Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v4.17
 
  1#define pr_fmt(fmt) "SMP alternatives: " fmt
  2
  3#include <linux/module.h>
  4#include <linux/sched.h>
 
  5#include <linux/mutex.h>
  6#include <linux/list.h>
  7#include <linux/stringify.h>
 
  8#include <linux/mm.h>
  9#include <linux/vmalloc.h>
 10#include <linux/memory.h>
 11#include <linux/stop_machine.h>
 12#include <linux/slab.h>
 13#include <linux/kdebug.h>
 
 
 
 
 14#include <asm/text-patching.h>
 15#include <asm/alternative.h>
 16#include <asm/sections.h>
 17#include <asm/pgtable.h>
 18#include <asm/mce.h>
 19#include <asm/nmi.h>
 20#include <asm/cacheflush.h>
 21#include <asm/tlbflush.h>
 
 22#include <asm/io.h>
 23#include <asm/fixmap.h>
 24
 25int __read_mostly alternatives_patched;
 26
 27EXPORT_SYMBOL_GPL(alternatives_patched);
 28
 29#define MAX_PATCH_LEN (255-1)
 30
 31static int __initdata_or_module debug_alternative;
 32
 33static int __init debug_alt(char *str)
 34{
 35	debug_alternative = 1;
 36	return 1;
 37}
 38__setup("debug-alternative", debug_alt);
 39
 40static int noreplace_smp;
 41
 42static int __init setup_noreplace_smp(char *str)
 43{
 44	noreplace_smp = 1;
 45	return 1;
 46}
 47__setup("noreplace-smp", setup_noreplace_smp);
 48
 49#define DPRINTK(fmt, args...)						\
 50do {									\
 51	if (debug_alternative)						\
 52		printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args);	\
 53} while (0)
 54
 55#define DUMP_BYTES(buf, len, fmt, args...)				\
 56do {									\
 57	if (unlikely(debug_alternative)) {				\
 58		int j;							\
 59									\
 60		if (!(len))						\
 61			break;						\
 62									\
 63		printk(KERN_DEBUG fmt, ##args);				\
 64		for (j = 0; j < (len) - 1; j++)				\
 65			printk(KERN_CONT "%02hhx ", buf[j]);		\
 66		printk(KERN_CONT "%02hhx\n", buf[j]);			\
 67	}								\
 68} while (0)
 69
 70/*
 71 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
 72 * that correspond to that nop. Getting from one nop to the next, we
 73 * add to the array the offset that is equal to the sum of all sizes of
 74 * nops preceding the one we are after.
 75 *
 76 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
 77 * nice symmetry of sizes of the previous nops.
 78 */
 79#if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
 80static const unsigned char intelnops[] =
 81{
 82	GENERIC_NOP1,
 83	GENERIC_NOP2,
 84	GENERIC_NOP3,
 85	GENERIC_NOP4,
 86	GENERIC_NOP5,
 87	GENERIC_NOP6,
 88	GENERIC_NOP7,
 89	GENERIC_NOP8,
 90	GENERIC_NOP5_ATOMIC
 91};
 92static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
 93{
 94	NULL,
 95	intelnops,
 96	intelnops + 1,
 97	intelnops + 1 + 2,
 98	intelnops + 1 + 2 + 3,
 99	intelnops + 1 + 2 + 3 + 4,
100	intelnops + 1 + 2 + 3 + 4 + 5,
101	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
102	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
103	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
104};
105#endif
106
107#ifdef K8_NOP1
108static const unsigned char k8nops[] =
109{
110	K8_NOP1,
111	K8_NOP2,
112	K8_NOP3,
113	K8_NOP4,
114	K8_NOP5,
115	K8_NOP6,
116	K8_NOP7,
117	K8_NOP8,
118	K8_NOP5_ATOMIC
119};
120static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
121{
122	NULL,
123	k8nops,
124	k8nops + 1,
125	k8nops + 1 + 2,
126	k8nops + 1 + 2 + 3,
127	k8nops + 1 + 2 + 3 + 4,
128	k8nops + 1 + 2 + 3 + 4 + 5,
129	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
130	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
131	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
132};
133#endif
134
135#if defined(K7_NOP1) && !defined(CONFIG_X86_64)
136static const unsigned char k7nops[] =
137{
138	K7_NOP1,
139	K7_NOP2,
140	K7_NOP3,
141	K7_NOP4,
142	K7_NOP5,
143	K7_NOP6,
144	K7_NOP7,
145	K7_NOP8,
146	K7_NOP5_ATOMIC
147};
148static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
149{
150	NULL,
151	k7nops,
152	k7nops + 1,
153	k7nops + 1 + 2,
154	k7nops + 1 + 2 + 3,
155	k7nops + 1 + 2 + 3 + 4,
156	k7nops + 1 + 2 + 3 + 4 + 5,
157	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
158	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
159	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
160};
161#endif
162
163#ifdef P6_NOP1
164static const unsigned char p6nops[] =
165{
166	P6_NOP1,
167	P6_NOP2,
168	P6_NOP3,
169	P6_NOP4,
170	P6_NOP5,
171	P6_NOP6,
172	P6_NOP7,
173	P6_NOP8,
174	P6_NOP5_ATOMIC
175};
176static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
177{
178	NULL,
179	p6nops,
180	p6nops + 1,
181	p6nops + 1 + 2,
182	p6nops + 1 + 2 + 3,
183	p6nops + 1 + 2 + 3 + 4,
184	p6nops + 1 + 2 + 3 + 4 + 5,
185	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
186	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
187	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
188};
189#endif
190
191/* Initialize these to a safe default */
192#ifdef CONFIG_X86_64
193const unsigned char * const *ideal_nops = p6_nops;
194#else
195const unsigned char * const *ideal_nops = intel_nops;
196#endif
197
198void __init arch_init_ideal_nops(void)
199{
200	switch (boot_cpu_data.x86_vendor) {
201	case X86_VENDOR_INTEL:
202		/*
203		 * Due to a decoder implementation quirk, some
204		 * specific Intel CPUs actually perform better with
205		 * the "k8_nops" than with the SDM-recommended NOPs.
206		 */
207		if (boot_cpu_data.x86 == 6 &&
208		    boot_cpu_data.x86_model >= 0x0f &&
209		    boot_cpu_data.x86_model != 0x1c &&
210		    boot_cpu_data.x86_model != 0x26 &&
211		    boot_cpu_data.x86_model != 0x27 &&
212		    boot_cpu_data.x86_model < 0x30) {
213			ideal_nops = k8_nops;
214		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
215			   ideal_nops = p6_nops;
216		} else {
217#ifdef CONFIG_X86_64
218			ideal_nops = k8_nops;
219#else
220			ideal_nops = intel_nops;
221#endif
222		}
223		break;
224
 
 
 
