Loading...
1/*
2 * This file is part of STM32 Crypto driver for Linux.
3 *
4 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
5 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
6 *
7 * License terms: GPL V2.0.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License version 2 as published by
11 * the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
16 * details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program. If not, see <http://www.gnu.org/licenses/>.
20 *
21 */
22
23#include <linux/clk.h>
24#include <linux/crypto.h>
25#include <linux/delay.h>
26#include <linux/dmaengine.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/iopoll.h>
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/of_device.h>
33#include <linux/platform_device.h>
34#include <linux/reset.h>
35
36#include <crypto/engine.h>
37#include <crypto/hash.h>
38#include <crypto/md5.h>
39#include <crypto/scatterwalk.h>
40#include <crypto/sha.h>
41#include <crypto/internal/hash.h>
42
43#define HASH_CR 0x00
44#define HASH_DIN 0x04
45#define HASH_STR 0x08
46#define HASH_IMR 0x20
47#define HASH_SR 0x24
48#define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
49#define HASH_HREG(x) (0x310 + ((x) * 0x04))
50#define HASH_HWCFGR 0x3F0
51#define HASH_VER 0x3F4
52#define HASH_ID 0x3F8
53
54/* Control Register */
55#define HASH_CR_INIT BIT(2)
56#define HASH_CR_DMAE BIT(3)
57#define HASH_CR_DATATYPE_POS 4
58#define HASH_CR_MODE BIT(6)
59#define HASH_CR_MDMAT BIT(13)
60#define HASH_CR_DMAA BIT(14)
61#define HASH_CR_LKEY BIT(16)
62
63#define HASH_CR_ALGO_SHA1 0x0
64#define HASH_CR_ALGO_MD5 0x80
65#define HASH_CR_ALGO_SHA224 0x40000
66#define HASH_CR_ALGO_SHA256 0x40080
67
68/* Interrupt */
69#define HASH_DINIE BIT(0)
70#define HASH_DCIE BIT(1)
71
72/* Interrupt Mask */
73#define HASH_MASK_CALC_COMPLETION BIT(0)
74#define HASH_MASK_DATA_INPUT BIT(1)
75
76/* Context swap register */
77#define HASH_CSR_REGISTER_NUMBER 53
78
79/* Status Flags */
80#define HASH_SR_DATA_INPUT_READY BIT(0)
81#define HASH_SR_OUTPUT_READY BIT(1)
82#define HASH_SR_DMA_ACTIVE BIT(2)
83#define HASH_SR_BUSY BIT(3)
84
85/* STR Register */
86#define HASH_STR_NBLW_MASK GENMASK(4, 0)
87#define HASH_STR_DCAL BIT(8)
88
89#define HASH_FLAGS_INIT BIT(0)
90#define HASH_FLAGS_OUTPUT_READY BIT(1)
91#define HASH_FLAGS_CPU BIT(2)
92#define HASH_FLAGS_DMA_READY BIT(3)
93#define HASH_FLAGS_DMA_ACTIVE BIT(4)
94#define HASH_FLAGS_HMAC_INIT BIT(5)
95#define HASH_FLAGS_HMAC_FINAL BIT(6)
96#define HASH_FLAGS_HMAC_KEY BIT(7)
97
98#define HASH_FLAGS_FINAL BIT(15)
99#define HASH_FLAGS_FINUP BIT(16)
100#define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
101#define HASH_FLAGS_MD5 BIT(18)
102#define HASH_FLAGS_SHA1 BIT(19)
103#define HASH_FLAGS_SHA224 BIT(20)
104#define HASH_FLAGS_SHA256 BIT(21)
105#define HASH_FLAGS_ERRORS BIT(22)
106#define HASH_FLAGS_HMAC BIT(23)
107
108#define HASH_OP_UPDATE 1
109#define HASH_OP_FINAL 2
110
111enum stm32_hash_data_format {
112 HASH_DATA_32_BITS = 0x0,
113 HASH_DATA_16_BITS = 0x1,
114 HASH_DATA_8_BITS = 0x2,
115 HASH_DATA_1_BIT = 0x3
116};
117
118#define HASH_BUFLEN 256
119#define HASH_LONG_KEY 64
120#define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
121#define HASH_QUEUE_LENGTH 16
122#define HASH_DMA_THRESHOLD 50
123
124struct stm32_hash_ctx {
125 struct crypto_engine_ctx enginectx;
126 struct stm32_hash_dev *hdev;
127 unsigned long flags;
128
129 u8 key[HASH_MAX_KEY_SIZE];
130 int keylen;
131};
132
133struct stm32_hash_request_ctx {
134 struct stm32_hash_dev *hdev;
135 unsigned long flags;
136 unsigned long op;
137
138 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
139 size_t digcnt;
140 size_t bufcnt;
141 size_t buflen;
142
143 /* DMA */
144 struct scatterlist *sg;
145 unsigned int offset;
146 unsigned int total;
147 struct scatterlist sg_key;
148
149 dma_addr_t dma_addr;
150 size_t dma_ct;
151 int nents;
152
153 u8 data_type;
154
155 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
156
157 /* Export Context */
158 u32 *hw_context;
159};
160
161struct stm32_hash_algs_info {
162 struct ahash_alg *algs_list;
163 size_t size;
164};
165
166struct stm32_hash_pdata {
167 struct stm32_hash_algs_info *algs_info;
168 size_t algs_info_size;
169};
170
171struct stm32_hash_dev {
172 struct list_head list;
173 struct device *dev;
174 struct clk *clk;
175 struct reset_control *rst;
176 void __iomem *io_base;
177 phys_addr_t phys_base;
178 u32 dma_mode;
179 u32 dma_maxburst;
180
181 spinlock_t lock; /* lock to protect queue */
182
183 struct ahash_request *req;
184 struct crypto_engine *engine;
185
186 int err;
187 unsigned long flags;
188
189 struct dma_chan *dma_lch;
190 struct completion dma_completion;
191
192 const struct stm32_hash_pdata *pdata;
193};
194
195struct stm32_hash_drv {
196 struct list_head dev_list;
197 spinlock_t lock; /* List protection access */
198};
199
200static struct stm32_hash_drv stm32_hash = {
201 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
202 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
203};
204
205static void stm32_hash_dma_callback(void *param);
206
207static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
208{
209 return readl_relaxed(hdev->io_base + offset);
210}
211
212static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
213 u32 offset, u32 value)
214{
215 writel_relaxed(value, hdev->io_base + offset);
216}
217
218static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
219{
220 u32 status;
221
222 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
223 !(status & HASH_SR_BUSY), 10, 10000);
224}
225
226static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
227{
228 u32 reg;
229
230 reg = stm32_hash_read(hdev, HASH_STR);
231 reg &= ~(HASH_STR_NBLW_MASK);
232 reg |= (8U * ((length) % 4U));
233 stm32_hash_write(hdev, HASH_STR, reg);
234}
235
236static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
237{
238 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
239 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
240 u32 reg;
241 int keylen = ctx->keylen;
242 void *key = ctx->key;
243
244 if (keylen) {
245 stm32_hash_set_nblw(hdev, keylen);
246
247 while (keylen > 0) {
248 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
249 keylen -= 4;
250 key += 4;
251 }
252
253 reg = stm32_hash_read(hdev, HASH_STR);
254 reg |= HASH_STR_DCAL;
255 stm32_hash_write(hdev, HASH_STR, reg);
256
257 return -EINPROGRESS;
258 }
259
260 return 0;
261}
262
263static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
264{
265 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
266 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
267 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
268
269 u32 reg = HASH_CR_INIT;
270
271 if (!(hdev->flags & HASH_FLAGS_INIT)) {
272 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
273 case HASH_FLAGS_MD5:
274 reg |= HASH_CR_ALGO_MD5;
275 break;
276 case HASH_FLAGS_SHA1:
277 reg |= HASH_CR_ALGO_SHA1;
278 break;
279 case HASH_FLAGS_SHA224:
280 reg |= HASH_CR_ALGO_SHA224;
281 break;
282 case HASH_FLAGS_SHA256:
283 reg |= HASH_CR_ALGO_SHA256;
284 break;
285 default:
286 reg |= HASH_CR_ALGO_MD5;
287 }
288
289 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
290
291 if (rctx->flags & HASH_FLAGS_HMAC) {
292 hdev->flags |= HASH_FLAGS_HMAC;
293 reg |= HASH_CR_MODE;
294 if (ctx->keylen > HASH_LONG_KEY)
295 reg |= HASH_CR_LKEY;
296 }
297
298 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
299
300 stm32_hash_write(hdev, HASH_CR, reg);
301
302 hdev->flags |= HASH_FLAGS_INIT;
303
304 dev_dbg(hdev->dev, "Write Control %x\n", reg);
305 }
306}
307
308static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
309{
310 size_t count;
311
312 while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
313 count = min(rctx->sg->length - rctx->offset, rctx->total);
314 count = min(count, rctx->buflen - rctx->bufcnt);
315
316 if (count <= 0) {
317 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
318 rctx->sg = sg_next(rctx->sg);
319 continue;
320 } else {
321 break;
322 }
323 }
324
325 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
326 rctx->offset, count, 0);
327
328 rctx->bufcnt += count;
329 rctx->offset += count;
330 rctx->total -= count;
331
332 if (rctx->offset == rctx->sg->length) {
333 rctx->sg = sg_next(rctx->sg);
334 if (rctx->sg)
335 rctx->offset = 0;
336 else
337 rctx->total = 0;
338 }
339 }
340}
341
342static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
343 const u8 *buf, size_t length, int final)
344{
345 unsigned int count, len32;
346 const u32 *buffer = (const u32 *)buf;
347 u32 reg;
348
349 if (final)
350 hdev->flags |= HASH_FLAGS_FINAL;
351
352 len32 = DIV_ROUND_UP(length, sizeof(u32));
353
354 dev_dbg(hdev->dev, "%s: length: %d, final: %x len32 %i\n",
355 __func__, length, final, len32);
356
357 hdev->flags |= HASH_FLAGS_CPU;
358
359 stm32_hash_write_ctrl(hdev);
360
361 if (stm32_hash_wait_busy(hdev))
362 return -ETIMEDOUT;
363
364 if ((hdev->flags & HASH_FLAGS_HMAC) &&
365 (hdev->flags & ~HASH_FLAGS_HMAC_KEY)) {
366 hdev->flags |= HASH_FLAGS_HMAC_KEY;
367 stm32_hash_write_key(hdev);
368 if (stm32_hash_wait_busy(hdev))
369 return -ETIMEDOUT;
370 }
371
372 for (count = 0; count < len32; count++)
373 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
374
375 if (final) {
376 stm32_hash_set_nblw(hdev, length);
377 reg = stm32_hash_read(hdev, HASH_STR);
378 reg |= HASH_STR_DCAL;
379 stm32_hash_write(hdev, HASH_STR, reg);
380 if (hdev->flags & HASH_FLAGS_HMAC) {
381 if (stm32_hash_wait_busy(hdev))
382 return -ETIMEDOUT;
383 stm32_hash_write_key(hdev);
384 }
385 return -EINPROGRESS;
386 }
387
388 return 0;
389}
390
391static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
392{
393 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
394 int bufcnt, err = 0, final;
395
396 dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
397
398 final = (rctx->flags & HASH_FLAGS_FINUP);
399
400 while ((rctx->total >= rctx->buflen) ||
401 (rctx->bufcnt + rctx->total >= rctx->buflen)) {
402 stm32_hash_append_sg(rctx);
403 bufcnt = rctx->bufcnt;
404 rctx->bufcnt = 0;
405 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
406 }
407
408 stm32_hash_append_sg(rctx);
409
410 if (final) {
411 bufcnt = rctx->bufcnt;
412 rctx->bufcnt = 0;
413 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
414 (rctx->flags & HASH_FLAGS_FINUP));
415 }
416
417 return err;
418}
419
420static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
