Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * This program is free software; you can redistribute it and/or modify
  3 * it under the terms of the GNU General Public License as published by
  4 * the Free Software Foundation; either version 2 of the License, or
  5 * (at your option) any later version.
  6 *
  7 * This program is distributed in the hope that it will be useful,
  8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 * GNU General Public License for more details.
 11 *
 12 * You should have received a copy of the GNU General Public License
 13 * along with this program; if not, write to the Free Software
 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 15 *
 16 * Copyright (C) 2007 Alan Stern
 17 * Copyright (C) 2009 IBM Corporation
 18 * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com>
 19 *
 20 * Authors: Alan Stern <stern@rowland.harvard.edu>
 21 *          K.Prasad <prasad@linux.vnet.ibm.com>
 22 *          Frederic Weisbecker <fweisbec@gmail.com>
 23 */
 24
 25/*
 26 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
 27 * using the CPU's debug registers.
 28 */
 29
 30#include <linux/perf_event.h>
 31#include <linux/hw_breakpoint.h>
 32#include <linux/irqflags.h>
 33#include <linux/notifier.h>
 34#include <linux/kallsyms.h>
 35#include <linux/kprobes.h>
 36#include <linux/percpu.h>
 37#include <linux/kdebug.h>
 38#include <linux/kernel.h>
 39#include <linux/export.h>
 40#include <linux/sched.h>
 41#include <linux/smp.h>
 42
 43#include <asm/hw_breakpoint.h>
 44#include <asm/processor.h>
 45#include <asm/debugreg.h>
 46#include <asm/user.h>
 
 
 47
 48/* Per cpu debug control register value */
 49DEFINE_PER_CPU(unsigned long, cpu_dr7);
 50EXPORT_PER_CPU_SYMBOL(cpu_dr7);
 51
 52/* Per cpu debug address registers values */
 53static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
 54
 55/*
 56 * Stores the breakpoints currently in use on each breakpoint address
 57 * register for each cpus
 58 */
 59static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
 60
 61
 62static inline unsigned long
 63__encode_dr7(int drnum, unsigned int len, unsigned int type)
 64{
 65	unsigned long bp_info;
 66
 67	bp_info = (len | type) & 0xf;
 68	bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
 69	bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
 70
 71	return bp_info;
 72}
 73
 74/*
 75 * Encode the length, type, Exact, and Enable bits for a particular breakpoint
 76 * as stored in debug register 7.
 77 */
 78unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
 79{
 80	return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
 81}
 82
 83/*
 84 * Decode the length and type bits for a particular breakpoint as
 85 * stored in debug register 7.  Return the "enabled" status.
 86 */
 87int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
 88{
 89	int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
 90
 91	*len = (bp_info & 0xc) | 0x40;
 92	*type = (bp_info & 0x3) | 0x80;
 93
 94	return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
 95}
 96
 97/*
 98 * Install a perf counter breakpoint.
 99 *
100 * We seek a free debug address register and use it for this
101 * breakpoint. Eventually we enable it in the debug control register.
102 *
103 * Atomic: we hold the counter->ctx->lock and we only handle variables
104 * and registers local to this cpu.
105 */
106int arch_install_hw_breakpoint(struct perf_event *bp)
107{
108	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
109	unsigned long *dr7;
110	int i;
111
 
 
112	for (i = 0; i < HBP_NUM; i++) {
113		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
114
115		if (!*slot) {
116			*slot = bp;
117			break;
118		}
119	}
120
121	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
122		return -EBUSY;
123
124	set_debugreg(info->address, i);
125	__this_cpu_write(cpu_debugreg[i], info->address);
126
127	dr7 = this_cpu_ptr(&cpu_dr7);
128	*dr7 |= encode_dr7(i, info->len, info->type);
129
 
 
 
 
 
 
130	set_debugreg(*dr7, 7);
131	if (info->mask)
132		set_dr_addr_mask(info->mask, i);
133
134	return 0;
135}
136
137/*
138 * Uninstall the breakpoint contained in the given counter.
139 *
140 * First we search the debug address register it uses and then we disable
141 * it.
142 *
143 * Atomic: we hold the counter->ctx->lock and we only handle variables
144 * and registers local to this cpu.
145 */
146void arch_uninstall_hw_breakpoint(struct perf_event *bp)
147{
148	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
149	unsigned long *dr7;
150	int i;
151
 
