 790}
 791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
 793				   u32 psr)
 794{
 795	struct m_can_priv *priv = netdev_priv(dev);
 796	int work_done = 0;
 797
 798	if (irqstatus & IR_RF0L)
 799		work_done += m_can_handle_lost_msg(dev);
 800
 801	/* handle lec errors on the bus */
 802	if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
 803	    is_lec_err(psr))
 804		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
 805
 
 
 
 
 
 806	/* other unproccessed error interrupts */
 807	m_can_handle_other_err(dev, irqstatus);
 808
 809	return work_done;
 810}
 811
 812static int m_can_poll(struct napi_struct *napi, int quota)
 813{
 814	struct net_device *dev = napi->dev;
 815	struct m_can_priv *priv = netdev_priv(dev);
 816	int work_done = 0;
 817	u32 irqstatus, psr;
 818
 819	irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
 820	if (!irqstatus)
 821		goto end;
 822
 823	psr = m_can_read(priv, M_CAN_PSR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824	if (irqstatus & IR_ERR_STATE)
 825		work_done += m_can_handle_state_errors(dev, psr);
 826
 827	if (irqstatus & IR_ERR_BUS_30X)
 828		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
 829
 830	if (irqstatus & IR_RF0N)
 831		work_done += m_can_do_rx_poll(dev, (quota - work_done));
 
 
 
 832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833	if (work_done < quota) {
 834		napi_complete_done(napi, work_done);
 835		m_can_enable_all_interrupts(priv);
 836	}
 837
 838end:
 839	return work_done;
 840}
 841
 842static void m_can_echo_tx_event(struct net_device *dev)
 843{
 844	u32 txe_count = 0;
 845	u32 m_can_txefs;
 846	u32 fgi = 0;
 847	int i = 0;
 848	unsigned int msg_mark;
 849
 850	struct m_can_priv *priv = netdev_priv(dev);
 851	struct net_device_stats *stats = &dev->stats;
 852
 853	/* read tx event fifo status */
 854	m_can_txefs = m_can_read(priv, M_CAN_TXEFS);
 855
 856	/* Get Tx Event fifo element count */
 857	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
 858			>> TXEFS_EFFL_SHIFT;
 859
 860	/* Get and process all sent elements */
 861	for (i = 0; i < txe_count; i++) {
 862		/* retrieve get index */
 863		fgi = (m_can_read(priv, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
 864			>> TXEFS_EFGI_SHIFT;
 865
 866		/* get message marker */
 867		msg_mark = (m_can_txe_fifo_read(priv, fgi, 4) &
 868			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
 869
 870		/* ack txe element */
 871		m_can_write(priv, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
 872						(fgi << TXEFA_EFAI_SHIFT)));
 873
 874		/* update stats */
 875		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
 876		stats->tx_packets++;
 877	}
 878}
 879
 880static irqreturn_t m_can_isr(int irq, void *dev_id)
 881{
 882	struct net_device *dev = (struct net_device *)dev_id;
 883	struct m_can_priv *priv = netdev_priv(dev);
 884	struct net_device_stats *stats = &dev->stats;
 885	u32 ir;
 886
 887	ir = m_can_read(priv, M_CAN_IR);
 888	if (!ir)
 889		return IRQ_NONE;
 890
 891	/* ACK all irqs */
 892	if (ir & IR_ALL_INT)
 893		m_can_write(priv, M_CAN_IR, ir);
 
 
 
 894
 895	/* schedule NAPI in case of
 896	 * - rx IRQ
 897	 * - state change IRQ
 898	 * - bus error IRQ and bus error reporting
 899	 */
 900	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
 901		priv->irqstatus = ir;
 902		m_can_disable_all_interrupts(priv);
 903		napi_schedule(&priv->napi);
 
 
 
 904	}
 905
 906	if (priv->version == 30) {
 907		if (ir & IR_TC) {
 908			/* Transmission Complete Interrupt*/
 909			stats->tx_bytes += can_get_echo_skb(dev, 0);
 910			stats->tx_packets++;
 911			can_led_event(dev, CAN_LED_EVENT_TX);
 912			netif_wake_queue(dev);
 913		}
 914	} else  {
 915		if (ir & IR_TEFN) {
 916			/* New TX FIFO Element arrived */
 917			m_can_echo_tx_event(dev);
 918			can_led_event(dev, CAN_LED_EVENT_TX);
 919			if (netif_queue_stopped(dev) &&
 920			    !m_can_tx_fifo_full(priv))
 921				netif_wake_queue(dev);
 922		}
 923	}
 924
 925	return IRQ_HANDLED;
 926}
 927
 928static const struct can_bittiming_const m_can_bittiming_const_30X = {
 929	.name = KBUILD_MODNAME,
 930	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
 931	.tseg1_max = 64,
 932	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 933	.tseg2_max = 16,
 934	.sjw_max = 16,
 935	.brp_min = 1,
 936	.brp_max = 1024,
 937	.brp_inc = 1,
 938};
 939
 940static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
 941	.name = KBUILD_MODNAME,
 942	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
 943	.tseg1_max = 16,
 944	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 945	.tseg2_max = 8,
 946	.sjw_max = 4,
 947	.brp_min = 1,
 948	.brp_max = 32,
 949	.brp_inc = 1,
 950};
 951
 952static const struct can_bittiming_const m_can_bittiming_const_31X = {
 953	.name = KBUILD_MODNAME,
 954	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
 955	.tseg1_max = 256,
 956	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 957	.tseg2_max = 128,
 958	.sjw_max = 128,
 959	.brp_min = 1,
 960	.brp_max = 512,
 961	.brp_inc = 1,
 962};
 963
 964static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
 965	.name = KBUILD_MODNAME,
 966	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
 967	.tseg1_max = 32,
 968	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 969	.tseg2_max = 16,
 970	.sjw_max = 16,
 971	.brp_min = 1,
 972	.brp_max = 32,
 973	.brp_inc = 1,
 974};
 975
 976static int m_can_set_bittiming(struct net_device *dev)
 977{
 978	struct m_can_priv *priv = netdev_priv(dev);
 979	const struct can_bittiming *bt = &priv->can.bittiming;
 980	const struct can_bittiming *dbt = &priv->can.data_bittiming;
 981	u16 brp, sjw, tseg1, tseg2;
 982	u32 reg_btp;
 983
 984	brp = bt->brp - 1;
 985	sjw = bt->sjw - 1;
 986	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
 987	tseg2 = bt->phase_seg2 - 1;
 988	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
 989		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
 990	m_can_write(priv, M_CAN_NBTP, reg_btp);
 991
 992	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
 993		reg_btp = 0;
 994		brp = dbt->brp - 1;
 995		sjw = dbt->sjw - 1;
 996		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
 997		tseg2 = dbt->phase_seg2 - 1;
 998
 999		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1000		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1001		 * paper presented at the International CAN Conference 2013
1002		 */
1003		if (dbt->bitrate > 2500000) {
1004			u32 tdco, ssp;
1005
1006			/* Use the same value of secondary sampling point
1007			 * as the data sampling point
1008			 */
1009			ssp = dbt->sample_point;
1010
1011			/* Equation based on Bosch's M_CAN User Manual's
1012			 * Transmitter Delay Compensation Section
1013			 */
1014			tdco = (priv->can.clock.freq / 1000) *
1015			       ssp / dbt->bitrate;
1016
1017			/* Max valid TDCO value is 127 */
1018			if (tdco > 127) {
1019				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1020					    tdco);
1021				tdco = 127;
1022			}
1023
1024			reg_btp |= DBTP_TDC;
1025			m_can_write(priv, M_CAN_TDCR,
1026				    tdco << TDCR_TDCO_SHIFT);
1027		}
1028
1029		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1030			   (sjw << DBTP_DSJW_SHIFT) |
1031			   (tseg1 << DBTP_DTSEG1_SHIFT) |
1032			   (tseg2 << DBTP_DTSEG2_SHIFT);
1033
1034		m_can_write(priv, M_CAN_DBTP, reg_btp);
1035	}
1036
1037	return 0;
1038}
1039
1040/* Configure M_CAN chip:
1041 * - set rx buffer/fifo element size
1042 * - configure rx fifo
1043 * - accept non-matching frame into fifo 0
1044 * - configure tx buffer
1045 *		- >= v3.1.x: TX FIFO is used
1046 * - configure mode
1047 * - setup bittiming
1048 */
1049static void m_can_chip_config(struct net_device *dev)
1050{
1051	struct m_can_priv *priv = netdev_priv(dev);
1052	u32 cccr, test;
1053
1054	m_can_config_endisable(priv, true);
1055
1056	/* RX Buffer/FIFO Element Size 64 bytes data field */
1057	m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1058
1059	/* Accept Non-matching Frames Into FIFO 0 */
1060	m_can_write(priv, M_CAN_GFC, 0x0);
1061
1062	if (priv->version == 30) {
1063		/* only support one Tx Buffer currently */
1064		m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1065				priv->mcfg[MRAM_TXB].off);
1066	} else {
1067		/* TX FIFO is used for newer IP Core versions */
1068		m_can_write(priv, M_CAN_TXBC,
1069			    (priv->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1070			    (priv->mcfg[MRAM_TXB].off));
1071	}
1072
1073	/* support 64 bytes payload */
1074	m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1075
1076	/* TX Event FIFO */
1077	if (priv->version == 30) {
1078		m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1079				priv->mcfg[MRAM_TXE].off);
1080	} else {
1081		/* Full TX Event FIFO is used */
1082		m_can_write(priv, M_CAN_TXEFC,
1083			    ((priv->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1084			     & TXEFC_EFS_MASK) |
1085			    priv->mcfg[MRAM_TXE].off);
1086	}
1087
1088	/* rx fifo configuration, blocking mode, fifo size 1 */
1089	m_can_write(priv, M_CAN_RXF0C,
1090		    (priv->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1091		     priv->mcfg[MRAM_RXF0].off);
1092
1093	m_can_write(priv, M_CAN_RXF1C,
1094		    (priv->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1095		     priv->mcfg[MRAM_RXF1].off);
1096
1097	cccr = m_can_read(priv, M_CAN_CCCR);
1098	test = m_can_read(priv, M_CAN_TEST);
1099	test &= ~TEST_LBCK;
1100	if (priv->version == 30) {
1101	/* Version 3.0.x */
1102
1103		cccr &= ~(CCCR_TEST | CCCR_MON |
1104			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1105			(CCCR_CME_MASK << CCCR_CME_SHIFT));
1106
1107		if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1108			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1109
1110	} else {
1111	/* Version 3.1.x or 3.2.x */
1112		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE);
 
1113
1114		/* Only 3.2.x has NISO Bit implemented */
1115		if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1116			cccr |= CCCR_NISO;
1117
1118		if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1119			cccr |= (CCCR_BRSE | CCCR_FDOE);
1120	}
1121
1122	/* Loopback Mode */
1123	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1124		cccr |= CCCR_TEST | CCCR_MON;
1125		test |= TEST_LBCK;
1126	}
1127
1128	/* Enable Monitoring (all versions) */
1129	if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1130		cccr |= CCCR_MON;
1131
 
 
 
 
1132	/* Write config */
1133	m_can_write(priv, M_CAN_CCCR, cccr);
1134	m_can_write(priv, M_CAN_TEST, test);
1135
1136	/* Enable interrupts */
1137	m_can_write(priv, M_CAN_IR, IR_ALL_INT);
1138	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1139		if (priv->version == 30)
1140			m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1141				    ~(IR_ERR_LEC_30X));
1142		else
1143			m_can_write(priv, M_CAN_IE, IR_ALL_INT &
1144				    ~(IR_ERR_LEC_31X));
1145	else
1146		m_can_write(priv, M_CAN_IE, IR_ALL_INT);
1147
1148	/* route all interrupts to INT0 */
1149	m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
1150
1151	/* set bittiming params */
1152	m_can_set_bittiming(dev);
1153
1154	m_can_config_endisable(priv, false);
 
