Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
 
  21#include <linux/namei.h>
  22#include <linux/sysctl.h>
  23#include <linux/poll.h>
  24#include <linux/mqueue.h>
  25#include <linux/msg.h>
  26#include <linux/skbuff.h>
  27#include <linux/vmalloc.h>
  28#include <linux/netlink.h>
  29#include <linux/syscalls.h>
  30#include <linux/audit.h>
  31#include <linux/signal.h>
  32#include <linux/mutex.h>
  33#include <linux/nsproxy.h>
  34#include <linux/pid.h>
  35#include <linux/ipc_namespace.h>
  36#include <linux/user_namespace.h>
  37#include <linux/slab.h>
  38#include <linux/sched/wake_q.h>
  39#include <linux/sched/signal.h>
  40#include <linux/sched/user.h>
  41
  42#include <net/sock.h>
  43#include "util.h"
  44
 
 
 
 
  45#define MQUEUE_MAGIC	0x19800202
  46#define DIRENT_SIZE	20
  47#define FILENT_SIZE	80
  48
  49#define SEND		0
  50#define RECV		1
  51
  52#define STATE_NONE	0
  53#define STATE_READY	1
  54
  55struct posix_msg_tree_node {
  56	struct rb_node		rb_node;
  57	struct list_head	msg_list;
  58	int			priority;
  59};
  60
  61struct ext_wait_queue {		/* queue of sleeping tasks */
  62	struct task_struct *task;
  63	struct list_head list;
  64	struct msg_msg *msg;	/* ptr of loaded message */
  65	int state;		/* one of STATE_* values */
  66};
  67
  68struct mqueue_inode_info {
  69	spinlock_t lock;
  70	struct inode vfs_inode;
  71	wait_queue_head_t wait_q;
  72
  73	struct rb_root msg_tree;
 
  74	struct posix_msg_tree_node *node_cache;
  75	struct mq_attr attr;
  76
  77	struct sigevent notify;
  78	struct pid *notify_owner;
  79	struct user_namespace *notify_user_ns;
  80	struct user_struct *user;	/* user who created, for accounting */
  81	struct sock *notify_sock;
  82	struct sk_buff *notify_cookie;
  83
  84	/* for tasks waiting for free space and messages, respectively */
  85	struct ext_wait_queue e_wait_q[2];
  86
  87	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  88};
  89
 
  90static const struct inode_operations mqueue_dir_inode_operations;
  91static const struct file_operations mqueue_file_operations;
  92static const struct super_operations mqueue_super_ops;
 
  93static void remove_notification(struct mqueue_inode_info *info);
  94
  95static struct kmem_cache *mqueue_inode_cachep;
  96
  97static struct ctl_table_header *mq_sysctl_table;
  98
  99static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
 100{
 101	return container_of(inode, struct mqueue_inode_info, vfs_inode);
 102}
 103
 104/*
 105 * This routine should be called with the mq_lock held.
 106 */
 107static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 108{
 109	return get_ipc_ns(inode->i_sb->s_fs_info);
 110}
 111
 112static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 113{
 114	struct ipc_namespace *ns;
 115
 116	spin_lock(&mq_lock);
 117	ns = __get_ns_from_inode(inode);
 118	spin_unlock(&mq_lock);
 119	return ns;
 120}
 121
 122/* Auxiliary functions to manipulate messages' list */
 123static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 124{
 125	struct rb_node **p, *parent = NULL;
 126	struct posix_msg_tree_node *leaf;
 
 127
 128	p = &info->msg_tree.rb_node;
 129	while (*p) {
 130		parent = *p;
 131		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 132
 133		if (likely(leaf->priority == msg->m_type))
 134			goto insert_msg;
 135		else if (msg->m_type < leaf->priority)
 136			p = &(*p)->rb_left;
 137		else
 
 138			p = &(*p)->rb_right;
 139	}
 140	if (info->node_cache) {
 141		leaf = info->node_cache;
 142		info->node_cache = NULL;
 143	} else {
 144		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 145		if (!leaf)
 146			return -ENOMEM;
 147		INIT_LIST_HEAD(&leaf->msg_list);
 148	}
 149	leaf->priority = msg->m_type;
 
 
 
 
 150	rb_link_node(&leaf->rb_node, parent, p);
 151	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 152insert_msg:
 153	info->attr.mq_curmsgs++;
 154	info->qsize += msg->m_ts;
 155	list_add_tail(&msg->m_list, &leaf->msg_list);
 156	return 0;
 157}
 158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 160{
 161	struct rb_node **p, *parent = NULL;
 162	struct posix_msg_tree_node *leaf;
 163	struct msg_msg *msg;
 164
 165try_again:
 166	p = &info->msg_tree.rb_node;
 167	while (*p) {
 168		parent = *p;
 169		/*
 170		 * During insert, low priorities go to the left and high to the
 171		 * right.  On receive, we want the highest priorities first, so
 172		 * walk all the way to the right.
 173		 */
 174		p = &(*p)->rb_right;
 175	}
 176	if (!parent) {
 177		if (info->attr.mq_curmsgs) {
 178			pr_warn_once("Inconsistency in POSIX message queue, "
 179				     "no tree element, but supposedly messages "
 180				     "should exist!\n");
 181			info->attr.mq_curmsgs = 0;
 182		}
 183		return NULL;
 184	}
 185	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 186	if (unlikely(list_empty(&leaf->msg_list))) {
 187		pr_warn_once("Inconsistency in POSIX message queue, "
 188			     "empty leaf node but we haven't implemented "
 189			     "lazy leaf delete!\n");
 190		rb_erase(&leaf->rb_node, &info->msg_tree);
 191		if (info->node_cache) {
 192			kfree(leaf);
 193		} else {
 194			info->node_cache = leaf;
 195		}
 196		goto try_again;
 197	} else {
 198		msg = list_first_entry(&leaf->msg_list,
 199				       struct msg_msg, m_list);
 200		list_del(&msg->m_list);
 201		if (list_empty(&leaf->msg_list)) {
 202			rb_erase(&leaf->rb_node, &info->msg_tree);
 203			if (info->node_cache) {
 204				kfree(leaf);
 205			} else {
 206				info->node_cache = leaf;
 207			}
 208		}
 209	}
 210	info->attr.mq_curmsgs--;
 211	info->qsize -= msg->m_ts;
 212	return msg;
 213}
 214
 215static struct inode *mqueue_get_inode(struct super_block *sb,
 216		struct ipc_namespace *ipc_ns, umode_t mode,
 217		struct mq_attr *attr)
 218{
 219	struct user_struct *u = current_user();
 220	struct inode *inode;
 221	int ret = -ENOMEM;
 222
 223	inode = new_inode(sb);
 224	if (!inode)
 225		goto err;
 226
 227	inode->i_ino = get_next_ino();
 228	inode->i_mode = mode;
 229	inode->i_uid = current_fsuid();
 230	inode->i_gid = current_fsgid();
 231	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 232
 233	if (S_ISREG(mode)) {
 234		struct mqueue_inode_info *info;
 235		unsigned long mq_bytes, mq_treesize;
 236
 237		inode->i_fop = &mqueue_file_operations;
 238		inode->i_size = FILENT_SIZE;
 239		/* mqueue specific info */
 240		info = MQUEUE_I(inode);
 241		spin_lock_init(&info->lock);
 242		init_waitqueue_head(&info->wait_q);
 243		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 244		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 245		info->notify_owner = NULL;
 246		info->notify_user_ns = NULL;
 247		info->qsize = 0;
 248		info->user = NULL;	/* set when all is ok */
 249		info->msg_tree = RB_ROOT;
 
