Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
   4 *
   5 * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
   6 *
   7 */
   8
   9#include <linux/types.h>
  10#include <linux/slab.h>
  11#include <linux/kernel.h>
  12#include <linux/string.h>
  13#include <linux/list.h>
  14#include <linux/errno.h>
  15#include <linux/skbuff.h>
  16#include <linux/math64.h>
  17#include <linux/module.h>
  18#include <linux/spinlock.h>
  19#include <linux/rcupdate.h>
  20#include <net/netlink.h>
  21#include <net/pkt_sched.h>
  22#include <net/pkt_cls.h>
  23#include <net/sch_generic.h>
  24#include <net/sock.h>
  25#include <net/tcp.h>
  26
  27static LIST_HEAD(taprio_list);
  28static DEFINE_SPINLOCK(taprio_list_lock);
  29
  30#define TAPRIO_ALL_GATES_OPEN -1
  31
  32#define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
  33#define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
  34
  35struct sched_entry {
  36	struct list_head list;
  37
  38	/* The instant that this entry "closes" and the next one
  39	 * should open, the qdisc will make some effort so that no
  40	 * packet leaves after this time.
  41	 */
  42	ktime_t close_time;
  43	ktime_t next_txtime;
  44	atomic_t budget;
  45	int index;
  46	u32 gate_mask;
  47	u32 interval;
  48	u8 command;
  49};
  50
  51struct sched_gate_list {
  52	struct rcu_head rcu;
  53	struct list_head entries;
  54	size_t num_entries;
  55	ktime_t cycle_close_time;
  56	s64 cycle_time;
  57	s64 cycle_time_extension;
  58	s64 base_time;
  59};
  60
  61struct taprio_sched {
  62	struct Qdisc **qdiscs;
  63	struct Qdisc *root;
  64	u32 flags;
  65	enum tk_offsets tk_offset;
  66	int clockid;
  67	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
  68				    * speeds it's sub-nanoseconds per byte
  69				    */
  70
  71	/* Protects the update side of the RCU protected current_entry */
  72	spinlock_t current_entry_lock;
  73	struct sched_entry __rcu *current_entry;
  74	struct sched_gate_list __rcu *oper_sched;
  75	struct sched_gate_list __rcu *admin_sched;
  76	struct hrtimer advance_timer;
  77	struct list_head taprio_list;
  78	struct sk_buff *(*dequeue)(struct Qdisc *sch);
  79	struct sk_buff *(*peek)(struct Qdisc *sch);
  80	u32 txtime_delay;
  81};
  82
  83struct __tc_taprio_qopt_offload {
  84	refcount_t users;
  85	struct tc_taprio_qopt_offload offload;
  86};
  87
  88static ktime_t sched_base_time(const struct sched_gate_list *sched)
  89{
  90	if (!sched)
  91		return KTIME_MAX;
  92
  93	return ns_to_ktime(sched->base_time);
  94}
  95
  96static ktime_t taprio_get_time(struct taprio_sched *q)
  97{
  98	ktime_t mono = ktime_get();
  99
 100	switch (q->tk_offset) {
 101	case TK_OFFS_MAX:
 102		return mono;
 103	default:
 104		return ktime_mono_to_any(mono, q->tk_offset);
 105	}
 106
 107	return KTIME_MAX;
 108}
 109
 110static void taprio_free_sched_cb(struct rcu_head *head)
 111{
 112	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
 113	struct sched_entry *entry, *n;
 114
 115	if (!sched)
 116		return;
 117
 118	list_for_each_entry_safe(entry, n, &sched->entries, list) {
 119		list_del(&entry->list);
 120		kfree(entry);
 121	}
 122
 123	kfree(sched);
 124}
 125
 126static void switch_schedules(struct taprio_sched *q,
 127			     struct sched_gate_list **admin,
 128			     struct sched_gate_list **oper)
 129{
 130	rcu_assign_pointer(q->oper_sched, *admin);
 131	rcu_assign_pointer(q->admin_sched, NULL);
 132
 133	if (*oper)
 134		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
 135
 136	*oper = *admin;
 137	*admin = NULL;
 138}
 139
 140/* Get how much time has been already elapsed in the current cycle. */
 141static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
 142{
 143	ktime_t time_since_sched_start;
 144	s32 time_elapsed;
 145
 146	time_since_sched_start = ktime_sub(time, sched->base_time);
 147	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
 148
 149	return time_elapsed;
 150}
 151
 152static ktime_t get_interval_end_time(struct sched_gate_list *sched,
 153				     struct sched_gate_list *admin,
 154				     struct sched_entry *entry,
 155				     ktime_t intv_start)
 156{
 157	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
 158	ktime_t intv_end, cycle_ext_end, cycle_end;
 159
 160	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
 161	intv_end = ktime_add_ns(intv_start, entry->interval);
 162	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
 163
 164	if (ktime_before(intv_end, cycle_end))
 165		return intv_end;
 166	else if (admin && admin != sched &&
 167		 ktime_after(admin->base_time, cycle_end) &&
 168		 ktime_before(admin->base_time, cycle_ext_end))
 169		return admin->base_time;
 170	else
 171		return cycle_end;
 172}
 173
 174static int length_to_duration(struct taprio_sched *q, int len)
 175{
 176	return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
 177}
 178
 179/* Returns the entry corresponding to next available interval. If
 180 * validate_interval is set, it only validates whether the timestamp occurs
 181 * when the gate corresponding to the skb's traffic class is open.
 182 */
 183static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
 184						  struct Qdisc *sch,
 185						  struct sched_gate_list *sched,
 186						  struct sched_gate_list *admin,
 187						  ktime_t time,
 188						  ktime_t *interval_start,
 189						  ktime_t *interval_end,
 190						  bool validate_interval)
 191{
 192	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
 193	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
 194	struct sched_entry *entry = NULL, *entry_found = NULL;
 195	struct taprio_sched *q = qdisc_priv(sch);
 196	struct net_device *dev = qdisc_dev(sch);
 197	bool entry_available = false;
 198	s32 cycle_elapsed;
 199	int tc, n;
 200
 201	tc = netdev_get_prio_tc_map(dev, skb->priority);
 202	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
 203
 204	*interval_start = 0;
 205	*interval_end = 0;
 206
 207	if (!sched)
 208		return NULL;
 209
 210	cycle = sched->cycle_time;
 211	cycle_elapsed = get_cycle_time_elapsed(sched, time);
 212	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
 213	cycle_end = ktime_add_ns(curr_intv_end, cycle);
 214
 215	list_for_each_entry(entry, &sched->entries, list) {
 216		curr_intv_start = curr_intv_end;
 217		curr_intv_end = get_interval_end_time(sched, admin, entry,
 218						      curr_intv_start);
 219
 220		if (ktime_after(curr_intv_start, cycle_end))
 221			break;
 222
 223		if (!(entry->gate_mask & BIT(tc)) ||
 224		    packet_transmit_time > entry->interval)
 225			continue;
 226
 227		txtime = entry->next_txtime;
 228
 229		if (ktime_before(txtime, time) || validate_interval) {
 230			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
 231			if ((ktime_before(curr_intv_start, time) &&
 232			     ktime_before(transmit_end_time, curr_intv_end)) ||
 233			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
 234				entry_found = entry;
 235				*interval_start = curr_intv_start;
 236				*interval_end = curr_intv_end;
 237				break;
 238			} else if (!entry_available && !validate_interval) {
 239				/* Here, we are just trying to find out the
 240				 * first available interval in the next cycle.