 
225	case X86_VENDOR_AMD:
226		if (boot_cpu_data.x86 > 0xf) {
227			ideal_nops = p6_nops;
228			return;
229		}
230
231		/* fall through */
232
233	default:
234#ifdef CONFIG_X86_64
235		ideal_nops = k8_nops;
236#else
237		if (boot_cpu_has(X86_FEATURE_K8))
238			ideal_nops = k8_nops;
239		else if (boot_cpu_has(X86_FEATURE_K7))
240			ideal_nops = k7_nops;
241		else
242			ideal_nops = intel_nops;
243#endif
244	}
245}
246
247/* Use this to add nops to a buffer, then text_poke the whole buffer. */
248static void __init_or_module add_nops(void *insns, unsigned int len)
249{
250	while (len > 0) {
251		unsigned int noplen = len;
252		if (noplen > ASM_NOP_MAX)
253			noplen = ASM_NOP_MAX;
254		memcpy(insns, ideal_nops[noplen], noplen);
255		insns += noplen;
256		len -= noplen;
257	}
258}
259
260extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
261extern s32 __smp_locks[], __smp_locks_end[];
262void *text_poke_early(void *addr, const void *opcode, size_t len);
263
264/*
265 * Are we looking at a near JMP with a 1 or 4-byte displacement.
266 */
267static inline bool is_jmp(const u8 opcode)
268{
269	return opcode == 0xeb || opcode == 0xe9;
270}
271
272static void __init_or_module
273recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf)
274{
275	u8 *next_rip, *tgt_rip;
276	s32 n_dspl, o_dspl;
277	int repl_len;
278
279	if (a->replacementlen != 5)
280		return;
281
282	o_dspl = *(s32 *)(insnbuf + 1);
283
284	/* next_rip of the replacement JMP */
285	next_rip = repl_insn + a->replacementlen;
286	/* target rip of the replacement JMP */
287	tgt_rip  = next_rip + o_dspl;
288	n_dspl = tgt_rip - orig_insn;
289
290	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
291
292	if (tgt_rip - orig_insn >= 0) {
293		if (n_dspl - 2 <= 127)
294			goto two_byte_jmp;
295		else
296			goto five_byte_jmp;
297	/* negative offset */
298	} else {
299		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
300			goto two_byte_jmp;
301		else
302			goto five_byte_jmp;
303	}
304
305two_byte_jmp:
306	n_dspl -= 2;
307
308	insnbuf[0] = 0xeb;
309	insnbuf[1] = (s8)n_dspl;
310	add_nops(insnbuf + 2, 3);
311
312	repl_len = 2;
313	goto done;
314
315five_byte_jmp:
316	n_dspl -= 5;
317
318	insnbuf[0] = 0xe9;
319	*(s32 *)&insnbuf[1] = n_dspl;
320
321	repl_len = 5;
322
323done:
324
325	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
326		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
327}
328
329/*
330 * "noinline" to cause control flow change and thus invalidate I$ and
331 * cause refetch after modification.
332 */
333static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
334{
335	unsigned long flags;
336	int i;
337
338	for (i = 0; i < a->padlen; i++) {
339		if (instr[i] != 0x90)
340			return;
341	}
342
343	local_irq_save(flags);
344	add_nops(instr + (a->instrlen - a->padlen), a->padlen);
345	local_irq_restore(flags);
346
347	DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
348		   instr, a->instrlen - a->padlen, a->padlen);
349}
350
351/*
352 * Replace instructions with better alternatives for this CPU type. This runs
353 * before SMP is initialized to avoid SMP problems with self modifying code.
354 * This implies that asymmetric systems where APs have less capabilities than
355 * the boot processor are not handled. Tough. Make sure you disable such
356 * features by hand.
357 *
358 * Marked "noinline" to cause control flow change and thus insn cache
359 * to refetch changed I$ lines.
360 */
361void __init_or_module noinline apply_alternatives(struct alt_instr *start,
362						  struct alt_instr *end)
363{
364	struct alt_instr *a;
365	u8 *instr, *replacement;
366	u8 insnbuf[MAX_PATCH_LEN];
367
368	DPRINTK("alt table %px, -> %px", start, end);
369	/*
370	 * The scan order should be from start to end. A later scanned
371	 * alternative code can overwrite previously scanned alternative code.
372	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
373	 * patch code.
374	 *
375	 * So be careful if you want to change the scan order to any other
376	 * order.
377	 */
378	for (a = start; a < end; a++) {
379		int insnbuf_sz = 0;
380
381		instr = (u8 *)&a->instr_offset + a->instr_offset;
382		replacement = (u8 *)&a->repl_offset + a->repl_offset;
383		BUG_ON(a->instrlen > sizeof(insnbuf));
384		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
385		if (!boot_cpu_has(a->cpuid)) {
386			if (a->padlen > 1)
387				optimize_nops(a, instr);
388
389			continue;
390		}
391
392		DPRINTK("feat: %d*32+%d, old: (%px len: %d), repl: (%px, len: %d), pad: %d",
393			a->cpuid >> 5,
394			a->cpuid & 0x1f,
395			instr, a->instrlen,
396			replacement, a->replacementlen, a->padlen);
397
398		DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
399		DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
400
401		memcpy(insnbuf, replacement, a->replacementlen);
402		insnbuf_sz = a->replacementlen;
403
404		/*
405		 * 0xe8 is a relative jump; fix the offset.
406		 *
407		 * Instruction length is checked before the opcode to avoid
408		 * accessing uninitialized bytes for zero-length replacements.
409		 */
410		if (a->replacementlen == 5 && *insnbuf == 0xe8) {
411			*(s32 *)(insnbuf + 1) += replacement - instr;
412			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
413				*(s32 *)(insnbuf + 1),
414				(unsigned long)instr + *(s32 *)(insnbuf + 1) + 5);
415		}
416
417		if (a->replacementlen && is_jmp(replacement[0]))
418			recompute_jump(a, instr, replacement, insnbuf);
419
420		if (a->instrlen > a->replacementlen) {
421			add_nops(insnbuf + a->replacementlen,
422				 a->instrlen - a->replacementlen);
423			insnbuf_sz += a->instrlen - a->replacementlen;
424		}
425		DUMP_BYTES(insnbuf, insnbuf_sz, "%px: final_insn: ", instr);
426
427		text_poke_early(instr, insnbuf, insnbuf_sz);
428	}
429}
430
431#ifdef CONFIG_SMP
432static void alternatives_smp_lock(const s32 *start, const s32 *end,
433				  u8 *text, u8 *text_end)
434{
435	const s32 *poff;
436
437	for (poff = start; poff < end; poff++) {
438		u8 *ptr = (u8 *)poff + *poff;
439
440		if (!*poff || ptr < text || ptr >= text_end)
441			continue;
442		/* turn DS segment override prefix into lock prefix */
443		if (*ptr == 0x3e)
444			text_poke(ptr, ((unsigned char []){0xf0}), 1);
445	}
446}
447
448static void alternatives_smp_unlock(const s32 *start, const s32 *end,
449				    u8 *text, u8 *text_end)
450{
451	const s32 *poff;
452
453	for (poff = start; poff < end; poff++) {
454		u8 *ptr = (u8 *)poff + *poff;
455
456		if (!*poff || ptr < text || ptr >= text_end)
457			continue;
458		/* turn lock prefix into DS segment override prefix */
459		if (*ptr == 0xf0)
460			text_poke(ptr, ((unsigned char []){0x3E}), 1);
461	}
462}
463
464struct smp_alt_module {
465	/* what is this ??? */
466	struct module	*mod;
467	char		*name;
468
469	/* ptrs to lock prefixes */
470	const s32	*locks;
471	const s32	*locks_end;
472
473	/* .text segment, needed to avoid patching init code ;) */
474	u8		*text;
475	u8		*text_end;
476
477	struct list_head next;
478};
479static LIST_HEAD(smp_alt_modules);
480static bool uniproc_patched = false;	/* protected by text_mutex */
481
482void __init_or_module alternatives_smp_module_add(struct module *mod,
483						  char *name,
484						  void *locks, void *locks_end,
485						  void *text,  void *text_end)
486{
487	struct smp_alt_module *smp;
488
489	mutex_lock(&text_mutex);
490	if (!uniproc_patched)
491		goto unlock;
492
493	if (num_possible_cpus() == 1)
494		/* Don't bother remembering, we'll never have to undo it. */
495		goto smp_unlock;
496
497	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
498	if (NULL == smp)
499		/* we'll run the (safe but slow) SMP code then ... */
500		goto unlock;
501
502	smp->mod	= mod;
503	smp->name	= name;
504	smp->locks	= locks;
505	smp->locks_end	= locks_end;
506	smp->text	= text;
507	smp->text_end	= text_end;
508	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
509		smp->locks, smp->locks_end,
510		smp->text, smp->text_end, smp->name);
511
512	list_add_tail(&smp->next, &smp_alt_modules);
513smp_unlock:
514	alternatives_smp_unlock(locks, locks_end, text, text_end);
515unlock:
516	mutex_unlock(&text_mutex);
517}
518
519void __init_or_module alternatives_smp_module_del(struct module *mod)
520{
521	struct smp_alt_module *item;
522
523	mutex_lock(&text_mutex);
524	list_for_each_entry(item, &smp_alt_modules, next) {
525		if (mod != item->mod)
526			continue;
527		list_del(&item->next);
528		kfree(item);
529		break;
530	}
531	mutex_unlock(&text_mutex);
532}
533
534void alternatives_enable_smp(void)
535{
536	struct smp_alt_module *mod;
537
538	/* Why bother if there are no other CPUs? */
539	BUG_ON(num_possible_cpus() == 1);
540
541	mutex_lock(&text_mutex);
542
543	if (uniproc_patched) {
544		pr_info("switching to SMP code\n");
545		BUG_ON(num_online_cpus() != 1);
546		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
547		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
548		list_for_each_entry(mod, &smp_alt_modules, next)
549			alternatives_smp_lock(mod->locks, mod->locks_end,
550					      mod->text, mod->text_end);
551		uniproc_patched = false;
552	}
553	mutex_unlock(&text_mutex);
554}
555
556/*
557 * Return 1 if the address range is reserved for SMP-alternatives.
558 * Must hold text_mutex.
559 */
560int alternatives_text_reserved(void *start, void *end)
561{
562	struct smp_alt_module *mod;
563	const s32 *poff;
564	u8 *text_start = start;
565	u8 *text_end = end;
566
567	lockdep_assert_held(&text_mutex);
568
569	list_for_each_entry(mod, &smp_alt_modules, next) {
570		if (mod->text > text_end || mod->text_end < text_start)
571			continue;
572		for (poff = mod->locks; poff < mod->locks_end; poff++) {
573			const u8 *ptr = (const u8 *)poff + *poff;
574
575			if (text_start <= ptr && text_end > ptr)
576				return 1;
577		}
578	}
579
580	return 0;
581}
582#endif /* CONFIG_SMP */
583
584#ifdef CONFIG_PARAVIRT
585void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
586				     struct paravirt_patch_site *end)
587{
588	struct paravirt_patch_site *p;
589	char insnbuf[MAX_PATCH_LEN];
590
591	for (p = start; p < end; p++) {
592		unsigned int used;
593
594		BUG_ON(p->len > MAX_PATCH_LEN);
595		/* prep the buffer with the original instructions */
596		memcpy(insnbuf, p->instr, p->len);
597		used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf,
598					 (unsigned long)p->instr, p->len);
599
600		BUG_ON(used > p->len);
601
602		/* Pad the rest with nops */
603		add_nops(insnbuf + used, p->len - used);
604		text_poke_early(p->instr, insnbuf, p->len);
605	}
606}
607extern struct paravirt_patch_site __start_parainstructions[],
608	__stop_parainstructions[];
609#endif	/* CONFIG_PARAVIRT */
610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611void __init alternative_instructions(void)
612{
613	/* The patching is not fully atomic, so try to avoid local interruptions
614	   that might execute the to be patched code.
615	   Other CPUs are not running. */
 