 
 
1155}
1156
1157static void m_can_start(struct net_device *dev)
1158{
1159	struct m_can_priv *priv = netdev_priv(dev);
1160
1161	/* basic m_can configuration */
1162	m_can_chip_config(dev);
1163
1164	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1165
1166	m_can_enable_all_interrupts(priv);
1167}
1168
1169static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1170{
1171	switch (mode) {
1172	case CAN_MODE_START:
 
1173		m_can_start(dev);
1174		netif_wake_queue(dev);
1175		break;
1176	default:
1177		return -EOPNOTSUPP;
1178	}
1179
1180	return 0;
1181}
1182
1183/* Checks core release number of M_CAN
1184 * returns 0 if an unsupported device is detected
1185 * else it returns the release and step coded as:
1186 * return value = 10 * <release> + 1 * <step>
1187 */
1188static int m_can_check_core_release(void __iomem *m_can_base)
1189{
1190	u32 crel_reg;
1191	u8 rel;
1192	u8 step;
1193	int res;
1194	struct m_can_priv temp_priv = {
1195		.base = m_can_base
1196	};
1197
1198	/* Read Core Release Version and split into version number
1199	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1200	 */
1201	crel_reg = m_can_read(&temp_priv, M_CAN_CREL);
1202	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1203	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1204
1205	if (rel == 3) {
1206		/* M_CAN v3.x.y: create return value */
1207		res = 30 + step;
1208	} else {
1209		/* Unsupported M_CAN version */
1210		res = 0;
1211	}
1212
1213	return res;
1214}
1215
1216/* Selectable Non ISO support only in version 3.2.x
1217 * This function checks if the bit is writable.
1218 */
1219static bool m_can_niso_supported(const struct m_can_priv *priv)
1220{
1221	u32 cccr_reg, cccr_poll;
1222	int niso_timeout;
 
1223
1224	m_can_config_endisable(priv, true);
1225	cccr_reg = m_can_read(priv, M_CAN_CCCR);
1226	cccr_reg |= CCCR_NISO;
1227	m_can_write(priv, M_CAN_CCCR, cccr_reg);
1228
1229	niso_timeout = readl_poll_timeout((priv->base + M_CAN_CCCR), cccr_poll,
1230					  (cccr_poll == cccr_reg), 0, 10);
 
 
 
 
 
 
 
1231
1232	/* Clear NISO */
1233	cccr_reg &= ~(CCCR_NISO);
1234	m_can_write(priv, M_CAN_CCCR, cccr_reg);
1235
1236	m_can_config_endisable(priv, false);
1237
1238	/* return false if time out (-ETIMEDOUT), else return true */
1239	return !niso_timeout;
1240}
1241
1242static int m_can_dev_setup(struct platform_device *pdev, struct net_device *dev,
1243			   void __iomem *addr)
1244{
1245	struct m_can_priv *priv;
1246	int m_can_version;
1247
1248	m_can_version = m_can_check_core_release(addr);
1249	/* return if unsupported version */
1250	if (!m_can_version) {
1251		dev_err(&pdev->dev, "Unsupported version number: %2d",
1252			m_can_version);
1253		return -EINVAL;
1254	}
1255
1256	priv = netdev_priv(dev);
1257	netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
 
1258
1259	/* Shared properties of all M_CAN versions */
1260	priv->version = m_can_version;
1261	priv->dev = dev;
1262	priv->base = addr;
1263	priv->can.do_set_mode = m_can_set_mode;
1264	priv->can.do_get_berr_counter = m_can_get_berr_counter;
1265
1266	/* Set M_CAN supported operations */
1267	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1268					CAN_CTRLMODE_LISTENONLY |
1269					CAN_CTRLMODE_BERR_REPORTING |
1270					CAN_CTRLMODE_FD;
 
1271
1272	/* Set properties depending on M_CAN version */
1273	switch (priv->version) {
1274	case 30:
1275		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1276		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1277		priv->can.bittiming_const = &m_can_bittiming_const_30X;
1278		priv->can.data_bittiming_const =
1279				&m_can_data_bittiming_const_30X;
 
 
 
1280		break;
1281	case 31:
1282		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1283		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1284		priv->can.bittiming_const = &m_can_bittiming_const_31X;
1285		priv->can.data_bittiming_const =
1286				&m_can_data_bittiming_const_31X;
 
 
 
1287		break;
1288	case 32:
1289		priv->can.bittiming_const = &m_can_bittiming_const_31X;
1290		priv->can.data_bittiming_const =
1291				&m_can_data_bittiming_const_31X;
1292		priv->can.ctrlmode_supported |= (m_can_niso_supported(priv)
 
 
 
 
 
1293						? CAN_CTRLMODE_FD_NON_ISO
1294						: 0);
1295		break;
1296	default:
1297		dev_err(&pdev->dev, "Unsupported version number: %2d",
1298			priv->version);
1299		return -EINVAL;
1300	}
1301
1302	return 0;
1303}
1304
1305static int m_can_open(struct net_device *dev)
1306{
1307	struct m_can_priv *priv = netdev_priv(dev);
1308	int err;
1309
1310	err = m_can_clk_start(priv);
1311	if (err)
1312		return err;
1313
1314	/* open the can device */
1315	err = open_candev(dev);
1316	if (err) {
1317		netdev_err(dev, "failed to open can device\n");
1318		goto exit_disable_clks;
1319	}
1320
1321	/* register interrupt handler */
1322	err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1323			  dev);
1324	if (err < 0) {
1325		netdev_err(dev, "failed to request interrupt\n");
1326		goto exit_irq_fail;
1327	}
1328
1329	/* start the m_can controller */
1330	m_can_start(dev);
1331
1332	can_led_event(dev, CAN_LED_EVENT_OPEN);
1333	napi_enable(&priv->napi);
1334	netif_start_queue(dev);
1335
1336	return 0;
1337
1338exit_irq_fail:
1339	close_candev(dev);
1340exit_disable_clks:
1341	m_can_clk_stop(priv);
1342	return err;
1343}
1344
1345static void m_can_stop(struct net_device *dev)
1346{
1347	struct m_can_priv *priv = netdev_priv(dev);
1348
1349	/* disable all interrupts */
1350	m_can_disable_all_interrupts(priv);
1351
1352	/* set the state as STOPPED */
1353	priv->can.state = CAN_STATE_STOPPED;
1354}
1355
1356static int m_can_close(struct net_device *dev)
1357{
1358	struct m_can_priv *priv = netdev_priv(dev);
1359
1360	netif_stop_queue(dev);
1361	napi_disable(&priv->napi);
 
 
 
1362	m_can_stop(dev);
1363	m_can_clk_stop(priv);
1364	free_irq(dev->irq, dev);
 
 
 
 
 
 
 
1365	close_candev(dev);
1366	can_led_event(dev, CAN_LED_EVENT_STOP);
1367
1368	return 0;
1369}
1370
1371static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1372{
1373	struct m_can_priv *priv = netdev_priv(dev);
1374	/*get wrap around for loopback skb index */
1375	unsigned int wrap = priv->can.echo_skb_max;
1376	int next_idx;
1377
1378	/* calculate next index */
1379	next_idx = (++putidx >= wrap ? 0 : putidx);
1380
1381	/* check if occupied */
1382	return !!priv->can.echo_skb[next_idx];
1383}
1384
1385static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1386				    struct net_device *dev)
1387{
1388	struct m_can_priv *priv = netdev_priv(dev);
1389	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 
1390	u32 id, cccr, fdflags;
1391	int i;
1392	int putidx;
1393
1394	if (can_dropped_invalid_skb(dev, skb))
1395		return NETDEV_TX_OK;
1396
1397	/* Generate ID field for TX buffer Element */
1398	/* Common to all supported M_CAN versions */
1399	if (cf->can_id & CAN_EFF_FLAG) {
1400		id = cf->can_id & CAN_EFF_MASK;
1401		id |= TX_BUF_XTD;
1402	} else {
1403		id = ((cf->can_id & CAN_SFF_MASK) << 18);
1404	}
1405
1406	if (cf->can_id & CAN_RTR_FLAG)
1407		id |= TX_BUF_RTR;
1408
1409	if (priv->version == 30) {
1410		netif_stop_queue(dev);
1411
1412		/* message ram configuration */
1413		m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
1414		m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC,
1415				 can_len2dlc(cf->len) << 16);
1416
1417		for (i = 0; i < cf->len; i += 4)
1418			m_can_fifo_write(priv, 0,
1419					 M_CAN_FIFO_DATA(i / 4),
1420					 *(u32 *)(cf->data + i));
1421
1422		can_put_echo_skb(skb, dev, 0);
1423
1424		if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1425			cccr = m_can_read(priv, M_CAN_CCCR);
1426			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1427			if (can_is_canfd_skb(skb)) {
1428				if (cf->flags & CANFD_BRS)
1429					cccr |= CCCR_CMR_CANFD_BRS <<
1430						CCCR_CMR_SHIFT;
1431				else
1432					cccr |= CCCR_CMR_CANFD <<
1433						CCCR_CMR_SHIFT;
1434			} else {
1435				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1436			}
1437			m_can_write(priv, M_CAN_CCCR, cccr);
1438		}
1439		m_can_write(priv, M_CAN_TXBTIE, 0x1);
1440		m_can_write(priv, M_CAN_TXBAR, 0x1);
1441		/* End of xmit function for version 3.0.x */
1442	} else {
1443		/* Transmit routine for version >= v3.1.x */
1444
1445		/* Check if FIFO full */
1446		if (m_can_tx_fifo_full(priv)) {
1447			/* This shouldn't happen */
1448			netif_stop_queue(dev);
1449			netdev_warn(dev,
1450				    "TX queue active although FIFO is full.");
1451			return NETDEV_TX_BUSY;
 
 
 
 
 
 
 
1452		}
1453
1454		/* get put index for frame */
1455		putidx = ((m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1456				  >> TXFQS_TFQPI_SHIFT);
1457		/* Write ID Field to FIFO Element */
1458		m_can_fifo_write(priv, putidx, M_CAN_FIFO_ID, id);
1459
1460		/* get CAN FD configuration of frame */
1461		fdflags = 0;
1462		if (can_is_canfd_skb(skb)) {
1463			fdflags |= TX_BUF_FDF;
1464			if (cf->flags & CANFD_BRS)
1465				fdflags |= TX_BUF_BRS;
1466		}
1467
1468		/* Construct DLC Field. Also contains CAN-FD configuration
1469		 * use put index of fifo as message marker
1470		 * it is used in TX interrupt for
1471		 * sending the correct echo frame
1472		 */
1473		m_can_fifo_write(priv, putidx, M_CAN_FIFO_DLC,
1474				 ((putidx << TX_BUF_MM_SHIFT) &
1475				  TX_BUF_MM_MASK) |
1476				 (can_len2dlc(cf->len) << 16) |
1477				 fdflags | TX_BUF_EFC);
1478
1479		for (i = 0; i < cf->len; i += 4)
1480			m_can_fifo_write(priv, putidx, M_CAN_FIFO_DATA(i / 4),
1481					 *(u32 *)(cf->data + i));
1482
1483		/* Push loopback echo.
1484		 * Will be looped back on TX interrupt based on message marker
1485		 */
1486		can_put_echo_skb(skb, dev, putidx);
1487
1488		/* Enable TX FIFO element to start transfer  */
1489		m_can_write(priv, M_CAN_TXBAR, (1 << putidx));
1490
1491		/* stop network queue if fifo full */
1492			if (m_can_tx_fifo_full(priv) ||
1493			    m_can_next_echo_skb_occupied(dev, putidx))
1494				netif_stop_queue(dev);
1495	}
1496
1497	return NETDEV_TX_OK;
1498}
1499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500static const struct net_device_ops m_can_netdev_ops = {
1501	.ndo_open = m_can_open,
1502	.ndo_stop = m_can_close,
1503	.ndo_start_xmit = m_can_start_xmit,
1504	.ndo_change_mtu = can_change_mtu,
1505};
1506
1507static int register_m_can_dev(struct net_device *dev)
1508{
1509	dev->flags |= IFF_ECHO;	/* we support local echo */
1510	dev->netdev_ops = &m_can_netdev_ops;
1511
1512	return register_candev(dev);
1513}
1514
1515static void m_can_init_ram(struct m_can_priv *priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516{
1517	int end, i, start;
1518
1519	/* initialize the entire Message RAM in use to avoid possible
1520	 * ECC/parity checksum errors when reading an uninitialized buffer
1521	 */
1522	start = priv->mcfg[MRAM_SIDF].off;
1523	end = priv->mcfg[MRAM_TXB].off +
1524		priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
 