421 struct scatterlist *sg, int length, int mdma)
422{
423 struct dma_async_tx_descriptor *in_desc;
424 dma_cookie_t cookie;
425 u32 reg;
426 int err;
427
428 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
429 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
430 DMA_CTRL_ACK);
431 if (!in_desc) {
432 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
433 return -ENOMEM;
434 }
435
436 reinit_completion(&hdev->dma_completion);
437 in_desc->callback = stm32_hash_dma_callback;
438 in_desc->callback_param = hdev;
439
440 hdev->flags |= HASH_FLAGS_FINAL;
441 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
442
443 reg = stm32_hash_read(hdev, HASH_CR);
444
445 if (mdma)
446 reg |= HASH_CR_MDMAT;
447 else
448 reg &= ~HASH_CR_MDMAT;
449
450 reg |= HASH_CR_DMAE;
451
452 stm32_hash_write(hdev, HASH_CR, reg);
453
454 stm32_hash_set_nblw(hdev, length);
455
456 cookie = dmaengine_submit(in_desc);
457 err = dma_submit_error(cookie);
458 if (err)
459 return -ENOMEM;
460
461 dma_async_issue_pending(hdev->dma_lch);
462
463 if (!wait_for_completion_interruptible_timeout(&hdev->dma_completion,
464 msecs_to_jiffies(100)))
465 err = -ETIMEDOUT;
466
467 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
468 NULL, NULL) != DMA_COMPLETE)
469 err = -ETIMEDOUT;
470
471 if (err) {
472 dev_err(hdev->dev, "DMA Error %i\n", err);
473 dmaengine_terminate_all(hdev->dma_lch);
474 return err;
475 }
476
477 return -EINPROGRESS;
478}
479
480static void stm32_hash_dma_callback(void *param)
481{
482 struct stm32_hash_dev *hdev = param;
483
484 complete(&hdev->dma_completion);
485
486 hdev->flags |= HASH_FLAGS_DMA_READY;
487}
488
489static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
490{
491 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
492 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
493 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
494 int err;
495
496 if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
497 err = stm32_hash_write_key(hdev);
498 if (stm32_hash_wait_busy(hdev))
499 return -ETIMEDOUT;
500 } else {
501 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
502 sg_init_one(&rctx->sg_key, ctx->key,
503 ALIGN(ctx->keylen, sizeof(u32)));
504
505 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
506 DMA_TO_DEVICE);
507 if (rctx->dma_ct == 0) {
508 dev_err(hdev->dev, "dma_map_sg error\n");
509 return -ENOMEM;
510 }
511
512 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
513
514 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
515 }
516
517 return err;
518}
519
520static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
521{
522 struct dma_slave_config dma_conf;
523 int err;
524
525 memset(&dma_conf, 0, sizeof(dma_conf));
526
527 dma_conf.direction = DMA_MEM_TO_DEV;
528 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
529 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
530 dma_conf.src_maxburst = hdev->dma_maxburst;
531 dma_conf.dst_maxburst = hdev->dma_maxburst;
532 dma_conf.device_fc = false;
533
534 hdev->dma_lch = dma_request_slave_channel(hdev->dev, "in");
535 if (!hdev->dma_lch) {
536 dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
537 return -EBUSY;
538 }
539
540 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
541 if (err) {
542 dma_release_channel(hdev->dma_lch);
543 hdev->dma_lch = NULL;
544 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
545 return err;
546 }
547
548 init_completion(&hdev->dma_completion);
549
550 return 0;
551}
552
553static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
554{
555 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
556 struct scatterlist sg[1], *tsg;
557 int err = 0, len = 0, reg, ncp = 0;
558 unsigned int i;
559 u32 *buffer = (void *)rctx->buffer;
560
561 rctx->sg = hdev->req->src;
562 rctx->total = hdev->req->nbytes;
563
564 rctx->nents = sg_nents(rctx->sg);
565
566 if (rctx->nents < 0)
567 return -EINVAL;
568
569 stm32_hash_write_ctrl(hdev);
570
571 if (hdev->flags & HASH_FLAGS_HMAC) {
572 err = stm32_hash_hmac_dma_send(hdev);
573 if (err != -EINPROGRESS)
574 return err;
575 }
576
577 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
578 len = sg->length;
579
580 sg[0] = *tsg;
581 if (sg_is_last(sg)) {
582 if (hdev->dma_mode == 1) {
583 len = (ALIGN(sg->length, 16) - 16);
584
585 ncp = sg_pcopy_to_buffer(
586 rctx->sg, rctx->nents,
587 rctx->buffer, sg->length - len,
588 rctx->total - sg->length + len);
589
590 sg->length = len;
591 } else {
592 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
593 len = sg->length;
594 sg->length = ALIGN(sg->length,
595 sizeof(u32));
596 }
597 }
598 }
599
600 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
601 DMA_TO_DEVICE);
602 if (rctx->dma_ct == 0) {
603 dev_err(hdev->dev, "dma_map_sg error\n");
604 return -ENOMEM;
605 }
606
607 err = stm32_hash_xmit_dma(hdev, sg, len,
608 !sg_is_last(sg));
609
610 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
611
612 if (err == -ENOMEM)
613 return err;
614 }
615
616 if (hdev->dma_mode == 1) {
617 if (stm32_hash_wait_busy(hdev))
618 return -ETIMEDOUT;
619 reg = stm32_hash_read(hdev, HASH_CR);
620 reg &= ~HASH_CR_DMAE;
621 reg |= HASH_CR_DMAA;
622 stm32_hash_write(hdev, HASH_CR, reg);
623
624 if (ncp) {
625 memset(buffer + ncp, 0,
626 DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
627 writesl(hdev->io_base + HASH_DIN, buffer,
628 DIV_ROUND_UP(ncp, sizeof(u32)));
629 }
630 stm32_hash_set_nblw(hdev, ncp);
631 reg = stm32_hash_read(hdev, HASH_STR);
632 reg |= HASH_STR_DCAL;
633 stm32_hash_write(hdev, HASH_STR, reg);
634 err = -EINPROGRESS;
635 }
636
637 if (hdev->flags & HASH_FLAGS_HMAC) {
638 if (stm32_hash_wait_busy(hdev))
639 return -ETIMEDOUT;
640 err = stm32_hash_hmac_dma_send(hdev);
641 }
642
643 return err;
644}
645
646static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
647{
648 struct stm32_hash_dev *hdev = NULL, *tmp;
649
650 spin_lock_bh(&stm32_hash.lock);
651 if (!ctx->hdev) {
652 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
653 hdev = tmp;
654 break;
655 }
656 ctx->hdev = hdev;
657 } else {
658 hdev = ctx->hdev;
659 }
660
661 spin_unlock_bh(&stm32_hash.lock);
662
663 return hdev;
664}
665
666static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
667{
668 struct scatterlist *sg;
669 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
670 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
671 int i;
672
673 if (req->nbytes <= HASH_DMA_THRESHOLD)
674 return false;
675
676 if (sg_nents(req->src) > 1) {
677 if (hdev->dma_mode == 1)
678 return false;
679 for_each_sg(req->src, sg, sg_nents(req->src), i) {
680 if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
681 (!sg_is_last(sg)))
682 return false;
683 }
684 }
685
686 if (req->src->offset % 4)
687 return false;
688
689 return true;
690}
691
692static int stm32_hash_init(struct ahash_request *req)
693{
694 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
695 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
696 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
697 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
698
699 rctx->hdev = hdev;
700
701 rctx->flags = HASH_FLAGS_CPU;
702
703 rctx->digcnt = crypto_ahash_digestsize(tfm);
704 switch (rctx->digcnt) {
705 case MD5_DIGEST_SIZE:
706 rctx->flags |= HASH_FLAGS_MD5;
707 break;
708 case SHA1_DIGEST_SIZE:
709 rctx->flags |= HASH_FLAGS_SHA1;
710 break;
711 case SHA224_DIGEST_SIZE:
712 rctx->flags |= HASH_FLAGS_SHA224;
713 break;
714 case SHA256_DIGEST_SIZE:
715 rctx->flags |= HASH_FLAGS_SHA256;
716 break;
717 default:
718 return -EINVAL;
719 }
720
721 rctx->bufcnt = 0;
722 rctx->buflen = HASH_BUFLEN;
723 rctx->total = 0;
724 rctx->offset = 0;
725 rctx->data_type = HASH_DATA_8_BITS;
726
727 memset(rctx->buffer, 0, HASH_BUFLEN);
728
729 if (ctx->flags & HASH_FLAGS_HMAC)
730 rctx->flags |= HASH_FLAGS_HMAC;
731
732 dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
733
734 return 0;
735}
736
737static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
738{
739 return stm32_hash_update_cpu(hdev);
740}
741
742static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
743{
744 struct ahash_request *req = hdev->req;
745 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
746 int err;
747 int buflen = rctx->bufcnt;
748
749 rctx->bufcnt = 0;
750
751 if (!(rctx->flags & HASH_FLAGS_CPU))
752 err = stm32_hash_dma_send(hdev);
753 else
754 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
755
756
757 return err;
758}
759
760static void stm32_hash_copy_hash(struct ahash_request *req)
761{
762 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
763 u32 *hash = (u32 *)rctx->digest;
764 unsigned int i, hashsize;
765
766 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
767 case HASH_FLAGS_MD5:
768 hashsize = MD5_DIGEST_SIZE;
769 break;
770 case HASH_FLAGS_SHA1:
771 hashsize = SHA1_DIGEST_SIZE;
772 break;
773 case HASH_FLAGS_SHA224:
774 hashsize = SHA224_DIGEST_SIZE;
775 break;
776 case HASH_FLAGS_SHA256:
777 hashsize = SHA256_DIGEST_SIZE;
778 break;
779 default:
780 return;
781 }
782
783 for (i = 0; i < hashsize / sizeof(u32); i++)
784 hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
785 HASH_HREG(i)));
786}
787
788static int stm32_hash_finish(struct ahash_request *req)
789{
790 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
791
792 if (!req->result)
793 return -EINVAL;
794
795 memcpy(req->result, rctx->digest, rctx->digcnt);
796
797 return 0;
798}
799
800static void stm32_hash_finish_req(struct ahash_request *req, int err)
801{
802 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
803 struct stm32_hash_dev *hdev = rctx->hdev;
804
805 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
806 stm32_hash_copy_hash(req);
807 err = stm32_hash_finish(req);
808 hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
809 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
810 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
811 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
812 HASH_FLAGS_HMAC_KEY);
813 } else {
814 rctx->flags |= HASH_FLAGS_ERRORS;
815 }
816
817 crypto_finalize_hash_request(hdev->engine, req, err);
818}
819
820static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
821 struct stm32_hash_request_ctx *rctx)
822{
823 if (!(HASH_FLAGS_INIT & hdev->flags)) {
824 stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
825 stm32_hash_write(hdev, HASH_STR, 0);