 
 
 
616	stop_nmi();
617
618	/*
619	 * Don't stop machine check exceptions while patching.
620	 * MCEs only happen when something got corrupted and in this
621	 * case we must do something about the corruption.
622	 * Ignoring it is worse than a unlikely patching race.
623	 * Also machine checks tend to be broadcast and if one CPU
624	 * goes into machine check the others follow quickly, so we don't
625	 * expect a machine check to cause undue problems during to code
626	 * patching.
627	 */
628
629	apply_alternatives(__alt_instructions, __alt_instructions_end);
630
631#ifdef CONFIG_SMP
632	/* Patch to UP if other cpus not imminent. */
633	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
634		uniproc_patched = true;
635		alternatives_smp_module_add(NULL, "core kernel",
636					    __smp_locks, __smp_locks_end,
637					    _text, _etext);
638	}
639
640	if (!uniproc_patched || num_possible_cpus() == 1)
641		free_init_pages("SMP alternatives",
642				(unsigned long)__smp_locks,
643				(unsigned long)__smp_locks_end);
 
644#endif
645
646	apply_paravirt(__parainstructions, __parainstructions_end);
647
648	restart_nmi();
649	alternatives_patched = 1;
650}
651
652/**
653 * text_poke_early - Update instructions on a live kernel at boot time
654 * @addr: address to modify
655 * @opcode: source of the copy
656 * @len: length to copy
657 *
658 * When you use this code to patch more than one byte of an instruction
659 * you need to make sure that other CPUs cannot execute this code in parallel.
660 * Also no thread must be currently preempted in the middle of these
661 * instructions. And on the local CPU you need to be protected again NMI or MCE
662 * handlers seeing an inconsistent instruction while you patch.
663 */
664void *__init_or_module text_poke_early(void *addr, const void *opcode,
665					      size_t len)
666{
667	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
668	local_irq_save(flags);
669	memcpy(addr, opcode, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670	local_irq_restore(flags);
671	/* Could also do a CLFLUSH here to speed up CPU recovery; but
672	   that causes hangs on some VIA CPUs. */
673	return addr;
674}
675
676/**
677 * text_poke - Update instructions on a live kernel
678 * @addr: address to modify
679 * @opcode: source of the copy
680 * @len: length to copy
681 *
682 * Only atomic text poke/set should be allowed when not doing early patching.
683 * It means the size must be writable atomically and the address must be aligned
684 * in a way that permits an atomic write. It also makes sure we fit on a single
685 * page.
686 *
687 * Note: Must be called under text_mutex.
 
 
 
688 */
689void *text_poke(void *addr, const void *opcode, size_t len)
690{
691	unsigned long flags;
692	char *vaddr;
693	struct page *pages[2];
694	int i;
695
696	if (!core_kernel_text((unsigned long)addr)) {
697		pages[0] = vmalloc_to_page(addr);
698		pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
699	} else {
700		pages[0] = virt_to_page(addr);
701		WARN_ON(!PageReserved(pages[0]));
702		pages[1] = virt_to_page(addr + PAGE_SIZE);
703	}
704	BUG_ON(!pages[0]);
705	local_irq_save(flags);
706	set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
707	if (pages[1])
708		set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
709	vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
710	memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
711	clear_fixmap(FIX_TEXT_POKE0);
712	if (pages[1])
713		clear_fixmap(FIX_TEXT_POKE1);
714	local_flush_tlb();
715	sync_core();
716	/* Could also do a CLFLUSH here to speed up CPU recovery; but
717	   that causes hangs on some VIA CPUs. */
718	for (i = 0; i < len; i++)
719		BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
720	local_irq_restore(flags);
721	return addr;
722}
723
724static void do_sync_core(void *info)
725{
726	sync_core();
727}
728
729static bool bp_patching_in_progress;
730static void *bp_int3_handler, *bp_int3_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731
732int poke_int3_handler(struct pt_regs *regs)
733{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
734	/*
735	 * Having observed our INT3 instruction, we now must observe
736	 * bp_patching_in_progress.
737	 *
738	 * 	in_progress = TRUE		INT3
739	 * 	WMB				RMB
740	 * 	write INT3			if (in_progress)
741	 *
742	 * Idem for bp_int3_handler.
743	 */
744	smp_rmb();
745
746	if (likely(!bp_patching_in_progress))
 
747		return 0;
748
749	if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr)
750		return 0;
 
 
751
752	/* set up the specified breakpoint handler */
753	regs->ip = (unsigned long) bp_int3_handler;
 
 
 
 
 
 
 
 
 
 
 
 
754
755	return 1;
 
756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
757}
758
 
 
 
 
759/**
760 * text_poke_bp() -- update instructions on live kernel on SMP
761 * @addr:	address to patch
762 * @opcode:	opcode of new instruction
763 * @len:	length to copy
764 * @handler:	address to jump to when the temporary breakpoint is hit
765 *
766 * Modify multi-byte instruction by using int3 breakpoint on SMP.
767 * We completely avoid stop_machine() here, and achieve the
768 * synchronization using int3 breakpoint.
769 *
770 * The way it is done:
771 *	- add a int3 trap to the address that will be patched
 
772 *	- sync cores
773 *	- update all but the first byte of the patched range
 
774 *	- sync cores
775 *	- replace the first byte (int3) by the first byte of
776 *	  replacing opcode
 
777 *	- sync cores
778 *
779 * Note: must be called under text_mutex.
780 */
781void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
782{
783	unsigned char int3 = 0xcc;
 
 
 
 
 
 
 
 
 
 
 
784
785	bp_int3_handler = handler;
786	bp_int3_addr = (u8 *)addr + sizeof(int3);
787	bp_patching_in_progress = true;
788	/*
789	 * Corresponding read barrier in int3 notifier for making sure the
790	 * in_progress and handler are correctly ordered wrt. patching.
791	 */
792	smp_wmb();
793
794	text_poke(addr, &int3, sizeof(int3));
 
 
 
 
 
 
795
796	on_each_cpu(do_sync_core, NULL, 1);
797
798	if (len - sizeof(int3) > 0) {
799		/* patch all but the first byte */
800		text_poke((char *)addr + sizeof(int3),
801			  (const char *) opcode + sizeof(int3),
802			  len - sizeof(int3));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
803		/*
804		 * According to Intel, this core syncing is very likely
805		 * not necessary and we'd be safe even without it. But
806		 * better safe than sorry (plus there's not only Intel).
807		 */
808		on_each_cpu(do_sync_core, NULL, 1);
809	}
810
811	/* patch the first byte */
812	text_poke(addr, opcode, sizeof(int3));
 
 
 
 
 
 
 
 
 
 
 
 
813
814	on_each_cpu(do_sync_core, NULL, 1);
815	/*
816	 * sync_core() implies an smp_mb() and orders this store against
817	 * the writing of the new instruction.
818	 */
819	bp_patching_in_progress = false;
 
 
 
820
821	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
822}
823
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) "SMP alternatives: " fmt
   3
   4#include <linux/module.h>
   5#include <linux/sched.h>
   6#include <linux/perf_event.h>
   7#include <linux/mutex.h>
   8#include <linux/list.h>
   9#include <linux/stringify.h>
  10#include <linux/highmem.h>
  11#include <linux/mm.h>
  12#include <linux/vmalloc.h>
  13#include <linux/memory.h>
  14#include <linux/stop_machine.h>
  15#include <linux/slab.h>
  16#include <linux/kdebug.h>
  17#include <linux/kprobes.h>
  18#include <linux/mmu_context.h>
  19#include <linux/bsearch.h>
  20#include <linux/sync_core.h>
  21#include <asm/text-patching.h>
  22#include <asm/alternative.h>
  23#include <asm/sections.h>
 