1525	for (i = start; i < end; i += 4)
1526		writel(0x0, priv->mram_base + i);
1527}
 
1528
1529static void m_can_of_parse_mram(struct m_can_priv *priv,
1530				const u32 *mram_config_vals)
1531{
1532	priv->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1533	priv->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1534	priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
1535			priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1536	priv->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1537	priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
1538			priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1539	priv->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1540			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1541	priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
1542			priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1543	priv->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1544			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1545	priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
1546			priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1547	priv->mcfg[MRAM_RXB].num = mram_config_vals[5];
1548	priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
1549			priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1550	priv->mcfg[MRAM_TXE].num = mram_config_vals[6];
1551	priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
1552			priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1553	priv->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1554			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1555
1556	dev_dbg(priv->device,
1557		"mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1558		priv->mram_base,
1559		priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
1560		priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
1561		priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
1562		priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
1563		priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
1564		priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
1565		priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
1566
1567	m_can_init_ram(priv);
1568}
1569
1570static int m_can_plat_probe(struct platform_device *pdev)
1571{
1572	struct net_device *dev;
1573	struct m_can_priv *priv;
1574	struct resource *res;
1575	void __iomem *addr;
1576	void __iomem *mram_addr;
1577	struct clk *hclk, *cclk;
1578	int irq, ret;
1579	struct device_node *np;
1580	u32 mram_config_vals[MRAM_CFG_LEN];
1581	u32 tx_fifo_size;
1582
1583	np = pdev->dev.of_node;
1584
1585	hclk = devm_clk_get(&pdev->dev, "hclk");
1586	cclk = devm_clk_get(&pdev->dev, "cclk");
1587
1588	if (IS_ERR(hclk) || IS_ERR(cclk)) {
1589		dev_err(&pdev->dev, "no clock found\n");
1590		ret = -ENODEV;
1591		goto failed_ret;
1592	}
1593
1594	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
1595	addr = devm_ioremap_resource(&pdev->dev, res);
1596	irq = platform_get_irq_byname(pdev, "int0");
1597
1598	if (IS_ERR(addr) || irq < 0) {
1599		ret = -EINVAL;
1600		goto failed_ret;
1601	}
1602
1603	/* message ram could be shared */
1604	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
1605	if (!res) {
1606		ret = -ENODEV;
1607		goto failed_ret;
1608	}
1609
1610	mram_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1611	if (!mram_addr) {
1612		ret = -ENOMEM;
1613		goto failed_ret;
1614	}
 
 
1615
1616	/* get message ram configuration */
1617	ret = of_property_read_u32_array(np, "bosch,mram-cfg",
1618					 mram_config_vals,
1619					 sizeof(mram_config_vals) / 4);
1620	if (ret) {
1621		dev_err(&pdev->dev, "Could not get Message RAM configuration.");
1622		goto failed_ret;
1623	}
1624
1625	/* Get TX FIFO size
1626	 * Defines the total amount of echo buffers for loopback
1627	 */
1628	tx_fifo_size = mram_config_vals[7];
1629
1630	/* allocate the m_can device */
1631	dev = alloc_candev(sizeof(*priv), tx_fifo_size);
1632	if (!dev) {
1633		ret = -ENOMEM;
1634		goto failed_ret;
1635	}
1636
1637	priv = netdev_priv(dev);
1638	dev->irq = irq;
1639	priv->device = &pdev->dev;
1640	priv->hclk = hclk;
1641	priv->cclk = cclk;
1642	priv->can.clock.freq = clk_get_rate(cclk);
1643	priv->mram_base = mram_addr;
1644
1645	m_can_of_parse_mram(priv, mram_config_vals);
 
 
 
 
1646
1647	platform_set_drvdata(pdev, dev);
1648	SET_NETDEV_DEV(dev, &pdev->dev);
 
1649
1650	/* Enable clocks. Necessary to read Core Release in order to determine
1651	 * M_CAN version
1652	 */
1653	pm_runtime_enable(&pdev->dev);
1654	ret = m_can_clk_start(priv);
1655	if (ret)
1656		goto pm_runtime_fail;
 
 
1657
1658	ret = m_can_dev_setup(pdev, dev, addr);
 
 
 
 
 
 
 
1659	if (ret)
1660		goto clk_disable;
1661
1662	ret = register_m_can_dev(dev);
1663	if (ret) {
1664		dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
1665			KBUILD_MODNAME, ret);
1666		goto clk_disable;
1667	}
1668
1669	devm_can_led_init(dev);
1670
1671	of_can_transceiver(dev);
1672
1673	dev_info(&pdev->dev, "%s device registered (irq=%d, version=%d)\n",
1674		 KBUILD_MODNAME, dev->irq, priv->version);
1675
1676	/* Probe finished
1677	 * Stop clocks. They will be reactivated once the M_CAN device is opened
1678	 */
1679clk_disable:
1680	m_can_clk_stop(priv);
1681pm_runtime_fail:
1682	if (ret) {
1683		pm_runtime_disable(&pdev->dev);
1684		free_candev(dev);
 
1685	}
1686failed_ret:
1687	return ret;
1688}
 
1689
1690/* TODO: runtime PM with power down or sleep mode  */
1691
1692static __maybe_unused int m_can_suspend(struct device *dev)
1693{
1694	struct net_device *ndev = dev_get_drvdata(dev);
1695	struct m_can_priv *priv = netdev_priv(ndev);
1696
1697	if (netif_running(ndev)) {
1698		netif_stop_queue(ndev);
1699		netif_device_detach(ndev);
1700		m_can_stop(ndev);
1701		m_can_clk_stop(priv);
1702	}
1703
1704	pinctrl_pm_select_sleep_state(dev);
1705
1706	priv->can.state = CAN_STATE_SLEEPING;
1707
1708	return 0;
1709}
 
1710
1711static __maybe_unused int m_can_resume(struct device *dev)
1712{
1713	struct net_device *ndev = dev_get_drvdata(dev);
1714	struct m_can_priv *priv = netdev_priv(ndev);
1715
1716	pinctrl_pm_select_default_state(dev);
1717
1718	m_can_init_ram(priv);
1719
1720	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1721
1722	if (netif_running(ndev)) {
1723		int ret;
1724
1725		ret = m_can_clk_start(priv);
1726		if (ret)
1727			return ret;
1728
 
1729		m_can_start(ndev);
1730		netif_device_attach(ndev);
1731		netif_start_queue(ndev);
1732	}
1733
1734	return 0;
1735}
 
1736
1737static void unregister_m_can_dev(struct net_device *dev)
1738{
1739	unregister_candev(dev);
1740}
1741
1742static int m_can_plat_remove(struct platform_device *pdev)
1743{
1744	struct net_device *dev = platform_get_drvdata(pdev);
1745
1746	unregister_m_can_dev(dev);
1747
1748	pm_runtime_disable(&pdev->dev);
1749
1750	platform_set_drvdata(pdev, NULL);
1751
1752	free_candev(dev);
1753
1754	return 0;
1755}
1756
1757static int __maybe_unused m_can_runtime_suspend(struct device *dev)
1758{
1759	struct net_device *ndev = dev_get_drvdata(dev);
1760	struct m_can_priv *priv = netdev_priv(ndev);
1761
1762	clk_disable_unprepare(priv->cclk);
1763	clk_disable_unprepare(priv->hclk);
1764
1765	return 0;
1766}
1767
1768static int __maybe_unused m_can_runtime_resume(struct device *dev)
1769{
1770	struct net_device *ndev = dev_get_drvdata(dev);
1771	struct m_can_priv *priv = netdev_priv(ndev);
1772	int err;
1773
1774	err = clk_prepare_enable(priv->hclk);
1775	if (err)
1776		return err;
1777
1778	err = clk_prepare_enable(priv->cclk);
1779	if (err)
1780		clk_disable_unprepare(priv->hclk);
1781
1782	return err;
1783}
1784
1785static const struct dev_pm_ops m_can_pmops = {
1786	SET_RUNTIME_PM_OPS(m_can_runtime_suspend,
1787			   m_can_runtime_resume, NULL)
1788	SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
1789};
1790
1791static const struct of_device_id m_can_of_table[] = {
1792	{ .compatible = "bosch,m_can", .data = NULL },
1793	{ /* sentinel */ },
1794};
1795MODULE_DEVICE_TABLE(of, m_can_of_table);
1796
1797static struct platform_driver m_can_plat_driver = {
1798	.driver = {
1799		.name = KBUILD_MODNAME,
1800		.of_match_table = m_can_of_table,
1801		.pm     = &m_can_pmops,
1802	},
1803	.probe = m_can_plat_probe,
1804	.remove = m_can_plat_remove,
1805};
1806
1807module_platform_driver(m_can_plat_driver);
1808
1809MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
 
1810MODULE_LICENSE("GPL v2");
1811MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2// CAN bus driver for Bosch M_CAN controller
   3// Copyright (C) 2014 Freescale Semiconductor, Inc.
   4//      Dong Aisheng <b29396@freescale.com>
   5// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
   6
   7/* Bosch M_CAN user manual can be obtained from:
   8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
   9 * mcan_users_manual_v302.pdf
 
 
 
 
  10 */
  11
 
 
  12#include <linux/interrupt.h>
  13#include <linux/io.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/netdevice.h>
  17#include <linux/of.h>
  18#include <linux/of_device.h>
  19#include <linux/platform_device.h>
  20#include <linux/pm_runtime.h>
  21#include <linux/iopoll.h>
  22#include <linux/can/dev.h>
  23#include <linux/pinctrl/consumer.h>
  24
  25#include "m_can.h"
 
 
 
