Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
 
   6#include "callchain.h"
   7#include "debug.h"
 
 
   8#include "event.h"
   9#include "evsel.h"
  10#include "hist.h"
  11#include "machine.h"
  12#include "map.h"
 
 
 
 
 
  13#include "sort.h"
  14#include "strlist.h"
 
  15#include "thread.h"
 
  16#include "vdso.h"
  17#include <stdbool.h>
  18#include <sys/types.h>
  19#include <sys/stat.h>
  20#include <unistd.h>
  21#include "unwind.h"
  22#include "linux/hash.h"
  23#include "asm/bug.h"
 
 
  24
  25#include "sane_ctype.h"
  26#include <symbol/kallsyms.h>
 
 
 
  27
  28static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  29
  30static void dsos__init(struct dsos *dsos)
  31{
  32	INIT_LIST_HEAD(&dsos->head);
  33	dsos->root = RB_ROOT;
  34	init_rwsem(&dsos->lock);
  35}
  36
  37static void machine__threads_init(struct machine *machine)
  38{
  39	int i;
  40
  41	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  42		struct threads *threads = &machine->threads[i];
  43		threads->entries = RB_ROOT;
  44		init_rwsem(&threads->lock);
  45		threads->nr = 0;
  46		INIT_LIST_HEAD(&threads->dead);
  47		threads->last_match = NULL;
  48	}
  49}
  50
  51static int machine__set_mmap_name(struct machine *machine)
  52{
  53	if (machine__is_host(machine))
  54		machine->mmap_name = strdup("[kernel.kallsyms]");
  55	else if (machine__is_default_guest(machine))
  56		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  57	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  58			  machine->pid) < 0)
  59		machine->mmap_name = NULL;
  60
  61	return machine->mmap_name ? 0 : -ENOMEM;
  62}
  63
  64int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  65{
  66	int err = -ENOMEM;
  67
  68	memset(machine, 0, sizeof(*machine));
  69	map_groups__init(&machine->kmaps, machine);
  70	RB_CLEAR_NODE(&machine->rb_node);
  71	dsos__init(&machine->dsos);
  72
  73	machine__threads_init(machine);
  74
  75	machine->vdso_info = NULL;
  76	machine->env = NULL;
  77
  78	machine->pid = pid;
  79
  80	machine->id_hdr_size = 0;
  81	machine->kptr_restrict_warned = false;
  82	machine->comm_exec = false;
  83	machine->kernel_start = 0;
  84
  85	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
  86
  87	machine->root_dir = strdup(root_dir);
  88	if (machine->root_dir == NULL)
  89		return -ENOMEM;
  90
  91	if (machine__set_mmap_name(machine))
  92		goto out;
  93
  94	if (pid != HOST_KERNEL_ID) {
  95		struct thread *thread = machine__findnew_thread(machine, -1,
  96								pid);
  97		char comm[64];
  98
  99		if (thread == NULL)
 100			goto out;
 101
 102		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 103		thread__set_comm(thread, comm, 0);
 104		thread__put(thread);
 105	}
 106
 107	machine->current_tid = NULL;
 108	err = 0;
 109
 110out:
 111	if (err) {
 112		zfree(&machine->root_dir);
 113		zfree(&machine->mmap_name);
 114	}
 115	return 0;
 116}
 117
 118struct machine *machine__new_host(void)
 119{
 120	struct machine *machine = malloc(sizeof(*machine));
 121
 122	if (machine != NULL) {
 123		machine__init(machine, "", HOST_KERNEL_ID);
 124
 125		if (machine__create_kernel_maps(machine) < 0)
 126			goto out_delete;
 127	}
 128
 129	return machine;
 130out_delete:
 131	free(machine);
 132	return NULL;
 133}
 134
 135struct machine *machine__new_kallsyms(void)
 136{
 137	struct machine *machine = machine__new_host();
 138	/*
 139	 * FIXME:
 140	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
 141	 *    functions and data objects.
 142	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
 143	 *    ask for not using the kcore parsing code, once this one is fixed
 144	 *    to create a map per module.
 145	 */
 146	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION) <= 0) {
 147		machine__delete(machine);
 148		machine = NULL;
 149	}
 150
 151	return machine;
 152}
 153
 154static void dsos__purge(struct dsos *dsos)
 155{
 156	struct dso *pos, *n;
 157
 158	down_write(&dsos->lock);
 159
 160	list_for_each_entry_safe(pos, n, &dsos->head, node) {
 161		RB_CLEAR_NODE(&pos->rb_node);
 162		pos->root = NULL;
 163		list_del_init(&pos->node);
 164		dso__put(pos);
 165	}
 166
 167	up_write(&dsos->lock);
 168}
 169
 170static void dsos__exit(struct dsos *dsos)
 171{
 172	dsos__purge(dsos);
 173	exit_rwsem(&dsos->lock);
 174}
 175
 176void machine__delete_threads(struct machine *machine)
 177{
 178	struct rb_node *nd;
 179	int i;
 180
 181	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 182		struct threads *threads = &machine->threads[i];
 183		down_write(&threads->lock);
 184		nd = rb_first(&threads->entries);
 185		while (nd) {
 186			struct thread *t = rb_entry(nd, struct thread, rb_node);
 187
 188			nd = rb_next(nd);
 189			__machine__remove_thread(machine, t, false);
 190		}
 191		up_write(&threads->lock);
 192	}
 193}
 194
 195void machine__exit(struct machine *machine)
 196{
 197	int i;
 198
 199	if (machine == NULL)
 200		return;
 201
 202	machine__destroy_kernel_maps(machine);
 203	map_groups__exit(&machine->kmaps);
 204	dsos__exit(&machine->dsos);
 205	machine__exit_vdso(machine);
 206	zfree(&machine->root_dir);
 207	zfree(&machine->mmap_name);
 208	zfree(&machine->current_tid);
 209
 210	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 211		struct threads *threads = &machine->threads[i];
 
 
 
 
 
 
 
 
 
 
 
 
 212		exit_rwsem(&threads->lock);
 213	}
 214}
 215
 216void machine__delete(struct machine *machine)
 217{
 218	if (machine) {
 219		machine__exit(machine);
 220		free(machine);
 221	}
 222}
 223
 224void machines__init(struct machines *machines)
 225{
 226	machine__init(&machines->host, "", HOST_KERNEL_ID);
 227	machines->guests = RB_ROOT;
 228}
 229
 230void machines__exit(struct machines *machines)
 231{
 232	machine__exit(&machines->host);
 233	/* XXX exit guest */
 234}
 235
 236struct machine *machines__add(struct machines *machines, pid_t pid,
 237			      const char *root_dir)
 238{
 239	struct rb_node **p = &machines->guests.rb_node;
 240	struct rb_node *parent = NULL;
 241	struct machine *pos, *machine = malloc(sizeof(*machine));
 
 242
 243	if (machine == NULL)
 244		return NULL;
 245
 246	if (machine__init(machine, root_dir, pid) != 0) {
 247		free(machine);
 248		return NULL;
 249	}
 250
 251	while (*p != NULL) {
 252		parent = *p;
 253		pos = rb_entry(parent, struct machine, rb_node);
 254		if (pid < pos->pid)
 255			p = &(*p)->rb_left;
 256		else
 257			p = &(*p)->rb_right;
 
 
 258	}
 259
 260	rb_link_node(&machine->rb_node, parent, p);
 261	rb_insert_color(&machine->rb_node, &machines->guests);
 262
 263	return machine;
 264}
 265
 266void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 267{
 268	struct rb_node *nd;
 269
 270	machines->host.comm_exec = comm_exec;
 271
 272	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 273		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 274
 275		machine->comm_exec = comm_exec;
 276	}
 277}
 278
 279struct machine *machines__find(struct machines *machines, pid_t pid)
 280{
 281	struct rb_node **p = &machines->guests.rb_node;
 282	struct rb_node *parent = NULL;
 283	struct machine *machine;
 284	struct machine *default_machine = NULL;
 285
 286	if (pid == HOST_KERNEL_ID)
 287		return &machines->host;
 288
 289	while (*p != NULL) {
 290		parent = *p;
 291		machine = rb_entry(parent, struct machine, rb_node);
 292		if (pid < machine->pid)
 293			p = &(*p)->rb_left;
 294		else if (pid > machine->pid)
 295			p = &(*p)->rb_right;
 296		else
 297			return machine;
 298		if (!machine->pid)
 299			default_machine = machine;
 300	}
 301
 302	return default_machine;
 303}
 304
 305struct machine *machines__findnew(struct machines *machines, pid_t pid)
 306{
 307	char path[PATH_MAX];
 308	const char *root_dir = "";
 309	struct machine *machine = machines__find(machines, pid);
 310
 311	if (machine && (machine->pid == pid))
 312		goto out;
 313
 314	if ((pid != HOST_KERNEL_ID) &&
 315	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 316	    (symbol_conf.guestmount)) {
 317		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 318		if (access(path, R_OK)) {
 319			static struct strlist *seen;
 320
 321			if (!seen)
 322				seen = strlist__new(NULL, NULL);
 323
 324			if (!strlist__has_entry(seen, path)) {
 325				pr_err("Can't access file %s\n", path);
 326				strlist__add(seen, path);
 327			}
 328			machine = NULL;
 329			goto out;
 330		}
 331		root_dir = path;
 332	}
 333
 334	machine = machines__add(machines, pid, root_dir);
 335out:
 336	return machine;
 337}
 338
 339void machines__process_guests(struct machines *machines,
 340			      machine__process_t process, void *data)
 341{
 342	struct rb_node *nd;
 343
 344	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 345		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 346		process(pos, data);
 347	}
 348}
 349
 350void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 351{
 352	struct rb_node *node;
 353	struct machine *machine;
 354
 355	machines->host.id_hdr_size = id_hdr_size;
 356
 357	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
 
 358		machine = rb_entry(node, struct machine, rb_node);
 359		machine->id_hdr_size = id_hdr_size;
 360	}
 361
 362	return;
 363}
 364
 365static void machine__update_thread_pid(struct machine *machine,
 366				       struct thread *th, pid_t pid)
 367{
 368	struct thread *leader;
 369
 370	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 371		return;
 372
 373	th->pid_ = pid;
 374
 375	if (th->pid_ == th->tid)
 376		return;
 377
 378	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 379	if (!leader)
 380		goto out_err;
 381
 382	if (!leader->mg)
 383		leader->mg = map_groups__new(machine);
 384
 385	if (!leader->mg)
 386		goto out_err;
 387
 388	if (th->mg == leader->mg)
 389		return;
 390
 391	if (th->mg) {
 392		/*
 393		 * Maps are created from MMAP events which provide the pid and
 394		 * tid.  Consequently there never should be any maps on a thread
 395		 * with an unknown pid.  Just print an error if there are.
 396		 */
 397		if (!map_groups__empty(th->mg))
 398			pr_err("Discarding thread maps for %d:%d\n",
 399			       th->pid_, th->tid);
 400		map_groups__put(th->mg);
 401	}
 402
 403	th->mg = map_groups__get(leader->mg);
 404out_put:
 405	thread__put(leader);
 406	return;
 407out_err:
 408	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 409	goto out_put;
 410}
 411
 412/*
 413 * Caller must eventually drop thread->refcnt returned with a successful
 414 * lookup/new thread inserted.
 
 415 */
 416static struct thread *____machine__findnew_thread(struct machine *machine,
 417						  struct threads *threads,
 418						  pid_t pid, pid_t tid,
 419						  bool create)
 420{
 421	struct rb_node **p = &threads->entries.rb_node;
 422	struct rb_node *parent = NULL;
 423	struct thread *th;
 424
 425	/*
 426	 * Front-end cache - TID lookups come in blocks,
 427	 * so most of the time we dont have to look up
 428	 * the full rbtree:
 429	 */
 430	th = threads->last_match;
 431	if (th != NULL) {
 432		if (th->tid == tid) {
 433			machine__update_thread_pid(machine, th, pid);
 434			return thread__get(th);
 435		}
 436
 437		threads->last_match = NULL;
 438	}
 439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440	while (*p != NULL) {
 441		parent = *p;
 442		th = rb_entry(parent, struct thread, rb_node);
 443
 444		if (th->tid == tid) {
 445			threads->last_match = th;
 446			machine__update_thread_pid(machine, th, pid);
 447			return thread__get(th);
 448		}
 449
 450		if (tid < th->tid)
 451			p = &(*p)->rb_left;
 452		else
 453			p = &(*p)->rb_right;
 
 
 454	}
 455
 456	if (!create)
 457		return NULL;
 458
 459	th = thread__new(pid, tid);
 460	if (th != NULL) {
 461		rb_link_node(&th->rb_node, parent, p);
 462		rb_insert_color(&th->rb_node, &threads->entries);
 463
 464		/*
 465		 * We have to initialize map_groups separately
 466		 * after rb tree is updated.
 467		 *
 468		 * The reason is that we call machine__findnew_thread
 469		 * within thread__init_map_groups to find the thread
 470		 * leader and that would screwed the rb tree.
 471		 */
 472		if (thread__init_map_groups(th, machine)) {
 473			rb_erase_init(&th->rb_node, &threads->entries);
 474			RB_CLEAR_NODE(&th->rb_node);
 475			thread__put(th);
 476			return NULL;
 477		}
 478		/*
 479		 * It is now in the rbtree, get a ref
 480		 */
 481		thread__get(th);
 482		threads->last_match = th;
 483		++threads->nr;
 484	}
 485
 486	return th;
 487}
 488
 489struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 490{
 491	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 492}
 493
 494struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 495				       pid_t tid)
 496{
 497	struct threads *threads = machine__threads(machine, tid);
 498	struct thread *th;
 499
 500	down_write(&threads->lock);
 501	th = __machine__findnew_thread(machine, pid, tid);
 502	up_write(&threads->lock);
 503	return th;
 504}
 505
 506struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 507				    pid_t tid)
 508{
 509	struct threads *threads = machine__threads(machine, tid);
 510	struct thread *th;
 511
 512	down_read(&threads->lock);
 513	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 514	up_read(&threads->lock);
 515	return th;
 516}
 517
 518struct comm *machine__thread_exec_comm(struct machine *machine,
 519				       struct thread *thread)
 520{
 521	if (machine->comm_exec)
 522		return thread__exec_comm(thread);
 523	else
 524		return thread__comm(thread);
 525}
 526
 527int machine__process_comm_event(struct machine *machine, union perf_event *event,
 528				struct perf_sample *sample)
 529{
 530	struct thread *thread = machine__findnew_thread(machine,
 531							event->comm.pid,
 532							event->comm.tid);
 533	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 534	int err = 0;
 535
 536	if (exec)
 537		machine->comm_exec = true;
 538
 539	if (dump_trace)
 540		perf_event__fprintf_comm(event, stdout);
 541
 542	if (thread == NULL ||
 543	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 544		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 545		err = -1;
 546	}
 547
 548	thread__put(thread);
 549
 550	return err;
 551}
 552
 553int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 554				      union perf_event *event,
 555				      struct perf_sample *sample __maybe_unused)
 556{
 557	struct thread *thread = machine__findnew_thread(machine,
 558							event->namespaces.pid,
 559							event->namespaces.tid);
 560	int err = 0;
 561
 562	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 563		  "\nWARNING: kernel seems to support more namespaces than perf"
 564		  " tool.\nTry updating the perf tool..\n\n");
 565
 566	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 567		  "\nWARNING: perf tool seems to support more namespaces than"
 568		  " the kernel.\nTry updating the kernel..\n\n");
 569
 570	if (dump_trace)
 571		perf_event__fprintf_namespaces(event, stdout);
 572
 573	if (thread == NULL ||
 574	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 575		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 576		err = -1;
 577	}
 578
 579	thread__put(thread);
 580
 581	return err;
 582}
 583
 584int machine__process_lost_event(struct machine *machine __maybe_unused,
 585				union perf_event *event, struct perf_sample *sample __maybe_unused)
 586{
 587	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
 588		    event->lost.id, event->lost.lost);
 589	return 0;
 590}
 591
 592int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 593					union perf_event *event, struct perf_sample *sample)
 594{
 595	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
 596		    sample->id, event->lost_samples.lost);
 597	return 0;
 598}
 599
 600static struct dso *machine__findnew_module_dso(struct machine *machine,
 601					       struct kmod_path *m,
 602					       const char *filename)
 603{
 604	struct dso *dso;
 605
 606	down_write(&machine->dsos.lock);
 607
 608	dso = __dsos__find(&machine->dsos, m->name, true);
 609	if (!dso) {
 610		dso = __dsos__addnew(&machine->dsos, m->name);
 611		if (dso == NULL)
 612			goto out_unlock;
 613
 614		dso__set_module_info(dso, m, machine);
 615		dso__set_long_name(dso, strdup(filename), true);
 616	}
 617
 618	dso__get(dso);
 619out_unlock:
 620	up_write(&machine->dsos.lock);
 621	return dso;
 622}
 623
 624int machine__process_aux_event(struct machine *machine __maybe_unused,
 625			       union perf_event *event)
 626{
 627	if (dump_trace)
 628		perf_event__fprintf_aux(event, stdout);
 629	return 0;
 630}
 631
 632int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 633					union perf_event *event)
 634{
 635	if (dump_trace)
 636		perf_event__fprintf_itrace_start(event, stdout);
 637	return 0;
 638}
 639
 640int machine__process_switch_event(struct machine *machine __maybe_unused,
 641				  union perf_event *event)
 642{
 643	if (dump_trace)
 644		perf_event__fprintf_switch(event, stdout);
 645	return 0;
 646}
 647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 649{
 650	const char *dup_filename;
 651
 652	if (!filename || !dso || !dso->long_name)
 653		return;
 654	if (dso->long_name[0] != '[')
 655		return;
 656	if (!strchr(filename, '/'))
 657		return;
 658
 659	dup_filename = strdup(filename);
 660	if (!dup_filename)
 661		return;
 662
 663	dso__set_long_name(dso, dup_filename, true);
 664}
 665
 666struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 667					const char *filename)
 668{
 669	struct map *map = NULL;
 670	struct dso *dso = NULL;
 671	struct kmod_path m;
 672
 673	if (kmod_path__parse_name(&m, filename))
 674		return NULL;
 675
 676	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
 677				       m.name);
 678	if (map) {
 679		/*
 680		 * If the map's dso is an offline module, give dso__load()
 681		 * a chance to find the file path of that module by fixing
 682		 * long_name.
 683		 */
 684		dso__adjust_kmod_long_name(map->dso, filename);
 685		goto out;
 686	}
 687
 688	dso = machine__findnew_module_dso(machine, &m, filename);
 689	if (dso == NULL)
 690		goto out;
 691
 692	map = map__new2(start, dso, MAP__FUNCTION);
 693	if (map == NULL)
 694		goto out;
 695
 696	map_groups__insert(&machine->kmaps, map);
 697
 698	/* Put the map here because map_groups__insert alread got it */
 699	map__put(map);
 700out:
 701	/* put the dso here, corresponding to  machine__findnew_module_dso */
 702	dso__put(dso);
 703	free(m.name);
 704	return map;
 705}
 706
 707size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 708{
 709	struct rb_node *nd;
 710	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 711
 712	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 713		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 714		ret += __dsos__fprintf(&pos->dsos.head, fp);
 715	}
 716
 717	return ret;
 718}
 719
 720size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 721				     bool (skip)(struct dso *dso, int parm), int parm)
 722{
 723	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 724}
 725
 726size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 727				     bool (skip)(struct dso *dso, int parm), int parm)
 728{
 729	struct rb_node *nd;
 730	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 731
 732	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 733		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 734		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 735	}
 736	return ret;
 737}
 738
 739size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 740{
 741	int i;
 742	size_t printed = 0;
 743	struct dso *kdso = machine__kernel_map(machine)->dso;
 744
 745	if (kdso->has_build_id) {
 746		char filename[PATH_MAX];
 747		if (dso__build_id_filename(kdso, filename, sizeof(filename),
 748					   false))
 749			printed += fprintf(fp, "[0] %s\n", filename);
 750	}
 751
 752	for (i = 0; i < vmlinux_path__nr_entries; ++i)
 753		printed += fprintf(fp, "[%d] %s\n",
 754				   i + kdso->has_build_id, vmlinux_path[i]);
 755
 756	return printed;
 757}
 758
 759size_t machine__fprintf(struct machine *machine, FILE *fp)
 760{
 761	struct rb_node *nd;
 762	size_t ret;
 763	int i;
 764
 765	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 766		struct threads *threads = &machine->threads[i];
 767
 768		down_read(&threads->lock);
 769
 770		ret = fprintf(fp, "Threads: %u\n", threads->nr);
 771
 772		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
 
