Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * MIPS idle loop and WAIT instruction support.
  3 *
  4 * Copyright (C) xxxx  the Anonymous
  5 * Copyright (C) 1994 - 2006 Ralf Baechle
  6 * Copyright (C) 2003, 2004  Maciej W. Rozycki
  7 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
  8 *
  9 * This program is free software; you can redistribute it and/or
 10 * modify it under the terms of the GNU General Public License
 11 * as published by the Free Software Foundation; either version
 12 * 2 of the License, or (at your option) any later version.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/export.h>
 16#include <linux/init.h>
 17#include <linux/irqflags.h>
 18#include <linux/printk.h>
 19#include <linux/sched.h>
 20#include <asm/cpu.h>
 21#include <asm/cpu-info.h>
 22#include <asm/cpu-type.h>
 23#include <asm/idle.h>
 24#include <asm/mipsregs.h>
 25
 26/*
 27 * Not all of the MIPS CPUs have the "wait" instruction available. Moreover,
 28 * the implementation of the "wait" feature differs between CPU families. This
 29 * points to the function that implements CPU specific wait.
 30 * The wait instruction stops the pipeline and reduces the power consumption of
 31 * the CPU very much.
 32 */
 33void (*cpu_wait)(void);
 34EXPORT_SYMBOL(cpu_wait);
 35
 36static void r3081_wait(void)
 37{
 38	unsigned long cfg = read_c0_conf();
 39	write_c0_conf(cfg | R30XX_CONF_HALT);
 40	local_irq_enable();
 41}
 42
 43static void r39xx_wait(void)
 44{
 45	if (!need_resched())
 46		write_c0_conf(read_c0_conf() | TX39_CONF_HALT);
 47	local_irq_enable();
 48}
 49
 50void r4k_wait(void)
 51{
 52	local_irq_enable();
 53	__r4k_wait();
 54}
 55
 56/*
 57 * This variant is preferable as it allows testing need_resched and going to
 58 * sleep depending on the outcome atomically.  Unfortunately the "It is
 59 * implementation-dependent whether the pipeline restarts when a non-enabled
 60 * interrupt is requested" restriction in the MIPS32/MIPS64 architecture makes
 61 * using this version a gamble.
 62 */
 63void r4k_wait_irqoff(void)
 64{
 65	if (!need_resched())
 66		__asm__(
 67		"	.set	push		\n"
 68		"	.set	arch=r4000	\n"
 69		"	wait			\n"
 70		"	.set	pop		\n");
 71	local_irq_enable();
 72}
 73
 74/*
 75 * The RM7000 variant has to handle erratum 38.	 The workaround is to not
 76 * have any pending stores when the WAIT instruction is executed.
 77 */
 78static void rm7k_wait_irqoff(void)
 79{
 80	if (!need_resched())
 81		__asm__(
 82		"	.set	push					\n"
 83		"	.set	arch=r4000				\n"
 84		"	.set	noat					\n"
 85		"	mfc0	$1, $12					\n"
 86		"	sync						\n"
 87		"	mtc0	$1, $12		# stalls until W stage	\n"
 88		"	wait						\n"
 89		"	mtc0	$1, $12		# stalls until W stage	\n"
 90		"	.set	pop					\n");
 91	local_irq_enable();
 92}
 93
 94/*
 95 * Au1 'wait' is only useful when the 32kHz counter is used as timer,
 96 * since coreclock (and the cp0 counter) stops upon executing it. Only an
 97 * interrupt can wake it, so they must be enabled before entering idle modes.
 98 */
 99static void au1k_wait(void)
100{
101	unsigned long c0status = read_c0_status() | 1;	/* irqs on */
102
103	__asm__(
104	"	.set	arch=r4000			\n"
 
105	"	cache	0x14, 0(%0)		\n"
106	"	cache	0x14, 32(%0)		\n"
107	"	sync				\n"
108	"	mtc0	%1, $12			\n" /* wr c0status */
109	"	wait				\n"
110	"	nop				\n"
111	"	nop				\n"
112	"	nop				\n"
113	"	nop				\n"
114	"	.set	mips0			\n"
115	: : "r" (au1k_wait), "r" (c0status));
116}
117
118static int __initdata nowait;
119
120static int __init wait_disable(char *s)
121{
122	nowait = 1;
123
124	return 1;
125}
126
127__setup("nowait", wait_disable);
128
129void __init check_wait(void)
130{
131	struct cpuinfo_mips *c = &current_cpu_data;
132
133	if (nowait) {
134		printk("Wait instruction disabled.\n");
135		return;
136	}
137
138	/*
139	 * MIPSr6 specifies that masked interrupts should unblock an executing
140	 * wait instruction, and thus that it is safe for us to use
141	 * r4k_wait_irqoff. Yippee!