  24#include <asm/mce.h>
  25#include <asm/nmi.h>
  26#include <asm/cacheflush.h>
  27#include <asm/tlbflush.h>
  28#include <asm/insn.h>
  29#include <asm/io.h>
  30#include <asm/fixmap.h>
  31
  32int __read_mostly alternatives_patched;
  33
  34EXPORT_SYMBOL_GPL(alternatives_patched);
  35
  36#define MAX_PATCH_LEN (255-1)
  37
  38static int __initdata_or_module debug_alternative;
  39
  40static int __init debug_alt(char *str)
  41{
  42	debug_alternative = 1;
  43	return 1;
  44}
  45__setup("debug-alternative", debug_alt);
  46
  47static int noreplace_smp;
  48
  49static int __init setup_noreplace_smp(char *str)
  50{
  51	noreplace_smp = 1;
  52	return 1;
  53}
  54__setup("noreplace-smp", setup_noreplace_smp);
  55
  56#define DPRINTK(fmt, args...)						\
  57do {									\
  58	if (debug_alternative)						\
  59		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
  60} while (0)
  61
  62#define DUMP_BYTES(buf, len, fmt, args...)				\
  63do {									\
  64	if (unlikely(debug_alternative)) {				\
  65		int j;							\
  66									\
  67		if (!(len))						\
  68			break;						\
  69									\
  70		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
  71		for (j = 0; j < (len) - 1; j++)				\
  72			printk(KERN_CONT "%02hhx ", buf[j]);		\
  73		printk(KERN_CONT "%02hhx\n", buf[j]);			\
  74	}								\
  75} while (0)
  76
  77/*
  78 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
  79 * that correspond to that nop. Getting from one nop to the next, we
  80 * add to the array the offset that is equal to the sum of all sizes of
  81 * nops preceding the one we are after.
  82 *
  83 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
  84 * nice symmetry of sizes of the previous nops.
  85 */
  86#if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
  87static const unsigned char intelnops[] =
  88{
  89	GENERIC_NOP1,
  90	GENERIC_NOP2,
  91	GENERIC_NOP3,
  92	GENERIC_NOP4,
  93	GENERIC_NOP5,
  94	GENERIC_NOP6,
  95	GENERIC_NOP7,
  96	GENERIC_NOP8,
  97	GENERIC_NOP5_ATOMIC
  98};
  99static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
 100{
 101	NULL,
 102	intelnops,
 103	intelnops + 1,
 104	intelnops + 1 + 2,
 105	intelnops + 1 + 2 + 3,
 106	intelnops + 1 + 2 + 3 + 4,
 107	intelnops + 1 + 2 + 3 + 4 + 5,
 108	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
 109	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 110	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 111};
 112#endif
 113
 114#ifdef K8_NOP1
 115static const unsigned char k8nops[] =
 116{
 117	K8_NOP1,
 118	K8_NOP2,
 119	K8_NOP3,
 120	K8_NOP4,
 121	K8_NOP5,
 122	K8_NOP6,
 123	K8_NOP7,
 124	K8_NOP8,
 125	K8_NOP5_ATOMIC
 126};
 127static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
 128{
 129	NULL,
 130	k8nops,
 131	k8nops + 1,
 132	k8nops + 1 + 2,
 133	k8nops + 1 + 2 + 3,
 134	k8nops + 1 + 2 + 3 + 4,
 135	k8nops + 1 + 2 + 3 + 4 + 5,
 136	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
 137	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 138	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 139};
 140#endif
 141
 142#if defined(K7_NOP1) && !defined(CONFIG_X86_64)
 143static const unsigned char k7nops[] =
 144{
 145	K7_NOP1,
 146	K7_NOP2,
 147	K7_NOP3,
 148	K7_NOP4,
 149	K7_NOP5,
 150	K7_NOP6,
 151	K7_NOP7,
 152	K7_NOP8,
 153	K7_NOP5_ATOMIC
 154};
 155static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
 156{
 157	NULL,
 158	k7nops,
 159	k7nops + 1,
 160	k7nops + 1 + 2,
 161	k7nops + 1 + 2 + 3,
 162	k7nops + 1 + 2 + 3 + 4,
 163	k7nops + 1 + 2 + 3 + 4 + 5,
 164	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
 165	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 166	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 167};
 168#endif
 169
 170#ifdef P6_NOP1
 171static const unsigned char p6nops[] =
 172{
 173	P6_NOP1,
 174	P6_NOP2,
 175	P6_NOP3,
 176	P6_NOP4,
 177	P6_NOP5,
 178	P6_NOP6,
 179	P6_NOP7,
 180	P6_NOP8,
 181	P6_NOP5_ATOMIC
 182};
 183static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
 184{
 185	NULL,
 186	p6nops,
 187	p6nops + 1,
 188	p6nops + 1 + 2,
 189	p6nops + 1 + 2 + 3,
 190	p6nops + 1 + 2 + 3 + 4,
 191	p6nops + 1 + 2 + 3 + 4 + 5,
 192	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
 193	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 194	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 195};
 196#endif
 197
 198/* Initialize these to a safe default */
 199#ifdef CONFIG_X86_64
 200const unsigned char * const *ideal_nops = p6_nops;
 201#else
 202const unsigned char * const *ideal_nops = intel_nops;
 203#endif
 204
 205void __init arch_init_ideal_nops(void)
 206{
 207	switch (boot_cpu_data.x86_vendor) {
 208	case X86_VENDOR_INTEL:
 209		/*
 210		 * Due to a decoder implementation quirk, some
 211		 * specific Intel CPUs actually perform better with
 212		 * the "k8_nops" than with the SDM-recommended NOPs.
 213		 */
 214		if (boot_cpu_data.x86 == 6 &&
 215		    boot_cpu_data.x86_model >= 0x0f &&
 216		    boot_cpu_data.x86_model != 0x1c &&
 217		    boot_cpu_data.x86_model != 0x26 &&
 218		    boot_cpu_data.x86_model != 0x27 &&
 219		    boot_cpu_data.x86_model < 0x30) {
 220			ideal_nops = k8_nops;
 221		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
 222			   ideal_nops = p6_nops;
 223		} else {
 224#ifdef CONFIG_X86_64
 225			ideal_nops = k8_nops;
 226#else
 227			ideal_nops = intel_nops;
 228#endif
 229		}
 230		break;
 231
 232	case X86_VENDOR_HYGON:
 233		ideal_nops = p6_nops;
 234		return;
 235
 236	case X86_VENDOR_AMD:
 237		if (boot_cpu_data.x86 > 0xf) {
 238			ideal_nops = p6_nops;
 239			return;
 240		}
 241
 242		fallthrough;
 243
 244	default:
 245#ifdef CONFIG_X86_64
 246		ideal_nops = k8_nops;
 247#else
 248		if (boot_cpu_has(X86_FEATURE_K8))
 249			ideal_nops = k8_nops;
 250		else if (boot_cpu_has(X86_FEATURE_K7))
 251			ideal_nops = k7_nops;
 252		else
 253			ideal_nops = intel_nops;
 254#endif
 255	}
 256}
 257
 258/* Use this to add nops to a buffer, then text_poke the whole buffer. */
 259static void __init_or_module add_nops(void *insns, unsigned int len)
 260{
 261	while (len > 0) {
 262		unsigned int noplen = len;
 263		if (noplen > ASM_NOP_MAX)
 264			noplen = ASM_NOP_MAX;
 265		memcpy(insns, ideal_nops[noplen], noplen);
 266		insns += noplen;
 267		len -= noplen;
 268	}
 269}
 270
 271extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
 272extern s32 __smp_locks[], __smp_locks_end[];
 273void text_poke_early(void *addr, const void *opcode, size_t len);
 274
 275/*
 276 * Are we looking at a near JMP with a 1 or 4-byte displacement.
 277 */
 278static inline bool is_jmp(const u8 opcode)
 279{
 280	return opcode == 0xeb || opcode == 0xe9;
 281}
 282
 283static void __init_or_module
 284recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
 285{
 286	u8 *next_rip, *tgt_rip;
 287	s32 n_dspl, o_dspl;
 288	int repl_len;
 289
 290	if (a->replacementlen != 5)
 291		return;
 292
 293	o_dspl = *(s32 *)(insn_buff + 1);
 294
 295	/* next_rip of the replacement JMP */
 296	next_rip = repl_insn + a->replacementlen;
 297	/* target rip of the replacement JMP */
 298	tgt_rip  = next_rip + o_dspl;
 299	n_dspl = tgt_rip - orig_insn;
 300
 301	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
 302
 303	if (tgt_rip - orig_insn >= 0) {
 304		if (n_dspl - 2 <= 127)
 305			goto two_byte_jmp;
 306		else
 307			goto five_byte_jmp;
 308	/* negative offset */
 309	} else {
 310		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
 311			goto two_byte_jmp;
 312		else
 313			goto five_byte_jmp;
 314	}
 315
 316two_byte_jmp:
 317	n_dspl -= 2;
 318
 319	insn_buff[0] = 0xeb;
 320	insn_buff[1] = (s8)n_dspl;
 321	add_nops(insn_buff + 2, 3);
 322
 323	repl_len = 2;
 324	goto done;
 325
 326five_byte_jmp:
 327	n_dspl -= 5;
 328
 329	insn_buff[0] = 0xe9;
 330	*(s32 *)&insn_buff[1] = n_dspl;
 331
 332	repl_len = 5;
 333
 334done:
 335
 336	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
 337		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
 338}
 339
 340/*
 341 * "noinline" to cause control flow change and thus invalidate I$ and