 773			struct thread *pos = rb_entry(nd, struct thread, rb_node);
 774
 775			ret += thread__fprintf(pos, fp);
 776		}
 777
 778		up_read(&threads->lock);
 779	}
 780	return ret;
 781}
 782
 783static struct dso *machine__get_kernel(struct machine *machine)
 784{
 785	const char *vmlinux_name = machine->mmap_name;
 786	struct dso *kernel;
 787
 788	if (machine__is_host(machine)) {
 789		if (symbol_conf.vmlinux_name)
 790			vmlinux_name = symbol_conf.vmlinux_name;
 791
 792		kernel = machine__findnew_kernel(machine, vmlinux_name,
 793						 "[kernel]", DSO_TYPE_KERNEL);
 794	} else {
 795		if (symbol_conf.default_guest_vmlinux_name)
 796			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 797
 798		kernel = machine__findnew_kernel(machine, vmlinux_name,
 799						 "[guest.kernel]",
 800						 DSO_TYPE_GUEST_KERNEL);
 801	}
 802
 803	if (kernel != NULL && (!kernel->has_build_id))
 804		dso__read_running_kernel_build_id(kernel, machine);
 805
 806	return kernel;
 807}
 808
 809struct process_args {
 810	u64 start;
 811};
 812
 813static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 814					   size_t bufsz)
 815{
 816	if (machine__is_default_guest(machine))
 817		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 818	else
 819		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 820}
 821
 822const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 823
 824/* Figure out the start address of kernel map from /proc/kallsyms.
 825 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 826 * symbol_name if it's not that important.
 827 */
 828static int machine__get_running_kernel_start(struct machine *machine,
 829					     const char **symbol_name, u64 *start)
 
 830{
 831	char filename[PATH_MAX];
 832	int i, err = -1;
 833	const char *name;
 834	u64 addr = 0;
 835
 836	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 837
 838	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 839		return 0;
 840
 841	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 842		err = kallsyms__get_function_start(filename, name, &addr);
 843		if (!err)
 844			break;
 845	}
 846
 847	if (err)
 848		return -1;
 849
 850	if (symbol_name)
 851		*symbol_name = name;
 852
 853	*start = addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854	return 0;
 855}
 856
 857static int
 858__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
 859{
 860	int type;
 
 861
 862	/* In case of renewal the kernel map, destroy previous one */
 863	machine__destroy_kernel_maps(machine);
 864
 865	for (type = 0; type < MAP__NR_TYPES; ++type) {
 866		struct kmap *kmap;
 867		struct map *map;
 868
 869		machine->vmlinux_maps[type] = map__new2(0, kernel, type);
 870		if (machine->vmlinux_maps[type] == NULL)
 871			return -1;
 872
 873		machine->vmlinux_maps[type]->map_ip =
 874			machine->vmlinux_maps[type]->unmap_ip =
 875				identity__map_ip;
 876		map = __machine__kernel_map(machine, type);
 877		kmap = map__kmap(map);
 878		if (!kmap)
 879			return -1;
 880
 881		kmap->kmaps = &machine->kmaps;
 882		map_groups__insert(&machine->kmaps, map);
 883	}
 884
 885	return 0;
 886}
 887
 888void machine__destroy_kernel_maps(struct machine *machine)
 889{
 890	int type;
 891
 892	for (type = 0; type < MAP__NR_TYPES; ++type) {
 893		struct kmap *kmap;
 894		struct map *map = __machine__kernel_map(machine, type);
 895
 896		if (map == NULL)
 897			continue;
 898
 899		kmap = map__kmap(map);
 900		map_groups__remove(&machine->kmaps, map);
 901		if (kmap && kmap->ref_reloc_sym) {
 902			/*
 903			 * ref_reloc_sym is shared among all maps, so free just
 904			 * on one of them.
 905			 */
 906			if (type == MAP__FUNCTION) {
 907				zfree((char **)&kmap->ref_reloc_sym->name);
 908				zfree(&kmap->ref_reloc_sym);
 909			} else
 910				kmap->ref_reloc_sym = NULL;
 911		}
 912
 913		map__put(machine->vmlinux_maps[type]);
 914		machine->vmlinux_maps[type] = NULL;
 
 
 
 915	}
 
 
 916}
 917
 918int machines__create_guest_kernel_maps(struct machines *machines)
 919{
 920	int ret = 0;
 921	struct dirent **namelist = NULL;
 922	int i, items = 0;
 923	char path[PATH_MAX];
 924	pid_t pid;
 925	char *endp;
 926
 927	if (symbol_conf.default_guest_vmlinux_name ||
 928	    symbol_conf.default_guest_modules ||
 929	    symbol_conf.default_guest_kallsyms) {
 930		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
 931	}
 932
 933	if (symbol_conf.guestmount) {
 934		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
 935		if (items <= 0)
 936			return -ENOENT;
 937		for (i = 0; i < items; i++) {
 938			if (!isdigit(namelist[i]->d_name[0])) {
 939				/* Filter out . and .. */
 940				continue;
 941			}
 942			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
 943			if ((*endp != '\0') ||
 944			    (endp == namelist[i]->d_name) ||
 945			    (errno == ERANGE)) {
 946				pr_debug("invalid directory (%s). Skipping.\n",
 947					 namelist[i]->d_name);
 948				continue;
 949			}
 950			sprintf(path, "%s/%s/proc/kallsyms",
 951				symbol_conf.guestmount,
 952				namelist[i]->d_name);
 953			ret = access(path, R_OK);
 954			if (ret) {
 955				pr_debug("Can't access file %s\n", path);
 956				goto failure;
 957			}
 958			machines__create_kernel_maps(machines, pid);
 959		}
 960failure:
 961		free(namelist);
 962	}
 963
 964	return ret;
 965}
 966
 967void machines__destroy_kernel_maps(struct machines *machines)
 968{
 969	struct rb_node *next = rb_first(&machines->guests);
 970
 971	machine__destroy_kernel_maps(&machines->host);
 972
 973	while (next) {
 974		struct machine *pos = rb_entry(next, struct machine, rb_node);
 975
 976		next = rb_next(&pos->rb_node);
 977		rb_erase(&pos->rb_node, &machines->guests);
 978		machine__delete(pos);
 979	}
 980}
 981
 982int machines__create_kernel_maps(struct machines *machines, pid_t pid)
 983{
 984	struct machine *machine = machines__findnew(machines, pid);
 985
 986	if (machine == NULL)
 987		return -1;
 988
 989	return machine__create_kernel_maps(machine);
 990}
 991
 992int machine__load_kallsyms(struct machine *machine, const char *filename,
 993			     enum map_type type)
 994{
 995	struct map *map = machine__kernel_map(machine);
 996	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
 997
 998	if (ret > 0) {
 999		dso__set_loaded(map->dso, type);
1000		/*
1001		 * Since /proc/kallsyms will have multiple sessions for the
1002		 * kernel, with modules between them, fixup the end of all
1003		 * sections.
1004		 */
1005		__map_groups__fixup_end(&machine->kmaps, type);
1006	}
1007
1008	return ret;
1009}
1010
1011int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1012{
1013	struct map *map = machine__kernel_map(machine);
1014	int ret = dso__load_vmlinux_path(map->dso, map);
1015
1016	if (ret > 0)
1017		dso__set_loaded(map->dso, type);
1018
1019	return ret;
1020}
1021
1022static char *get_kernel_version(const char *root_dir)
1023{
1024	char version[PATH_MAX];
1025	FILE *file;
1026	char *name, *tmp;
1027	const char *prefix = "Linux version ";
1028
1029	sprintf(version, "%s/proc/version", root_dir);
1030	file = fopen(version, "r");
1031	if (!file)
1032		return NULL;
1033
1034	version[0] = '\0';
1035	tmp = fgets(version, sizeof(version), file);
1036	fclose(file);
 
 
1037
1038	name = strstr(version, prefix);
1039	if (!name)
1040		return NULL;
1041	name += strlen(prefix);
1042	tmp = strchr(name, ' ');
1043	if (tmp)
1044		*tmp = '\0';
1045
1046	return strdup(name);
1047}
1048
1049static bool is_kmod_dso(struct dso *dso)
1050{
1051	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1052	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1053}
1054
1055static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1056				       struct kmod_path *m)
1057{
1058	struct map *map;
1059	char *long_name;
 
1060
1061	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1062	if (map == NULL)
1063		return 0;
1064
1065	long_name = strdup(path);
1066	if (long_name == NULL)
1067		return -ENOMEM;
1068
1069	dso__set_long_name(map->dso, long_name, true);
1070	dso__kernel_module_get_build_id(map->dso, "");
1071
1072	/*
1073	 * Full name could reveal us kmod compression, so
1074	 * we need to update the symtab_type if needed.
1075	 */
1076	if (m->comp && is_kmod_dso(map->dso))
1077		map->dso->symtab_type++;
 
 
1078
1079	return 0;
1080}
1081
1082static int map_groups__set_modules_path_dir(struct map_groups *mg,
1083				const char *dir_name, int depth)
1084{
1085	struct dirent *dent;
1086	DIR *dir = opendir(dir_name);
1087	int ret = 0;
1088
1089	if (!dir) {
1090		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1091		return -1;
1092	}
1093
1094	while ((dent = readdir(dir)) != NULL) {
1095		char path[PATH_MAX];
1096		struct stat st;
1097
1098		/*sshfs might return bad dent->d_type, so we have to stat*/
1099		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1100		if (stat(path, &st))
1101			continue;
1102
1103		if (S_ISDIR(st.st_mode)) {
1104			if (!strcmp(dent->d_name, ".") ||
1105			    !strcmp(dent->d_name, ".."))
1106				continue;
1107
1108			/* Do not follow top-level source and build symlinks */
1109			if (depth == 0) {
1110				if (!strcmp(dent->d_name, "source") ||
1111				    !strcmp(dent->d_name, "build"))
1112					continue;
1113			}
1114
1115			ret = map_groups__set_modules_path_dir(mg, path,
1116							       depth + 1);
1117			if (ret < 0)
1118				goto out;
1119		} else {
1120			struct kmod_path m;
1121
1122			ret = kmod_path__parse_name(&m, dent->d_name);
1123			if (ret)
1124				goto out;
1125
1126			if (m.kmod)
1127				ret = map_groups__set_module_path(mg, path, &m);
1128
1129			free(m.name);
1130
1131			if (ret)
1132				goto out;
1133		}
1134	}
1135
1136out:
1137	closedir(dir);
1138	return ret;
1139}
1140
1141static int machine__set_modules_path(struct machine *machine)
1142{
1143	char *version;
1144	char modules_path[PATH_MAX];
1145
1146	version = get_kernel_version(machine->root_dir);
1147	if (!version)
1148		return -1;
1149
1150	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1151		 machine->root_dir, version);
1152	free(version);
1153
1154	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1155}
1156int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
 
1157				const char *name __maybe_unused)
1158{
1159	return 0;
1160}
1161
1162static int machine__create_module(void *arg, const char *name, u64 start,
1163				  u64 size)
1164{
1165	struct machine *machine = arg;
1166	struct map *map;
1167
1168	if (arch__fix_module_text_start(&start, name) < 0)
1169		return -1;
1170
1171	map = machine__findnew_module_map(machine, start, name);
1172	if (map == NULL)
1173		return -1;
1174	map->end = start + size;
1175
1176	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1177
1178	return 0;
1179}
1180
1181static int machine__create_modules(struct machine *machine)
1182{
1183	const char *modules;
1184	char path[PATH_MAX];
1185
1186	if (machine__is_default_guest(machine)) {
1187		modules = symbol_conf.default_guest_modules;
1188	} else {
1189		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1190		modules = path;
1191	}
1192
1193	if (symbol__restricted_filename(modules, "/proc/modules"))
1194		return -1;
1195
1196	if (modules__parse(modules, machine, machine__create_module))
1197		return -1;
1198
1199	if (!machine__set_modules_path(machine))
1200		return 0;
1201
1202	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1203
1204	return 0;
1205}
1206
1207static void machine__set_kernel_mmap(struct machine *machine,
1208				     u64 start, u64 end)
1209{
1210	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
1211
1212	for (i = 0; i < MAP__NR_TYPES; i++) {
1213		machine->vmlinux_maps[i]->start = start;
1214		machine->vmlinux_maps[i]->end   = end;
1215
1216		/*
1217		 * Be a bit paranoid here, some perf.data file came with
1218		 * a zero sized synthesized MMAP event for the kernel.
1219		 */
1220		if (start == 0 && end == 0)
1221			machine->vmlinux_maps[i]->end = ~0ULL;
1222	}
1223}
1224
1225int machine__create_kernel_maps(struct machine *machine)
1226{
1227	struct dso *kernel = machine__get_kernel(machine);
1228	const char *name = NULL;
1229	struct map *map;
1230	u64 addr = 0;
1231	int ret;
1232
1233	if (kernel == NULL)
1234		return -1;
1235
1236	ret = __machine__create_kernel_maps(machine, kernel);
1237	dso__put(kernel);
1238	if (ret < 0)
1239		return -1;
1240
1241	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1242		if (machine__is_host(machine))
1243			pr_debug("Problems creating module maps, "
1244				 "continuing anyway...\n");
1245		else
1246			pr_debug("Problems creating module maps for guest %d, "
1247				 "continuing anyway...\n", machine->pid);
1248	}
1249
1250	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1251		if (name &&
1252		    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1253			machine__destroy_kernel_maps(machine);
1254			return -1;
 
1255		}
1256
1257		/* we have a real start address now, so re-order the kmaps */
1258		map = machine__kernel_map(machine);
1259
1260		map__get(map);
1261		map_groups__remove(&machine->kmaps, map);
 
1262
1263		/* assume it's the last in the kmaps */
1264		machine__set_kernel_mmap(machine, addr, ~0ULL);
1265
1266		map_groups__insert(&machine->kmaps, map);
1267		map__put(map);
 
 
 
1268	}
1269
1270	/* update end address of the kernel map using adjacent module address */
1271	map = map__next(machine__kernel_map(machine));
1272	if (map)
1273		machine__set_kernel_mmap(machine, addr, map->start);
1274
1275	return 0;
1276}
1277
1278static bool machine__uses_kcore(struct machine *machine)
1279{
1280	struct dso *dso;
1281
1282	list_for_each_entry(dso, &machine->dsos.head, node) {
1283		if (dso__is_kcore(dso))
1284			return true;
1285	}
1286
1287	return false;
1288}
1289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290static int machine__process_kernel_mmap_event(struct machine *machine,
1291					      union perf_event *event)
1292{
1293	struct map *map;
1294	enum dso_kernel_type kernel_type;
1295	bool is_kernel_mmap;
1296
1297	/* If we have maps from kcore then we do not need or want any others */
1298	if (machine__uses_kcore(machine))
1299		return 0;
1300
1301	if (machine__is_host(machine))
1302		kernel_type = DSO_TYPE_KERNEL;
1303	else
1304		kernel_type = DSO_TYPE_GUEST_KERNEL;
1305
1306	is_kernel_mmap = memcmp(event->mmap.filename,
1307				machine->mmap_name,
1308				strlen(machine->mmap_name) - 1) == 0;
1309	if (event->mmap.filename[0] == '/' ||
1310	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1311		map = machine__findnew_module_map(machine, event->mmap.start,
1312						  event->mmap.filename);
1313		if (map == NULL)
1314			goto out_problem;
1315
1316		map->end = map->start + event->mmap.len;
1317	} else if (is_kernel_mmap) {
1318		const char *symbol_name = (event->mmap.filename +
1319				strlen(machine->mmap_name));
1320		/*
1321		 * Should be there already, from the build-id table in
1322		 * the header.
1323		 */
1324		struct dso *kernel = NULL;
1325		struct dso *dso;
1326
1327		down_read(&machine->dsos.lock);
1328
1329		list_for_each_entry(dso, &machine->dsos.head, node) {
1330
1331			/*
1332			 * The cpumode passed to is_kernel_module is not the
1333			 * cpumode of *this* event. If we insist on passing
1334			 * correct cpumode to is_kernel_module, we should
1335			 * record the cpumode when we adding this dso to the
1336			 * linked list.
1337			 *
1338			 * However we don't really need passing correct
1339			 * cpumode.  We know the correct cpumode must be kernel
1340			 * mode (if not, we should not link it onto kernel_dsos
1341			 * list).
1342			 *
1343			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1344			 * is_kernel_module() treats it as a kernel cpumode.
1345			 */
1346
1347			if (!dso->kernel ||
1348			    is_kernel_module(dso->long_name,
1349					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1350				continue;
1351
1352
1353			kernel = dso;
1354			break;
1355		}
1356
1357		up_read(&machine->dsos.lock);
1358
1359		if (kernel == NULL)
1360			kernel = machine__findnew_dso(machine, machine->mmap_name);
1361		if (kernel == NULL)
1362			goto out_problem;
1363
1364		kernel->kernel = kernel_type;
1365		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1366			dso__put(kernel);
1367			goto out_problem;
1368		}
1369
1370		if (strstr(kernel->long_name, "vmlinux"))
1371			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1372
1373		machine__set_kernel_mmap(machine, event->mmap.start,
1374					 event->mmap.start + event->mmap.len);
1375
1376		/*
1377		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1378		 * symbol. Effectively having zero here means that at record
1379		 * time /proc/sys/kernel/kptr_restrict was non zero.
1380		 */
1381		if (event->mmap.pgoff != 0) {
1382			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1383							 symbol_name,
1384							 event->mmap.pgoff);
1385		}
1386
1387		if (machine__is_default_guest(machine)) {
1388			/*
1389			 * preload dso of guest kernel and modules
1390			 */
1391			dso__load(kernel, machine__kernel_map(machine));
1392		}
 