142	 */
143	if (cpu_has_mips_r6) {
144		cpu_wait = r4k_wait_irqoff;
145		return;
146	}
147
148	switch (current_cpu_type()) {
149	case CPU_R3081:
150	case CPU_R3081E:
151		cpu_wait = r3081_wait;
152		break;
153	case CPU_TX3927:
154		cpu_wait = r39xx_wait;
155		break;
156	case CPU_R4200:
157/*	case CPU_R4300: */
158	case CPU_R4600:
159	case CPU_R4640:
160	case CPU_R4650:
161	case CPU_R4700:
162	case CPU_R5000:
163	case CPU_R5500:
164	case CPU_NEVADA:
165	case CPU_4KC:
166	case CPU_4KEC:
167	case CPU_4KSC:
168	case CPU_5KC:
169	case CPU_5KE:
170	case CPU_25KF:
171	case CPU_PR4450:
172	case CPU_BMIPS3300:
173	case CPU_BMIPS4350:
174	case CPU_BMIPS4380:
175	case CPU_CAVIUM_OCTEON:
176	case CPU_CAVIUM_OCTEON_PLUS:
177	case CPU_CAVIUM_OCTEON2:
178	case CPU_CAVIUM_OCTEON3:
179	case CPU_JZRISC:
180	case CPU_LOONGSON1:
181	case CPU_XLR:
182	case CPU_XLP:
183		cpu_wait = r4k_wait;
184		break;
185	case CPU_LOONGSON3:
186		if ((c->processor_id & PRID_REV_MASK) >= PRID_REV_LOONGSON3A_R2)
 
 
187			cpu_wait = r4k_wait;
188		break;
189
190	case CPU_BMIPS5000:
191		cpu_wait = r4k_wait_irqoff;
192		break;
193	case CPU_RM7000:
194		cpu_wait = rm7k_wait_irqoff;
195		break;
196
197	case CPU_PROAPTIV:
198	case CPU_P5600:
199		/*
200		 * Incoming Fast Debug Channel (FDC) data during a wait
201		 * instruction causes the wait never to resume, even if an
202		 * interrupt is received. Avoid using wait at all if FDC data is
203		 * likely to be received.
204		 */
205		if (IS_ENABLED(CONFIG_MIPS_EJTAG_FDC_TTY))
206			break;
207		/* fall through */
208	case CPU_M14KC:
209	case CPU_M14KEC:
210	case CPU_24K:
211	case CPU_34K:
212	case CPU_1004K:
213	case CPU_1074K:
214	case CPU_INTERAPTIV:
215	case CPU_M5150:
216	case CPU_QEMU_GENERIC:
217		cpu_wait = r4k_wait;
218		if (read_c0_config7() & MIPS_CONF7_WII)
219			cpu_wait = r4k_wait_irqoff;
220		break;
221
222	case CPU_74K:
223		cpu_wait = r4k_wait;
224		if ((c->processor_id & 0xff) >= PRID_REV_ENCODE_332(2, 1, 0))
225			cpu_wait = r4k_wait_irqoff;
226		break;
227
228	case CPU_TX49XX:
229		cpu_wait = r4k_wait_irqoff;
230		break;
231	case CPU_ALCHEMY:
232		cpu_wait = au1k_wait;
233		break;
234	case CPU_20KC:
235		/*
236		 * WAIT on Rev1.0 has E1, E2, E3 and E16.
237		 * WAIT on Rev2.0 and Rev3.0 has E16.
238		 * Rev3.1 WAIT is nop, why bother
239		 */
240		if ((c->processor_id & 0xff) <= 0x64)
241			break;
242
243		/*
244		 * Another rev is incremeting c0_count at a reduced clock
245		 * rate while in WAIT mode.  So we basically have the choice
246		 * between using the cp0 timer as clocksource or avoiding
247		 * the WAIT instruction.  Until more details are known,
248		 * disable the use of WAIT for 20Kc entirely.
249		   cpu_wait = r4k_wait;
250		 */
251		break;
252	default:
253		break;
254	}
255}
256
257void arch_cpu_idle(void)
258{
259	if (cpu_wait)
260		cpu_wait();
261	else
262		local_irq_enable();
263}
264
265#ifdef CONFIG_CPU_IDLE
266
267int mips_cpuidle_wait_enter(struct cpuidle_device *dev,
268			    struct cpuidle_driver *drv, int index)
269{
270	arch_cpu_idle();
271	return index;
272}
273
274#endif
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * MIPS idle loop and WAIT instruction support.