 241				 */
 242				entry_available = 1;
 243				entry_found = entry;
 244				*interval_start = ktime_add_ns(curr_intv_start, cycle);
 245				*interval_end = ktime_add_ns(curr_intv_end, cycle);
 246			}
 247		} else if (ktime_before(txtime, earliest_txtime) &&
 248			   !entry_available) {
 249			earliest_txtime = txtime;
 250			entry_found = entry;
 251			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
 252			*interval_start = ktime_add(curr_intv_start, n * cycle);
 253			*interval_end = ktime_add(curr_intv_end, n * cycle);
 254		}
 255	}
 256
 257	return entry_found;
 258}
 259
 260static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
 261{
 262	struct taprio_sched *q = qdisc_priv(sch);
 263	struct sched_gate_list *sched, *admin;
 264	ktime_t interval_start, interval_end;
 265	struct sched_entry *entry;
 266
 267	rcu_read_lock();
 268	sched = rcu_dereference(q->oper_sched);
 269	admin = rcu_dereference(q->admin_sched);
 270
 271	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
 272				       &interval_start, &interval_end, true);
 273	rcu_read_unlock();
 274
 275	return entry;
 276}
 277
 278static bool taprio_flags_valid(u32 flags)
 279{
 280	/* Make sure no other flag bits are set. */
 281	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
 282		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
 283		return false;
 284	/* txtime-assist and full offload are mutually exclusive */
 285	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
 286	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
 287		return false;
 288	return true;
 289}
 290
 291/* This returns the tstamp value set by TCP in terms of the set clock. */
 292static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
 293{
 294	unsigned int offset = skb_network_offset(skb);
 295	const struct ipv6hdr *ipv6h;
 296	const struct iphdr *iph;
 297	struct ipv6hdr _ipv6h;
 298
 299	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
 300	if (!ipv6h)
 301		return 0;
 302
 303	if (ipv6h->version == 4) {
 304		iph = (struct iphdr *)ipv6h;
 305		offset += iph->ihl * 4;
 306
 307		/* special-case 6in4 tunnelling, as that is a common way to get
 308		 * v6 connectivity in the home
 309		 */
 310		if (iph->protocol == IPPROTO_IPV6) {
 311			ipv6h = skb_header_pointer(skb, offset,
 312						   sizeof(_ipv6h), &_ipv6h);
 313
 314			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
 315				return 0;
 316		} else if (iph->protocol != IPPROTO_TCP) {
 317			return 0;
 318		}
 319	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
 320		return 0;
 321	}
 322
 323	return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
 324}
 325
 326/* There are a few scenarios where we will have to modify the txtime from
 327 * what is read from next_txtime in sched_entry. They are:
 328 * 1. If txtime is in the past,
 329 *    a. The gate for the traffic class is currently open and packet can be
 330 *       transmitted before it closes, schedule the packet right away.
 331 *    b. If the gate corresponding to the traffic class is going to open later
 332 *       in the cycle, set the txtime of packet to the interval start.
 333 * 2. If txtime is in the future, there are packets corresponding to the
 334 *    current traffic class waiting to be transmitted. So, the following
 335 *    possibilities exist:
 336 *    a. We can transmit the packet before the window containing the txtime
 337 *       closes.
 338 *    b. The window might close before the transmission can be completed
 339 *       successfully. So, schedule the packet in the next open window.
 340 */
 341static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
 342{
 343	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
 344	struct taprio_sched *q = qdisc_priv(sch);
 345	struct sched_gate_list *sched, *admin;
 346	ktime_t minimum_time, now, txtime;
 347	int len, packet_transmit_time;
 348	struct sched_entry *entry;
 349	bool sched_changed;
 350
 351	now = taprio_get_time(q);
 352	minimum_time = ktime_add_ns(now, q->txtime_delay);
 353
 354	tcp_tstamp = get_tcp_tstamp(q, skb);
 355	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
 356
 357	rcu_read_lock();
 358	admin = rcu_dereference(q->admin_sched);
 359	sched = rcu_dereference(q->oper_sched);
 360	if (admin && ktime_after(minimum_time, admin->base_time))
 361		switch_schedules(q, &admin, &sched);
 362
 363	/* Until the schedule starts, all the queues are open */
 364	if (!sched || ktime_before(minimum_time, sched->base_time)) {
 365		txtime = minimum_time;
 366		goto done;
 367	}
 368
 369	len = qdisc_pkt_len(skb);
 370	packet_transmit_time = length_to_duration(q, len);
 371
 372	do {
 373		sched_changed = 0;
 374
 375		entry = find_entry_to_transmit(skb, sch, sched, admin,
 376					       minimum_time,
 377					       &interval_start, &interval_end,
 378					       false);
 379		if (!entry) {
 380			txtime = 0;
 381			goto done;
 382		}
 383
 384		txtime = entry->next_txtime;
 385		txtime = max_t(ktime_t, txtime, minimum_time);
 386		txtime = max_t(ktime_t, txtime, interval_start);
 387
 388		if (admin && admin != sched &&
 389		    ktime_after(txtime, admin->base_time)) {
 390			sched = admin;
 391			sched_changed = 1;
 392			continue;
 393		}
 394
 395		transmit_end_time = ktime_add(txtime, packet_transmit_time);
 396		minimum_time = transmit_end_time;
 397
 398		/* Update the txtime of current entry to the next time it's
 399		 * interval starts.