 342 * cause refetch after modification.
 343 */
 344static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
 345{
 346	unsigned long flags;
 347	int i;
 348
 349	for (i = 0; i < a->padlen; i++) {
 350		if (instr[i] != 0x90)
 351			return;
 352	}
 353
 354	local_irq_save(flags);
 355	add_nops(instr + (a->instrlen - a->padlen), a->padlen);
 356	local_irq_restore(flags);
 357
 358	DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
 359		   instr, a->instrlen - a->padlen, a->padlen);
 360}
 361
 362/*
 363 * Replace instructions with better alternatives for this CPU type. This runs
 364 * before SMP is initialized to avoid SMP problems with self modifying code.
 365 * This implies that asymmetric systems where APs have less capabilities than
 366 * the boot processor are not handled. Tough. Make sure you disable such
 367 * features by hand.
 368 *
 369 * Marked "noinline" to cause control flow change and thus insn cache
 370 * to refetch changed I$ lines.
 371 */
 372void __init_or_module noinline apply_alternatives(struct alt_instr *start,
 373						  struct alt_instr *end)
 374{
 375	struct alt_instr *a;
 376	u8 *instr, *replacement;
 377	u8 insn_buff[MAX_PATCH_LEN];
 378
 379	DPRINTK("alt table %px, -> %px", start, end);
 380	/*
 381	 * The scan order should be from start to end. A later scanned
 382	 * alternative code can overwrite previously scanned alternative code.
 383	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
 384	 * patch code.
 385	 *
 386	 * So be careful if you want to change the scan order to any other
 387	 * order.
 388	 */
 389	for (a = start; a < end; a++) {
 390		int insn_buff_sz = 0;
 391
 392		instr = (u8 *)&a->instr_offset + a->instr_offset;
 393		replacement = (u8 *)&a->repl_offset + a->repl_offset;
 394		BUG_ON(a->instrlen > sizeof(insn_buff));
 395		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
 396		if (!boot_cpu_has(a->cpuid)) {
 397			if (a->padlen > 1)
 398				optimize_nops(a, instr);
 399
 400			continue;
 401		}
 402
 403		DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
 404			a->cpuid >> 5,
 405			a->cpuid & 0x1f,
 406			instr, instr, a->instrlen,
 407			replacement, a->replacementlen, a->padlen);
 408
 409		DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
 410		DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
 411
 412		memcpy(insn_buff, replacement, a->replacementlen);
 413		insn_buff_sz = a->replacementlen;
 414
 415		/*
 416		 * 0xe8 is a relative jump; fix the offset.
 417		 *
 418		 * Instruction length is checked before the opcode to avoid
 419		 * accessing uninitialized bytes for zero-length replacements.
 420		 */
 421		if (a->replacementlen == 5 && *insn_buff == 0xe8) {
 422			*(s32 *)(insn_buff + 1) += replacement - instr;
 423			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
 424				*(s32 *)(insn_buff + 1),
 425				(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
 426		}
 427
 428		if (a->replacementlen && is_jmp(replacement[0]))
 429			recompute_jump(a, instr, replacement, insn_buff);
 430
 431		if (a->instrlen > a->replacementlen) {
 432			add_nops(insn_buff + a->replacementlen,
 433				 a->instrlen - a->replacementlen);
 434			insn_buff_sz += a->instrlen - a->replacementlen;
 435		}
 436		DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
 437
 438		text_poke_early(instr, insn_buff, insn_buff_sz);
 439	}
 440}
 441
 442#ifdef CONFIG_SMP
 443static void alternatives_smp_lock(const s32 *start, const s32 *end,
 444				  u8 *text, u8 *text_end)
 445{
 446	const s32 *poff;
 447
 448	for (poff = start; poff < end; poff++) {
 449		u8 *ptr = (u8 *)poff + *poff;
 450
 451		if (!*poff || ptr < text || ptr >= text_end)
 452			continue;
 453		/* turn DS segment override prefix into lock prefix */
 454		if (*ptr == 0x3e)
 455			text_poke(ptr, ((unsigned char []){0xf0}), 1);
 456	}
 457}
 458
 459static void alternatives_smp_unlock(const s32 *start, const s32 *end,
 460				    u8 *text, u8 *text_end)
 461{
 462	const s32 *poff;
 463
 464	for (poff = start; poff < end; poff++) {
 465		u8 *ptr = (u8 *)poff + *poff;
 466
 467		if (!*poff || ptr < text || ptr >= text_end)
 468			continue;
 469		/* turn lock prefix into DS segment override prefix */
 470		if (*ptr == 0xf0)
 471			text_poke(ptr, ((unsigned char []){0x3E}), 1);
 472	}
 473}
 474
 475struct smp_alt_module {
 476	/* what is this ??? */
 477	struct module	*mod;
 478	char		*name;
 479
 480	/* ptrs to lock prefixes */
 481	const s32	*locks;
 482	const s32	*locks_end;
 483
 484	/* .text segment, needed to avoid patching init code ;) */
 485	u8		*text;
 486	u8		*text_end;
 487
 488	struct list_head next;
 489};
 490static LIST_HEAD(smp_alt_modules);
 491static bool uniproc_patched = false;	/* protected by text_mutex */
 492
 493void __init_or_module alternatives_smp_module_add(struct module *mod,
 494						  char *name,
 495						  void *locks, void *locks_end,
 496						  void *text,  void *text_end)
 497{
 498	struct smp_alt_module *smp;
 499
 500	mutex_lock(&text_mutex);
 501	if (!uniproc_patched)
 502		goto unlock;
 503
 504	if (num_possible_cpus() == 1)
 505		/* Don't bother remembering, we'll never have to undo it. */
 506		goto smp_unlock;
 507
 508	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
 509	if (NULL == smp)
 510		/* we'll run the (safe but slow) SMP code then ... */
 511		goto unlock;
 512
 513	smp->mod	= mod;
 514	smp->name	= name;
 515	smp->locks	= locks;
 516	smp->locks_end	= locks_end;
 517	smp->text	= text;
 518	smp->text_end	= text_end;
 519	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
 520		smp->locks, smp->locks_end,
 521		smp->text, smp->text_end, smp->name);
 522
 523	list_add_tail(&smp->next, &smp_alt_modules);
 524smp_unlock:
 525	alternatives_smp_unlock(locks, locks_end, text, text_end);
 526unlock:
 527	mutex_unlock(&text_mutex);
 528}
 529
 530void __init_or_module alternatives_smp_module_del(struct module *mod)
 531{
 532	struct smp_alt_module *item;
 533
 534	mutex_lock(&text_mutex);
 535	list_for_each_entry(item, &smp_alt_modules, next) {
 536		if (mod != item->mod)
 537			continue;
 538		list_del(&item->next);
 539		kfree(item);
 540		break;
 541	}
 542	mutex_unlock(&text_mutex);
 543}
 544
 545void alternatives_enable_smp(void)
 546{
 547	struct smp_alt_module *mod;
 548
 549	/* Why bother if there are no other CPUs? */
 550	BUG_ON(num_possible_cpus() == 1);
 551
 552	mutex_lock(&text_mutex);
 553
 554	if (uniproc_patched) {
 555		pr_info("switching to SMP code\n");
 556		BUG_ON(num_online_cpus() != 1);
 557		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
 558		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
 559		list_for_each_entry(mod, &smp_alt_modules, next)
 560			alternatives_smp_lock(mod->locks, mod->locks_end,
 561					      mod->text, mod->text_end);
 562		uniproc_patched = false;
 563	}
 564	mutex_unlock(&text_mutex);
 565}
 566
 567/*
 568 * Return 1 if the address range is reserved for SMP-alternatives.
 569 * Must hold text_mutex.
 570 */
 571int alternatives_text_reserved(void *start, void *end)
 572{
 573	struct smp_alt_module *mod;
 574	const s32 *poff;
 575	u8 *text_start = start;
 576	u8 *text_end = end;
 577
 578	lockdep_assert_held(&text_mutex);
 579
 580	list_for_each_entry(mod, &smp_alt_modules, next) {
 581		if (mod->text > text_end || mod->text_end < text_start)
 582			continue;
 583		for (poff = mod->locks; poff < mod->locks_end; poff++) {
 584			const u8 *ptr = (const u8 *)poff + *poff;
 585
 586			if (text_start <= ptr && text_end > ptr)
 587				return 1;
 588		}
 589	}
 590
 591	return 0;
 592}
 593#endif /* CONFIG_SMP */
 594
 595#ifdef CONFIG_PARAVIRT
 596void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
 597				     struct paravirt_patch_site *end)
 598{
 599	struct paravirt_patch_site *p;
 600	char insn_buff[MAX_PATCH_LEN];
 601
 602	for (p = start; p < end; p++) {
 603		unsigned int used;
 604
 605		BUG_ON(p->len > MAX_PATCH_LEN);
 606		/* prep the buffer with the original instructions */
 607		memcpy(insn_buff, p->instr, p->len);
 608		used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
 