826 stm32_hash_write(hdev, HASH_DIN, 0);
827 stm32_hash_write(hdev, HASH_IMR, 0);
828 hdev->err = 0;
829 }
830
831 return 0;
832}
833
834static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
835static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
836
837static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
838 struct ahash_request *req)
839{
840 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
841}
842
843static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
844{
845 struct ahash_request *req = container_of(areq, struct ahash_request,
846 base);
847 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
848 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
849 struct stm32_hash_request_ctx *rctx;
850
851 if (!hdev)
852 return -ENODEV;
853
854 hdev->req = req;
855
856 rctx = ahash_request_ctx(req);
857
858 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
859 rctx->op, req->nbytes);
860
861 return stm32_hash_hw_init(hdev, rctx);
862}
863
864static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
865{
866 struct ahash_request *req = container_of(areq, struct ahash_request,
867 base);
868 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
869 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
870 struct stm32_hash_request_ctx *rctx;
871 int err = 0;
872
873 if (!hdev)
874 return -ENODEV;
875
876 hdev->req = req;
877
878 rctx = ahash_request_ctx(req);
879
880 if (rctx->op == HASH_OP_UPDATE)
881 err = stm32_hash_update_req(hdev);
882 else if (rctx->op == HASH_OP_FINAL)
883 err = stm32_hash_final_req(hdev);
884
885 if (err != -EINPROGRESS)
886 /* done task will not finish it, so do it here */
887 stm32_hash_finish_req(req, err);
888
889 return 0;
890}
891
892static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
893{
894 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
895 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
896 struct stm32_hash_dev *hdev = ctx->hdev;
897
898 rctx->op = op;
899
900 return stm32_hash_handle_queue(hdev, req);
901}
902
903static int stm32_hash_update(struct ahash_request *req)
904{
905 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
906
907 if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
908 return 0;
909
910 rctx->total = req->nbytes;
911 rctx->sg = req->src;
912 rctx->offset = 0;
913
914 if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
915 stm32_hash_append_sg(rctx);
916 return 0;
917 }
918
919 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
920}
921
922static int stm32_hash_final(struct ahash_request *req)
923{
924 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
925
926 rctx->flags |= HASH_FLAGS_FINUP;
927
928 return stm32_hash_enqueue(req, HASH_OP_FINAL);
929}
930
931static int stm32_hash_finup(struct ahash_request *req)
932{
933 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
934 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
935 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
936 int err1, err2;
937
938 rctx->flags |= HASH_FLAGS_FINUP;
939
940 if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
941 rctx->flags &= ~HASH_FLAGS_CPU;
942
943 err1 = stm32_hash_update(req);
944
945 if (err1 == -EINPROGRESS || err1 == -EBUSY)
946 return err1;
947
948 /*
949 * final() has to be always called to cleanup resources
950 * even if update() failed, except EINPROGRESS
951 */
952 err2 = stm32_hash_final(req);
953
954 return err1 ?: err2;
955}
956
957static int stm32_hash_digest(struct ahash_request *req)
958{
959 return stm32_hash_init(req) ?: stm32_hash_finup(req);
960}
961
962static int stm32_hash_export(struct ahash_request *req, void *out)
963{
964 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
965 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
966 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
967 u32 *preg;
968 unsigned int i;
969
970 while (!(stm32_hash_read(hdev, HASH_SR) & HASH_SR_DATA_INPUT_READY))
971 cpu_relax();
972
973 rctx->hw_context = kmalloc(sizeof(u32) * (3 + HASH_CSR_REGISTER_NUMBER),
974 GFP_KERNEL);
975
976 preg = rctx->hw_context;
977
978 *preg++ = stm32_hash_read(hdev, HASH_IMR);
979 *preg++ = stm32_hash_read(hdev, HASH_STR);
980 *preg++ = stm32_hash_read(hdev, HASH_CR);
981 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
982 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
983
984 memcpy(out, rctx, sizeof(*rctx));
985
986 return 0;
987}
988
989static int stm32_hash_import(struct ahash_request *req, const void *in)
990{
991 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
992 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
993 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
994 const u32 *preg = in;
995 u32 reg;
996 unsigned int i;
997
998 memcpy(rctx, in, sizeof(*rctx));
999
1000 preg = rctx->hw_context;
1001
1002 stm32_hash_write(hdev, HASH_IMR, *preg++);
1003 stm32_hash_write(hdev, HASH_STR, *preg++);
1004 stm32_hash_write(hdev, HASH_CR, *preg);
1005 reg = *preg++ | HASH_CR_INIT;
1006 stm32_hash_write(hdev, HASH_CR, reg);
1007
1008 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1009 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1010
1011 kfree(rctx->hw_context);
1012
1013 return 0;
1014}
1015
1016static int stm32_hash_setkey(struct crypto_ahash *tfm,
1017 const u8 *key, unsigned int keylen)
1018{
1019 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1020
1021 if (keylen <= HASH_MAX_KEY_SIZE) {
1022 memcpy(ctx->key, key, keylen);
1023 ctx->keylen = keylen;
1024 } else {
1025 return -ENOMEM;
1026 }
1027
1028 return 0;
1029}
1030
1031static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1032 const char *algs_hmac_name)
1033{
1034 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1035
1036 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1037 sizeof(struct stm32_hash_request_ctx));
1038
1039 ctx->keylen = 0;
1040
1041 if (algs_hmac_name)
1042 ctx->flags |= HASH_FLAGS_HMAC;
1043
1044 ctx->enginectx.op.do_one_request = stm32_hash_one_request;
1045 ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
1046 ctx->enginectx.op.unprepare_request = NULL;
1047 return 0;
1048}
1049
1050static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1051{
1052 return stm32_hash_cra_init_algs(tfm, NULL);
1053}
1054
1055static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1056{
1057 return stm32_hash_cra_init_algs(tfm, "md5");
1058}
1059
1060static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1061{
1062 return stm32_hash_cra_init_algs(tfm, "sha1");
1063}
1064
1065static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1066{
1067 return stm32_hash_cra_init_algs(tfm, "sha224");
1068}
1069
1070static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1071{
1072 return stm32_hash_cra_init_algs(tfm, "sha256");
1073}
1074
1075static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1076{
1077 struct stm32_hash_dev *hdev = dev_id;
1078
1079 if (HASH_FLAGS_CPU & hdev->flags) {
1080 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1081 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1082 goto finish;
1083 }
1084 } else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1085 if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1086 hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1087 goto finish;
1088 }
1089 }
1090
1091 return IRQ_HANDLED;
1092
1093finish:
1094 /* Finish current request */
1095 stm32_hash_finish_req(hdev->req, 0);
1096
1097 return IRQ_HANDLED;
1098}
1099
1100static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1101{
1102 struct stm32_hash_dev *hdev = dev_id;
1103 u32 reg;
1104
1105 reg = stm32_hash_read(hdev, HASH_SR);
1106 if (reg & HASH_SR_OUTPUT_READY) {
1107 reg &= ~HASH_SR_OUTPUT_READY;
1108 stm32_hash_write(hdev, HASH_SR, reg);
1109 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1110 /* Disable IT*/
1111 stm32_hash_write(hdev, HASH_IMR, 0);
1112 return IRQ_WAKE_THREAD;
1113 }
1114
1115 return IRQ_NONE;
1116}
1117
1118static struct ahash_alg algs_md5_sha1[] = {
1119 {
1120 .init = stm32_hash_init,
1121 .update = stm32_hash_update,
1122 .final = stm32_hash_final,
1123 .finup = stm32_hash_finup,
1124 .digest = stm32_hash_digest,
1125 .export = stm32_hash_export,
1126 .import = stm32_hash_import,
1127 .halg = {
1128 .digestsize = MD5_DIGEST_SIZE,
1129 .statesize = sizeof(struct stm32_hash_request_ctx),
1130 .base = {
1131 .cra_name = "md5",
1132 .cra_driver_name = "stm32-md5",
1133 .cra_priority = 200,
1134 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1135 CRYPTO_ALG_ASYNC |
1136 CRYPTO_ALG_KERN_DRIVER_ONLY,
1137 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1138 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1139 .cra_alignmask = 3,
1140 .cra_init = stm32_hash_cra_init,
1141 .cra_module = THIS_MODULE,
1142 }
1143 }
1144 },
1145 {
1146 .init = stm32_hash_init,
1147 .update = stm32_hash_update,
1148 .final = stm32_hash_final,
1149 .finup = stm32_hash_finup,
1150 .digest = stm32_hash_digest,
1151 .export = stm32_hash_export,
1152 .import = stm32_hash_import,
1153 .setkey = stm32_hash_setkey,
1154 .halg = {
1155 .digestsize = MD5_DIGEST_SIZE,
1156 .statesize = sizeof(struct stm32_hash_request_ctx),
1157 .base = {
1158 .cra_name = "hmac(md5)",
1159 .cra_driver_name = "stm32-hmac-md5",
1160 .cra_priority = 200,
1161 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1162 CRYPTO_ALG_ASYNC |
1163 CRYPTO_ALG_KERN_DRIVER_ONLY,
1164 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1165 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1166 .cra_alignmask = 3,
1167 .cra_init = stm32_hash_cra_md5_init,
1168 .cra_module = THIS_MODULE,
1169 }
1170 }
1171 },
1172 {
1173 .init = stm32_hash_init,
1174 .update = stm32_hash_update,
1175 .final = stm32_hash_final,
1176 .finup = stm32_hash_finup,
1177 .digest = stm32_hash_digest,
1178 .export = stm32_hash_export,
1179 .import = stm32_hash_import,
1180 .halg = {
1181 .digestsize = SHA1_DIGEST_SIZE,
1182 .statesize = sizeof(struct stm32_hash_request_ctx),
1183 .base = {
1184 .cra_name = "sha1",
1185 .cra_driver_name = "stm32-sha1",
1186 .cra_priority = 200,
1187 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1188 CRYPTO_ALG_ASYNC |
1189 CRYPTO_ALG_KERN_DRIVER_ONLY,
1190 .cra_blocksize = SHA1_BLOCK_SIZE,
1191 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1192 .cra_alignmask = 3,
1193 .cra_init = stm32_hash_cra_init,
1194 .cra_module = THIS_MODULE,
1195 }
1196 }
1197 },
1198 {