 400		 */
 401		if (ktime_after(transmit_end_time, interval_end))
 402			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
 403	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
 404
 405	entry->next_txtime = transmit_end_time;
 406
 407done:
 408	rcu_read_unlock();
 409	return txtime;
 410}
 411
 412static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 413			  struct sk_buff **to_free)
 414{
 415	struct taprio_sched *q = qdisc_priv(sch);
 416	struct Qdisc *child;
 417	int queue;
 418
 419	queue = skb_get_queue_mapping(skb);
 420
 421	child = q->qdiscs[queue];
 422	if (unlikely(!child))
 423		return qdisc_drop(skb, sch, to_free);
 424
 425	if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
 426		if (!is_valid_interval(skb, sch))
 427			return qdisc_drop(skb, sch, to_free);
 428	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
 429		skb->tstamp = get_packet_txtime(skb, sch);
 430		if (!skb->tstamp)
 431			return qdisc_drop(skb, sch, to_free);
 432	}
 433
 434	qdisc_qstats_backlog_inc(sch, skb);
 435	sch->q.qlen++;
 436
 437	return qdisc_enqueue(skb, child, to_free);
 438}
 439
 440static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
 441{
 442	struct taprio_sched *q = qdisc_priv(sch);
 443	struct net_device *dev = qdisc_dev(sch);
 444	struct sched_entry *entry;
 445	struct sk_buff *skb;
 446	u32 gate_mask;
 447	int i;
 448
 449	rcu_read_lock();
 450	entry = rcu_dereference(q->current_entry);
 451	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
 452	rcu_read_unlock();
 453
 454	if (!gate_mask)
 455		return NULL;
 456
 457	for (i = 0; i < dev->num_tx_queues; i++) {
 458		struct Qdisc *child = q->qdiscs[i];
 459		int prio;
 460		u8 tc;
 461
 462		if (unlikely(!child))
 463			continue;
 464
 465		skb = child->ops->peek(child);
 466		if (!skb)
 467			continue;
 468
 469		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
 470			return skb;
 471
 472		prio = skb->priority;
 473		tc = netdev_get_prio_tc_map(dev, prio);
 474
 475		if (!(gate_mask & BIT(tc)))
 476			continue;
 477
 478		return skb;
 479	}
 480
 481	return NULL;
 482}
 483
 484static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
 485{
 486	struct taprio_sched *q = qdisc_priv(sch);
 487	struct net_device *dev = qdisc_dev(sch);
 488	struct sk_buff *skb;
 489	int i;
 490
 491	for (i = 0; i < dev->num_tx_queues; i++) {
 492		struct Qdisc *child = q->qdiscs[i];
 493
 494		if (unlikely(!child))
 495			continue;
 496
 497		skb = child->ops->peek(child);
 498		if (!skb)
 499			continue;
 500
 501		return skb;
 502	}
 503
 504	return NULL;
 505}
 506
 507static struct sk_buff *taprio_peek(struct Qdisc *sch)
 508{
 509	struct taprio_sched *q = qdisc_priv(sch);
 510
 511	return q->peek(sch);
 512}
 513
 514static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
 515{
 516	atomic_set(&entry->budget,
 517		   div64_u64((u64)entry->interval * 1000,
 518			     atomic64_read(&q->picos_per_byte)));
 519}
 520
 521static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
 522{
 523	struct taprio_sched *q = qdisc_priv(sch);
 524	struct net_device *dev = qdisc_dev(sch);
 525	struct sk_buff *skb = NULL;
 526	struct sched_entry *entry;
 527	u32 gate_mask;
 528	int i;
 529
 530	rcu_read_lock();
 531	entry = rcu_dereference(q->current_entry);
 532	/* if there's no entry, it means that the schedule didn't
 533	 * start yet, so force all gates to be open, this is in
 534	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
 535	 * "AdminGateSates"
 536	 */
 537	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
 538
 539	if (!gate_mask)
 540		goto done;
 541
 542	for (i = 0; i < dev->num_tx_queues; i++) {
 543		struct Qdisc *child = q->qdiscs[i];
 544		ktime_t guard;
 545		int prio;
 546		int len;
 547		u8 tc;
 548
 549		if (unlikely(!child))
 550			continue;
 551
 552		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
 553			skb = child->ops->dequeue(child);
 554			if (!skb)
 555				continue;
 556			goto skb_found;
 557		}
 558
 559		skb = child->ops->peek(child);
 560		if (!skb)
 561			continue;
 562
 563		prio = skb->priority;
 564		tc = netdev_get_prio_tc_map(dev, prio);
 565
 566		if (!(gate_mask & BIT(tc)))
 567			continue;
 568
 569		len = qdisc_pkt_len(skb);
 570		guard = ktime_add_ns(taprio_get_time(q),
 571				     length_to_duration(q, len));
 572
 573		/* In the case that there's no gate entry, there's no
 574		 * guard band ...
 575		 */
 576		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
 577		    ktime_after(guard, entry->close_time))
 578			continue;
 579
 580		/* ... and no budget. */
 581		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
 582		    atomic_sub_return(len, &entry->budget) < 0)
 583			continue;
 584
 585		skb = child->ops->dequeue(child);
 586		if (unlikely(!skb))
 587			goto done;
 588
 589skb_found:
 590		qdisc_bstats_update(sch, skb);
 591		qdisc_qstats_backlog_dec(sch, skb);
 592		sch->q.qlen--;
 593
 594		goto done;
 595	}
 596
 597done:
 598	rcu_read_unlock();
 599
 600	return skb;
 601}
 602
 603static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
 604{
 605	struct taprio_sched *q = qdisc_priv(sch);
 606	struct net_device *dev = qdisc_dev(sch);
 607	struct sk_buff *skb;
 608	int i;
 609
 610	for (i = 0; i < dev->num_tx_queues; i++) {
 611		struct Qdisc *child = q->qdiscs[i];
 612
 613		if (unlikely(!child))
 614			continue;
 615
 616		skb = child->ops->dequeue(child);
 617		if (unlikely(!skb))
 618			continue;
 619
 620		qdisc_bstats_update(sch, skb);
 621		qdisc_qstats_backlog_dec(sch, skb);
 622		sch->q.qlen--;
 623
 624		return skb;
 625	}
 626
 627	return NULL;
 628}
 629
 630static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
 631{
 632	struct taprio_sched *q = qdisc_priv(sch);
 633
 634	return q->dequeue(sch);
 635}
 636
 637static bool should_restart_cycle(const struct sched_gate_list *oper,
 638				 const struct sched_entry *entry)
 639{
 640	if (list_is_last(&entry->list, &oper->entries))
 641		return true;
 642
 643	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
 644		return true;
 645
 646	return false;
 647}
 648
 649static bool should_change_schedules(const struct sched_gate_list *admin,
 650				    const struct sched_gate_list *oper,
 651				    ktime_t close_time)
 652{
 653	ktime_t next_base_time, extension_time;
 654
 655	if (!admin)
 656		return false;
 657
 658	next_base_time = sched_base_time(admin);
 659
 660	/* This is the simple case, the close_time would fall after
 661	 * the next schedule base_time.
 662	 */
 663	if (ktime_compare(next_base_time, close_time) <= 0)
 664		return true;
 665
 666	/* This is the cycle_time_extension case, if the close_time
 667	 * plus the amount that can be extended would fall after the
 668	 * next schedule base_time, we can extend the current schedule
 669	 * for that amount.
 670	 */
 671	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
 672
 673	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
 674	 * how precisely the extension should be made. So after
 675	 * conformance testing, this logic may change.
 676	 */
 677	if (ktime_compare(next_base_time, extension_time) <= 0)
 678		return true;
 679
 680	return false;
 681}
 682
 683static enum hrtimer_restart advance_sched(struct hrtimer *timer)
 684{
 685	struct taprio_sched *q = container_of(timer, struct taprio_sched,
 686					      advance_timer);
 687	struct sched_gate_list *oper, *admin;
 688	struct sched_entry *entry, *next;
 689	struct Qdisc *sch = q->root;
 690	ktime_t close_time;
 691
 692	spin_lock(&q->current_entry_lock);
 693	entry = rcu_dereference_protected(q->current_entry,
 694					  lockdep_is_held(&q->current_entry_lock));
 695	oper = rcu_dereference_protected(q->oper_sched,
 696					 lockdep_is_held(&q->current_entry_lock));
 697	admin = rcu_dereference_protected(q->admin_sched,
 698					  lockdep_is_held(&q->current_entry_lock));
 699
 700	if (!oper)
 701		switch_schedules(q, &admin, &oper);
 702
 703	/* This can happen in two cases: 1. this is the very first run
 704	 * of this function (i.e. we weren't running any schedule
 705	 * previously); 2. The previous schedule just ended. The first
 706	 * entry of all schedules are pre-calculated during the
 707	 * schedule initialization.
