Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include "callchain.h"
7#include "debug.h"
8#include "event.h"
9#include "evsel.h"
10#include "hist.h"
11#include "machine.h"
12#include "map.h"
13#include "sort.h"
14#include "strlist.h"
15#include "thread.h"
16#include "vdso.h"
17#include <stdbool.h>
18#include <sys/types.h>
19#include <sys/stat.h>
20#include <unistd.h>
21#include "unwind.h"
22#include "linux/hash.h"
23#include "asm/bug.h"
24
25#include "sane_ctype.h"
26#include <symbol/kallsyms.h>
27
28static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
29
30static void dsos__init(struct dsos *dsos)
31{
32 INIT_LIST_HEAD(&dsos->head);
33 dsos->root = RB_ROOT;
34 init_rwsem(&dsos->lock);
35}
36
37static void machine__threads_init(struct machine *machine)
38{
39 int i;
40
41 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
42 struct threads *threads = &machine->threads[i];
43 threads->entries = RB_ROOT;
44 init_rwsem(&threads->lock);
45 threads->nr = 0;
46 INIT_LIST_HEAD(&threads->dead);
47 threads->last_match = NULL;
48 }
49}
50
51static int machine__set_mmap_name(struct machine *machine)
52{
53 if (machine__is_host(machine))
54 machine->mmap_name = strdup("[kernel.kallsyms]");
55 else if (machine__is_default_guest(machine))
56 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
57 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
58 machine->pid) < 0)
59 machine->mmap_name = NULL;
60
61 return machine->mmap_name ? 0 : -ENOMEM;
62}
63
64int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
65{
66 int err = -ENOMEM;
67
68 memset(machine, 0, sizeof(*machine));
69 map_groups__init(&machine->kmaps, machine);
70 RB_CLEAR_NODE(&machine->rb_node);
71 dsos__init(&machine->dsos);
72
73 machine__threads_init(machine);
74
75 machine->vdso_info = NULL;
76 machine->env = NULL;
77
78 machine->pid = pid;
79
80 machine->id_hdr_size = 0;
81 machine->kptr_restrict_warned = false;
82 machine->comm_exec = false;
83 machine->kernel_start = 0;
84
85 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
86
87 machine->root_dir = strdup(root_dir);
88 if (machine->root_dir == NULL)
89 return -ENOMEM;
90
91 if (machine__set_mmap_name(machine))
92 goto out;
93
94 if (pid != HOST_KERNEL_ID) {
95 struct thread *thread = machine__findnew_thread(machine, -1,
96 pid);
97 char comm[64];
98
99 if (thread == NULL)
100 goto out;
101
102 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103 thread__set_comm(thread, comm, 0);
104 thread__put(thread);
105 }
106
107 machine->current_tid = NULL;
108 err = 0;
109
110out:
111 if (err) {
112 zfree(&machine->root_dir);
113 zfree(&machine->mmap_name);
114 }
115 return 0;
116}
117
118struct machine *machine__new_host(void)
119{
120 struct machine *machine = malloc(sizeof(*machine));
121
122 if (machine != NULL) {
123 machine__init(machine, "", HOST_KERNEL_ID);
124
125 if (machine__create_kernel_maps(machine) < 0)
126 goto out_delete;
127 }
128
129 return machine;
130out_delete:
131 free(machine);
132 return NULL;
133}
134
135struct machine *machine__new_kallsyms(void)
136{
137 struct machine *machine = machine__new_host();
138 /*
139 * FIXME:
140 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
141 * functions and data objects.
142 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
143 * ask for not using the kcore parsing code, once this one is fixed
144 * to create a map per module.
145 */
146 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION) <= 0) {
147 machine__delete(machine);
148 machine = NULL;
149 }
150
151 return machine;
152}
153
154static void dsos__purge(struct dsos *dsos)
155{
156 struct dso *pos, *n;
157
158 down_write(&dsos->lock);
159
160 list_for_each_entry_safe(pos, n, &dsos->head, node) {
161 RB_CLEAR_NODE(&pos->rb_node);
162 pos->root = NULL;
163 list_del_init(&pos->node);
164 dso__put(pos);
165 }
166
167 up_write(&dsos->lock);
168}
169
170static void dsos__exit(struct dsos *dsos)
171{
172 dsos__purge(dsos);
173 exit_rwsem(&dsos->lock);
174}
175
176void machine__delete_threads(struct machine *machine)
177{
178 struct rb_node *nd;
179 int i;
180
181 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
182 struct threads *threads = &machine->threads[i];
183 down_write(&threads->lock);
184 nd = rb_first(&threads->entries);
185 while (nd) {
186 struct thread *t = rb_entry(nd, struct thread, rb_node);
187
188 nd = rb_next(nd);
189 __machine__remove_thread(machine, t, false);
190 }
191 up_write(&threads->lock);
192 }
193}
194
195void machine__exit(struct machine *machine)
196{
197 int i;
198
199 if (machine == NULL)
200 return;
201
202 machine__destroy_kernel_maps(machine);
203 map_groups__exit(&machine->kmaps);
204 dsos__exit(&machine->dsos);
205 machine__exit_vdso(machine);
206 zfree(&machine->root_dir);
207 zfree(&machine->mmap_name);
208 zfree(&machine->current_tid);
209
210 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
211 struct threads *threads = &machine->threads[i];
212 exit_rwsem(&threads->lock);
213 }
214}
215
216void machine__delete(struct machine *machine)
217{
218 if (machine) {
219 machine__exit(machine);
220 free(machine);
221 }
222}
223
224void machines__init(struct machines *machines)
225{
226 machine__init(&machines->host, "", HOST_KERNEL_ID);
227 machines->guests = RB_ROOT;
228}
229
230void machines__exit(struct machines *machines)
231{
232 machine__exit(&machines->host);
233 /* XXX exit guest */
234}
235
236struct machine *machines__add(struct machines *machines, pid_t pid,
237 const char *root_dir)
238{
239 struct rb_node **p = &machines->guests.rb_node;
240 struct rb_node *parent = NULL;
241 struct machine *pos, *machine = malloc(sizeof(*machine));
242
243 if (machine == NULL)
244 return NULL;
245
246 if (machine__init(machine, root_dir, pid) != 0) {
247 free(machine);
248 return NULL;
249 }
250
251 while (*p != NULL) {
252 parent = *p;
253 pos = rb_entry(parent, struct machine, rb_node);
254 if (pid < pos->pid)
255 p = &(*p)->rb_left;
256 else
257 p = &(*p)->rb_right;
258 }
259
260 rb_link_node(&machine->rb_node, parent, p);
261 rb_insert_color(&machine->rb_node, &machines->guests);
262
263 return machine;
264}
265
266void machines__set_comm_exec(struct machines *machines, bool comm_exec)
267{
268 struct rb_node *nd;
269
270 machines->host.comm_exec = comm_exec;
271
272 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
273 struct machine *machine = rb_entry(nd, struct machine, rb_node);
274
275 machine->comm_exec = comm_exec;
276 }
277}
278
279struct machine *machines__find(struct machines *machines, pid_t pid)
280{
281 struct rb_node **p = &machines->guests.rb_node;
282 struct rb_node *parent = NULL;
283 struct machine *machine;
284 struct machine *default_machine = NULL;
285
286 if (pid == HOST_KERNEL_ID)
287 return &machines->host;
288
289 while (*p != NULL) {
290 parent = *p;
291 machine = rb_entry(parent, struct machine, rb_node);
292 if (pid < machine->pid)
293 p = &(*p)->rb_left;
294 else if (pid > machine->pid)
295 p = &(*p)->rb_right;
296 else
297 return machine;
298 if (!machine->pid)
299 default_machine = machine;
300 }
301
302 return default_machine;
303}
304
305struct machine *machines__findnew(struct machines *machines, pid_t pid)
306{
307 char path[PATH_MAX];
308 const char *root_dir = "";
309 struct machine *machine = machines__find(machines, pid);
310
311 if (machine && (machine->pid == pid))
312 goto out;
313
314 if ((pid != HOST_KERNEL_ID) &&
315 (pid != DEFAULT_GUEST_KERNEL_ID) &&
316 (symbol_conf.guestmount)) {
317 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
318 if (access(path, R_OK)) {
319 static struct strlist *seen;
320
321 if (!seen)
322 seen = strlist__new(NULL, NULL);
323
324 if (!strlist__has_entry(seen, path)) {
325 pr_err("Can't access file %s\n", path);
326 strlist__add(seen, path);
327 }
328 machine = NULL;
329 goto out;
330 }
331 root_dir = path;
332 }
333
334 machine = machines__add(machines, pid, root_dir);
335out:
336 return machine;
337}
338
339void machines__process_guests(struct machines *machines,
340 machine__process_t process, void *data)
341{
342 struct rb_node *nd;
343
344 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
345 struct machine *pos = rb_entry(nd, struct machine, rb_node);
346 process(pos, data);
347 }
348}
349
350void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
351{
352 struct rb_node *node;
353 struct machine *machine;
354
355 machines->host.id_hdr_size = id_hdr_size;
356
357 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
358 machine = rb_entry(node, struct machine, rb_node);
359 machine->id_hdr_size = id_hdr_size;
360 }
361
362 return;
363}
364
365static void machine__update_thread_pid(struct machine *machine,
366 struct thread *th, pid_t pid)
367{
368 struct thread *leader;
369
370 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
371 return;
372
373 th->pid_ = pid;
374
375 if (th->pid_ == th->tid)
376 return;
377
378 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
379 if (!leader)
380 goto out_err;
381
382 if (!leader->mg)
383 leader->mg = map_groups__new(machine);
384
385 if (!leader->mg)
386 goto out_err;
387
388 if (th->mg == leader->mg)
389 return;
390
391 if (th->mg) {
392 /*
393 * Maps are created from MMAP events which provide the pid and
394 * tid. Consequently there never should be any maps on a thread
395 * with an unknown pid. Just print an error if there are.
396 */
397 if (!map_groups__empty(th->mg))
398 pr_err("Discarding thread maps for %d:%d\n",
399 th->pid_, th->tid);
400 map_groups__put(th->mg);
401 }
402
403 th->mg = map_groups__get(leader->mg);
404out_put:
405 thread__put(leader);
406 return;
407out_err:
408 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
409 goto out_put;
410}
411
412/*
413 * Caller must eventually drop thread->refcnt returned with a successful
414 * lookup/new thread inserted.
415 */
416static struct thread *____machine__findnew_thread(struct machine *machine,
417 struct threads *threads,
418 pid_t pid, pid_t tid,
419 bool create)
420{
421 struct rb_node **p = &threads->entries.rb_node;
422 struct rb_node *parent = NULL;
423 struct thread *th;
424
425 /*
426 * Front-end cache - TID lookups come in blocks,
427 * so most of the time we dont have to look up
428 * the full rbtree:
429 */
430 th = threads->last_match;
431 if (th != NULL) {
432 if (th->tid == tid) {
433 machine__update_thread_pid(machine, th, pid);
434 return thread__get(th);
435 }
436
437 threads->last_match = NULL;
438 }
439
440 while (*p != NULL) {
441 parent = *p;
442 th = rb_entry(parent, struct thread, rb_node);
443
444 if (th->tid == tid) {
445 threads->last_match = th;
446 machine__update_thread_pid(machine, th, pid);
447 return thread__get(th);
448 }
449
450 if (tid < th->tid)
451 p = &(*p)->rb_left;
452 else
453 p = &(*p)->rb_right;
454 }
455
456 if (!create)
457 return NULL;
458
459 th = thread__new(pid, tid);
460 if (th != NULL) {
461 rb_link_node(&th->rb_node, parent, p);
462 rb_insert_color(&th->rb_node, &threads->entries);
463
464 /*
465 * We have to initialize map_groups separately
466 * after rb tree is updated.
467 *
468 * The reason is that we call machine__findnew_thread
469 * within thread__init_map_groups to find the thread
470 * leader and that would screwed the rb tree.
471 */
472 if (thread__init_map_groups(th, machine)) {
473 rb_erase_init(&th->rb_node, &threads->entries);
474 RB_CLEAR_NODE(&th->rb_node);
475 thread__put(th);
476 return NULL;
477 }
478 /*
479 * It is now in the rbtree, get a ref
480 */
481 thread__get(th);
482 threads->last_match = th;
483 ++threads->nr;
484 }
485
486 return th;
487}
488
489struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
490{
491 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
492}
493
494struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
495 pid_t tid)
496{
497 struct threads *threads = machine__threads(machine, tid);
498 struct thread *th;
499
500 down_write(&threads->lock);
501 th = __machine__findnew_thread(machine, pid, tid);
502 up_write(&threads->lock);
503 return th;
504}
505
506struct thread *machine__find_thread(struct machine *machine, pid_t pid,
507 pid_t tid)
508{
509 struct threads *threads = machine__threads(machine, tid);
510 struct thread *th;
511
512 down_read(&threads->lock);
513 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
514 up_read(&threads->lock);
515 return th;
516}
517
518struct comm *machine__thread_exec_comm(struct machine *machine,
519 struct thread *thread)
520{
521 if (machine->comm_exec)
522 return thread__exec_comm(thread);
523 else
524 return thread__comm(thread);
525}
526
527int machine__process_comm_event(struct machine *machine, union perf_event *event,
528 struct perf_sample *sample)
529{
530 struct thread *thread = machine__findnew_thread(machine,
531 event->comm.pid,
532 event->comm.tid);
533 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
534 int err = 0;
535
536 if (exec)
537 machine->comm_exec = true;
538
539 if (dump_trace)
540 perf_event__fprintf_comm(event, stdout);
541
542 if (thread == NULL ||
543 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
544 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
545 err = -1;
546 }
547
548 thread__put(thread);
549
550 return err;
551}
552
553int machine__process_namespaces_event(struct machine *machine __maybe_unused,
554 union perf_event *event,
555 struct perf_sample *sample __maybe_unused)
556{
557 struct thread *thread = machine__findnew_thread(machine,
558 event->namespaces.pid,
559 event->namespaces.tid);
560 int err = 0;
561
562 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
563 "\nWARNING: kernel seems to support more namespaces than perf"
564 " tool.\nTry updating the perf tool..\n\n");
565
566 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
567 "\nWARNING: perf tool seems to support more namespaces than"
568 " the kernel.\nTry updating the kernel..\n\n");
569
570 if (dump_trace)
571 perf_event__fprintf_namespaces(event, stdout);
572
573 if (thread == NULL ||
574 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
575 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
576 err = -1;
577 }
578
579 thread__put(thread);
580
581 return err;
582}
583
584int machine__process_lost_event(struct machine *machine __maybe_unused,
585 union perf_event *event, struct perf_sample *sample __maybe_unused)
586{
587 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
588 event->lost.id, event->lost.lost);
589 return 0;
590}
591
592int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
593 union perf_event *event, struct perf_sample *sample)
594{
595 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
596 sample->id, event->lost_samples.lost);
597 return 0;
598}
599
600static struct dso *machine__findnew_module_dso(struct machine *machine,
601 struct kmod_path *m,
602 const char *filename)
603{
604 struct dso *dso;
605
606 down_write(&machine->dsos.lock);
607
608 dso = __dsos__find(&machine->dsos, m->name, true);
609 if (!dso) {
610 dso = __dsos__addnew(&machine->dsos, m->name);
611 if (dso == NULL)
612 goto out_unlock;
613
614 dso__set_module_info(dso, m, machine);
615 dso__set_long_name(dso, strdup(filename), true);
616 }
617
618 dso__get(dso);
619out_unlock:
620 up_write(&machine->dsos.lock);
621 return dso;
622}
623
624int machine__process_aux_event(struct machine *machine __maybe_unused,
625 union perf_event *event)
626{
627 if (dump_trace)
628 perf_event__fprintf_aux(event, stdout);
629 return 0;
630}
631
632int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
633 union perf_event *event)
634{
635 if (dump_trace)
636 perf_event__fprintf_itrace_start(event, stdout);
637 return 0;
638}
639
640int machine__process_switch_event(struct machine *machine __maybe_unused,
641 union perf_event *event)
642{
643 if (dump_trace)
644 perf_event__fprintf_switch(event, stdout);
645 return 0;
646}
647
648static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
649{
650 const char *dup_filename;
651
652 if (!filename || !dso || !dso->long_name)
653 return;
654 if (dso->long_name[0] != '[')
655 return;
656 if (!strchr(filename, '/'))
657 return;
658
659 dup_filename = strdup(filename);
660 if (!dup_filename)
661 return;
662
663 dso__set_long_name(dso, dup_filename, true);
664}
665
666struct map *machine__findnew_module_map(struct machine *machine, u64 start,
667 const char *filename)
668{
669 struct map *map = NULL;
670 struct dso *dso = NULL;
671 struct kmod_path m;
672
673 if (kmod_path__parse_name(&m, filename))
674 return NULL;
675
676 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
677 m.name);
678 if (map) {
679 /*
680 * If the map's dso is an offline module, give dso__load()
681 * a chance to find the file path of that module by fixing
682 * long_name.