 
  26
  27/* registers definition */
  28enum m_can_reg {
  29	M_CAN_CREL	= 0x0,
  30	M_CAN_ENDN	= 0x4,
  31	M_CAN_CUST	= 0x8,
  32	M_CAN_DBTP	= 0xc,
  33	M_CAN_TEST	= 0x10,
  34	M_CAN_RWD	= 0x14,
  35	M_CAN_CCCR	= 0x18,
  36	M_CAN_NBTP	= 0x1c,
  37	M_CAN_TSCC	= 0x20,
  38	M_CAN_TSCV	= 0x24,
  39	M_CAN_TOCC	= 0x28,
  40	M_CAN_TOCV	= 0x2c,
  41	M_CAN_ECR	= 0x40,
  42	M_CAN_PSR	= 0x44,
  43/* TDCR Register only available for version >=3.1.x */
  44	M_CAN_TDCR	= 0x48,
  45	M_CAN_IR	= 0x50,
  46	M_CAN_IE	= 0x54,
  47	M_CAN_ILS	= 0x58,
  48	M_CAN_ILE	= 0x5c,
  49	M_CAN_GFC	= 0x80,
  50	M_CAN_SIDFC	= 0x84,
  51	M_CAN_XIDFC	= 0x88,
  52	M_CAN_XIDAM	= 0x90,
  53	M_CAN_HPMS	= 0x94,
  54	M_CAN_NDAT1	= 0x98,
  55	M_CAN_NDAT2	= 0x9c,
  56	M_CAN_RXF0C	= 0xa0,
  57	M_CAN_RXF0S	= 0xa4,
  58	M_CAN_RXF0A	= 0xa8,
  59	M_CAN_RXBC	= 0xac,
  60	M_CAN_RXF1C	= 0xb0,
  61	M_CAN_RXF1S	= 0xb4,
  62	M_CAN_RXF1A	= 0xb8,
  63	M_CAN_RXESC	= 0xbc,
  64	M_CAN_TXBC	= 0xc0,
  65	M_CAN_TXFQS	= 0xc4,
  66	M_CAN_TXESC	= 0xc8,
  67	M_CAN_TXBRP	= 0xcc,
  68	M_CAN_TXBAR	= 0xd0,
  69	M_CAN_TXBCR	= 0xd4,
  70	M_CAN_TXBTO	= 0xd8,
  71	M_CAN_TXBCF	= 0xdc,
  72	M_CAN_TXBTIE	= 0xe0,
  73	M_CAN_TXBCIE	= 0xe4,
  74	M_CAN_TXEFC	= 0xf0,
  75	M_CAN_TXEFS	= 0xf4,
  76	M_CAN_TXEFA	= 0xf8,
  77};
  78
  79/* napi related */
  80#define M_CAN_NAPI_WEIGHT	64
 
 
 
 
 
 
 
 
 
  81
  82/* message ram configuration data length */
  83#define MRAM_CFG_LEN	8
 
 
 
 
 
 
 
 
  84
  85/* Core Release Register (CREL) */
  86#define CREL_REL_SHIFT		28
  87#define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
  88#define CREL_STEP_SHIFT		24
  89#define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
  90#define CREL_SUBSTEP_SHIFT	20
  91#define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)
  92
  93/* Data Bit Timing & Prescaler Register (DBTP) */
  94#define DBTP_TDC		BIT(23)
  95#define DBTP_DBRP_SHIFT		16
  96#define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
  97#define DBTP_DTSEG1_SHIFT	8
  98#define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
  99#define DBTP_DTSEG2_SHIFT	4
 100#define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
 101#define DBTP_DSJW_SHIFT		0
 102#define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
 103
 104/* Transmitter Delay Compensation Register (TDCR) */
 105#define TDCR_TDCO_SHIFT		8
 106#define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
 107#define TDCR_TDCF_SHIFT		0
 108#define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)
 109
 110/* Test Register (TEST) */
 111#define TEST_LBCK		BIT(4)
 112
 113/* CC Control Register(CCCR) */
 114#define CCCR_CMR_MASK		0x3
 115#define CCCR_CMR_SHIFT		10
 116#define CCCR_CMR_CANFD		0x1
 117#define CCCR_CMR_CANFD_BRS	0x2
 118#define CCCR_CMR_CAN		0x3
 119#define CCCR_CME_MASK		0x3
 120#define CCCR_CME_SHIFT		8
 121#define CCCR_CME_CAN		0
 122#define CCCR_CME_CANFD		0x1
 123#define CCCR_CME_CANFD_BRS	0x2
 124#define CCCR_TXP		BIT(14)
 125#define CCCR_TEST		BIT(7)
 126#define CCCR_DAR		BIT(6)
 127#define CCCR_MON		BIT(5)
 128#define CCCR_CSR		BIT(4)
 129#define CCCR_CSA		BIT(3)
 130#define CCCR_ASM		BIT(2)
 131#define CCCR_CCE		BIT(1)
 132#define CCCR_INIT		BIT(0)
 133#define CCCR_CANFD		0x10
 134/* for version >=3.1.x */
 135#define CCCR_EFBI		BIT(13)
 136#define CCCR_PXHD		BIT(12)
 137#define CCCR_BRSE		BIT(9)
 138#define CCCR_FDOE		BIT(8)
 139/* only for version >=3.2.x */
 140#define CCCR_NISO		BIT(15)
 141
 142/* Nominal Bit Timing & Prescaler Register (NBTP) */
 143#define NBTP_NSJW_SHIFT		25
 144#define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
 145#define NBTP_NBRP_SHIFT		16
 146#define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
 147#define NBTP_NTSEG1_SHIFT	8
 148#define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
 149#define NBTP_NTSEG2_SHIFT	0
 150#define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
 151
 152/* Error Counter Register(ECR) */
 153#define ECR_RP			BIT(15)
 154#define ECR_REC_SHIFT		8
 155#define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
 156#define ECR_TEC_SHIFT		0
 157#define ECR_TEC_MASK		0xff
 158
 159/* Protocol Status Register(PSR) */
 160#define PSR_BO		BIT(7)
 161#define PSR_EW		BIT(6)
 162#define PSR_EP		BIT(5)
 163#define PSR_LEC_MASK	0x7
 164
 165/* Interrupt Register(IR) */
 166#define IR_ALL_INT	0xffffffff
 167
 168/* Renamed bits for versions > 3.1.x */
 169#define IR_ARA		BIT(29)
 170#define IR_PED		BIT(28)
 171#define IR_PEA		BIT(27)
 172
 173/* Bits for version 3.0.x */
 174#define IR_STE		BIT(31)
 175#define IR_FOE		BIT(30)
 176#define IR_ACKE		BIT(29)
 177#define IR_BE		BIT(28)
 178#define IR_CRCE		BIT(27)
 179#define IR_WDI		BIT(26)
 180#define IR_BO		BIT(25)
 181#define IR_EW		BIT(24)
 182#define IR_EP		BIT(23)
 183#define IR_ELO		BIT(22)
 184#define IR_BEU		BIT(21)
 185#define IR_BEC		BIT(20)
 186#define IR_DRX		BIT(19)
 187#define IR_TOO		BIT(18)
 188#define IR_MRAF		BIT(17)
 189#define IR_TSW		BIT(16)
 190#define IR_TEFL		BIT(15)
 191#define IR_TEFF		BIT(14)
 192#define IR_TEFW		BIT(13)
 193#define IR_TEFN		BIT(12)
 194#define IR_TFE		BIT(11)
 195#define IR_TCF		BIT(10)
 196#define IR_TC		BIT(9)
 197#define IR_HPM		BIT(8)
 198#define IR_RF1L		BIT(7)
 199#define IR_RF1F		BIT(6)
 200#define IR_RF1W		BIT(5)
 201#define IR_RF1N		BIT(4)
 202#define IR_RF0L		BIT(3)
 203#define IR_RF0F		BIT(2)
 204#define IR_RF0W		BIT(1)
 205#define IR_RF0N		BIT(0)
 206#define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
 207
 208/* Interrupts for version 3.0.x */
 209#define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
 210#define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
 211			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
 212			 IR_RF1L | IR_RF0L)
 213#define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
 214/* Interrupts for version >= 3.1.x */
 215#define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
 216#define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
 217			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
 218			 IR_RF1L | IR_RF0L)
 219#define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
 220
 221/* Interrupt Line Select (ILS) */
 222#define ILS_ALL_INT0	0x0
 223#define ILS_ALL_INT1	0xFFFFFFFF
 224
 225/* Interrupt Line Enable (ILE) */
 226#define ILE_EINT1	BIT(1)
 227#define ILE_EINT0	BIT(0)
 228
 229/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
 230#define RXFC_FWM_SHIFT	24
 231#define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
 232#define RXFC_FS_SHIFT	16
 233#define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
 234
 235/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
 236#define RXFS_RFL	BIT(25)
 237#define RXFS_FF		BIT(24)
 238#define RXFS_FPI_SHIFT	16
 239#define RXFS_FPI_MASK	0x3f0000
 240#define RXFS_FGI_SHIFT	8
 241#define RXFS_FGI_MASK	0x3f00
 242#define RXFS_FFL_MASK	0x7f
 243
 244/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
 245#define M_CAN_RXESC_8BYTES	0x0
 246#define M_CAN_RXESC_64BYTES	0x777
 247
 248/* Tx Buffer Configuration(TXBC) */
 249#define TXBC_NDTB_SHIFT		16
 250#define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
 251#define TXBC_TFQS_SHIFT		24
 252#define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)
 253
 254/* Tx FIFO/Queue Status (TXFQS) */
 255#define TXFQS_TFQF		BIT(21)
 256#define TXFQS_TFQPI_SHIFT	16
 257#define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
 258#define TXFQS_TFGI_SHIFT	8
 259#define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
 260#define TXFQS_TFFL_SHIFT	0
 261#define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
 262
 263/* Tx Buffer Element Size Configuration(TXESC) */
 264#define TXESC_TBDS_8BYTES	0x0
 265#define TXESC_TBDS_64BYTES	0x7
 266
 267/* Tx Event FIFO Configuration (TXEFC) */
 268#define TXEFC_EFS_SHIFT		16
 269#define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)
 270
 271/* Tx Event FIFO Status (TXEFS) */
 272#define TXEFS_TEFL		BIT(25)
 273#define TXEFS_EFF		BIT(24)
 274#define TXEFS_EFGI_SHIFT	8
 275#define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
 276#define TXEFS_EFFL_SHIFT	0
 277#define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)
 278
 279/* Tx Event FIFO Acknowledge (TXEFA) */
 280#define TXEFA_EFAI_SHIFT	0
 281#define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
 282
 283/* Message RAM Configuration (in bytes) */
 284#define SIDF_ELEMENT_SIZE	4
 285#define XIDF_ELEMENT_SIZE	8
 286#define RXF0_ELEMENT_SIZE	72
 287#define RXF1_ELEMENT_SIZE	72
 288#define RXB_ELEMENT_SIZE	72
 289#define TXE_ELEMENT_SIZE	8
 290#define TXB_ELEMENT_SIZE	72
 291
 292/* Message RAM Elements */
 293#define M_CAN_FIFO_ID		0x0
 294#define M_CAN_FIFO_DLC		0x4
 295#define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
 296
 297/* Rx Buffer Element */
 298/* R0 */
 299#define RX_BUF_ESI		BIT(31)
 300#define RX_BUF_XTD		BIT(30)
 301#define RX_BUF_RTR		BIT(29)
 302/* R1 */
 303#define RX_BUF_ANMF		BIT(31)
 304#define RX_BUF_FDF		BIT(21)
 305#define RX_BUF_BRS		BIT(20)
 306
 307/* Tx Buffer Element */
 308/* T0 */
 309#define TX_BUF_ESI		BIT(31)
 310#define TX_BUF_XTD		BIT(30)
 311#define TX_BUF_RTR		BIT(29)
 312/* T1 */
 313#define TX_BUF_EFC		BIT(23)
 314#define TX_BUF_FDF		BIT(21)
 315#define TX_BUF_BRS		BIT(20)
 316#define TX_BUF_MM_SHIFT		24
 317#define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
 318
 319/* Tx event FIFO Element */
 320/* E1 */
 321#define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
 322#define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)
 323
 324static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
 325{
 326	return cdev->ops->read_reg(cdev, reg);
 327}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 328
 329static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
 330			       u32 val)
 331{
 332	cdev->ops->write_reg(cdev, reg, val);
 333}
 334
 335static u32 m_can_fifo_read(struct m_can_classdev *cdev,
 336			   u32 fgi, unsigned int offset)
 337{
 338	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
 339			  offset;
 340
 341	return cdev->ops->read_fifo(cdev, addr_offset);
 342}
 343
 344static void m_can_fifo_write(struct m_can_classdev *cdev,
 345			     u32 fpi, unsigned int offset, u32 val)
 346{
 347	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
 348			  offset;
 349
 350	cdev->ops->write_fifo(cdev, addr_offset, val);
 351}
 352
 353static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
 354					   u32 fpi, u32 val)
 355{
 356	cdev->ops->write_fifo(cdev, fpi, val);
 