 708	 */
 709	if (unlikely(!entry || entry->close_time == oper->base_time)) {
 710		next = list_first_entry(&oper->entries, struct sched_entry,
 711					list);
 712		close_time = next->close_time;
 713		goto first_run;
 714	}
 715
 716	if (should_restart_cycle(oper, entry)) {
 717		next = list_first_entry(&oper->entries, struct sched_entry,
 718					list);
 719		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
 720						      oper->cycle_time);
 721	} else {
 722		next = list_next_entry(entry, list);
 723	}
 724
 725	close_time = ktime_add_ns(entry->close_time, next->interval);
 726	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
 727
 728	if (should_change_schedules(admin, oper, close_time)) {
 729		/* Set things so the next time this runs, the new
 730		 * schedule runs.
 731		 */
 732		close_time = sched_base_time(admin);
 733		switch_schedules(q, &admin, &oper);
 734	}
 735
 736	next->close_time = close_time;
 737	taprio_set_budget(q, next);
 738
 739first_run:
 740	rcu_assign_pointer(q->current_entry, next);
 741	spin_unlock(&q->current_entry_lock);
 742
 743	hrtimer_set_expires(&q->advance_timer, close_time);
 744
 745	rcu_read_lock();
 746	__netif_schedule(sch);
 747	rcu_read_unlock();
 748
 749	return HRTIMER_RESTART;
 750}
 751
 752static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
 753	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
 754	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
 755	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
 756	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
 757};
 758
 759static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
 760	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
 761		.len = sizeof(struct tc_mqprio_qopt)
 762	},
 763	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
 764	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
 765	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
 766	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
 767	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
 768	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
 769};
 770
 771static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry,
 772			    struct netlink_ext_ack *extack)
 773{
 774	u32 interval = 0;
 775
 776	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
 777		entry->command = nla_get_u8(
 778			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
 779
 780	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
 781		entry->gate_mask = nla_get_u32(
 782			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
 783
 784	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
 785		interval = nla_get_u32(
 786			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
 787
 788	if (interval == 0) {
 789		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
 790		return -EINVAL;
 791	}
 792
 793	entry->interval = interval;
 794
 795	return 0;
 796}
 797
 798static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry,
 799			     int index, struct netlink_ext_ack *extack)
 800{
 801	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
 802	int err;
 803
 804	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
 805					  entry_policy, NULL);
 806	if (err < 0) {
 807		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
 808		return -EINVAL;
 809	}
 810
 811	entry->index = index;
 812
 813	return fill_sched_entry(tb, entry, extack);
 814}
 815
 816static int parse_sched_list(struct nlattr *list,
 817			    struct sched_gate_list *sched,
 818			    struct netlink_ext_ack *extack)
 819{
 820	struct nlattr *n;
 821	int err, rem;
 822	int i = 0;
 823
 824	if (!list)
 825		return -EINVAL;
 826
 827	nla_for_each_nested(n, list, rem) {
 828		struct sched_entry *entry;
 829
 830		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
 831			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
 832			continue;
 833		}
 834
 835		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 836		if (!entry) {
 837			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
 838			return -ENOMEM;
 839		}
 840
 841		err = parse_sched_entry(n, entry, i, extack);
 842		if (err < 0) {
 843			kfree(entry);
 844			return err;
 845		}
 846
 847		list_add_tail(&entry->list, &sched->entries);
 848		i++;
 849	}
 850
 851	sched->num_entries = i;
 852
 853	return i;
 854}
 855
 856static int parse_taprio_schedule(struct nlattr **tb,
 857				 struct sched_gate_list *new,
 858				 struct netlink_ext_ack *extack)
 859{
 860	int err = 0;
 861
 862	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
 863		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
 864		return -ENOTSUPP;
 865	}
 866
 867	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
 868		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
 869
 870	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
 871		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
 872
 873	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
 874		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
 875
 876	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
 877		err = parse_sched_list(
 878			tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack);
 879	if (err < 0)
 880		return err;
 881
 882	if (!new->cycle_time) {
 883		struct sched_entry *entry;
 884		ktime_t cycle = 0;
 885
 886		list_for_each_entry(entry, &new->entries, list)
 887			cycle = ktime_add_ns(cycle, entry->interval);
 888		new->cycle_time = cycle;
 889	}
 890
 891	return 0;
 892}
 893
 894static int taprio_parse_mqprio_opt(struct net_device *dev,
 895				   struct tc_mqprio_qopt *qopt,
 896				   struct netlink_ext_ack *extack,
 897				   u32 taprio_flags)
 898{
 899	int i, j;
 900
 901	if (!qopt && !dev->num_tc) {
 902		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
 903		return -EINVAL;
 904	}
 905
 906	/* If num_tc is already set, it means that the user already
 907	 * configured the mqprio part
 908	 */
 909	if (dev->num_tc)
 910		return 0;
 911
 912	/* Verify num_tc is not out of max range */
 913	if (qopt->num_tc > TC_MAX_QUEUE) {
 914		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
 915		return -EINVAL;
 916	}
 917
 918	/* taprio imposes that traffic classes map 1:n to tx queues */
 919	if (qopt->num_tc > dev->num_tx_queues) {
 920		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
 921		return -EINVAL;
 922	}
 923
 924	/* Verify priority mapping uses valid tcs */
 925	for (i = 0; i <= TC_BITMASK; i++) {
 926		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
 927			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
 928			return -EINVAL;
 929		}
 930	}
 931
 932	for (i = 0; i < qopt->num_tc; i++) {
 933		unsigned int last = qopt->offset[i] + qopt->count[i];
 934
 935		/* Verify the queue count is in tx range being equal to the
 936		 * real_num_tx_queues indicates the last queue is in use.
 937		 */
 938		if (qopt->offset[i] >= dev->num_tx_queues ||
 939		    !qopt->count[i] ||
 940		    last > dev->real_num_tx_queues) {
 941			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
 942			return -EINVAL;
 943		}
 944
 945		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
 946			continue;
 947
 948		/* Verify that the offset and counts do not overlap */
 949		for (j = i + 1; j < qopt->num_tc; j++) {
 950			if (last > qopt->offset[j]) {
 951				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
 952				return -EINVAL;
 953			}
 954		}
 955	}
 956
 957	return 0;
 958}
 959
 960static int taprio_get_start_time(struct Qdisc *sch,
 961				 struct sched_gate_list *sched,
 962				 ktime_t *start)
 963{
 964	struct taprio_sched *q = qdisc_priv(sch);
 965	ktime_t now, base, cycle;
 966	s64 n;
 967
 968	base = sched_base_time(sched);
 969	now = taprio_get_time(q);
 970
 971	if (ktime_after(base, now)) {
 972		*start = base;
 973		return 0;
 974	}
 975
 976	cycle = sched->cycle_time;
 977
 978	/* The qdisc is expected to have at least one sched_entry.  Moreover,
 979	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
 980	 * something went really wrong. In that case, we should warn about this
 981	 * inconsistent state and return error.