 
1393	}
1394	return 0;
1395out_problem:
1396	return -1;
1397}
1398
1399int machine__process_mmap2_event(struct machine *machine,
1400				 union perf_event *event,
1401				 struct perf_sample *sample)
1402{
1403	struct thread *thread;
1404	struct map *map;
1405	enum map_type type;
1406	int ret = 0;
1407
1408	if (dump_trace)
1409		perf_event__fprintf_mmap2(event, stdout);
1410
1411	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1412	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1413		ret = machine__process_kernel_mmap_event(machine, event);
1414		if (ret < 0)
1415			goto out_problem;
1416		return 0;
1417	}
1418
1419	thread = machine__findnew_thread(machine, event->mmap2.pid,
1420					event->mmap2.tid);
1421	if (thread == NULL)
1422		goto out_problem;
1423
1424	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1425		type = MAP__VARIABLE;
1426	else
1427		type = MAP__FUNCTION;
1428
1429	map = map__new(machine, event->mmap2.start,
1430			event->mmap2.len, event->mmap2.pgoff,
1431			event->mmap2.maj,
1432			event->mmap2.min, event->mmap2.ino,
1433			event->mmap2.ino_generation,
1434			event->mmap2.prot,
1435			event->mmap2.flags,
1436			event->mmap2.filename, type, thread);
1437
1438	if (map == NULL)
1439		goto out_problem_map;
1440
1441	ret = thread__insert_map(thread, map);
1442	if (ret)
1443		goto out_problem_insert;
1444
1445	thread__put(thread);
1446	map__put(map);
1447	return 0;
1448
1449out_problem_insert:
1450	map__put(map);
1451out_problem_map:
1452	thread__put(thread);
1453out_problem:
1454	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1455	return 0;
1456}
1457
1458int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1459				struct perf_sample *sample)
1460{
1461	struct thread *thread;
1462	struct map *map;
1463	enum map_type type;
1464	int ret = 0;
1465
1466	if (dump_trace)
1467		perf_event__fprintf_mmap(event, stdout);
1468
1469	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1470	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1471		ret = machine__process_kernel_mmap_event(machine, event);
1472		if (ret < 0)
1473			goto out_problem;
1474		return 0;
1475	}
1476
1477	thread = machine__findnew_thread(machine, event->mmap.pid,
1478					 event->mmap.tid);
1479	if (thread == NULL)
1480		goto out_problem;
1481
1482	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1483		type = MAP__VARIABLE;
1484	else
1485		type = MAP__FUNCTION;
1486
1487	map = map__new(machine, event->mmap.start,
1488			event->mmap.len, event->mmap.pgoff,
1489			0, 0, 0, 0, 0, 0,
1490			event->mmap.filename,
1491			type, thread);
1492
1493	if (map == NULL)
1494		goto out_problem_map;
1495
1496	ret = thread__insert_map(thread, map);
1497	if (ret)
1498		goto out_problem_insert;
1499
1500	thread__put(thread);
1501	map__put(map);
1502	return 0;
1503
1504out_problem_insert:
1505	map__put(map);
1506out_problem_map:
1507	thread__put(thread);
1508out_problem:
1509	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1510	return 0;
1511}
1512
1513static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1514{
1515	struct threads *threads = machine__threads(machine, th->tid);
1516
1517	if (threads->last_match == th)
1518		threads->last_match = NULL;
1519
1520	BUG_ON(refcount_read(&th->refcnt) == 0);
1521	if (lock)
1522		down_write(&threads->lock);
1523	rb_erase_init(&th->rb_node, &threads->entries);
 
 
 
1524	RB_CLEAR_NODE(&th->rb_node);
1525	--threads->nr;
1526	/*
1527	 * Move it first to the dead_threads list, then drop the reference,
1528	 * if this is the last reference, then the thread__delete destructor
1529	 * will be called and we will remove it from the dead_threads list.
1530	 */
1531	list_add_tail(&th->node, &threads->dead);
 
 
 
 
 
 
 
 
1532	if (lock)
1533		up_write(&threads->lock);
1534	thread__put(th);
1535}
1536
1537void machine__remove_thread(struct machine *machine, struct thread *th)
1538{
1539	return __machine__remove_thread(machine, th, true);
1540}
1541
1542int machine__process_fork_event(struct machine *machine, union perf_event *event,
1543				struct perf_sample *sample)
1544{
1545	struct thread *thread = machine__find_thread(machine,
1546						     event->fork.pid,
1547						     event->fork.tid);
1548	struct thread *parent = machine__findnew_thread(machine,
1549							event->fork.ppid,
1550							event->fork.ptid);
 
1551	int err = 0;
1552
1553	if (dump_trace)
1554		perf_event__fprintf_task(event, stdout);
1555
1556	/*
1557	 * There may be an existing thread that is not actually the parent,
1558	 * either because we are processing events out of order, or because the
1559	 * (fork) event that would have removed the thread was lost. Assume the
1560	 * latter case and continue on as best we can.
1561	 */
1562	if (parent->pid_ != (pid_t)event->fork.ppid) {
1563		dump_printf("removing erroneous parent thread %d/%d\n",
1564			    parent->pid_, parent->tid);
1565		machine__remove_thread(machine, parent);
1566		thread__put(parent);
1567		parent = machine__findnew_thread(machine, event->fork.ppid,
1568						 event->fork.ptid);
1569	}
1570
1571	/* if a thread currently exists for the thread id remove it */
1572	if (thread != NULL) {
1573		machine__remove_thread(machine, thread);
1574		thread__put(thread);
1575	}
1576
1577	thread = machine__findnew_thread(machine, event->fork.pid,
1578					 event->fork.tid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1579
1580	if (thread == NULL || parent == NULL ||
1581	    thread__fork(thread, parent, sample->time) < 0) {
1582		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1583		err = -1;
1584	}
1585	thread__put(thread);
1586	thread__put(parent);
1587
1588	return err;
1589}
1590
1591int machine__process_exit_event(struct machine *machine, union perf_event *event,
1592				struct perf_sample *sample __maybe_unused)
1593{
1594	struct thread *thread = machine__find_thread(machine,
1595						     event->fork.pid,
1596						     event->fork.tid);
1597
1598	if (dump_trace)
1599		perf_event__fprintf_task(event, stdout);
1600
1601	if (thread != NULL) {
1602		thread__exited(thread);
1603		thread__put(thread);
1604	}
1605
1606	return 0;
1607}
1608
1609int machine__process_event(struct machine *machine, union perf_event *event,
1610			   struct perf_sample *sample)
1611{
1612	int ret;
1613
1614	switch (event->header.type) {
1615	case PERF_RECORD_COMM:
1616		ret = machine__process_comm_event(machine, event, sample); break;
1617	case PERF_RECORD_MMAP:
1618		ret = machine__process_mmap_event(machine, event, sample); break;
1619	case PERF_RECORD_NAMESPACES:
1620		ret = machine__process_namespaces_event(machine, event, sample); break;
1621	case PERF_RECORD_MMAP2:
1622		ret = machine__process_mmap2_event(machine, event, sample); break;
1623	case PERF_RECORD_FORK:
1624		ret = machine__process_fork_event(machine, event, sample); break;
1625	case PERF_RECORD_EXIT:
1626		ret = machine__process_exit_event(machine, event, sample); break;
1627	case PERF_RECORD_LOST:
1628		ret = machine__process_lost_event(machine, event, sample); break;
1629	case PERF_RECORD_AUX:
1630		ret = machine__process_aux_event(machine, event); break;
1631	case PERF_RECORD_ITRACE_START:
1632		ret = machine__process_itrace_start_event(machine, event); break;
1633	case PERF_RECORD_LOST_SAMPLES:
1634		ret = machine__process_lost_samples_event(machine, event, sample); break;
1635	case PERF_RECORD_SWITCH:
1636	case PERF_RECORD_SWITCH_CPU_WIDE:
1637		ret = machine__process_switch_event(machine, event); break;
 
 
 
 
1638	default:
1639		ret = -1;
1640		break;
1641	}
1642
1643	return ret;
1644}
1645
1646static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1647{
1648	if (!regexec(regex, sym->name, 0, NULL, 0))
1649		return 1;
1650	return 0;
1651}
1652
1653static void ip__resolve_ams(struct thread *thread,
1654			    struct addr_map_symbol *ams,
1655			    u64 ip)
1656{
1657	struct addr_location al;
1658
1659	memset(&al, 0, sizeof(al));
1660	/*
1661	 * We cannot use the header.misc hint to determine whether a
1662	 * branch stack address is user, kernel, guest, hypervisor.
1663	 * Branches may straddle the kernel/user/hypervisor boundaries.
1664	 * Thus, we have to try consecutively until we find a match
1665	 * or else, the symbol is unknown
1666	 */
1667	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1668
1669	ams->addr = ip;
1670	ams->al_addr = al.addr;
1671	ams->sym = al.sym;
1672	ams->map = al.map;
1673	ams->phys_addr = 0;
1674}
1675
1676static void ip__resolve_data(struct thread *thread,
1677			     u8 m, struct addr_map_symbol *ams,
1678			     u64 addr, u64 phys_addr)
1679{
1680	struct addr_location al;
1681
1682	memset(&al, 0, sizeof(al));
1683
1684	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1685	if (al.map == NULL) {
1686		/*
1687		 * some shared data regions have execute bit set which puts
1688		 * their mapping in the MAP__FUNCTION type array.
1689		 * Check there as a fallback option before dropping the sample.
1690		 */
1691		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1692	}
1693
1694	ams->addr = addr;
1695	ams->al_addr = al.addr;
1696	ams->sym = al.sym;
1697	ams->map = al.map;
1698	ams->phys_addr = phys_addr;
1699}
1700
1701struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1702				     struct addr_location *al)
1703{
1704	struct mem_info *mi = mem_info__new();
1705
1706	if (!mi)
1707		return NULL;
1708
1709	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1710	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1711			 sample->addr, sample->phys_addr);
1712	mi->data_src.val = sample->data_src;
1713
1714	return mi;
1715}
1716
1717static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1718{
1719	char *srcline = NULL;
1720
1721	if (!map || callchain_param.key == CCKEY_FUNCTION)
1722		return srcline;
1723
1724	srcline = srcline__tree_find(&map->dso->srclines, ip);
1725	if (!srcline) {
1726		bool show_sym = false;
1727		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1728
1729		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1730				      sym, show_sym, show_addr, ip);
1731		srcline__tree_insert(&map->dso->srclines, ip, srcline);
1732	}
1733
1734	return srcline;
1735}
1736
1737struct iterations {
1738	int nr_loop_iter;
1739	u64 cycles;
1740};
1741
1742static int add_callchain_ip(struct thread *thread,
1743			    struct callchain_cursor *cursor,
1744			    struct symbol **parent,
1745			    struct addr_location *root_al,
1746			    u8 *cpumode,
1747			    u64 ip,
1748			    bool branch,
1749			    struct branch_flags *flags,
1750			    struct iterations *iter,
1751			    u64 branch_from)
1752{
1753	struct addr_location al;
1754	int nr_loop_iter = 0;
1755	u64 iter_cycles = 0;
1756	const char *srcline = NULL;
1757
1758	al.filtered = 0;
1759	al.sym = NULL;
1760	if (!cpumode) {
1761		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1762						   ip, &al);
1763	} else {
1764		if (ip >= PERF_CONTEXT_MAX) {
1765			switch (ip) {
1766			case PERF_CONTEXT_HV:
1767				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1768				break;
1769			case PERF_CONTEXT_KERNEL:
1770				*cpumode = PERF_RECORD_MISC_KERNEL;
1771				break;
1772			case PERF_CONTEXT_USER:
1773				*cpumode = PERF_RECORD_MISC_USER;
1774				break;
1775			default:
1776				pr_debug("invalid callchain context: "
1777					 "%"PRId64"\n", (s64) ip);
1778				/*
1779				 * It seems the callchain is corrupted.
1780				 * Discard all.
1781				 */
1782				callchain_cursor_reset(cursor);
1783				return 1;
1784			}
1785			return 0;
1786		}
1787		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1788					   ip, &al);
1789	}
1790
1791	if (al.sym != NULL) {
1792		if (perf_hpp_list.parent && !*parent &&
1793		    symbol__match_regex(al.sym, &parent_regex))
1794			*parent = al.sym;
1795		else if (have_ignore_callees && root_al &&
1796		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1797			/* Treat this symbol as the root,
1798			   forgetting its callees. */
1799			*root_al = al;
1800			callchain_cursor_reset(cursor);
1801		}
1802	}
1803
1804	if (symbol_conf.hide_unresolved && al.sym == NULL)
1805		return 0;
1806
1807	if (iter) {
1808		nr_loop_iter = iter->nr_loop_iter;
1809		iter_cycles = iter->cycles;
1810	}
1811
1812	srcline = callchain_srcline(al.map, al.sym, al.addr);
1813	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1814				       branch, flags, nr_loop_iter,
1815				       iter_cycles, branch_from, srcline);
1816}
1817
1818struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1819					   struct addr_location *al)
1820{
1821	unsigned int i;
1822	const struct branch_stack *bs = sample->branch_stack;
1823	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1824
1825	if (!bi)
1826		return NULL;
1827
1828	for (i = 0; i < bs->nr; i++) {
1829		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1830		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1831		bi[i].flags = bs->entries[i].flags;
1832	}
1833	return bi;
1834}
1835
1836static void save_iterations(struct iterations *iter,
1837			    struct branch_entry *be, int nr)
1838{
1839	int i;
1840
1841	iter->nr_loop_iter = nr;
1842	iter->cycles = 0;
1843
1844	for (i = 0; i < nr; i++)
1845		iter->cycles += be[i].flags.cycles;
1846}
1847
1848#define CHASHSZ 127
1849#define CHASHBITS 7
1850#define NO_ENTRY 0xff
1851
1852#define PERF_MAX_BRANCH_DEPTH 127
1853
1854/* Remove loops. */
1855static int remove_loops(struct branch_entry *l, int nr,
1856			struct iterations *iter)
1857{
1858	int i, j, off;
1859	unsigned char chash[CHASHSZ];
1860
1861	memset(chash, NO_ENTRY, sizeof(chash));
1862
1863	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1864
1865	for (i = 0; i < nr; i++) {
1866		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1867
1868		/* no collision handling for now */
1869		if (chash[h] == NO_ENTRY) {
1870			chash[h] = i;
1871		} else if (l[chash[h]].from == l[i].from) {
1872			bool is_loop = true;
1873			/* check if it is a real loop */
1874			off = 0;
1875			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1876				if (l[j].from != l[i + off].from) {
1877					is_loop = false;
1878					break;
1879				}
1880			if (is_loop) {
1881				j = nr - (i + off);
1882				if (j > 0) {
1883					save_iterations(iter + i + off,
1884						l + i, off);
1885
1886					memmove(iter + i, iter + i + off,
1887						j * sizeof(*iter));
1888
1889					memmove(l + i, l + i + off,
1890						j * sizeof(*l));
1891				}
1892
1893				nr -= off;
1894			}
1895		}
1896	}
1897	return nr;
1898}
1899
1900/*
1901 * Recolve LBR callstack chain sample
1902 * Return:
1903 * 1 on success get LBR callchain information
1904 * 0 no available LBR callchain information, should try fp
1905 * negative error code on other errors.
1906 */
1907static int resolve_lbr_callchain_sample(struct thread *thread,
1908					struct callchain_cursor *cursor,
1909					struct perf_sample *sample,
1910					struct symbol **parent,
1911					struct addr_location *root_al,
1912					int max_stack)
1913{
1914	struct ip_callchain *chain = sample->callchain;
1915	int chain_nr = min(max_stack, (int)chain->nr), i;
1916	u8 cpumode = PERF_RECORD_MISC_USER;
1917	u64 ip, branch_from = 0;
1918
1919	for (i = 0; i < chain_nr; i++) {
1920		if (chain->ips[i] == PERF_CONTEXT_USER)
1921			break;
1922	}
1923
1924	/* LBR only affects the user callchain */
1925	if (i != chain_nr) {
1926		struct branch_stack *lbr_stack = sample->branch_stack;
1927		int lbr_nr = lbr_stack->nr, j, k;
1928		bool branch;
1929		struct branch_flags *flags;
1930		/*
1931		 * LBR callstack can only get user call chain.
1932		 * The mix_chain_nr is kernel call chain
1933		 * number plus LBR user call chain number.
1934		 * i is kernel call chain number,
1935		 * 1 is PERF_CONTEXT_USER,
1936		 * lbr_nr + 1 is the user call chain number.
1937		 * For details, please refer to the comments
1938		 * in callchain__printf
1939		 */
1940		int mix_chain_nr = i + 1 + lbr_nr + 1;
1941
1942		for (j = 0; j < mix_chain_nr; j++) {
1943			int err;
1944			branch = false;
1945			flags = NULL;
1946
1947			if (callchain_param.order == ORDER_CALLEE) {
1948				if (j < i + 1)
1949					ip = chain->ips[j];
1950				else if (j > i + 1) {
1951					k = j - i - 2;
1952					ip = lbr_stack->entries[k].from;
1953					branch = true;
1954					flags = &lbr_stack->entries[k].flags;
1955				} else {
1956					ip = lbr_stack->entries[0].to;
1957					branch = true;
1958					flags = &lbr_stack->entries[0].flags;
1959					branch_from =
1960						lbr_stack->entries[0].from;
1961				}
1962			} else {
1963				if (j < lbr_nr) {
1964					k = lbr_nr - j - 1;
1965					ip = lbr_stack->entries[k].from;
1966					branch = true;
1967					flags = &lbr_stack->entries[k].flags;
1968				}
1969				else if (j > lbr_nr)
1970					ip = chain->ips[i + 1 - (j - lbr_nr)];
1971				else {
1972					ip = lbr_stack->entries[0].to;
1973					branch = true;
1974					flags = &lbr_stack->entries[0].flags;
1975					branch_from =
1976						lbr_stack->entries[0].from;
1977				}
1978			}
1979
1980			err = add_callchain_ip(thread, cursor, parent,
1981					       root_al, &cpumode, ip,
1982					       branch, flags, NULL,
1983					       branch_from);
1984			if (err)
1985				return (err < 0) ? err : 0;
1986		}
1987		return 1;
1988	}
1989
1990	return 0;
1991}
1992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1993static int thread__resolve_callchain_sample(struct thread *thread,
1994					    struct callchain_cursor *cursor,
1995					    struct perf_evsel *evsel,
1996					    struct perf_sample *sample,
1997					    struct symbol **parent,
1998					    struct addr_location *root_al,
1999					    int max_stack)
2000{
2001	struct branch_stack *branch = sample->branch_stack;
2002	struct ip_callchain *chain = sample->callchain;
2003	int chain_nr = 0;
2004	u8 cpumode = PERF_RECORD_MISC_USER;
2005	int i, j, err, nr_entries;
2006	int skip_idx = -1;
2007	int first_call = 0;
2008
2009	if (chain)
2010		chain_nr = chain->nr;
2011
2012	if (perf_evsel__has_branch_callstack(evsel)) {
2013		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2014						   root_al, max_stack);
2015		if (err)
2016			return (err < 0) ? err : 0;
2017	}
2018
2019	/*
2020	 * Based on DWARF debug information, some architectures skip
2021	 * a callchain entry saved by the kernel.
2022	 */
2023	skip_idx = arch_skip_callchain_idx(thread, chain);
2024
2025	/*
2026	 * Add branches to call stack for easier browsing. This gives
2027	 * more context for a sample than just the callers.
2028	 *
2029	 * This uses individual histograms of paths compared to the
2030	 * aggregated histograms the normal LBR mode uses.
2031	 *
2032	 * Limitations for now:
2033	 * - No extra filters
2034	 * - No annotations (should annotate somehow)
2035	 */
2036
2037	if (branch && callchain_param.branch_callstack) {
2038		int nr = min(max_stack, (int)branch->nr);
2039		struct branch_entry be[nr];
2040		struct iterations iter[nr];
2041
2042		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2043			pr_warning("corrupted branch chain. skipping...\n");
2044			goto check_calls;
2045		}
2046
2047		for (i = 0; i < nr; i++) {
2048			if (callchain_param.order == ORDER_CALLEE) {
2049				be[i] = branch->entries[i];
2050
2051				if (chain == NULL)
2052					continue;
2053
2054				/*
2055				 * Check for overlap into the callchain.
2056				 * The return address is one off compared to
2057				 * the branch entry. To adjust for this
2058				 * assume the calling instruction is not longer
2059				 * than 8 bytes.
2060				 */
2061				if (i == skip_idx ||
2062				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2063					first_call++;
2064				else if (be[i].from < chain->ips[first_call] &&
2065				    be[i].from >= chain->ips[first_call] - 8)
2066					first_call++;
2067			} else
2068				be[i] = branch->entries[branch->nr - i - 1];
2069		}
2070
2071		memset(iter, 0, sizeof(struct iterations) * nr);
2072		nr = remove_loops(be, nr, iter);
2073
2074		for (i = 0; i < nr; i++) {
2075			err = add_callchain_ip(thread, cursor, parent,
2076					       root_al,
2077					       NULL, be[i].to,
2078					       true, &be[i].flags,
2079					       NULL, be[i].from);
2080
2081			if (!err)
2082				err = add_callchain_ip(thread, cursor, parent, root_al,
2083						       NULL, be[i].from,
2084						       true, &be[i].flags,
2085						       &iter[i], 0);
2086			if (err == -EINVAL)
2087				break;
2088			if (err)
2089				return err;
2090		}
2091
2092		if (chain_nr == 0)
2093			return 0;
2094
2095		chain_nr -= nr;
2096	}
2097
2098check_calls:
 