1199 .init = stm32_hash_init,
1200 .update = stm32_hash_update,
1201 .final = stm32_hash_final,
1202 .finup = stm32_hash_finup,
1203 .digest = stm32_hash_digest,
1204 .export = stm32_hash_export,
1205 .import = stm32_hash_import,
1206 .setkey = stm32_hash_setkey,
1207 .halg = {
1208 .digestsize = SHA1_DIGEST_SIZE,
1209 .statesize = sizeof(struct stm32_hash_request_ctx),
1210 .base = {
1211 .cra_name = "hmac(sha1)",
1212 .cra_driver_name = "stm32-hmac-sha1",
1213 .cra_priority = 200,
1214 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1215 CRYPTO_ALG_ASYNC |
1216 CRYPTO_ALG_KERN_DRIVER_ONLY,
1217 .cra_blocksize = SHA1_BLOCK_SIZE,
1218 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1219 .cra_alignmask = 3,
1220 .cra_init = stm32_hash_cra_sha1_init,
1221 .cra_module = THIS_MODULE,
1222 }
1223 }
1224 },
1225};
1226
1227static struct ahash_alg algs_sha224_sha256[] = {
1228 {
1229 .init = stm32_hash_init,
1230 .update = stm32_hash_update,
1231 .final = stm32_hash_final,
1232 .finup = stm32_hash_finup,
1233 .digest = stm32_hash_digest,
1234 .export = stm32_hash_export,
1235 .import = stm32_hash_import,
1236 .halg = {
1237 .digestsize = SHA224_DIGEST_SIZE,
1238 .statesize = sizeof(struct stm32_hash_request_ctx),
1239 .base = {
1240 .cra_name = "sha224",
1241 .cra_driver_name = "stm32-sha224",
1242 .cra_priority = 200,
1243 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1244 CRYPTO_ALG_ASYNC |
1245 CRYPTO_ALG_KERN_DRIVER_ONLY,
1246 .cra_blocksize = SHA224_BLOCK_SIZE,
1247 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1248 .cra_alignmask = 3,
1249 .cra_init = stm32_hash_cra_init,
1250 .cra_module = THIS_MODULE,
1251 }
1252 }
1253 },
1254 {
1255 .init = stm32_hash_init,
1256 .update = stm32_hash_update,
1257 .final = stm32_hash_final,
1258 .finup = stm32_hash_finup,
1259 .digest = stm32_hash_digest,
1260 .setkey = stm32_hash_setkey,
1261 .export = stm32_hash_export,
1262 .import = stm32_hash_import,
1263 .halg = {
1264 .digestsize = SHA224_DIGEST_SIZE,
1265 .statesize = sizeof(struct stm32_hash_request_ctx),
1266 .base = {
1267 .cra_name = "hmac(sha224)",
1268 .cra_driver_name = "stm32-hmac-sha224",
1269 .cra_priority = 200,
1270 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1271 CRYPTO_ALG_ASYNC |
1272 CRYPTO_ALG_KERN_DRIVER_ONLY,
1273 .cra_blocksize = SHA224_BLOCK_SIZE,
1274 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1275 .cra_alignmask = 3,
1276 .cra_init = stm32_hash_cra_sha224_init,
1277 .cra_module = THIS_MODULE,
1278 }
1279 }
1280 },
1281 {
1282 .init = stm32_hash_init,
1283 .update = stm32_hash_update,
1284 .final = stm32_hash_final,
1285 .finup = stm32_hash_finup,
1286 .digest = stm32_hash_digest,
1287 .export = stm32_hash_export,
1288 .import = stm32_hash_import,
1289 .halg = {
1290 .digestsize = SHA256_DIGEST_SIZE,
1291 .statesize = sizeof(struct stm32_hash_request_ctx),
1292 .base = {
1293 .cra_name = "sha256",
1294 .cra_driver_name = "stm32-sha256",
1295 .cra_priority = 200,
1296 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1297 CRYPTO_ALG_ASYNC |
1298 CRYPTO_ALG_KERN_DRIVER_ONLY,
1299 .cra_blocksize = SHA256_BLOCK_SIZE,
1300 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1301 .cra_alignmask = 3,
1302 .cra_init = stm32_hash_cra_init,
1303 .cra_module = THIS_MODULE,
1304 }
1305 }
1306 },
1307 {
1308 .init = stm32_hash_init,
1309 .update = stm32_hash_update,
1310 .final = stm32_hash_final,
1311 .finup = stm32_hash_finup,
1312 .digest = stm32_hash_digest,
1313 .export = stm32_hash_export,
1314 .import = stm32_hash_import,
1315 .setkey = stm32_hash_setkey,
1316 .halg = {
1317 .digestsize = SHA256_DIGEST_SIZE,
1318 .statesize = sizeof(struct stm32_hash_request_ctx),
1319 .base = {
1320 .cra_name = "hmac(sha256)",
1321 .cra_driver_name = "stm32-hmac-sha256",
1322 .cra_priority = 200,
1323 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1324 CRYPTO_ALG_ASYNC |
1325 CRYPTO_ALG_KERN_DRIVER_ONLY,
1326 .cra_blocksize = SHA256_BLOCK_SIZE,
1327 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1328 .cra_alignmask = 3,
1329 .cra_init = stm32_hash_cra_sha256_init,
1330 .cra_module = THIS_MODULE,
1331 }
1332 }
1333 },
1334};
1335
1336static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1337{
1338 unsigned int i, j;
1339 int err;
1340
1341 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1342 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1343 err = crypto_register_ahash(
1344 &hdev->pdata->algs_info[i].algs_list[j]);
1345 if (err)
1346 goto err_algs;
1347 }
1348 }
1349
1350 return 0;
1351err_algs:
1352 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1353 for (; i--; ) {
1354 for (; j--;)
1355 crypto_unregister_ahash(
1356 &hdev->pdata->algs_info[i].algs_list[j]);
1357 }
1358
1359 return err;
1360}
1361
1362static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1363{
1364 unsigned int i, j;
1365
1366 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1367 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1368 crypto_unregister_ahash(
1369 &hdev->pdata->algs_info[i].algs_list[j]);
1370 }
1371
1372 return 0;
1373}
1374
1375static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1376 {
1377 .algs_list = algs_md5_sha1,
1378 .size = ARRAY_SIZE(algs_md5_sha1),
1379 },
1380};
1381
1382static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1383 .algs_info = stm32_hash_algs_info_stm32f4,
1384 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1385};
1386
1387static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1388 {
1389 .algs_list = algs_md5_sha1,
1390 .size = ARRAY_SIZE(algs_md5_sha1),
1391 },
1392 {
1393 .algs_list = algs_sha224_sha256,
1394 .size = ARRAY_SIZE(algs_sha224_sha256),
1395 },
1396};
1397
1398static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1399 .algs_info = stm32_hash_algs_info_stm32f7,
1400 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1401};
1402
1403static const struct of_device_id stm32_hash_of_match[] = {
1404 {
1405 .compatible = "st,stm32f456-hash",
1406 .data = &stm32_hash_pdata_stm32f4,
1407 },
1408 {
1409 .compatible = "st,stm32f756-hash",
1410 .data = &stm32_hash_pdata_stm32f7,
1411 },
1412 {},
1413};
1414
1415MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1416
1417static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1418 struct device *dev)
1419{
1420 hdev->pdata = of_device_get_match_data(dev);
1421 if (!hdev->pdata) {
1422 dev_err(dev, "no compatible OF match\n");
1423 return -EINVAL;
1424 }
1425
1426 if (of_property_read_u32(dev->of_node, "dma-maxburst",
1427 &hdev->dma_maxburst)) {
1428 dev_info(dev, "dma-maxburst not specified, using 0\n");
1429 hdev->dma_maxburst = 0;
1430 }
1431
1432 return 0;
1433}
1434
1435static int stm32_hash_probe(struct platform_device *pdev)
1436{
1437 struct stm32_hash_dev *hdev;
1438 struct device *dev = &pdev->dev;
1439 struct resource *res;
1440 int ret, irq;
1441
1442 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1443 if (!hdev)
1444 return -ENOMEM;
1445
1446 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1447 hdev->io_base = devm_ioremap_resource(dev, res);
1448 if (IS_ERR(hdev->io_base))
1449 return PTR_ERR(hdev->io_base);
1450
1451 hdev->phys_base = res->start;
1452
1453 ret = stm32_hash_get_of_match(hdev, dev);
1454 if (ret)
1455 return ret;
1456
1457 irq = platform_get_irq(pdev, 0);
1458 if (irq < 0) {
1459 dev_err(dev, "Cannot get IRQ resource\n");
1460 return irq;
1461 }
1462
1463 ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1464 stm32_hash_irq_thread, IRQF_ONESHOT,
1465 dev_name(dev), hdev);
1466 if (ret) {
1467 dev_err(dev, "Cannot grab IRQ\n");
1468 return ret;
1469 }
1470
1471 hdev->clk = devm_clk_get(&pdev->dev, NULL);
1472 if (IS_ERR(hdev->clk)) {
1473 dev_err(dev, "failed to get clock for hash (%lu)\n",
1474 PTR_ERR(hdev->clk));
1475 return PTR_ERR(hdev->clk);
1476 }
1477
1478 ret = clk_prepare_enable(hdev->clk);
1479 if (ret) {
1480 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1481 return ret;
1482 }
1483
1484 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1485 if (!IS_ERR(hdev->rst)) {
1486 reset_control_assert(hdev->rst);
1487 udelay(2);
1488 reset_control_deassert(hdev->rst);
1489 }
1490
1491 hdev->dev = dev;
1492
1493 platform_set_drvdata(pdev, hdev);
1494
1495 ret = stm32_hash_dma_init(hdev);
1496 if (ret)
1497 dev_dbg(dev, "DMA mode not available\n");
1498
1499 spin_lock(&stm32_hash.lock);
1500 list_add_tail(&hdev->list, &stm32_hash.dev_list);
1501 spin_unlock(&stm32_hash.lock);
1502
1503 /* Initialize crypto engine */
1504 hdev->engine = crypto_engine_alloc_init(dev, 1);
1505 if (!hdev->engine) {
1506 ret = -ENOMEM;
1507 goto err_engine;
1508 }
1509
1510 ret = crypto_engine_start(hdev->engine);
1511 if (ret)
1512 goto err_engine_start;
1513
1514 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1515
1516 /* Register algos */
1517 ret = stm32_hash_register_algs(hdev);
1518 if (ret)
1519 goto err_algs;
1520
1521 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1522 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1523
1524 return 0;
1525
1526err_algs:
1527err_engine_start:
1528 crypto_engine_exit(hdev->engine);
1529err_engine:
1530 spin_lock(&stm32_hash.lock);
1531 list_del(&hdev->list);
1532 spin_unlock(&stm32_hash.lock);
1533
1534 if (hdev->dma_lch)
1535 dma_release_channel(hdev->dma_lch);
1536
1537 clk_disable_unprepare(hdev->clk);
1538
1539 return ret;
1540}
1541
1542static int stm32_hash_remove(struct platform_device *pdev)
1543{
1544 static struct stm32_hash_dev *hdev;
1545
1546 hdev = platform_get_drvdata(pdev);
1547 if (!hdev)
1548 return -ENODEV;
1549
1550 stm32_hash_unregister_algs(hdev);
1551
1552 crypto_engine_exit(hdev->engine);
1553
1554 spin_lock(&stm32_hash.lock);
1555 list_del(&hdev->list);
1556 spin_unlock(&stm32_hash.lock);
1557
1558 if (hdev->dma_lch)
1559 dma_release_channel(hdev->dma_lch);
1560
1561 clk_disable_unprepare(hdev->clk);
1562
1563 return 0;
1564}
1565
1566static struct platform_driver stm32_hash_driver = {
1567 .probe = stm32_hash_probe,
1568 .remove = stm32_hash_remove,
1569 .driver = {
1570 .name = "stm32-hash",
1571 .of_match_table = stm32_hash_of_match,
1572 }
1573};
1574
1575module_platform_driver(stm32_hash_driver);
1576
1577MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1578MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1579MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of STM32 Crypto driver for Linux.