 982	 */
 983	if (WARN_ON(!cycle))
 984		return -EFAULT;
 985
 986	/* Schedule the start time for the beginning of the next
 987	 * cycle.
 988	 */
 989	n = div64_s64(ktime_sub_ns(now, base), cycle);
 990	*start = ktime_add_ns(base, (n + 1) * cycle);
 991	return 0;
 992}
 993
 994static void setup_first_close_time(struct taprio_sched *q,
 995				   struct sched_gate_list *sched, ktime_t base)
 996{
 997	struct sched_entry *first;
 998	ktime_t cycle;
 999
1000	first = list_first_entry(&sched->entries,
1001				 struct sched_entry, list);
1002
1003	cycle = sched->cycle_time;
1004
1005	/* FIXME: find a better place to do this */
1006	sched->cycle_close_time = ktime_add_ns(base, cycle);
1007
1008	first->close_time = ktime_add_ns(base, first->interval);
1009	taprio_set_budget(q, first);
1010	rcu_assign_pointer(q->current_entry, NULL);
1011}
1012
1013static void taprio_start_sched(struct Qdisc *sch,
1014			       ktime_t start, struct sched_gate_list *new)
1015{
1016	struct taprio_sched *q = qdisc_priv(sch);
1017	ktime_t expires;
1018
1019	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1020		return;
1021
1022	expires = hrtimer_get_expires(&q->advance_timer);
1023	if (expires == 0)
1024		expires = KTIME_MAX;
1025
1026	/* If the new schedule starts before the next expiration, we
1027	 * reprogram it to the earliest one, so we change the admin
1028	 * schedule to the operational one at the right time.
1029	 */
1030	start = min_t(ktime_t, start, expires);
1031
1032	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1033}
1034
1035static void taprio_set_picos_per_byte(struct net_device *dev,
1036				      struct taprio_sched *q)
1037{
1038	struct ethtool_link_ksettings ecmd;
1039	int speed = SPEED_10;
1040	int picos_per_byte;
1041	int err;
1042
1043	err = __ethtool_get_link_ksettings(dev, &ecmd);
1044	if (err < 0)
1045		goto skip;
1046
1047	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1048		speed = ecmd.base.speed;
1049
1050skip:
1051	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1052
1053	atomic64_set(&q->picos_per_byte, picos_per_byte);
1054	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1055		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1056		   ecmd.base.speed);
1057}
1058
1059static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1060			       void *ptr)
1061{
1062	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1063	struct net_device *qdev;
1064	struct taprio_sched *q;
1065	bool found = false;
1066
1067	ASSERT_RTNL();
1068
1069	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1070		return NOTIFY_DONE;
1071
1072	spin_lock(&taprio_list_lock);
1073	list_for_each_entry(q, &taprio_list, taprio_list) {
1074		qdev = qdisc_dev(q->root);
1075		if (qdev == dev) {
1076			found = true;
1077			break;
1078		}
1079	}
1080	spin_unlock(&taprio_list_lock);
1081
1082	if (found)
1083		taprio_set_picos_per_byte(dev, q);
1084
1085	return NOTIFY_DONE;
1086}
1087
1088static void setup_txtime(struct taprio_sched *q,
1089			 struct sched_gate_list *sched, ktime_t base)
1090{
1091	struct sched_entry *entry;
1092	u32 interval = 0;
1093
1094	list_for_each_entry(entry, &sched->entries, list) {
1095		entry->next_txtime = ktime_add_ns(base, interval);
1096		interval += entry->interval;
1097	}
1098}
1099
1100static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1101{
1102	size_t size = sizeof(struct tc_taprio_sched_entry) * num_entries +
1103		      sizeof(struct __tc_taprio_qopt_offload);
1104	struct __tc_taprio_qopt_offload *__offload;
1105
1106	__offload = kzalloc(size, GFP_KERNEL);
1107	if (!__offload)
1108		return NULL;
1109
1110	refcount_set(&__offload->users, 1);
1111
1112	return &__offload->offload;
1113}
1114
1115struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1116						  *offload)
1117{
1118	struct __tc_taprio_qopt_offload *__offload;
1119
1120	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1121				 offload);
1122
1123	refcount_inc(&__offload->users);
1124
1125	return offload;
1126}
1127EXPORT_SYMBOL_GPL(taprio_offload_get);
1128
1129void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1130{
1131	struct __tc_taprio_qopt_offload *__offload;
1132
1133	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1134				 offload);
1135
1136	if (!refcount_dec_and_test(&__offload->users))
1137		return;
1138
1139	kfree(__offload);
1140}
1141EXPORT_SYMBOL_GPL(taprio_offload_free);
1142
1143/* The function will only serve to keep the pointers to the "oper" and "admin"
1144 * schedules valid in relation to their base times, so when calling dump() the
1145 * users looks at the right schedules.
1146 * When using full offload, the admin configuration is promoted to oper at the
1147 * base_time in the PHC time domain.  But because the system time is not
1148 * necessarily in sync with that, we can't just trigger a hrtimer to call
1149 * switch_schedules at the right hardware time.
1150 * At the moment we call this by hand right away from taprio, but in the future
1151 * it will be useful to create a mechanism for drivers to notify taprio of the
1152 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1153 * This is left as TODO.