  4 *
  5 * Copyright (C) xxxx  the Anonymous
  6 * Copyright (C) 1994 - 2006 Ralf Baechle
  7 * Copyright (C) 2003, 2004  Maciej W. Rozycki
  8 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
 
 
 
 
 
  9 */
 10#include <linux/cpu.h>
 11#include <linux/export.h>
 12#include <linux/init.h>
 13#include <linux/irqflags.h>
 14#include <linux/printk.h>
 15#include <linux/sched.h>
 16#include <asm/cpu.h>
 17#include <asm/cpu-info.h>
 18#include <asm/cpu-type.h>
 19#include <asm/idle.h>
 20#include <asm/mipsregs.h>
 21
 22/*
 23 * Not all of the MIPS CPUs have the "wait" instruction available. Moreover,
 24 * the implementation of the "wait" feature differs between CPU families. This
 25 * points to the function that implements CPU specific wait.
 26 * The wait instruction stops the pipeline and reduces the power consumption of
 27 * the CPU very much.
 28 */
 29void (*cpu_wait)(void);
 30EXPORT_SYMBOL(cpu_wait);
 31
 32static void __cpuidle r3081_wait(void)
 33{
 34	unsigned long cfg = read_c0_conf();
 35	write_c0_conf(cfg | R30XX_CONF_HALT);
 36	local_irq_enable();
 37}
 38
 39static void __cpuidle r39xx_wait(void)
 40{
 41	if (!need_resched())
 42		write_c0_conf(read_c0_conf() | TX39_CONF_HALT);
 43	local_irq_enable();
 44}
 45
 46void __cpuidle r4k_wait(void)
 47{
 48	local_irq_enable();
 49	__r4k_wait();
 50}
 51
 52/*
 53 * This variant is preferable as it allows testing need_resched and going to
 54 * sleep depending on the outcome atomically.  Unfortunately the "It is
 55 * implementation-dependent whether the pipeline restarts when a non-enabled
 56 * interrupt is requested" restriction in the MIPS32/MIPS64 architecture makes
 57 * using this version a gamble.
 58 */
 59void __cpuidle r4k_wait_irqoff(void)
 60{
 61	if (!need_resched())
 62		__asm__(
 63		"	.set	push		\n"
 64		"	.set	arch=r4000	\n"
 65		"	wait			\n"
 66		"	.set	pop		\n");
 67	local_irq_enable();
 68}
 69
 70/*
 71 * The RM7000 variant has to handle erratum 38.	 The workaround is to not
 72 * have any pending stores when the WAIT instruction is executed.
 73 */
 74static void __cpuidle rm7k_wait_irqoff(void)
 75{
 76	if (!need_resched())
 77		__asm__(
 78		"	.set	push					\n"
 79		"	.set	arch=r4000				\n"
 80		"	.set	noat					\n"
 81		"	mfc0	$1, $12					\n"
 82		"	sync						\n"
 83		"	mtc0	$1, $12		# stalls until W stage	\n"
 84		"	wait						\n"
 85		"	mtc0	$1, $12		# stalls until W stage	\n"
 86		"	.set	pop					\n");
 87	local_irq_enable();
 88}
 89
 90/*
 91 * Au1 'wait' is only useful when the 32kHz counter is used as timer,
 92 * since coreclock (and the cp0 counter) stops upon executing it. Only an
 93 * interrupt can wake it, so they must be enabled before entering idle modes.
 94 */
 95static void __cpuidle au1k_wait(void)
 96{
 97	unsigned long c0status = read_c0_status() | 1;	/* irqs on */
 98
 99	__asm__(
100	"	.set	push			\n"
101	"	.set	arch=r4000		\n"
102	"	cache	0x14, 0(%0)		\n"
103	"	cache	0x14, 32(%0)		\n"
104	"	sync				\n"
105	"	mtc0	%1, $12			\n" /* wr c0status */
106	"	wait				\n"
107	"	nop				\n"
108	"	nop				\n"
109	"	nop				\n"
110	"	nop				\n"
111	"	.set	pop			\n"
112	: : "r" (au1k_wait), "r" (c0status));
113}
114
115static int __initdata nowait;
116
117static int __init wait_disable(char *s)
118{
119	nowait = 1;
120
121	return 1;
122}
123
124__setup("nowait", wait_disable);
125
126void __init check_wait(void)
127{
128	struct cpuinfo_mips *c = &current_cpu_data;
129
130	if (nowait) {
131		printk("Wait instruction disabled.\n");
132		return;
133	}
134
135	/*
136	 * MIPSr6 specifies that masked interrupts should unblock an executing
137	 * wait instruction, and thus that it is safe for us to use
138	 * r4k_wait_irqoff. Yippee!