 357}
 358
 359static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
 360{
 361	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
 362			  offset;
 363
 364	return cdev->ops->read_fifo(cdev, addr_offset);
 365}
 366
 367static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
 368{
 369		return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
 370}
 371
 372void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
 
 373{
 374	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
 375	u32 timeout = 10;
 376	u32 val = 0;
 377
 378	/* Clear the Clock stop request if it was set */
 379	if (cccr & CCCR_CSR)
 380		cccr &= ~CCCR_CSR;
 381
 382	if (enable) {
 383		/* Clear the Clock stop request if it was set */
 384		if (cccr & CCCR_CSR)
 385			cccr &= ~CCCR_CSR;
 386
 387		/* enable m_can configuration */
 388		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
 389		udelay(5);
 390		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
 391		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
 392	} else {
 393		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
 394	}
 395
 396	/* there's a delay for module initialization */
 397	if (enable)
 398		val = CCCR_INIT | CCCR_CCE;
 399
 400	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
 401		if (timeout == 0) {
 402			netdev_warn(cdev->net, "Failed to init module\n");
 403			return;
 404		}
 405		timeout--;
 406		udelay(1);
 407	}
 408}
 409
 410static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
 411{
 412	/* Only interrupt line 0 is used in this driver */
 413	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
 414}
 415
 416static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
 417{
 418	m_can_write(cdev, M_CAN_ILE, 0x0);
 419}
 420
 421static void m_can_clean(struct net_device *net)
 422{
 423	struct m_can_classdev *cdev = netdev_priv(net);
 424
 425	if (cdev->tx_skb) {
 426		int putidx = 0;
 427
 428		net->stats.tx_errors++;
 429		if (cdev->version > 30)
 430			putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
 431				   TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);
 432
 433		can_free_echo_skb(cdev->net, putidx);
 434		cdev->tx_skb = NULL;
 435	}
 436}
 437
 438static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
 439{
 440	struct net_device_stats *stats = &dev->stats;
 441	struct m_can_classdev *cdev = netdev_priv(dev);
 442	struct canfd_frame *cf;
 443	struct sk_buff *skb;
 444	u32 id, fgi, dlc;
 445	int i;
 446
 447	/* calculate the fifo get index for where to read data */
 448	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
 449	dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
 450	if (dlc & RX_BUF_FDF)
 451		skb = alloc_canfd_skb(dev, &cf);
 452	else
 453		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
 454	if (!skb) {
 455		stats->rx_dropped++;
 456		return;
 457	}
 458
 459	if (dlc & RX_BUF_FDF)
 460		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
 461	else
 462		cf->len = get_can_dlc((dlc >> 16) & 0x0F);
 463
 464	id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
 465	if (id & RX_BUF_XTD)
 466		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
 467	else
 468		cf->can_id = (id >> 18) & CAN_SFF_MASK;
 469
 470	if (id & RX_BUF_ESI) {
 471		cf->flags |= CANFD_ESI;
 472		netdev_dbg(dev, "ESI Error\n");
 473	}
 474
 475	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
 476		cf->can_id |= CAN_RTR_FLAG;
 477	} else {
 478		if (dlc & RX_BUF_BRS)
 479			cf->flags |= CANFD_BRS;
 480
 481		for (i = 0; i < cf->len; i += 4)
 482			*(u32 *)(cf->data + i) =
 483				m_can_fifo_read(cdev, fgi,
 484						M_CAN_FIFO_DATA(i / 4));
 485	}
 486
 487	/* acknowledge rx fifo 0 */
 488	m_can_write(cdev, M_CAN_RXF0A, fgi);
 489
 490	stats->rx_packets++;
 491	stats->rx_bytes += cf->len;
 492
 493	netif_receive_skb(skb);
 494}
 495
 496static int m_can_do_rx_poll(struct net_device *dev, int quota)
 497{
 498	struct m_can_classdev *cdev = netdev_priv(dev);
 499	u32 pkts = 0;
 500	u32 rxfs;
 501
 502	rxfs = m_can_read(cdev, M_CAN_RXF0S);
 503	if (!(rxfs & RXFS_FFL_MASK)) {
 504		netdev_dbg(dev, "no messages in fifo0\n");
 505		return 0;
 506	}
 507
 508	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
 509		if (rxfs & RXFS_RFL)
 510			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
 511
 512		m_can_read_fifo(dev, rxfs);
 513
 514		quota--;
 515		pkts++;
 516		rxfs = m_can_read(cdev, M_CAN_RXF0S);
 517	}
 518
 519	if (pkts)
 520		can_led_event(dev, CAN_LED_EVENT_RX);
 521
 522	return pkts;
 523}
 524
 525static int m_can_handle_lost_msg(struct net_device *dev)
 526{
 527	struct net_device_stats *stats = &dev->stats;
 528	struct sk_buff *skb;
 529	struct can_frame *frame;
 530
 531	netdev_err(dev, "msg lost in rxf0\n");
 532
 533	stats->rx_errors++;
 534	stats->rx_over_errors++;
 535
 536	skb = alloc_can_err_skb(dev, &frame);
 537	if (unlikely(!skb))
 538		return 0;
 539
 540	frame->can_id |= CAN_ERR_CRTL;
 541	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 542
 543	netif_receive_skb(skb);
 544
 545	return 1;
 546}
 547
 548static int m_can_handle_lec_err(struct net_device *dev,
 549				enum m_can_lec_type lec_type)
 550{
 551	struct m_can_classdev *cdev = netdev_priv(dev);
 552	struct net_device_stats *stats = &dev->stats;
 553	struct can_frame *cf;
 554	struct sk_buff *skb;
 555
 556	cdev->can.can_stats.bus_error++;
 557	stats->rx_errors++;
 558
 559	/* propagate the error condition to the CAN stack */
 560	skb = alloc_can_err_skb(dev, &cf);
 561	if (unlikely(!skb))
 562		return 0;
 563
 564	/* check for 'last error code' which tells us the
 565	 * type of the last error to occur on the CAN bus
 566	 */
 567	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 568
 569	switch (lec_type) {
 570	case LEC_STUFF_ERROR:
 571		netdev_dbg(dev, "stuff error\n");
 572		cf->data[2] |= CAN_ERR_PROT_STUFF;
 573		break;
 574	case LEC_FORM_ERROR:
 575		netdev_dbg(dev, "form error\n");
 576		cf->data[2] |= CAN_ERR_PROT_FORM;
 577		break;
 578	case LEC_ACK_ERROR:
 579		netdev_dbg(dev, "ack error\n");
 580		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
 581		break;
 582	case LEC_BIT1_ERROR:
 583		netdev_dbg(dev, "bit1 error\n");
 584		cf->data[2] |= CAN_ERR_PROT_BIT1;
 585		break;
 586	case LEC_BIT0_ERROR:
 587		netdev_dbg(dev, "bit0 error\n");
 588		cf->data[2] |= CAN_ERR_PROT_BIT0;
 589		break;
 590	case LEC_CRC_ERROR:
 591		netdev_dbg(dev, "CRC error\n");
 592		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
 593		break;
 594	default:
 595		break;
 596	}
 597
 598	stats->rx_packets++;
 599	stats->rx_bytes += cf->can_dlc;
 600	netif_receive_skb(skb);
 601
 602	return 1;
 603}
 604
 605static int __m_can_get_berr_counter(const struct net_device *dev,
 606				    struct can_berr_counter *bec)
 607{
 608	struct m_can_classdev *cdev = netdev_priv(dev);
 609	unsigned int ecr;
 610
 611	ecr = m_can_read(cdev, M_CAN_ECR);
 612	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
 613	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
 614
 615	return 0;
 616}
 617
 618static int m_can_clk_start(struct m_can_classdev *cdev)
 619{
 620	int err;
 621
 622	if (cdev->pm_clock_support == 0)
 623		return 0;
 
 624
 625	err = pm_runtime_get_sync(cdev->dev);
 626	if (err < 0) {
 627		pm_runtime_put_noidle(cdev->dev);
 628		return err;
 629	}
 630
 631	return 0;
 632}
 633
 634static void m_can_clk_stop(struct m_can_classdev *cdev)
 635{
 636	if (cdev->pm_clock_support)
 637		pm_runtime_put_sync(cdev->dev);
 638}
 639
 640static int m_can_get_berr_counter(const struct net_device *dev,
 641				  struct can_berr_counter *bec)
 642{
 643	struct m_can_classdev *cdev = netdev_priv(dev);
 644	int err;
 645
 646	err = m_can_clk_start(cdev);
 647	if (err)
 648		return err;
 649
 650	__m_can_get_berr_counter(dev, bec);
 651
 652	m_can_clk_stop(cdev);
 653
 654	return 0;
 655}
 656
 657static int m_can_handle_state_change(struct net_device *dev,
 658				     enum can_state new_state)
 659{
 660	struct m_can_classdev *cdev = netdev_priv(dev);
 661	struct net_device_stats *stats = &dev->stats;
 662	struct can_frame *cf;
 663	struct sk_buff *skb;
 664	struct can_berr_counter bec;
 665	unsigned int ecr;
 666
 667	switch (new_state) {
 668	case CAN_STATE_ERROR_ACTIVE:
 669		/* error warning state */
 670		cdev->can.can_stats.error_warning++;
 671		cdev->can.state = CAN_STATE_ERROR_WARNING;
 672		break;
 673	case CAN_STATE_ERROR_PASSIVE:
 674		/* error passive state */
 675		cdev->can.can_stats.error_passive++;
 676		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
 677		break;
 678	case CAN_STATE_BUS_OFF:
 679		/* bus-off state */
 680		cdev->can.state = CAN_STATE_BUS_OFF;
 681		m_can_disable_all_interrupts(cdev);
 682		cdev->can.can_stats.bus_off++;
 683		can_bus_off(dev);
 684		break;
 685	default:
 686		break;
 687	}
 688
 689	/* propagate the error condition to the CAN stack */
 690	skb = alloc_can_err_skb(dev, &cf);
 691	if (unlikely(!skb))
 692		return 0;
 693
 694	__m_can_get_berr_counter(dev, &bec);
 695
 696	switch (new_state) {
 697	case CAN_STATE_ERROR_ACTIVE:
 698		/* error warning state */
 699		cf->can_id |= CAN_ERR_CRTL;
 700		cf->data[1] = (bec.txerr > bec.rxerr) ?
 701			CAN_ERR_CRTL_TX_WARNING :
 702			CAN_ERR_CRTL_RX_WARNING;
 703		cf->data[6] = bec.txerr;
 704		cf->data[7] = bec.rxerr;
 705		break;
 706	case CAN_STATE_ERROR_PASSIVE:
 707		/* error passive state */
 708		cf->can_id |= CAN_ERR_CRTL;
 709		ecr = m_can_read(cdev, M_CAN_ECR);
 710		if (ecr & ECR_RP)
 711			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 712		if (bec.txerr > 127)
 713			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 714		cf->data[6] = bec.txerr;
 715		cf->data[7] = bec.rxerr;
 716		break;
 717	case CAN_STATE_BUS_OFF:
 718		/* bus-off state */
 719		cf->can_id |= CAN_ERR_BUSOFF;
 720		break;
 721	default:
 722		break;
 723	}
 724
 725	stats->rx_packets++;
 726	stats->rx_bytes += cf->can_dlc;
 727	netif_receive_skb(skb);
 728
 729	return 1;
 730}
 731
 732static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
 733{
 734	struct m_can_classdev *cdev = netdev_priv(dev);
 735	int work_done = 0;
 736
 737	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
 
 738		netdev_dbg(dev, "entered error warning state\n");
 739		work_done += m_can_handle_state_change(dev,
 740						       CAN_STATE_ERROR_WARNING);
 741	}
 742
 743	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
 
 744		netdev_dbg(dev, "entered error passive state\n");
 745		work_done += m_can_handle_state_change(dev,
 746						       CAN_STATE_ERROR_PASSIVE);
 747	}
 748
 749	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
 