 609
 610		BUG_ON(used > p->len);
 611
 612		/* Pad the rest with nops */
 613		add_nops(insn_buff + used, p->len - used);
 614		text_poke_early(p->instr, insn_buff, p->len);
 615	}
 616}
 617extern struct paravirt_patch_site __start_parainstructions[],
 618	__stop_parainstructions[];
 619#endif	/* CONFIG_PARAVIRT */
 620
 621/*
 622 * Self-test for the INT3 based CALL emulation code.
 623 *
 624 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
 625 * properly and that there is a stack gap between the INT3 frame and the
 626 * previous context. Without this gap doing a virtual PUSH on the interrupted
 627 * stack would corrupt the INT3 IRET frame.
 628 *
 629 * See entry_{32,64}.S for more details.
 630 */
 631
 632/*
 633 * We define the int3_magic() function in assembly to control the calling
 634 * convention such that we can 'call' it from assembly.
 635 */
 636
 637extern void int3_magic(unsigned int *ptr); /* defined in asm */
 638
 639asm (
 640"	.pushsection	.init.text, \"ax\", @progbits\n"
 641"	.type		int3_magic, @function\n"
 642"int3_magic:\n"
 643"	movl	$1, (%" _ASM_ARG1 ")\n"
 644"	ret\n"
 645"	.size		int3_magic, .-int3_magic\n"
 646"	.popsection\n"
 647);
 648
 649extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
 650
 651static int __init
 652int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
 653{
 654	struct die_args *args = data;
 655	struct pt_regs *regs = args->regs;
 656
 657	if (!regs || user_mode(regs))
 658		return NOTIFY_DONE;
 659
 660	if (val != DIE_INT3)
 661		return NOTIFY_DONE;
 662
 663	if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
 664		return NOTIFY_DONE;
 665
 666	int3_emulate_call(regs, (unsigned long)&int3_magic);
 667	return NOTIFY_STOP;
 668}
 669
 670static void __init int3_selftest(void)
 671{
 672	static __initdata struct notifier_block int3_exception_nb = {
 673		.notifier_call	= int3_exception_notify,
 674		.priority	= INT_MAX-1, /* last */
 675	};
 676	unsigned int val = 0;
 677
 678	BUG_ON(register_die_notifier(&int3_exception_nb));
 679
 680	/*
 681	 * Basically: int3_magic(&val); but really complicated :-)
 682	 *
 683	 * Stick the address of the INT3 instruction into int3_selftest_ip,
 684	 * then trigger the INT3, padded with NOPs to match a CALL instruction
 685	 * length.
 686	 */
 687	asm volatile ("1: int3; nop; nop; nop; nop\n\t"
 688		      ".pushsection .init.data,\"aw\"\n\t"
 689		      ".align " __ASM_SEL(4, 8) "\n\t"
 690		      ".type int3_selftest_ip, @object\n\t"
 691		      ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
 692		      "int3_selftest_ip:\n\t"
 693		      __ASM_SEL(.long, .quad) " 1b\n\t"
 694		      ".popsection\n\t"
 695		      : ASM_CALL_CONSTRAINT
 696		      : __ASM_SEL_RAW(a, D) (&val)
 697		      : "memory");
 698
 699	BUG_ON(val != 1);
 700
 701	unregister_die_notifier(&int3_exception_nb);
 702}
 703
 704void __init alternative_instructions(void)
 705{
 706	int3_selftest();
 707
 708	/*
 709	 * The patching is not fully atomic, so try to avoid local
 710	 * interruptions that might execute the to be patched code.
 711	 * Other CPUs are not running.
 712	 */
 713	stop_nmi();
 714
 715	/*
 716	 * Don't stop machine check exceptions while patching.
 717	 * MCEs only happen when something got corrupted and in this
 718	 * case we must do something about the corruption.
 719	 * Ignoring it is worse than an unlikely patching race.
 720	 * Also machine checks tend to be broadcast and if one CPU
 721	 * goes into machine check the others follow quickly, so we don't
 722	 * expect a machine check to cause undue problems during to code
 723	 * patching.
 724	 */
 725
 726	apply_alternatives(__alt_instructions, __alt_instructions_end);
 727
 728#ifdef CONFIG_SMP
 729	/* Patch to UP if other cpus not imminent. */
 730	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
 731		uniproc_patched = true;
 732		alternatives_smp_module_add(NULL, "core kernel",
 733					    __smp_locks, __smp_locks_end,
 734					    _text, _etext);
 735	}
 736
 737	if (!uniproc_patched || num_possible_cpus() == 1) {
 738		free_init_pages("SMP alternatives",
 739				(unsigned long)__smp_locks,
 740				(unsigned long)__smp_locks_end);
 741	}
 742#endif
 743
 744	apply_paravirt(__parainstructions, __parainstructions_end);
 745
 746	restart_nmi();
 747	alternatives_patched = 1;
 748}
 749
 750/**
 751 * text_poke_early - Update instructions on a live kernel at boot time
 752 * @addr: address to modify
 753 * @opcode: source of the copy
 754 * @len: length to copy
 755 *
 756 * When you use this code to patch more than one byte of an instruction
 757 * you need to make sure that other CPUs cannot execute this code in parallel.
 758 * Also no thread must be currently preempted in the middle of these
 759 * instructions. And on the local CPU you need to be protected against NMI or
 760 * MCE handlers seeing an inconsistent instruction while you patch.
 761 */
 762void __init_or_module text_poke_early(void *addr, const void *opcode,
 763				      size_t len)
 764{
 765	unsigned long flags;
 766
 767	if (boot_cpu_has(X86_FEATURE_NX) &&
 768	    is_module_text_address((unsigned long)addr)) {
 769		/*
 770		 * Modules text is marked initially as non-executable, so the
 771		 * code cannot be running and speculative code-fetches are
 772		 * prevented. Just change the code.
 773		 */
 774		memcpy(addr, opcode, len);
 775	} else {
 776		local_irq_save(flags);
 777		memcpy(addr, opcode, len);
 778		local_irq_restore(flags);
 779		sync_core();
 780
 781		/*
 782		 * Could also do a CLFLUSH here to speed up CPU recovery; but
 783		 * that causes hangs on some VIA CPUs.
 784		 */
 785	}
 786}
 787
 788typedef struct {
 789	struct mm_struct *mm;
 790} temp_mm_state_t;
 791
 792/*
 793 * Using a temporary mm allows to set temporary mappings that are not accessible
 794 * by other CPUs. Such mappings are needed to perform sensitive memory writes
 795 * that override the kernel memory protections (e.g., W^X), without exposing the
 796 * temporary page-table mappings that are required for these write operations to
 797 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
 798 * mapping is torn down.
 799 *
 800 * Context: The temporary mm needs to be used exclusively by a single core. To
 801 *          harden security IRQs must be disabled while the temporary mm is
 802 *          loaded, thereby preventing interrupt handler bugs from overriding
 803 *          the kernel memory protection.
 804 */
 805static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
 806{
 807	temp_mm_state_t temp_state;
 808
 809	lockdep_assert_irqs_disabled();
 810	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 811	switch_mm_irqs_off(NULL, mm, current);
 812
 813	/*
 814	 * If breakpoints are enabled, disable them while the temporary mm is
 815	 * used. Userspace might set up watchpoints on addresses that are used
 816	 * in the temporary mm, which would lead to wrong signals being sent or
 817	 * crashes.
 818	 *
 819	 * Note that breakpoints are not disabled selectively, which also causes
 820	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
 821	 * undesirable, but still seems reasonable as the code that runs in the
 822	 * temporary mm should be short.
 823	 */
 824	if (hw_breakpoint_active())
 825		hw_breakpoint_disable();
 826
 827	return temp_state;
 828}
 829
 830static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
 831{
 832	lockdep_assert_irqs_disabled();
 833	switch_mm_irqs_off(NULL, prev_state.mm, current);
 834
 835	/*
 836	 * Restore the breakpoints if they were disabled before the temporary mm
 837	 * was loaded.
 838	 */
 839	if (hw_breakpoint_active())
 840		hw_breakpoint_restore();
 841}
 842
 843__ro_after_init struct mm_struct *poking_mm;
 844__ro_after_init unsigned long poking_addr;
 845
 846static void *__text_poke(void *addr, const void *opcode, size_t len)
 847{
 848	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
 849	struct page *pages[2] = {NULL};
 850	temp_mm_state_t prev;
 851	unsigned long flags;
 852	pte_t pte, *ptep;
 853	spinlock_t *ptl;
 854	pgprot_t pgprot;
 855
 856	/*
 857	 * While boot memory allocator is running we cannot use struct pages as
 858	 * they are not yet initialized. There is no way to recover.
 859	 */
 860	BUG_ON(!after_bootmem);
 861
 862	if (!core_kernel_text((unsigned long)addr)) {
 863		pages[0] = vmalloc_to_page(addr);
 864		if (cross_page_boundary)
 865			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
 866	} else {
 867		pages[0] = virt_to_page(addr);
 868		WARN_ON(!PageReserved(pages[0]));
 869		if (cross_page_boundary)
 870			pages[1] = virt_to_page(addr + PAGE_SIZE);
 871	}
 872	/*
 873	 * If something went wrong, crash and burn since recovery paths are not
 874	 * implemented.
 875	 */
 876	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
 877
 878	/*
 879	 * Map the page without the global bit, as TLB flushing is done with
 880	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
 881	 */
 882	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
 883
 884	/*
 885	 * The lock is not really needed, but this allows to avoid open-coding.
 886	 */
 887	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
 888
 889	/*
 890	 * This must not fail; preallocated in poking_init().
 891	 */
 892	VM_BUG_ON(!ptep);
 893
 894	local_irq_save(flags);
 895
 896	pte = mk_pte(pages[0], pgprot);
 897	set_pte_at(poking_mm, poking_addr, ptep, pte);
 898
 899	if (cross_page_boundary) {
 900		pte = mk_pte(pages[1], pgprot);
 901		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
 902	}
 903
 904	/*
 905	 * Loading the temporary mm behaves as a compiler barrier, which
 906	 * guarantees that the PTE will be set at the time memcpy() is done.
 907	 */
 908	prev = use_temporary_mm(poking_mm);
 909
 910	kasan_disable_current();
 911	memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
 912	kasan_enable_current();
 913
 914	/*
 915	 * Ensure that the PTE is only cleared after the instructions of memcpy
 916	 * were issued by using a compiler barrier.
 917	 */
 918	barrier();
 919
 920	pte_clear(poking_mm, poking_addr, ptep);
 921	if (cross_page_boundary)
 922		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
 923
 924	/*
 925	 * Loading the previous page-table hierarchy requires a serializing
 926	 * instruction that already allows the core to see the updated version.
 927	 * Xen-PV is assumed to serialize execution in a similar manner.
 928	 */
 929	unuse_temporary_mm(prev);
 930
 931	/*
 932	 * Flushing the TLB might involve IPIs, which would require enabled
 933	 * IRQs, but not if the mm is not used, as it is in this point.
 934	 */
 935	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
 936			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
 937			   PAGE_SHIFT, false);
 938
 939	/*
 940	 * If the text does not match what we just wrote then something is
 941	 * fundamentally screwy; there's nothing we can really do about that.
 942	 */
 943	BUG_ON(memcmp(addr, opcode, len));
 944
 945	local_irq_restore(flags);
 946	pte_unmap_unlock(ptep, ptl);
 