 250		info->node_cache = NULL;
 251		memset(&info->attr, 0, sizeof(info->attr));
 252		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 253					   ipc_ns->mq_msg_default);
 254		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 255					    ipc_ns->mq_msgsize_default);
 256		if (attr) {
 257			info->attr.mq_maxmsg = attr->mq_maxmsg;
 258			info->attr.mq_msgsize = attr->mq_msgsize;
 259		}
 260		/*
 261		 * We used to allocate a static array of pointers and account
 262		 * the size of that array as well as one msg_msg struct per
 263		 * possible message into the queue size. That's no longer
 264		 * accurate as the queue is now an rbtree and will grow and
 265		 * shrink depending on usage patterns.  We can, however, still
 266		 * account one msg_msg struct per message, but the nodes are
 267		 * allocated depending on priority usage, and most programs
 268		 * only use one, or a handful, of priorities.  However, since
 269		 * this is pinned memory, we need to assume worst case, so
 270		 * that means the min(mq_maxmsg, max_priorities) * struct
 271		 * posix_msg_tree_node.
 272		 */
 273
 274		ret = -EINVAL;
 275		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
 276			goto out_inode;
 277		if (capable(CAP_SYS_RESOURCE)) {
 278			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
 279			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
 280				goto out_inode;
 281		} else {
 282			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
 283					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
 284				goto out_inode;
 285		}
 286		ret = -EOVERFLOW;
 287		/* check for overflow */
 288		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
 289			goto out_inode;
 290		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 291			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 292			sizeof(struct posix_msg_tree_node);
 293		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
 294		if (mq_bytes + mq_treesize < mq_bytes)
 295			goto out_inode;
 296		mq_bytes += mq_treesize;
 297		spin_lock(&mq_lock);
 298		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 299		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 300			spin_unlock(&mq_lock);
 301			/* mqueue_evict_inode() releases info->messages */
 302			ret = -EMFILE;
 303			goto out_inode;
 304		}
 305		u->mq_bytes += mq_bytes;
 306		spin_unlock(&mq_lock);
 307
 308		/* all is ok */
 309		info->user = get_uid(u);
 310	} else if (S_ISDIR(mode)) {
 311		inc_nlink(inode);
 312		/* Some things misbehave if size == 0 on a directory */
 313		inode->i_size = 2 * DIRENT_SIZE;
 314		inode->i_op = &mqueue_dir_inode_operations;
 315		inode->i_fop = &simple_dir_operations;
 316	}
 317
 318	return inode;
 319out_inode:
 320	iput(inode);
 321err:
 322	return ERR_PTR(ret);
 323}
 324
 325static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
 326{
 327	struct inode *inode;
 328	struct ipc_namespace *ns = sb->s_fs_info;
 329
 330	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 331	sb->s_blocksize = PAGE_SIZE;
 332	sb->s_blocksize_bits = PAGE_SHIFT;
 333	sb->s_magic = MQUEUE_MAGIC;
 334	sb->s_op = &mqueue_super_ops;
 335
 336	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 337	if (IS_ERR(inode))
 338		return PTR_ERR(inode);
 339
 340	sb->s_root = d_make_root(inode);
 341	if (!sb->s_root)
 342		return -ENOMEM;
 343	return 0;
 344}
 345
 346static struct dentry *mqueue_mount(struct file_system_type *fs_type,
 347			 int flags, const char *dev_name,
 348			 void *data)
 349{
 350	struct ipc_namespace *ns;
 351	if (flags & SB_KERNMOUNT) {
 352		ns = data;
 353		data = NULL;
 354	} else {
 355		ns = current->nsproxy->ipc_ns;
 356	}
 357	return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358}
 359
 360static void init_once(void *foo)
 361{
 362	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 363
 364	inode_init_once(&p->vfs_inode);
 365}
 366
 367static struct inode *mqueue_alloc_inode(struct super_block *sb)
 368{
 369	struct mqueue_inode_info *ei;
 370
 371	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 372	if (!ei)
 373		return NULL;
 374	return &ei->vfs_inode;
 375}
 376
 377static void mqueue_i_callback(struct rcu_head *head)
 378{
 379	struct inode *inode = container_of(head, struct inode, i_rcu);
 380	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 381}
 382
 383static void mqueue_destroy_inode(struct inode *inode)
 384{
 385	call_rcu(&inode->i_rcu, mqueue_i_callback);
 386}
 387
 388static void mqueue_evict_inode(struct inode *inode)
 389{
 390	struct mqueue_inode_info *info;
 391	struct user_struct *user;
 392	unsigned long mq_bytes, mq_treesize;
 393	struct ipc_namespace *ipc_ns;
 394	struct msg_msg *msg;
 
 395
 396	clear_inode(inode);
 397
 398	if (S_ISDIR(inode->i_mode))
 399		return;
 400
 401	ipc_ns = get_ns_from_inode(inode);
 402	info = MQUEUE_I(inode);
 403	spin_lock(&info->lock);
 404	while ((msg = msg_get(info)) != NULL)
 405		free_msg(msg);
 406	kfree(info->node_cache);
 407	spin_unlock(&info->lock);
 408
 409	/* Total amount of bytes accounted for the mqueue */
 410	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 411		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 412		sizeof(struct posix_msg_tree_node);
 413
 414	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 415				  info->attr.mq_msgsize);
 416
 417	user = info->user;
 418	if (user) {
 
 
 
 
 
 
 
 
 