 
152	for (i = 0; i < HBP_NUM; i++) {
153		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
154
155		if (*slot == bp) {
156			*slot = NULL;
157			break;
158		}
159	}
160
161	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
162		return;
163
164	dr7 = this_cpu_ptr(&cpu_dr7);
165	*dr7 &= ~__encode_dr7(i, info->len, info->type);
166
167	set_debugreg(*dr7, 7);
168	if (info->mask)
169		set_dr_addr_mask(0, i);
170}
171
172/*
173 * Check for virtual address in kernel space.
174 */
175int arch_check_bp_in_kernelspace(struct perf_event *bp)
176{
177	unsigned int len;
178	unsigned long va;
179	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
180
181	va = info->address;
182	len = bp->attr.bp_len;
183
184	/*
185	 * We don't need to worry about va + len - 1 overflowing:
186	 * we already require that va is aligned to a multiple of len.
187	 */
188	return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189}
190
191int arch_bp_generic_fields(int x86_len, int x86_type,
192			   int *gen_len, int *gen_type)
193{
 
 
194	/* Type */
195	switch (x86_type) {
196	case X86_BREAKPOINT_EXECUTE:
197		if (x86_len != X86_BREAKPOINT_LEN_X)
198			return -EINVAL;
199
200		*gen_type = HW_BREAKPOINT_X;
201		*gen_len = sizeof(long);
202		return 0;
203	case X86_BREAKPOINT_WRITE:
204		*gen_type = HW_BREAKPOINT_W;
205		break;
206	case X86_BREAKPOINT_RW:
207		*gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
208		break;
209	default:
210		return -EINVAL;
211	}
212
213	/* Len */
214	switch (x86_len) {
215	case X86_BREAKPOINT_LEN_1:
216		*gen_len = HW_BREAKPOINT_LEN_1;
217		break;
218	case X86_BREAKPOINT_LEN_2:
219		*gen_len = HW_BREAKPOINT_LEN_2;
220		break;
221	case X86_BREAKPOINT_LEN_4:
222		*gen_len = HW_BREAKPOINT_LEN_4;
223		break;
224#ifdef CONFIG_X86_64
225	case X86_BREAKPOINT_LEN_8:
226		*gen_len = HW_BREAKPOINT_LEN_8;
227		break;
228#endif
229	default:
230		return -EINVAL;
231	}
232
233	return 0;
234}
235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
237static int arch_build_bp_info(struct perf_event *bp)
 
 
 
 
238{
239	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 
 
 
 
 
240
241	info->address = bp->attr.bp_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242
243	/* Type */
244	switch (bp->attr.bp_type) {
245	case HW_BREAKPOINT_W:
246		info->type = X86_BREAKPOINT_WRITE;
247		break;
248	case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
249		info->type = X86_BREAKPOINT_RW;
250		break;
251	case HW_BREAKPOINT_X:
252		/*
253		 * We don't allow kernel breakpoints in places that are not
254		 * acceptable for kprobes.  On non-kprobes kernels, we don't
255		 * allow kernel breakpoints at all.
256		 */
257		if (bp->attr.bp_addr >= TASK_SIZE_MAX) {
258#ifdef CONFIG_KPROBES
259			if (within_kprobe_blacklist(bp->attr.bp_addr))
260				return -EINVAL;
261#else
262			return -EINVAL;
263#endif
264		}
265
266		info->type = X86_BREAKPOINT_EXECUTE;
267		/*
268		 * x86 inst breakpoints need to have a specific undefined len.
269		 * But we still need to check userspace is not trying to setup
270		 * an unsupported length, to get a range breakpoint for example.
271		 */
272		if (bp->attr.bp_len == sizeof(long)) {
273			info->len = X86_BREAKPOINT_LEN_X;
274			return 0;
275		}
 
276	default:
277		return -EINVAL;
278	}
279
280	/* Len */
281	info->mask = 0;
282
283	switch (bp->attr.bp_len) {
284	case HW_BREAKPOINT_LEN_1:
285		info->len = X86_BREAKPOINT_LEN_1;
286		break;
287	case HW_BREAKPOINT_LEN_2:
288		info->len = X86_BREAKPOINT_LEN_2;
289		break;
290	case HW_BREAKPOINT_LEN_4:
291		info->len = X86_BREAKPOINT_LEN_4;
292		break;
293#ifdef CONFIG_X86_64
294	case HW_BREAKPOINT_LEN_8:
295		info->len = X86_BREAKPOINT_LEN_8;
296		break;
297#endif
298	default:
299		/* AMD range breakpoint */
300		if (!is_power_of_2(bp->attr.bp_len))
301			return -EINVAL;
302		if (bp->attr.bp_addr & (bp->attr.bp_len - 1))
303			return -EINVAL;
304
305		if (!boot_cpu_has(X86_FEATURE_BPEXT))
306			return -EOPNOTSUPP;
307
308		/*
309		 * It's impossible to use a range breakpoint to fake out
310		 * user vs kernel detection because bp_len - 1 can't
311		 * have the high bit set.  If we ever allow range instruction
312		 * breakpoints, then we'll have to check for kprobe-blacklisted
313		 * addresses anywhere in the range.
314		 */
315		info->mask = bp->attr.bp_len - 1;
316		info->len = X86_BREAKPOINT_LEN_1;
317	}
318
319	return 0;
320}
321
322/*
323 * Validate the arch-specific HW Breakpoint register settings
324 */
325int arch_validate_hwbkpt_settings(struct perf_event *bp)
 