 947	return addr;
 948}
 949
 950/**
 951 * text_poke - Update instructions on a live kernel
 952 * @addr: address to modify
 953 * @opcode: source of the copy
 954 * @len: length to copy
 955 *
 956 * Only atomic text poke/set should be allowed when not doing early patching.
 957 * It means the size must be writable atomically and the address must be aligned
 958 * in a way that permits an atomic write. It also makes sure we fit on a single
 959 * page.
 960 *
 961 * Note that the caller must ensure that if the modified code is part of a
 962 * module, the module would not be removed during poking. This can be achieved
 963 * by registering a module notifier, and ordering module removal and patching
 964 * trough a mutex.
 965 */
 966void *text_poke(void *addr, const void *opcode, size_t len)
 967{
 968	lockdep_assert_held(&text_mutex);
 
 
 
 969
 970	return __text_poke(addr, opcode, len);
 971}
 972
 973/**
 974 * text_poke_kgdb - Update instructions on a live kernel by kgdb
 975 * @addr: address to modify
 976 * @opcode: source of the copy
 977 * @len: length to copy
 978 *
 979 * Only atomic text poke/set should be allowed when not doing early patching.
 980 * It means the size must be writable atomically and the address must be aligned
 981 * in a way that permits an atomic write. It also makes sure we fit on a single
 982 * page.
 983 *
 984 * Context: should only be used by kgdb, which ensures no other core is running,
 985 *	    despite the fact it does not hold the text_mutex.
 986 */
 987void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
 988{
 989	return __text_poke(addr, opcode, len);
 
 
 
 
 
 
 990}
 991
 992static void do_sync_core(void *info)
 993{
 994	sync_core();
 995}
 996
 997void text_poke_sync(void)
 998{
 999	on_each_cpu(do_sync_core, NULL, 1);
1000}
1001
1002struct text_poke_loc {
1003	s32 rel_addr; /* addr := _stext + rel_addr */
1004	s32 rel32;
1005	u8 opcode;
1006	const u8 text[POKE_MAX_OPCODE_SIZE];
1007	u8 old;
1008};
1009
1010struct bp_patching_desc {
1011	struct text_poke_loc *vec;
1012	int nr_entries;
1013	atomic_t refs;
1014};
1015
1016static struct bp_patching_desc *bp_desc;
1017
1018static __always_inline
1019struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp)
1020{
1021	struct bp_patching_desc *desc = __READ_ONCE(*descp); /* rcu_dereference */
1022
1023	if (!desc || !arch_atomic_inc_not_zero(&desc->refs))
1024		return NULL;
1025
1026	return desc;
1027}
1028
1029static __always_inline void put_desc(struct bp_patching_desc *desc)
1030{
1031	smp_mb__before_atomic();
1032	arch_atomic_dec(&desc->refs);
1033}
1034
1035static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
1036{
1037	return _stext + tp->rel_addr;
1038}
1039
1040static __always_inline int patch_cmp(const void *key, const void *elt)
1041{
1042	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
1043
1044	if (key < text_poke_addr(tp))
1045		return -1;
1046	if (key > text_poke_addr(tp))
1047		return 1;
1048	return 0;
1049}
1050
1051noinstr int poke_int3_handler(struct pt_regs *regs)
1052{
1053	struct bp_patching_desc *desc;
1054	struct text_poke_loc *tp;
1055	int len, ret = 0;
1056	void *ip;
1057
1058	if (user_mode(regs))
1059		return 0;
1060
1061	/*
1062	 * Having observed our INT3 instruction, we now must observe
1063	 * bp_desc:
1064	 *
1065	 *	bp_desc = desc			INT3
1066	 *	WMB				RMB
1067	 *	write INT3			if (desc)
 