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7 */
8
9#include <linux/clk.h>
10#include <linux/crypto.h>
11#include <linux/delay.h>
12#include <linux/dmaengine.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/iopoll.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/of_device.h>
19#include <linux/platform_device.h>
20#include <linux/pm_runtime.h>
21#include <linux/reset.h>
22
23#include <crypto/engine.h>
24#include <crypto/hash.h>
25#include <crypto/md5.h>
26#include <crypto/scatterwalk.h>
27#include <crypto/sha.h>
28#include <crypto/internal/hash.h>
29
30#define HASH_CR 0x00
31#define HASH_DIN 0x04
32#define HASH_STR 0x08
33#define HASH_IMR 0x20
34#define HASH_SR 0x24
35#define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
36#define HASH_HREG(x) (0x310 + ((x) * 0x04))
37#define HASH_HWCFGR 0x3F0
38#define HASH_VER 0x3F4
39#define HASH_ID 0x3F8
40
41/* Control Register */
42#define HASH_CR_INIT BIT(2)
43#define HASH_CR_DMAE BIT(3)
44#define HASH_CR_DATATYPE_POS 4
45#define HASH_CR_MODE BIT(6)
46#define HASH_CR_MDMAT BIT(13)
47#define HASH_CR_DMAA BIT(14)
48#define HASH_CR_LKEY BIT(16)
49
50#define HASH_CR_ALGO_SHA1 0x0
51#define HASH_CR_ALGO_MD5 0x80
52#define HASH_CR_ALGO_SHA224 0x40000
53#define HASH_CR_ALGO_SHA256 0x40080
54
55/* Interrupt */
56#define HASH_DINIE BIT(0)
57#define HASH_DCIE BIT(1)
58
59/* Interrupt Mask */
60#define HASH_MASK_CALC_COMPLETION BIT(0)
61#define HASH_MASK_DATA_INPUT BIT(1)
62
63/* Context swap register */
64#define HASH_CSR_REGISTER_NUMBER 53
65
66/* Status Flags */
67#define HASH_SR_DATA_INPUT_READY BIT(0)
68#define HASH_SR_OUTPUT_READY BIT(1)
69#define HASH_SR_DMA_ACTIVE BIT(2)
70#define HASH_SR_BUSY BIT(3)
71
72/* STR Register */
73#define HASH_STR_NBLW_MASK GENMASK(4, 0)
74#define HASH_STR_DCAL BIT(8)
75
76#define HASH_FLAGS_INIT BIT(0)
77#define HASH_FLAGS_OUTPUT_READY BIT(1)
78#define HASH_FLAGS_CPU BIT(2)
79#define HASH_FLAGS_DMA_READY BIT(3)
80#define HASH_FLAGS_DMA_ACTIVE BIT(4)
81#define HASH_FLAGS_HMAC_INIT BIT(5)
82#define HASH_FLAGS_HMAC_FINAL BIT(6)
83#define HASH_FLAGS_HMAC_KEY BIT(7)
84
85#define HASH_FLAGS_FINAL BIT(15)
86#define HASH_FLAGS_FINUP BIT(16)
87#define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
88#define HASH_FLAGS_MD5 BIT(18)
89#define HASH_FLAGS_SHA1 BIT(19)
90#define HASH_FLAGS_SHA224 BIT(20)
91#define HASH_FLAGS_SHA256 BIT(21)
92#define HASH_FLAGS_ERRORS BIT(22)
93#define HASH_FLAGS_HMAC BIT(23)
94
95#define HASH_OP_UPDATE 1
96#define HASH_OP_FINAL 2
97
98enum stm32_hash_data_format {
99 HASH_DATA_32_BITS = 0x0,
100 HASH_DATA_16_BITS = 0x1,
101 HASH_DATA_8_BITS = 0x2,
102 HASH_DATA_1_BIT = 0x3
103};
104
105#define HASH_BUFLEN 256
106#define HASH_LONG_KEY 64
107#define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
108#define HASH_QUEUE_LENGTH 16
109#define HASH_DMA_THRESHOLD 50
110
111#define HASH_AUTOSUSPEND_DELAY 50
112
113struct stm32_hash_ctx {
114 struct crypto_engine_ctx enginectx;
115 struct stm32_hash_dev *hdev;
116 unsigned long flags;
117
118 u8 key[HASH_MAX_KEY_SIZE];
119 int keylen;
120};
121
122struct stm32_hash_request_ctx {
123 struct stm32_hash_dev *hdev;
124 unsigned long flags;
125 unsigned long op;
126
127 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
128 size_t digcnt;
129 size_t bufcnt;
130 size_t buflen;
131
132 /* DMA */
133 struct scatterlist *sg;
134 unsigned int offset;
135 unsigned int total;
136 struct scatterlist sg_key;
137
138 dma_addr_t dma_addr;
139 size_t dma_ct;
140 int nents;
141
142 u8 data_type;
143
144 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
145
146 /* Export Context */
147 u32 *hw_context;
148};
149
150struct stm32_hash_algs_info {
151 struct ahash_alg *algs_list;
152 size_t size;
153};
154
155struct stm32_hash_pdata {
156 struct stm32_hash_algs_info *algs_info;
157 size_t algs_info_size;
158};
159
160struct stm32_hash_dev {
161 struct list_head list;
162 struct device *dev;
163 struct clk *clk;
164 struct reset_control *rst;
165 void __iomem *io_base;
166 phys_addr_t phys_base;
167 u32 dma_mode;
168 u32 dma_maxburst;
169
170 struct ahash_request *req;
171 struct crypto_engine *engine;
172
173 int err;
174 unsigned long flags;
175
176 struct dma_chan *dma_lch;
177 struct completion dma_completion;
178
179 const struct stm32_hash_pdata *pdata;
180};
181
182struct stm32_hash_drv {
183 struct list_head dev_list;
184 spinlock_t lock; /* List protection access */
185};
186
187static struct stm32_hash_drv stm32_hash = {
188 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
189 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
190};
191
192static void stm32_hash_dma_callback(void *param);
193
194static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
195{
196 return readl_relaxed(hdev->io_base + offset);
197}
198
199static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
200 u32 offset, u32 value)
201{
202 writel_relaxed(value, hdev->io_base + offset);
203}
204
205static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
206{
207 u32 status;
208
209 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
210 !(status & HASH_SR_BUSY), 10, 10000);
211}
212
213static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
214{
215 u32 reg;
216
217 reg = stm32_hash_read(hdev, HASH_STR);
218 reg &= ~(HASH_STR_NBLW_MASK);
219 reg |= (8U * ((length) % 4U));
220 stm32_hash_write(hdev, HASH_STR, reg);
221}
222
223static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
224{
225 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
226 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
227 u32 reg;
228 int keylen = ctx->keylen;
229 void *key = ctx->key;
230
231 if (keylen) {
232 stm32_hash_set_nblw(hdev, keylen);
233
234 while (keylen > 0) {
235 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
236 keylen -= 4;
237 key += 4;
238 }
239
240 reg = stm32_hash_read(hdev, HASH_STR);
241 reg |= HASH_STR_DCAL;
242 stm32_hash_write(hdev, HASH_STR, reg);
243
244 return -EINPROGRESS;
245 }
246
247 return 0;
248}
249
250static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
251{
252 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
253 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
254 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
255
256 u32 reg = HASH_CR_INIT;
257
258 if (!(hdev->flags & HASH_FLAGS_INIT)) {
259 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
260 case HASH_FLAGS_MD5:
261 reg |= HASH_CR_ALGO_MD5;
262 break;
263 case HASH_FLAGS_SHA1:
264 reg |= HASH_CR_ALGO_SHA1;
265 break;
266 case HASH_FLAGS_SHA224:
267 reg |= HASH_CR_ALGO_SHA224;
268 break;
269 case HASH_FLAGS_SHA256:
270 reg |= HASH_CR_ALGO_SHA256;
271 break;
272 default:
273 reg |= HASH_CR_ALGO_MD5;
274 }
275
276 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
277
278 if (rctx->flags & HASH_FLAGS_HMAC) {
279 hdev->flags |= HASH_FLAGS_HMAC;
280 reg |= HASH_CR_MODE;
281 if (ctx->keylen > HASH_LONG_KEY)
282 reg |= HASH_CR_LKEY;
283 }
284
285 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
286
287 stm32_hash_write(hdev, HASH_CR, reg);
288
289 hdev->flags |= HASH_FLAGS_INIT;
290
291 dev_dbg(hdev->dev, "Write Control %x\n", reg);
292 }
293}
294
295static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
296{
297 size_t count;
298
299 while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
300 count = min(rctx->sg->length - rctx->offset, rctx->total);
301 count = min(count, rctx->buflen - rctx->bufcnt);
302
303 if (count <= 0) {
304 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
305 rctx->sg = sg_next(rctx->sg);
306 continue;
307 } else {
308 break;
309 }
310 }
311
312 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
313 rctx->offset, count, 0);
314
315 rctx->bufcnt += count;
316 rctx->offset += count;
317 rctx->total -= count;
318
319 if (rctx->offset == rctx->sg->length) {
320 rctx->sg = sg_next(rctx->sg);
321 if (rctx->sg)
322 rctx->offset = 0;
323 else
324 rctx->total = 0;
325 }
326 }
327}
328
329static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
330 const u8 *buf, size_t length, int final)
331{
332 unsigned int count, len32;
333 const u32 *buffer = (const u32 *)buf;
334 u32 reg;
335
336 if (final)
337 hdev->flags |= HASH_FLAGS_FINAL;
338
339 len32 = DIV_ROUND_UP(length, sizeof(u32));
340
341 dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
342 __func__, length, final, len32);
343
344 hdev->flags |= HASH_FLAGS_CPU;
345
346 stm32_hash_write_ctrl(hdev);
347
348 if (stm32_hash_wait_busy(hdev))
349 return -ETIMEDOUT;
350
351 if ((hdev->flags & HASH_FLAGS_HMAC) &&
352 (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
353 hdev->flags |= HASH_FLAGS_HMAC_KEY;
354 stm32_hash_write_key(hdev);
355 if (stm32_hash_wait_busy(hdev))
356 return -ETIMEDOUT;
357 }
358
359 for (count = 0; count < len32; count++)
360 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
361
362 if (final) {
363 stm32_hash_set_nblw(hdev, length);
364 reg = stm32_hash_read(hdev, HASH_STR);
365 reg |= HASH_STR_DCAL;
366 stm32_hash_write(hdev, HASH_STR, reg);
367 if (hdev->flags & HASH_FLAGS_HMAC) {
368 if (stm32_hash_wait_busy(hdev))
369 return -ETIMEDOUT;
370 stm32_hash_write_key(hdev);
371 }
372 return -EINPROGRESS;
373 }
374
375 return 0;
376}
377
378static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
379{
380 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
381 int bufcnt, err = 0, final;
382
383 dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
384
385 final = (rctx->flags & HASH_FLAGS_FINUP);
386
387 while ((rctx->total >= rctx->buflen) ||
388 (rctx->bufcnt + rctx->total >= rctx->buflen)) {
389 stm32_hash_append_sg(rctx);
390 bufcnt = rctx->bufcnt;
391 rctx->bufcnt = 0;
392 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
393 }
394
395 stm32_hash_append_sg(rctx);
396
397 if (final) {
398 bufcnt = rctx->bufcnt;
399 rctx->bufcnt = 0;
400 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
401 (rctx->flags & HASH_FLAGS_FINUP));
402 }
403
404 return err;
405}
406
407static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
408 struct scatterlist *sg, int length, int mdma)
409{
410 struct dma_async_tx_descriptor *in_desc;
411 dma_cookie_t cookie;
412 u32 reg;
413 int err;
414
415 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
416 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
417 DMA_CTRL_ACK);
418 if (!in_desc) {
419 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
420 return -ENOMEM;
421 }
422
423 reinit_completion(&hdev->dma_completion);
424 in_desc->callback = stm32_hash_dma_callback;
425 in_desc->callback_param = hdev;
426
427 hdev->flags |= HASH_FLAGS_FINAL;
428 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
429
430 reg = stm32_hash_read(hdev, HASH_CR);