 
 
 
 
 
2099	for (i = first_call, nr_entries = 0;
2100	     i < chain_nr && nr_entries < max_stack; i++) {
2101		u64 ip;
2102
2103		if (callchain_param.order == ORDER_CALLEE)
2104			j = i;
2105		else
2106			j = chain->nr - i - 1;
2107
2108#ifdef HAVE_SKIP_CALLCHAIN_IDX
2109		if (j == skip_idx)
2110			continue;
2111#endif
2112		ip = chain->ips[j];
2113
2114		if (ip < PERF_CONTEXT_MAX)
2115                       ++nr_entries;
 
 
 
 
 
 
 
2116
2117		err = add_callchain_ip(thread, cursor, parent,
2118				       root_al, &cpumode, ip,
2119				       false, NULL, NULL, 0);
2120
2121		if (err)
2122			return (err < 0) ? err : 0;
2123	}
2124
2125	return 0;
2126}
2127
2128static int append_inlines(struct callchain_cursor *cursor,
2129			  struct map *map, struct symbol *sym, u64 ip)
2130{
2131	struct inline_node *inline_node;
2132	struct inline_list *ilist;
2133	u64 addr;
2134	int ret = 1;
2135
2136	if (!symbol_conf.inline_name || !map || !sym)
2137		return ret;
2138
2139	addr = map__rip_2objdump(map, ip);
 
2140
2141	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2142	if (!inline_node) {
2143		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2144		if (!inline_node)
2145			return ret;
2146		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2147	}
2148
2149	list_for_each_entry(ilist, &inline_node->val, list) {
2150		ret = callchain_cursor_append(cursor, ip, map,
2151					      ilist->symbol, false,
2152					      NULL, 0, 0, 0, ilist->srcline);
2153
2154		if (ret != 0)
2155			return ret;
2156	}
2157
2158	return ret;
2159}
2160
2161static int unwind_entry(struct unwind_entry *entry, void *arg)
2162{
2163	struct callchain_cursor *cursor = arg;
2164	const char *srcline = NULL;
 
2165
2166	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2167		return 0;
2168
2169	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2170		return 0;
2171
2172	srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
 
 
 
 
 
 
 
2173	return callchain_cursor_append(cursor, entry->ip,
2174				       entry->map, entry->sym,
2175				       false, NULL, 0, 0, 0, srcline);
2176}
2177
2178static int thread__resolve_callchain_unwind(struct thread *thread,
2179					    struct callchain_cursor *cursor,
2180					    struct perf_evsel *evsel,
2181					    struct perf_sample *sample,
2182					    int max_stack)
2183{
2184	/* Can we do dwarf post unwind? */
2185	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2186	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2187		return 0;
2188
2189	/* Bail out if nothing was captured. */
2190	if ((!sample->user_regs.regs) ||
2191	    (!sample->user_stack.size))
2192		return 0;
2193
2194	return unwind__get_entries(unwind_entry, cursor,
2195				   thread, sample, max_stack);
2196}
2197
2198int thread__resolve_callchain(struct thread *thread,
2199			      struct callchain_cursor *cursor,
2200			      struct perf_evsel *evsel,
2201			      struct perf_sample *sample,
2202			      struct symbol **parent,
2203			      struct addr_location *root_al,
2204			      int max_stack)
2205{
2206	int ret = 0;
2207
2208	callchain_cursor_reset(cursor);
2209
2210	if (callchain_param.order == ORDER_CALLEE) {
2211		ret = thread__resolve_callchain_sample(thread, cursor,
2212						       evsel, sample,
2213						       parent, root_al,
2214						       max_stack);
2215		if (ret)
2216			return ret;
2217		ret = thread__resolve_callchain_unwind(thread, cursor,
2218						       evsel, sample,
2219						       max_stack);
2220	} else {
2221		ret = thread__resolve_callchain_unwind(thread, cursor,
2222						       evsel, sample,
2223						       max_stack);
2224		if (ret)
2225			return ret;
2226		ret = thread__resolve_callchain_sample(thread, cursor,
2227						       evsel, sample,
2228						       parent, root_al,
2229						       max_stack);
2230	}
2231
2232	return ret;
2233}
2234
2235int machine__for_each_thread(struct machine *machine,
2236			     int (*fn)(struct thread *thread, void *p),
2237			     void *priv)
2238{
2239	struct threads *threads;
2240	struct rb_node *nd;
2241	struct thread *thread;
2242	int rc = 0;
2243	int i;
2244
2245	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2246		threads = &machine->threads[i];
2247		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
 
2248			thread = rb_entry(nd, struct thread, rb_node);
2249			rc = fn(thread, priv);
2250			if (rc != 0)
2251				return rc;
2252		}
2253
2254		list_for_each_entry(thread, &threads->dead, node) {
2255			rc = fn(thread, priv);
2256			if (rc != 0)
2257				return rc;
2258		}
2259	}
2260	return rc;
2261}
2262
2263int machines__for_each_thread(struct machines *machines,
2264			      int (*fn)(struct thread *thread, void *p),
2265			      void *priv)
2266{
2267	struct rb_node *nd;
2268	int rc = 0;
2269
2270	rc = machine__for_each_thread(&machines->host, fn, priv);
2271	if (rc != 0)
2272		return rc;
2273
2274	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2275		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2276
2277		rc = machine__for_each_thread(machine, fn, priv);
2278		if (rc != 0)
2279			return rc;
2280	}
2281	return rc;
2282}
2283
2284int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2285				  struct target *target, struct thread_map *threads,
2286				  perf_event__handler_t process, bool data_mmap,
2287				  unsigned int proc_map_timeout,
2288				  unsigned int nr_threads_synthesize)
2289{
2290	if (target__has_task(target))
2291		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2292	else if (target__has_cpu(target))
2293		return perf_event__synthesize_threads(tool, process,
2294						      machine, data_mmap,
2295						      proc_map_timeout,
2296						      nr_threads_synthesize);
2297	/* command specified */
2298	return 0;
2299}
2300
2301pid_t machine__get_current_tid(struct machine *machine, int cpu)
2302{
2303	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
 
 
2304		return -1;
2305
2306	return machine->current_tid[cpu];
2307}
2308
2309int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2310			     pid_t tid)
2311{
2312	struct thread *thread;
 
2313
2314	if (cpu < 0)
2315		return -EINVAL;
2316
2317	if (!machine->current_tid) {
2318		int i;
2319
2320		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2321		if (!machine->current_tid)
2322			return -ENOMEM;
2323		for (i = 0; i < MAX_NR_CPUS; i++)
2324			machine->current_tid[i] = -1;
2325	}
2326
2327	if (cpu >= MAX_NR_CPUS) {
2328		pr_err("Requested CPU %d too large. ", cpu);
2329		pr_err("Consider raising MAX_NR_CPUS\n");
2330		return -EINVAL;
2331	}
2332
2333	machine->current_tid[cpu] = tid;
2334
2335	thread = machine__findnew_thread(machine, pid, tid);
2336	if (!thread)
2337		return -ENOMEM;
2338
2339	thread->cpu = cpu;
2340	thread__put(thread);
2341
2342	return 0;
2343}
2344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345int machine__get_kernel_start(struct machine *machine)
2346{
2347	struct map *map = machine__kernel_map(machine);
2348	int err = 0;
2349
2350	/*
2351	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2352	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2353	 * all addresses including kernel addresses are less than 2^32.  In
2354	 * that case (32-bit system), if the kernel mapping is unknown, all
2355	 * addresses will be assumed to be in user space - see
2356	 * machine__kernel_ip().
2357	 */
2358	machine->kernel_start = 1ULL << 63;
2359	if (map) {
2360		err = map__load(map);
2361		if (!err)
 
 
 
 
 
2362			machine->kernel_start = map->start;
2363	}
2364	return err;
2365}
2366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2367struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2368{
2369	return dsos__findnew(&machine->dsos, filename);
2370}
2371
2372char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2373{
2374	struct machine *machine = vmachine;
2375	struct map *map;
2376	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2377
2378	if (sym == NULL)
2379		return NULL;
2380
2381	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2382	*addrp = map->unmap_ip(map, sym->start);
2383	return sym->name;
2384}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "srcline.h"
  20#include "symbol.h"
  21#include "sort.h"
  22#include "strlist.h"
  23#include "target.h"
  24#include "thread.h"
  25#include "util.h"
  26#include "vdso.h"
  27#include <stdbool.h>
  28#include <sys/types.h>
  29#include <sys/stat.h>
  30#include <unistd.h>
  31#include "unwind.h"
  32#include "linux/hash.h"
  33#include "asm/bug.h"
  34#include "bpf-event.h"
  35#include <internal/lib.h> // page_size
  36
  37#include <linux/ctype.h>
  38#include <symbol/kallsyms.h>
  39#include <linux/mman.h>
  40#include <linux/string.h>
  41#include <linux/zalloc.h>
  42
  43static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  44
  45static void dsos__init(struct dsos *dsos)
  46{
  47	INIT_LIST_HEAD(&dsos->head);
  48	dsos->root = RB_ROOT;
  49	init_rwsem(&dsos->lock);
  50}
  51
  52static void machine__threads_init(struct machine *machine)
  53{
  54	int i;
  55
  56	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  57		struct threads *threads = &machine->threads[i];
  58		threads->entries = RB_ROOT_CACHED;
  59		init_rwsem(&threads->lock);
  60		threads->nr = 0;
  61		INIT_LIST_HEAD(&threads->dead);
  62		threads->last_match = NULL;
  63	}
  64}
  65
  66static int machine__set_mmap_name(struct machine *machine)
  67{
  68	if (machine__is_host(machine))
  69		machine->mmap_name = strdup("[kernel.kallsyms]");
  70	else if (machine__is_default_guest(machine))
  71		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  72	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  73			  machine->pid) < 0)
  74		machine->mmap_name = NULL;
  75
  76	return machine->mmap_name ? 0 : -ENOMEM;
  77}
  78
  79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  80{
  81	int err = -ENOMEM;
  82
  83	memset(machine, 0, sizeof(*machine));
  84	map_groups__init(&machine->kmaps, machine);
  85	RB_CLEAR_NODE(&machine->rb_node);
  86	dsos__init(&machine->dsos);
  87
  88	machine__threads_init(machine);
  89
  90	machine->vdso_info = NULL;
  91	machine->env = NULL;
  92
  93	machine->pid = pid;
  94
  95	machine->id_hdr_size = 0;
  96	machine->kptr_restrict_warned = false;
  97	machine->comm_exec = false;
  98	machine->kernel_start = 0;
  99	machine->vmlinux_map = NULL;
 
 100
 101	machine->root_dir = strdup(root_dir);
 102	if (machine->root_dir == NULL)
 103		return -ENOMEM;
 104
 105	if (machine__set_mmap_name(machine))
 106		goto out;
 107
 108	if (pid != HOST_KERNEL_ID) {
 109		struct thread *thread = machine__findnew_thread(machine, -1,
 110								pid);
 111		char comm[64];
 112
 113		if (thread == NULL)
 114			goto out;
 115
 116		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 117		thread__set_comm(thread, comm, 0);
 118		thread__put(thread);
 119	}
 120
 121	machine->current_tid = NULL;
 122	err = 0;
 123
 124out:
 125	if (err) {
 126		zfree(&machine->root_dir);
 127		zfree(&machine->mmap_name);
 128	}
 129	return 0;
 130}
 131
 132struct machine *machine__new_host(void)
 133{
 134	struct machine *machine = malloc(sizeof(*machine));
 135
 136	if (machine != NULL) {
 137		machine__init(machine, "", HOST_KERNEL_ID);
 138
 139		if (machine__create_kernel_maps(machine) < 0)
 140			goto out_delete;
 141	}
 142
 143	return machine;
 144out_delete:
 145	free(machine);
 146	return NULL;
 147}
 148
 149struct machine *machine__new_kallsyms(void)
 150{
 151	struct machine *machine = machine__new_host();
 152	/*
 153	 * FIXME:
 154	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 
 