683 */
684 dso__adjust_kmod_long_name(map->dso, filename);
685 goto out;
686 }
687
688 dso = machine__findnew_module_dso(machine, &m, filename);
689 if (dso == NULL)
690 goto out;
691
692 map = map__new2(start, dso, MAP__FUNCTION);
693 if (map == NULL)
694 goto out;
695
696 map_groups__insert(&machine->kmaps, map);
697
698 /* Put the map here because map_groups__insert alread got it */
699 map__put(map);
700out:
701 /* put the dso here, corresponding to machine__findnew_module_dso */
702 dso__put(dso);
703 free(m.name);
704 return map;
705}
706
707size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
708{
709 struct rb_node *nd;
710 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
711
712 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
713 struct machine *pos = rb_entry(nd, struct machine, rb_node);
714 ret += __dsos__fprintf(&pos->dsos.head, fp);
715 }
716
717 return ret;
718}
719
720size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
721 bool (skip)(struct dso *dso, int parm), int parm)
722{
723 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
724}
725
726size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
727 bool (skip)(struct dso *dso, int parm), int parm)
728{
729 struct rb_node *nd;
730 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
731
732 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
733 struct machine *pos = rb_entry(nd, struct machine, rb_node);
734 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
735 }
736 return ret;
737}
738
739size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
740{
741 int i;
742 size_t printed = 0;
743 struct dso *kdso = machine__kernel_map(machine)->dso;
744
745 if (kdso->has_build_id) {
746 char filename[PATH_MAX];
747 if (dso__build_id_filename(kdso, filename, sizeof(filename),
748 false))
749 printed += fprintf(fp, "[0] %s\n", filename);
750 }
751
752 for (i = 0; i < vmlinux_path__nr_entries; ++i)
753 printed += fprintf(fp, "[%d] %s\n",
754 i + kdso->has_build_id, vmlinux_path[i]);
755
756 return printed;
757}
758
759size_t machine__fprintf(struct machine *machine, FILE *fp)
760{
761 struct rb_node *nd;
762 size_t ret;
763 int i;
764
765 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
766 struct threads *threads = &machine->threads[i];
767
768 down_read(&threads->lock);
769
770 ret = fprintf(fp, "Threads: %u\n", threads->nr);
771
772 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
773 struct thread *pos = rb_entry(nd, struct thread, rb_node);
774
775 ret += thread__fprintf(pos, fp);
776 }
777
778 up_read(&threads->lock);
779 }
780 return ret;
781}
782
783static struct dso *machine__get_kernel(struct machine *machine)
784{
785 const char *vmlinux_name = machine->mmap_name;
786 struct dso *kernel;
787
788 if (machine__is_host(machine)) {
789 if (symbol_conf.vmlinux_name)
790 vmlinux_name = symbol_conf.vmlinux_name;
791
792 kernel = machine__findnew_kernel(machine, vmlinux_name,
793 "[kernel]", DSO_TYPE_KERNEL);
794 } else {
795 if (symbol_conf.default_guest_vmlinux_name)
796 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
797
798 kernel = machine__findnew_kernel(machine, vmlinux_name,
799 "[guest.kernel]",
800 DSO_TYPE_GUEST_KERNEL);
801 }
802
803 if (kernel != NULL && (!kernel->has_build_id))
804 dso__read_running_kernel_build_id(kernel, machine);
805
806 return kernel;
807}
808
809struct process_args {
810 u64 start;
811};
812
813static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
814 size_t bufsz)
815{
816 if (machine__is_default_guest(machine))
817 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
818 else
819 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
820}
821
822const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
823
824/* Figure out the start address of kernel map from /proc/kallsyms.
825 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
826 * symbol_name if it's not that important.
827 */
828static int machine__get_running_kernel_start(struct machine *machine,
829 const char **symbol_name, u64 *start)
830{
831 char filename[PATH_MAX];
832 int i, err = -1;
833 const char *name;
834 u64 addr = 0;
835
836 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
837
838 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
839 return 0;
840
841 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
842 err = kallsyms__get_function_start(filename, name, &addr);
843 if (!err)
844 break;
845 }
846
847 if (err)
848 return -1;
849
850 if (symbol_name)
851 *symbol_name = name;
852
853 *start = addr;
854 return 0;
855}
856
857static int
858__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
859{
860 int type;
861
862 /* In case of renewal the kernel map, destroy previous one */
863 machine__destroy_kernel_maps(machine);
864
865 for (type = 0; type < MAP__NR_TYPES; ++type) {
866 struct kmap *kmap;
867 struct map *map;
868
869 machine->vmlinux_maps[type] = map__new2(0, kernel, type);
870 if (machine->vmlinux_maps[type] == NULL)
871 return -1;
872
873 machine->vmlinux_maps[type]->map_ip =
874 machine->vmlinux_maps[type]->unmap_ip =
875 identity__map_ip;
876 map = __machine__kernel_map(machine, type);
877 kmap = map__kmap(map);
878 if (!kmap)
879 return -1;
880
881 kmap->kmaps = &machine->kmaps;
882 map_groups__insert(&machine->kmaps, map);
883 }
884
885 return 0;
886}
887
888void machine__destroy_kernel_maps(struct machine *machine)
889{
890 int type;
891
892 for (type = 0; type < MAP__NR_TYPES; ++type) {
893 struct kmap *kmap;
894 struct map *map = __machine__kernel_map(machine, type);
895
896 if (map == NULL)
897 continue;
898
899 kmap = map__kmap(map);
900 map_groups__remove(&machine->kmaps, map);
901 if (kmap && kmap->ref_reloc_sym) {
902 /*
903 * ref_reloc_sym is shared among all maps, so free just
904 * on one of them.
905 */
906 if (type == MAP__FUNCTION) {
907 zfree((char **)&kmap->ref_reloc_sym->name);
908 zfree(&kmap->ref_reloc_sym);
909 } else
910 kmap->ref_reloc_sym = NULL;
911 }
912
913 map__put(machine->vmlinux_maps[type]);
914 machine->vmlinux_maps[type] = NULL;
915 }
916}
917
918int machines__create_guest_kernel_maps(struct machines *machines)
919{
920 int ret = 0;
921 struct dirent **namelist = NULL;
922 int i, items = 0;
923 char path[PATH_MAX];
924 pid_t pid;
925 char *endp;
926
927 if (symbol_conf.default_guest_vmlinux_name ||
928 symbol_conf.default_guest_modules ||
929 symbol_conf.default_guest_kallsyms) {
930 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
931 }
932
933 if (symbol_conf.guestmount) {
934 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
935 if (items <= 0)
936 return -ENOENT;
937 for (i = 0; i < items; i++) {
938 if (!isdigit(namelist[i]->d_name[0])) {
939 /* Filter out . and .. */
940 continue;
941 }
942 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
943 if ((*endp != '\0') ||
944 (endp == namelist[i]->d_name) ||
945 (errno == ERANGE)) {
946 pr_debug("invalid directory (%s). Skipping.\n",
947 namelist[i]->d_name);
948 continue;
949 }
950 sprintf(path, "%s/%s/proc/kallsyms",
951 symbol_conf.guestmount,
952 namelist[i]->d_name);
953 ret = access(path, R_OK);
954 if (ret) {
955 pr_debug("Can't access file %s\n", path);
956 goto failure;
957 }
958 machines__create_kernel_maps(machines, pid);
959 }
960failure:
961 free(namelist);
962 }
963
964 return ret;
965}
966
967void machines__destroy_kernel_maps(struct machines *machines)
968{
969 struct rb_node *next = rb_first(&machines->guests);
970
971 machine__destroy_kernel_maps(&machines->host);
972
973 while (next) {
974 struct machine *pos = rb_entry(next, struct machine, rb_node);
975
976 next = rb_next(&pos->rb_node);
977 rb_erase(&pos->rb_node, &machines->guests);
978 machine__delete(pos);
979 }
980}
981
982int machines__create_kernel_maps(struct machines *machines, pid_t pid)
983{
984 struct machine *machine = machines__findnew(machines, pid);
985
986 if (machine == NULL)
987 return -1;
988
989 return machine__create_kernel_maps(machine);
990}
991
992int machine__load_kallsyms(struct machine *machine, const char *filename,
993 enum map_type type)
994{
995 struct map *map = machine__kernel_map(machine);
996 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
997
998 if (ret > 0) {
999 dso__set_loaded(map->dso, type);
1000 /*
1001 * Since /proc/kallsyms will have multiple sessions for the
1002 * kernel, with modules between them, fixup the end of all
1003 * sections.
1004 */
1005 __map_groups__fixup_end(&machine->kmaps, type);
1006 }
1007
1008 return ret;
1009}
1010
1011int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1012{
1013 struct map *map = machine__kernel_map(machine);
1014 int ret = dso__load_vmlinux_path(map->dso, map);
1015
1016 if (ret > 0)
1017 dso__set_loaded(map->dso, type);
1018
1019 return ret;
1020}
1021
1022static char *get_kernel_version(const char *root_dir)
1023{
1024 char version[PATH_MAX];
1025 FILE *file;
1026 char *name, *tmp;
1027 const char *prefix = "Linux version ";
1028
1029 sprintf(version, "%s/proc/version", root_dir);
1030 file = fopen(version, "r");
1031 if (!file)
1032 return NULL;
1033
1034 version[0] = '\0';
1035 tmp = fgets(version, sizeof(version), file);
1036 fclose(file);
1037
1038 name = strstr(version, prefix);
1039 if (!name)
1040 return NULL;
1041 name += strlen(prefix);
1042 tmp = strchr(name, ' ');
1043 if (tmp)
1044 *tmp = '\0';
1045
1046 return strdup(name);
1047}
1048
1049static bool is_kmod_dso(struct dso *dso)
1050{
1051 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1052 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1053}
1054
1055static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1056 struct kmod_path *m)
1057{
1058 struct map *map;
1059 char *long_name;
1060
1061 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1062 if (map == NULL)
1063 return 0;
1064
1065 long_name = strdup(path);
1066 if (long_name == NULL)
1067 return -ENOMEM;
1068
1069 dso__set_long_name(map->dso, long_name, true);
1070 dso__kernel_module_get_build_id(map->dso, "");
1071
1072 /*
1073 * Full name could reveal us kmod compression, so
1074 * we need to update the symtab_type if needed.
1075 */
1076 if (m->comp && is_kmod_dso(map->dso))
1077 map->dso->symtab_type++;
1078
1079 return 0;
1080}
1081
1082static int map_groups__set_modules_path_dir(struct map_groups *mg,
1083 const char *dir_name, int depth)
1084{
1085 struct dirent *dent;
1086 DIR *dir = opendir(dir_name);
1087 int ret = 0;
1088
1089 if (!dir) {
1090 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1091 return -1;
1092 }
1093
1094 while ((dent = readdir(dir)) != NULL) {
1095 char path[PATH_MAX];
1096 struct stat st;
1097
1098 /*sshfs might return bad dent->d_type, so we have to stat*/
1099 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1100 if (stat(path, &st))
1101 continue;
1102
1103 if (S_ISDIR(st.st_mode)) {
1104 if (!strcmp(dent->d_name, ".") ||
1105 !strcmp(dent->d_name, ".."))
1106 continue;
1107
1108 /* Do not follow top-level source and build symlinks */
1109 if (depth == 0) {
1110 if (!strcmp(dent->d_name, "source") ||
1111 !strcmp(dent->d_name, "build"))
1112 continue;
1113 }
1114
1115 ret = map_groups__set_modules_path_dir(mg, path,
1116 depth + 1);
1117 if (ret < 0)
1118 goto out;
1119 } else {
1120 struct kmod_path m;
1121
1122 ret = kmod_path__parse_name(&m, dent->d_name);
1123 if (ret)
1124 goto out;
1125
1126 if (m.kmod)
1127 ret = map_groups__set_module_path(mg, path, &m);
1128
1129 free(m.name);
1130
1131 if (ret)
1132 goto out;
1133 }
1134 }
1135
1136out:
1137 closedir(dir);
1138 return ret;
1139}
1140
1141static int machine__set_modules_path(struct machine *machine)
1142{
1143 char *version;
1144 char modules_path[PATH_MAX];
1145
1146 version = get_kernel_version(machine->root_dir);
1147 if (!version)
1148 return -1;
1149
1150 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1151 machine->root_dir, version);
1152 free(version);
1153
1154 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1155}
1156int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1157 const char *name __maybe_unused)
1158{
1159 return 0;
1160}
1161
1162static int machine__create_module(void *arg, const char *name, u64 start,
1163 u64 size)
1164{
1165 struct machine *machine = arg;
1166 struct map *map;
1167
1168 if (arch__fix_module_text_start(&start, name) < 0)
1169 return -1;
1170
1171 map = machine__findnew_module_map(machine, start, name);
1172 if (map == NULL)
1173 return -1;
1174 map->end = start + size;
1175
1176 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1177
1178 return 0;
1179}
1180
1181static int machine__create_modules(struct machine *machine)
1182{
1183 const char *modules;
1184 char path[PATH_MAX];
1185
1186 if (machine__is_default_guest(machine)) {
1187 modules = symbol_conf.default_guest_modules;
1188 } else {
1189 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1190 modules = path;
1191 }
1192
1193 if (symbol__restricted_filename(modules, "/proc/modules"))
1194 return -1;
1195
1196 if (modules__parse(modules, machine, machine__create_module))
1197 return -1;
1198
1199 if (!machine__set_modules_path(machine))
1200 return 0;
1201
1202 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1203
1204 return 0;
1205}
1206
1207static void machine__set_kernel_mmap(struct machine *machine,
1208 u64 start, u64 end)
1209{
1210 int i;
1211
1212 for (i = 0; i < MAP__NR_TYPES; i++) {
1213 machine->vmlinux_maps[i]->start = start;
1214 machine->vmlinux_maps[i]->end = end;
1215
1216 /*
1217 * Be a bit paranoid here, some perf.data file came with
1218 * a zero sized synthesized MMAP event for the kernel.
1219 */
1220 if (start == 0 && end == 0)
1221 machine->vmlinux_maps[i]->end = ~0ULL;
1222 }
1223}
1224
1225int machine__create_kernel_maps(struct machine *machine)
1226{
1227 struct dso *kernel = machine__get_kernel(machine);
1228 const char *name = NULL;
1229 struct map *map;
1230 u64 addr = 0;
1231 int ret;
1232
1233 if (kernel == NULL)
1234 return -1;
1235
1236 ret = __machine__create_kernel_maps(machine, kernel);
1237 dso__put(kernel);
1238 if (ret < 0)
1239 return -1;
1240
1241 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1242 if (machine__is_host(machine))
1243 pr_debug("Problems creating module maps, "
1244 "continuing anyway...\n");
1245 else
1246 pr_debug("Problems creating module maps for guest %d, "
1247 "continuing anyway...\n", machine->pid);
1248 }
1249
1250 if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1251 if (name &&
1252 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1253 machine__destroy_kernel_maps(machine);
1254 return -1;
1255 }
1256
1257 /* we have a real start address now, so re-order the kmaps */
1258 map = machine__kernel_map(machine);
1259
1260 map__get(map);
1261 map_groups__remove(&machine->kmaps, map);
1262
1263 /* assume it's the last in the kmaps */
1264 machine__set_kernel_mmap(machine, addr, ~0ULL);
1265
1266 map_groups__insert(&machine->kmaps, map);
1267 map__put(map);
1268 }
1269
1270 /* update end address of the kernel map using adjacent module address */
1271 map = map__next(machine__kernel_map(machine));
1272 if (map)
1273 machine__set_kernel_mmap(machine, addr, map->start);
1274
1275 return 0;
1276}
1277
1278static bool machine__uses_kcore(struct machine *machine)
1279{
1280 struct dso *dso;
1281
1282 list_for_each_entry(dso, &machine->dsos.head, node) {
1283 if (dso__is_kcore(dso))
1284 return true;
1285 }
1286
1287 return false;
1288}
1289
1290static int machine__process_kernel_mmap_event(struct machine *machine,
1291 union perf_event *event)
1292{
1293 struct map *map;
1294 enum dso_kernel_type kernel_type;
1295 bool is_kernel_mmap;
1296
1297 /* If we have maps from kcore then we do not need or want any others */
1298 if (machine__uses_kcore(machine))
1299 return 0;
1300
1301 if (machine__is_host(machine))
1302 kernel_type = DSO_TYPE_KERNEL;
1303 else
1304 kernel_type = DSO_TYPE_GUEST_KERNEL;
1305
1306 is_kernel_mmap = memcmp(event->mmap.filename,
1307 machine->mmap_name,
1308 strlen(machine->mmap_name) - 1) == 0;
1309 if (event->mmap.filename[0] == '/' ||
1310 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1311 map = machine__findnew_module_map(machine, event->mmap.start,
1312 event->mmap.filename);
1313 if (map == NULL)
1314 goto out_problem;
1315
1316 map->end = map->start + event->mmap.len;
1317 } else if (is_kernel_mmap) {
1318 const char *symbol_name = (event->mmap.filename +
1319 strlen(machine->mmap_name));
1320 /*
1321 * Should be there already, from the build-id table in
1322 * the header.
1323 */
1324 struct dso *kernel = NULL;
1325 struct dso *dso;
1326
1327 down_read(&machine->dsos.lock);
1328
1329 list_for_each_entry(dso, &machine->dsos.head, node) {
1330
1331 /*
1332 * The cpumode passed to is_kernel_module is not the
1333 * cpumode of *this* event. If we insist on passing
1334 * correct cpumode to is_kernel_module, we should
1335 * record the cpumode when we adding this dso to the
1336 * linked list.
1337 *
1338 * However we don't really need passing correct
1339 * cpumode. We know the correct cpumode must be kernel
1340 * mode (if not, we should not link it onto kernel_dsos
1341 * list).
1342 *
1343 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1344 * is_kernel_module() treats it as a kernel cpumode.
1345 */
1346
1347 if (!dso->kernel ||
1348 is_kernel_module(dso->long_name,
1349 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1350 continue;
1351
1352
1353 kernel = dso;
1354 break;
1355 }
1356
1357 up_read(&machine->dsos.lock);
1358
1359 if (kernel == NULL)
1360 kernel = machine__findnew_dso(machine, machine->mmap_name);
1361 if (kernel == NULL)
1362 goto out_problem;
1363
1364 kernel->kernel = kernel_type;
1365 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1366 dso__put(kernel);
1367 goto out_problem;
1368 }
1369
1370 if (strstr(kernel->long_name, "vmlinux"))
1371 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1372
1373 machine__set_kernel_mmap(machine, event->mmap.start,
1374 event->mmap.start + event->mmap.len);
1375
1376 /*
1377 * Avoid using a zero address (kptr_restrict) for the ref reloc
1378 * symbol. Effectively having zero here means that at record
1379 * time /proc/sys/kernel/kptr_restrict was non zero.