1154 */
1155static void taprio_offload_config_changed(struct taprio_sched *q)
1156{
1157	struct sched_gate_list *oper, *admin;
1158
1159	spin_lock(&q->current_entry_lock);
1160
1161	oper = rcu_dereference_protected(q->oper_sched,
1162					 lockdep_is_held(&q->current_entry_lock));
1163	admin = rcu_dereference_protected(q->admin_sched,
1164					  lockdep_is_held(&q->current_entry_lock));
1165
1166	switch_schedules(q, &admin, &oper);
1167
1168	spin_unlock(&q->current_entry_lock);
1169}
1170
1171static void taprio_sched_to_offload(struct taprio_sched *q,
1172				    struct sched_gate_list *sched,
1173				    const struct tc_mqprio_qopt *mqprio,
1174				    struct tc_taprio_qopt_offload *offload)
1175{
1176	struct sched_entry *entry;
1177	int i = 0;
1178
1179	offload->base_time = sched->base_time;
1180	offload->cycle_time = sched->cycle_time;
1181	offload->cycle_time_extension = sched->cycle_time_extension;
1182
1183	list_for_each_entry(entry, &sched->entries, list) {
1184		struct tc_taprio_sched_entry *e = &offload->entries[i];
1185
1186		e->command = entry->command;
1187		e->interval = entry->interval;
1188		e->gate_mask = entry->gate_mask;
1189		i++;
1190	}
1191
1192	offload->num_entries = i;
1193}
1194
1195static int taprio_enable_offload(struct net_device *dev,
1196				 struct tc_mqprio_qopt *mqprio,
1197				 struct taprio_sched *q,
1198				 struct sched_gate_list *sched,
1199				 struct netlink_ext_ack *extack)
1200{
1201	const struct net_device_ops *ops = dev->netdev_ops;
1202	struct tc_taprio_qopt_offload *offload;
1203	int err = 0;
1204
1205	if (!ops->ndo_setup_tc) {
1206		NL_SET_ERR_MSG(extack,
1207			       "Device does not support taprio offload");
1208		return -EOPNOTSUPP;
1209	}
1210
1211	offload = taprio_offload_alloc(sched->num_entries);
1212	if (!offload) {
1213		NL_SET_ERR_MSG(extack,
1214			       "Not enough memory for enabling offload mode");
1215		return -ENOMEM;
1216	}
1217	offload->enable = 1;
1218	taprio_sched_to_offload(q, sched, mqprio, offload);
1219
1220	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1221	if (err < 0) {
1222		NL_SET_ERR_MSG(extack,
1223			       "Device failed to setup taprio offload");
1224		goto done;
1225	}
1226
1227done:
1228	taprio_offload_free(offload);
1229
1230	return err;
1231}
1232
1233static int taprio_disable_offload(struct net_device *dev,
1234				  struct taprio_sched *q,
1235				  struct netlink_ext_ack *extack)
1236{
1237	const struct net_device_ops *ops = dev->netdev_ops;
1238	struct tc_taprio_qopt_offload *offload;
1239	int err;
1240
1241	if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1242		return 0;
1243
1244	if (!ops->ndo_setup_tc)
1245		return -EOPNOTSUPP;
1246
1247	offload = taprio_offload_alloc(0);
1248	if (!offload) {
1249		NL_SET_ERR_MSG(extack,
1250			       "Not enough memory to disable offload mode");
1251		return -ENOMEM;
1252	}
1253	offload->enable = 0;
1254
1255	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1256	if (err < 0) {
1257		NL_SET_ERR_MSG(extack,
1258			       "Device failed to disable offload");
1259		goto out;
1260	}
1261
1262out:
1263	taprio_offload_free(offload);
1264
1265	return err;
1266}
1267
1268/* If full offload is enabled, the only possible clockid is the net device's
1269 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1270 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1271 * in sync with the specified clockid via a user space daemon such as phc2sys.
1272 * For both software taprio and txtime-assist, the clockid is used for the
1273 * hrtimer that advances the schedule and hence mandatory.
1274 */
1275static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1276				struct netlink_ext_ack *extack)
1277{
1278	struct taprio_sched *q = qdisc_priv(sch);
1279	struct net_device *dev = qdisc_dev(sch);
1280	int err = -EINVAL;
1281
1282	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1283		const struct ethtool_ops *ops = dev->ethtool_ops;
1284		struct ethtool_ts_info info = {
1285			.cmd = ETHTOOL_GET_TS_INFO,
1286			.phc_index = -1,
1287		};
1288
1289		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1290			NL_SET_ERR_MSG(extack,
1291				       "The 'clockid' cannot be specified for full offload");
1292			goto out;
1293		}
1294
1295		if (ops && ops->get_ts_info)
1296			err = ops->get_ts_info(dev, &info);
1297
1298		if (err || info.phc_index < 0) {
1299			NL_SET_ERR_MSG(extack,
1300				       "Device does not have a PTP clock");
1301			err = -ENOTSUPP;
1302			goto out;
1303		}
1304	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1305		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1306
1307		/* We only support static clockids and we don't allow
1308		 * for it to be modified after the first init.
1309		 */
1310		if (clockid < 0 ||
1311		    (q->clockid != -1 && q->clockid != clockid)) {
1312			NL_SET_ERR_MSG(extack,
1313				       "Changing the 'clockid' of a running schedule is not supported");
1314			err = -ENOTSUPP;
1315			goto out;
1316		}
1317
1318		switch (clockid) {
1319		case CLOCK_REALTIME:
1320			q->tk_offset = TK_OFFS_REAL;
1321			break;
1322		case CLOCK_MONOTONIC:
1323			q->tk_offset = TK_OFFS_MAX;
1324			break;
1325		case CLOCK_BOOTTIME:
1326			q->tk_offset = TK_OFFS_BOOT;
1327			break;
1328		case CLOCK_TAI:
1329			q->tk_offset = TK_OFFS_TAI;
1330			break;
1331		default:
1332			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1333			err = -EINVAL;
1334			goto out;
1335		}
1336
1337		q->clockid = clockid;
1338	} else {
1339		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1340		goto out;
1341	}
1342
1343	/* Everything went ok, return success. */
1344	err = 0;
1345
1346out:
1347	return err;
1348}
1349
1350static int taprio_mqprio_cmp(const struct net_device *dev,
1351			     const struct tc_mqprio_qopt *mqprio)
1352{
1353	int i;
1354
1355	if (!mqprio || mqprio->num_tc != dev->num_tc)
1356		return -1;
1357
1358	for (i = 0; i < mqprio->num_tc; i++)
1359		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1360		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1361			return -1;
1362
1363	for (i = 0; i <= TC_BITMASK; i++)
1364		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1365			return -1;
1366
1367	return 0;
1368}
1369
1370static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1371			 struct netlink_ext_ack *extack)
1372{
1373	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1374	struct sched_gate_list *oper, *admin, *new_admin;
1375	struct taprio_sched *q = qdisc_priv(sch);
1376	struct net_device *dev = qdisc_dev(sch);
1377	struct tc_mqprio_qopt *mqprio = NULL;
1378	u32 taprio_flags = 0;
1379	unsigned long flags;
1380	ktime_t start;
1381	int i, err;
1382
1383	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1384					  taprio_policy, extack);
1385	if (err < 0)
1386		return err;
1387
1388	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1389		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1390
1391	if (tb[TCA_TAPRIO_ATTR_FLAGS]) {
1392		taprio_flags = nla_get_u32(tb[TCA_TAPRIO_ATTR_FLAGS]);
1393
1394		if (q->flags != 0 && q->flags != taprio_flags) {
1395			NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1396			return -EOPNOTSUPP;
1397		} else if (!taprio_flags_valid(taprio_flags)) {
1398			NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1399			return -EINVAL;
1400		}
1401
1402		q->flags = taprio_flags;
1403	}
1404
1405	err = taprio_parse_mqprio_opt(dev, mqprio, extack, taprio_flags);
1406	if (err < 0)
1407		return err;
1408
1409	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1410	if (!new_admin) {
1411		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1412		return -ENOMEM;
1413	}
1414	INIT_LIST_HEAD(&new_admin->entries);
1415
1416	rcu_read_lock();
1417	oper = rcu_dereference(q->oper_sched);
1418	admin = rcu_dereference(q->admin_sched);
1419	rcu_read_unlock();
1420
1421	/* no changes - no new mqprio settings */
1422	if (!taprio_mqprio_cmp(dev, mqprio))
1423		mqprio = NULL;
1424
1425	if (mqprio && (oper || admin)) {
1426		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1427		err = -ENOTSUPP;
1428		goto free_sched;
1429	}
1430
1431	err = parse_taprio_schedule(tb, new_admin, extack);
1432	if (err < 0)
1433		goto free_sched;
1434
1435	if (new_admin->num_entries == 0) {
1436		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1437		err = -EINVAL;
1438		goto free_sched;
1439	}
1440
1441	err = taprio_parse_clockid(sch, tb, extack);
1442	if (err < 0)
1443		goto free_sched;
1444
1445	taprio_set_picos_per_byte(dev, q);
1446
1447	if (FULL_OFFLOAD_IS_ENABLED(taprio_flags))
1448		err = taprio_enable_offload(dev, mqprio, q, new_admin, extack);
1449	else
1450		err = taprio_disable_offload(dev, q, extack);
1451	if (err)
1452		goto free_sched;
1453
1454	/* Protects against enqueue()/dequeue() */
1455	spin_lock_bh(qdisc_lock(sch));
1456
1457	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1458		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1459			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1460			err = -EINVAL;
1461			goto unlock;
1462		}
1463
1464		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1465	}
1466
1467	if (!TXTIME_ASSIST_IS_ENABLED(taprio_flags) &&
1468	    !FULL_OFFLOAD_IS_ENABLED(taprio_flags) &&
1469	    !hrtimer_active(&q->advance_timer)) {
1470		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1471		q->advance_timer.function = advance_sched;
1472	}
1473
1474	if (mqprio) {
1475		netdev_set_num_tc(dev, mqprio->num_tc);
1476		for (i = 0; i < mqprio->num_tc; i++)
1477			netdev_set_tc_queue(dev, i,
1478					    mqprio->count[i],
1479					    mqprio->offset[i]);
1480
1481		/* Always use supplied priority mappings */
1482		for (i = 0; i <= TC_BITMASK; i++)
1483			netdev_set_prio_tc_map(dev, i,
1484					       mqprio->prio_tc_map[i]);
1485	}
1486
1487	if (FULL_OFFLOAD_IS_ENABLED(taprio_flags)) {
1488		q->dequeue = taprio_dequeue_offload;
1489		q->peek = taprio_peek_offload;
1490	} else {
1491		/* Be sure to always keep the function pointers
1492		 * in a consistent state.