 
326{
327	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
328	unsigned int align;
329	int ret;
330
331
332	ret = arch_build_bp_info(bp);
333	if (ret)
334		return ret;
335
336	switch (info->len) {
337	case X86_BREAKPOINT_LEN_1:
338		align = 0;
339		if (info->mask)
340			align = info->mask;
341		break;
342	case X86_BREAKPOINT_LEN_2:
343		align = 1;
344		break;
345	case X86_BREAKPOINT_LEN_4:
346		align = 3;
347		break;
348#ifdef CONFIG_X86_64
349	case X86_BREAKPOINT_LEN_8:
350		align = 7;
351		break;
352#endif
353	default:
354		WARN_ON_ONCE(1);
 
355	}
356
357	/*
358	 * Check that the low-order bits of the address are appropriate
359	 * for the alignment implied by len.
360	 */
361	if (info->address & align)
362		return -EINVAL;
363
364	return 0;
365}
366
367/*
368 * Dump the debug register contents to the user.
369 * We can't dump our per cpu values because it
370 * may contain cpu wide breakpoint, something that
371 * doesn't belong to the current task.
372 *
373 * TODO: include non-ptrace user breakpoints (perf)
374 */
375void aout_dump_debugregs(struct user *dump)
376{
377	int i;
378	int dr7 = 0;
379	struct perf_event *bp;
380	struct arch_hw_breakpoint *info;
381	struct thread_struct *thread = &current->thread;
382
383	for (i = 0; i < HBP_NUM; i++) {
384		bp = thread->ptrace_bps[i];
385
386		if (bp && !bp->attr.disabled) {
387			dump->u_debugreg[i] = bp->attr.bp_addr;
388			info = counter_arch_bp(bp);
389			dr7 |= encode_dr7(i, info->len, info->type);
390		} else {
391			dump->u_debugreg[i] = 0;
392		}
393	}
394
395	dump->u_debugreg[4] = 0;
396	dump->u_debugreg[5] = 0;
397	dump->u_debugreg[6] = current->thread.debugreg6;
398
399	dump->u_debugreg[7] = dr7;
400}
401EXPORT_SYMBOL_GPL(aout_dump_debugregs);
402
403/*
404 * Release the user breakpoints used by ptrace
405 */
406void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
407{
408	int i;
409	struct thread_struct *t = &tsk->thread;
410
411	for (i = 0; i < HBP_NUM; i++) {
412		unregister_hw_breakpoint(t->ptrace_bps[i]);
413		t->ptrace_bps[i] = NULL;
414	}
415
416	t->debugreg6 = 0;
417	t->ptrace_dr7 = 0;
418}
419
420void hw_breakpoint_restore(void)
421{
422	set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
423	set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
424	set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
425	set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
426	set_debugreg(current->thread.debugreg6, 6);
427	set_debugreg(__this_cpu_read(cpu_dr7), 7);
428}
429EXPORT_SYMBOL_GPL(hw_breakpoint_restore);
430
431/*
432 * Handle debug exception notifications.
433 *
434 * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
435 *
436 * NOTIFY_DONE returned if one of the following conditions is true.
437 * i) When the causative address is from user-space and the exception
438 * is a valid one, i.e. not triggered as a result of lazy debug register
439 * switching
440 * ii) When there are more bits than trap<n> set in DR6 register (such
441 * as BD, BS or BT) indicating that more than one debug condition is
442 * met and requires some more action in do_debug().
443 *
444 * NOTIFY_STOP returned for all other cases
445 *
446 */
447static int hw_breakpoint_handler(struct die_args *args)
448{
449	int i, cpu, rc = NOTIFY_STOP;
450	struct perf_event *bp;
451	unsigned long dr7, dr6;
452	unsigned long *dr6_p;
453
454	/* The DR6 value is pointed by args->err */
455	dr6_p = (unsigned long *)ERR_PTR(args->err);
456	dr6 = *dr6_p;
457
458	/* If it's a single step, TRAP bits are random */
459	if (dr6 & DR_STEP)
460		return NOTIFY_DONE;
461
462	/* Do an early return if no trap bits are set in DR6 */
463	if ((dr6 & DR_TRAP_BITS) == 0)
464		return NOTIFY_DONE;
465
466	get_debugreg(dr7, 7);
467	/* Disable breakpoints during exception handling */
468	set_debugreg(0UL, 7);