431
432 if (mdma)
433 reg |= HASH_CR_MDMAT;
434 else
435 reg &= ~HASH_CR_MDMAT;
436
437 reg |= HASH_CR_DMAE;
438
439 stm32_hash_write(hdev, HASH_CR, reg);
440
441 stm32_hash_set_nblw(hdev, length);
442
443 cookie = dmaengine_submit(in_desc);
444 err = dma_submit_error(cookie);
445 if (err)
446 return -ENOMEM;
447
448 dma_async_issue_pending(hdev->dma_lch);
449
450 if (!wait_for_completion_timeout(&hdev->dma_completion,
451 msecs_to_jiffies(100)))
452 err = -ETIMEDOUT;
453
454 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
455 NULL, NULL) != DMA_COMPLETE)
456 err = -ETIMEDOUT;
457
458 if (err) {
459 dev_err(hdev->dev, "DMA Error %i\n", err);
460 dmaengine_terminate_all(hdev->dma_lch);
461 return err;
462 }
463
464 return -EINPROGRESS;
465}
466
467static void stm32_hash_dma_callback(void *param)
468{
469 struct stm32_hash_dev *hdev = param;
470
471 complete(&hdev->dma_completion);
472
473 hdev->flags |= HASH_FLAGS_DMA_READY;
474}
475
476static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
477{
478 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
479 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
480 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
481 int err;
482
483 if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
484 err = stm32_hash_write_key(hdev);
485 if (stm32_hash_wait_busy(hdev))
486 return -ETIMEDOUT;
487 } else {
488 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
489 sg_init_one(&rctx->sg_key, ctx->key,
490 ALIGN(ctx->keylen, sizeof(u32)));
491
492 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
493 DMA_TO_DEVICE);
494 if (rctx->dma_ct == 0) {
495 dev_err(hdev->dev, "dma_map_sg error\n");
496 return -ENOMEM;
497 }
498
499 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
500
501 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
502 }
503
504 return err;
505}
506
507static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
508{
509 struct dma_slave_config dma_conf;
510 struct dma_chan *chan;
511 int err;
512
513 memset(&dma_conf, 0, sizeof(dma_conf));
514
515 dma_conf.direction = DMA_MEM_TO_DEV;
516 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
517 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
518 dma_conf.src_maxburst = hdev->dma_maxburst;
519 dma_conf.dst_maxburst = hdev->dma_maxburst;
520 dma_conf.device_fc = false;
521
522 chan = dma_request_chan(hdev->dev, "in");
523 if (IS_ERR(chan))
524 return PTR_ERR(chan);
525
526 hdev->dma_lch = chan;
527
528 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
529 if (err) {
530 dma_release_channel(hdev->dma_lch);
531 hdev->dma_lch = NULL;
532 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
533 return err;
534 }
535
536 init_completion(&hdev->dma_completion);
537
538 return 0;
539}
540
541static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
542{
543 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
544 struct scatterlist sg[1], *tsg;
545 int err = 0, len = 0, reg, ncp = 0;
546 unsigned int i;
547 u32 *buffer = (void *)rctx->buffer;
548
549 rctx->sg = hdev->req->src;
550 rctx->total = hdev->req->nbytes;
551
552 rctx->nents = sg_nents(rctx->sg);
553
554 if (rctx->nents < 0)
555 return -EINVAL;
556
557 stm32_hash_write_ctrl(hdev);
558
559 if (hdev->flags & HASH_FLAGS_HMAC) {
560 err = stm32_hash_hmac_dma_send(hdev);
561 if (err != -EINPROGRESS)
562 return err;
563 }
564
565 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
566 len = sg->length;
567
568 sg[0] = *tsg;
569 if (sg_is_last(sg)) {
570 if (hdev->dma_mode == 1) {
571 len = (ALIGN(sg->length, 16) - 16);
572
573 ncp = sg_pcopy_to_buffer(
574 rctx->sg, rctx->nents,
575 rctx->buffer, sg->length - len,
576 rctx->total - sg->length + len);
577
578 sg->length = len;
579 } else {
580 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
581 len = sg->length;
582 sg->length = ALIGN(sg->length,
583 sizeof(u32));
584 }
585 }
586 }
587
588 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
589 DMA_TO_DEVICE);
590 if (rctx->dma_ct == 0) {
591 dev_err(hdev->dev, "dma_map_sg error\n");
592 return -ENOMEM;
593 }
594
595 err = stm32_hash_xmit_dma(hdev, sg, len,
596 !sg_is_last(sg));
597
598 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
599
600 if (err == -ENOMEM)
601 return err;
602 }
603
604 if (hdev->dma_mode == 1) {
605 if (stm32_hash_wait_busy(hdev))
606 return -ETIMEDOUT;
607 reg = stm32_hash_read(hdev, HASH_CR);
608 reg &= ~HASH_CR_DMAE;
609 reg |= HASH_CR_DMAA;
610 stm32_hash_write(hdev, HASH_CR, reg);
611
612 if (ncp) {
613 memset(buffer + ncp, 0,
614 DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
615 writesl(hdev->io_base + HASH_DIN, buffer,
616 DIV_ROUND_UP(ncp, sizeof(u32)));
617 }
618 stm32_hash_set_nblw(hdev, ncp);
619 reg = stm32_hash_read(hdev, HASH_STR);
620 reg |= HASH_STR_DCAL;
621 stm32_hash_write(hdev, HASH_STR, reg);
622 err = -EINPROGRESS;
623 }
624
625 if (hdev->flags & HASH_FLAGS_HMAC) {
626 if (stm32_hash_wait_busy(hdev))
627 return -ETIMEDOUT;
628 err = stm32_hash_hmac_dma_send(hdev);
629 }
630
631 return err;
632}
633
634static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
635{
636 struct stm32_hash_dev *hdev = NULL, *tmp;
637
638 spin_lock_bh(&stm32_hash.lock);
639 if (!ctx->hdev) {
640 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
641 hdev = tmp;
642 break;
643 }
644 ctx->hdev = hdev;
645 } else {
646 hdev = ctx->hdev;
647 }
648
649 spin_unlock_bh(&stm32_hash.lock);
650
651 return hdev;
652}
653
654static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
655{
656 struct scatterlist *sg;
657 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
658 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
659 int i;
660
661 if (req->nbytes <= HASH_DMA_THRESHOLD)
662 return false;
663
664 if (sg_nents(req->src) > 1) {
665 if (hdev->dma_mode == 1)
666 return false;
667 for_each_sg(req->src, sg, sg_nents(req->src), i) {
668 if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
669 (!sg_is_last(sg)))
670 return false;
671 }
672 }
673
674 if (req->src->offset % 4)
675 return false;
676
677 return true;
678}
679
680static int stm32_hash_init(struct ahash_request *req)
681{
682 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
683 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
684 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
685 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
686
687 rctx->hdev = hdev;
688
689 rctx->flags = HASH_FLAGS_CPU;
690
691 rctx->digcnt = crypto_ahash_digestsize(tfm);
692 switch (rctx->digcnt) {
693 case MD5_DIGEST_SIZE:
694 rctx->flags |= HASH_FLAGS_MD5;
695 break;
696 case SHA1_DIGEST_SIZE:
697 rctx->flags |= HASH_FLAGS_SHA1;
698 break;
699 case SHA224_DIGEST_SIZE:
700 rctx->flags |= HASH_FLAGS_SHA224;
701 break;
702 case SHA256_DIGEST_SIZE:
703 rctx->flags |= HASH_FLAGS_SHA256;
704 break;
705 default:
706 return -EINVAL;
707 }
708
709 rctx->bufcnt = 0;
710 rctx->buflen = HASH_BUFLEN;
711 rctx->total = 0;
712 rctx->offset = 0;
713 rctx->data_type = HASH_DATA_8_BITS;
714
715 memset(rctx->buffer, 0, HASH_BUFLEN);
716
717 if (ctx->flags & HASH_FLAGS_HMAC)
718 rctx->flags |= HASH_FLAGS_HMAC;
719
720 dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
721
722 return 0;
723}
724
725static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
726{
727 return stm32_hash_update_cpu(hdev);
728}
729
730static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
731{
732 struct ahash_request *req = hdev->req;
733 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
734 int err;
735 int buflen = rctx->bufcnt;
736
737 rctx->bufcnt = 0;
738
739 if (!(rctx->flags & HASH_FLAGS_CPU))
740 err = stm32_hash_dma_send(hdev);
741 else
742 err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
743
744
745 return err;
746}
747
748static void stm32_hash_copy_hash(struct ahash_request *req)
749{
750 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
751 u32 *hash = (u32 *)rctx->digest;
752 unsigned int i, hashsize;
753
754 switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
755 case HASH_FLAGS_MD5:
756 hashsize = MD5_DIGEST_SIZE;
757 break;
758 case HASH_FLAGS_SHA1:
759 hashsize = SHA1_DIGEST_SIZE;
760 break;
761 case HASH_FLAGS_SHA224:
762 hashsize = SHA224_DIGEST_SIZE;
763 break;
764 case HASH_FLAGS_SHA256:
765 hashsize = SHA256_DIGEST_SIZE;
766 break;
767 default:
768 return;
769 }
770
771 for (i = 0; i < hashsize / sizeof(u32); i++)
772 hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
773 HASH_HREG(i)));
774}
775
776static int stm32_hash_finish(struct ahash_request *req)
777{
778 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
779
780 if (!req->result)
781 return -EINVAL;
782
783 memcpy(req->result, rctx->digest, rctx->digcnt);
784
785 return 0;
786}
787
788static void stm32_hash_finish_req(struct ahash_request *req, int err)
789{
790 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
791 struct stm32_hash_dev *hdev = rctx->hdev;
792
793 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
794 stm32_hash_copy_hash(req);
795 err = stm32_hash_finish(req);
796 hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
797 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
798 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
799 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
800 HASH_FLAGS_HMAC_KEY);
801 } else {
802 rctx->flags |= HASH_FLAGS_ERRORS;
803 }
804
805 pm_runtime_mark_last_busy(hdev->dev);
806 pm_runtime_put_autosuspend(hdev->dev);
807
808 crypto_finalize_hash_request(hdev->engine, req, err);
809}
810
811static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
812 struct stm32_hash_request_ctx *rctx)
813{
814 pm_runtime_get_sync(hdev->dev);
815
816 if (!(HASH_FLAGS_INIT & hdev->flags)) {
817 stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
818 stm32_hash_write(hdev, HASH_STR, 0);
819 stm32_hash_write(hdev, HASH_DIN, 0);
820 stm32_hash_write(hdev, HASH_IMR, 0);
821 hdev->err = 0;
822 }
823
824 return 0;
825}
826
827static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
828static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
829
830static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
831 struct ahash_request *req)
832{
833 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
834}
835
836static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
837{
838 struct ahash_request *req = container_of(areq, struct ahash_request,
839 base);
840 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
841 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
842 struct stm32_hash_request_ctx *rctx;
843
844 if (!hdev)
845 return -ENODEV;
846
847 hdev->req = req;
848
849 rctx = ahash_request_ctx(req);
850