1380 */
1381 if (event->mmap.pgoff != 0) {
1382 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1383 symbol_name,
1384 event->mmap.pgoff);
1385 }
1386
1387 if (machine__is_default_guest(machine)) {
1388 /*
1389 * preload dso of guest kernel and modules
1390 */
1391 dso__load(kernel, machine__kernel_map(machine));
1392 }
1393 }
1394 return 0;
1395out_problem:
1396 return -1;
1397}
1398
1399int machine__process_mmap2_event(struct machine *machine,
1400 union perf_event *event,
1401 struct perf_sample *sample)
1402{
1403 struct thread *thread;
1404 struct map *map;
1405 enum map_type type;
1406 int ret = 0;
1407
1408 if (dump_trace)
1409 perf_event__fprintf_mmap2(event, stdout);
1410
1411 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1412 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1413 ret = machine__process_kernel_mmap_event(machine, event);
1414 if (ret < 0)
1415 goto out_problem;
1416 return 0;
1417 }
1418
1419 thread = machine__findnew_thread(machine, event->mmap2.pid,
1420 event->mmap2.tid);
1421 if (thread == NULL)
1422 goto out_problem;
1423
1424 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1425 type = MAP__VARIABLE;
1426 else
1427 type = MAP__FUNCTION;
1428
1429 map = map__new(machine, event->mmap2.start,
1430 event->mmap2.len, event->mmap2.pgoff,
1431 event->mmap2.maj,
1432 event->mmap2.min, event->mmap2.ino,
1433 event->mmap2.ino_generation,
1434 event->mmap2.prot,
1435 event->mmap2.flags,
1436 event->mmap2.filename, type, thread);
1437
1438 if (map == NULL)
1439 goto out_problem_map;
1440
1441 ret = thread__insert_map(thread, map);
1442 if (ret)
1443 goto out_problem_insert;
1444
1445 thread__put(thread);
1446 map__put(map);
1447 return 0;
1448
1449out_problem_insert:
1450 map__put(map);
1451out_problem_map:
1452 thread__put(thread);
1453out_problem:
1454 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1455 return 0;
1456}
1457
1458int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1459 struct perf_sample *sample)
1460{
1461 struct thread *thread;
1462 struct map *map;
1463 enum map_type type;
1464 int ret = 0;
1465
1466 if (dump_trace)
1467 perf_event__fprintf_mmap(event, stdout);
1468
1469 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1470 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1471 ret = machine__process_kernel_mmap_event(machine, event);
1472 if (ret < 0)
1473 goto out_problem;
1474 return 0;
1475 }
1476
1477 thread = machine__findnew_thread(machine, event->mmap.pid,
1478 event->mmap.tid);
1479 if (thread == NULL)
1480 goto out_problem;
1481
1482 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1483 type = MAP__VARIABLE;
1484 else
1485 type = MAP__FUNCTION;
1486
1487 map = map__new(machine, event->mmap.start,
1488 event->mmap.len, event->mmap.pgoff,
1489 0, 0, 0, 0, 0, 0,
1490 event->mmap.filename,
1491 type, thread);
1492
1493 if (map == NULL)
1494 goto out_problem_map;
1495
1496 ret = thread__insert_map(thread, map);
1497 if (ret)
1498 goto out_problem_insert;
1499
1500 thread__put(thread);
1501 map__put(map);
1502 return 0;
1503
1504out_problem_insert:
1505 map__put(map);
1506out_problem_map:
1507 thread__put(thread);
1508out_problem:
1509 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1510 return 0;
1511}
1512
1513static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1514{
1515 struct threads *threads = machine__threads(machine, th->tid);
1516
1517 if (threads->last_match == th)
1518 threads->last_match = NULL;
1519
1520 BUG_ON(refcount_read(&th->refcnt) == 0);
1521 if (lock)
1522 down_write(&threads->lock);
1523 rb_erase_init(&th->rb_node, &threads->entries);
1524 RB_CLEAR_NODE(&th->rb_node);
1525 --threads->nr;
1526 /*
1527 * Move it first to the dead_threads list, then drop the reference,
1528 * if this is the last reference, then the thread__delete destructor
1529 * will be called and we will remove it from the dead_threads list.
1530 */
1531 list_add_tail(&th->node, &threads->dead);
1532 if (lock)
1533 up_write(&threads->lock);
1534 thread__put(th);
1535}
1536
1537void machine__remove_thread(struct machine *machine, struct thread *th)
1538{
1539 return __machine__remove_thread(machine, th, true);
1540}
1541
1542int machine__process_fork_event(struct machine *machine, union perf_event *event,
1543 struct perf_sample *sample)
1544{
1545 struct thread *thread = machine__find_thread(machine,
1546 event->fork.pid,
1547 event->fork.tid);
1548 struct thread *parent = machine__findnew_thread(machine,
1549 event->fork.ppid,
1550 event->fork.ptid);
1551 int err = 0;
1552
1553 if (dump_trace)
1554 perf_event__fprintf_task(event, stdout);
1555
1556 /*
1557 * There may be an existing thread that is not actually the parent,
1558 * either because we are processing events out of order, or because the
1559 * (fork) event that would have removed the thread was lost. Assume the
1560 * latter case and continue on as best we can.
1561 */
1562 if (parent->pid_ != (pid_t)event->fork.ppid) {
1563 dump_printf("removing erroneous parent thread %d/%d\n",
1564 parent->pid_, parent->tid);
1565 machine__remove_thread(machine, parent);
1566 thread__put(parent);
1567 parent = machine__findnew_thread(machine, event->fork.ppid,
1568 event->fork.ptid);
1569 }
1570
1571 /* if a thread currently exists for the thread id remove it */
1572 if (thread != NULL) {
1573 machine__remove_thread(machine, thread);
1574 thread__put(thread);
1575 }
1576
1577 thread = machine__findnew_thread(machine, event->fork.pid,
1578 event->fork.tid);
1579
1580 if (thread == NULL || parent == NULL ||
1581 thread__fork(thread, parent, sample->time) < 0) {
1582 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1583 err = -1;
1584 }
1585 thread__put(thread);
1586 thread__put(parent);
1587
1588 return err;
1589}
1590
1591int machine__process_exit_event(struct machine *machine, union perf_event *event,
1592 struct perf_sample *sample __maybe_unused)
1593{
1594 struct thread *thread = machine__find_thread(machine,
1595 event->fork.pid,
1596 event->fork.tid);
1597
1598 if (dump_trace)
1599 perf_event__fprintf_task(event, stdout);
1600
1601 if (thread != NULL) {
1602 thread__exited(thread);
1603 thread__put(thread);
1604 }
1605
1606 return 0;
1607}
1608
1609int machine__process_event(struct machine *machine, union perf_event *event,
1610 struct perf_sample *sample)
1611{
1612 int ret;
1613
1614 switch (event->header.type) {
1615 case PERF_RECORD_COMM:
1616 ret = machine__process_comm_event(machine, event, sample); break;
1617 case PERF_RECORD_MMAP:
1618 ret = machine__process_mmap_event(machine, event, sample); break;
1619 case PERF_RECORD_NAMESPACES:
1620 ret = machine__process_namespaces_event(machine, event, sample); break;
1621 case PERF_RECORD_MMAP2:
1622 ret = machine__process_mmap2_event(machine, event, sample); break;
1623 case PERF_RECORD_FORK:
1624 ret = machine__process_fork_event(machine, event, sample); break;
1625 case PERF_RECORD_EXIT:
1626 ret = machine__process_exit_event(machine, event, sample); break;
1627 case PERF_RECORD_LOST:
1628 ret = machine__process_lost_event(machine, event, sample); break;
1629 case PERF_RECORD_AUX:
1630 ret = machine__process_aux_event(machine, event); break;
1631 case PERF_RECORD_ITRACE_START:
1632 ret = machine__process_itrace_start_event(machine, event); break;
1633 case PERF_RECORD_LOST_SAMPLES:
1634 ret = machine__process_lost_samples_event(machine, event, sample); break;
1635 case PERF_RECORD_SWITCH:
1636 case PERF_RECORD_SWITCH_CPU_WIDE:
1637 ret = machine__process_switch_event(machine, event); break;
1638 default:
1639 ret = -1;
1640 break;
1641 }
1642
1643 return ret;
1644}
1645
1646static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1647{
1648 if (!regexec(regex, sym->name, 0, NULL, 0))
1649 return 1;
1650 return 0;
1651}
1652
1653static void ip__resolve_ams(struct thread *thread,
1654 struct addr_map_symbol *ams,
1655 u64 ip)
1656{
1657 struct addr_location al;
1658
1659 memset(&al, 0, sizeof(al));
1660 /*
1661 * We cannot use the header.misc hint to determine whether a
1662 * branch stack address is user, kernel, guest, hypervisor.
1663 * Branches may straddle the kernel/user/hypervisor boundaries.
1664 * Thus, we have to try consecutively until we find a match
1665 * or else, the symbol is unknown
1666 */
1667 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1668
1669 ams->addr = ip;
1670 ams->al_addr = al.addr;
1671 ams->sym = al.sym;
1672 ams->map = al.map;
1673 ams->phys_addr = 0;
1674}
1675
1676static void ip__resolve_data(struct thread *thread,
1677 u8 m, struct addr_map_symbol *ams,
1678 u64 addr, u64 phys_addr)
1679{
1680 struct addr_location al;
1681
1682 memset(&al, 0, sizeof(al));
1683
1684 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1685 if (al.map == NULL) {
1686 /*
1687 * some shared data regions have execute bit set which puts
1688 * their mapping in the MAP__FUNCTION type array.
1689 * Check there as a fallback option before dropping the sample.
1690 */
1691 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1692 }
1693
1694 ams->addr = addr;
1695 ams->al_addr = al.addr;
1696 ams->sym = al.sym;
1697 ams->map = al.map;
1698 ams->phys_addr = phys_addr;
1699}
1700
1701struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1702 struct addr_location *al)
1703{
1704 struct mem_info *mi = mem_info__new();
1705
1706 if (!mi)
1707 return NULL;
1708
1709 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1710 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1711 sample->addr, sample->phys_addr);
1712 mi->data_src.val = sample->data_src;
1713
1714 return mi;
1715}
1716
1717static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1718{
1719 char *srcline = NULL;
1720
1721 if (!map || callchain_param.key == CCKEY_FUNCTION)
1722 return srcline;
1723
1724 srcline = srcline__tree_find(&map->dso->srclines, ip);
1725 if (!srcline) {
1726 bool show_sym = false;
1727 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1728
1729 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1730 sym, show_sym, show_addr, ip);
1731 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1732 }
1733
1734 return srcline;
1735}
1736
1737struct iterations {
1738 int nr_loop_iter;
1739 u64 cycles;
1740};
1741
1742static int add_callchain_ip(struct thread *thread,
1743 struct callchain_cursor *cursor,
1744 struct symbol **parent,
1745 struct addr_location *root_al,
1746 u8 *cpumode,
1747 u64 ip,
1748 bool branch,
1749 struct branch_flags *flags,
1750 struct iterations *iter,
1751 u64 branch_from)
1752{
1753 struct addr_location al;
1754 int nr_loop_iter = 0;
1755 u64 iter_cycles = 0;
1756 const char *srcline = NULL;
1757
1758 al.filtered = 0;
1759 al.sym = NULL;
1760 if (!cpumode) {
1761 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1762 ip, &al);
1763 } else {
1764 if (ip >= PERF_CONTEXT_MAX) {
1765 switch (ip) {
1766 case PERF_CONTEXT_HV:
1767 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1768 break;
1769 case PERF_CONTEXT_KERNEL:
1770 *cpumode = PERF_RECORD_MISC_KERNEL;
1771 break;
1772 case PERF_CONTEXT_USER:
1773 *cpumode = PERF_RECORD_MISC_USER;
1774 break;
1775 default:
1776 pr_debug("invalid callchain context: "
1777 "%"PRId64"\n", (s64) ip);
1778 /*
1779 * It seems the callchain is corrupted.
1780 * Discard all.
1781 */
1782 callchain_cursor_reset(cursor);
1783 return 1;
1784 }
1785 return 0;
1786 }
1787 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1788 ip, &al);
1789 }
1790
1791 if (al.sym != NULL) {
1792 if (perf_hpp_list.parent && !*parent &&
1793 symbol__match_regex(al.sym, &parent_regex))
1794 *parent = al.sym;
1795 else if (have_ignore_callees && root_al &&
1796 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1797 /* Treat this symbol as the root,
1798 forgetting its callees. */
1799 *root_al = al;
1800 callchain_cursor_reset(cursor);
1801 }
1802 }
1803
1804 if (symbol_conf.hide_unresolved && al.sym == NULL)
1805 return 0;
1806
1807 if (iter) {
1808 nr_loop_iter = iter->nr_loop_iter;
1809 iter_cycles = iter->cycles;
1810 }
1811
1812 srcline = callchain_srcline(al.map, al.sym, al.addr);
1813 return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1814 branch, flags, nr_loop_iter,
1815 iter_cycles, branch_from, srcline);
1816}
1817
1818struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1819 struct addr_location *al)
1820{
1821 unsigned int i;
1822 const struct branch_stack *bs = sample->branch_stack;
1823 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1824
1825 if (!bi)
1826 return NULL;
1827
1828 for (i = 0; i < bs->nr; i++) {
1829 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1830 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1831 bi[i].flags = bs->entries[i].flags;
1832 }
1833 return bi;
1834}
1835
1836static void save_iterations(struct iterations *iter,
1837 struct branch_entry *be, int nr)
1838{
1839 int i;
1840
1841 iter->nr_loop_iter = nr;
1842 iter->cycles = 0;
1843
1844 for (i = 0; i < nr; i++)
1845 iter->cycles += be[i].flags.cycles;
1846}
1847
1848#define CHASHSZ 127
1849#define CHASHBITS 7
1850#define NO_ENTRY 0xff
1851
1852#define PERF_MAX_BRANCH_DEPTH 127
1853
1854/* Remove loops. */
1855static int remove_loops(struct branch_entry *l, int nr,
1856 struct iterations *iter)
1857{
1858 int i, j, off;
1859 unsigned char chash[CHASHSZ];
1860
1861 memset(chash, NO_ENTRY, sizeof(chash));
1862
1863 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1864
1865 for (i = 0; i < nr; i++) {
1866 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1867
1868 /* no collision handling for now */
1869 if (chash[h] == NO_ENTRY) {
1870 chash[h] = i;
1871 } else if (l[chash[h]].from == l[i].from) {
1872 bool is_loop = true;
1873 /* check if it is a real loop */
1874 off = 0;
1875 for (j = chash[h]; j < i && i + off < nr; j++, off++)
1876 if (l[j].from != l[i + off].from) {
1877 is_loop = false;
1878 break;
1879 }
1880 if (is_loop) {
1881 j = nr - (i + off);
1882 if (j > 0) {
1883 save_iterations(iter + i + off,
1884 l + i, off);
1885
1886 memmove(iter + i, iter + i + off,
1887 j * sizeof(*iter));
1888
1889 memmove(l + i, l + i + off,
1890 j * sizeof(*l));
1891 }
1892
1893 nr -= off;
1894 }
1895 }
1896 }
1897 return nr;
1898}
1899
1900/*
1901 * Recolve LBR callstack chain sample
1902 * Return:
1903 * 1 on success get LBR callchain information
1904 * 0 no available LBR callchain information, should try fp
1905 * negative error code on other errors.
1906 */
1907static int resolve_lbr_callchain_sample(struct thread *thread,
1908 struct callchain_cursor *cursor,
1909 struct perf_sample *sample,
1910 struct symbol **parent,
1911 struct addr_location *root_al,
1912 int max_stack)
1913{
1914 struct ip_callchain *chain = sample->callchain;
1915 int chain_nr = min(max_stack, (int)chain->nr), i;
1916 u8 cpumode = PERF_RECORD_MISC_USER;
1917 u64 ip, branch_from = 0;
1918
1919 for (i = 0; i < chain_nr; i++) {
1920 if (chain->ips[i] == PERF_CONTEXT_USER)
1921 break;
1922 }
1923
1924 /* LBR only affects the user callchain */
1925 if (i != chain_nr) {
1926 struct branch_stack *lbr_stack = sample->branch_stack;
1927 int lbr_nr = lbr_stack->nr, j, k;
1928 bool branch;
1929 struct branch_flags *flags;
1930 /*
1931 * LBR callstack can only get user call chain.
1932 * The mix_chain_nr is kernel call chain
1933 * number plus LBR user call chain number.
1934 * i is kernel call chain number,
1935 * 1 is PERF_CONTEXT_USER,
1936 * lbr_nr + 1 is the user call chain number.