469	/*
470	 * Assert that local interrupts are disabled
471	 * Reset the DRn bits in the virtualized register value.
472	 * The ptrace trigger routine will add in whatever is needed.
473	 */
474	current->thread.debugreg6 &= ~DR_TRAP_BITS;
475	cpu = get_cpu();
476
477	/* Handle all the breakpoints that were triggered */
478	for (i = 0; i < HBP_NUM; ++i) {
479		if (likely(!(dr6 & (DR_TRAP0 << i))))
480			continue;
481
482		/*
483		 * The counter may be concurrently released but that can only
484		 * occur from a call_rcu() path. We can then safely fetch
485		 * the breakpoint, use its callback, touch its counter
486		 * while we are in an rcu_read_lock() path.
487		 */
488		rcu_read_lock();
489
490		bp = per_cpu(bp_per_reg[i], cpu);
491		/*
492		 * Reset the 'i'th TRAP bit in dr6 to denote completion of
493		 * exception handling
494		 */
495		(*dr6_p) &= ~(DR_TRAP0 << i);
496		/*
497		 * bp can be NULL due to lazy debug register switching
498		 * or due to concurrent perf counter removing.
499		 */
500		if (!bp) {
501			rcu_read_unlock();
502			break;
503		}
504
505		perf_bp_event(bp, args->regs);
506
507		/*
508		 * Set up resume flag to avoid breakpoint recursion when
509		 * returning back to origin.
510		 */
511		if (bp->hw.info.type == X86_BREAKPOINT_EXECUTE)
512			args->regs->flags |= X86_EFLAGS_RF;
513
514		rcu_read_unlock();
515	}
516	/*
517	 * Further processing in do_debug() is needed for a) user-space
518	 * breakpoints (to generate signals) and b) when the system has
519	 * taken exception due to multiple causes
520	 */
521	if ((current->thread.debugreg6 & DR_TRAP_BITS) ||
522	    (dr6 & (~DR_TRAP_BITS)))
523		rc = NOTIFY_DONE;
524
525	set_debugreg(dr7, 7);
526	put_cpu();
527
528	return rc;
529}
530
531/*
532 * Handle debug exception notifications.
533 */
534int hw_breakpoint_exceptions_notify(
535		struct notifier_block *unused, unsigned long val, void *data)
536{
537	if (val != DIE_DEBUG)
538		return NOTIFY_DONE;
539
540	return hw_breakpoint_handler(data);
541}
542
543void hw_breakpoint_pmu_read(struct perf_event *bp)
544{
545	/* TODO */
546}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  3 *
  4 * Copyright (C) 2007 Alan Stern
  5 * Copyright (C) 2009 IBM Corporation
  6 * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com>
  7 *
  8 * Authors: Alan Stern <stern@rowland.harvard.edu>
  9 *          K.Prasad <prasad@linux.vnet.ibm.com>
 10 *          Frederic Weisbecker <fweisbec@gmail.com>
 11 */
 12
 13/*
 14 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
 15 * using the CPU's debug registers.
 16 */
 17
 18#include <linux/perf_event.h>
 19#include <linux/hw_breakpoint.h>
 20#include <linux/irqflags.h>
 21#include <linux/notifier.h>
 22#include <linux/kallsyms.h>
 23#include <linux/kprobes.h>
 24#include <linux/percpu.h>
 25#include <linux/kdebug.h>
 26#include <linux/kernel.h>
 27#include <linux/export.h>
 28#include <linux/sched.h>
 29#include <linux/smp.h>
 30
 31#include <asm/hw_breakpoint.h>
 32#include <asm/processor.h>
 33#include <asm/debugreg.h>
 34#include <asm/user.h>
 35#include <asm/desc.h>
 36#include <asm/tlbflush.h>
 37
 38/* Per cpu debug control register value */
 39DEFINE_PER_CPU(unsigned long, cpu_dr7);
 40EXPORT_PER_CPU_SYMBOL(cpu_dr7);
 41
 42/* Per cpu debug address registers values */
 43static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
 44
 45/*
 46 * Stores the breakpoints currently in use on each breakpoint address
 47 * register for each cpus
 48 */
 49static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
 50
 51
 52static inline unsigned long
 53__encode_dr7(int drnum, unsigned int len, unsigned int type)
 54{
 55	unsigned long bp_info;
 56
 57	bp_info = (len | type) & 0xf;
 58	bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