 155	 *    ask for not using the kcore parsing code, once this one is fixed
 156	 *    to create a map per module.
 157	 */
 158	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 159		machine__delete(machine);
 160		machine = NULL;
 161	}
 162
 163	return machine;
 164}
 165
 166static void dsos__purge(struct dsos *dsos)
 167{
 168	struct dso *pos, *n;
 169
 170	down_write(&dsos->lock);
 171
 172	list_for_each_entry_safe(pos, n, &dsos->head, node) {
 173		RB_CLEAR_NODE(&pos->rb_node);
 174		pos->root = NULL;
 175		list_del_init(&pos->node);
 176		dso__put(pos);
 177	}
 178
 179	up_write(&dsos->lock);
 180}
 181
 182static void dsos__exit(struct dsos *dsos)
 183{
 184	dsos__purge(dsos);
 185	exit_rwsem(&dsos->lock);
 186}
 187
 188void machine__delete_threads(struct machine *machine)
 189{
 190	struct rb_node *nd;
 191	int i;
 192
 193	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 194		struct threads *threads = &machine->threads[i];
 195		down_write(&threads->lock);
 196		nd = rb_first_cached(&threads->entries);
 197		while (nd) {
 198			struct thread *t = rb_entry(nd, struct thread, rb_node);
 199
 200			nd = rb_next(nd);
 201			__machine__remove_thread(machine, t, false);
 202		}
 203		up_write(&threads->lock);
 204	}
 205}
 206
 207void machine__exit(struct machine *machine)
 208{
 209	int i;
 210
 211	if (machine == NULL)
 212		return;
 213
 214	machine__destroy_kernel_maps(machine);
 215	map_groups__exit(&machine->kmaps);
 216	dsos__exit(&machine->dsos);
 217	machine__exit_vdso(machine);
 218	zfree(&machine->root_dir);
 219	zfree(&machine->mmap_name);
 220	zfree(&machine->current_tid);
 221
 222	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 223		struct threads *threads = &machine->threads[i];
 224		struct thread *thread, *n;
 225		/*
 226		 * Forget about the dead, at this point whatever threads were
 227		 * left in the dead lists better have a reference count taken
 228		 * by who is using them, and then, when they drop those references
 229		 * and it finally hits zero, thread__put() will check and see that
 230		 * its not in the dead threads list and will not try to remove it
 231		 * from there, just calling thread__delete() straight away.
 232		 */
 233		list_for_each_entry_safe(thread, n, &threads->dead, node)
 234			list_del_init(&thread->node);
 235
 236		exit_rwsem(&threads->lock);
 237	}
 238}
 239
 240void machine__delete(struct machine *machine)
 241{
 242	if (machine) {
 243		machine__exit(machine);
 244		free(machine);
 245	}
 246}
 247
 248void machines__init(struct machines *machines)
 249{
 250	machine__init(&machines->host, "", HOST_KERNEL_ID);
 251	machines->guests = RB_ROOT_CACHED;
 252}
 253
 254void machines__exit(struct machines *machines)
 255{
 256	machine__exit(&machines->host);
 257	/* XXX exit guest */
 258}
 259
 260struct machine *machines__add(struct machines *machines, pid_t pid,
 261			      const char *root_dir)
 262{
 263	struct rb_node **p = &machines->guests.rb_root.rb_node;
 264	struct rb_node *parent = NULL;
 265	struct machine *pos, *machine = malloc(sizeof(*machine));
 266	bool leftmost = true;
 267
 268	if (machine == NULL)
 269		return NULL;
 270
 271	if (machine__init(machine, root_dir, pid) != 0) {
 272		free(machine);
 273		return NULL;
 274	}
 275
 276	while (*p != NULL) {
 277		parent = *p;
 278		pos = rb_entry(parent, struct machine, rb_node);
 279		if (pid < pos->pid)
 280			p = &(*p)->rb_left;
 281		else {
 282			p = &(*p)->rb_right;
 283			leftmost = false;
 284		}
 285	}
 286
 287	rb_link_node(&machine->rb_node, parent, p);
 288	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 289
 290	return machine;
 291}
 292
 293void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 294{
 295	struct rb_node *nd;
 296
 297	machines->host.comm_exec = comm_exec;
 298
 299	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 300		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 301
 302		machine->comm_exec = comm_exec;
 303	}
 304}
 305
 306struct machine *machines__find(struct machines *machines, pid_t pid)
 307{
 308	struct rb_node **p = &machines->guests.rb_root.rb_node;
 309	struct rb_node *parent = NULL;
 310	struct machine *machine;
 311	struct machine *default_machine = NULL;
 312
 313	if (pid == HOST_KERNEL_ID)
 314		return &machines->host;
 315
 316	while (*p != NULL) {
 317		parent = *p;
 318		machine = rb_entry(parent, struct machine, rb_node);
 319		if (pid < machine->pid)
 320			p = &(*p)->rb_left;
 321		else if (pid > machine->pid)
 322			p = &(*p)->rb_right;
 323		else
 324			return machine;
 325		if (!machine->pid)
 326			default_machine = machine;
 327	}
 328
 329	return default_machine;
 330}
 331
 332struct machine *machines__findnew(struct machines *machines, pid_t pid)
 333{
 334	char path[PATH_MAX];
 335	const char *root_dir = "";
 336	struct machine *machine = machines__find(machines, pid);
 337
 338	if (machine && (machine->pid == pid))
 339		goto out;
 340
 341	if ((pid != HOST_KERNEL_ID) &&
 342	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 343	    (symbol_conf.guestmount)) {
 344		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 345		if (access(path, R_OK)) {
 346			static struct strlist *seen;
 347
 348			if (!seen)
 349				seen = strlist__new(NULL, NULL);
 350
 351			if (!strlist__has_entry(seen, path)) {
 352				pr_err("Can't access file %s\n", path);
 353				strlist__add(seen, path);
 354			}
 355			machine = NULL;
 356			goto out;
 357		}
 358		root_dir = path;
 359	}
 360
 361	machine = machines__add(machines, pid, root_dir);
 362out:
 363	return machine;
 364}
 365
 366void machines__process_guests(struct machines *machines,
 367			      machine__process_t process, void *data)
 368{
 369	struct rb_node *nd;
 370
 371	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 372		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 373		process(pos, data);
 374	}
 375}
 376
 377void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 378{
 379	struct rb_node *node;
 380	struct machine *machine;
 381
 382	machines->host.id_hdr_size = id_hdr_size;
 383
 384	for (node = rb_first_cached(&machines->guests); node;
 385	     node = rb_next(node)) {
 386		machine = rb_entry(node, struct machine, rb_node);
 387		machine->id_hdr_size = id_hdr_size;
 388	}
 389
 390	return;
 391}
 392
 393static void machine__update_thread_pid(struct machine *machine,
 394				       struct thread *th, pid_t pid)
 395{
 396	struct thread *leader;
 397
 398	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 399		return;
 400
 401	th->pid_ = pid;
 402
 403	if (th->pid_ == th->tid)
 404		return;
 405
 406	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 407	if (!leader)
 408		goto out_err;
 409
 410	if (!leader->mg)
 411		leader->mg = map_groups__new(machine);
 412
 413	if (!leader->mg)
 414		goto out_err;
 415
 416	if (th->mg == leader->mg)
 417		return;
 418
 419	if (th->mg) {
 420		/*
 421		 * Maps are created from MMAP events which provide the pid and
 422		 * tid.  Consequently there never should be any maps on a thread
 423		 * with an unknown pid.  Just print an error if there are.
 424		 */
 425		if (!map_groups__empty(th->mg))
 426			pr_err("Discarding thread maps for %d:%d\n",
 427			       th->pid_, th->tid);
 428		map_groups__put(th->mg);
 429	}
 430
 431	th->mg = map_groups__get(leader->mg);
 432out_put:
 433	thread__put(leader);
 434	return;
 435out_err:
 436	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 437	goto out_put;
 438}
 439
 440/*
 441 * Front-end cache - TID lookups come in blocks,
 442 * so most of the time we dont have to look up
 443 * the full rbtree:
 444 */
 445static struct thread*
 446__threads__get_last_match(struct threads *threads, struct machine *machine,
 447			  int pid, int tid)
 
 448{
 
 
 449	struct thread *th;
 450
 
 
 
 
 
 451	th = threads->last_match;
 452	if (th != NULL) {
 453		if (th->tid == tid) {
 454			machine__update_thread_pid(machine, th, pid);
 455			return thread__get(th);
 456		}
 457
 458		threads->last_match = NULL;
 459	}
 460
 461	return NULL;
 462}
 463
 464static struct thread*
 465threads__get_last_match(struct threads *threads, struct machine *machine,
 466			int pid, int tid)
 467{
 468	struct thread *th = NULL;
 469
 470	if (perf_singlethreaded)
 471		th = __threads__get_last_match(threads, machine, pid, tid);
 472
 473	return th;
 474}
 475
 476static void
 477__threads__set_last_match(struct threads *threads, struct thread *th)
 478{
 479	threads->last_match = th;
 480}
 481
 482static void
 483threads__set_last_match(struct threads *threads, struct thread *th)
 484{
 485	if (perf_singlethreaded)
 486		__threads__set_last_match(threads, th);
 487}
 488
 489/*
 490 * Caller must eventually drop thread->refcnt returned with a successful
 491 * lookup/new thread inserted.
 492 */
 493static struct thread *____machine__findnew_thread(struct machine *machine,
 494						  struct threads *threads,
 495						  pid_t pid, pid_t tid,
 496						  bool create)
 497{
 498	struct rb_node **p = &threads->entries.rb_root.rb_node;
 499	struct rb_node *parent = NULL;
 500	struct thread *th;
 501	bool leftmost = true;
 502
 503	th = threads__get_last_match(threads, machine, pid, tid);
 504	if (th)
 505		return th;
 506
 507	while (*p != NULL) {
 508		parent = *p;
 509		th = rb_entry(parent, struct thread, rb_node);
 510
 511		if (th->tid == tid) {
 512			threads__set_last_match(threads, th);
 513			machine__update_thread_pid(machine, th, pid);
 514			return thread__get(th);
 515		}
 516
 517		if (tid < th->tid)
 518			p = &(*p)->rb_left;
 519		else {
 520			p = &(*p)->rb_right;
 521			leftmost = false;
 522		}
 523	}
 524
 525	if (!create)
 526		return NULL;
 527
 528	th = thread__new(pid, tid);
 529	if (th != NULL) {
 530		rb_link_node(&th->rb_node, parent, p);
 531		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 532
 533		/*
 534		 * We have to initialize map_groups separately
 535		 * after rb tree is updated.
 536		 *
 537		 * The reason is that we call machine__findnew_thread
 538		 * within thread__init_map_groups to find the thread
 539		 * leader and that would screwed the rb tree.
 540		 */
 541		if (thread__init_map_groups(th, machine)) {
 542			rb_erase_cached(&th->rb_node, &threads->entries);
 543			RB_CLEAR_NODE(&th->rb_node);
 544			thread__put(th);
 545			return NULL;
 546		}
 547		/*
 548		 * It is now in the rbtree, get a ref
 549		 */
 550		thread__get(th);
 551		threads__set_last_match(threads, th);
 552		++threads->nr;
 553	}
 554
 555	return th;
 556}
 557
 558struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 559{
 560	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 561}
 562
 563struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 564				       pid_t tid)
 565{
 566	struct threads *threads = machine__threads(machine, tid);
 567	struct thread *th;
 568
 569	down_write(&threads->lock);
 570	th = __machine__findnew_thread(machine, pid, tid);
 571	up_write(&threads->lock);
 572	return th;
 573}
 574
 575struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 576				    pid_t tid)
 577{
 578	struct threads *threads = machine__threads(machine, tid);
 579	struct thread *th;
 580
 581	down_read(&threads->lock);
 582	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 583	up_read(&threads->lock);
 584	return th;
 585}
 586
 587struct comm *machine__thread_exec_comm(struct machine *machine,
 588				       struct thread *thread)
 589{
 590	if (machine->comm_exec)
 591		return thread__exec_comm(thread);
 592	else
 593		return thread__comm(thread);
 594}
 595
 596int machine__process_comm_event(struct machine *machine, union perf_event *event,
 597				struct perf_sample *sample)
 598{
 599	struct thread *thread = machine__findnew_thread(machine,
 600							event->comm.pid,
 601							event->comm.tid);
 602	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 603	int err = 0;
 604
 605	if (exec)
 606		machine->comm_exec = true;
 607
 608	if (dump_trace)
 609		perf_event__fprintf_comm(event, stdout);
 610
 611	if (thread == NULL ||
 612	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 613		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 614		err = -1;
 615	}
 616
 617	thread__put(thread);
 618
 619	return err;
 620}
 621
 622int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 623				      union perf_event *event,
 624				      struct perf_sample *sample __maybe_unused)
 625{
 626	struct thread *thread = machine__findnew_thread(machine,
 627							event->namespaces.pid,
 628							event->namespaces.tid);
 629	int err = 0;
 630
 631	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 632		  "\nWARNING: kernel seems to support more namespaces than perf"
 633		  " tool.\nTry updating the perf tool..\n\n");
 634
 635	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 636		  "\nWARNING: perf tool seems to support more namespaces than"
 637		  " the kernel.\nTry updating the kernel..\n\n");
 638
 639	if (dump_trace)
 640		perf_event__fprintf_namespaces(event, stdout);
 641
 642	if (thread == NULL ||
 643	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 644		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 645		err = -1;
 646	}
 647
 648	thread__put(thread);
 649
 650	return err;
 651}
 652
 653int machine__process_lost_event(struct machine *machine __maybe_unused,
 654				union perf_event *event, struct perf_sample *sample __maybe_unused)
 655{
 656	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 657		    event->lost.id, event->lost.lost);
 658	return 0;
 659}
 660
 661int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 662					union perf_event *event, struct perf_sample *sample)
 663{
 664	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 665		    sample->id, event->lost_samples.lost);
 666	return 0;
 667}
 668
 669static struct dso *machine__findnew_module_dso(struct machine *machine,
 670					       struct kmod_path *m,
 671					       const char *filename)
 672{
 673	struct dso *dso;
 674
 675	down_write(&machine->dsos.lock);
 676
 677	dso = __dsos__find(&machine->dsos, m->name, true);
 678	if (!dso) {
 679		dso = __dsos__addnew(&machine->dsos, m->name);
 680		if (dso == NULL)
 681			goto out_unlock;
 682
 683		dso__set_module_info(dso, m, machine);
 684		dso__set_long_name(dso, strdup(filename), true);
 685	}
 686
 687	dso__get(dso);
 688out_unlock:
 689	up_write(&machine->dsos.lock);
 690	return dso;
 691}
 692
 693int machine__process_aux_event(struct machine *machine __maybe_unused,
 694			       union perf_event *event)
 695{
 696	if (dump_trace)
 697		perf_event__fprintf_aux(event, stdout);
 698	return 0;
 699}
 700
 701int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 702					union perf_event *event)
 703{
 704	if (dump_trace)
 705		perf_event__fprintf_itrace_start(event, stdout);
 706	return 0;
 707}
 708
 709int machine__process_switch_event(struct machine *machine __maybe_unused,
 710				  union perf_event *event)
 711{
 712	if (dump_trace)
 713		perf_event__fprintf_switch(event, stdout);
 714	return 0;
 715}
 716
 717static int machine__process_ksymbol_register(struct machine *machine,
 718					     union perf_event *event,
 719					     struct perf_sample *sample __maybe_unused)
 720{
 721	struct symbol *sym;
 722	struct map *map;
 723
 724	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 725	if (!map) {
 726		map = dso__new_map(event->ksymbol.name);
 727		if (!map)
 728			return -ENOMEM;
 729
 730		map->start = event->ksymbol.addr;
 731		map->end = map->start + event->ksymbol.len;
 732		map_groups__insert(&machine->kmaps, map);
 733	}
 734
 735	sym = symbol__new(map->map_ip(map, map->start),
 736			  event->ksymbol.len,
 737			  0, 0, event->ksymbol.name);
 738	if (!sym)
 739		return -ENOMEM;
 740	dso__insert_symbol(map->dso, sym);
 741	return 0;
 742}
 743
 744static int machine__process_ksymbol_unregister(struct machine *machine,
 745					       union perf_event *event,
 746					       struct perf_sample *sample __maybe_unused)
 747{
 748	struct map *map;
 749
 750	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 751	if (map)
 752		map_groups__remove(&machine->kmaps, map);
 753
 754	return 0;
 755}
 756
 757int machine__process_ksymbol(struct machine *machine __maybe_unused,
 758			     union perf_event *event,
 759			     struct perf_sample *sample)
 760{
 761	if (dump_trace)
 762		perf_event__fprintf_ksymbol(event, stdout);
 763
 764	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 765		return machine__process_ksymbol_unregister(machine, event,
 766							   sample);
 767	return machine__process_ksymbol_register(machine, event, sample);
 768}
 769
 770static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 771{
 772	const char *dup_filename;
 773
 774	if (!filename || !dso || !dso->long_name)
 775		return;
 776	if (dso->long_name[0] != '[')
 777		return;
 778	if (!strchr(filename, '/'))
 779		return;
 780
 781	dup_filename = strdup(filename);
 782	if (!dup_filename)
 783		return;
 784
 785	dso__set_long_name(dso, dup_filename, true);
 786}
 787
 788struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 789					const char *filename)
 790{
 791	struct map *map = NULL;
 792	struct dso *dso = NULL;
 793	struct kmod_path m;
 794
 795	if (kmod_path__parse_name(&m, filename))
 796		return NULL;
 797
 798	map = map_groups__find_by_name(&machine->kmaps, m.name);
 