1937 * For details, please refer to the comments
1938 * in callchain__printf
1939 */
1940 int mix_chain_nr = i + 1 + lbr_nr + 1;
1941
1942 for (j = 0; j < mix_chain_nr; j++) {
1943 int err;
1944 branch = false;
1945 flags = NULL;
1946
1947 if (callchain_param.order == ORDER_CALLEE) {
1948 if (j < i + 1)
1949 ip = chain->ips[j];
1950 else if (j > i + 1) {
1951 k = j - i - 2;
1952 ip = lbr_stack->entries[k].from;
1953 branch = true;
1954 flags = &lbr_stack->entries[k].flags;
1955 } else {
1956 ip = lbr_stack->entries[0].to;
1957 branch = true;
1958 flags = &lbr_stack->entries[0].flags;
1959 branch_from =
1960 lbr_stack->entries[0].from;
1961 }
1962 } else {
1963 if (j < lbr_nr) {
1964 k = lbr_nr - j - 1;
1965 ip = lbr_stack->entries[k].from;
1966 branch = true;
1967 flags = &lbr_stack->entries[k].flags;
1968 }
1969 else if (j > lbr_nr)
1970 ip = chain->ips[i + 1 - (j - lbr_nr)];
1971 else {
1972 ip = lbr_stack->entries[0].to;
1973 branch = true;
1974 flags = &lbr_stack->entries[0].flags;
1975 branch_from =
1976 lbr_stack->entries[0].from;
1977 }
1978 }
1979
1980 err = add_callchain_ip(thread, cursor, parent,
1981 root_al, &cpumode, ip,
1982 branch, flags, NULL,
1983 branch_from);
1984 if (err)
1985 return (err < 0) ? err : 0;
1986 }
1987 return 1;
1988 }
1989
1990 return 0;
1991}
1992
1993static int thread__resolve_callchain_sample(struct thread *thread,
1994 struct callchain_cursor *cursor,
1995 struct perf_evsel *evsel,
1996 struct perf_sample *sample,
1997 struct symbol **parent,
1998 struct addr_location *root_al,
1999 int max_stack)
2000{
2001 struct branch_stack *branch = sample->branch_stack;
2002 struct ip_callchain *chain = sample->callchain;
2003 int chain_nr = 0;
2004 u8 cpumode = PERF_RECORD_MISC_USER;
2005 int i, j, err, nr_entries;
2006 int skip_idx = -1;
2007 int first_call = 0;
2008
2009 if (chain)
2010 chain_nr = chain->nr;
2011
2012 if (perf_evsel__has_branch_callstack(evsel)) {
2013 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2014 root_al, max_stack);
2015 if (err)
2016 return (err < 0) ? err : 0;
2017 }
2018
2019 /*
2020 * Based on DWARF debug information, some architectures skip
2021 * a callchain entry saved by the kernel.
2022 */
2023 skip_idx = arch_skip_callchain_idx(thread, chain);
2024
2025 /*
2026 * Add branches to call stack for easier browsing. This gives
2027 * more context for a sample than just the callers.
2028 *
2029 * This uses individual histograms of paths compared to the
2030 * aggregated histograms the normal LBR mode uses.
2031 *
2032 * Limitations for now:
2033 * - No extra filters
2034 * - No annotations (should annotate somehow)
2035 */
2036
2037 if (branch && callchain_param.branch_callstack) {
2038 int nr = min(max_stack, (int)branch->nr);
2039 struct branch_entry be[nr];
2040 struct iterations iter[nr];
2041
2042 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2043 pr_warning("corrupted branch chain. skipping...\n");
2044 goto check_calls;
2045 }
2046
2047 for (i = 0; i < nr; i++) {
2048 if (callchain_param.order == ORDER_CALLEE) {
2049 be[i] = branch->entries[i];
2050
2051 if (chain == NULL)
2052 continue;
2053
2054 /*
2055 * Check for overlap into the callchain.
2056 * The return address is one off compared to
2057 * the branch entry. To adjust for this
2058 * assume the calling instruction is not longer
2059 * than 8 bytes.
2060 */
2061 if (i == skip_idx ||
2062 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2063 first_call++;
2064 else if (be[i].from < chain->ips[first_call] &&
2065 be[i].from >= chain->ips[first_call] - 8)
2066 first_call++;
2067 } else
2068 be[i] = branch->entries[branch->nr - i - 1];
2069 }
2070
2071 memset(iter, 0, sizeof(struct iterations) * nr);
2072 nr = remove_loops(be, nr, iter);
2073
2074 for (i = 0; i < nr; i++) {
2075 err = add_callchain_ip(thread, cursor, parent,
2076 root_al,
2077 NULL, be[i].to,
2078 true, &be[i].flags,
2079 NULL, be[i].from);
2080
2081 if (!err)
2082 err = add_callchain_ip(thread, cursor, parent, root_al,
2083 NULL, be[i].from,
2084 true, &be[i].flags,
2085 &iter[i], 0);
2086 if (err == -EINVAL)
2087 break;
2088 if (err)
2089 return err;
2090 }
2091
2092 if (chain_nr == 0)
2093 return 0;
2094
2095 chain_nr -= nr;
2096 }
2097
2098check_calls:
2099 for (i = first_call, nr_entries = 0;
2100 i < chain_nr && nr_entries < max_stack; i++) {
2101 u64 ip;
2102
2103 if (callchain_param.order == ORDER_CALLEE)
2104 j = i;
2105 else
2106 j = chain->nr - i - 1;
2107
2108#ifdef HAVE_SKIP_CALLCHAIN_IDX
2109 if (j == skip_idx)
2110 continue;
2111#endif
2112 ip = chain->ips[j];
2113
2114 if (ip < PERF_CONTEXT_MAX)
2115 ++nr_entries;
2116
2117 err = add_callchain_ip(thread, cursor, parent,
2118 root_al, &cpumode, ip,
2119 false, NULL, NULL, 0);
2120
2121 if (err)
2122 return (err < 0) ? err : 0;
2123 }
2124
2125 return 0;
2126}
2127
2128static int append_inlines(struct callchain_cursor *cursor,
2129 struct map *map, struct symbol *sym, u64 ip)
2130{
2131 struct inline_node *inline_node;
2132 struct inline_list *ilist;
2133 u64 addr;
2134 int ret = 1;
2135
2136 if (!symbol_conf.inline_name || !map || !sym)
2137 return ret;
2138
2139 addr = map__rip_2objdump(map, ip);
2140
2141 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2142 if (!inline_node) {
2143 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2144 if (!inline_node)
2145 return ret;
2146 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2147 }
2148
2149 list_for_each_entry(ilist, &inline_node->val, list) {
2150 ret = callchain_cursor_append(cursor, ip, map,
2151 ilist->symbol, false,
2152 NULL, 0, 0, 0, ilist->srcline);
2153
2154 if (ret != 0)
2155 return ret;
2156 }
2157
2158 return ret;
2159}
2160
2161static int unwind_entry(struct unwind_entry *entry, void *arg)
2162{
2163 struct callchain_cursor *cursor = arg;
2164 const char *srcline = NULL;
2165
2166 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2167 return 0;
2168
2169 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2170 return 0;
2171
2172 srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2173 return callchain_cursor_append(cursor, entry->ip,
2174 entry->map, entry->sym,
2175 false, NULL, 0, 0, 0, srcline);
2176}
2177
2178static int thread__resolve_callchain_unwind(struct thread *thread,
2179 struct callchain_cursor *cursor,
2180 struct perf_evsel *evsel,
2181 struct perf_sample *sample,
2182 int max_stack)
2183{
2184 /* Can we do dwarf post unwind? */
2185 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2186 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2187 return 0;
2188
2189 /* Bail out if nothing was captured. */
2190 if ((!sample->user_regs.regs) ||
2191 (!sample->user_stack.size))
2192 return 0;
2193
2194 return unwind__get_entries(unwind_entry, cursor,
2195 thread, sample, max_stack);
2196}
2197
2198int thread__resolve_callchain(struct thread *thread,
2199 struct callchain_cursor *cursor,
2200 struct perf_evsel *evsel,
2201 struct perf_sample *sample,
2202 struct symbol **parent,
2203 struct addr_location *root_al,
2204 int max_stack)
2205{
2206 int ret = 0;
2207
2208 callchain_cursor_reset(cursor);
2209
2210 if (callchain_param.order == ORDER_CALLEE) {
2211 ret = thread__resolve_callchain_sample(thread, cursor,
2212 evsel, sample,
2213 parent, root_al,
2214 max_stack);
2215 if (ret)
2216 return ret;
2217 ret = thread__resolve_callchain_unwind(thread, cursor,
2218 evsel, sample,
2219 max_stack);
2220 } else {
2221 ret = thread__resolve_callchain_unwind(thread, cursor,
2222 evsel, sample,
2223 max_stack);
2224 if (ret)
2225 return ret;
2226 ret = thread__resolve_callchain_sample(thread, cursor,
2227 evsel, sample,
2228 parent, root_al,
2229 max_stack);
2230 }
2231
2232 return ret;
2233}
2234
2235int machine__for_each_thread(struct machine *machine,
2236 int (*fn)(struct thread *thread, void *p),
2237 void *priv)
2238{
2239 struct threads *threads;
2240 struct rb_node *nd;
2241 struct thread *thread;
2242 int rc = 0;
2243 int i;
2244
2245 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2246 threads = &machine->threads[i];
2247 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2248 thread = rb_entry(nd, struct thread, rb_node);
2249 rc = fn(thread, priv);
2250 if (rc != 0)
2251 return rc;
2252 }
2253
2254 list_for_each_entry(thread, &threads->dead, node) {
2255 rc = fn(thread, priv);
2256 if (rc != 0)
2257 return rc;
2258 }
2259 }
2260 return rc;
2261}
2262
2263int machines__for_each_thread(struct machines *machines,
2264 int (*fn)(struct thread *thread, void *p),
2265 void *priv)
2266{
2267 struct rb_node *nd;
2268 int rc = 0;
2269
2270 rc = machine__for_each_thread(&machines->host, fn, priv);
2271 if (rc != 0)
2272 return rc;
2273
2274 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2275 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2276
2277 rc = machine__for_each_thread(machine, fn, priv);
2278 if (rc != 0)
2279 return rc;
2280 }
2281 return rc;
2282}
2283
2284int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2285 struct target *target, struct thread_map *threads,
2286 perf_event__handler_t process, bool data_mmap,
2287 unsigned int proc_map_timeout,
2288 unsigned int nr_threads_synthesize)
2289{
2290 if (target__has_task(target))
2291 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2292 else if (target__has_cpu(target))
2293 return perf_event__synthesize_threads(tool, process,
2294 machine, data_mmap,
2295 proc_map_timeout,
2296 nr_threads_synthesize);
2297 /* command specified */
2298 return 0;
2299}
2300
2301pid_t machine__get_current_tid(struct machine *machine, int cpu)
2302{
2303 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2304 return -1;
2305
2306 return machine->current_tid[cpu];
2307}
2308
2309int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2310 pid_t tid)
2311{
2312 struct thread *thread;
2313
2314 if (cpu < 0)
2315 return -EINVAL;
2316
2317 if (!machine->current_tid) {
2318 int i;
2319
2320 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2321 if (!machine->current_tid)
2322 return -ENOMEM;
2323 for (i = 0; i < MAX_NR_CPUS; i++)
2324 machine->current_tid[i] = -1;
2325 }
2326
2327 if (cpu >= MAX_NR_CPUS) {
2328 pr_err("Requested CPU %d too large. ", cpu);
2329 pr_err("Consider raising MAX_NR_CPUS\n");
2330 return -EINVAL;
2331 }
2332
2333 machine->current_tid[cpu] = tid;
2334
2335 thread = machine__findnew_thread(machine, pid, tid);
2336 if (!thread)
2337 return -ENOMEM;
2338
2339 thread->cpu = cpu;
2340 thread__put(thread);
2341
2342 return 0;
2343}
2344
2345int machine__get_kernel_start(struct machine *machine)
2346{
2347 struct map *map = machine__kernel_map(machine);
2348 int err = 0;
2349
2350 /*
2351 * The only addresses above 2^63 are kernel addresses of a 64-bit
2352 * kernel. Note that addresses are unsigned so that on a 32-bit system
2353 * all addresses including kernel addresses are less than 2^32. In
2354 * that case (32-bit system), if the kernel mapping is unknown, all
2355 * addresses will be assumed to be in user space - see
2356 * machine__kernel_ip().
2357 */
2358 machine->kernel_start = 1ULL << 63;
2359 if (map) {
2360 err = map__load(map);
2361 if (!err)
2362 machine->kernel_start = map->start;
2363 }
2364 return err;
2365}
2366
2367struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2368{
2369 return dsos__findnew(&machine->dsos, filename);
2370}
2371
2372char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2373{
2374 struct machine *machine = vmachine;
2375 struct map *map;
2376 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2377
2378 if (sym == NULL)
2379 return NULL;
2380
2381 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2382 *addrp = map->unmap_ip(map, sym->start);
2383 return sym->name;
2384}
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "srcline.h"
20#include "symbol.h"
21#include "sort.h"
22#include "strlist.h"
23#include "target.h"
24#include "thread.h"
25#include "util.h"
26#include "vdso.h"
27#include <stdbool.h>
28#include <sys/types.h>
29#include <sys/stat.h>
30#include <unistd.h>
31#include "unwind.h"
32#include "linux/hash.h"
33#include "asm/bug.h"
34#include "bpf-event.h"
35#include <internal/lib.h> // page_size
36
37#include <linux/ctype.h>
38#include <symbol/kallsyms.h>
39#include <linux/mman.h>
40#include <linux/string.h>
41#include <linux/zalloc.h>
42
43static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
44
45static void dsos__init(struct dsos *dsos)
46{
47 INIT_LIST_HEAD(&dsos->head);
48 dsos->root = RB_ROOT;
49 init_rwsem(&dsos->lock);
50}
51
52static void machine__threads_init(struct machine *machine)
53{
54 int i;
55
56 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
57 struct threads *threads = &machine->threads[i];
58 threads->entries = RB_ROOT_CACHED;
59 init_rwsem(&threads->lock);
60 threads->nr = 0;
61 INIT_LIST_HEAD(&threads->dead);
62 threads->last_match = NULL;
63 }
64}
65
66static int machine__set_mmap_name(struct machine *machine)
67{
68 if (machine__is_host(machine))
69 machine->mmap_name = strdup("[kernel.kallsyms]");
70 else if (machine__is_default_guest(machine))
71 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
72 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
73 machine->pid) < 0)
74 machine->mmap_name = NULL;
75
76 return machine->mmap_name ? 0 : -ENOMEM;
77}
78
79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
80{
81 int err = -ENOMEM;
82
83 memset(machine, 0, sizeof(*machine));
84 map_groups__init(&machine->kmaps, machine);
85 RB_CLEAR_NODE(&machine->rb_node);
86 dsos__init(&machine->dsos);
87
88 machine__threads_init(machine);
89
90 machine->vdso_info = NULL;
91 machine->env = NULL;
92
93 machine->pid = pid;
94
95 machine->id_hdr_size = 0;
96 machine->kptr_restrict_warned = false;
97 machine->comm_exec = false;
98 machine->kernel_start = 0;
99 machine->vmlinux_map = NULL;
100
101 machine->root_dir = strdup(root_dir);
102 if (machine->root_dir == NULL)
103 return -ENOMEM;
104
105 if (machine__set_mmap_name(machine))
106 goto out;
107
108 if (pid != HOST_KERNEL_ID) {
109 struct thread *thread = machine__findnew_thread(machine, -1,
110 pid);
111 char comm[64];
112
113 if (thread == NULL)
114 goto out;
115
116 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
117 thread__set_comm(thread, comm, 0);
118 thread__put(thread);
119 }
120
121 machine->current_tid = NULL;
122 err = 0;
123
124out:
125 if (err) {
126 zfree(&machine->root_dir);
127 zfree(&machine->mmap_name);
128 }
129 return 0;
130}
131
132struct machine *machine__new_host(void)
133{
134 struct machine *machine = malloc(sizeof(*machine));
135
136 if (machine != NULL) {
137 machine__init(machine, "", HOST_KERNEL_ID);
138
139 if (machine__create_kernel_maps(machine) < 0)
140 goto out_delete;
141 }
142
143 return machine;
144out_delete:
145 free(machine);
146 return NULL;
147}
148
149struct machine *machine__new_kallsyms(void)
150{
151 struct machine *machine = machine__new_host();
152 /*
153 * FIXME:
154 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
155 * ask for not using the kcore parsing code, once this one is fixed
156 * to create a map per module.
157 */
158 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
159 machine__delete(machine);
160 machine = NULL;
161 }
162
163 return machine;
164}
165
166static void dsos__purge(struct dsos *dsos)
167{
168 struct dso *pos, *n;
169
170 down_write(&dsos->lock);
171
172 list_for_each_entry_safe(pos, n, &dsos->head, node) {
173 RB_CLEAR_NODE(&pos->rb_node);
174 pos->root = NULL;
175 list_del_init(&pos->node);
176 dso__put(pos);
177 }
178
179 up_write(&dsos->lock);
180}
181
182static void dsos__exit(struct dsos *dsos)
183{
184 dsos__purge(dsos);
185 exit_rwsem(&dsos->lock);
186}
187
188void machine__delete_threads(struct machine *machine)
189{
190 struct rb_node *nd;
191 int i;
192
193 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
194 struct threads *threads = &machine->threads[i];
195 down_write(&threads->lock);
196 nd = rb_first_cached(&threads->entries);
197 while (nd) {
198 struct thread *t = rb_entry(nd, struct thread, rb_node);
199
200 nd = rb_next(nd);
201 __machine__remove_thread(machine, t, false);
202 }
203 up_write(&threads->lock);
204 }
205}
206
207void machine__exit(struct machine *machine)
208{
209 int i;
210
211 if (machine == NULL)
212 return;
213
214 machine__destroy_kernel_maps(machine);
215 map_groups__exit(&machine->kmaps);
216 dsos__exit(&machine->dsos);
217 machine__exit_vdso(machine);
218 zfree(&machine->root_dir);
219 zfree(&machine->mmap_name);
220 zfree(&machine->current_tid);
221
222 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
223 struct threads *threads = &machine->threads[i];
224 struct thread *thread, *n;
225 /*
226 * Forget about the dead, at this point whatever threads were
227 * left in the dead lists better have a reference count taken
228 * by who is using them, and then, when they drop those references
229 * and it finally hits zero, thread__put() will check and see that
230 * its not in the dead threads list and will not try to remove it
231 * from there, just calling thread__delete() straight away.