 59	bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
 60
 61	return bp_info;
 62}
 63
 64/*
 65 * Encode the length, type, Exact, and Enable bits for a particular breakpoint
 66 * as stored in debug register 7.
 67 */
 68unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
 69{
 70	return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
 71}
 72
 73/*
 74 * Decode the length and type bits for a particular breakpoint as
 75 * stored in debug register 7.  Return the "enabled" status.
 76 */
 77int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
 78{
 79	int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
 80
 81	*len = (bp_info & 0xc) | 0x40;
 82	*type = (bp_info & 0x3) | 0x80;
 83
 84	return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
 85}
 86
 87/*
 88 * Install a perf counter breakpoint.
 89 *
 90 * We seek a free debug address register and use it for this
 91 * breakpoint. Eventually we enable it in the debug control register.
 92 *
 93 * Atomic: we hold the counter->ctx->lock and we only handle variables
 94 * and registers local to this cpu.
 95 */
 96int arch_install_hw_breakpoint(struct perf_event *bp)
 97{
 98	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 99	unsigned long *dr7;
100	int i;
101
102	lockdep_assert_irqs_disabled();
103
104	for (i = 0; i < HBP_NUM; i++) {
105		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
106
107		if (!*slot) {
108			*slot = bp;
109			break;
110		}
111	}
112
113	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
114		return -EBUSY;
115
116	set_debugreg(info->address, i);
117	__this_cpu_write(cpu_debugreg[i], info->address);
118
119	dr7 = this_cpu_ptr(&cpu_dr7);
120	*dr7 |= encode_dr7(i, info->len, info->type);
121
122	/*
123	 * Ensure we first write cpu_dr7 before we set the DR7 register.
124	 * This ensures an NMI never see cpu_dr7 0 when DR7 is not.
125	 */
126	barrier();
127
128	set_debugreg(*dr7, 7);
129	if (info->mask)
130		set_dr_addr_mask(info->mask, i);
131
132	return 0;
133}
134
135/*
136 * Uninstall the breakpoint contained in the given counter.
137 *
138 * First we search the debug address register it uses and then we disable
139 * it.
140 *
141 * Atomic: we hold the counter->ctx->lock and we only handle variables
142 * and registers local to this cpu.
143 */
144void arch_uninstall_hw_breakpoint(struct perf_event *bp)
145{
146	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
147	unsigned long dr7;
148	int i;
149
150	lockdep_assert_irqs_disabled();
151
152	for (i = 0; i < HBP_NUM; i++) {
153		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
154
155		if (*slot == bp) {
156			*slot = NULL;
157			break;
158		}
159	}
160
161	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
162		return;
163
164	dr7 = this_cpu_read(cpu_dr7);
165	dr7 &= ~__encode_dr7(i, info->len, info->type);
166
167	set_debugreg(dr7, 7);
168	if (info->mask)
169		set_dr_addr_mask(0, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
170
171	/*
172	 * Ensure the write to cpu_dr7 is after we've set the DR7 register.
173	 * This ensures an NMI never see cpu_dr7 0 when DR7 is not.
174	 */
175	barrier();
176
177	this_cpu_write(cpu_dr7, dr7);
178}
179
180static int arch_bp_generic_len(int x86_len)
181{
182	switch (x86_len) {
183	case X86_BREAKPOINT_LEN_1:
184		return HW_BREAKPOINT_LEN_1;
185	case X86_BREAKPOINT_LEN_2:
186		return HW_BREAKPOINT_LEN_2;
187	case X86_BREAKPOINT_LEN_4:
188		return HW_BREAKPOINT_LEN_4;
189#ifdef CONFIG_X86_64
190	case X86_BREAKPOINT_LEN_8:
191		return HW_BREAKPOINT_LEN_8;
192#endif
193	default:
194		return -EINVAL;
195	}
196}
197
198int arch_bp_generic_fields(int x86_len, int x86_type,
199			   int *gen_len, int *gen_type)
200{
201	int len;
202
203	/* Type */
204	switch (x86_type) {
205	case X86_BREAKPOINT_EXECUTE:
206		if (x86_len != X86_BREAKPOINT_LEN_X)