 
 419		spin_lock(&mq_lock);
 420		user->mq_bytes -= mq_bytes;
 421		/*
 422		 * get_ns_from_inode() ensures that the
 423		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 424		 * to which we now hold a reference, or it is NULL.
 425		 * We can't put it here under mq_lock, though.
 426		 */
 427		if (ipc_ns)
 428			ipc_ns->mq_queues_count--;
 429		spin_unlock(&mq_lock);
 430		free_uid(user);
 431	}
 432	if (ipc_ns)
 433		put_ipc_ns(ipc_ns);
 434}
 435
 436static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
 437{
 438	struct inode *dir = dentry->d_parent->d_inode;
 439	struct inode *inode;
 440	struct mq_attr *attr = arg;
 441	int error;
 442	struct ipc_namespace *ipc_ns;
 443
 444	spin_lock(&mq_lock);
 445	ipc_ns = __get_ns_from_inode(dir);
 446	if (!ipc_ns) {
 447		error = -EACCES;
 448		goto out_unlock;
 449	}
 450
 451	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 452	    !capable(CAP_SYS_RESOURCE)) {
 453		error = -ENOSPC;
 454		goto out_unlock;
 455	}
 456	ipc_ns->mq_queues_count++;
 457	spin_unlock(&mq_lock);
 458
 459	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 460	if (IS_ERR(inode)) {
 461		error = PTR_ERR(inode);
 462		spin_lock(&mq_lock);
 463		ipc_ns->mq_queues_count--;
 464		goto out_unlock;
 465	}
 466
 467	put_ipc_ns(ipc_ns);
 468	dir->i_size += DIRENT_SIZE;
 469	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 470
 471	d_instantiate(dentry, inode);
 472	dget(dentry);
 473	return 0;
 474out_unlock:
 475	spin_unlock(&mq_lock);
 476	if (ipc_ns)
 477		put_ipc_ns(ipc_ns);
 478	return error;
 479}
 480
 481static int mqueue_create(struct inode *dir, struct dentry *dentry,
 482				umode_t mode, bool excl)
 483{
 484	return mqueue_create_attr(dentry, mode, NULL);
 485}
 486
 487static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 488{
 489	struct inode *inode = d_inode(dentry);
 490
 491	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 492	dir->i_size -= DIRENT_SIZE;
 493	drop_nlink(inode);
 494	dput(dentry);
 495	return 0;
 496}
 497
 498/*
 499*	This is routine for system read from queue file.
 500*	To avoid mess with doing here some sort of mq_receive we allow
 501*	to read only queue size & notification info (the only values
 502*	that are interesting from user point of view and aren't accessible
 503*	through std routines)
 504*/
 505static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 506				size_t count, loff_t *off)
 507{
 508	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 509	char buffer[FILENT_SIZE];
 510	ssize_t ret;
 511
 512	spin_lock(&info->lock);
 513	snprintf(buffer, sizeof(buffer),
 514			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 515			info->qsize,
 516			info->notify_owner ? info->notify.sigev_notify : 0,
 517			(info->notify_owner &&
 518			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 519				info->notify.sigev_signo : 0,
 520			pid_vnr(info->notify_owner));
 521	spin_unlock(&info->lock);
 522	buffer[sizeof(buffer)-1] = '\0';
 523
 524	ret = simple_read_from_buffer(u_data, count, off, buffer,
 525				strlen(buffer));
 526	if (ret <= 0)
 527		return ret;
 528
 529	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 530	return ret;
 531}
 532
 533static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 534{
 535	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 536
 537	spin_lock(&info->lock);
 538	if (task_tgid(current) == info->notify_owner)
 539		remove_notification(info);
 540
 541	spin_unlock(&info->lock);
 542	return 0;
 543}
 544
 545static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 546{
 547	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 548	__poll_t retval = 0;
 549
 550	poll_wait(filp, &info->wait_q, poll_tab);
 551
 552	spin_lock(&info->lock);
 553	if (info->attr.mq_curmsgs)
 554		retval = EPOLLIN | EPOLLRDNORM;
 555
 556	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 557		retval |= EPOLLOUT | EPOLLWRNORM;
 558	spin_unlock(&info->lock);
 559
 560	return retval;
 561}
 562
 563/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 564static void wq_add(struct mqueue_inode_info *info, int sr,
 565			struct ext_wait_queue *ewp)
 566{
 567	struct ext_wait_queue *walk;
 568
 569	ewp->task = current;
 570
 571	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 572		if (walk->task->prio <= current->prio) {
 573			list_add_tail(&ewp->list, &walk->list);
 574			return;
 575		}
 576	}
 577	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 578}
 579
 580/*
 581 * Puts current task to sleep. Caller must hold queue lock. After return
 582 * lock isn't held.
 583 * sr: SEND or RECV
 584 */
 585static int wq_sleep(struct mqueue_inode_info *info, int sr,
 586		    ktime_t *timeout, struct ext_wait_queue *ewp)
 587	__releases(&info->lock)
 588{
 589	int retval;
 590	signed long time;
 591
 592	wq_add(info, sr, ewp);
 593
 594	for (;;) {
 595		__set_current_state(TASK_INTERRUPTIBLE);
 596
 597		spin_unlock(&info->lock);
 598		time = schedule_hrtimeout_range_clock(timeout, 0,
 599			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 600
 601		if (ewp->state == STATE_READY) {
 602			retval = 0;
 603			goto out;
 604		}
 605		spin_lock(&info->lock);
 606		if (ewp->state == STATE_READY) {
 607			retval = 0;
 608			goto out_unlock;
 609		}
 610		if (signal_pending(current)) {
 611			retval = -ERESTARTSYS;
 612			break;
 613		}
 614		if (time == 0) {
 615			retval = -ETIMEDOUT;
 616			break;
 617		}
 618	}
 619	list_del(&ewp->list);
 620out_unlock:
 621	spin_unlock(&info->lock);
 622out:
 623	return retval;
 624}
 625
 626/*
 627 * Returns waiting task that should be serviced first or NULL if none exists
 628 */
 629static struct ext_wait_queue *wq_get_first_waiter(
 630		struct mqueue_inode_info *info, int sr)
 631{
 632	struct list_head *ptr;
 633
 634	ptr = info->e_wait_q[sr].list.prev;
 635	if (ptr == &info->e_wait_q[sr].list)
 636		return NULL;
 637	return list_entry(ptr, struct ext_wait_queue, list);
 638}
 639
 640
 641static inline void set_cookie(struct sk_buff *skb, char code)
 642{
 643	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 644}
 645
 646/*
 647 * The next function is only to split too long sys_mq_timedsend
 648 */
 649static void __do_notify(struct mqueue_inode_info *info)
 650{
 651	/* notification
 652	 * invoked when there is registered process and there isn't process
 653	 * waiting synchronously for message AND state of queue changed from
 654	 * empty to not empty. Here we are sure that no one is waiting
 655	 * synchronously. */
 656	if (info->notify_owner &&
 657	    info->attr.mq_curmsgs == 1) {
 658		struct siginfo sig_i;
 659		switch (info->notify.sigev_notify) {
 660		case SIGEV_NONE:
 661			break;
 662		case SIGEV_SIGNAL:
 663			/* sends signal */
 664
 665			clear_siginfo(&sig_i);
 666			sig_i.si_signo = info->notify.sigev_signo;
 667			sig_i.si_errno = 0;
 668			sig_i.si_code = SI_MESGQ;
 669			sig_i.si_value = info->notify.sigev_value;
 670			/* map current pid/uid into info->owner's namespaces */
 671			rcu_read_lock();
 672			sig_i.si_pid = task_tgid_nr_ns(current,
 673						ns_of_pid(info->notify_owner));
 674			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 675			rcu_read_unlock();
 676
 677			kill_pid_info(info->notify.sigev_signo,
 678				      &sig_i, info->notify_owner);
 679			break;
 680		case SIGEV_THREAD:
 681			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 682			netlink_sendskb(info->notify_sock, info->notify_cookie);
 683			break;
 684		}
 685		/* after notification unregisters process */
 686		put_pid(info->notify_owner);
 687		put_user_ns(info->notify_user_ns);
 688		info->notify_owner = NULL;
 689		info->notify_user_ns = NULL;
 690	}
 691	wake_up(&info->wait_q);
 692}
 693
 694static int prepare_timeout(const struct timespec __user *u_abs_timeout,
 695			   struct timespec64 *ts)
 696{
 697	if (get_timespec64(ts, u_abs_timeout))
 698		return -EFAULT;
 699	if (!timespec64_valid(ts))
 700		return -EINVAL;
 701	return 0;
 702}
 703
 704static void remove_notification(struct mqueue_inode_info *info)
 705{
 706	if (info->notify_owner != NULL &&
 707	    info->notify.sigev_notify == SIGEV_THREAD) {