232 */
233 list_for_each_entry_safe(thread, n, &threads->dead, node)
234 list_del_init(&thread->node);
235
236 exit_rwsem(&threads->lock);
237 }
238}
239
240void machine__delete(struct machine *machine)
241{
242 if (machine) {
243 machine__exit(machine);
244 free(machine);
245 }
246}
247
248void machines__init(struct machines *machines)
249{
250 machine__init(&machines->host, "", HOST_KERNEL_ID);
251 machines->guests = RB_ROOT_CACHED;
252}
253
254void machines__exit(struct machines *machines)
255{
256 machine__exit(&machines->host);
257 /* XXX exit guest */
258}
259
260struct machine *machines__add(struct machines *machines, pid_t pid,
261 const char *root_dir)
262{
263 struct rb_node **p = &machines->guests.rb_root.rb_node;
264 struct rb_node *parent = NULL;
265 struct machine *pos, *machine = malloc(sizeof(*machine));
266 bool leftmost = true;
267
268 if (machine == NULL)
269 return NULL;
270
271 if (machine__init(machine, root_dir, pid) != 0) {
272 free(machine);
273 return NULL;
274 }
275
276 while (*p != NULL) {
277 parent = *p;
278 pos = rb_entry(parent, struct machine, rb_node);
279 if (pid < pos->pid)
280 p = &(*p)->rb_left;
281 else {
282 p = &(*p)->rb_right;
283 leftmost = false;
284 }
285 }
286
287 rb_link_node(&machine->rb_node, parent, p);
288 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
289
290 return machine;
291}
292
293void machines__set_comm_exec(struct machines *machines, bool comm_exec)
294{
295 struct rb_node *nd;
296
297 machines->host.comm_exec = comm_exec;
298
299 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
300 struct machine *machine = rb_entry(nd, struct machine, rb_node);
301
302 machine->comm_exec = comm_exec;
303 }
304}
305
306struct machine *machines__find(struct machines *machines, pid_t pid)
307{
308 struct rb_node **p = &machines->guests.rb_root.rb_node;
309 struct rb_node *parent = NULL;
310 struct machine *machine;
311 struct machine *default_machine = NULL;
312
313 if (pid == HOST_KERNEL_ID)
314 return &machines->host;
315
316 while (*p != NULL) {
317 parent = *p;
318 machine = rb_entry(parent, struct machine, rb_node);
319 if (pid < machine->pid)
320 p = &(*p)->rb_left;
321 else if (pid > machine->pid)
322 p = &(*p)->rb_right;
323 else
324 return machine;
325 if (!machine->pid)
326 default_machine = machine;
327 }
328
329 return default_machine;
330}
331
332struct machine *machines__findnew(struct machines *machines, pid_t pid)
333{
334 char path[PATH_MAX];
335 const char *root_dir = "";
336 struct machine *machine = machines__find(machines, pid);
337
338 if (machine && (machine->pid == pid))
339 goto out;
340
341 if ((pid != HOST_KERNEL_ID) &&
342 (pid != DEFAULT_GUEST_KERNEL_ID) &&
343 (symbol_conf.guestmount)) {
344 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
345 if (access(path, R_OK)) {
346 static struct strlist *seen;
347
348 if (!seen)
349 seen = strlist__new(NULL, NULL);
350
351 if (!strlist__has_entry(seen, path)) {
352 pr_err("Can't access file %s\n", path);
353 strlist__add(seen, path);
354 }
355 machine = NULL;
356 goto out;
357 }
358 root_dir = path;
359 }
360
361 machine = machines__add(machines, pid, root_dir);
362out:
363 return machine;
364}
365
366void machines__process_guests(struct machines *machines,
367 machine__process_t process, void *data)
368{
369 struct rb_node *nd;
370
371 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
372 struct machine *pos = rb_entry(nd, struct machine, rb_node);
373 process(pos, data);
374 }
375}
376
377void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
378{
379 struct rb_node *node;
380 struct machine *machine;
381
382 machines->host.id_hdr_size = id_hdr_size;
383
384 for (node = rb_first_cached(&machines->guests); node;
385 node = rb_next(node)) {
386 machine = rb_entry(node, struct machine, rb_node);
387 machine->id_hdr_size = id_hdr_size;
388 }
389
390 return;
391}
392
393static void machine__update_thread_pid(struct machine *machine,
394 struct thread *th, pid_t pid)
395{
396 struct thread *leader;
397
398 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
399 return;
400
401 th->pid_ = pid;
402
403 if (th->pid_ == th->tid)
404 return;
405
406 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
407 if (!leader)
408 goto out_err;
409
410 if (!leader->mg)
411 leader->mg = map_groups__new(machine);
412
413 if (!leader->mg)
414 goto out_err;
415
416 if (th->mg == leader->mg)
417 return;
418
419 if (th->mg) {
420 /*
421 * Maps are created from MMAP events which provide the pid and
422 * tid. Consequently there never should be any maps on a thread
423 * with an unknown pid. Just print an error if there are.
424 */
425 if (!map_groups__empty(th->mg))
426 pr_err("Discarding thread maps for %d:%d\n",
427 th->pid_, th->tid);
428 map_groups__put(th->mg);
429 }
430
431 th->mg = map_groups__get(leader->mg);
432out_put:
433 thread__put(leader);
434 return;
435out_err:
436 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
437 goto out_put;
438}
439
440/*
441 * Front-end cache - TID lookups come in blocks,
442 * so most of the time we dont have to look up
443 * the full rbtree:
444 */
445static struct thread*
446__threads__get_last_match(struct threads *threads, struct machine *machine,
447 int pid, int tid)
448{
449 struct thread *th;
450
451 th = threads->last_match;
452 if (th != NULL) {
453 if (th->tid == tid) {
454 machine__update_thread_pid(machine, th, pid);
455 return thread__get(th);
456 }
457
458 threads->last_match = NULL;
459 }
460
461 return NULL;
462}
463
464static struct thread*
465threads__get_last_match(struct threads *threads, struct machine *machine,
466 int pid, int tid)
467{
468 struct thread *th = NULL;
469
470 if (perf_singlethreaded)
471 th = __threads__get_last_match(threads, machine, pid, tid);
472
473 return th;
474}
475
476static void
477__threads__set_last_match(struct threads *threads, struct thread *th)
478{
479 threads->last_match = th;
480}
481
482static void
483threads__set_last_match(struct threads *threads, struct thread *th)
484{
485 if (perf_singlethreaded)
486 __threads__set_last_match(threads, th);
487}
488
489/*
490 * Caller must eventually drop thread->refcnt returned with a successful
491 * lookup/new thread inserted.
492 */
493static struct thread *____machine__findnew_thread(struct machine *machine,
494 struct threads *threads,
495 pid_t pid, pid_t tid,
496 bool create)
497{
498 struct rb_node **p = &threads->entries.rb_root.rb_node;
499 struct rb_node *parent = NULL;
500 struct thread *th;
501 bool leftmost = true;
502
503 th = threads__get_last_match(threads, machine, pid, tid);
504 if (th)
505 return th;
506
507 while (*p != NULL) {
508 parent = *p;
509 th = rb_entry(parent, struct thread, rb_node);
510
511 if (th->tid == tid) {
512 threads__set_last_match(threads, th);
513 machine__update_thread_pid(machine, th, pid);
514 return thread__get(th);
515 }
516
517 if (tid < th->tid)
518 p = &(*p)->rb_left;
519 else {
520 p = &(*p)->rb_right;
521 leftmost = false;
522 }
523 }
524
525 if (!create)
526 return NULL;
527
528 th = thread__new(pid, tid);
529 if (th != NULL) {
530 rb_link_node(&th->rb_node, parent, p);
531 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
532
533 /*
534 * We have to initialize map_groups separately
535 * after rb tree is updated.
536 *
537 * The reason is that we call machine__findnew_thread
538 * within thread__init_map_groups to find the thread
539 * leader and that would screwed the rb tree.
540 */
541 if (thread__init_map_groups(th, machine)) {
542 rb_erase_cached(&th->rb_node, &threads->entries);
543 RB_CLEAR_NODE(&th->rb_node);
544 thread__put(th);
545 return NULL;
546 }
547 /*
548 * It is now in the rbtree, get a ref
549 */
550 thread__get(th);
551 threads__set_last_match(threads, th);
552 ++threads->nr;
553 }
554
555 return th;
556}
557
558struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
559{
560 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
561}
562
563struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
564 pid_t tid)
565{
566 struct threads *threads = machine__threads(machine, tid);
567 struct thread *th;
568
569 down_write(&threads->lock);
570 th = __machine__findnew_thread(machine, pid, tid);
571 up_write(&threads->lock);
572 return th;
573}
574
575struct thread *machine__find_thread(struct machine *machine, pid_t pid,
576 pid_t tid)
577{
578 struct threads *threads = machine__threads(machine, tid);
579 struct thread *th;
580
581 down_read(&threads->lock);
582 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
583 up_read(&threads->lock);
584 return th;
585}
586
587struct comm *machine__thread_exec_comm(struct machine *machine,
588 struct thread *thread)
589{
590 if (machine->comm_exec)
591 return thread__exec_comm(thread);
592 else
593 return thread__comm(thread);
594}
595
596int machine__process_comm_event(struct machine *machine, union perf_event *event,
597 struct perf_sample *sample)
598{
599 struct thread *thread = machine__findnew_thread(machine,
600 event->comm.pid,
601 event->comm.tid);
602 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
603 int err = 0;
604
605 if (exec)
606 machine->comm_exec = true;
607
608 if (dump_trace)
609 perf_event__fprintf_comm(event, stdout);
610
611 if (thread == NULL ||
612 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
613 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
614 err = -1;
615 }
616
617 thread__put(thread);
618
619 return err;
620}
621
622int machine__process_namespaces_event(struct machine *machine __maybe_unused,
623 union perf_event *event,
624 struct perf_sample *sample __maybe_unused)
625{
626 struct thread *thread = machine__findnew_thread(machine,
627 event->namespaces.pid,
628 event->namespaces.tid);
629 int err = 0;
630
631 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
632 "\nWARNING: kernel seems to support more namespaces than perf"
633 " tool.\nTry updating the perf tool..\n\n");
634
635 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
636 "\nWARNING: perf tool seems to support more namespaces than"
637 " the kernel.\nTry updating the kernel..\n\n");
638
639 if (dump_trace)
640 perf_event__fprintf_namespaces(event, stdout);
641
642 if (thread == NULL ||
643 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
644 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
645 err = -1;
646 }
647
648 thread__put(thread);
649
650 return err;
651}
652
653int machine__process_lost_event(struct machine *machine __maybe_unused,
654 union perf_event *event, struct perf_sample *sample __maybe_unused)
655{
656 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
657 event->lost.id, event->lost.lost);
658 return 0;
659}
660
661int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
662 union perf_event *event, struct perf_sample *sample)
663{
664 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
665 sample->id, event->lost_samples.lost);
666 return 0;
667}
668
669static struct dso *machine__findnew_module_dso(struct machine *machine,
670 struct kmod_path *m,
671 const char *filename)
672{
673 struct dso *dso;
674
675 down_write(&machine->dsos.lock);
676
677 dso = __dsos__find(&machine->dsos, m->name, true);
678 if (!dso) {
679 dso = __dsos__addnew(&machine->dsos, m->name);
680 if (dso == NULL)
681 goto out_unlock;
682
683 dso__set_module_info(dso, m, machine);
684 dso__set_long_name(dso, strdup(filename), true);
685 }
686
687 dso__get(dso);
688out_unlock:
689 up_write(&machine->dsos.lock);
690 return dso;
691}
692
693int machine__process_aux_event(struct machine *machine __maybe_unused,
694 union perf_event *event)
695{
696 if (dump_trace)
697 perf_event__fprintf_aux(event, stdout);
698 return 0;
699}
700
701int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
702 union perf_event *event)
703{
704 if (dump_trace)
705 perf_event__fprintf_itrace_start(event, stdout);
706 return 0;
707}
708
709int machine__process_switch_event(struct machine *machine __maybe_unused,
710 union perf_event *event)
711{
712 if (dump_trace)
713 perf_event__fprintf_switch(event, stdout);
714 return 0;
715}
716
717static int machine__process_ksymbol_register(struct machine *machine,
718 union perf_event *event,
719 struct perf_sample *sample __maybe_unused)
720{
721 struct symbol *sym;
722 struct map *map;
723
724 map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
725 if (!map) {
726 map = dso__new_map(event->ksymbol.name);
727 if (!map)
728 return -ENOMEM;
729
730 map->start = event->ksymbol.addr;
731 map->end = map->start + event->ksymbol.len;
732 map_groups__insert(&machine->kmaps, map);
733 }
734
735 sym = symbol__new(map->map_ip(map, map->start),
736 event->ksymbol.len,
737 0, 0, event->ksymbol.name);
738 if (!sym)
739 return -ENOMEM;
740 dso__insert_symbol(map->dso, sym);
741 return 0;
742}
743
744static int machine__process_ksymbol_unregister(struct machine *machine,
745 union perf_event *event,
746 struct perf_sample *sample __maybe_unused)
747{
748 struct map *map;
749
750 map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
751 if (map)
752 map_groups__remove(&machine->kmaps, map);
753
754 return 0;
755}
756
757int machine__process_ksymbol(struct machine *machine __maybe_unused,
758 union perf_event *event,
759 struct perf_sample *sample)
760{
761 if (dump_trace)
762 perf_event__fprintf_ksymbol(event, stdout);
763
764 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
765 return machine__process_ksymbol_unregister(machine, event,
766 sample);
767 return machine__process_ksymbol_register(machine, event, sample);
768}
769
770static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
771{
772 const char *dup_filename;
773
774 if (!filename || !dso || !dso->long_name)
775 return;
776 if (dso->long_name[0] != '[')
777 return;
778 if (!strchr(filename, '/'))
779 return;
780
781 dup_filename = strdup(filename);
782 if (!dup_filename)
783 return;
784
785 dso__set_long_name(dso, dup_filename, true);
786}
787
788struct map *machine__findnew_module_map(struct machine *machine, u64 start,
789 const char *filename)
790{
791 struct map *map = NULL;
792 struct dso *dso = NULL;
793 struct kmod_path m;
794
795 if (kmod_path__parse_name(&m, filename))
796 return NULL;
797
798 map = map_groups__find_by_name(&machine->kmaps, m.name);
799 if (map) {
800 /*
801 * If the map's dso is an offline module, give dso__load()
802 * a chance to find the file path of that module by fixing
803 * long_name.
804 */
805 dso__adjust_kmod_long_name(map->dso, filename);
806 goto out;
807 }
808
809 dso = machine__findnew_module_dso(machine, &m, filename);
810 if (dso == NULL)
811 goto out;
812
813 map = map__new2(start, dso);
814 if (map == NULL)
815 goto out;
816
817 map_groups__insert(&machine->kmaps, map);
818
819 /* Put the map here because map_groups__insert alread got it */
820 map__put(map);
821out:
822 /* put the dso here, corresponding to machine__findnew_module_dso */
823 dso__put(dso);
824 zfree(&m.name);
825 return map;
826}
827
828size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
829{
830 struct rb_node *nd;
831 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
832
833 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
834 struct machine *pos = rb_entry(nd, struct machine, rb_node);
835 ret += __dsos__fprintf(&pos->dsos.head, fp);
836 }
837
838 return ret;
839}
840
841size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
842 bool (skip)(struct dso *dso, int parm), int parm)
843{
844 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
845}
846
847size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
848 bool (skip)(struct dso *dso, int parm), int parm)
849{
850 struct rb_node *nd;
851 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
852
853 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
854 struct machine *pos = rb_entry(nd, struct machine, rb_node);
855 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
856 }
857 return ret;
858}
859
860size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
861{
862 int i;
863 size_t printed = 0;
864 struct dso *kdso = machine__kernel_map(machine)->dso;
865
866 if (kdso->has_build_id) {
867 char filename[PATH_MAX];
868 if (dso__build_id_filename(kdso, filename, sizeof(filename),
869 false))
870 printed += fprintf(fp, "[0] %s\n", filename);
871 }
872
873 for (i = 0; i < vmlinux_path__nr_entries; ++i)
874 printed += fprintf(fp, "[%d] %s\n",
875 i + kdso->has_build_id, vmlinux_path[i]);
876
877 return printed;
878}
879
880size_t machine__fprintf(struct machine *machine, FILE *fp)
881{
882 struct rb_node *nd;
883 size_t ret;
884 int i;
885
886 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
887 struct threads *threads = &machine->threads[i];
888
889 down_read(&threads->lock);
890
891 ret = fprintf(fp, "Threads: %u\n", threads->nr);
892
893 for (nd = rb_first_cached(&threads->entries); nd;
894 nd = rb_next(nd)) {
895 struct thread *pos = rb_entry(nd, struct thread, rb_node);
896
897 ret += thread__fprintf(pos, fp);
898 }
899
900 up_read(&threads->lock);
901 }
902 return ret;
903}
904
905static struct dso *machine__get_kernel(struct machine *machine)
906{
907 const char *vmlinux_name = machine->mmap_name;
908 struct dso *kernel;
909
910 if (machine__is_host(machine)) {
911 if (symbol_conf.vmlinux_name)
912 vmlinux_name = symbol_conf.vmlinux_name;
913
914 kernel = machine__findnew_kernel(machine, vmlinux_name,
915 "[kernel]", DSO_TYPE_KERNEL);
916 } else {
917 if (symbol_conf.default_guest_vmlinux_name)
918 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
919
920 kernel = machine__findnew_kernel(machine, vmlinux_name,
921 "[guest.kernel]",
922 DSO_TYPE_GUEST_KERNEL);
923 }
924
925 if (kernel != NULL && (!kernel->has_build_id))
926 dso__read_running_kernel_build_id(kernel, machine);
927
928 return kernel;
929}
930
931struct process_args {
932 u64 start;
933};
934
935void machine__get_kallsyms_filename(struct machine *machine, char *buf,
936 size_t bufsz)
937{
938 if (machine__is_default_guest(machine))
939 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
940 else
941 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
942}
943
944const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
945
946/* Figure out the start address of kernel map from /proc/kallsyms.