207			return -EINVAL;
208
209		*gen_type = HW_BREAKPOINT_X;
210		*gen_len = sizeof(long);
211		return 0;
212	case X86_BREAKPOINT_WRITE:
213		*gen_type = HW_BREAKPOINT_W;
214		break;
215	case X86_BREAKPOINT_RW:
216		*gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
217		break;
218	default:
219		return -EINVAL;
220	}
221
222	/* Len */
223	len = arch_bp_generic_len(x86_len);
224	if (len < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225		return -EINVAL;
226	*gen_len = len;
227
228	return 0;
229}
230
231/*
232 * Check for virtual address in kernel space.
233 */
234int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
235{
236	unsigned long va;
237	int len;
238
239	va = hw->address;
240	len = arch_bp_generic_len(hw->len);
241	WARN_ON_ONCE(len < 0);
242
243	/*
244	 * We don't need to worry about va + len - 1 overflowing:
245	 * we already require that va is aligned to a multiple of len.
246	 */
247	return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX);
248}
249
250/*
251 * Checks whether the range [addr, end], overlaps the area [base, base + size).
252 */
253static inline bool within_area(unsigned long addr, unsigned long end,
254			       unsigned long base, unsigned long size)
255{
256	return end >= base && addr < (base + size);
257}
258
259/*
260 * Checks whether the range from addr to end, inclusive, overlaps the fixed
261 * mapped CPU entry area range or other ranges used for CPU entry.
262 */
263static inline bool within_cpu_entry(unsigned long addr, unsigned long end)
264{
265	int cpu;
266
267	/* CPU entry erea is always used for CPU entry */
268	if (within_area(addr, end, CPU_ENTRY_AREA_BASE,
269			CPU_ENTRY_AREA_TOTAL_SIZE))
270		return true;
271
272	for_each_possible_cpu(cpu) {
273		/* The original rw GDT is being used after load_direct_gdt() */
274		if (within_area(addr, end, (unsigned long)get_cpu_gdt_rw(cpu),
275				GDT_SIZE))
276			return true;
277
278		/*
279		 * cpu_tss_rw is not directly referenced by hardware, but
280		 * cpu_tss_rw is also used in CPU entry code,
281		 */
282		if (within_area(addr, end,
283				(unsigned long)&per_cpu(cpu_tss_rw, cpu),
284				sizeof(struct tss_struct)))
285			return true;
286
287		/*
288		 * cpu_tlbstate.user_pcid_flush_mask is used for CPU entry.
289		 * If a data breakpoint on it, it will cause an unwanted #DB.
290		 * Protect the full cpu_tlbstate structure to be sure.
291		 */
292		if (within_area(addr, end,
293				(unsigned long)&per_cpu(cpu_tlbstate, cpu),
294				sizeof(struct tlb_state)))
295			return true;
296	}
297
298	return false;
299}
300
301static int arch_build_bp_info(struct perf_event *bp,
302			      const struct perf_event_attr *attr,
303			      struct arch_hw_breakpoint *hw)
304{
305	unsigned long bp_end;
306
307	bp_end = attr->bp_addr + attr->bp_len - 1;
308	if (bp_end < attr->bp_addr)
309		return -EINVAL;
310
311	/*
312	 * Prevent any breakpoint of any type that overlaps the CPU
313	 * entry area and data.  This protects the IST stacks and also
314	 * reduces the chance that we ever find out what happens if
315	 * there's a data breakpoint on the GDT, IDT, or TSS.
316	 */
317	if (within_cpu_entry(attr->bp_addr, bp_end))
318		return -EINVAL;
319
320	hw->address = attr->bp_addr;
321	hw->mask = 0;
322
323	/* Type */
324	switch (attr->bp_type) {
325	case HW_BREAKPOINT_W:
326		hw->type = X86_BREAKPOINT_WRITE;
327		break;
328	case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
329		hw->type = X86_BREAKPOINT_RW;
330		break;
331	case HW_BREAKPOINT_X:
332		/*
333		 * We don't allow kernel breakpoints in places that are not
334		 * acceptable for kprobes.  On non-kprobes kernels, we don't
335		 * allow kernel breakpoints at all.
336		 */
337		if (attr->bp_addr >= TASK_SIZE_MAX) {
338			if (within_kprobe_blacklist(attr->bp_addr))
 