 750		netdev_dbg(dev, "entered error bus off state\n");
 751		work_done += m_can_handle_state_change(dev,
 752						       CAN_STATE_BUS_OFF);
 753	}
 754
 755	return work_done;
 756}
 757
 758static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
 759{
 760	if (irqstatus & IR_WDI)
 761		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
 762	if (irqstatus & IR_ELO)
 763		netdev_err(dev, "Error Logging Overflow\n");
 764	if (irqstatus & IR_BEU)
 765		netdev_err(dev, "Bit Error Uncorrected\n");
 766	if (irqstatus & IR_BEC)
 767		netdev_err(dev, "Bit Error Corrected\n");
 768	if (irqstatus & IR_TOO)
 769		netdev_err(dev, "Timeout reached\n");
 770	if (irqstatus & IR_MRAF)
 771		netdev_err(dev, "Message RAM access failure occurred\n");
 772}
 773
 774static inline bool is_lec_err(u32 psr)
 775{
 776	psr &= LEC_UNUSED;
 777
 778	return psr && (psr != LEC_UNUSED);
 779}
 780
 781static inline bool m_can_is_protocol_err(u32 irqstatus)
 782{
 783	return irqstatus & IR_ERR_LEC_31X;
 784}
 785
 786static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
 787{
 788	struct net_device_stats *stats = &dev->stats;
 789	struct m_can_classdev *cdev = netdev_priv(dev);
 790	struct can_frame *cf;
 791	struct sk_buff *skb;
 792
 793	/* propagate the error condition to the CAN stack */
 794	skb = alloc_can_err_skb(dev, &cf);
 795
 796	/* update tx error stats since there is protocol error */
 797	stats->tx_errors++;
 798
 799	/* update arbitration lost status */
 800	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
 801		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
 802		cdev->can.can_stats.arbitration_lost++;
 803		if (skb) {
 804			cf->can_id |= CAN_ERR_LOSTARB;
 805			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
 806		}
 807	}
 808
 809	if (unlikely(!skb)) {
 810		netdev_dbg(dev, "allocation of skb failed\n");
 811		return 0;
 812	}
 813	netif_receive_skb(skb);
 814
 815	return 1;
 816}
 817
 818static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
 819				   u32 psr)
 820{
 821	struct m_can_classdev *cdev = netdev_priv(dev);
 822	int work_done = 0;
 823
 824	if (irqstatus & IR_RF0L)
 825		work_done += m_can_handle_lost_msg(dev);
 826
 827	/* handle lec errors on the bus */
 828	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
 829	    is_lec_err(psr))
 830		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
 831
 832	/* handle protocol errors in arbitration phase */
 833	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
 834	    m_can_is_protocol_err(irqstatus))
 835		work_done += m_can_handle_protocol_error(dev, irqstatus);
 836
 837	/* other unproccessed error interrupts */
 838	m_can_handle_other_err(dev, irqstatus);
 839
 840	return work_done;
 841}
 842
 843static int m_can_rx_handler(struct net_device *dev, int quota)
 844{
 845	struct m_can_classdev *cdev = netdev_priv(dev);
 
 846	int work_done = 0;
 847	u32 irqstatus, psr;
 848
 849	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
 850	if (!irqstatus)
 851		goto end;
 852
 853	/* Errata workaround for issue "Needless activation of MRAF irq"
 854	 * During frame reception while the MCAN is in Error Passive state
 855	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
 856	 * it may happen that MCAN_IR.MRAF is set although there was no
 857	 * Message RAM access failure.
 858	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
 859	 * The Message RAM Access Failure interrupt routine needs to check
 860	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
 861	 * In this case, reset MCAN_IR.MRAF. No further action is required.
 862	 */
 863	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
 864	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
 865		struct can_berr_counter bec;
 866
 867		__m_can_get_berr_counter(dev, &bec);
 868		if (bec.rxerr == 127) {
 869			m_can_write(cdev, M_CAN_IR, IR_MRAF);
 870			irqstatus &= ~IR_MRAF;
 871		}
 872	}
 873
 874	psr = m_can_read(cdev, M_CAN_PSR);
 875
 876	if (irqstatus & IR_ERR_STATE)
 877		work_done += m_can_handle_state_errors(dev, psr);
 878
 879	if (irqstatus & IR_ERR_BUS_30X)
 880		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
 881
 882	if (irqstatus & IR_RF0N)
 883		work_done += m_can_do_rx_poll(dev, (quota - work_done));
 884end:
 885	return work_done;
 886}
 887
 888static int m_can_rx_peripheral(struct net_device *dev)
 889{
 890	struct m_can_classdev *cdev = netdev_priv(dev);
 891
 892	m_can_rx_handler(dev, 1);
 893
 894	m_can_enable_all_interrupts(cdev);
 895
 896	return 0;
 897}
 898
 899static int m_can_poll(struct napi_struct *napi, int quota)
 900{
 901	struct net_device *dev = napi->dev;
 902	struct m_can_classdev *cdev = netdev_priv(dev);
 903	int work_done;
 904
 905	work_done = m_can_rx_handler(dev, quota);
 906	if (work_done < quota) {
 907		napi_complete_done(napi, work_done);
 908		m_can_enable_all_interrupts(cdev);
 909	}
 910
 
 911	return work_done;
 912}
 913
 914static void m_can_echo_tx_event(struct net_device *dev)
 915{
 916	u32 txe_count = 0;
 917	u32 m_can_txefs;
 918	u32 fgi = 0;
 919	int i = 0;
 920	unsigned int msg_mark;
 921
 922	struct m_can_classdev *cdev = netdev_priv(dev);
 923	struct net_device_stats *stats = &dev->stats;
 924
 925	/* read tx event fifo status */
 926	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
 927
 928	/* Get Tx Event fifo element count */
 929	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
 930			>> TXEFS_EFFL_SHIFT;
 931
 932	/* Get and process all sent elements */
 933	for (i = 0; i < txe_count; i++) {
 934		/* retrieve get index */
 935		fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
 936			>> TXEFS_EFGI_SHIFT;
 937
 938		/* get message marker */
 939		msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
 940			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
 941
 942		/* ack txe element */
 943		m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
 944						(fgi << TXEFA_EFAI_SHIFT)));
 945
 946		/* update stats */
 947		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
 948		stats->tx_packets++;
 949	}
 950}
 951
 952static irqreturn_t m_can_isr(int irq, void *dev_id)
 953{
 954	struct net_device *dev = (struct net_device *)dev_id;
 955	struct m_can_classdev *cdev = netdev_priv(dev);
 956	struct net_device_stats *stats = &dev->stats;
 957	u32 ir;
 958
 959	ir = m_can_read(cdev, M_CAN_IR);
 960	if (!ir)
 961		return IRQ_NONE;
 962
 963	/* ACK all irqs */
 964	if (ir & IR_ALL_INT)
 965		m_can_write(cdev, M_CAN_IR, ir);
 966
 967	if (cdev->ops->clear_interrupts)
 968		cdev->ops->clear_interrupts(cdev);
 969
 970	/* schedule NAPI in case of
 971	 * - rx IRQ
 972	 * - state change IRQ
 973	 * - bus error IRQ and bus error reporting
 974	 */
 975	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
 976		cdev->irqstatus = ir;
 977		m_can_disable_all_interrupts(cdev);
 978		if (!cdev->is_peripheral)
 979			napi_schedule(&cdev->napi);
 980		else
 981			m_can_rx_peripheral(dev);
 982	}
 983
 984	if (cdev->version == 30) {
 985		if (ir & IR_TC) {
 986			/* Transmission Complete Interrupt*/
 987			stats->tx_bytes += can_get_echo_skb(dev, 0);
 988			stats->tx_packets++;
 989			can_led_event(dev, CAN_LED_EVENT_TX);
 990			netif_wake_queue(dev);
 991		}
 992	} else  {
 993		if (ir & IR_TEFN) {
 994			/* New TX FIFO Element arrived */
 995			m_can_echo_tx_event(dev);
 996			can_led_event(dev, CAN_LED_EVENT_TX);
 997			if (netif_queue_stopped(dev) &&
 998			    !m_can_tx_fifo_full(cdev))
 999				netif_wake_queue(dev);
1000		}
1001	}
1002
1003	return IRQ_HANDLED;
1004}
1005
1006static const struct can_bittiming_const m_can_bittiming_const_30X = {
1007	.name = KBUILD_MODNAME,
1008	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1009	.tseg1_max = 64,
1010	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1011	.tseg2_max = 16,
1012	.sjw_max = 16,
1013	.brp_min = 1,
1014	.brp_max = 1024,
1015	.brp_inc = 1,
1016};
1017
1018static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1019	.name = KBUILD_MODNAME,
1020	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1021	.tseg1_max = 16,
1022	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1023	.tseg2_max = 8,
1024	.sjw_max = 4,
1025	.brp_min = 1,
1026	.brp_max = 32,
1027	.brp_inc = 1,
1028};
1029
1030static const struct can_bittiming_const m_can_bittiming_const_31X = {
1031	.name = KBUILD_MODNAME,
1032	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1033	.tseg1_max = 256,
1034	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1035	.tseg2_max = 128,
1036	.sjw_max = 128,
1037	.brp_min = 1,
1038	.brp_max = 512,
1039	.brp_inc = 1,
1040};
1041
1042static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1043	.name = KBUILD_MODNAME,
1044	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1045	.tseg1_max = 32,
1046	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1047	.tseg2_max = 16,
1048	.sjw_max = 16,
1049	.brp_min = 1,
1050	.brp_max = 32,
1051	.brp_inc = 1,
1052};
1053
1054static int m_can_set_bittiming(struct net_device *dev)
1055{
1056	struct m_can_classdev *cdev = netdev_priv(dev);
1057	const struct can_bittiming *bt = &cdev->can.bittiming;
1058	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1059	u16 brp, sjw, tseg1, tseg2;
1060	u32 reg_btp;
1061
1062	brp = bt->brp - 1;
1063	sjw = bt->sjw - 1;
1064	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1065	tseg2 = bt->phase_seg2 - 1;
1066	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1067		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1068	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1069
1070	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1071		reg_btp = 0;
1072		brp = dbt->brp - 1;
1073		sjw = dbt->sjw - 1;
1074		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1075		tseg2 = dbt->phase_seg2 - 1;
1076
1077		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1078		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1079		 * paper presented at the International CAN Conference 2013
1080		 */
1081		if (dbt->bitrate > 2500000) {
1082			u32 tdco, ssp;
1083
1084			/* Use the same value of secondary sampling point
1085			 * as the data sampling point
1086			 */
1087			ssp = dbt->sample_point;
1088
1089			/* Equation based on Bosch's M_CAN User Manual's
1090			 * Transmitter Delay Compensation Section
1091			 */
1092			tdco = (cdev->can.clock.freq / 1000) *
1093			       ssp / dbt->bitrate;
1094
1095			/* Max valid TDCO value is 127 */
1096			if (tdco > 127) {
1097				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1098					    tdco);
1099				tdco = 127;
1100			}
1101
1102			reg_btp |= DBTP_TDC;
1103			m_can_write(cdev, M_CAN_TDCR,
1104				    tdco << TDCR_TDCO_SHIFT);
1105		}
1106
1107		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1108			   (sjw << DBTP_DSJW_SHIFT) |
1109			   (tseg1 << DBTP_DTSEG1_SHIFT) |
1110			   (tseg2 << DBTP_DTSEG2_SHIFT);
1111
1112		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1113	}
1114
1115	return 0;
1116}
1117
1118/* Configure M_CAN chip:
1119 * - set rx buffer/fifo element size
1120 * - configure rx fifo
1121 * - accept non-matching frame into fifo 0
1122 * - configure tx buffer
1123 *		- >= v3.1.x: TX FIFO is used
1124 * - configure mode
1125 * - setup bittiming
1126 */
1127static void m_can_chip_config(struct net_device *dev)
1128{
1129	struct m_can_classdev *cdev = netdev_priv(dev);
1130	u32 cccr, test;
1131
1132	m_can_config_endisable(cdev, true);
1133
1134	/* RX Buffer/FIFO Element Size 64 bytes data field */
1135	m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1136
1137	/* Accept Non-matching Frames Into FIFO 0 */
1138	m_can_write(cdev, M_CAN_GFC, 0x0);
1139
1140	if (cdev->version == 30) {
1141		/* only support one Tx Buffer currently */
1142		m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1143				cdev->mcfg[MRAM_TXB].off);
1144	} else {
1145		/* TX FIFO is used for newer IP Core versions */
1146		m_can_write(cdev, M_CAN_TXBC,
1147			    (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1148			    (cdev->mcfg[MRAM_TXB].off));
1149	}
1150
1151	/* support 64 bytes payload */
1152	m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1153
1154	/* TX Event FIFO */
1155	if (cdev->version == 30) {
1156		m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1157				cdev->mcfg[MRAM_TXE].off);
1158	} else {
1159		/* Full TX Event FIFO is used */
1160		m_can_write(cdev, M_CAN_TXEFC,
1161			    ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1162			     & TXEFC_EFS_MASK) |
1163			    cdev->mcfg[MRAM_TXE].off);
1164	}
1165
1166	/* rx fifo configuration, blocking mode, fifo size 1 */
1167	m_can_write(cdev, M_CAN_RXF0C,
1168		    (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1169		     cdev->mcfg[MRAM_RXF0].off);
1170
1171	m_can_write(cdev, M_CAN_RXF1C,
1172		    (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1173		     cdev->mcfg[MRAM_RXF1].off);
1174
1175	cccr = m_can_read(cdev, M_CAN_CCCR);
1176	test = m_can_read(cdev, M_CAN_TEST);
1177	test &= ~TEST_LBCK;
1178	if (cdev->version == 30) {
1179	/* Version 3.0.x */
1180
1181		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1182			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1183			(CCCR_CME_MASK << CCCR_CME_SHIFT));
1184
1185		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1186			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1187
1188	} else {
1189	/* Version 3.1.x or 3.2.x */
1190		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1191			  CCCR_NISO | CCCR_DAR);
1192
1193		/* Only 3.2.x has NISO Bit implemented */
1194		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1195			cccr |= CCCR_NISO;
1196
1197		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1198			cccr |= (CCCR_BRSE | CCCR_FDOE);
1199	}
1200
1201	/* Loopback Mode */
1202	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1203		cccr |= CCCR_TEST | CCCR_MON;
1204		test |= TEST_LBCK;
1205	}
1206
1207	/* Enable Monitoring (all versions) */
1208	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1209		cccr |= CCCR_MON;
1210
1211	/* Disable Auto Retransmission (all versions) */
1212	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1213		cccr |= CCCR_DAR;
1214
1215	/* Write config */
1216	m_can_write(cdev, M_CAN_CCCR, cccr);
1217	m_can_write(cdev, M_CAN_TEST, test);
1218
1219	/* Enable interrupts */
1220	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1221	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1222		if (cdev->version == 30)
1223			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1224				    ~(IR_ERR_LEC_30X));
1225		else
1226			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1227				    ~(IR_ERR_LEC_31X));
1228	else
1229		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1230
1231	/* route all interrupts to INT0 */
1232	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1233
1234	/* set bittiming params */
1235	m_can_set_bittiming(dev);
1236
1237	m_can_config_endisable(cdev, false);
1238
1239	if (cdev->ops->init)
1240		cdev->ops->init(cdev);
1241}
1242
1243static void m_can_start(struct net_device *dev)
1244{
1245	struct m_can_classdev *cdev = netdev_priv(dev);
1246
1247	/* basic m_can configuration */
1248	m_can_chip_config(dev);
1249
1250	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1251
1252	m_can_enable_all_interrupts(cdev);
1253}
1254
1255static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1256{
1257	switch (mode) {
1258	case CAN_MODE_START:
1259		m_can_clean(dev);
1260		m_can_start(dev);
1261		netif_wake_queue(dev);
1262		break;
1263	default:
1264		return -EOPNOTSUPP;
1265	}
1266
1267	return 0;
1268}
1269
1270/* Checks core release number of M_CAN
1271 * returns 0 if an unsupported device is detected
1272 * else it returns the release and step coded as:
1273 * return value = 10 * <release> + 1 * <step>
1274 */
1275static int m_can_check_core_release(struct m_can_classdev *cdev)
1276{
1277	u32 crel_reg;
1278	u8 rel;
1279	u8 step;
1280	int res;
 