 708		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 709		netlink_sendskb(info->notify_sock, info->notify_cookie);
 710	}
 711	put_pid(info->notify_owner);
 712	put_user_ns(info->notify_user_ns);
 713	info->notify_owner = NULL;
 714	info->notify_user_ns = NULL;
 715}
 716
 717static int prepare_open(struct dentry *dentry, int oflag, int ro,
 718			umode_t mode, struct filename *name,
 719			struct mq_attr *attr)
 720{
 721	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 722						  MAY_READ | MAY_WRITE };
 723	int acc;
 724
 725	if (d_really_is_negative(dentry)) {
 726		if (!(oflag & O_CREAT))
 727			return -ENOENT;
 728		if (ro)
 729			return ro;
 730		audit_inode_parent_hidden(name, dentry->d_parent);
 731		return vfs_mkobj(dentry, mode & ~current_umask(),
 732				  mqueue_create_attr, attr);
 733	}
 734	/* it already existed */
 735	audit_inode(name, dentry, 0);
 736	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
 737		return -EEXIST;
 738	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 739		return -EINVAL;
 740	acc = oflag2acc[oflag & O_ACCMODE];
 741	return inode_permission(d_inode(dentry), acc);
 742}
 743
 744static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
 745		      struct mq_attr *attr)
 746{
 747	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
 748	struct dentry *root = mnt->mnt_root;
 749	struct filename *name;
 750	struct path path;
 751	int fd, error;
 752	int ro;
 753
 754	audit_mq_open(oflag, mode, attr);
 755
 756	if (IS_ERR(name = getname(u_name)))
 757		return PTR_ERR(name);
 758
 759	fd = get_unused_fd_flags(O_CLOEXEC);
 760	if (fd < 0)
 761		goto out_putname;
 762
 763	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 764	inode_lock(d_inode(root));
 765	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 766	if (IS_ERR(path.dentry)) {
 767		error = PTR_ERR(path.dentry);
 768		goto out_putfd;
 769	}
 770	path.mnt = mntget(mnt);
 771	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
 772	if (!error) {
 773		struct file *file = dentry_open(&path, oflag, current_cred());
 774		if (!IS_ERR(file))
 775			fd_install(fd, file);
 776		else
 777			error = PTR_ERR(file);
 778	}
 779	path_put(&path);
 780out_putfd:
 781	if (error) {
 782		put_unused_fd(fd);
 783		fd = error;
 784	}
 785	inode_unlock(d_inode(root));
 786	if (!ro)
 787		mnt_drop_write(mnt);
 788out_putname:
 789	putname(name);
 790	return fd;
 791}
 792
 793SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 794		struct mq_attr __user *, u_attr)
 795{
 796	struct mq_attr attr;
 797	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 798		return -EFAULT;
 799
 800	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
 801}
 802
 803SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 804{
 805	int err;
 806	struct filename *name;
 807	struct dentry *dentry;
 808	struct inode *inode = NULL;
 809	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 810	struct vfsmount *mnt = ipc_ns->mq_mnt;
 811
 812	name = getname(u_name);
 813	if (IS_ERR(name))
 814		return PTR_ERR(name);
 815
 816	audit_inode_parent_hidden(name, mnt->mnt_root);
 817	err = mnt_want_write(mnt);
 818	if (err)
 819		goto out_name;
 820	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 821	dentry = lookup_one_len(name->name, mnt->mnt_root,
 822				strlen(name->name));
 823	if (IS_ERR(dentry)) {
 824		err = PTR_ERR(dentry);
 825		goto out_unlock;
 826	}
 827
 828	inode = d_inode(dentry);
 829	if (!inode) {
 830		err = -ENOENT;
 831	} else {
 832		ihold(inode);
 833		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 834	}
 835	dput(dentry);
 836
 837out_unlock:
 838	inode_unlock(d_inode(mnt->mnt_root));
 839	if (inode)
 840		iput(inode);
 841	mnt_drop_write(mnt);
 842out_name:
 843	putname(name);
 844
 845	return err;
 846}
 847
 848/* Pipelined send and receive functions.
 849 *
 850 * If a receiver finds no waiting message, then it registers itself in the
 851 * list of waiting receivers. A sender checks that list before adding the new
 852 * message into the message array. If there is a waiting receiver, then it
 853 * bypasses the message array and directly hands the message over to the
 854 * receiver. The receiver accepts the message and returns without grabbing the
 855 * queue spinlock:
 856 *
 857 * - Set pointer to message.
 858 * - Queue the receiver task for later wakeup (without the info->lock).
 859 * - Update its state to STATE_READY. Now the receiver can continue.
 860 * - Wake up the process after the lock is dropped. Should the process wake up
 861 *   before this wakeup (due to a timeout or a signal) it will either see
 862 *   STATE_READY and continue or acquire the lock to check the state again.
 863 *
 864 * The same algorithm is used for senders.
 865 */
 866
 867/* pipelined_send() - send a message directly to the task waiting in
 868 * sys_mq_timedreceive() (without inserting message into a queue).
 869 */
 870static inline void pipelined_send(struct wake_q_head *wake_q,
 871				  struct mqueue_inode_info *info,
 872				  struct msg_msg *message,
 873				  struct ext_wait_queue *receiver)
 874{
 875	receiver->msg = message;
 876	list_del(&receiver->list);
 877	wake_q_add(wake_q, receiver->task);
 878	/*
 879	 * Rely on the implicit cmpxchg barrier from wake_q_add such
 880	 * that we can ensure that updating receiver->state is the last
 881	 * write operation: As once set, the receiver can continue,
 882	 * and if we don't have the reference count from the wake_q,
 883	 * yet, at that point we can later have a use-after-free
 884	 * condition and bogus wakeup.
 885	 */
 886	receiver->state = STATE_READY;
 887}
 888
 889/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 890 * gets its message and put to the queue (we have one free place for sure). */
 891static inline void pipelined_receive(struct wake_q_head *wake_q,
 892				     struct mqueue_inode_info *info)
 893{
 894	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 895
 896	if (!sender) {
 897		/* for poll */
 898		wake_up_interruptible(&info->wait_q);
 899		return;
 900	}
 901	if (msg_insert(sender->msg, info))
 902		return;
 903
 904	list_del(&sender->list);
 905	wake_q_add(wake_q, sender->task);
 906	sender->state = STATE_READY;
 907}
 908
 909static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
 910		size_t msg_len, unsigned int msg_prio,
 911		struct timespec64 *ts)
 912{
 913	struct fd f;
 914	struct inode *inode;
 915	struct ext_wait_queue wait;
 916	struct ext_wait_queue *receiver;
 917	struct msg_msg *msg_ptr;
 918	struct mqueue_inode_info *info;
 919	ktime_t expires, *timeout = NULL;
 920	struct posix_msg_tree_node *new_leaf = NULL;
 921	int ret = 0;
 922	DEFINE_WAKE_Q(wake_q);
 923
 924	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 925		return -EINVAL;
 926
 927	if (ts) {
 928		expires = timespec64_to_ktime(*ts);
 929		timeout = &expires;
 930	}
 931
 932	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
 933
 934	f = fdget(mqdes);
 935	if (unlikely(!f.file)) {
 936		ret = -EBADF;
 937		goto out;
 938	}
 939
 940	inode = file_inode(f.file);
 941	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 942		ret = -EBADF;
 943		goto out_fput;
 944	}
 945	info = MQUEUE_I(inode);
 946	audit_file(f.file);
 947
 948	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
 949		ret = -EBADF;
 950		goto out_fput;
 951	}
 952
 953	if (unlikely(msg_len > info->attr.mq_msgsize)) {
 954		ret = -EMSGSIZE;
 955		goto out_fput;
 956	}
 957
 958	/* First try to allocate memory, before doing anything with
 959	 * existing queues. */
 960	msg_ptr = load_msg(u_msg_ptr, msg_len);
 961	if (IS_ERR(msg_ptr)) {
 962		ret = PTR_ERR(msg_ptr);
 963		goto out_fput;
 964	}
 965	msg_ptr->m_ts = msg_len;
 966	msg_ptr->m_type = msg_prio;
 967
 968	/*
 969	 * msg_insert really wants us to have a valid, spare node struct so
 970	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
 971	 * fall back to that if necessary.
 972	 */
 973	if (!info->node_cache)
 974		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
 975
 976	spin_lock(&info->lock);
 977