 
1068	 */
1069	smp_rmb();
1070
1071	desc = try_get_desc(&bp_desc);
1072	if (!desc)
1073		return 0;
1074
1075	/*
1076	 * Discount the INT3. See text_poke_bp_batch().
1077	 */
1078	ip = (void *) regs->ip - INT3_INSN_SIZE;
1079
1080	/*
1081	 * Skip the binary search if there is a single member in the vector.
1082	 */
1083	if (unlikely(desc->nr_entries > 1)) {
1084		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1085				      sizeof(struct text_poke_loc),
1086				      patch_cmp);
1087		if (!tp)
1088			goto out_put;
1089	} else {
1090		tp = desc->vec;
1091		if (text_poke_addr(tp) != ip)
1092			goto out_put;
1093	}
1094
1095	len = text_opcode_size(tp->opcode);
1096	ip += len;
1097
1098	switch (tp->opcode) {
1099	case INT3_INSN_OPCODE:
1100		/*
1101		 * Someone poked an explicit INT3, they'll want to handle it,
1102		 * do not consume.
1103		 */
1104		goto out_put;
1105
1106	case CALL_INSN_OPCODE:
1107		int3_emulate_call(regs, (long)ip + tp->rel32);
1108		break;
1109
1110	case JMP32_INSN_OPCODE:
1111	case JMP8_INSN_OPCODE:
1112		int3_emulate_jmp(regs, (long)ip + tp->rel32);
1113		break;
1114
1115	default:
1116		BUG();
1117	}
1118
1119	ret = 1;
1120
1121out_put:
1122	put_desc(desc);
1123	return ret;
1124}
1125
1126#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1127static struct text_poke_loc tp_vec[TP_VEC_MAX];
1128static int tp_vec_nr;
1129
1130/**
1131 * text_poke_bp_batch() -- update instructions on live kernel on SMP
1132 * @tp:			vector of instructions to patch
1133 * @nr_entries:		number of entries in the vector
 
 
1134 *
1135 * Modify multi-byte instruction by using int3 breakpoint on SMP.
1136 * We completely avoid stop_machine() here, and achieve the
1137 * synchronization using int3 breakpoint.
1138 *
1139 * The way it is done:
1140 *	- For each entry in the vector:
1141 *		- add a int3 trap to the address that will be patched
1142 *	- sync cores
1143 *	- For each entry in the vector:
1144 *		- update all but the first byte of the patched range
1145 *	- sync cores
1146 *	- For each entry in the vector:
1147 *		- replace the first byte (int3) by the first byte of
1148 *		  replacing opcode
1149 *	- sync cores
 
 
1150 */
1151static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1152{
1153	struct bp_patching_desc desc = {
1154		.vec = tp,
1155		.nr_entries = nr_entries,
1156		.refs = ATOMIC_INIT(1),
1157	};
1158	unsigned char int3 = INT3_INSN_OPCODE;
1159	unsigned int i;
1160	int do_sync;
1161
1162	lockdep_assert_held(&text_mutex);
1163
1164	smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */
1165
 
 
 
1166	/*
1167	 * Corresponding read barrier in int3 notifier for making sure the
1168	 * nr_entries and handler are correctly ordered wrt. patching.
1169	 */
1170	smp_wmb();
1171
1172	/*
1173	 * First step: add a int3 trap to the address that will be patched.
1174	 */
1175	for (i = 0; i < nr_entries; i++) {
1176		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
1177		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1178	}
1179
1180	text_poke_sync();
1181
1182	/*
1183	 * Second step: update all but the first byte of the patched range.
1184	 */
1185	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1186		u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
1187		int len = text_opcode_size(tp[i].opcode);
1188
1189		if (len - INT3_INSN_SIZE > 0) {
1190			memcpy(old + INT3_INSN_SIZE,
1191			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1192			       len - INT3_INSN_SIZE);
1193			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1194				  (const char *)tp[i].text + INT3_INSN_SIZE,
1195				  len - INT3_INSN_SIZE);
1196			do_sync++;
1197		}
1198
1199		/*
1200		 * Emit a perf event to record the text poke, primarily to
1201		 * support Intel PT decoding which must walk the executable code
1202		 * to reconstruct the trace. The flow up to here is:
1203		 *   - write INT3 byte
1204		 *   - IPI-SYNC
1205		 *   - write instruction tail
1206		 * At this point the actual control flow will be through the
1207		 * INT3 and handler and not hit the old or new instruction.
1208		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1209		 * can still be decoded. Subsequently:
1210		 *   - emit RECORD_TEXT_POKE with the new instruction
1211		 *   - IPI-SYNC
1212		 *   - write first byte
1213		 *   - IPI-SYNC
1214		 * So before the text poke event timestamp, the decoder will see
1215		 * either the old instruction flow or FUP/TIP of INT3. After the
1216		 * text poke event timestamp, the decoder will see either the
1217		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
1218		 * use the timestamp as the point at which to modify the
1219		 * executable code.
1220		 * The old instruction is recorded so that the event can be
1221		 * processed forwards or backwards.
1222		 */
1223		perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
1224				     tp[i].text, len);
1225	}
1226
1227	if (do_sync) {
1228		/*
1229		 * According to Intel, this core syncing is very likely
1230		 * not necessary and we'd be safe even without it. But
1231		 * better safe than sorry (plus there's not only Intel).
1232		 */
1233		text_poke_sync();
1234	}
1235
1236	/*
1237	 * Third step: replace the first byte (int3) by the first byte of
1238	 * replacing opcode.
1239	 */
1240	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1241		if (tp[i].text[0] == INT3_INSN_OPCODE)
1242			continue;
1243
1244		text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
1245		do_sync++;
1246	}
1247
1248	if (do_sync)
1249		text_poke_sync();
1250
 
1251	/*
1252	 * Remove and synchronize_rcu(), except we have a very primitive
1253	 * refcount based completion.
1254	 */
1255	WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */
1256	if (!atomic_dec_and_test(&desc.refs))
1257		atomic_cond_read_acquire(&desc.refs, !VAL);
1258}
1259
1260static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
1261			       const void *opcode, size_t len, const void *emulate)
1262{
1263	struct insn insn;
1264
1265	memcpy((void *)tp->text, opcode, len);
1266	if (!emulate)
1267		emulate = opcode;
1268
1269	kernel_insn_init(&insn, emulate, MAX_INSN_SIZE);
1270	insn_get_length(&insn);
1271
1272	BUG_ON(!insn_complete(&insn));
1273	BUG_ON(len != insn.length);
1274
1275	tp->rel_addr = addr - (void *)_stext;
1276	tp->opcode = insn.opcode.bytes[0];
1277
1278	switch (tp->opcode) {
1279	case INT3_INSN_OPCODE:
1280		break;
1281
1282	case CALL_INSN_OPCODE:
1283	case JMP32_INSN_OPCODE:
1284	case JMP8_INSN_OPCODE:
1285		tp->rel32 = insn.immediate.value;
1286		break;
1287
1288	default: /* assume NOP */
1289		switch (len) {
1290		case 2: /* NOP2 -- emulate as JMP8+0 */
1291			BUG_ON(memcmp(emulate, ideal_nops[len], len));
1292			tp->opcode = JMP8_INSN_OPCODE;
1293			tp->rel32 = 0;
1294			break;
1295
1296		case 5: /* NOP5 -- emulate as JMP32+0 */
1297			BUG_ON(memcmp(emulate, ideal_nops[NOP_ATOMIC5], len));
1298			tp->opcode = JMP32_INSN_OPCODE;
1299			tp->rel32 = 0;
1300			break;
1301
1302		default: /* unknown instruction */
1303			BUG();
1304		}
1305		break;
1306	}
1307}
1308
1309/*
1310 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
1311 * early if needed.
1312 */
1313static bool tp_order_fail(void *addr)
1314{
1315	struct text_poke_loc *tp;
1316
1317	if (!tp_vec_nr)
1318		return false;
1319
1320	if (!addr) /* force */
1321		return true;
1322
1323	tp = &tp_vec[tp_vec_nr - 1];
1324	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
1325		return true;
1326
1327	return false;
1328}
1329
1330static void text_poke_flush(void *addr)
1331{
1332	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
1333		text_poke_bp_batch(tp_vec, tp_vec_nr);
1334		tp_vec_nr = 0;
1335	}
1336}
1337
1338void text_poke_finish(void)
1339{
1340	text_poke_flush(NULL);
1341}
1342
1343void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
1344{
1345	struct text_poke_loc *tp;
1346
1347	if (unlikely(system_state == SYSTEM_BOOTING)) {
1348		text_poke_early(addr, opcode, len);
1349		return;
1350	}
1351
1352	text_poke_flush(addr);
1353
1354	tp = &tp_vec[tp_vec_nr++];
1355	text_poke_loc_init(tp, addr, opcode, len, emulate);
1356}
1357
1358/**
1359 * text_poke_bp() -- update instructions on live kernel on SMP
1360 * @addr:	address to patch
1361 * @opcode:	opcode of new instruction
1362 * @len:	length to copy
1363 * @handler:	address to jump to when the temporary breakpoint is hit
1364 *
1365 * Update a single instruction with the vector in the stack, avoiding
1366 * dynamically allocated memory. This function should be used when it is
1367 * not possible to allocate memory.
1368 */
1369void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
1370{
1371	struct text_poke_loc tp;
1372
1373	if (unlikely(system_state == SYSTEM_BOOTING)) {
1374		text_poke_early(addr, opcode, len);
1375		return;
1376	}
1377
1378	text_poke_loc_init(&tp, addr, opcode, len, emulate);
1379	text_poke_bp_batch(&tp, 1);
1380}