947 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
948 * symbol_name if it's not that important.
949 */
950static int machine__get_running_kernel_start(struct machine *machine,
951 const char **symbol_name,
952 u64 *start, u64 *end)
953{
954 char filename[PATH_MAX];
955 int i, err = -1;
956 const char *name;
957 u64 addr = 0;
958
959 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
960
961 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
962 return 0;
963
964 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
965 err = kallsyms__get_function_start(filename, name, &addr);
966 if (!err)
967 break;
968 }
969
970 if (err)
971 return -1;
972
973 if (symbol_name)
974 *symbol_name = name;
975
976 *start = addr;
977
978 err = kallsyms__get_function_start(filename, "_etext", &addr);
979 if (!err)
980 *end = addr;
981
982 return 0;
983}
984
985int machine__create_extra_kernel_map(struct machine *machine,
986 struct dso *kernel,
987 struct extra_kernel_map *xm)
988{
989 struct kmap *kmap;
990 struct map *map;
991
992 map = map__new2(xm->start, kernel);
993 if (!map)
994 return -1;
995
996 map->end = xm->end;
997 map->pgoff = xm->pgoff;
998
999 kmap = map__kmap(map);
1000
1001 kmap->kmaps = &machine->kmaps;
1002 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1003
1004 map_groups__insert(&machine->kmaps, map);
1005
1006 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1007 kmap->name, map->start, map->end);
1008
1009 map__put(map);
1010
1011 return 0;
1012}
1013
1014static u64 find_entry_trampoline(struct dso *dso)
1015{
1016 /* Duplicates are removed so lookup all aliases */
1017 const char *syms[] = {
1018 "_entry_trampoline",
1019 "__entry_trampoline_start",
1020 "entry_SYSCALL_64_trampoline",
1021 };
1022 struct symbol *sym = dso__first_symbol(dso);
1023 unsigned int i;
1024
1025 for (; sym; sym = dso__next_symbol(sym)) {
1026 if (sym->binding != STB_GLOBAL)
1027 continue;
1028 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1029 if (!strcmp(sym->name, syms[i]))
1030 return sym->start;
1031 }
1032 }
1033
1034 return 0;
1035}
1036
1037/*
1038 * These values can be used for kernels that do not have symbols for the entry
1039 * trampolines in kallsyms.
1040 */
1041#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1042#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1043#define X86_64_ENTRY_TRAMPOLINE 0x6000
1044
1045/* Map x86_64 PTI entry trampolines */
1046int machine__map_x86_64_entry_trampolines(struct machine *machine,
1047 struct dso *kernel)
1048{
1049 struct map_groups *kmaps = &machine->kmaps;
1050 struct maps *maps = &kmaps->maps;
1051 int nr_cpus_avail, cpu;
1052 bool found = false;
1053 struct map *map;
1054 u64 pgoff;
1055
1056 /*
1057 * In the vmlinux case, pgoff is a virtual address which must now be
1058 * mapped to a vmlinux offset.
1059 */
1060 for (map = maps__first(maps); map; map = map__next(map)) {
1061 struct kmap *kmap = __map__kmap(map);
1062 struct map *dest_map;
1063
1064 if (!kmap || !is_entry_trampoline(kmap->name))
1065 continue;
1066
1067 dest_map = map_groups__find(kmaps, map->pgoff);
1068 if (dest_map != map)
1069 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1070 found = true;
1071 }
1072 if (found || machine->trampolines_mapped)
1073 return 0;
1074
1075 pgoff = find_entry_trampoline(kernel);
1076 if (!pgoff)
1077 return 0;
1078
1079 nr_cpus_avail = machine__nr_cpus_avail(machine);
1080
1081 /* Add a 1 page map for each CPU's entry trampoline */
1082 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1083 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1084 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1085 X86_64_ENTRY_TRAMPOLINE;
1086 struct extra_kernel_map xm = {
1087 .start = va,
1088 .end = va + page_size,
1089 .pgoff = pgoff,
1090 };
1091
1092 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1093
1094 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1095 return -1;
1096 }
1097
1098 machine->trampolines_mapped = nr_cpus_avail;
1099
1100 return 0;
1101}
1102
1103int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1104 struct dso *kernel __maybe_unused)
1105{
1106 return 0;
1107}
1108
1109static int
1110__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1111{
1112 struct kmap *kmap;
1113 struct map *map;
1114
1115 /* In case of renewal the kernel map, destroy previous one */
1116 machine__destroy_kernel_maps(machine);
1117
1118 machine->vmlinux_map = map__new2(0, kernel);
1119 if (machine->vmlinux_map == NULL)
1120 return -1;
1121
1122 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1123 map = machine__kernel_map(machine);
1124 kmap = map__kmap(map);
1125 if (!kmap)
1126 return -1;
1127
1128 kmap->kmaps = &machine->kmaps;
1129 map_groups__insert(&machine->kmaps, map);
1130
1131 return 0;
1132}
1133
1134void machine__destroy_kernel_maps(struct machine *machine)
1135{
1136 struct kmap *kmap;
1137 struct map *map = machine__kernel_map(machine);
1138
1139 if (map == NULL)
1140 return;
1141
1142 kmap = map__kmap(map);
1143 map_groups__remove(&machine->kmaps, map);
1144 if (kmap && kmap->ref_reloc_sym) {
1145 zfree((char **)&kmap->ref_reloc_sym->name);
1146 zfree(&kmap->ref_reloc_sym);
1147 }
1148
1149 map__zput(machine->vmlinux_map);
1150}
1151
1152int machines__create_guest_kernel_maps(struct machines *machines)
1153{
1154 int ret = 0;
1155 struct dirent **namelist = NULL;
1156 int i, items = 0;
1157 char path[PATH_MAX];
1158 pid_t pid;
1159 char *endp;
1160
1161 if (symbol_conf.default_guest_vmlinux_name ||
1162 symbol_conf.default_guest_modules ||
1163 symbol_conf.default_guest_kallsyms) {
1164 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1165 }
1166
1167 if (symbol_conf.guestmount) {
1168 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1169 if (items <= 0)
1170 return -ENOENT;
1171 for (i = 0; i < items; i++) {
1172 if (!isdigit(namelist[i]->d_name[0])) {
1173 /* Filter out . and .. */
1174 continue;
1175 }
1176 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1177 if ((*endp != '\0') ||
1178 (endp == namelist[i]->d_name) ||
1179 (errno == ERANGE)) {
1180 pr_debug("invalid directory (%s). Skipping.\n",
1181 namelist[i]->d_name);
1182 continue;
1183 }
1184 sprintf(path, "%s/%s/proc/kallsyms",
1185 symbol_conf.guestmount,
1186 namelist[i]->d_name);
1187 ret = access(path, R_OK);
1188 if (ret) {
1189 pr_debug("Can't access file %s\n", path);
1190 goto failure;
1191 }
1192 machines__create_kernel_maps(machines, pid);
1193 }
1194failure:
1195 free(namelist);
1196 }
1197
1198 return ret;
1199}
1200
1201void machines__destroy_kernel_maps(struct machines *machines)
1202{
1203 struct rb_node *next = rb_first_cached(&machines->guests);
1204
1205 machine__destroy_kernel_maps(&machines->host);
1206
1207 while (next) {
1208 struct machine *pos = rb_entry(next, struct machine, rb_node);
1209
1210 next = rb_next(&pos->rb_node);
1211 rb_erase_cached(&pos->rb_node, &machines->guests);
1212 machine__delete(pos);
1213 }
1214}
1215
1216int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217{
1218 struct machine *machine = machines__findnew(machines, pid);
1219
1220 if (machine == NULL)
1221 return -1;
1222
1223 return machine__create_kernel_maps(machine);
1224}
1225
1226int machine__load_kallsyms(struct machine *machine, const char *filename)
1227{
1228 struct map *map = machine__kernel_map(machine);
1229 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1230
1231 if (ret > 0) {
1232 dso__set_loaded(map->dso);
1233 /*
1234 * Since /proc/kallsyms will have multiple sessions for the
1235 * kernel, with modules between them, fixup the end of all
1236 * sections.
1237 */
1238 map_groups__fixup_end(&machine->kmaps);
1239 }
1240
1241 return ret;
1242}
1243
1244int machine__load_vmlinux_path(struct machine *machine)
1245{
1246 struct map *map = machine__kernel_map(machine);
1247 int ret = dso__load_vmlinux_path(map->dso, map);
1248
1249 if (ret > 0)
1250 dso__set_loaded(map->dso);
1251
1252 return ret;
1253}
1254
1255static char *get_kernel_version(const char *root_dir)
1256{
1257 char version[PATH_MAX];
1258 FILE *file;
1259 char *name, *tmp;
1260 const char *prefix = "Linux version ";
1261
1262 sprintf(version, "%s/proc/version", root_dir);
1263 file = fopen(version, "r");
1264 if (!file)
1265 return NULL;
1266
1267 tmp = fgets(version, sizeof(version), file);
1268 fclose(file);
1269 if (!tmp)
1270 return NULL;
1271
1272 name = strstr(version, prefix);
1273 if (!name)
1274 return NULL;
1275 name += strlen(prefix);
1276 tmp = strchr(name, ' ');
1277 if (tmp)
1278 *tmp = '\0';
1279
1280 return strdup(name);
1281}
1282
1283static bool is_kmod_dso(struct dso *dso)
1284{
1285 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1286 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1287}
1288
1289static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1290 struct kmod_path *m)
1291{
1292 char *long_name;
1293 struct map *map = map_groups__find_by_name(mg, m->name);
1294
1295 if (map == NULL)
1296 return 0;
1297
1298 long_name = strdup(path);
1299 if (long_name == NULL)
1300 return -ENOMEM;
1301
1302 dso__set_long_name(map->dso, long_name, true);
1303 dso__kernel_module_get_build_id(map->dso, "");
1304
1305 /*
1306 * Full name could reveal us kmod compression, so
1307 * we need to update the symtab_type if needed.
1308 */
1309 if (m->comp && is_kmod_dso(map->dso)) {
1310 map->dso->symtab_type++;
1311 map->dso->comp = m->comp;
1312 }
1313
1314 return 0;
1315}
1316
1317static int map_groups__set_modules_path_dir(struct map_groups *mg,
1318 const char *dir_name, int depth)
1319{
1320 struct dirent *dent;
1321 DIR *dir = opendir(dir_name);
1322 int ret = 0;
1323
1324 if (!dir) {
1325 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1326 return -1;
1327 }
1328
1329 while ((dent = readdir(dir)) != NULL) {
1330 char path[PATH_MAX];
1331 struct stat st;
1332
1333 /*sshfs might return bad dent->d_type, so we have to stat*/
1334 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1335 if (stat(path, &st))
1336 continue;
1337
1338 if (S_ISDIR(st.st_mode)) {
1339 if (!strcmp(dent->d_name, ".") ||
1340 !strcmp(dent->d_name, ".."))
1341 continue;
1342
1343 /* Do not follow top-level source and build symlinks */
1344 if (depth == 0) {
1345 if (!strcmp(dent->d_name, "source") ||
1346 !strcmp(dent->d_name, "build"))
1347 continue;
1348 }
1349
1350 ret = map_groups__set_modules_path_dir(mg, path,
1351 depth + 1);
1352 if (ret < 0)
1353 goto out;
1354 } else {
1355 struct kmod_path m;
1356
1357 ret = kmod_path__parse_name(&m, dent->d_name);
1358 if (ret)
1359 goto out;
1360
1361 if (m.kmod)
1362 ret = map_groups__set_module_path(mg, path, &m);
1363
1364 zfree(&m.name);
1365
1366 if (ret)
1367 goto out;
1368 }
1369 }
1370
1371out:
1372 closedir(dir);
1373 return ret;
1374}
1375
1376static int machine__set_modules_path(struct machine *machine)
1377{
1378 char *version;
1379 char modules_path[PATH_MAX];
1380
1381 version = get_kernel_version(machine->root_dir);
1382 if (!version)
1383 return -1;
1384
1385 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1386 machine->root_dir, version);
1387 free(version);
1388
1389 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1390}
1391int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1392 u64 *size __maybe_unused,
1393 const char *name __maybe_unused)
1394{
1395 return 0;
1396}
1397
1398static int machine__create_module(void *arg, const char *name, u64 start,
1399 u64 size)
1400{
1401 struct machine *machine = arg;
1402 struct map *map;
1403
1404 if (arch__fix_module_text_start(&start, &size, name) < 0)
1405 return -1;
1406
1407 map = machine__findnew_module_map(machine, start, name);
1408 if (map == NULL)
1409 return -1;
1410 map->end = start + size;
1411
1412 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1413
1414 return 0;
1415}
1416
1417static int machine__create_modules(struct machine *machine)
1418{
1419 const char *modules;
1420 char path[PATH_MAX];
1421
1422 if (machine__is_default_guest(machine)) {
1423 modules = symbol_conf.default_guest_modules;
1424 } else {
1425 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1426 modules = path;
1427 }
1428
1429 if (symbol__restricted_filename(modules, "/proc/modules"))
1430 return -1;
1431
1432 if (modules__parse(modules, machine, machine__create_module))
1433 return -1;
1434
1435 if (!machine__set_modules_path(machine))
1436 return 0;
1437
1438 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1439
1440 return 0;
1441}
1442
1443static void machine__set_kernel_mmap(struct machine *machine,
1444 u64 start, u64 end)
1445{
1446 machine->vmlinux_map->start = start;
1447 machine->vmlinux_map->end = end;
1448 /*
1449 * Be a bit paranoid here, some perf.data file came with
1450 * a zero sized synthesized MMAP event for the kernel.
1451 */
1452 if (start == 0 && end == 0)
1453 machine->vmlinux_map->end = ~0ULL;
1454}
1455
1456static void machine__update_kernel_mmap(struct machine *machine,
1457 u64 start, u64 end)
1458{
1459 struct map *map = machine__kernel_map(machine);
1460
1461 map__get(map);
1462 map_groups__remove(&machine->kmaps, map);
1463
1464 machine__set_kernel_mmap(machine, start, end);
1465
1466 map_groups__insert(&machine->kmaps, map);
1467 map__put(map);
1468}
1469
1470int machine__create_kernel_maps(struct machine *machine)
1471{
1472 struct dso *kernel = machine__get_kernel(machine);
1473 const char *name = NULL;
1474 struct map *map;
1475 u64 start = 0, end = ~0ULL;
1476 int ret;
1477
1478 if (kernel == NULL)
1479 return -1;
1480
1481 ret = __machine__create_kernel_maps(machine, kernel);
1482 if (ret < 0)
1483 goto out_put;
1484
1485 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1486 if (machine__is_host(machine))
1487 pr_debug("Problems creating module maps, "
1488 "continuing anyway...\n");
1489 else
1490 pr_debug("Problems creating module maps for guest %d, "
1491 "continuing anyway...\n", machine->pid);
1492 }
1493
1494 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1495 if (name &&
1496 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1497 machine__destroy_kernel_maps(machine);
1498 ret = -1;
1499 goto out_put;
1500 }
1501
1502 /*
1503 * we have a real start address now, so re-order the kmaps
1504 * assume it's the last in the kmaps
1505 */
1506 machine__update_kernel_mmap(machine, start, end);
1507 }
1508
1509 if (machine__create_extra_kernel_maps(machine, kernel))
1510 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1511
1512 if (end == ~0ULL) {
1513 /* update end address of the kernel map using adjacent module address */
1514 map = map__next(machine__kernel_map(machine));
1515 if (map)
1516 machine__set_kernel_mmap(machine, start, map->start);
1517 }
1518
1519out_put:
1520 dso__put(kernel);
1521 return ret;
1522}
1523
1524static bool machine__uses_kcore(struct machine *machine)
1525{
1526 struct dso *dso;
1527
1528 list_for_each_entry(dso, &machine->dsos.head, node) {
1529 if (dso__is_kcore(dso))
1530 return true;
1531 }
1532
1533 return false;
1534}
1535
1536static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1537 union perf_event *event)
1538{
1539 return machine__is(machine, "x86_64") &&
1540 is_entry_trampoline(event->mmap.filename);
1541}
1542
1543static int machine__process_extra_kernel_map(struct machine *machine,
1544 union perf_event *event)
1545{
1546 struct map *kernel_map = machine__kernel_map(machine);
1547 struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1548 struct extra_kernel_map xm = {
1549 .start = event->mmap.start,
1550 .end = event->mmap.start + event->mmap.len,
1551 .pgoff = event->mmap.pgoff,
1552 };
1553
1554 if (kernel == NULL)
1555 return -1;
1556
1557 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1558
1559 return machine__create_extra_kernel_map(machine, kernel, &xm);
1560}
1561
1562static int machine__process_kernel_mmap_event(struct machine *machine,
1563 union perf_event *event)
1564{
1565 struct map *map;
1566 enum dso_kernel_type kernel_type;
1567 bool is_kernel_mmap;
1568
1569 /* If we have maps from kcore then we do not need or want any others */
1570 if (machine__uses_kcore(machine))
1571 return 0;
1572
1573 if (machine__is_host(machine))
1574 kernel_type = DSO_TYPE_KERNEL;
1575 else
1576 kernel_type = DSO_TYPE_GUEST_KERNEL;
1577
1578 is_kernel_mmap = memcmp(event->mmap.filename,
1579 machine->mmap_name,
1580 strlen(machine->mmap_name) - 1) == 0;
1581 if (event->mmap.filename[0] == '/' ||
1582 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1583 map = machine__findnew_module_map(machine, event->mmap.start,
1584 event->mmap.filename);
1585 if (map == NULL)
1586 goto out_problem;
1587
1588 map->end = map->start + event->mmap.len;
1589 } else if (is_kernel_mmap) {
1590 const char *symbol_name = (event->mmap.filename +
1591 strlen(machine->mmap_name));
1592 /*
1593 * Should be there already, from the build-id table in
1594 * the header.