339				return -EINVAL;
 
 
 
340		}
341
342		hw->type = X86_BREAKPOINT_EXECUTE;
343		/*
344		 * x86 inst breakpoints need to have a specific undefined len.
345		 * But we still need to check userspace is not trying to setup
346		 * an unsupported length, to get a range breakpoint for example.
347		 */
348		if (attr->bp_len == sizeof(long)) {
349			hw->len = X86_BREAKPOINT_LEN_X;
350			return 0;
351		}
352		fallthrough;
353	default:
354		return -EINVAL;
355	}
356
357	/* Len */
358	switch (attr->bp_len) {
 
 
359	case HW_BREAKPOINT_LEN_1:
360		hw->len = X86_BREAKPOINT_LEN_1;
361		break;
362	case HW_BREAKPOINT_LEN_2:
363		hw->len = X86_BREAKPOINT_LEN_2;
364		break;
365	case HW_BREAKPOINT_LEN_4:
366		hw->len = X86_BREAKPOINT_LEN_4;
367		break;
368#ifdef CONFIG_X86_64
369	case HW_BREAKPOINT_LEN_8:
370		hw->len = X86_BREAKPOINT_LEN_8;
371		break;
372#endif
373	default:
374		/* AMD range breakpoint */
375		if (!is_power_of_2(attr->bp_len))
376			return -EINVAL;
377		if (attr->bp_addr & (attr->bp_len - 1))
378			return -EINVAL;
379
380		if (!boot_cpu_has(X86_FEATURE_BPEXT))
381			return -EOPNOTSUPP;
382
383		/*
384		 * It's impossible to use a range breakpoint to fake out
385		 * user vs kernel detection because bp_len - 1 can't
386		 * have the high bit set.  If we ever allow range instruction
387		 * breakpoints, then we'll have to check for kprobe-blacklisted
388		 * addresses anywhere in the range.
389		 */
390		hw->mask = attr->bp_len - 1;
391		hw->len = X86_BREAKPOINT_LEN_1;
392	}
393
394	return 0;
395}
396
397/*
398 * Validate the arch-specific HW Breakpoint register settings
399 */
400int hw_breakpoint_arch_parse(struct perf_event *bp,
401			     const struct perf_event_attr *attr,
402			     struct arch_hw_breakpoint *hw)
403{
 
404	unsigned int align;
405	int ret;
406
407
408	ret = arch_build_bp_info(bp, attr, hw);
409	if (ret)
410		return ret;
411
412	switch (hw->len) {
413	case X86_BREAKPOINT_LEN_1:
414		align = 0;
415		if (hw->mask)
416			align = hw->mask;
417		break;
418	case X86_BREAKPOINT_LEN_2:
419		align = 1;
420		break;
421	case X86_BREAKPOINT_LEN_4:
422		align = 3;
423		break;
424#ifdef CONFIG_X86_64
425	case X86_BREAKPOINT_LEN_8:
426		align = 7;
427		break;
428#endif
429	default:
430		WARN_ON_ONCE(1);
431		return -EINVAL;
432	}
433
434	/*
435	 * Check that the low-order bits of the address are appropriate
436	 * for the alignment implied by len.
437	 */
438	if (hw->address & align)
439		return -EINVAL;
440
441	return 0;
442}
443
444/*
445 * Dump the debug register contents to the user.
446 * We can't dump our per cpu values because it
447 * may contain cpu wide breakpoint, something that
448 * doesn't belong to the current task.
449 *
450 * TODO: include non-ptrace user breakpoints (perf)
451 */
452void aout_dump_debugregs(struct user *dump)
453{
454	int i;
455	int dr7 = 0;
456	struct perf_event *bp;
457	struct arch_hw_breakpoint *info;
458	struct thread_struct *thread = &current->thread;
459
460	for (i = 0; i < HBP_NUM; i++) {
461		bp = thread->ptrace_bps[i];
462
463		if (bp && !bp->attr.disabled) {
464			dump->u_debugreg[i] = bp->attr.bp_addr;
465			info = counter_arch_bp(bp);
466			dr7 |= encode_dr7(i, info->len, info->type);
467		} else {
468			dump->u_debugreg[i] = 0;
469		}
470	}
471
472	dump->u_debugreg[4] = 0;
473	dump->u_debugreg[5] = 0;
474	dump->u_debugreg[6] = current->thread.debugreg6;
475
476	dump->u_debugreg[7] = dr7;
477}
478EXPORT_SYMBOL_GPL(aout_dump_debugregs);
479
480/*
481 * Release the user breakpoints used by ptrace
482 */
483void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
484{
485	int i;
486	struct thread_struct *t = &tsk->thread;
487
488	for (i = 0; i < HBP_NUM; i++) {
489		unregister_hw_breakpoint(t->ptrace_bps[i]);
490		t->ptrace_bps[i] = NULL;
491	}
492
493	t->debugreg6 = 0;
494	t->ptrace_dr7 = 0;
495}
496
497void hw_breakpoint_restore(void)
498{
499	set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
500	set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
501	set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
502	set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
503	set_debugreg(current->thread.debugreg6, 6);
504	set_debugreg(__this_cpu_read(cpu_dr7), 7);
505}
506EXPORT_SYMBOL_GPL(hw_breakpoint_restore);
507
508/*
509 * Handle debug exception notifications.
510 *
511 * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
512 *
513 * NOTIFY_DONE returned if one of the following conditions is true.
514 * i) When the causative address is from user-space and the exception
515 * is a valid one, i.e. not triggered as a result of lazy debug register
516 * switching
517 * ii) When there are more bits than trap<n> set in DR6 register (such
518 * as BD, BS or BT) indicating that more than one debug condition is
519 * met and requires some more action in do_debug().
520 *
521 * NOTIFY_STOP returned for all other cases
522 *
523 */
524static int hw_breakpoint_handler(struct die_args *args)
525{
526	int i, cpu, rc = NOTIFY_STOP;
527	struct perf_event *bp;
528	unsigned long dr6;
529	unsigned long *dr6_p;
530
531	/* The DR6 value is pointed by args->err */
532	dr6_p = (unsigned long *)ERR_PTR(args->err);
533	dr6 = *dr6_p;
534
535	/* If it's a single step, TRAP bits are random */
536	if (dr6 & DR_STEP)
537		return NOTIFY_DONE;
538
539	/* Do an early return if no trap bits are set in DR6 */
540	if ((dr6 & DR_TRAP_BITS) == 0)
541		return NOTIFY_DONE;
542
 