 
 
1281
1282	/* Read Core Release Version and split into version number
1283	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1284	 */
1285	crel_reg = m_can_read(cdev, M_CAN_CREL);
1286	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1287	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1288
1289	if (rel == 3) {
1290		/* M_CAN v3.x.y: create return value */
1291		res = 30 + step;
1292	} else {
1293		/* Unsupported M_CAN version */
1294		res = 0;
1295	}
1296
1297	return res;
1298}
1299
1300/* Selectable Non ISO support only in version 3.2.x
1301 * This function checks if the bit is writable.
1302 */
1303static bool m_can_niso_supported(struct m_can_classdev *cdev)
1304{
1305	u32 cccr_reg, cccr_poll = 0;
1306	int niso_timeout = -ETIMEDOUT;
1307	int i;
1308
1309	m_can_config_endisable(cdev, true);
1310	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1311	cccr_reg |= CCCR_NISO;
1312	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1313
1314	for (i = 0; i <= 10; i++) {
1315		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1316		if (cccr_poll == cccr_reg) {
1317			niso_timeout = 0;
1318			break;
1319		}
1320
1321		usleep_range(1, 5);
1322	}
1323
1324	/* Clear NISO */
1325	cccr_reg &= ~(CCCR_NISO);
1326	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1327
1328	m_can_config_endisable(cdev, false);
1329
1330	/* return false if time out (-ETIMEDOUT), else return true */
1331	return !niso_timeout;
1332}
1333
1334static int m_can_dev_setup(struct m_can_classdev *m_can_dev)
 
1335{
1336	struct net_device *dev = m_can_dev->net;
1337	int m_can_version;
1338
1339	m_can_version = m_can_check_core_release(m_can_dev);
1340	/* return if unsupported version */
1341	if (!m_can_version) {
1342		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1343			m_can_version);
1344		return -EINVAL;
1345	}
1346
1347	if (!m_can_dev->is_peripheral)
1348		netif_napi_add(dev, &m_can_dev->napi,
1349			       m_can_poll, M_CAN_NAPI_WEIGHT);
1350
1351	/* Shared properties of all M_CAN versions */
1352	m_can_dev->version = m_can_version;
1353	m_can_dev->can.do_set_mode = m_can_set_mode;
1354	m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
 
 
1355
1356	/* Set M_CAN supported operations */
1357	m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1358					CAN_CTRLMODE_LISTENONLY |
1359					CAN_CTRLMODE_BERR_REPORTING |
1360					CAN_CTRLMODE_FD |
1361					CAN_CTRLMODE_ONE_SHOT;
1362
1363	/* Set properties depending on M_CAN version */
1364	switch (m_can_dev->version) {
1365	case 30:
1366		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1367		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1368		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1369			m_can_dev->bit_timing : &m_can_bittiming_const_30X;
1370
1371		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1372						m_can_dev->data_timing :
1373						&m_can_data_bittiming_const_30X;
1374		break;
1375	case 31:
1376		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1377		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1378		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1379			m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1380
1381		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1382						m_can_dev->data_timing :
1383						&m_can_data_bittiming_const_31X;
1384		break;
1385	case 32:
1386		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1387			m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1388
1389		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1390						m_can_dev->data_timing :
1391						&m_can_data_bittiming_const_31X;
1392
1393		m_can_dev->can.ctrlmode_supported |=
1394						(m_can_niso_supported(m_can_dev)
1395						? CAN_CTRLMODE_FD_NON_ISO
1396						: 0);
1397		break;
1398	default:
1399		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1400			m_can_dev->version);
1401		return -EINVAL;
1402	}
1403
1404	if (m_can_dev->ops->init)
1405		m_can_dev->ops->init(m_can_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406
1407	return 0;
 
 
 
 
 
 
1408}
1409
1410static void m_can_stop(struct net_device *dev)
1411{
1412	struct m_can_classdev *cdev = netdev_priv(dev);
1413
1414	/* disable all interrupts */
1415	m_can_disable_all_interrupts(cdev);
1416
1417	/* set the state as STOPPED */
1418	cdev->can.state = CAN_STATE_STOPPED;
1419}
1420
1421static int m_can_close(struct net_device *dev)
1422{
1423	struct m_can_classdev *cdev = netdev_priv(dev);
1424
1425	netif_stop_queue(dev);
1426
1427	if (!cdev->is_peripheral)
1428		napi_disable(&cdev->napi);
1429
1430	m_can_stop(dev);
1431	m_can_clk_stop(cdev);
1432	free_irq(dev->irq, dev);
1433
1434	if (cdev->is_peripheral) {
1435		cdev->tx_skb = NULL;
1436		destroy_workqueue(cdev->tx_wq);
1437		cdev->tx_wq = NULL;
1438	}
1439
1440	close_candev(dev);
1441	can_led_event(dev, CAN_LED_EVENT_STOP);
1442
1443	return 0;
1444}
1445
1446static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1447{
1448	struct m_can_classdev *cdev = netdev_priv(dev);
1449	/*get wrap around for loopback skb index */
1450	unsigned int wrap = cdev->can.echo_skb_max;
1451	int next_idx;
1452
1453	/* calculate next index */
1454	next_idx = (++putidx >= wrap ? 0 : putidx);
1455
1456	/* check if occupied */
1457	return !!cdev->can.echo_skb[next_idx];
1458}
1459
1460static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
 
1461{
1462	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1463	struct net_device *dev = cdev->net;
1464	struct sk_buff *skb = cdev->tx_skb;
1465	u32 id, cccr, fdflags;
1466	int i;
1467	int putidx;
1468
 
 
 