1493		 */
1494		q->dequeue = taprio_dequeue_soft;
1495		q->peek = taprio_peek_soft;
1496	}
1497
1498	err = taprio_get_start_time(sch, new_admin, &start);
1499	if (err < 0) {
1500		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1501		goto unlock;
1502	}
1503
1504	if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) {
1505		setup_txtime(q, new_admin, start);
1506
1507		if (!oper) {
1508			rcu_assign_pointer(q->oper_sched, new_admin);
1509			err = 0;
1510			new_admin = NULL;
1511			goto unlock;
1512		}
1513
1514		rcu_assign_pointer(q->admin_sched, new_admin);
1515		if (admin)
1516			call_rcu(&admin->rcu, taprio_free_sched_cb);
1517	} else {
1518		setup_first_close_time(q, new_admin, start);
1519
1520		/* Protects against advance_sched() */
1521		spin_lock_irqsave(&q->current_entry_lock, flags);
1522
1523		taprio_start_sched(sch, start, new_admin);
1524
1525		rcu_assign_pointer(q->admin_sched, new_admin);
1526		if (admin)
1527			call_rcu(&admin->rcu, taprio_free_sched_cb);
1528
1529		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1530
1531		if (FULL_OFFLOAD_IS_ENABLED(taprio_flags))
1532			taprio_offload_config_changed(q);
1533	}
1534
1535	new_admin = NULL;
1536	err = 0;
1537
1538unlock:
1539	spin_unlock_bh(qdisc_lock(sch));
1540
1541free_sched:
1542	if (new_admin)
1543		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1544
1545	return err;
1546}
1547
1548static void taprio_destroy(struct Qdisc *sch)
1549{
1550	struct taprio_sched *q = qdisc_priv(sch);
1551	struct net_device *dev = qdisc_dev(sch);
1552	unsigned int i;
1553
1554	spin_lock(&taprio_list_lock);
1555	list_del(&q->taprio_list);
1556	spin_unlock(&taprio_list_lock);
1557
1558	hrtimer_cancel(&q->advance_timer);
1559
1560	taprio_disable_offload(dev, q, NULL);
1561
1562	if (q->qdiscs) {
1563		for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++)
1564			qdisc_put(q->qdiscs[i]);
1565
1566		kfree(q->qdiscs);
1567	}
1568	q->qdiscs = NULL;
1569
1570	netdev_set_num_tc(dev, 0);
1571
1572	if (q->oper_sched)
1573		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1574
1575	if (q->admin_sched)
1576		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1577}
1578
1579static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1580		       struct netlink_ext_ack *extack)
1581{
1582	struct taprio_sched *q = qdisc_priv(sch);
1583	struct net_device *dev = qdisc_dev(sch);
1584	int i;
1585
1586	spin_lock_init(&q->current_entry_lock);
1587
1588	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1589	q->advance_timer.function = advance_sched;
1590
1591	q->dequeue = taprio_dequeue_soft;
1592	q->peek = taprio_peek_soft;
1593
1594	q->root = sch;
1595
1596	/* We only support static clockids. Use an invalid value as default
1597	 * and get the valid one on taprio_change().