 978	if (!info->node_cache && new_leaf) {
 979		/* Save our speculative allocation into the cache */
 980		INIT_LIST_HEAD(&new_leaf->msg_list);
 981		info->node_cache = new_leaf;
 982		new_leaf = NULL;
 983	} else {
 984		kfree(new_leaf);
 985	}
 986
 987	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
 988		if (f.file->f_flags & O_NONBLOCK) {
 989			ret = -EAGAIN;
 990		} else {
 991			wait.task = current;
 992			wait.msg = (void *) msg_ptr;
 993			wait.state = STATE_NONE;
 994			ret = wq_sleep(info, SEND, timeout, &wait);
 995			/*
 996			 * wq_sleep must be called with info->lock held, and
 997			 * returns with the lock released
 998			 */
 999			goto out_free;
1000		}
1001	} else {
1002		receiver = wq_get_first_waiter(info, RECV);
1003		if (receiver) {
1004			pipelined_send(&wake_q, info, msg_ptr, receiver);
1005		} else {
1006			/* adds message to the queue */
1007			ret = msg_insert(msg_ptr, info);
1008			if (ret)
1009				goto out_unlock;
1010			__do_notify(info);
1011		}
1012		inode->i_atime = inode->i_mtime = inode->i_ctime =
1013				current_time(inode);
1014	}
1015out_unlock:
1016	spin_unlock(&info->lock);
1017	wake_up_q(&wake_q);
1018out_free:
1019	if (ret)
1020		free_msg(msg_ptr);
1021out_fput:
1022	fdput(f);
1023out:
1024	return ret;
1025}
1026
1027static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1028		size_t msg_len, unsigned int __user *u_msg_prio,
1029		struct timespec64 *ts)
1030{
1031	ssize_t ret;
1032	struct msg_msg *msg_ptr;
1033	struct fd f;
1034	struct inode *inode;
1035	struct mqueue_inode_info *info;
1036	struct ext_wait_queue wait;
1037	ktime_t expires, *timeout = NULL;
1038	struct posix_msg_tree_node *new_leaf = NULL;
1039
1040	if (ts) {
1041		expires = timespec64_to_ktime(*ts);
1042		timeout = &expires;
1043	}
1044
1045	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1046
1047	f = fdget(mqdes);
1048	if (unlikely(!f.file)) {
1049		ret = -EBADF;
1050		goto out;
1051	}
1052
1053	inode = file_inode(f.file);
1054	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1055		ret = -EBADF;
1056		goto out_fput;
1057	}
1058	info = MQUEUE_I(inode);
1059	audit_file(f.file);
1060
1061	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1062		ret = -EBADF;
1063		goto out_fput;
1064	}
1065
1066	/* checks if buffer is big enough */
1067	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1068		ret = -EMSGSIZE;
1069		goto out_fput;
1070	}
1071
1072	/*
1073	 * msg_insert really wants us to have a valid, spare node struct so
1074	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1075	 * fall back to that if necessary.
1076	 */
1077	if (!info->node_cache)
1078		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1079
1080	spin_lock(&info->lock);
1081
1082	if (!info->node_cache && new_leaf) {
1083		/* Save our speculative allocation into the cache */
1084		INIT_LIST_HEAD(&new_leaf->msg_list);
1085		info->node_cache = new_leaf;
1086	} else {
1087		kfree(new_leaf);
1088	}
1089
1090	if (info->attr.mq_curmsgs == 0) {
1091		if (f.file->f_flags & O_NONBLOCK) {
1092			spin_unlock(&info->lock);
1093			ret = -EAGAIN;
1094		} else {
1095			wait.task = current;
1096			wait.state = STATE_NONE;
1097			ret = wq_sleep(info, RECV, timeout, &wait);
1098			msg_ptr = wait.msg;
1099		}
1100	} else {
1101		DEFINE_WAKE_Q(wake_q);
1102
1103		msg_ptr = msg_get(info);
1104
1105		inode->i_atime = inode->i_mtime = inode->i_ctime =
1106				current_time(inode);
1107
1108		/* There is now free space in queue. */
1109		pipelined_receive(&wake_q, info);
1110		spin_unlock(&info->lock);
1111		wake_up_q(&wake_q);
1112		ret = 0;
1113	}
1114	if (ret == 0) {
1115		ret = msg_ptr->m_ts;
1116
1117		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1118			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1119			ret = -EFAULT;
1120		}
1121		free_msg(msg_ptr);
1122	}
1123out_fput:
1124	fdput(f);
1125out:
1126	return ret;
1127}
1128
1129SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1130		size_t, msg_len, unsigned int, msg_prio,
1131		const struct timespec __user *, u_abs_timeout)
1132{
1133	struct timespec64 ts, *p = NULL;
1134	if (u_abs_timeout) {
1135		int res = prepare_timeout(u_abs_timeout, &ts);
1136		if (res)
1137			return res;
1138		p = &ts;
1139	}
1140	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1141}
1142
1143SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1144		size_t, msg_len, unsigned int __user *, u_msg_prio,
1145		const struct timespec __user *, u_abs_timeout)
1146{
1147	struct timespec64 ts, *p = NULL;
1148	if (u_abs_timeout) {
1149		int res = prepare_timeout(u_abs_timeout, &ts);
1150		if (res)
1151			return res;
1152		p = &ts;
1153	}
1154	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1155}
1156
1157/*
1158 * Notes: the case when user wants us to deregister (with NULL as pointer)
1159 * and he isn't currently owner of notification, will be silently discarded.
1160 * It isn't explicitly defined in the POSIX.
1161 */
1162static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1163{
1164	int ret;
1165	struct fd f;
1166	struct sock *sock;
1167	struct inode *inode;
1168	struct mqueue_inode_info *info;
1169	struct sk_buff *nc;
1170
1171	audit_mq_notify(mqdes, notification);
1172
1173	nc = NULL;
1174	sock = NULL;
1175	if (notification != NULL) {
1176		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1177			     notification->sigev_notify != SIGEV_SIGNAL &&
1178			     notification->sigev_notify != SIGEV_THREAD))
1179			return -EINVAL;
1180		if (notification->sigev_notify == SIGEV_SIGNAL &&
1181			!valid_signal(notification->sigev_signo)) {
1182			return -EINVAL;
1183		}
1184		if (notification->sigev_notify == SIGEV_THREAD) {
1185			long timeo;
1186
1187			/* create the notify skb */
1188			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1189			if (!nc) {
1190				ret = -ENOMEM;
1191				goto out;
1192			}
1193			if (copy_from_user(nc->data,
1194					notification->sigev_value.sival_ptr,
1195					NOTIFY_COOKIE_LEN)) {
1196				ret = -EFAULT;
1197				goto out;
1198			}
1199
1200			/* TODO: add a header? */
1201			skb_put(nc, NOTIFY_COOKIE_LEN);
1202			/* and attach it to the socket */
1203retry:
1204			f = fdget(notification->sigev_signo);
1205			if (!f.file) {
1206				ret = -EBADF;
1207				goto out;
1208			}
1209			sock = netlink_getsockbyfilp(f.file);
1210			fdput(f);
1211			if (IS_ERR(sock)) {
1212				ret = PTR_ERR(sock);
1213				sock = NULL;
1214				goto out;
1215			}
1216
1217			timeo = MAX_SCHEDULE_TIMEOUT;
1218			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1219			if (ret == 1) {
1220				sock = NULL;
1221				goto retry;
1222			}
1223			if (ret) {
1224				sock = NULL;
1225				nc = NULL;
1226				goto out;
1227			}
1228		}
1229	}
1230
1231	f = fdget(mqdes);
1232	if (!f.file) {
1233		ret = -EBADF;
1234		goto out;
1235	}
1236
1237	inode = file_inode(f.file);
1238	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1239		ret = -EBADF;
1240		goto out_fput;
1241	}
1242	info = MQUEUE_I(inode);
1243
1244	ret = 0;
1245	spin_lock(&info->lock);
1246	if (notification == NULL) {
1247		if (info->notify_owner == task_tgid(current)) {
1248			remove_notification(info);
1249			inode->i_atime = inode->i_ctime = current_time(inode);
1250		}
1251	} else if (info->notify_owner != NULL) {
1252		ret = -EBUSY;
1253	} else {
1254		switch (notification->sigev_notify) {
1255		case SIGEV_NONE:
1256			info->notify.sigev_notify = SIGEV_NONE;
1257			break;
1258		case SIGEV_THREAD:
1259			info->notify_sock = sock;
1260			info->notify_cookie = nc;
1261			sock = NULL;
1262			nc = NULL;
1263			info->notify.sigev_notify = SIGEV_THREAD;
1264			break;
1265		case SIGEV_SIGNAL:
1266			info->notify.sigev_signo = notification->sigev_signo;
1267			info->notify.sigev_value = notification->sigev_value;
1268			info->notify.sigev_notify = SIGEV_SIGNAL;
1269			break;
1270		}
1271
1272		info->notify_owner = get_pid(task_tgid(current));
1273		info->notify_user_ns = get_user_ns(current_user_ns());
1274		inode->i_atime = inode->i_ctime = current_time(inode);
1275	}
1276	spin_unlock(&info->lock);
1277out_fput:
1278	fdput(f);
1279out:
1280	if (sock)
1281		netlink_detachskb(sock, nc);
1282	else if (nc)
 