 799	if (map) {
 800		/*
 801		 * If the map's dso is an offline module, give dso__load()
 802		 * a chance to find the file path of that module by fixing
 803		 * long_name.
 804		 */
 805		dso__adjust_kmod_long_name(map->dso, filename);
 806		goto out;
 807	}
 808
 809	dso = machine__findnew_module_dso(machine, &m, filename);
 810	if (dso == NULL)
 811		goto out;
 812
 813	map = map__new2(start, dso);
 814	if (map == NULL)
 815		goto out;
 816
 817	map_groups__insert(&machine->kmaps, map);
 818
 819	/* Put the map here because map_groups__insert alread got it */
 820	map__put(map);
 821out:
 822	/* put the dso here, corresponding to  machine__findnew_module_dso */
 823	dso__put(dso);
 824	zfree(&m.name);
 825	return map;
 826}
 827
 828size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 829{
 830	struct rb_node *nd;
 831	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 832
 833	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 834		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 835		ret += __dsos__fprintf(&pos->dsos.head, fp);
 836	}
 837
 838	return ret;
 839}
 840
 841size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 842				     bool (skip)(struct dso *dso, int parm), int parm)
 843{
 844	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 845}
 846
 847size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 848				     bool (skip)(struct dso *dso, int parm), int parm)
 849{
 850	struct rb_node *nd;
 851	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 852
 853	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 854		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 855		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 856	}
 857	return ret;
 858}
 859
 860size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 861{
 862	int i;
 863	size_t printed = 0;
 864	struct dso *kdso = machine__kernel_map(machine)->dso;
 865
 866	if (kdso->has_build_id) {
 867		char filename[PATH_MAX];
 868		if (dso__build_id_filename(kdso, filename, sizeof(filename),
 869					   false))
 870			printed += fprintf(fp, "[0] %s\n", filename);
 871	}
 872
 873	for (i = 0; i < vmlinux_path__nr_entries; ++i)
 874		printed += fprintf(fp, "[%d] %s\n",
 875				   i + kdso->has_build_id, vmlinux_path[i]);
 876
 877	return printed;
 878}
 879
 880size_t machine__fprintf(struct machine *machine, FILE *fp)
 881{
 882	struct rb_node *nd;
 883	size_t ret;
 884	int i;
 885
 886	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 887		struct threads *threads = &machine->threads[i];
 888
 889		down_read(&threads->lock);
 890
 891		ret = fprintf(fp, "Threads: %u\n", threads->nr);
 892
 893		for (nd = rb_first_cached(&threads->entries); nd;
 894		     nd = rb_next(nd)) {
 895			struct thread *pos = rb_entry(nd, struct thread, rb_node);
 896
 897			ret += thread__fprintf(pos, fp);
 898		}
 899
 900		up_read(&threads->lock);
 901	}
 902	return ret;
 903}
 904
 905static struct dso *machine__get_kernel(struct machine *machine)
 906{
 907	const char *vmlinux_name = machine->mmap_name;
 908	struct dso *kernel;
 909
 910	if (machine__is_host(machine)) {
 911		if (symbol_conf.vmlinux_name)
 912			vmlinux_name = symbol_conf.vmlinux_name;
 913
 914		kernel = machine__findnew_kernel(machine, vmlinux_name,
 915						 "[kernel]", DSO_TYPE_KERNEL);
 916	} else {
 917		if (symbol_conf.default_guest_vmlinux_name)
 918			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 919
 920		kernel = machine__findnew_kernel(machine, vmlinux_name,
 921						 "[guest.kernel]",
 922						 DSO_TYPE_GUEST_KERNEL);
 923	}
 924
 925	if (kernel != NULL && (!kernel->has_build_id))
 926		dso__read_running_kernel_build_id(kernel, machine);
 927
 928	return kernel;
 929}
 930
 931struct process_args {
 932	u64 start;
 933};
 934
 935void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 936				    size_t bufsz)
 937{
 938	if (machine__is_default_guest(machine))
 939		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 940	else
 941		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 942}
 943
 944const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 945
 946/* Figure out the start address of kernel map from /proc/kallsyms.
 947 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 948 * symbol_name if it's not that important.
 949 */
 950static int machine__get_running_kernel_start(struct machine *machine,
 951					     const char **symbol_name,
 952					     u64 *start, u64 *end)
 953{
 954	char filename[PATH_MAX];
 955	int i, err = -1;
 956	const char *name;
 957	u64 addr = 0;
 958
 959	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 960
 961	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 962		return 0;
 963
 964	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 965		err = kallsyms__get_function_start(filename, name, &addr);
 966		if (!err)
 967			break;
 968	}
 969
 970	if (err)
 971		return -1;
 972
 973	if (symbol_name)
 974		*symbol_name = name;
 975
 976	*start = addr;
 977
 978	err = kallsyms__get_function_start(filename, "_etext", &addr);
 979	if (!err)
 980		*end = addr;
 981
 982	return 0;
 983}
 984
 985int machine__create_extra_kernel_map(struct machine *machine,
 986				     struct dso *kernel,
 987				     struct extra_kernel_map *xm)
 988{
 989	struct kmap *kmap;
 990	struct map *map;
 991
 992	map = map__new2(xm->start, kernel);
 993	if (!map)
 994		return -1;
 995
 996	map->end   = xm->end;
 997	map->pgoff = xm->pgoff;
 998
 999	kmap = map__kmap(map);
1000
1001	kmap->kmaps = &machine->kmaps;
1002	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1003
1004	map_groups__insert(&machine->kmaps, map);
1005
1006	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1007		  kmap->name, map->start, map->end);
1008
1009	map__put(map);
1010
1011	return 0;
1012}
1013
1014static u64 find_entry_trampoline(struct dso *dso)
1015{
1016	/* Duplicates are removed so lookup all aliases */
1017	const char *syms[] = {
1018		"_entry_trampoline",
1019		"__entry_trampoline_start",
1020		"entry_SYSCALL_64_trampoline",
1021	};
1022	struct symbol *sym = dso__first_symbol(dso);
1023	unsigned int i;
1024
1025	for (; sym; sym = dso__next_symbol(sym)) {
1026		if (sym->binding != STB_GLOBAL)
1027			continue;
1028		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1029			if (!strcmp(sym->name, syms[i]))
1030				return sym->start;
1031		}
1032	}
1033
1034	return 0;
1035}
1036
1037/*
1038 * These values can be used for kernels that do not have symbols for the entry
1039 * trampolines in kallsyms.
1040 */
1041#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1042#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1043#define X86_64_ENTRY_TRAMPOLINE		0x6000
1044
1045/* Map x86_64 PTI entry trampolines */
1046int machine__map_x86_64_entry_trampolines(struct machine *machine,
1047					  struct dso *kernel)
1048{
1049	struct map_groups *kmaps = &machine->kmaps;
1050	struct maps *maps = &kmaps->maps;
1051	int nr_cpus_avail, cpu;
1052	bool found = false;
1053	struct map *map;
1054	u64 pgoff;
1055
1056	/*
1057	 * In the vmlinux case, pgoff is a virtual address which must now be
1058	 * mapped to a vmlinux offset.
1059	 */
1060	for (map = maps__first(maps); map; map = map__next(map)) {
1061		struct kmap *kmap = __map__kmap(map);
1062		struct map *dest_map;
1063
1064		if (!kmap || !is_entry_trampoline(kmap->name))
1065			continue;
1066
1067		dest_map = map_groups__find(kmaps, map->pgoff);
1068		if (dest_map != map)
1069			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1070		found = true;
1071	}
1072	if (found || machine->trampolines_mapped)
1073		return 0;
1074
1075	pgoff = find_entry_trampoline(kernel);
1076	if (!pgoff)
1077		return 0;
1078
1079	nr_cpus_avail = machine__nr_cpus_avail(machine);
1080
1081	/* Add a 1 page map for each CPU's entry trampoline */
1082	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1083		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1084			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1085			 X86_64_ENTRY_TRAMPOLINE;
1086		struct extra_kernel_map xm = {
1087			.start = va,
1088			.end   = va + page_size,
1089			.pgoff = pgoff,
1090		};
1091
1092		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1093
1094		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1095			return -1;
1096	}
1097
1098	machine->trampolines_mapped = nr_cpus_avail;
1099
1100	return 0;
1101}
1102
1103int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1104					     struct dso *kernel __maybe_unused)
1105{
1106	return 0;
1107}
1108
1109static int
1110__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1111{
1112	struct kmap *kmap;
1113	struct map *map;
1114
1115	/* In case of renewal the kernel map, destroy previous one */
1116	machine__destroy_kernel_maps(machine);
1117
1118	machine->vmlinux_map = map__new2(0, kernel);
1119	if (machine->vmlinux_map == NULL)
1120		return -1;
 
 
 
 
1121
1122	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1123	map = machine__kernel_map(machine);
1124	kmap = map__kmap(map);
1125	if (!kmap)
1126		return -1;
 
 
1127
1128	kmap->kmaps = &machine->kmaps;
1129	map_groups__insert(&machine->kmaps, map);
 
1130
1131	return 0;
1132}
1133
1134void machine__destroy_kernel_maps(struct machine *machine)
1135{
1136	struct kmap *kmap;
1137	struct map *map = machine__kernel_map(machine);
 
 
 
 
 
 
1138
1139	if (map == NULL)
1140		return;
 
 
 
 
 
 
 
 
 
 
 
1141
1142	kmap = map__kmap(map);
1143	map_groups__remove(&machine->kmaps, map);
1144	if (kmap && kmap->ref_reloc_sym) {
1145		zfree((char **)&kmap->ref_reloc_sym->name);
1146		zfree(&kmap->ref_reloc_sym);
1147	}
1148
1149	map__zput(machine->vmlinux_map);
1150}
1151
1152int machines__create_guest_kernel_maps(struct machines *machines)
1153{
1154	int ret = 0;
1155	struct dirent **namelist = NULL;
1156	int i, items = 0;
1157	char path[PATH_MAX];
1158	pid_t pid;
1159	char *endp;
1160
1161	if (symbol_conf.default_guest_vmlinux_name ||
1162	    symbol_conf.default_guest_modules ||
1163	    symbol_conf.default_guest_kallsyms) {
1164		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1165	}
1166
1167	if (symbol_conf.guestmount) {
1168		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1169		if (items <= 0)
1170			return -ENOENT;
1171		for (i = 0; i < items; i++) {
1172			if (!isdigit(namelist[i]->d_name[0])) {
1173				/* Filter out . and .. */
1174				continue;
1175			}
1176			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1177			if ((*endp != '\0') ||
1178			    (endp == namelist[i]->d_name) ||
1179			    (errno == ERANGE)) {
1180				pr_debug("invalid directory (%s). Skipping.\n",
1181					 namelist[i]->d_name);
1182				continue;
1183			}
1184			sprintf(path, "%s/%s/proc/kallsyms",
1185				symbol_conf.guestmount,
1186				namelist[i]->d_name);
1187			ret = access(path, R_OK);
1188			if (ret) {
1189				pr_debug("Can't access file %s\n", path);
1190				goto failure;
1191			}
1192			machines__create_kernel_maps(machines, pid);
1193		}
1194failure:
1195		free(namelist);
1196	}
1197
1198	return ret;
1199}
1200
1201void machines__destroy_kernel_maps(struct machines *machines)
1202{
1203	struct rb_node *next = rb_first_cached(&machines->guests);
1204
1205	machine__destroy_kernel_maps(&machines->host);
1206
1207	while (next) {
1208		struct machine *pos = rb_entry(next, struct machine, rb_node);
1209
1210		next = rb_next(&pos->rb_node);
1211		rb_erase_cached(&pos->rb_node, &machines->guests);
1212		machine__delete(pos);
1213	}
1214}
1215
1216int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217{
1218	struct machine *machine = machines__findnew(machines, pid);
1219
1220	if (machine == NULL)
1221		return -1;
1222
1223	return machine__create_kernel_maps(machine);
1224}
1225
1226int machine__load_kallsyms(struct machine *machine, const char *filename)
 
1227{
1228	struct map *map = machine__kernel_map(machine);
1229	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1230
1231	if (ret > 0) {
1232		dso__set_loaded(map->dso);
1233		/*
1234		 * Since /proc/kallsyms will have multiple sessions for the
1235		 * kernel, with modules between them, fixup the end of all
1236		 * sections.
1237		 */
1238		map_groups__fixup_end(&machine->kmaps);
1239	}
1240
1241	return ret;
1242}
1243
1244int machine__load_vmlinux_path(struct machine *machine)
1245{
1246	struct map *map = machine__kernel_map(machine);
1247	int ret = dso__load_vmlinux_path(map->dso, map);
1248
1249	if (ret > 0)
1250		dso__set_loaded(map->dso);
1251
1252	return ret;
1253}
1254
1255static char *get_kernel_version(const char *root_dir)
1256{
1257	char version[PATH_MAX];
1258	FILE *file;
1259	char *name, *tmp;
1260	const char *prefix = "Linux version ";
1261
1262	sprintf(version, "%s/proc/version", root_dir);
1263	file = fopen(version, "r");
1264	if (!file)
1265		return NULL;
1266
 
1267	tmp = fgets(version, sizeof(version), file);
1268	fclose(file);
1269	if (!tmp)
1270		return NULL;
1271
1272	name = strstr(version, prefix);
1273	if (!name)
1274		return NULL;
1275	name += strlen(prefix);
1276	tmp = strchr(name, ' ');
1277	if (tmp)
1278		*tmp = '\0';
1279
1280	return strdup(name);
1281}
1282
1283static bool is_kmod_dso(struct dso *dso)
1284{
1285	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1286	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1287}
1288
1289static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1290				       struct kmod_path *m)
1291{
 
1292	char *long_name;
1293	struct map *map = map_groups__find_by_name(mg, m->name);
1294
 
1295	if (map == NULL)
1296		return 0;
1297
1298	long_name = strdup(path);
1299	if (long_name == NULL)
1300		return -ENOMEM;
1301
1302	dso__set_long_name(map->dso, long_name, true);
1303	dso__kernel_module_get_build_id(map->dso, "");
1304
1305	/*
1306	 * Full name could reveal us kmod compression, so
1307	 * we need to update the symtab_type if needed.
1308	 */
1309	if (m->comp && is_kmod_dso(map->dso)) {
1310		map->dso->symtab_type++;
1311		map->dso->comp = m->comp;
1312	}
1313
1314	return 0;
1315}
1316
1317static int map_groups__set_modules_path_dir(struct map_groups *mg,
1318				const char *dir_name, int depth)
1319{
1320	struct dirent *dent;
1321	DIR *dir = opendir(dir_name);
1322	int ret = 0;
1323
1324	if (!dir) {
1325		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1326		return -1;
1327	}
1328
1329	while ((dent = readdir(dir)) != NULL) {
1330		char path[PATH_MAX];
1331		struct stat st;
1332
1333		/*sshfs might return bad dent->d_type, so we have to stat*/
1334		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1335		if (stat(path, &st))
1336			continue;
1337
1338		if (S_ISDIR(st.st_mode)) {
1339			if (!strcmp(dent->d_name, ".") ||
1340			    !strcmp(dent->d_name, ".."))
1341				continue;
1342
1343			/* Do not follow top-level source and build symlinks */
1344			if (depth == 0) {
1345				if (!strcmp(dent->d_name, "source") ||
1346				    !strcmp(dent->d_name, "build"))
1347					continue;
1348			}
1349
1350			ret = map_groups__set_modules_path_dir(mg, path,
1351							       depth + 1);
1352			if (ret < 0)
1353				goto out;
1354		} else {
1355			struct kmod_path m;
1356
1357			ret = kmod_path__parse_name(&m, dent->d_name);
1358			if (ret)
1359				goto out;
1360
1361			if (m.kmod)
1362				ret = map_groups__set_module_path(mg, path, &m);
1363
1364			zfree(&m.name);
1365
1366			if (ret)
1367				goto out;
1368		}
1369	}
1370
1371out:
1372	closedir(dir);
1373	return ret;
1374}
1375
1376static int machine__set_modules_path(struct machine *machine)
1377{
1378	char *version;
1379	char modules_path[PATH_MAX];
1380
1381	version = get_kernel_version(machine->root_dir);
1382	if (!version)
1383		return -1;
1384
1385	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1386		 machine->root_dir, version);
1387	free(version);
1388
1389	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1390}
1391int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1392				u64 *size __maybe_unused,
1393				const char *name __maybe_unused)
1394{
1395	return 0;
1396}
1397
1398static int machine__create_module(void *arg, const char *name, u64 start,
1399				  u64 size)
1400{
1401	struct machine *machine = arg;
1402	struct map *map;
1403
1404	if (arch__fix_module_text_start(&start, &size, name) < 0)
1405		return -1;
1406
1407	map = machine__findnew_module_map(machine, start, name);
1408	if (map == NULL)
1409		return -1;
1410	map->end = start + size;
1411
1412	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1413
1414	return 0;
1415}
1416
1417static int machine__create_modules(struct machine *machine)
1418{
1419	const char *modules;
1420	char path[PATH_MAX];
1421
1422	if (machine__is_default_guest(machine)) {
1423		modules = symbol_conf.default_guest_modules;
1424	} else {
1425		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1426		modules = path;
1427	}
1428
1429	if (symbol__restricted_filename(modules, "/proc/modules"))
1430		return -1;
1431
1432	if (modules__parse(modules, machine, machine__create_module))
1433		return -1;
1434
1435	if (!machine__set_modules_path(machine))
1436		return 0;
1437
1438	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1439
1440	return 0;
1441}
1442
1443static void machine__set_kernel_mmap(struct machine *machine,
1444				     u64 start, u64 end)
1445{
1446	machine->vmlinux_map->start = start;
1447	machine->vmlinux_map->end   = end;
1448	/*
1449	 * Be a bit paranoid here, some perf.data file came with
1450	 * a zero sized synthesized MMAP event for the kernel.
1451	 */
1452	if (start == 0 && end == 0)
1453		machine->vmlinux_map->end = ~0ULL;
1454}
1455
1456static void machine__update_kernel_mmap(struct machine *machine,
1457				     u64 start, u64 end)
1458{
1459	struct map *map = machine__kernel_map(machine);
1460
1461	map__get(map);
1462	map_groups__remove(&machine->kmaps, map);
 
1463
1464	machine__set_kernel_mmap(machine, start, end);
1465
1466	map_groups__insert(&machine->kmaps, map);
1467	map__put(map);
 
 
 
1468}
1469
1470int machine__create_kernel_maps(struct machine *machine)
1471{
1472	struct dso *kernel = machine__get_kernel(machine);
1473	const char *name = NULL;
1474	struct map *map;
1475	u64 start = 0, end = ~0ULL;
1476	int ret;
1477
1478	if (kernel == NULL)
1479		return -1;
1480
1481	ret = __machine__create_kernel_maps(machine, kernel);
 
1482	if (ret < 0)
1483		goto out_put;
1484
1485	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1486		if (machine__is_host(machine))
1487			pr_debug("Problems creating module maps, "
1488				 "continuing anyway...\n");
1489		else
1490			pr_debug("Problems creating module maps for guest %d, "
1491				 "continuing anyway...\n", machine->pid);
1492	}
1493
1494	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1495		if (name &&
1496		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1497			machine__destroy_kernel_maps(machine);
1498			ret = -1;
1499			goto out_put;
1500		}
1501
1502		/*
1503		 * we have a real start address now, so re-order the kmaps
1504		 * assume it's the last in the kmaps
1505		 */
1506		machine__update_kernel_mmap(machine, start, end);
1507	}
1508
1509	if (machine__create_extra_kernel_maps(machine, kernel))
1510		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1511
1512	if (end == ~0ULL) {
1513		/* update end address of the kernel map using adjacent module address */
1514		map = map__next(machine__kernel_map(machine));
1515		if (map)
1516			machine__set_kernel_mmap(machine, start, map->start);
1517	}
1518
1519out_put:
1520	dso__put(kernel);
1521	return ret;
 
 
 