 
 
543	/*
544	 * Assert that local interrupts are disabled
545	 * Reset the DRn bits in the virtualized register value.
546	 * The ptrace trigger routine will add in whatever is needed.
547	 */
548	current->thread.debugreg6 &= ~DR_TRAP_BITS;
549	cpu = get_cpu();
550
551	/* Handle all the breakpoints that were triggered */
552	for (i = 0; i < HBP_NUM; ++i) {
553		if (likely(!(dr6 & (DR_TRAP0 << i))))
554			continue;
555
556		/*
557		 * The counter may be concurrently released but that can only
558		 * occur from a call_rcu() path. We can then safely fetch
559		 * the breakpoint, use its callback, touch its counter
560		 * while we are in an rcu_read_lock() path.
561		 */
562		rcu_read_lock();
563
564		bp = per_cpu(bp_per_reg[i], cpu);
565		/*
566		 * Reset the 'i'th TRAP bit in dr6 to denote completion of
567		 * exception handling
568		 */
569		(*dr6_p) &= ~(DR_TRAP0 << i);
570		/*
571		 * bp can be NULL due to lazy debug register switching
572		 * or due to concurrent perf counter removing.
573		 */
574		if (!bp) {
575			rcu_read_unlock();
576			break;
577		}
578
579		perf_bp_event(bp, args->regs);
580
581		/*
582		 * Set up resume flag to avoid breakpoint recursion when
583		 * returning back to origin.
584		 */
585		if (bp->hw.info.type == X86_BREAKPOINT_EXECUTE)
586			args->regs->flags |= X86_EFLAGS_RF;
587
588		rcu_read_unlock();
589	}
590	/*
591	 * Further processing in do_debug() is needed for a) user-space
592	 * breakpoints (to generate signals) and b) when the system has
593	 * taken exception due to multiple causes
594	 */
595	if ((current->thread.debugreg6 & DR_TRAP_BITS) ||
596	    (dr6 & (~DR_TRAP_BITS)))
597		rc = NOTIFY_DONE;
598
 
599	put_cpu();
600
601	return rc;
602}
603
604/*
605 * Handle debug exception notifications.
606 */
607int hw_breakpoint_exceptions_notify(
608		struct notifier_block *unused, unsigned long val, void *data)
609{
610	if (val != DIE_DEBUG)
611		return NOTIFY_DONE;
612
613	return hw_breakpoint_handler(data);
614}
615
616void hw_breakpoint_pmu_read(struct perf_event *bp)
617{
618	/* TODO */
619}