851 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
852 rctx->op, req->nbytes);
853
854 return stm32_hash_hw_init(hdev, rctx);
855}
856
857static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
858{
859 struct ahash_request *req = container_of(areq, struct ahash_request,
860 base);
861 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
862 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
863 struct stm32_hash_request_ctx *rctx;
864 int err = 0;
865
866 if (!hdev)
867 return -ENODEV;
868
869 hdev->req = req;
870
871 rctx = ahash_request_ctx(req);
872
873 if (rctx->op == HASH_OP_UPDATE)
874 err = stm32_hash_update_req(hdev);
875 else if (rctx->op == HASH_OP_FINAL)
876 err = stm32_hash_final_req(hdev);
877
878 if (err != -EINPROGRESS)
879 /* done task will not finish it, so do it here */
880 stm32_hash_finish_req(req, err);
881
882 return 0;
883}
884
885static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
886{
887 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
888 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
889 struct stm32_hash_dev *hdev = ctx->hdev;
890
891 rctx->op = op;
892
893 return stm32_hash_handle_queue(hdev, req);
894}
895
896static int stm32_hash_update(struct ahash_request *req)
897{
898 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
899
900 if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
901 return 0;
902
903 rctx->total = req->nbytes;
904 rctx->sg = req->src;
905 rctx->offset = 0;
906
907 if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
908 stm32_hash_append_sg(rctx);
909 return 0;
910 }
911
912 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
913}
914
915static int stm32_hash_final(struct ahash_request *req)
916{
917 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
918
919 rctx->flags |= HASH_FLAGS_FINUP;
920
921 return stm32_hash_enqueue(req, HASH_OP_FINAL);
922}
923
924static int stm32_hash_finup(struct ahash_request *req)
925{
926 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
927 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
928 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
929 int err1, err2;
930
931 rctx->flags |= HASH_FLAGS_FINUP;
932
933 if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
934 rctx->flags &= ~HASH_FLAGS_CPU;
935
936 err1 = stm32_hash_update(req);
937
938 if (err1 == -EINPROGRESS || err1 == -EBUSY)
939 return err1;
940
941 /*
942 * final() has to be always called to cleanup resources
943 * even if update() failed, except EINPROGRESS
944 */
945 err2 = stm32_hash_final(req);
946
947 return err1 ?: err2;
948}
949
950static int stm32_hash_digest(struct ahash_request *req)
951{
952 return stm32_hash_init(req) ?: stm32_hash_finup(req);
953}
954
955static int stm32_hash_export(struct ahash_request *req, void *out)
956{
957 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
958 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
959 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
960 u32 *preg;
961 unsigned int i;
962
963 pm_runtime_get_sync(hdev->dev);
964
965 while ((stm32_hash_read(hdev, HASH_SR) & HASH_SR_BUSY))
966 cpu_relax();
967
968 rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
969 sizeof(u32),
970 GFP_KERNEL);
971
972 preg = rctx->hw_context;
973
974 *preg++ = stm32_hash_read(hdev, HASH_IMR);
975 *preg++ = stm32_hash_read(hdev, HASH_STR);
976 *preg++ = stm32_hash_read(hdev, HASH_CR);
977 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
978 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
979
980 pm_runtime_mark_last_busy(hdev->dev);
981 pm_runtime_put_autosuspend(hdev->dev);
982
983 memcpy(out, rctx, sizeof(*rctx));
984
985 return 0;
986}
987
988static int stm32_hash_import(struct ahash_request *req, const void *in)
989{
990 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
991 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
992 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
993 const u32 *preg = in;
994 u32 reg;
995 unsigned int i;
996
997 memcpy(rctx, in, sizeof(*rctx));
998
999 preg = rctx->hw_context;
1000
1001 pm_runtime_get_sync(hdev->dev);
1002
1003 stm32_hash_write(hdev, HASH_IMR, *preg++);
1004 stm32_hash_write(hdev, HASH_STR, *preg++);
1005 stm32_hash_write(hdev, HASH_CR, *preg);
1006 reg = *preg++ | HASH_CR_INIT;
1007 stm32_hash_write(hdev, HASH_CR, reg);
1008
1009 for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1010 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1011
1012 pm_runtime_mark_last_busy(hdev->dev);
1013 pm_runtime_put_autosuspend(hdev->dev);
1014
1015 kfree(rctx->hw_context);
1016
1017 return 0;
1018}
1019
1020static int stm32_hash_setkey(struct crypto_ahash *tfm,
1021 const u8 *key, unsigned int keylen)
1022{
1023 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1024
1025 if (keylen <= HASH_MAX_KEY_SIZE) {
1026 memcpy(ctx->key, key, keylen);
1027 ctx->keylen = keylen;
1028 } else {
1029 return -ENOMEM;
1030 }
1031
1032 return 0;
1033}
1034
1035static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1036 const char *algs_hmac_name)
1037{
1038 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1039
1040 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1041 sizeof(struct stm32_hash_request_ctx));
1042
1043 ctx->keylen = 0;
1044
1045 if (algs_hmac_name)
1046 ctx->flags |= HASH_FLAGS_HMAC;
1047
1048 ctx->enginectx.op.do_one_request = stm32_hash_one_request;
1049 ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
1050 ctx->enginectx.op.unprepare_request = NULL;
1051 return 0;
1052}
1053
1054static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1055{
1056 return stm32_hash_cra_init_algs(tfm, NULL);
1057}
1058
1059static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1060{
1061 return stm32_hash_cra_init_algs(tfm, "md5");
1062}
1063
1064static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1065{
1066 return stm32_hash_cra_init_algs(tfm, "sha1");
1067}
1068
1069static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1070{
1071 return stm32_hash_cra_init_algs(tfm, "sha224");
1072}
1073
1074static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1075{
1076 return stm32_hash_cra_init_algs(tfm, "sha256");
1077}
1078
1079static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1080{
1081 struct stm32_hash_dev *hdev = dev_id;
1082
1083 if (HASH_FLAGS_CPU & hdev->flags) {
1084 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1085 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1086 goto finish;
1087 }
1088 } else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1089 if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1090 hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1091 goto finish;
1092 }
1093 }
1094
1095 return IRQ_HANDLED;
1096
1097finish:
1098 /* Finish current request */
1099 stm32_hash_finish_req(hdev->req, 0);
1100
1101 return IRQ_HANDLED;
1102}
1103
1104static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1105{
1106 struct stm32_hash_dev *hdev = dev_id;
1107 u32 reg;
1108
1109 reg = stm32_hash_read(hdev, HASH_SR);
1110 if (reg & HASH_SR_OUTPUT_READY) {
1111 reg &= ~HASH_SR_OUTPUT_READY;
1112 stm32_hash_write(hdev, HASH_SR, reg);
1113 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1114 /* Disable IT*/
1115 stm32_hash_write(hdev, HASH_IMR, 0);
1116 return IRQ_WAKE_THREAD;
1117 }
1118
1119 return IRQ_NONE;
1120}
1121
1122static struct ahash_alg algs_md5_sha1[] = {
1123 {
1124 .init = stm32_hash_init,
1125 .update = stm32_hash_update,
1126 .final = stm32_hash_final,
1127 .finup = stm32_hash_finup,
1128 .digest = stm32_hash_digest,
1129 .export = stm32_hash_export,
1130 .import = stm32_hash_import,
1131 .halg = {
1132 .digestsize = MD5_DIGEST_SIZE,
1133 .statesize = sizeof(struct stm32_hash_request_ctx),
1134 .base = {
1135 .cra_name = "md5",
1136 .cra_driver_name = "stm32-md5",
1137 .cra_priority = 200,
1138 .cra_flags = CRYPTO_ALG_ASYNC |
1139 CRYPTO_ALG_KERN_DRIVER_ONLY,
1140 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1141 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1142 .cra_alignmask = 3,
1143 .cra_init = stm32_hash_cra_init,
1144 .cra_module = THIS_MODULE,
1145 }
1146 }
1147 },
1148 {
1149 .init = stm32_hash_init,
1150 .update = stm32_hash_update,
1151 .final = stm32_hash_final,
1152 .finup = stm32_hash_finup,
1153 .digest = stm32_hash_digest,
1154 .export = stm32_hash_export,
1155 .import = stm32_hash_import,
1156 .setkey = stm32_hash_setkey,
1157 .halg = {
1158 .digestsize = MD5_DIGEST_SIZE,
1159 .statesize = sizeof(struct stm32_hash_request_ctx),
1160 .base = {
1161 .cra_name = "hmac(md5)",
1162 .cra_driver_name = "stm32-hmac-md5",
1163 .cra_priority = 200,
1164 .cra_flags = CRYPTO_ALG_ASYNC |
1165 CRYPTO_ALG_KERN_DRIVER_ONLY,
1166 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1167 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1168 .cra_alignmask = 3,
1169 .cra_init = stm32_hash_cra_md5_init,
1170 .cra_module = THIS_MODULE,
1171 }
1172 }
1173 },
1174 {
1175 .init = stm32_hash_init,
1176 .update = stm32_hash_update,
1177 .final = stm32_hash_final,
1178 .finup = stm32_hash_finup,
1179 .digest = stm32_hash_digest,
1180 .export = stm32_hash_export,
1181 .import = stm32_hash_import,
1182 .halg = {
1183 .digestsize = SHA1_DIGEST_SIZE,
1184 .statesize = sizeof(struct stm32_hash_request_ctx),
1185 .base = {
1186 .cra_name = "sha1",
1187 .cra_driver_name = "stm32-sha1",
1188 .cra_priority = 200,
1189 .cra_flags = CRYPTO_ALG_ASYNC |
1190 CRYPTO_ALG_KERN_DRIVER_ONLY,
1191 .cra_blocksize = SHA1_BLOCK_SIZE,
1192 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1193 .cra_alignmask = 3,
1194 .cra_init = stm32_hash_cra_init,
1195 .cra_module = THIS_MODULE,
1196 }
1197 }
1198 },
1199 {
1200 .init = stm32_hash_init,
1201 .update = stm32_hash_update,
1202 .final = stm32_hash_final,
1203 .finup = stm32_hash_finup,
1204 .digest = stm32_hash_digest,
1205 .export = stm32_hash_export,
1206 .import = stm32_hash_import,
1207 .setkey = stm32_hash_setkey,
1208 .halg = {
1209 .digestsize = SHA1_DIGEST_SIZE,
1210 .statesize = sizeof(struct stm32_hash_request_ctx),
1211 .base = {
1212 .cra_name = "hmac(sha1)",
1213 .cra_driver_name = "stm32-hmac-sha1",
1214 .cra_priority = 200,
1215 .cra_flags = CRYPTO_ALG_ASYNC |
1216 CRYPTO_ALG_KERN_DRIVER_ONLY,
1217 .cra_blocksize = SHA1_BLOCK_SIZE,
1218 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1219 .cra_alignmask = 3,
1220 .cra_init = stm32_hash_cra_sha1_init,
1221 .cra_module = THIS_MODULE,
1222 }
1223 }
1224 },
1225};
1226
1227static struct ahash_alg algs_sha224_sha256[] = {
1228 {
1229 .init = stm32_hash_init,
1230 .update = stm32_hash_update,
1231 .final = stm32_hash_final,
1232 .finup = stm32_hash_finup,
1233 .digest = stm32_hash_digest,