1522}
1523
1524static bool machine__uses_kcore(struct machine *machine)
1525{
1526	struct dso *dso;
1527
1528	list_for_each_entry(dso, &machine->dsos.head, node) {
1529		if (dso__is_kcore(dso))
1530			return true;
1531	}
1532
1533	return false;
1534}
1535
1536static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1537					     union perf_event *event)
1538{
1539	return machine__is(machine, "x86_64") &&
1540	       is_entry_trampoline(event->mmap.filename);
1541}
1542
1543static int machine__process_extra_kernel_map(struct machine *machine,
1544					     union perf_event *event)
1545{
1546	struct map *kernel_map = machine__kernel_map(machine);
1547	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1548	struct extra_kernel_map xm = {
1549		.start = event->mmap.start,
1550		.end   = event->mmap.start + event->mmap.len,
1551		.pgoff = event->mmap.pgoff,
1552	};
1553
1554	if (kernel == NULL)
1555		return -1;
1556
1557	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1558
1559	return machine__create_extra_kernel_map(machine, kernel, &xm);
1560}
1561
1562static int machine__process_kernel_mmap_event(struct machine *machine,
1563					      union perf_event *event)
1564{
1565	struct map *map;
1566	enum dso_kernel_type kernel_type;
1567	bool is_kernel_mmap;
1568
1569	/* If we have maps from kcore then we do not need or want any others */
1570	if (machine__uses_kcore(machine))
1571		return 0;
1572
1573	if (machine__is_host(machine))
1574		kernel_type = DSO_TYPE_KERNEL;
1575	else
1576		kernel_type = DSO_TYPE_GUEST_KERNEL;
1577
1578	is_kernel_mmap = memcmp(event->mmap.filename,
1579				machine->mmap_name,
1580				strlen(machine->mmap_name) - 1) == 0;
1581	if (event->mmap.filename[0] == '/' ||
1582	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1583		map = machine__findnew_module_map(machine, event->mmap.start,
1584						  event->mmap.filename);
1585		if (map == NULL)
1586			goto out_problem;
1587
1588		map->end = map->start + event->mmap.len;
1589	} else if (is_kernel_mmap) {
1590		const char *symbol_name = (event->mmap.filename +
1591				strlen(machine->mmap_name));
1592		/*
1593		 * Should be there already, from the build-id table in
1594		 * the header.
1595		 */
1596		struct dso *kernel = NULL;
1597		struct dso *dso;
1598
1599		down_read(&machine->dsos.lock);
1600
1601		list_for_each_entry(dso, &machine->dsos.head, node) {
1602
1603			/*
1604			 * The cpumode passed to is_kernel_module is not the
1605			 * cpumode of *this* event. If we insist on passing
1606			 * correct cpumode to is_kernel_module, we should
1607			 * record the cpumode when we adding this dso to the
1608			 * linked list.
1609			 *
1610			 * However we don't really need passing correct
1611			 * cpumode.  We know the correct cpumode must be kernel
1612			 * mode (if not, we should not link it onto kernel_dsos
1613			 * list).
1614			 *
1615			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1616			 * is_kernel_module() treats it as a kernel cpumode.
1617			 */
1618
1619			if (!dso->kernel ||
1620			    is_kernel_module(dso->long_name,
1621					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1622				continue;
1623
1624
1625			kernel = dso;
1626			break;
1627		}
1628
1629		up_read(&machine->dsos.lock);
1630
1631		if (kernel == NULL)
1632			kernel = machine__findnew_dso(machine, machine->mmap_name);
1633		if (kernel == NULL)
1634			goto out_problem;
1635
1636		kernel->kernel = kernel_type;
1637		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1638			dso__put(kernel);
1639			goto out_problem;
1640		}
1641
1642		if (strstr(kernel->long_name, "vmlinux"))
1643			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1644
1645		machine__update_kernel_mmap(machine, event->mmap.start,
1646					 event->mmap.start + event->mmap.len);
1647
1648		/*
1649		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1650		 * symbol. Effectively having zero here means that at record
1651		 * time /proc/sys/kernel/kptr_restrict was non zero.
1652		 */
1653		if (event->mmap.pgoff != 0) {
1654			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1655							symbol_name,
1656							event->mmap.pgoff);
1657		}
1658
1659		if (machine__is_default_guest(machine)) {
1660			/*
1661			 * preload dso of guest kernel and modules
1662			 */
1663			dso__load(kernel, machine__kernel_map(machine));
1664		}
1665	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1666		return machine__process_extra_kernel_map(machine, event);
1667	}
1668	return 0;
1669out_problem:
1670	return -1;
1671}
1672
1673int machine__process_mmap2_event(struct machine *machine,
1674				 union perf_event *event,
1675				 struct perf_sample *sample)
1676{
1677	struct thread *thread;
1678	struct map *map;
 
1679	int ret = 0;
1680
1681	if (dump_trace)
1682		perf_event__fprintf_mmap2(event, stdout);
1683
1684	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1685	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1686		ret = machine__process_kernel_mmap_event(machine, event);
1687		if (ret < 0)
1688			goto out_problem;
1689		return 0;
1690	}
1691
1692	thread = machine__findnew_thread(machine, event->mmap2.pid,
1693					event->mmap2.tid);
1694	if (thread == NULL)
1695		goto out_problem;
1696
 
 
 
 
 
1697	map = map__new(machine, event->mmap2.start,
1698			event->mmap2.len, event->mmap2.pgoff,
1699			event->mmap2.maj,
1700			event->mmap2.min, event->mmap2.ino,
1701			event->mmap2.ino_generation,
1702			event->mmap2.prot,
1703			event->mmap2.flags,
1704			event->mmap2.filename, thread);
1705
1706	if (map == NULL)
1707		goto out_problem_map;
1708
1709	ret = thread__insert_map(thread, map);
1710	if (ret)
1711		goto out_problem_insert;
1712
1713	thread__put(thread);
1714	map__put(map);
1715	return 0;
1716
1717out_problem_insert:
1718	map__put(map);
1719out_problem_map:
1720	thread__put(thread);
1721out_problem:
1722	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1723	return 0;
1724}
1725
1726int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1727				struct perf_sample *sample)
1728{
1729	struct thread *thread;
1730	struct map *map;
1731	u32 prot = 0;
1732	int ret = 0;
1733
1734	if (dump_trace)
1735		perf_event__fprintf_mmap(event, stdout);
1736
1737	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1738	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1739		ret = machine__process_kernel_mmap_event(machine, event);
1740		if (ret < 0)
1741			goto out_problem;
1742		return 0;
1743	}
1744
1745	thread = machine__findnew_thread(machine, event->mmap.pid,
1746					 event->mmap.tid);
1747	if (thread == NULL)
1748		goto out_problem;
1749
1750	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1751		prot = PROT_EXEC;
 
 
1752
1753	map = map__new(machine, event->mmap.start,
1754			event->mmap.len, event->mmap.pgoff,
1755			0, 0, 0, 0, prot, 0,
1756			event->mmap.filename,
1757			thread);
1758
1759	if (map == NULL)
1760		goto out_problem_map;
1761
1762	ret = thread__insert_map(thread, map);
1763	if (ret)
1764		goto out_problem_insert;
1765
1766	thread__put(thread);
1767	map__put(map);
1768	return 0;
1769
1770out_problem_insert:
1771	map__put(map);
1772out_problem_map:
1773	thread__put(thread);
1774out_problem:
1775	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1776	return 0;
1777}
1778
1779static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1780{
1781	struct threads *threads = machine__threads(machine, th->tid);
1782
1783	if (threads->last_match == th)
1784		threads__set_last_match(threads, NULL);
1785
 
1786	if (lock)
1787		down_write(&threads->lock);
1788
1789	BUG_ON(refcount_read(&th->refcnt) == 0);
1790
1791	rb_erase_cached(&th->rb_node, &threads->entries);
1792	RB_CLEAR_NODE(&th->rb_node);
1793	--threads->nr;
1794	/*
1795	 * Move it first to the dead_threads list, then drop the reference,
1796	 * if this is the last reference, then the thread__delete destructor
1797	 * will be called and we will remove it from the dead_threads list.
1798	 */
1799	list_add_tail(&th->node, &threads->dead);
1800
1801	/*
1802	 * We need to do the put here because if this is the last refcount,
1803	 * then we will be touching the threads->dead head when removing the
1804	 * thread.
1805	 */
1806	thread__put(th);
1807
1808	if (lock)
1809		up_write(&threads->lock);
 
1810}
1811
1812void machine__remove_thread(struct machine *machine, struct thread *th)
1813{
1814	return __machine__remove_thread(machine, th, true);
1815}
1816
1817int machine__process_fork_event(struct machine *machine, union perf_event *event,
1818				struct perf_sample *sample)
1819{
1820	struct thread *thread = machine__find_thread(machine,
1821						     event->fork.pid,
1822						     event->fork.tid);
1823	struct thread *parent = machine__findnew_thread(machine,
1824							event->fork.ppid,
1825							event->fork.ptid);
1826	bool do_maps_clone = true;
1827	int err = 0;
1828
1829	if (dump_trace)
1830		perf_event__fprintf_task(event, stdout);
1831
1832	/*
1833	 * There may be an existing thread that is not actually the parent,
1834	 * either because we are processing events out of order, or because the
1835	 * (fork) event that would have removed the thread was lost. Assume the
1836	 * latter case and continue on as best we can.
1837	 */
1838	if (parent->pid_ != (pid_t)event->fork.ppid) {
1839		dump_printf("removing erroneous parent thread %d/%d\n",
1840			    parent->pid_, parent->tid);
1841		machine__remove_thread(machine, parent);
1842		thread__put(parent);
1843		parent = machine__findnew_thread(machine, event->fork.ppid,
1844						 event->fork.ptid);
1845	}
1846
1847	/* if a thread currently exists for the thread id remove it */
1848	if (thread != NULL) {
1849		machine__remove_thread(machine, thread);
1850		thread__put(thread);
1851	}
1852
1853	thread = machine__findnew_thread(machine, event->fork.pid,
1854					 event->fork.tid);
1855	/*
1856	 * When synthesizing FORK events, we are trying to create thread
1857	 * objects for the already running tasks on the machine.
1858	 *
1859	 * Normally, for a kernel FORK event, we want to clone the parent's
1860	 * maps because that is what the kernel just did.
1861	 *
1862	 * But when synthesizing, this should not be done.  If we do, we end up
1863	 * with overlapping maps as we process the sythesized MMAP2 events that
1864	 * get delivered shortly thereafter.
1865	 *
1866	 * Use the FORK event misc flags in an internal way to signal this
1867	 * situation, so we can elide the map clone when appropriate.
1868	 */
1869	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1870		do_maps_clone = false;
1871
1872	if (thread == NULL || parent == NULL ||
1873	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1874		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1875		err = -1;
1876	}
1877	thread__put(thread);
1878	thread__put(parent);
1879
1880	return err;
1881}
1882
1883int machine__process_exit_event(struct machine *machine, union perf_event *event,
1884				struct perf_sample *sample __maybe_unused)
1885{
1886	struct thread *thread = machine__find_thread(machine,
1887						     event->fork.pid,
1888						     event->fork.tid);
1889
1890	if (dump_trace)
1891		perf_event__fprintf_task(event, stdout);
1892
1893	if (thread != NULL) {
1894		thread__exited(thread);
1895		thread__put(thread);
1896	}
1897
1898	return 0;
1899}
1900
1901int machine__process_event(struct machine *machine, union perf_event *event,
1902			   struct perf_sample *sample)
1903{
1904	int ret;
1905
1906	switch (event->header.type) {
1907	case PERF_RECORD_COMM:
1908		ret = machine__process_comm_event(machine, event, sample); break;
1909	case PERF_RECORD_MMAP:
1910		ret = machine__process_mmap_event(machine, event, sample); break;
1911	case PERF_RECORD_NAMESPACES:
1912		ret = machine__process_namespaces_event(machine, event, sample); break;
1913	case PERF_RECORD_MMAP2:
1914		ret = machine__process_mmap2_event(machine, event, sample); break;
1915	case PERF_RECORD_FORK:
1916		ret = machine__process_fork_event(machine, event, sample); break;
1917	case PERF_RECORD_EXIT:
1918		ret = machine__process_exit_event(machine, event, sample); break;
1919	case PERF_RECORD_LOST:
1920		ret = machine__process_lost_event(machine, event, sample); break;
1921	case PERF_RECORD_AUX:
1922		ret = machine__process_aux_event(machine, event); break;
1923	case PERF_RECORD_ITRACE_START:
1924		ret = machine__process_itrace_start_event(machine, event); break;
1925	case PERF_RECORD_LOST_SAMPLES:
1926		ret = machine__process_lost_samples_event(machine, event, sample); break;
1927	case PERF_RECORD_SWITCH:
1928	case PERF_RECORD_SWITCH_CPU_WIDE:
1929		ret = machine__process_switch_event(machine, event); break;
1930	case PERF_RECORD_KSYMBOL:
1931		ret = machine__process_ksymbol(machine, event, sample); break;
1932	case PERF_RECORD_BPF_EVENT:
1933		ret = machine__process_bpf(machine, event, sample); break;
1934	default:
1935		ret = -1;
1936		break;
1937	}
1938
1939	return ret;
1940}
1941
1942static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1943{
1944	if (!regexec(regex, sym->name, 0, NULL, 0))
1945		return 1;
1946	return 0;
1947}
1948
1949static void ip__resolve_ams(struct thread *thread,
1950			    struct addr_map_symbol *ams,
1951			    u64 ip)
1952{
1953	struct addr_location al;
1954
1955	memset(&al, 0, sizeof(al));
1956	/*
1957	 * We cannot use the header.misc hint to determine whether a
1958	 * branch stack address is user, kernel, guest, hypervisor.
1959	 * Branches may straddle the kernel/user/hypervisor boundaries.
1960	 * Thus, we have to try consecutively until we find a match
1961	 * or else, the symbol is unknown
1962	 */
1963	thread__find_cpumode_addr_location(thread, ip, &al);
1964
1965	ams->addr = ip;
1966	ams->al_addr = al.addr;
1967	ams->sym = al.sym;
1968	ams->map = al.map;
1969	ams->phys_addr = 0;
1970}
1971
1972static void ip__resolve_data(struct thread *thread,
1973			     u8 m, struct addr_map_symbol *ams,
1974			     u64 addr, u64 phys_addr)
1975{
1976	struct addr_location al;
1977
1978	memset(&al, 0, sizeof(al));
1979
1980	thread__find_symbol(thread, m, addr, &al);
 
 
 
 
 
 
 
 
1981
1982	ams->addr = addr;
1983	ams->al_addr = al.addr;
1984	ams->sym = al.sym;
1985	ams->map = al.map;
1986	ams->phys_addr = phys_addr;
1987}
1988
1989struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1990				     struct addr_location *al)
1991{
1992	struct mem_info *mi = mem_info__new();
1993
1994	if (!mi)
1995		return NULL;
1996
1997	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1998	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1999			 sample->addr, sample->phys_addr);
2000	mi->data_src.val = sample->data_src;
2001
2002	return mi;
2003}
2004
2005static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
2006{
2007	char *srcline = NULL;
2008
2009	if (!map || callchain_param.key == CCKEY_FUNCTION)
2010		return srcline;
2011
2012	srcline = srcline__tree_find(&map->dso->srclines, ip);
2013	if (!srcline) {
2014		bool show_sym = false;
2015		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2016
2017		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2018				      sym, show_sym, show_addr, ip);
2019		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2020	}
2021
2022	return srcline;
2023}
2024
2025struct iterations {
2026	int nr_loop_iter;
2027	u64 cycles;
2028};
2029
2030static int add_callchain_ip(struct thread *thread,
2031			    struct callchain_cursor *cursor,
2032			    struct symbol **parent,
2033			    struct addr_location *root_al,
2034			    u8 *cpumode,
2035			    u64 ip,
2036			    bool branch,
2037			    struct branch_flags *flags,
2038			    struct iterations *iter,
2039			    u64 branch_from)
2040{
2041	struct addr_location al;
2042	int nr_loop_iter = 0;
2043	u64 iter_cycles = 0;
2044	const char *srcline = NULL;
2045
2046	al.filtered = 0;
2047	al.sym = NULL;
2048	if (!cpumode) {
2049		thread__find_cpumode_addr_location(thread, ip, &al);
 
2050	} else {
2051		if (ip >= PERF_CONTEXT_MAX) {
2052			switch (ip) {
2053			case PERF_CONTEXT_HV:
2054				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2055				break;
2056			case PERF_CONTEXT_KERNEL:
2057				*cpumode = PERF_RECORD_MISC_KERNEL;
2058				break;
2059			case PERF_CONTEXT_USER:
2060				*cpumode = PERF_RECORD_MISC_USER;
2061				break;
2062			default:
2063				pr_debug("invalid callchain context: "
2064					 "%"PRId64"\n", (s64) ip);
2065				/*
2066				 * It seems the callchain is corrupted.
2067				 * Discard all.
2068				 */
2069				callchain_cursor_reset(cursor);
2070				return 1;
2071			}
2072			return 0;
2073		}
2074		thread__find_symbol(thread, *cpumode, ip, &al);
 