1595 */
1596 struct dso *kernel = NULL;
1597 struct dso *dso;
1598
1599 down_read(&machine->dsos.lock);
1600
1601 list_for_each_entry(dso, &machine->dsos.head, node) {
1602
1603 /*
1604 * The cpumode passed to is_kernel_module is not the
1605 * cpumode of *this* event. If we insist on passing
1606 * correct cpumode to is_kernel_module, we should
1607 * record the cpumode when we adding this dso to the
1608 * linked list.
1609 *
1610 * However we don't really need passing correct
1611 * cpumode. We know the correct cpumode must be kernel
1612 * mode (if not, we should not link it onto kernel_dsos
1613 * list).
1614 *
1615 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1616 * is_kernel_module() treats it as a kernel cpumode.
1617 */
1618
1619 if (!dso->kernel ||
1620 is_kernel_module(dso->long_name,
1621 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1622 continue;
1623
1624
1625 kernel = dso;
1626 break;
1627 }
1628
1629 up_read(&machine->dsos.lock);
1630
1631 if (kernel == NULL)
1632 kernel = machine__findnew_dso(machine, machine->mmap_name);
1633 if (kernel == NULL)
1634 goto out_problem;
1635
1636 kernel->kernel = kernel_type;
1637 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1638 dso__put(kernel);
1639 goto out_problem;
1640 }
1641
1642 if (strstr(kernel->long_name, "vmlinux"))
1643 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1644
1645 machine__update_kernel_mmap(machine, event->mmap.start,
1646 event->mmap.start + event->mmap.len);
1647
1648 /*
1649 * Avoid using a zero address (kptr_restrict) for the ref reloc
1650 * symbol. Effectively having zero here means that at record
1651 * time /proc/sys/kernel/kptr_restrict was non zero.
1652 */
1653 if (event->mmap.pgoff != 0) {
1654 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1655 symbol_name,
1656 event->mmap.pgoff);
1657 }
1658
1659 if (machine__is_default_guest(machine)) {
1660 /*
1661 * preload dso of guest kernel and modules
1662 */
1663 dso__load(kernel, machine__kernel_map(machine));
1664 }
1665 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1666 return machine__process_extra_kernel_map(machine, event);
1667 }
1668 return 0;
1669out_problem:
1670 return -1;
1671}
1672
1673int machine__process_mmap2_event(struct machine *machine,
1674 union perf_event *event,
1675 struct perf_sample *sample)
1676{
1677 struct thread *thread;
1678 struct map *map;
1679 int ret = 0;
1680
1681 if (dump_trace)
1682 perf_event__fprintf_mmap2(event, stdout);
1683
1684 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1685 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1686 ret = machine__process_kernel_mmap_event(machine, event);
1687 if (ret < 0)
1688 goto out_problem;
1689 return 0;
1690 }
1691
1692 thread = machine__findnew_thread(machine, event->mmap2.pid,
1693 event->mmap2.tid);
1694 if (thread == NULL)
1695 goto out_problem;
1696
1697 map = map__new(machine, event->mmap2.start,
1698 event->mmap2.len, event->mmap2.pgoff,
1699 event->mmap2.maj,
1700 event->mmap2.min, event->mmap2.ino,
1701 event->mmap2.ino_generation,
1702 event->mmap2.prot,
1703 event->mmap2.flags,
1704 event->mmap2.filename, thread);
1705
1706 if (map == NULL)
1707 goto out_problem_map;
1708
1709 ret = thread__insert_map(thread, map);
1710 if (ret)
1711 goto out_problem_insert;
1712
1713 thread__put(thread);
1714 map__put(map);
1715 return 0;
1716
1717out_problem_insert:
1718 map__put(map);
1719out_problem_map:
1720 thread__put(thread);
1721out_problem:
1722 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1723 return 0;
1724}
1725
1726int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1727 struct perf_sample *sample)
1728{
1729 struct thread *thread;
1730 struct map *map;
1731 u32 prot = 0;
1732 int ret = 0;
1733
1734 if (dump_trace)
1735 perf_event__fprintf_mmap(event, stdout);
1736
1737 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1738 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1739 ret = machine__process_kernel_mmap_event(machine, event);
1740 if (ret < 0)
1741 goto out_problem;
1742 return 0;
1743 }
1744
1745 thread = machine__findnew_thread(machine, event->mmap.pid,
1746 event->mmap.tid);
1747 if (thread == NULL)
1748 goto out_problem;
1749
1750 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1751 prot = PROT_EXEC;
1752
1753 map = map__new(machine, event->mmap.start,
1754 event->mmap.len, event->mmap.pgoff,
1755 0, 0, 0, 0, prot, 0,
1756 event->mmap.filename,
1757 thread);
1758
1759 if (map == NULL)
1760 goto out_problem_map;
1761
1762 ret = thread__insert_map(thread, map);
1763 if (ret)
1764 goto out_problem_insert;
1765
1766 thread__put(thread);
1767 map__put(map);
1768 return 0;
1769
1770out_problem_insert:
1771 map__put(map);
1772out_problem_map:
1773 thread__put(thread);
1774out_problem:
1775 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1776 return 0;
1777}
1778
1779static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1780{
1781 struct threads *threads = machine__threads(machine, th->tid);
1782
1783 if (threads->last_match == th)
1784 threads__set_last_match(threads, NULL);
1785
1786 if (lock)
1787 down_write(&threads->lock);
1788
1789 BUG_ON(refcount_read(&th->refcnt) == 0);
1790
1791 rb_erase_cached(&th->rb_node, &threads->entries);
1792 RB_CLEAR_NODE(&th->rb_node);
1793 --threads->nr;
1794 /*
1795 * Move it first to the dead_threads list, then drop the reference,
1796 * if this is the last reference, then the thread__delete destructor
1797 * will be called and we will remove it from the dead_threads list.
1798 */
1799 list_add_tail(&th->node, &threads->dead);
1800
1801 /*
1802 * We need to do the put here because if this is the last refcount,
1803 * then we will be touching the threads->dead head when removing the
1804 * thread.
1805 */
1806 thread__put(th);
1807
1808 if (lock)
1809 up_write(&threads->lock);
1810}
1811
1812void machine__remove_thread(struct machine *machine, struct thread *th)
1813{
1814 return __machine__remove_thread(machine, th, true);
1815}
1816
1817int machine__process_fork_event(struct machine *machine, union perf_event *event,
1818 struct perf_sample *sample)
1819{
1820 struct thread *thread = machine__find_thread(machine,
1821 event->fork.pid,
1822 event->fork.tid);
1823 struct thread *parent = machine__findnew_thread(machine,
1824 event->fork.ppid,
1825 event->fork.ptid);
1826 bool do_maps_clone = true;
1827 int err = 0;
1828
1829 if (dump_trace)
1830 perf_event__fprintf_task(event, stdout);
1831
1832 /*
1833 * There may be an existing thread that is not actually the parent,
1834 * either because we are processing events out of order, or because the
1835 * (fork) event that would have removed the thread was lost. Assume the
1836 * latter case and continue on as best we can.
1837 */
1838 if (parent->pid_ != (pid_t)event->fork.ppid) {
1839 dump_printf("removing erroneous parent thread %d/%d\n",
1840 parent->pid_, parent->tid);
1841 machine__remove_thread(machine, parent);
1842 thread__put(parent);
1843 parent = machine__findnew_thread(machine, event->fork.ppid,
1844 event->fork.ptid);
1845 }
1846
1847 /* if a thread currently exists for the thread id remove it */
1848 if (thread != NULL) {
1849 machine__remove_thread(machine, thread);
1850 thread__put(thread);
1851 }
1852
1853 thread = machine__findnew_thread(machine, event->fork.pid,
1854 event->fork.tid);
1855 /*
1856 * When synthesizing FORK events, we are trying to create thread
1857 * objects for the already running tasks on the machine.
1858 *
1859 * Normally, for a kernel FORK event, we want to clone the parent's
1860 * maps because that is what the kernel just did.
1861 *
1862 * But when synthesizing, this should not be done. If we do, we end up
1863 * with overlapping maps as we process the sythesized MMAP2 events that
1864 * get delivered shortly thereafter.
1865 *
1866 * Use the FORK event misc flags in an internal way to signal this
1867 * situation, so we can elide the map clone when appropriate.
1868 */
1869 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1870 do_maps_clone = false;
1871
1872 if (thread == NULL || parent == NULL ||
1873 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1874 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1875 err = -1;
1876 }
1877 thread__put(thread);
1878 thread__put(parent);
1879
1880 return err;
1881}
1882
1883int machine__process_exit_event(struct machine *machine, union perf_event *event,
1884 struct perf_sample *sample __maybe_unused)
1885{
1886 struct thread *thread = machine__find_thread(machine,
1887 event->fork.pid,
1888 event->fork.tid);
1889
1890 if (dump_trace)
1891 perf_event__fprintf_task(event, stdout);
1892
1893 if (thread != NULL) {
1894 thread__exited(thread);
1895 thread__put(thread);
1896 }
1897
1898 return 0;
1899}
1900
1901int machine__process_event(struct machine *machine, union perf_event *event,
1902 struct perf_sample *sample)
1903{
1904 int ret;
1905
1906 switch (event->header.type) {
1907 case PERF_RECORD_COMM:
1908 ret = machine__process_comm_event(machine, event, sample); break;
1909 case PERF_RECORD_MMAP:
1910 ret = machine__process_mmap_event(machine, event, sample); break;
1911 case PERF_RECORD_NAMESPACES:
1912 ret = machine__process_namespaces_event(machine, event, sample); break;
1913 case PERF_RECORD_MMAP2:
1914 ret = machine__process_mmap2_event(machine, event, sample); break;
1915 case PERF_RECORD_FORK:
1916 ret = machine__process_fork_event(machine, event, sample); break;
1917 case PERF_RECORD_EXIT:
1918 ret = machine__process_exit_event(machine, event, sample); break;
1919 case PERF_RECORD_LOST:
1920 ret = machine__process_lost_event(machine, event, sample); break;
1921 case PERF_RECORD_AUX:
1922 ret = machine__process_aux_event(machine, event); break;
1923 case PERF_RECORD_ITRACE_START:
1924 ret = machine__process_itrace_start_event(machine, event); break;
1925 case PERF_RECORD_LOST_SAMPLES:
1926 ret = machine__process_lost_samples_event(machine, event, sample); break;
1927 case PERF_RECORD_SWITCH:
1928 case PERF_RECORD_SWITCH_CPU_WIDE:
1929 ret = machine__process_switch_event(machine, event); break;
1930 case PERF_RECORD_KSYMBOL:
1931 ret = machine__process_ksymbol(machine, event, sample); break;
1932 case PERF_RECORD_BPF_EVENT:
1933 ret = machine__process_bpf(machine, event, sample); break;
1934 default:
1935 ret = -1;
1936 break;
1937 }
1938
1939 return ret;
1940}
1941
1942static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1943{
1944 if (!regexec(regex, sym->name, 0, NULL, 0))
1945 return 1;
1946 return 0;
1947}
1948
1949static void ip__resolve_ams(struct thread *thread,
1950 struct addr_map_symbol *ams,
1951 u64 ip)
1952{
1953 struct addr_location al;
1954
1955 memset(&al, 0, sizeof(al));
1956 /*
1957 * We cannot use the header.misc hint to determine whether a
1958 * branch stack address is user, kernel, guest, hypervisor.
1959 * Branches may straddle the kernel/user/hypervisor boundaries.
1960 * Thus, we have to try consecutively until we find a match
1961 * or else, the symbol is unknown
1962 */
1963 thread__find_cpumode_addr_location(thread, ip, &al);
1964
1965 ams->addr = ip;
1966 ams->al_addr = al.addr;
1967 ams->sym = al.sym;
1968 ams->map = al.map;
1969 ams->phys_addr = 0;
1970}
1971
1972static void ip__resolve_data(struct thread *thread,
1973 u8 m, struct addr_map_symbol *ams,
1974 u64 addr, u64 phys_addr)
1975{
1976 struct addr_location al;
1977
1978 memset(&al, 0, sizeof(al));
1979
1980 thread__find_symbol(thread, m, addr, &al);
1981
1982 ams->addr = addr;
1983 ams->al_addr = al.addr;
1984 ams->sym = al.sym;
1985 ams->map = al.map;
1986 ams->phys_addr = phys_addr;
1987}
1988
1989struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1990 struct addr_location *al)
1991{
1992 struct mem_info *mi = mem_info__new();
1993
1994 if (!mi)
1995 return NULL;
1996
1997 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1998 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1999 sample->addr, sample->phys_addr);
2000 mi->data_src.val = sample->data_src;
2001
2002 return mi;
2003}
2004
2005static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
2006{
2007 char *srcline = NULL;
2008
2009 if (!map || callchain_param.key == CCKEY_FUNCTION)
2010 return srcline;
2011
2012 srcline = srcline__tree_find(&map->dso->srclines, ip);
2013 if (!srcline) {
2014 bool show_sym = false;
2015 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2016
2017 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2018 sym, show_sym, show_addr, ip);
2019 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2020 }
2021
2022 return srcline;
2023}
2024
2025struct iterations {
2026 int nr_loop_iter;
2027 u64 cycles;
2028};
2029
2030static int add_callchain_ip(struct thread *thread,
2031 struct callchain_cursor *cursor,
2032 struct symbol **parent,
2033 struct addr_location *root_al,
2034 u8 *cpumode,
2035 u64 ip,
2036 bool branch,
2037 struct branch_flags *flags,
2038 struct iterations *iter,
2039 u64 branch_from)
2040{
2041 struct addr_location al;
2042 int nr_loop_iter = 0;
2043 u64 iter_cycles = 0;
2044 const char *srcline = NULL;
2045
2046 al.filtered = 0;
2047 al.sym = NULL;
2048 if (!cpumode) {
2049 thread__find_cpumode_addr_location(thread, ip, &al);
2050 } else {
2051 if (ip >= PERF_CONTEXT_MAX) {
2052 switch (ip) {
2053 case PERF_CONTEXT_HV:
2054 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2055 break;
2056 case PERF_CONTEXT_KERNEL:
2057 *cpumode = PERF_RECORD_MISC_KERNEL;
2058 break;
2059 case PERF_CONTEXT_USER:
2060 *cpumode = PERF_RECORD_MISC_USER;
2061 break;
2062 default:
2063 pr_debug("invalid callchain context: "
2064 "%"PRId64"\n", (s64) ip);
2065 /*
2066 * It seems the callchain is corrupted.
2067 * Discard all.
2068 */
2069 callchain_cursor_reset(cursor);
2070 return 1;
2071 }
2072 return 0;
2073 }
2074 thread__find_symbol(thread, *cpumode, ip, &al);
2075 }
2076
2077 if (al.sym != NULL) {
2078 if (perf_hpp_list.parent && !*parent &&
2079 symbol__match_regex(al.sym, &parent_regex))
2080 *parent = al.sym;
2081 else if (have_ignore_callees && root_al &&
2082 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2083 /* Treat this symbol as the root,
2084 forgetting its callees. */
2085 *root_al = al;
2086 callchain_cursor_reset(cursor);
2087 }
2088 }
2089
2090 if (symbol_conf.hide_unresolved && al.sym == NULL)
2091 return 0;
2092
2093 if (iter) {
2094 nr_loop_iter = iter->nr_loop_iter;
2095 iter_cycles = iter->cycles;
2096 }
2097
2098 srcline = callchain_srcline(al.map, al.sym, al.addr);
2099 return callchain_cursor_append(cursor, ip, al.map, al.sym,
2100 branch, flags, nr_loop_iter,
2101 iter_cycles, branch_from, srcline);
2102}
2103
2104struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2105 struct addr_location *al)
2106{
2107 unsigned int i;
2108 const struct branch_stack *bs = sample->branch_stack;
2109 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2110
2111 if (!bi)
2112 return NULL;
2113
2114 for (i = 0; i < bs->nr; i++) {
2115 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2116 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2117 bi[i].flags = bs->entries[i].flags;
2118 }
2119 return bi;
2120}
2121
2122static void save_iterations(struct iterations *iter,
2123 struct branch_entry *be, int nr)
2124{
2125 int i;
2126
2127 iter->nr_loop_iter++;
2128 iter->cycles = 0;
2129
2130 for (i = 0; i < nr; i++)
2131 iter->cycles += be[i].flags.cycles;
2132}
2133
2134#define CHASHSZ 127
2135#define CHASHBITS 7
2136#define NO_ENTRY 0xff
2137
2138#define PERF_MAX_BRANCH_DEPTH 127
2139
2140/* Remove loops. */
2141static int remove_loops(struct branch_entry *l, int nr,
2142 struct iterations *iter)
2143{
2144 int i, j, off;
2145 unsigned char chash[CHASHSZ];
2146
2147 memset(chash, NO_ENTRY, sizeof(chash));
2148
2149 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2150
2151 for (i = 0; i < nr; i++) {
2152 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2153
2154 /* no collision handling for now */
2155 if (chash[h] == NO_ENTRY) {
2156 chash[h] = i;
2157 } else if (l[chash[h]].from == l[i].from) {
2158 bool is_loop = true;
2159 /* check if it is a real loop */
2160 off = 0;
2161 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2162 if (l[j].from != l[i + off].from) {
2163 is_loop = false;
2164 break;
2165 }
2166 if (is_loop) {
2167 j = nr - (i + off);
2168 if (j > 0) {
2169 save_iterations(iter + i + off,
2170 l + i, off);
2171
2172 memmove(iter + i, iter + i + off,
2173 j * sizeof(*iter));
2174
2175 memmove(l + i, l + i + off,
2176 j * sizeof(*l));
2177 }
2178
2179 nr -= off;
2180 }
2181 }
2182 }
2183 return nr;
2184}
2185
2186/*
2187 * Recolve LBR callstack chain sample
2188 * Return:
2189 * 1 on success get LBR callchain information
2190 * 0 no available LBR callchain information, should try fp
2191 * negative error code on other errors.