1234 .export = stm32_hash_export,
1235 .import = stm32_hash_import,
1236 .halg = {
1237 .digestsize = SHA224_DIGEST_SIZE,
1238 .statesize = sizeof(struct stm32_hash_request_ctx),
1239 .base = {
1240 .cra_name = "sha224",
1241 .cra_driver_name = "stm32-sha224",
1242 .cra_priority = 200,
1243 .cra_flags = CRYPTO_ALG_ASYNC |
1244 CRYPTO_ALG_KERN_DRIVER_ONLY,
1245 .cra_blocksize = SHA224_BLOCK_SIZE,
1246 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1247 .cra_alignmask = 3,
1248 .cra_init = stm32_hash_cra_init,
1249 .cra_module = THIS_MODULE,
1250 }
1251 }
1252 },
1253 {
1254 .init = stm32_hash_init,
1255 .update = stm32_hash_update,
1256 .final = stm32_hash_final,
1257 .finup = stm32_hash_finup,
1258 .digest = stm32_hash_digest,
1259 .setkey = stm32_hash_setkey,
1260 .export = stm32_hash_export,
1261 .import = stm32_hash_import,
1262 .halg = {
1263 .digestsize = SHA224_DIGEST_SIZE,
1264 .statesize = sizeof(struct stm32_hash_request_ctx),
1265 .base = {
1266 .cra_name = "hmac(sha224)",
1267 .cra_driver_name = "stm32-hmac-sha224",
1268 .cra_priority = 200,
1269 .cra_flags = CRYPTO_ALG_ASYNC |
1270 CRYPTO_ALG_KERN_DRIVER_ONLY,
1271 .cra_blocksize = SHA224_BLOCK_SIZE,
1272 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1273 .cra_alignmask = 3,
1274 .cra_init = stm32_hash_cra_sha224_init,
1275 .cra_module = THIS_MODULE,
1276 }
1277 }
1278 },
1279 {
1280 .init = stm32_hash_init,
1281 .update = stm32_hash_update,
1282 .final = stm32_hash_final,
1283 .finup = stm32_hash_finup,
1284 .digest = stm32_hash_digest,
1285 .export = stm32_hash_export,
1286 .import = stm32_hash_import,
1287 .halg = {
1288 .digestsize = SHA256_DIGEST_SIZE,
1289 .statesize = sizeof(struct stm32_hash_request_ctx),
1290 .base = {
1291 .cra_name = "sha256",
1292 .cra_driver_name = "stm32-sha256",
1293 .cra_priority = 200,
1294 .cra_flags = CRYPTO_ALG_ASYNC |
1295 CRYPTO_ALG_KERN_DRIVER_ONLY,
1296 .cra_blocksize = SHA256_BLOCK_SIZE,
1297 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1298 .cra_alignmask = 3,
1299 .cra_init = stm32_hash_cra_init,
1300 .cra_module = THIS_MODULE,
1301 }
1302 }
1303 },
1304 {
1305 .init = stm32_hash_init,
1306 .update = stm32_hash_update,
1307 .final = stm32_hash_final,
1308 .finup = stm32_hash_finup,
1309 .digest = stm32_hash_digest,
1310 .export = stm32_hash_export,
1311 .import = stm32_hash_import,
1312 .setkey = stm32_hash_setkey,
1313 .halg = {
1314 .digestsize = SHA256_DIGEST_SIZE,
1315 .statesize = sizeof(struct stm32_hash_request_ctx),
1316 .base = {
1317 .cra_name = "hmac(sha256)",
1318 .cra_driver_name = "stm32-hmac-sha256",
1319 .cra_priority = 200,
1320 .cra_flags = CRYPTO_ALG_ASYNC |
1321 CRYPTO_ALG_KERN_DRIVER_ONLY,
1322 .cra_blocksize = SHA256_BLOCK_SIZE,
1323 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1324 .cra_alignmask = 3,
1325 .cra_init = stm32_hash_cra_sha256_init,
1326 .cra_module = THIS_MODULE,
1327 }
1328 }
1329 },
1330};
1331
1332static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1333{
1334 unsigned int i, j;
1335 int err;
1336
1337 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1338 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1339 err = crypto_register_ahash(
1340 &hdev->pdata->algs_info[i].algs_list[j]);
1341 if (err)
1342 goto err_algs;
1343 }
1344 }
1345
1346 return 0;
1347err_algs:
1348 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1349 for (; i--; ) {
1350 for (; j--;)
1351 crypto_unregister_ahash(
1352 &hdev->pdata->algs_info[i].algs_list[j]);
1353 }
1354
1355 return err;
1356}
1357
1358static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1359{
1360 unsigned int i, j;
1361
1362 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1363 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1364 crypto_unregister_ahash(
1365 &hdev->pdata->algs_info[i].algs_list[j]);
1366 }
1367
1368 return 0;
1369}
1370
1371static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1372 {
1373 .algs_list = algs_md5_sha1,
1374 .size = ARRAY_SIZE(algs_md5_sha1),
1375 },
1376};
1377
1378static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1379 .algs_info = stm32_hash_algs_info_stm32f4,
1380 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1381};
1382
1383static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1384 {
1385 .algs_list = algs_md5_sha1,
1386 .size = ARRAY_SIZE(algs_md5_sha1),
1387 },
1388 {
1389 .algs_list = algs_sha224_sha256,
1390 .size = ARRAY_SIZE(algs_sha224_sha256),
1391 },
1392};
1393
1394static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1395 .algs_info = stm32_hash_algs_info_stm32f7,
1396 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1397};
1398
1399static const struct of_device_id stm32_hash_of_match[] = {
1400 {
1401 .compatible = "st,stm32f456-hash",
1402 .data = &stm32_hash_pdata_stm32f4,
1403 },
1404 {
1405 .compatible = "st,stm32f756-hash",
1406 .data = &stm32_hash_pdata_stm32f7,
1407 },
1408 {},
1409};
1410
1411MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1412
1413static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1414 struct device *dev)
1415{
1416 hdev->pdata = of_device_get_match_data(dev);
1417 if (!hdev->pdata) {
1418 dev_err(dev, "no compatible OF match\n");
1419 return -EINVAL;
1420 }
1421
1422 if (of_property_read_u32(dev->of_node, "dma-maxburst",
1423 &hdev->dma_maxburst)) {
1424 dev_info(dev, "dma-maxburst not specified, using 0\n");
1425 hdev->dma_maxburst = 0;
1426 }
1427
1428 return 0;
1429}
1430
1431static int stm32_hash_probe(struct platform_device *pdev)
1432{
1433 struct stm32_hash_dev *hdev;
1434 struct device *dev = &pdev->dev;
1435 struct resource *res;
1436 int ret, irq;
1437
1438 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1439 if (!hdev)
1440 return -ENOMEM;
1441
1442 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1443 hdev->io_base = devm_ioremap_resource(dev, res);
1444 if (IS_ERR(hdev->io_base))
1445 return PTR_ERR(hdev->io_base);
1446
1447 hdev->phys_base = res->start;
1448
1449 ret = stm32_hash_get_of_match(hdev, dev);
1450 if (ret)
1451 return ret;
1452
1453 irq = platform_get_irq(pdev, 0);
1454 if (irq < 0)
1455 return irq;
1456
1457 ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1458 stm32_hash_irq_thread, IRQF_ONESHOT,
1459 dev_name(dev), hdev);
1460 if (ret) {
1461 dev_err(dev, "Cannot grab IRQ\n");
1462 return ret;
1463 }
1464
1465 hdev->clk = devm_clk_get(&pdev->dev, NULL);
1466 if (IS_ERR(hdev->clk)) {
1467 if (PTR_ERR(hdev->clk) != -EPROBE_DEFER) {
1468 dev_err(dev, "failed to get clock for hash (%lu)\n",
1469 PTR_ERR(hdev->clk));
1470 }
1471
1472 return PTR_ERR(hdev->clk);
1473 }
1474
1475 ret = clk_prepare_enable(hdev->clk);
1476 if (ret) {
1477 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1478 return ret;
1479 }
1480
1481 pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
1482 pm_runtime_use_autosuspend(dev);
1483
1484 pm_runtime_get_noresume(dev);
1485 pm_runtime_set_active(dev);
1486 pm_runtime_enable(dev);
1487
1488 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1489 if (IS_ERR(hdev->rst)) {
1490 if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
1491 ret = -EPROBE_DEFER;
1492 goto err_reset;
1493 }
1494 } else {
1495 reset_control_assert(hdev->rst);
1496 udelay(2);
1497 reset_control_deassert(hdev->rst);
1498 }
1499
1500 hdev->dev = dev;
1501
1502 platform_set_drvdata(pdev, hdev);
1503
1504 ret = stm32_hash_dma_init(hdev);
1505 switch (ret) {
1506 case 0:
1507 break;
1508 case -ENOENT:
1509 dev_dbg(dev, "DMA mode not available\n");
1510 break;
1511 default:
1512 goto err_dma;
1513 }
1514
1515 spin_lock(&stm32_hash.lock);
1516 list_add_tail(&hdev->list, &stm32_hash.dev_list);
1517 spin_unlock(&stm32_hash.lock);
1518
1519 /* Initialize crypto engine */
1520 hdev->engine = crypto_engine_alloc_init(dev, 1);
1521 if (!hdev->engine) {
1522 ret = -ENOMEM;
1523 goto err_engine;
1524 }
1525
1526 ret = crypto_engine_start(hdev->engine);
1527 if (ret)
1528 goto err_engine_start;
1529
1530 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1531
1532 /* Register algos */
1533 ret = stm32_hash_register_algs(hdev);
1534 if (ret)
1535 goto err_algs;
1536
1537 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1538 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1539
1540 pm_runtime_put_sync(dev);
1541
1542 return 0;
1543
1544err_algs:
1545err_engine_start:
1546 crypto_engine_exit(hdev->engine);
1547err_engine:
1548 spin_lock(&stm32_hash.lock);
1549 list_del(&hdev->list);
1550 spin_unlock(&stm32_hash.lock);
1551err_dma:
1552 if (hdev->dma_lch)
1553 dma_release_channel(hdev->dma_lch);
1554err_reset:
1555 pm_runtime_disable(dev);
1556 pm_runtime_put_noidle(dev);
1557
1558 clk_disable_unprepare(hdev->clk);
1559
1560 return ret;
1561}
1562
1563static int stm32_hash_remove(struct platform_device *pdev)
1564{
1565 struct stm32_hash_dev *hdev;
1566 int ret;
1567
1568 hdev = platform_get_drvdata(pdev);
1569 if (!hdev)
1570 return -ENODEV;
1571
1572 ret = pm_runtime_get_sync(hdev->dev);
1573 if (ret < 0)
1574 return ret;
1575
1576 stm32_hash_unregister_algs(hdev);
1577
1578 crypto_engine_exit(hdev->engine);
1579
1580 spin_lock(&stm32_hash.lock);
1581 list_del(&hdev->list);
1582 spin_unlock(&stm32_hash.lock);
1583
1584 if (hdev->dma_lch)
1585 dma_release_channel(hdev->dma_lch);
1586
1587 pm_runtime_disable(hdev->dev);
1588 pm_runtime_put_noidle(hdev->dev);
1589
1590 clk_disable_unprepare(hdev->clk);
1591
1592 return 0;
1593}
1594
1595#ifdef CONFIG_PM
1596static int stm32_hash_runtime_suspend(struct device *dev)
1597{
1598 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1599
1600 clk_disable_unprepare(hdev->clk);
1601
1602 return 0;
1603}
1604
1605static int stm32_hash_runtime_resume(struct device *dev)
1606{
1607 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1608 int ret;
1609
1610 ret = clk_prepare_enable(hdev->clk);
1611 if (ret) {
1612 dev_err(hdev->dev, "Failed to prepare_enable clock\n");
1613 return ret;
1614 }
1615
1616 return 0;
1617}
1618#endif
1619
1620static const struct dev_pm_ops stm32_hash_pm_ops = {
1621 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1622 pm_runtime_force_resume)
1623 SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
1624 stm32_hash_runtime_resume, NULL)
1625};
1626
1627static struct platform_driver stm32_hash_driver = {
1628 .probe = stm32_hash_probe,
1629 .remove = stm32_hash_remove,
1630 .driver = {
1631 .name = "stm32-hash",
1632 .pm = &stm32_hash_pm_ops,
1633 .of_match_table = stm32_hash_of_match,
1634 }
1635};
1636
1637module_platform_driver(stm32_hash_driver);
1638
1639MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1640MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1641MODULE_LICENSE("GPL v2");