2075	}
2076
2077	if (al.sym != NULL) {
2078		if (perf_hpp_list.parent && !*parent &&
2079		    symbol__match_regex(al.sym, &parent_regex))
2080			*parent = al.sym;
2081		else if (have_ignore_callees && root_al &&
2082		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2083			/* Treat this symbol as the root,
2084			   forgetting its callees. */
2085			*root_al = al;
2086			callchain_cursor_reset(cursor);
2087		}
2088	}
2089
2090	if (symbol_conf.hide_unresolved && al.sym == NULL)
2091		return 0;
2092
2093	if (iter) {
2094		nr_loop_iter = iter->nr_loop_iter;
2095		iter_cycles = iter->cycles;
2096	}
2097
2098	srcline = callchain_srcline(al.map, al.sym, al.addr);
2099	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2100				       branch, flags, nr_loop_iter,
2101				       iter_cycles, branch_from, srcline);
2102}
2103
2104struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2105					   struct addr_location *al)
2106{
2107	unsigned int i;
2108	const struct branch_stack *bs = sample->branch_stack;
2109	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2110
2111	if (!bi)
2112		return NULL;
2113
2114	for (i = 0; i < bs->nr; i++) {
2115		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2116		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2117		bi[i].flags = bs->entries[i].flags;
2118	}
2119	return bi;
2120}
2121
2122static void save_iterations(struct iterations *iter,
2123			    struct branch_entry *be, int nr)
2124{
2125	int i;
2126
2127	iter->nr_loop_iter++;
2128	iter->cycles = 0;
2129
2130	for (i = 0; i < nr; i++)
2131		iter->cycles += be[i].flags.cycles;
2132}
2133
2134#define CHASHSZ 127
2135#define CHASHBITS 7
2136#define NO_ENTRY 0xff
2137
2138#define PERF_MAX_BRANCH_DEPTH 127
2139
2140/* Remove loops. */
2141static int remove_loops(struct branch_entry *l, int nr,
2142			struct iterations *iter)
2143{
2144	int i, j, off;
2145	unsigned char chash[CHASHSZ];
2146
2147	memset(chash, NO_ENTRY, sizeof(chash));
2148
2149	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2150
2151	for (i = 0; i < nr; i++) {
2152		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2153
2154		/* no collision handling for now */
2155		if (chash[h] == NO_ENTRY) {
2156			chash[h] = i;
2157		} else if (l[chash[h]].from == l[i].from) {
2158			bool is_loop = true;
2159			/* check if it is a real loop */
2160			off = 0;
2161			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2162				if (l[j].from != l[i + off].from) {
2163					is_loop = false;
2164					break;
2165				}
2166			if (is_loop) {
2167				j = nr - (i + off);
2168				if (j > 0) {
2169					save_iterations(iter + i + off,
2170						l + i, off);
2171
2172					memmove(iter + i, iter + i + off,
2173						j * sizeof(*iter));
2174
2175					memmove(l + i, l + i + off,
2176						j * sizeof(*l));
2177				}
2178
2179				nr -= off;
2180			}
2181		}
2182	}
2183	return nr;
2184}
2185
2186/*
2187 * Recolve LBR callstack chain sample
2188 * Return:
2189 * 1 on success get LBR callchain information
2190 * 0 no available LBR callchain information, should try fp
2191 * negative error code on other errors.
2192 */
2193static int resolve_lbr_callchain_sample(struct thread *thread,
2194					struct callchain_cursor *cursor,
2195					struct perf_sample *sample,
2196					struct symbol **parent,
2197					struct addr_location *root_al,
2198					int max_stack)
2199{
2200	struct ip_callchain *chain = sample->callchain;
2201	int chain_nr = min(max_stack, (int)chain->nr), i;
2202	u8 cpumode = PERF_RECORD_MISC_USER;
2203	u64 ip, branch_from = 0;
2204
2205	for (i = 0; i < chain_nr; i++) {
2206		if (chain->ips[i] == PERF_CONTEXT_USER)
2207			break;
2208	}
2209
2210	/* LBR only affects the user callchain */
2211	if (i != chain_nr) {
2212		struct branch_stack *lbr_stack = sample->branch_stack;
2213		int lbr_nr = lbr_stack->nr, j, k;
2214		bool branch;
2215		struct branch_flags *flags;
2216		/*
2217		 * LBR callstack can only get user call chain.
2218		 * The mix_chain_nr is kernel call chain
2219		 * number plus LBR user call chain number.
2220		 * i is kernel call chain number,
2221		 * 1 is PERF_CONTEXT_USER,
2222		 * lbr_nr + 1 is the user call chain number.
2223		 * For details, please refer to the comments
2224		 * in callchain__printf
2225		 */
2226		int mix_chain_nr = i + 1 + lbr_nr + 1;
2227
2228		for (j = 0; j < mix_chain_nr; j++) {
2229			int err;
2230			branch = false;
2231			flags = NULL;
2232
2233			if (callchain_param.order == ORDER_CALLEE) {
2234				if (j < i + 1)
2235					ip = chain->ips[j];
2236				else if (j > i + 1) {
2237					k = j - i - 2;
2238					ip = lbr_stack->entries[k].from;
2239					branch = true;
2240					flags = &lbr_stack->entries[k].flags;
2241				} else {
2242					ip = lbr_stack->entries[0].to;
2243					branch = true;
2244					flags = &lbr_stack->entries[0].flags;
2245					branch_from =
2246						lbr_stack->entries[0].from;
2247				}
2248			} else {
2249				if (j < lbr_nr) {
2250					k = lbr_nr - j - 1;
2251					ip = lbr_stack->entries[k].from;
2252					branch = true;
2253					flags = &lbr_stack->entries[k].flags;
2254				}
2255				else if (j > lbr_nr)
2256					ip = chain->ips[i + 1 - (j - lbr_nr)];
2257				else {
2258					ip = lbr_stack->entries[0].to;
2259					branch = true;
2260					flags = &lbr_stack->entries[0].flags;
2261					branch_from =
2262						lbr_stack->entries[0].from;
2263				}
2264			}
2265
2266			err = add_callchain_ip(thread, cursor, parent,
2267					       root_al, &cpumode, ip,
2268					       branch, flags, NULL,
2269					       branch_from);
2270			if (err)
2271				return (err < 0) ? err : 0;
2272		}
2273		return 1;
2274	}
2275
2276	return 0;
2277}
2278
2279static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2280			     struct callchain_cursor *cursor,
2281			     struct symbol **parent,
2282			     struct addr_location *root_al,
2283			     u8 *cpumode, int ent)
2284{
2285	int err = 0;
2286
2287	while (--ent >= 0) {
2288		u64 ip = chain->ips[ent];
2289
2290		if (ip >= PERF_CONTEXT_MAX) {
2291			err = add_callchain_ip(thread, cursor, parent,
2292					       root_al, cpumode, ip,
2293					       false, NULL, NULL, 0);
2294			break;
2295		}
2296	}
2297	return err;
2298}
2299
2300static int thread__resolve_callchain_sample(struct thread *thread,
2301					    struct callchain_cursor *cursor,
2302					    struct evsel *evsel,
2303					    struct perf_sample *sample,
2304					    struct symbol **parent,
2305					    struct addr_location *root_al,
2306					    int max_stack)
2307{
2308	struct branch_stack *branch = sample->branch_stack;
2309	struct ip_callchain *chain = sample->callchain;
2310	int chain_nr = 0;
2311	u8 cpumode = PERF_RECORD_MISC_USER;
2312	int i, j, err, nr_entries;
2313	int skip_idx = -1;
2314	int first_call = 0;
2315
2316	if (chain)
2317		chain_nr = chain->nr;
2318
2319	if (perf_evsel__has_branch_callstack(evsel)) {
2320		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2321						   root_al, max_stack);
2322		if (err)
2323			return (err < 0) ? err : 0;
2324	}
2325
2326	/*
2327	 * Based on DWARF debug information, some architectures skip
2328	 * a callchain entry saved by the kernel.
2329	 */
2330	skip_idx = arch_skip_callchain_idx(thread, chain);
2331
2332	/*
2333	 * Add branches to call stack for easier browsing. This gives
2334	 * more context for a sample than just the callers.
2335	 *
2336	 * This uses individual histograms of paths compared to the
2337	 * aggregated histograms the normal LBR mode uses.
2338	 *
2339	 * Limitations for now:
2340	 * - No extra filters
2341	 * - No annotations (should annotate somehow)
2342	 */
2343
2344	if (branch && callchain_param.branch_callstack) {
2345		int nr = min(max_stack, (int)branch->nr);
2346		struct branch_entry be[nr];
2347		struct iterations iter[nr];
2348
2349		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2350			pr_warning("corrupted branch chain. skipping...\n");
2351			goto check_calls;
2352		}
2353
2354		for (i = 0; i < nr; i++) {
2355			if (callchain_param.order == ORDER_CALLEE) {
2356				be[i] = branch->entries[i];
2357
2358				if (chain == NULL)
2359					continue;
2360
2361				/*
2362				 * Check for overlap into the callchain.
2363				 * The return address is one off compared to
2364				 * the branch entry. To adjust for this
2365				 * assume the calling instruction is not longer
2366				 * than 8 bytes.
2367				 */
2368				if (i == skip_idx ||
2369				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2370					first_call++;
2371				else if (be[i].from < chain->ips[first_call] &&
2372				    be[i].from >= chain->ips[first_call] - 8)
2373					first_call++;
2374			} else
2375				be[i] = branch->entries[branch->nr - i - 1];
2376		}
2377
2378		memset(iter, 0, sizeof(struct iterations) * nr);
2379		nr = remove_loops(be, nr, iter);
2380
2381		for (i = 0; i < nr; i++) {
2382			err = add_callchain_ip(thread, cursor, parent,
2383					       root_al,
2384					       NULL, be[i].to,
2385					       true, &be[i].flags,
2386					       NULL, be[i].from);
2387
2388			if (!err)
2389				err = add_callchain_ip(thread, cursor, parent, root_al,
2390						       NULL, be[i].from,
2391						       true, &be[i].flags,
2392						       &iter[i], 0);
2393			if (err == -EINVAL)
2394				break;
2395			if (err)
2396				return err;
2397		}
2398
2399		if (chain_nr == 0)
2400			return 0;
2401
2402		chain_nr -= nr;
2403	}
2404
2405check_calls:
2406	if (callchain_param.order != ORDER_CALLEE) {
2407		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2408					&cpumode, chain->nr - first_call);
2409		if (err)
2410			return (err < 0) ? err : 0;
2411	}
2412	for (i = first_call, nr_entries = 0;
2413	     i < chain_nr && nr_entries < max_stack; i++) {
2414		u64 ip;
2415
2416		if (callchain_param.order == ORDER_CALLEE)
2417			j = i;
2418		else
2419			j = chain->nr - i - 1;
2420
2421#ifdef HAVE_SKIP_CALLCHAIN_IDX
2422		if (j == skip_idx)
2423			continue;
2424#endif
2425		ip = chain->ips[j];
 
2426		if (ip < PERF_CONTEXT_MAX)
2427                       ++nr_entries;
2428		else if (callchain_param.order != ORDER_CALLEE) {
2429			err = find_prev_cpumode(chain, thread, cursor, parent,
2430						root_al, &cpumode, j);
2431			if (err)
2432				return (err < 0) ? err : 0;
2433			continue;
2434		}
2435
2436		err = add_callchain_ip(thread, cursor, parent,
2437				       root_al, &cpumode, ip,
2438				       false, NULL, NULL, 0);
2439
2440		if (err)
2441			return (err < 0) ? err : 0;
2442	}
2443
2444	return 0;
2445}
2446
2447static int append_inlines(struct callchain_cursor *cursor,
2448			  struct map *map, struct symbol *sym, u64 ip)
2449{
2450	struct inline_node *inline_node;
2451	struct inline_list *ilist;
2452	u64 addr;
2453	int ret = 1;
2454
2455	if (!symbol_conf.inline_name || !map || !sym)
2456		return ret;
2457
2458	addr = map__map_ip(map, ip);
2459	addr = map__rip_2objdump(map, addr);
2460
2461	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2462	if (!inline_node) {
2463		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2464		if (!inline_node)
2465			return ret;
2466		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2467	}
2468
2469	list_for_each_entry(ilist, &inline_node->val, list) {
2470		ret = callchain_cursor_append(cursor, ip, map,
2471					      ilist->symbol, false,
2472					      NULL, 0, 0, 0, ilist->srcline);
2473
2474		if (ret != 0)
2475			return ret;
2476	}
2477
2478	return ret;
2479}
2480
2481static int unwind_entry(struct unwind_entry *entry, void *arg)
2482{
2483	struct callchain_cursor *cursor = arg;
2484	const char *srcline = NULL;
2485	u64 addr = entry->ip;
2486
2487	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2488		return 0;
2489
2490	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2491		return 0;
2492
2493	/*
2494	 * Convert entry->ip from a virtual address to an offset in
2495	 * its corresponding binary.
2496	 */
2497	if (entry->map)
2498		addr = map__map_ip(entry->map, entry->ip);
2499
2500	srcline = callchain_srcline(entry->map, entry->sym, addr);
2501	return callchain_cursor_append(cursor, entry->ip,
2502				       entry->map, entry->sym,
2503				       false, NULL, 0, 0, 0, srcline);
2504}
2505
2506static int thread__resolve_callchain_unwind(struct thread *thread,
2507					    struct callchain_cursor *cursor,
2508					    struct evsel *evsel,
2509					    struct perf_sample *sample,
2510					    int max_stack)
2511{
2512	/* Can we do dwarf post unwind? */
2513	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2514	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2515		return 0;
2516
2517	/* Bail out if nothing was captured. */
2518	if ((!sample->user_regs.regs) ||
2519	    (!sample->user_stack.size))
2520		return 0;
2521
2522	return unwind__get_entries(unwind_entry, cursor,
2523				   thread, sample, max_stack);
2524}
2525
2526int thread__resolve_callchain(struct thread *thread,
2527			      struct callchain_cursor *cursor,
2528			      struct evsel *evsel,
2529			      struct perf_sample *sample,
2530			      struct symbol **parent,
2531			      struct addr_location *root_al,
2532			      int max_stack)
2533{
2534	int ret = 0;
2535
2536	callchain_cursor_reset(cursor);
2537
2538	if (callchain_param.order == ORDER_CALLEE) {
2539		ret = thread__resolve_callchain_sample(thread, cursor,
2540						       evsel, sample,
2541						       parent, root_al,
2542						       max_stack);
2543		if (ret)
2544			return ret;
2545		ret = thread__resolve_callchain_unwind(thread, cursor,
2546						       evsel, sample,
2547						       max_stack);
2548	} else {
2549		ret = thread__resolve_callchain_unwind(thread, cursor,
2550						       evsel, sample,
2551						       max_stack);
2552		if (ret)
2553			return ret;
2554		ret = thread__resolve_callchain_sample(thread, cursor,
2555						       evsel, sample,
2556						       parent, root_al,
2557						       max_stack);
2558	}
2559
2560	return ret;
2561}
2562
2563int machine__for_each_thread(struct machine *machine,
2564			     int (*fn)(struct thread *thread, void *p),
2565			     void *priv)
2566{
2567	struct threads *threads;
2568	struct rb_node *nd;
2569	struct thread *thread;
2570	int rc = 0;
2571	int i;
2572
2573	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2574		threads = &machine->threads[i];
2575		for (nd = rb_first_cached(&threads->entries); nd;
2576		     nd = rb_next(nd)) {
2577			thread = rb_entry(nd, struct thread, rb_node);
2578			rc = fn(thread, priv);
2579			if (rc != 0)
2580				return rc;
2581		}
2582
2583		list_for_each_entry(thread, &threads->dead, node) {
2584			rc = fn(thread, priv);
2585			if (rc != 0)
2586				return rc;
2587		}
2588	}
2589	return rc;
2590}
2591
2592int machines__for_each_thread(struct machines *machines,
2593			      int (*fn)(struct thread *thread, void *p),
2594			      void *priv)
2595{
2596	struct rb_node *nd;
2597	int rc = 0;
2598
2599	rc = machine__for_each_thread(&machines->host, fn, priv);
2600	if (rc != 0)
2601		return rc;
2602
2603	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2604		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2605
2606		rc = machine__for_each_thread(machine, fn, priv);
2607		if (rc != 0)
2608			return rc;
2609	}
2610	return rc;
2611}
2612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2613pid_t machine__get_current_tid(struct machine *machine, int cpu)
2614{
2615	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2616
2617	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2618		return -1;
2619
2620	return machine->current_tid[cpu];
2621}
2622
2623int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2624			     pid_t tid)
2625{
2626	struct thread *thread;
2627	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2628
2629	if (cpu < 0)
2630		return -EINVAL;
2631
2632	if (!machine->current_tid) {
2633		int i;
2634
2635		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2636		if (!machine->current_tid)
2637			return -ENOMEM;
2638		for (i = 0; i < nr_cpus; i++)
2639			machine->current_tid[i] = -1;
2640	}
2641
2642	if (cpu >= nr_cpus) {
2643		pr_err("Requested CPU %d too large. ", cpu);
2644		pr_err("Consider raising MAX_NR_CPUS\n");
2645		return -EINVAL;
2646	}
2647
2648	machine->current_tid[cpu] = tid;
2649
2650	thread = machine__findnew_thread(machine, pid, tid);
2651	if (!thread)
2652		return -ENOMEM;
2653
2654	thread->cpu = cpu;
2655	thread__put(thread);
2656
2657	return 0;
2658}
2659
2660/*
2661 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662 * normalized arch is needed.
2663 */
2664bool machine__is(struct machine *machine, const char *arch)
2665{
2666	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667}
2668
2669int machine__nr_cpus_avail(struct machine *machine)
2670{
2671	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672}
2673
2674int machine__get_kernel_start(struct machine *machine)
2675{
2676	struct map *map = machine__kernel_map(machine);
2677	int err = 0;
2678
2679	/*
2680	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2681	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2682	 * all addresses including kernel addresses are less than 2^32.  In
2683	 * that case (32-bit system), if the kernel mapping is unknown, all
2684	 * addresses will be assumed to be in user space - see
2685	 * machine__kernel_ip().
2686	 */
2687	machine->kernel_start = 1ULL << 63;
2688	if (map) {
2689		err = map__load(map);
2690		/*
2691		 * On x86_64, PTI entry trampolines are less than the
2692		 * start of kernel text, but still above 2^63. So leave
2693		 * kernel_start = 1ULL << 63 for x86_64.
2694		 */
2695		if (!err && !machine__is(machine, "x86_64"))
2696			machine->kernel_start = map->start;
2697	}
2698	return err;
2699}
2700
2701u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702{
2703	u8 addr_cpumode = cpumode;
2704	bool kernel_ip;
2705
2706	if (!machine->single_address_space)
2707		goto out;
2708
2709	kernel_ip = machine__kernel_ip(machine, addr);
2710	switch (cpumode) {
2711	case PERF_RECORD_MISC_KERNEL:
2712	case PERF_RECORD_MISC_USER:
2713		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714					   PERF_RECORD_MISC_USER;
2715		break;
2716	case PERF_RECORD_MISC_GUEST_KERNEL:
2717	case PERF_RECORD_MISC_GUEST_USER:
2718		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719					   PERF_RECORD_MISC_GUEST_USER;
2720		break;
2721	default:
2722		break;
2723	}
2724out:
2725	return addr_cpumode;
2726}
2727
2728struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729{
2730	return dsos__findnew(&machine->dsos, filename);
2731}
2732
2733char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734{
2735	struct machine *machine = vmachine;
2736	struct map *map;
2737	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738
2739	if (sym == NULL)
2740		return NULL;
2741
2742	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743	*addrp = map->unmap_ip(map, sym->start);
2744	return sym->name;
2745}