2192 */
2193static int resolve_lbr_callchain_sample(struct thread *thread,
2194 struct callchain_cursor *cursor,
2195 struct perf_sample *sample,
2196 struct symbol **parent,
2197 struct addr_location *root_al,
2198 int max_stack)
2199{
2200 struct ip_callchain *chain = sample->callchain;
2201 int chain_nr = min(max_stack, (int)chain->nr), i;
2202 u8 cpumode = PERF_RECORD_MISC_USER;
2203 u64 ip, branch_from = 0;
2204
2205 for (i = 0; i < chain_nr; i++) {
2206 if (chain->ips[i] == PERF_CONTEXT_USER)
2207 break;
2208 }
2209
2210 /* LBR only affects the user callchain */
2211 if (i != chain_nr) {
2212 struct branch_stack *lbr_stack = sample->branch_stack;
2213 int lbr_nr = lbr_stack->nr, j, k;
2214 bool branch;
2215 struct branch_flags *flags;
2216 /*
2217 * LBR callstack can only get user call chain.
2218 * The mix_chain_nr is kernel call chain
2219 * number plus LBR user call chain number.
2220 * i is kernel call chain number,
2221 * 1 is PERF_CONTEXT_USER,
2222 * lbr_nr + 1 is the user call chain number.
2223 * For details, please refer to the comments
2224 * in callchain__printf
2225 */
2226 int mix_chain_nr = i + 1 + lbr_nr + 1;
2227
2228 for (j = 0; j < mix_chain_nr; j++) {
2229 int err;
2230 branch = false;
2231 flags = NULL;
2232
2233 if (callchain_param.order == ORDER_CALLEE) {
2234 if (j < i + 1)
2235 ip = chain->ips[j];
2236 else if (j > i + 1) {
2237 k = j - i - 2;
2238 ip = lbr_stack->entries[k].from;
2239 branch = true;
2240 flags = &lbr_stack->entries[k].flags;
2241 } else {
2242 ip = lbr_stack->entries[0].to;
2243 branch = true;
2244 flags = &lbr_stack->entries[0].flags;
2245 branch_from =
2246 lbr_stack->entries[0].from;
2247 }
2248 } else {
2249 if (j < lbr_nr) {
2250 k = lbr_nr - j - 1;
2251 ip = lbr_stack->entries[k].from;
2252 branch = true;
2253 flags = &lbr_stack->entries[k].flags;
2254 }
2255 else if (j > lbr_nr)
2256 ip = chain->ips[i + 1 - (j - lbr_nr)];
2257 else {
2258 ip = lbr_stack->entries[0].to;
2259 branch = true;
2260 flags = &lbr_stack->entries[0].flags;
2261 branch_from =
2262 lbr_stack->entries[0].from;
2263 }
2264 }
2265
2266 err = add_callchain_ip(thread, cursor, parent,
2267 root_al, &cpumode, ip,
2268 branch, flags, NULL,
2269 branch_from);
2270 if (err)
2271 return (err < 0) ? err : 0;
2272 }
2273 return 1;
2274 }
2275
2276 return 0;
2277}
2278
2279static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2280 struct callchain_cursor *cursor,
2281 struct symbol **parent,
2282 struct addr_location *root_al,
2283 u8 *cpumode, int ent)
2284{
2285 int err = 0;
2286
2287 while (--ent >= 0) {
2288 u64 ip = chain->ips[ent];
2289
2290 if (ip >= PERF_CONTEXT_MAX) {
2291 err = add_callchain_ip(thread, cursor, parent,
2292 root_al, cpumode, ip,
2293 false, NULL, NULL, 0);
2294 break;
2295 }
2296 }
2297 return err;
2298}
2299
2300static int thread__resolve_callchain_sample(struct thread *thread,
2301 struct callchain_cursor *cursor,
2302 struct evsel *evsel,
2303 struct perf_sample *sample,
2304 struct symbol **parent,
2305 struct addr_location *root_al,
2306 int max_stack)
2307{
2308 struct branch_stack *branch = sample->branch_stack;
2309 struct ip_callchain *chain = sample->callchain;
2310 int chain_nr = 0;
2311 u8 cpumode = PERF_RECORD_MISC_USER;
2312 int i, j, err, nr_entries;
2313 int skip_idx = -1;
2314 int first_call = 0;
2315
2316 if (chain)
2317 chain_nr = chain->nr;
2318
2319 if (perf_evsel__has_branch_callstack(evsel)) {
2320 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2321 root_al, max_stack);
2322 if (err)
2323 return (err < 0) ? err : 0;
2324 }
2325
2326 /*
2327 * Based on DWARF debug information, some architectures skip
2328 * a callchain entry saved by the kernel.
2329 */
2330 skip_idx = arch_skip_callchain_idx(thread, chain);
2331
2332 /*
2333 * Add branches to call stack for easier browsing. This gives
2334 * more context for a sample than just the callers.
2335 *
2336 * This uses individual histograms of paths compared to the
2337 * aggregated histograms the normal LBR mode uses.
2338 *
2339 * Limitations for now:
2340 * - No extra filters
2341 * - No annotations (should annotate somehow)
2342 */
2343
2344 if (branch && callchain_param.branch_callstack) {
2345 int nr = min(max_stack, (int)branch->nr);
2346 struct branch_entry be[nr];
2347 struct iterations iter[nr];
2348
2349 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2350 pr_warning("corrupted branch chain. skipping...\n");
2351 goto check_calls;
2352 }
2353
2354 for (i = 0; i < nr; i++) {
2355 if (callchain_param.order == ORDER_CALLEE) {
2356 be[i] = branch->entries[i];
2357
2358 if (chain == NULL)
2359 continue;
2360
2361 /*
2362 * Check for overlap into the callchain.
2363 * The return address is one off compared to
2364 * the branch entry. To adjust for this
2365 * assume the calling instruction is not longer
2366 * than 8 bytes.
2367 */
2368 if (i == skip_idx ||
2369 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2370 first_call++;
2371 else if (be[i].from < chain->ips[first_call] &&
2372 be[i].from >= chain->ips[first_call] - 8)
2373 first_call++;
2374 } else
2375 be[i] = branch->entries[branch->nr - i - 1];
2376 }
2377
2378 memset(iter, 0, sizeof(struct iterations) * nr);
2379 nr = remove_loops(be, nr, iter);
2380
2381 for (i = 0; i < nr; i++) {
2382 err = add_callchain_ip(thread, cursor, parent,
2383 root_al,
2384 NULL, be[i].to,
2385 true, &be[i].flags,
2386 NULL, be[i].from);
2387
2388 if (!err)
2389 err = add_callchain_ip(thread, cursor, parent, root_al,
2390 NULL, be[i].from,
2391 true, &be[i].flags,
2392 &iter[i], 0);
2393 if (err == -EINVAL)
2394 break;
2395 if (err)
2396 return err;
2397 }
2398
2399 if (chain_nr == 0)
2400 return 0;
2401
2402 chain_nr -= nr;
2403 }
2404
2405check_calls:
2406 if (callchain_param.order != ORDER_CALLEE) {
2407 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2408 &cpumode, chain->nr - first_call);
2409 if (err)
2410 return (err < 0) ? err : 0;
2411 }
2412 for (i = first_call, nr_entries = 0;
2413 i < chain_nr && nr_entries < max_stack; i++) {
2414 u64 ip;
2415
2416 if (callchain_param.order == ORDER_CALLEE)
2417 j = i;
2418 else
2419 j = chain->nr - i - 1;
2420
2421#ifdef HAVE_SKIP_CALLCHAIN_IDX
2422 if (j == skip_idx)
2423 continue;
2424#endif
2425 ip = chain->ips[j];
2426 if (ip < PERF_CONTEXT_MAX)
2427 ++nr_entries;
2428 else if (callchain_param.order != ORDER_CALLEE) {
2429 err = find_prev_cpumode(chain, thread, cursor, parent,
2430 root_al, &cpumode, j);
2431 if (err)
2432 return (err < 0) ? err : 0;
2433 continue;
2434 }
2435
2436 err = add_callchain_ip(thread, cursor, parent,
2437 root_al, &cpumode, ip,
2438 false, NULL, NULL, 0);
2439
2440 if (err)
2441 return (err < 0) ? err : 0;
2442 }
2443
2444 return 0;
2445}
2446
2447static int append_inlines(struct callchain_cursor *cursor,
2448 struct map *map, struct symbol *sym, u64 ip)
2449{
2450 struct inline_node *inline_node;
2451 struct inline_list *ilist;
2452 u64 addr;
2453 int ret = 1;
2454
2455 if (!symbol_conf.inline_name || !map || !sym)
2456 return ret;
2457
2458 addr = map__map_ip(map, ip);
2459 addr = map__rip_2objdump(map, addr);
2460
2461 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2462 if (!inline_node) {
2463 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2464 if (!inline_node)
2465 return ret;
2466 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2467 }
2468
2469 list_for_each_entry(ilist, &inline_node->val, list) {
2470 ret = callchain_cursor_append(cursor, ip, map,
2471 ilist->symbol, false,
2472 NULL, 0, 0, 0, ilist->srcline);
2473
2474 if (ret != 0)
2475 return ret;
2476 }
2477
2478 return ret;
2479}
2480
2481static int unwind_entry(struct unwind_entry *entry, void *arg)
2482{
2483 struct callchain_cursor *cursor = arg;
2484 const char *srcline = NULL;
2485 u64 addr = entry->ip;
2486
2487 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2488 return 0;
2489
2490 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2491 return 0;
2492
2493 /*
2494 * Convert entry->ip from a virtual address to an offset in
2495 * its corresponding binary.
2496 */
2497 if (entry->map)
2498 addr = map__map_ip(entry->map, entry->ip);
2499
2500 srcline = callchain_srcline(entry->map, entry->sym, addr);
2501 return callchain_cursor_append(cursor, entry->ip,
2502 entry->map, entry->sym,
2503 false, NULL, 0, 0, 0, srcline);
2504}
2505
2506static int thread__resolve_callchain_unwind(struct thread *thread,
2507 struct callchain_cursor *cursor,
2508 struct evsel *evsel,
2509 struct perf_sample *sample,
2510 int max_stack)
2511{
2512 /* Can we do dwarf post unwind? */
2513 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2514 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2515 return 0;
2516
2517 /* Bail out if nothing was captured. */
2518 if ((!sample->user_regs.regs) ||
2519 (!sample->user_stack.size))
2520 return 0;
2521
2522 return unwind__get_entries(unwind_entry, cursor,
2523 thread, sample, max_stack);
2524}
2525
2526int thread__resolve_callchain(struct thread *thread,
2527 struct callchain_cursor *cursor,
2528 struct evsel *evsel,
2529 struct perf_sample *sample,
2530 struct symbol **parent,
2531 struct addr_location *root_al,
2532 int max_stack)
2533{
2534 int ret = 0;
2535
2536 callchain_cursor_reset(cursor);
2537
2538 if (callchain_param.order == ORDER_CALLEE) {
2539 ret = thread__resolve_callchain_sample(thread, cursor,
2540 evsel, sample,
2541 parent, root_al,
2542 max_stack);
2543 if (ret)
2544 return ret;
2545 ret = thread__resolve_callchain_unwind(thread, cursor,
2546 evsel, sample,
2547 max_stack);
2548 } else {
2549 ret = thread__resolve_callchain_unwind(thread, cursor,
2550 evsel, sample,
2551 max_stack);
2552 if (ret)
2553 return ret;
2554 ret = thread__resolve_callchain_sample(thread, cursor,
2555 evsel, sample,
2556 parent, root_al,
2557 max_stack);
2558 }
2559
2560 return ret;
2561}
2562
2563int machine__for_each_thread(struct machine *machine,
2564 int (*fn)(struct thread *thread, void *p),
2565 void *priv)
2566{
2567 struct threads *threads;
2568 struct rb_node *nd;
2569 struct thread *thread;
2570 int rc = 0;
2571 int i;
2572
2573 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2574 threads = &machine->threads[i];
2575 for (nd = rb_first_cached(&threads->entries); nd;
2576 nd = rb_next(nd)) {
2577 thread = rb_entry(nd, struct thread, rb_node);
2578 rc = fn(thread, priv);
2579 if (rc != 0)
2580 return rc;
2581 }
2582
2583 list_for_each_entry(thread, &threads->dead, node) {
2584 rc = fn(thread, priv);
2585 if (rc != 0)
2586 return rc;
2587 }
2588 }
2589 return rc;
2590}
2591
2592int machines__for_each_thread(struct machines *machines,
2593 int (*fn)(struct thread *thread, void *p),
2594 void *priv)
2595{
2596 struct rb_node *nd;
2597 int rc = 0;
2598
2599 rc = machine__for_each_thread(&machines->host, fn, priv);
2600 if (rc != 0)
2601 return rc;
2602
2603 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2604 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2605
2606 rc = machine__for_each_thread(machine, fn, priv);
2607 if (rc != 0)
2608 return rc;
2609 }
2610 return rc;
2611}
2612
2613pid_t machine__get_current_tid(struct machine *machine, int cpu)
2614{
2615 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2616
2617 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2618 return -1;
2619
2620 return machine->current_tid[cpu];
2621}
2622
2623int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2624 pid_t tid)
2625{
2626 struct thread *thread;
2627 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2628
2629 if (cpu < 0)
2630 return -EINVAL;
2631
2632 if (!machine->current_tid) {
2633 int i;
2634
2635 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2636 if (!machine->current_tid)
2637 return -ENOMEM;
2638 for (i = 0; i < nr_cpus; i++)
2639 machine->current_tid[i] = -1;
2640 }
2641
2642 if (cpu >= nr_cpus) {
2643 pr_err("Requested CPU %d too large. ", cpu);
2644 pr_err("Consider raising MAX_NR_CPUS\n");
2645 return -EINVAL;
2646 }
2647
2648 machine->current_tid[cpu] = tid;
2649
2650 thread = machine__findnew_thread(machine, pid, tid);
2651 if (!thread)
2652 return -ENOMEM;
2653
2654 thread->cpu = cpu;
2655 thread__put(thread);
2656
2657 return 0;
2658}
2659
2660/*
2661 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662 * normalized arch is needed.
2663 */
2664bool machine__is(struct machine *machine, const char *arch)
2665{
2666 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667}
2668
2669int machine__nr_cpus_avail(struct machine *machine)
2670{
2671 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672}
2673
2674int machine__get_kernel_start(struct machine *machine)
2675{
2676 struct map *map = machine__kernel_map(machine);
2677 int err = 0;
2678
2679 /*
2680 * The only addresses above 2^63 are kernel addresses of a 64-bit
2681 * kernel. Note that addresses are unsigned so that on a 32-bit system
2682 * all addresses including kernel addresses are less than 2^32. In
2683 * that case (32-bit system), if the kernel mapping is unknown, all
2684 * addresses will be assumed to be in user space - see
2685 * machine__kernel_ip().
2686 */
2687 machine->kernel_start = 1ULL << 63;
2688 if (map) {
2689 err = map__load(map);
2690 /*
2691 * On x86_64, PTI entry trampolines are less than the
2692 * start of kernel text, but still above 2^63. So leave
2693 * kernel_start = 1ULL << 63 for x86_64.
2694 */
2695 if (!err && !machine__is(machine, "x86_64"))
2696 machine->kernel_start = map->start;
2697 }
2698 return err;
2699}
2700
2701u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702{
2703 u8 addr_cpumode = cpumode;
2704 bool kernel_ip;
2705
2706 if (!machine->single_address_space)
2707 goto out;
2708
2709 kernel_ip = machine__kernel_ip(machine, addr);
2710 switch (cpumode) {
2711 case PERF_RECORD_MISC_KERNEL:
2712 case PERF_RECORD_MISC_USER:
2713 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714 PERF_RECORD_MISC_USER;
2715 break;
2716 case PERF_RECORD_MISC_GUEST_KERNEL:
2717 case PERF_RECORD_MISC_GUEST_USER:
2718 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719 PERF_RECORD_MISC_GUEST_USER;
2720 break;
2721 default:
2722 break;
2723 }
2724out:
2725 return addr_cpumode;
2726}
2727
2728struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729{
2730 return dsos__findnew(&machine->dsos, filename);
2731}
2732
2733char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734{
2735 struct machine *machine = vmachine;
2736 struct map *map;
2737 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738
2739 if (sym == NULL)
2740 return NULL;
2741
2742 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743 *addrp = map->unmap_ip(map, sym->start);
2744 return sym->name;
2745}