1283		dev_kfree_skb(nc);
1284
1285	return ret;
1286}
1287
1288SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1289		const struct sigevent __user *, u_notification)
1290{
1291	struct sigevent n, *p = NULL;
1292	if (u_notification) {
1293		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1294			return -EFAULT;
1295		p = &n;
1296	}
1297	return do_mq_notify(mqdes, p);
1298}
1299
1300static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1301{
1302	struct fd f;
1303	struct inode *inode;
1304	struct mqueue_inode_info *info;
1305
1306	if (new && (new->mq_flags & (~O_NONBLOCK)))
1307		return -EINVAL;
1308
1309	f = fdget(mqdes);
1310	if (!f.file)
1311		return -EBADF;
1312
1313	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1314		fdput(f);
1315		return -EBADF;
1316	}
1317
1318	inode = file_inode(f.file);
1319	info = MQUEUE_I(inode);
1320
1321	spin_lock(&info->lock);
1322
1323	if (old) {
1324		*old = info->attr;
1325		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1326	}
1327	if (new) {
1328		audit_mq_getsetattr(mqdes, new);
1329		spin_lock(&f.file->f_lock);
1330		if (new->mq_flags & O_NONBLOCK)
1331			f.file->f_flags |= O_NONBLOCK;
1332		else
1333			f.file->f_flags &= ~O_NONBLOCK;
1334		spin_unlock(&f.file->f_lock);
1335
1336		inode->i_atime = inode->i_ctime = current_time(inode);
1337	}
1338
1339	spin_unlock(&info->lock);
1340	fdput(f);
1341	return 0;
1342}
1343
1344SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1345		const struct mq_attr __user *, u_mqstat,
1346		struct mq_attr __user *, u_omqstat)
1347{
1348	int ret;
1349	struct mq_attr mqstat, omqstat;
1350	struct mq_attr *new = NULL, *old = NULL;
1351
1352	if (u_mqstat) {
1353		new = &mqstat;
1354		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1355			return -EFAULT;
1356	}
1357	if (u_omqstat)
1358		old = &omqstat;
1359
1360	ret = do_mq_getsetattr(mqdes, new, old);
1361	if (ret || !old)
1362		return ret;
1363
1364	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1365		return -EFAULT;
1366	return 0;
1367}
1368
1369#ifdef CONFIG_COMPAT
1370
1371struct compat_mq_attr {
1372	compat_long_t mq_flags;      /* message queue flags		     */
1373	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1374	compat_long_t mq_msgsize;    /* maximum message size		     */
1375	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1376	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1377};
1378
1379static inline int get_compat_mq_attr(struct mq_attr *attr,
1380			const struct compat_mq_attr __user *uattr)
1381{
1382	struct compat_mq_attr v;
1383
1384	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1385		return -EFAULT;
1386
1387	memset(attr, 0, sizeof(*attr));
1388	attr->mq_flags = v.mq_flags;
1389	attr->mq_maxmsg = v.mq_maxmsg;
1390	attr->mq_msgsize = v.mq_msgsize;
1391	attr->mq_curmsgs = v.mq_curmsgs;
1392	return 0;
1393}
1394
1395static inline int put_compat_mq_attr(const struct mq_attr *attr,
1396			struct compat_mq_attr __user *uattr)
1397{
1398	struct compat_mq_attr v;
1399
1400	memset(&v, 0, sizeof(v));
1401	v.mq_flags = attr->mq_flags;
1402	v.mq_maxmsg = attr->mq_maxmsg;
1403	v.mq_msgsize = attr->mq_msgsize;
1404	v.mq_curmsgs = attr->mq_curmsgs;
1405	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1406		return -EFAULT;
1407	return 0;
1408}
1409
1410COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1411		       int, oflag, compat_mode_t, mode,
1412		       struct compat_mq_attr __user *, u_attr)
1413{
1414	struct mq_attr attr, *p = NULL;
1415	if (u_attr && oflag & O_CREAT) {
1416		p = &attr;
1417		if (get_compat_mq_attr(&attr, u_attr))
1418			return -EFAULT;
1419	}
1420	return do_mq_open(u_name, oflag, mode, p);
1421}
1422
1423static int compat_prepare_timeout(const struct compat_timespec __user *p,
1424				   struct timespec64 *ts)
1425{
1426	if (compat_get_timespec64(ts, p))
1427		return -EFAULT;
1428	if (!timespec64_valid(ts))
1429		return -EINVAL;
1430	return 0;
1431}
1432
1433COMPAT_SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes,
1434		       const char __user *, u_msg_ptr,
1435		       compat_size_t, msg_len, unsigned int, msg_prio,
1436		       const struct compat_timespec __user *, u_abs_timeout)
1437{
1438	struct timespec64 ts, *p = NULL;
1439	if (u_abs_timeout) {
1440		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1441		if (res)
1442			return res;
1443		p = &ts;
1444	}
1445	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1446}
1447
1448COMPAT_SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes,
1449		       char __user *, u_msg_ptr,
1450		       compat_size_t, msg_len, unsigned int __user *, u_msg_prio,
1451		       const struct compat_timespec __user *, u_abs_timeout)
1452{
1453	struct timespec64 ts, *p = NULL;
1454	if (u_abs_timeout) {
1455		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1456		if (res)
1457			return res;
1458		p = &ts;
1459	}
1460	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1461}
1462
1463COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1464		       const struct compat_sigevent __user *, u_notification)
1465{
1466	struct sigevent n, *p = NULL;
1467	if (u_notification) {
1468		if (get_compat_sigevent(&n, u_notification))
1469			return -EFAULT;
1470		if (n.sigev_notify == SIGEV_THREAD)
1471			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1472		p = &n;
1473	}
1474	return do_mq_notify(mqdes, p);
1475}
1476
1477COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1478		       const struct compat_mq_attr __user *, u_mqstat,
1479		       struct compat_mq_attr __user *, u_omqstat)
1480{
1481	int ret;
1482	struct mq_attr mqstat, omqstat;
1483	struct mq_attr *new = NULL, *old = NULL;
1484
1485	if (u_mqstat) {
1486		new = &mqstat;
1487		if (get_compat_mq_attr(new, u_mqstat))
1488			return -EFAULT;
1489	}
1490	if (u_omqstat)
1491		old = &omqstat;
1492
1493	ret = do_mq_getsetattr(mqdes, new, old);
1494	if (ret || !old)
1495		return ret;
1496
1497	if (put_compat_mq_attr(old, u_omqstat))
1498		return -EFAULT;
1499	return 0;
1500}
1501#endif
1502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503static const struct inode_operations mqueue_dir_inode_operations = {
1504	.lookup = simple_lookup,
1505	.create = mqueue_create,
1506	.unlink = mqueue_unlink,
1507};
1508
1509static const struct file_operations mqueue_file_operations = {
1510	.flush = mqueue_flush_file,
1511	.poll = mqueue_poll_file,
1512	.read = mqueue_read_file,
1513	.llseek = default_llseek,
1514};
1515
1516static const struct super_operations mqueue_super_ops = {
1517	.alloc_inode = mqueue_alloc_inode,
1518	.destroy_inode = mqueue_destroy_inode,
1519	.evict_inode = mqueue_evict_inode,
1520	.statfs = simple_statfs,
1521};
1522
 