1469	/* Generate ID field for TX buffer Element */
1470	/* Common to all supported M_CAN versions */
1471	if (cf->can_id & CAN_EFF_FLAG) {
1472		id = cf->can_id & CAN_EFF_MASK;
1473		id |= TX_BUF_XTD;
1474	} else {
1475		id = ((cf->can_id & CAN_SFF_MASK) << 18);
1476	}
1477
1478	if (cf->can_id & CAN_RTR_FLAG)
1479		id |= TX_BUF_RTR;
1480
1481	if (cdev->version == 30) {
1482		netif_stop_queue(dev);
1483
1484		/* message ram configuration */
1485		m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
1486		m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1487				 can_len2dlc(cf->len) << 16);
1488
1489		for (i = 0; i < cf->len; i += 4)
1490			m_can_fifo_write(cdev, 0,
1491					 M_CAN_FIFO_DATA(i / 4),
1492					 *(u32 *)(cf->data + i));
1493
1494		can_put_echo_skb(skb, dev, 0);
1495
1496		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1497			cccr = m_can_read(cdev, M_CAN_CCCR);
1498			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1499			if (can_is_canfd_skb(skb)) {
1500				if (cf->flags & CANFD_BRS)
1501					cccr |= CCCR_CMR_CANFD_BRS <<
1502						CCCR_CMR_SHIFT;
1503				else
1504					cccr |= CCCR_CMR_CANFD <<
1505						CCCR_CMR_SHIFT;
1506			} else {
1507				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1508			}
1509			m_can_write(cdev, M_CAN_CCCR, cccr);
1510		}
1511		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1512		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1513		/* End of xmit function for version 3.0.x */
1514	} else {
1515		/* Transmit routine for version >= v3.1.x */
1516
1517		/* Check if FIFO full */
1518		if (m_can_tx_fifo_full(cdev)) {
1519			/* This shouldn't happen */
1520			netif_stop_queue(dev);
1521			netdev_warn(dev,
1522				    "TX queue active although FIFO is full.");
1523
1524			if (cdev->is_peripheral) {
1525				kfree_skb(skb);
1526				dev->stats.tx_dropped++;
1527				return NETDEV_TX_OK;
1528			} else {
1529				return NETDEV_TX_BUSY;
1530			}
1531		}
1532
1533		/* get put index for frame */
1534		putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1535				  >> TXFQS_TFQPI_SHIFT);
1536		/* Write ID Field to FIFO Element */
1537		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1538
1539		/* get CAN FD configuration of frame */
1540		fdflags = 0;
1541		if (can_is_canfd_skb(skb)) {
1542			fdflags |= TX_BUF_FDF;
1543			if (cf->flags & CANFD_BRS)
1544				fdflags |= TX_BUF_BRS;
1545		}
1546
1547		/* Construct DLC Field. Also contains CAN-FD configuration
1548		 * use put index of fifo as message marker
1549		 * it is used in TX interrupt for
1550		 * sending the correct echo frame
1551		 */
1552		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1553				 ((putidx << TX_BUF_MM_SHIFT) &
1554				  TX_BUF_MM_MASK) |
1555				 (can_len2dlc(cf->len) << 16) |
1556				 fdflags | TX_BUF_EFC);
1557
1558		for (i = 0; i < cf->len; i += 4)
1559			m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1560					 *(u32 *)(cf->data + i));
1561
1562		/* Push loopback echo.
1563		 * Will be looped back on TX interrupt based on message marker
1564		 */
1565		can_put_echo_skb(skb, dev, putidx);
1566
1567		/* Enable TX FIFO element to start transfer  */
1568		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1569
1570		/* stop network queue if fifo full */
1571		if (m_can_tx_fifo_full(cdev) ||
1572		    m_can_next_echo_skb_occupied(dev, putidx))
1573			netif_stop_queue(dev);
1574	}
1575
1576	return NETDEV_TX_OK;
1577}
1578
1579static void m_can_tx_work_queue(struct work_struct *ws)
1580{
1581	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1582						tx_work);
1583
1584	m_can_tx_handler(cdev);
1585	cdev->tx_skb = NULL;
1586}
1587
1588static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1589				    struct net_device *dev)
1590{
1591	struct m_can_classdev *cdev = netdev_priv(dev);
1592
1593	if (can_dropped_invalid_skb(dev, skb))
1594		return NETDEV_TX_OK;
1595
1596	if (cdev->is_peripheral) {
1597		if (cdev->tx_skb) {
1598			netdev_err(dev, "hard_xmit called while tx busy\n");
1599			return NETDEV_TX_BUSY;
1600		}
1601
1602		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1603			m_can_clean(dev);
1604		} else {
1605			/* Need to stop the queue to avoid numerous requests
1606			 * from being sent.  Suggested improvement is to create
1607			 * a queueing mechanism that will queue the skbs and
1608			 * process them in order.
1609			 */
1610			cdev->tx_skb = skb;
1611			netif_stop_queue(cdev->net);
1612			queue_work(cdev->tx_wq, &cdev->tx_work);
1613		}
1614	} else {
1615		cdev->tx_skb = skb;
1616		return m_can_tx_handler(cdev);
1617	}
1618
1619	return NETDEV_TX_OK;
1620}
1621
1622static int m_can_open(struct net_device *dev)
1623{
1624	struct m_can_classdev *cdev = netdev_priv(dev);
1625	int err;
1626
1627	err = m_can_clk_start(cdev);
1628	if (err)
1629		return err;
1630
1631	/* open the can device */
1632	err = open_candev(dev);
1633	if (err) {
1634		netdev_err(dev, "failed to open can device\n");
1635		goto exit_disable_clks;
1636	}
1637
1638	/* register interrupt handler */
1639	if (cdev->is_peripheral) {
1640		cdev->tx_skb = NULL;
1641		cdev->tx_wq = alloc_workqueue("mcan_wq",
1642					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1643		if (!cdev->tx_wq) {
1644			err = -ENOMEM;
1645			goto out_wq_fail;
1646		}
1647
1648		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1649
1650		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1651					   IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
1652					   dev->name, dev);
1653	} else {
1654		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1655				  dev);
1656	}
1657
1658	if (err < 0) {
1659		netdev_err(dev, "failed to request interrupt\n");
1660		goto exit_irq_fail;
1661	}
1662
1663	/* start the m_can controller */
1664	m_can_start(dev);
1665
1666	can_led_event(dev, CAN_LED_EVENT_OPEN);
1667
1668	if (!cdev->is_peripheral)
1669		napi_enable(&cdev->napi);
1670
1671	netif_start_queue(dev);
1672
1673	return 0;
1674
1675exit_irq_fail:
1676	if (cdev->is_peripheral)
1677		destroy_workqueue(cdev->tx_wq);
1678out_wq_fail:
1679	close_candev(dev);
1680exit_disable_clks:
1681	m_can_clk_stop(cdev);
1682	return err;
1683}
1684
1685static const struct net_device_ops m_can_netdev_ops = {
1686	.ndo_open = m_can_open,
1687	.ndo_stop = m_can_close,
1688	.ndo_start_xmit = m_can_start_xmit,
1689	.ndo_change_mtu = can_change_mtu,
1690};
1691
1692static int register_m_can_dev(struct net_device *dev)
1693{
1694	dev->flags |= IFF_ECHO;	/* we support local echo */
1695	dev->netdev_ops = &m_can_netdev_ops;
1696
1697	return register_candev(dev);
1698}
1699
1700static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1701				const u32 *mram_config_vals)
1702{
1703	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1704	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1705	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1706			cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1707	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1708	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1709			cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1710	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1711			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1712	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1713			cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1714	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1715			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1716	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1717			cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1718	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1719	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1720			cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1721	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1722	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1723			cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1724	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1725			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1726
1727	dev_dbg(cdev->dev,
1728		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1729		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1730		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1731		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1732		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1733		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1734		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1735		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1736}
1737
1738void m_can_init_ram(struct m_can_classdev *cdev)
1739{
1740	int end, i, start;
1741
1742	/* initialize the entire Message RAM in use to avoid possible
1743	 * ECC/parity checksum errors when reading an uninitialized buffer
1744	 */
1745	start = cdev->mcfg[MRAM_SIDF].off;
1746	end = cdev->mcfg[MRAM_TXB].off +
1747		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1748
1749	for (i = start; i < end; i += 4)
1750		m_can_fifo_write_no_off(cdev, i, 0x0);
1751}
1752EXPORT_SYMBOL_GPL(m_can_init_ram);
1753
1754int m_can_class_get_clocks(struct m_can_classdev *m_can_dev)
 
1755{
1756	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757
1758	m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
1759	m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1760
1761	if (IS_ERR(m_can_dev->cclk)) {
1762		dev_err(m_can_dev->dev, "no clock found\n");
 
 
 
1763		ret = -ENODEV;
 
1764	}
1765
1766	return ret;
1767}
1768EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
 
 
 
 
 
 
 
 
 
 
 
 
1769
1770struct m_can_classdev *m_can_class_allocate_dev(struct device *dev)
1771{
1772	struct m_can_classdev *class_dev = NULL;
1773	u32 mram_config_vals[MRAM_CFG_LEN];
1774	struct net_device *net_dev;
1775	u32 tx_fifo_size;
1776	int ret;
1777
1778	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1779					     "bosch,mram-cfg",
1780					     mram_config_vals,
1781					     sizeof(mram_config_vals) / 4);
1782	if (ret) {
1783		dev_err(dev, "Could not get Message RAM configuration.");
1784		goto out;
1785	}
1786
1787	/* Get TX FIFO size
1788	 * Defines the total amount of echo buffers for loopback
1789	 */
1790	tx_fifo_size = mram_config_vals[7];
1791
1792	/* allocate the m_can device */
1793	net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
1794	if (!net_dev) {
1795		dev_err(dev, "Failed to allocate CAN device");
1796		goto out;
1797	}
 
 
 
 
 
 
 
 
1798
1799	class_dev = netdev_priv(net_dev);
1800	if (!class_dev) {
1801		dev_err(dev, "Failed to init netdev cdevate");
1802		goto out;
1803	}
1804
1805	class_dev->net = net_dev;
1806	class_dev->dev = dev;
1807	SET_NETDEV_DEV(net_dev, dev);
1808
1809	m_can_of_parse_mram(class_dev, mram_config_vals);
1810out:
1811	return class_dev;
1812}
1813EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1814
1815int m_can_class_register(struct m_can_classdev *m_can_dev)
1816{
1817	int ret;
1818
1819	if (m_can_dev->pm_clock_support) {
1820		pm_runtime_enable(m_can_dev->dev);
1821		ret = m_can_clk_start(m_can_dev);
1822		if (ret)
1823			goto pm_runtime_fail;
1824	}
1825
1826	ret = m_can_dev_setup(m_can_dev);
1827	if (ret)
1828		goto clk_disable;
1829
1830	ret = register_m_can_dev(m_can_dev->net);
1831	if (ret) {
1832		dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
1833			m_can_dev->net->name, ret);
1834		goto clk_disable;
1835	}
1836
1837	devm_can_led_init(m_can_dev->net);
1838
1839	of_can_transceiver(m_can_dev->net);
1840
1841	dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
1842		 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
1843
1844	/* Probe finished
1845	 * Stop clocks. They will be reactivated once the M_CAN device is opened
1846	 */
1847clk_disable:
1848	m_can_clk_stop(m_can_dev);
1849pm_runtime_fail:
1850	if (ret) {
1851		if (m_can_dev->pm_clock_support)
1852			pm_runtime_disable(m_can_dev->dev);
1853		free_candev(m_can_dev->net);
1854	}
1855
1856	return ret;
1857}
1858EXPORT_SYMBOL_GPL(m_can_class_register);
1859
1860int m_can_class_suspend(struct device *dev)
 
 
1861{
1862	struct net_device *ndev = dev_get_drvdata(dev);
1863	struct m_can_classdev *cdev = netdev_priv(ndev);
1864
1865	if (netif_running(ndev)) {
1866		netif_stop_queue(ndev);
1867		netif_device_detach(ndev);
1868		m_can_stop(ndev);
1869		m_can_clk_stop(cdev);
1870	}
1871
1872	pinctrl_pm_select_sleep_state(dev);
1873
1874	cdev->can.state = CAN_STATE_SLEEPING;
1875
1876	return 0;
1877}
1878EXPORT_SYMBOL_GPL(m_can_class_suspend);
1879
1880int m_can_class_resume(struct device *dev)
1881{
1882	struct net_device *ndev = dev_get_drvdata(dev);
1883	struct m_can_classdev *cdev = netdev_priv(ndev);
1884
1885	pinctrl_pm_select_default_state(dev);
1886
1887	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
 
 
1888
1889	if (netif_running(ndev)) {
1890		int ret;
1891
1892		ret = m_can_clk_start(cdev);
1893		if (ret)
1894			return ret;
1895
1896		m_can_init_ram(cdev);
1897		m_can_start(ndev);
1898		netif_device_attach(ndev);
1899		netif_start_queue(ndev);
1900	}
1901
1902	return 0;
1903}
1904EXPORT_SYMBOL_GPL(m_can_class_resume);
1905
1906void m_can_class_unregister(struct m_can_classdev *m_can_dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1907{
1908	unregister_candev(m_can_dev->net);
 
1909
1910	m_can_clk_stop(m_can_dev);
 
1911
1912	free_candev(m_can_dev->net);
1913}
1914EXPORT_SYMBOL_GPL(m_can_class_unregister);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1915
1916MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1917MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1918MODULE_LICENSE("GPL v2");
1919MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");