139	 */
140	if (cpu_has_mips_r6) {
141		cpu_wait = r4k_wait_irqoff;
142		return;
143	}
144
145	switch (current_cpu_type()) {
146	case CPU_R3081:
147	case CPU_R3081E:
148		cpu_wait = r3081_wait;
149		break;
150	case CPU_TX3927:
151		cpu_wait = r39xx_wait;
152		break;
153	case CPU_R4200:
 
154	case CPU_R4600:
155	case CPU_R4640:
156	case CPU_R4650:
157	case CPU_R4700:
158	case CPU_R5000:
159	case CPU_R5500:
160	case CPU_NEVADA:
161	case CPU_4KC:
162	case CPU_4KEC:
163	case CPU_4KSC:
164	case CPU_5KC:
165	case CPU_5KE:
166	case CPU_25KF:
167	case CPU_PR4450:
168	case CPU_BMIPS3300:
169	case CPU_BMIPS4350:
170	case CPU_BMIPS4380:
171	case CPU_CAVIUM_OCTEON:
172	case CPU_CAVIUM_OCTEON_PLUS:
173	case CPU_CAVIUM_OCTEON2:
174	case CPU_CAVIUM_OCTEON3:
175	case CPU_XBURST:
176	case CPU_LOONGSON32:
177	case CPU_XLR:
178	case CPU_XLP:
179		cpu_wait = r4k_wait;
180		break;
181	case CPU_LOONGSON64:
182		if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
183				(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
184				(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
185			cpu_wait = r4k_wait;
186		break;
187
188	case CPU_BMIPS5000:
189		cpu_wait = r4k_wait_irqoff;
190		break;
191	case CPU_RM7000:
192		cpu_wait = rm7k_wait_irqoff;
193		break;
194
195	case CPU_PROAPTIV:
196	case CPU_P5600:
197		/*
198		 * Incoming Fast Debug Channel (FDC) data during a wait
199		 * instruction causes the wait never to resume, even if an
200		 * interrupt is received. Avoid using wait at all if FDC data is
201		 * likely to be received.
202		 */
203		if (IS_ENABLED(CONFIG_MIPS_EJTAG_FDC_TTY))
204			break;
205		fallthrough;
206	case CPU_M14KC:
207	case CPU_M14KEC:
208	case CPU_24K:
209	case CPU_34K:
210	case CPU_1004K:
211	case CPU_1074K:
212	case CPU_INTERAPTIV:
213	case CPU_M5150:
214	case CPU_QEMU_GENERIC:
215		cpu_wait = r4k_wait;
216		if (read_c0_config7() & MIPS_CONF7_WII)
217			cpu_wait = r4k_wait_irqoff;
218		break;
219
220	case CPU_74K:
221		cpu_wait = r4k_wait;
222		if ((c->processor_id & 0xff) >= PRID_REV_ENCODE_332(2, 1, 0))
223			cpu_wait = r4k_wait_irqoff;
224		break;
225
226	case CPU_TX49XX:
227		cpu_wait = r4k_wait_irqoff;
228		break;
229	case CPU_ALCHEMY:
230		cpu_wait = au1k_wait;
231		break;
232	case CPU_20KC:
233		/*
234		 * WAIT on Rev1.0 has E1, E2, E3 and E16.
235		 * WAIT on Rev2.0 and Rev3.0 has E16.
236		 * Rev3.1 WAIT is nop, why bother
237		 */
238		if ((c->processor_id & 0xff) <= 0x64)
239			break;
240
241		/*
242		 * Another rev is incremeting c0_count at a reduced clock
243		 * rate while in WAIT mode.  So we basically have the choice
244		 * between using the cp0 timer as clocksource or avoiding
245		 * the WAIT instruction.  Until more details are known,
246		 * disable the use of WAIT for 20Kc entirely.
247		   cpu_wait = r4k_wait;
248		 */
249		break;
250	default:
251		break;
252	}
253}
254
255void arch_cpu_idle(void)
256{
257	if (cpu_wait)
258		cpu_wait();
259	else
260		local_irq_enable();
261}
262
263#ifdef CONFIG_CPU_IDLE
264
265int mips_cpuidle_wait_enter(struct cpuidle_device *dev,
266			    struct cpuidle_driver *drv, int index)
267{
268	arch_cpu_idle();
269	return index;
270}
271
272#endif