1598	 */
1599	q->clockid = -1;
1600
1601	spin_lock(&taprio_list_lock);
1602	list_add(&q->taprio_list, &taprio_list);
1603	spin_unlock(&taprio_list_lock);
1604
1605	if (sch->parent != TC_H_ROOT)
1606		return -EOPNOTSUPP;
1607
1608	if (!netif_is_multiqueue(dev))
1609		return -EOPNOTSUPP;
1610
1611	/* pre-allocate qdisc, attachment can't fail */
1612	q->qdiscs = kcalloc(dev->num_tx_queues,
1613			    sizeof(q->qdiscs[0]),
1614			    GFP_KERNEL);
1615
1616	if (!q->qdiscs)
1617		return -ENOMEM;
1618
1619	if (!opt)
1620		return -EINVAL;
1621
1622	for (i = 0; i < dev->num_tx_queues; i++) {
1623		struct netdev_queue *dev_queue;
1624		struct Qdisc *qdisc;
1625
1626		dev_queue = netdev_get_tx_queue(dev, i);
1627		qdisc = qdisc_create_dflt(dev_queue,
1628					  &pfifo_qdisc_ops,
1629					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1630						    TC_H_MIN(i + 1)),
1631					  extack);
1632		if (!qdisc)
1633			return -ENOMEM;
1634
1635		if (i < dev->real_num_tx_queues)
1636			qdisc_hash_add(qdisc, false);
1637
1638		q->qdiscs[i] = qdisc;
1639	}
1640
1641	return taprio_change(sch, opt, extack);
1642}
1643
1644static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1645					     unsigned long cl)
1646{
1647	struct net_device *dev = qdisc_dev(sch);
1648	unsigned long ntx = cl - 1;
1649
1650	if (ntx >= dev->num_tx_queues)
1651		return NULL;
1652
1653	return netdev_get_tx_queue(dev, ntx);
1654}
1655
1656static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1657			struct Qdisc *new, struct Qdisc **old,
1658			struct netlink_ext_ack *extack)
1659{
1660	struct taprio_sched *q = qdisc_priv(sch);
1661	struct net_device *dev = qdisc_dev(sch);
1662	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1663
1664	if (!dev_queue)
1665		return -EINVAL;
1666
1667	if (dev->flags & IFF_UP)
1668		dev_deactivate(dev);
1669
1670	*old = q->qdiscs[cl - 1];
1671	q->qdiscs[cl - 1] = new;
1672
1673	if (new)
1674		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1675
1676	if (dev->flags & IFF_UP)
1677		dev_activate(dev);
1678
1679	return 0;
1680}
1681
1682static int dump_entry(struct sk_buff *msg,
1683		      const struct sched_entry *entry)
1684{
1685	struct nlattr *item;
1686
1687	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1688	if (!item)
1689		return -ENOSPC;
1690
1691	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1692		goto nla_put_failure;
1693
1694	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1695		goto nla_put_failure;
1696
1697	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1698			entry->gate_mask))
1699		goto nla_put_failure;
1700
1701	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1702			entry->interval))
1703		goto nla_put_failure;
1704
1705	return nla_nest_end(msg, item);
1706
1707nla_put_failure:
1708	nla_nest_cancel(msg, item);
1709	return -1;
1710}
1711
1712static int dump_schedule(struct sk_buff *msg,
1713			 const struct sched_gate_list *root)
1714{
1715	struct nlattr *entry_list;
1716	struct sched_entry *entry;
1717
1718	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1719			root->base_time, TCA_TAPRIO_PAD))
1720		return -1;
1721
1722	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1723			root->cycle_time, TCA_TAPRIO_PAD))
1724		return -1;
1725
1726	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1727			root->cycle_time_extension, TCA_TAPRIO_PAD))
1728		return -1;
1729
1730	entry_list = nla_nest_start_noflag(msg,
1731					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1732	if (!entry_list)
1733		goto error_nest;
1734
1735	list_for_each_entry(entry, &root->entries, list) {
1736		if (dump_entry(msg, entry) < 0)
1737			goto error_nest;
1738	}
1739
1740	nla_nest_end(msg, entry_list);
1741	return 0;
1742
1743error_nest:
1744	nla_nest_cancel(msg, entry_list);
1745	return -1;
1746}
1747
1748static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1749{
1750	struct taprio_sched *q = qdisc_priv(sch);
1751	struct net_device *dev = qdisc_dev(sch);
1752	struct sched_gate_list *oper, *admin;
1753	struct tc_mqprio_qopt opt = { 0 };
1754	struct nlattr *nest, *sched_nest;
1755	unsigned int i;
1756
1757	rcu_read_lock();
1758	oper = rcu_dereference(q->oper_sched);
1759	admin = rcu_dereference(q->admin_sched);
1760
1761	opt.num_tc = netdev_get_num_tc(dev);
1762	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1763
1764	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1765		opt.count[i] = dev->tc_to_txq[i].count;
1766		opt.offset[i] = dev->tc_to_txq[i].offset;
1767	}
1768
1769	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1770	if (!nest)
1771		goto start_error;
1772
1773	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1774		goto options_error;
1775
1776	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1777	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1778		goto options_error;
1779
1780	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1781		goto options_error;
1782
1783	if (q->txtime_delay &&
1784	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1785		goto options_error;
1786
1787	if (oper && dump_schedule(skb, oper))
1788		goto options_error;
1789
1790	if (!admin)
1791		goto done;
1792
1793	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1794	if (!sched_nest)
1795		goto options_error;
1796
1797	if (dump_schedule(skb, admin))
1798		goto admin_error;
1799
1800	nla_nest_end(skb, sched_nest);
1801
1802done:
1803	rcu_read_unlock();
1804
1805	return nla_nest_end(skb, nest);
1806
1807admin_error:
1808	nla_nest_cancel(skb, sched_nest);
1809
1810options_error:
1811	nla_nest_cancel(skb, nest);
1812
1813start_error:
1814	rcu_read_unlock();
1815	return -ENOSPC;
1816}
1817
1818static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1819{
1820	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1821
1822	if (!dev_queue)
1823		return NULL;
1824
1825	return dev_queue->qdisc_sleeping;
1826}
1827
1828static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1829{
1830	unsigned int ntx = TC_H_MIN(classid);
1831
1832	if (!taprio_queue_get(sch, ntx))
1833		return 0;
1834	return ntx;
1835}
1836
1837static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1838			     struct sk_buff *skb, struct tcmsg *tcm)
1839{
1840	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1841
1842	tcm->tcm_parent = TC_H_ROOT;
1843	tcm->tcm_handle |= TC_H_MIN(cl);
1844	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1845
1846	return 0;
1847}
1848
1849static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1850				   struct gnet_dump *d)
1851	__releases(d->lock)
1852	__acquires(d->lock)
1853{
1854	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1855
1856	sch = dev_queue->qdisc_sleeping;
1857	if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1858	    qdisc_qstats_copy(d, sch) < 0)
1859		return -1;
1860	return 0;
1861}
1862
1863static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1864{
1865	struct net_device *dev = qdisc_dev(sch);
1866	unsigned long ntx;
1867
1868	if (arg->stop)
1869		return;
1870
1871	arg->count = arg->skip;
1872	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1873		if (arg->fn(sch, ntx + 1, arg) < 0) {
1874			arg->stop = 1;
1875			break;
1876		}
1877		arg->count++;
1878	}
1879}
1880
1881static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1882						struct tcmsg *tcm)
1883{
1884	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1885}
1886
1887static const struct Qdisc_class_ops taprio_class_ops = {
1888	.graft		= taprio_graft,
1889	.leaf		= taprio_leaf,
1890	.find		= taprio_find,
1891	.walk		= taprio_walk,
1892	.dump		= taprio_dump_class,
1893	.dump_stats	= taprio_dump_class_stats,
1894	.select_queue	= taprio_select_queue,
1895};
1896
1897static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1898	.cl_ops		= &taprio_class_ops,
1899	.id		= "taprio",
1900	.priv_size	= sizeof(struct taprio_sched),
1901	.init		= taprio_init,
1902	.change		= taprio_change,
1903	.destroy	= taprio_destroy,
1904	.peek		= taprio_peek,
1905	.dequeue	= taprio_dequeue,
1906	.enqueue	= taprio_enqueue,
1907	.dump		= taprio_dump,
1908	.owner		= THIS_MODULE,
1909};
1910
1911static struct notifier_block taprio_device_notifier = {
1912	.notifier_call = taprio_dev_notifier,
1913};
1914
1915static int __init taprio_module_init(void)
1916{
1917	int err = register_netdevice_notifier(&taprio_device_notifier);
1918
1919	if (err)
1920		return err;
1921
1922	return register_qdisc(&taprio_qdisc_ops);
1923}
1924
1925static void __exit taprio_module_exit(void)
1926{
1927	unregister_qdisc(&taprio_qdisc_ops);
1928	unregister_netdevice_notifier(&taprio_device_notifier);
1929}
1930
1931module_init(taprio_module_init);
1932module_exit(taprio_module_exit);
1933MODULE_LICENSE("GPL");