 
 
 
 
1523static struct file_system_type mqueue_fs_type = {
1524	.name = "mqueue",
1525	.mount = mqueue_mount,
1526	.kill_sb = kill_litter_super,
1527	.fs_flags = FS_USERNS_MOUNT,
1528};
1529
1530int mq_init_ns(struct ipc_namespace *ns)
1531{
 
 
1532	ns->mq_queues_count  = 0;
1533	ns->mq_queues_max    = DFLT_QUEUESMAX;
1534	ns->mq_msg_max       = DFLT_MSGMAX;
1535	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1536	ns->mq_msg_default   = DFLT_MSG;
1537	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1538
1539	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1540	if (IS_ERR(ns->mq_mnt)) {
1541		int err = PTR_ERR(ns->mq_mnt);
1542		ns->mq_mnt = NULL;
1543		return err;
1544	}
1545	return 0;
1546}
1547
1548void mq_clear_sbinfo(struct ipc_namespace *ns)
1549{
1550	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1551}
1552
1553void mq_put_mnt(struct ipc_namespace *ns)
1554{
1555	kern_unmount(ns->mq_mnt);
1556}
1557
1558static int __init init_mqueue_fs(void)
1559{
1560	int error;
1561
1562	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1563				sizeof(struct mqueue_inode_info), 0,
1564				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1565	if (mqueue_inode_cachep == NULL)
1566		return -ENOMEM;
1567
1568	/* ignore failures - they are not fatal */
1569	mq_sysctl_table = mq_register_sysctl_table();
1570
1571	error = register_filesystem(&mqueue_fs_type);
1572	if (error)
1573		goto out_sysctl;
1574
1575	spin_lock_init(&mq_lock);
1576
1577	error = mq_init_ns(&init_ipc_ns);
1578	if (error)
1579		goto out_filesystem;
1580
1581	return 0;
1582
1583out_filesystem:
1584	unregister_filesystem(&mqueue_fs_type);
1585out_sysctl:
1586	if (mq_sysctl_table)
1587		unregister_sysctl_table(mq_sysctl_table);
1588	kmem_cache_destroy(mqueue_inode_cachep);
1589	return error;
1590}
1591
1592device_initcall(init_mqueue_fs);
v5.4
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/fs_context.h>
  22#include <linux/namei.h>
  23#include <linux/sysctl.h>
  24#include <linux/poll.h>
  25#include <linux/mqueue.h>
  26#include <linux/msg.h>
  27#include <linux/skbuff.h>
  28#include <linux/vmalloc.h>
  29#include <linux/netlink.h>
  30#include <linux/syscalls.h>
  31#include <linux/audit.h>
  32#include <linux/signal.h>
  33#include <linux/mutex.h>
  34#include <linux/nsproxy.h>
  35#include <linux/pid.h>
  36#include <linux/ipc_namespace.h>
  37#include <linux/user_namespace.h>
  38#include <linux/slab.h>
  39#include <linux/sched/wake_q.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/user.h>
  42
  43#include <net/sock.h>
  44#include "util.h"
  45
  46struct mqueue_fs_context {
  47	struct ipc_namespace	*ipc_ns;
  48};
  49
  50#define MQUEUE_MAGIC	0x19800202
  51#define DIRENT_SIZE	20
  52#define FILENT_SIZE	80
  53
  54#define SEND		0
  55#define RECV		1
  56
  57#define STATE_NONE	0
  58#define STATE_READY	1
  59
  60struct posix_msg_tree_node {
  61	struct rb_node		rb_node;
  62	struct list_head	msg_list;
  63	int			priority;
  64};
  65
  66struct ext_wait_queue {		/* queue of sleeping tasks */
  67	struct task_struct *task;
  68	struct list_head list;
  69	struct msg_msg *msg;	/* ptr of loaded message */
  70	int state;		/* one of STATE_* values */
  71};
  72
  73struct mqueue_inode_info {
  74	spinlock_t lock;
  75	struct inode vfs_inode;
  76	wait_queue_head_t wait_q;
  77
  78	struct rb_root msg_tree;
  79	struct rb_node *msg_tree_rightmost;
  80	struct posix_msg_tree_node *node_cache;
  81	struct mq_attr attr;
  82
  83	struct sigevent notify;
  84	struct pid *notify_owner;
  85	struct user_namespace *notify_user_ns;
  86	struct user_struct *user;	/* user who created, for accounting */
  87	struct sock *notify_sock;
  88	struct sk_buff *notify_cookie;
  89
  90	/* for tasks waiting for free space and messages, respectively */
  91	struct ext_wait_queue e_wait_q[2];
  92
  93	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  94};
  95
  96static struct file_system_type mqueue_fs_type;
  97static const struct inode_operations mqueue_dir_inode_operations;
  98static const struct file_operations mqueue_file_operations;
  99static const struct super_operations mqueue_super_ops;
 100static const struct fs_context_operations mqueue_fs_context_ops;
 101static void remove_notification(struct mqueue_inode_info *info);
 102
 103static struct kmem_cache *mqueue_inode_cachep;
 104
 105static struct ctl_table_header *mq_sysctl_table;
 106
 107static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
 108{
 109	return container_of(inode, struct mqueue_inode_info, vfs_inode);
 110}
 111
 112/*
 113 * This routine should be called with the mq_lock held.
 114 */
 115static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 116{
 117	return get_ipc_ns(inode->i_sb->s_fs_info);
 118}
 119
 120static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 121{
 122	struct ipc_namespace *ns;
 123
 124	spin_lock(&mq_lock);
 125	ns = __get_ns_from_inode(inode);
 126	spin_unlock(&mq_lock);
 127	return ns;
 128}
 129
 130/* Auxiliary functions to manipulate messages' list */
 131static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 132{
 133	struct rb_node **p, *parent = NULL;
 134	struct posix_msg_tree_node *leaf;
 135	bool rightmost = true;
 136
 137	p = &info->msg_tree.rb_node;
 138	while (*p) {
 139		parent = *p;
 140		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 141
 142		if (likely(leaf->priority == msg->m_type))
 143			goto insert_msg;
 144		else if (msg->m_type < leaf->priority) {
 145			p = &(*p)->rb_left;
 146			rightmost = false;
 147		} else
 148			p = &(*p)->rb_right;
 149	}
 150	if (info->node_cache) {
 151		leaf = info->node_cache;
 152		info->node_cache = NULL;
 153	} else {
 154		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 155		if (!leaf)
 156			return -ENOMEM;
 157		INIT_LIST_HEAD(&leaf->msg_list);
 158	}
 159	leaf->priority = msg->m_type;
 160
 161	if (rightmost)
 162		info->msg_tree_rightmost = &leaf->rb_node;
 163
 164	rb_link_node(&leaf->rb_node, parent, p);
 165	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 166insert_msg:
 167	info->attr.mq_curmsgs++;
 168	info->qsize += msg->m_ts;
 169	list_add_tail(&msg->m_list, &leaf->msg_list);
 170	return 0;
 171}
 172
 173static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
 174				  struct mqueue_inode_info *info)
 175{
 176	struct rb_node *node = &leaf->rb_node;
 177
 178	if (info->msg_tree_rightmost == node)
 179		info->msg_tree_rightmost = rb_prev(node);
 180
 181	rb_erase(node, &info->msg_tree);
 182	if (info->node_cache) {
 183		kfree(leaf);
 184	} else {
 185		info->node_cache = leaf;
 186	}
 187}
 188
 189static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 190{
 191	struct rb_node *parent = NULL;
 192	struct posix_msg_tree_node *leaf;
 193	struct msg_msg *msg;
 194
 195try_again:
 196	/*
 197	 * During insert, low priorities go to the left and high to the
 198	 * right.  On receive, we want the highest priorities first, so
 199	 * walk all the way to the right.
 200	 */
 201	parent = info->msg_tree_rightmost;
 
 
 
 
 202	if (!parent) {
 203		if (info->attr.mq_curmsgs) {
 204			pr_warn_once("Inconsistency in POSIX message queue, "
 205				     "no tree element, but supposedly messages "
 206				     "should exist!\n");
 207			info->attr.mq_curmsgs = 0;
 208		}
 209		return NULL;
 210	}
 211	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 212	if (unlikely(list_empty(&leaf->msg_list))) {
 213		pr_warn_once("Inconsistency in POSIX message queue, "
 214			     "empty leaf node but we haven't implemented "
 215			     "lazy leaf delete!\n");
 216		msg_tree_erase(leaf, info);
 
 
 
 
 
 217		goto try_again;
 218	} else {
 219		msg = list_first_entry(&leaf->msg_list,
 220				       struct msg_msg, m_list);
 221		list_del(&msg->m_list);
 222		if (list_empty(&leaf->msg_list)) {
 223			msg_tree_erase(leaf, info);
 
 
 
 
 
 224		}
 225	}
 226	info->attr.mq_curmsgs--;
 227	info->qsize -= msg->m_ts;
 228	return msg;
 229}
 230
 231static struct inode *mqueue_get_inode(struct super_block *sb,
 232		struct ipc_namespace *ipc_ns, umode_t mode,
 233		struct mq_attr *attr)
 234{
 235	struct user_struct *u = current_user();
 236	struct inode *inode;
 237	int ret = -ENOMEM;
 238
 239	inode = new_inode(sb);
 240	if (!inode)
 241		goto err;
 242
 243	inode->i_ino = get_next_ino();
 244	inode->i_mode = mode;
 245	inode->i_uid = current_fsuid();
 246	inode->i_gid = current_fsgid();
 247	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 248
 249	if (S_ISREG(mode)) {
 250		struct mqueue_inode_info *info;
 251		unsigned long mq_bytes, mq_treesize;
 252
 253		inode->i_fop = &mqueue_file_operations;
 254		inode->i_size = FILENT_SIZE;
 255		/* mqueue specific info */
 256		info = MQUEUE_I(inode);
 257		spin_lock_init(&info->lock);
 258		init_waitqueue_head(&info->wait_q);
 259		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 260		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 261		info->notify_owner = NULL;
 262		info->notify_user_ns = NULL;
 263		info->qsize = 0;
 264		info->user = NULL;	/* set when all is ok */
 265		info->msg_tree = RB_ROOT;
 266		info->msg_tree_rightmost = NULL;
 267		info->node_cache = NULL;
 268		memset(&info->attr, 0, sizeof(info->attr));
 269		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 270					   ipc_ns->mq_msg_default);
 271		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 272					    ipc_ns->mq_msgsize_default);
 273		if (attr) {
 274			info->attr.mq_maxmsg = attr->mq_maxmsg;
 275			info->attr.mq_msgsize = attr->mq_msgsize;
 276		}
 277		/*
 278		 * We used to allocate a static array of pointers and account
 279		 * the size of that array as well as one msg_msg struct per
 280		 * possible message into the queue size. That's no longer
 281		 * accurate as the queue is now an rbtree and will grow and
 282		 * shrink depending on usage patterns.  We can, however, still
 283		 * account one msg_msg struct per message, but the nodes are
 284		 * allocated depending on priority usage, and most programs
 285		 * only use one, or a handful, of priorities.  However, since
 286		 * this is pinned memory, we need to assume worst case, so
 287		 * that means the min(mq_maxmsg, max_priorities) * struct
 288		 * posix_msg_tree_node.
 289		 */
 290
 291		ret = -EINVAL;
 292		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
 293			goto out_inode;
 294		if (capable(CAP_SYS_RESOURCE)) {
 295			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
 296			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
 297				goto out_inode;
 298		} else {
 299			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
 300					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
 301				goto out_inode;
 302		}
 303		ret = -EOVERFLOW;
 304		/* check for overflow */
 305		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
 306			goto out_inode;
 307		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 308			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 309			sizeof(struct posix_msg_tree_node);
 310		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
 311		if (mq_bytes + mq_treesize < mq_bytes)
 312			goto out_inode;
 313		mq_bytes += mq_treesize;
 314		spin_lock(&mq_lock);
 315		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 316		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 317			spin_unlock(&mq_lock);
 318			/* mqueue_evict_inode() releases info->messages */
 319			ret = -EMFILE;
 320			goto out_inode;
 321		}
 322		u->mq_bytes += mq_bytes;
 323		spin_unlock(&mq_lock);
 324
 325		/* all is ok */
 326		info->user = get_uid(u);
 327	} else if (S_ISDIR(mode)) {
 328		inc_nlink(inode);
 329		/* Some things misbehave if size == 0 on a directory */
 330		inode->i_size = 2 * DIRENT_SIZE;
 331		inode->i_op = &mqueue_dir_inode_operations;
 332		inode->i_fop = &simple_dir_operations;
 333	}
 334
 335	return inode;
 336out_inode:
 337	iput(inode);
 338err:
 339	return ERR_PTR(ret);
 340}
 341
 342static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
 343{
 344	struct inode *inode;
 345	struct ipc_namespace *ns = sb->s_fs_info;
 346
 347	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 348	sb->s_blocksize = PAGE_SIZE;
 349	sb->s_blocksize_bits = PAGE_SHIFT;
 350	sb->s_magic = MQUEUE_MAGIC;
 351	sb->s_op = &mqueue_super_ops;
 352
 353	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 354	if (IS_ERR(inode))
 355		return PTR_ERR(inode);
 356
 357	sb->s_root = d_make_root(inode);
 358	if (!sb->s_root)
 359		return -ENOMEM;
 360	return 0;
 361}
 362
 363static int mqueue_get_tree(struct fs_context *fc)
 
 
 364{
 365	struct mqueue_fs_context *ctx = fc->fs_private;
 366
 367	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
 368}
 369
 370static void mqueue_fs_context_free(struct fs_context *fc)
 371{
 372	struct mqueue_fs_context *ctx = fc->fs_private;
 373
 374	put_ipc_ns(ctx->ipc_ns);
 375	kfree(ctx);
 376}
 377
 378static int mqueue_init_fs_context(struct fs_context *fc)
 379{
 380	struct mqueue_fs_context *ctx;
 381
 382	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
 383	if (!ctx)
 384		return -ENOMEM;
 385
 386	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
 387	put_user_ns(fc->user_ns);
 388	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 389	fc->fs_private = ctx;
 390	fc->ops = &mqueue_fs_context_ops;
 391	return 0;
 392}
 393
 394static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
 395{
 396	struct mqueue_fs_context *ctx;
 397	struct fs_context *fc;
 398	struct vfsmount *mnt;
 399
 400	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
 401	if (IS_ERR(fc))
 402		return ERR_CAST(fc);
 403
 404	ctx = fc->fs_private;
 405	put_ipc_ns(ctx->ipc_ns);
 406	ctx->ipc_ns = get_ipc_ns(ns);
 407	put_user_ns(fc->user_ns);
 408	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 409
 410	mnt = fc_mount(fc);
 411	put_fs_context(fc);
 412	return mnt;
 413}
 414
 415static void init_once(void *foo)
 416{
 417	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 418
 419	inode_init_once(&p->vfs_inode);
 420}
 421
 422static struct inode *mqueue_alloc_inode(struct super_block *sb)
 423{
 424	struct mqueue_inode_info *ei;
 425
 426	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 427	if (!ei)
 428		return NULL;
 429	return &ei->vfs_inode;
 430}
 431
 432static void mqueue_free_inode(struct inode *inode)
 433{
 
 434	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 435}
 436
 
 
 
 
 
 437static void mqueue_evict_inode(struct inode *inode)
 438{
 439	struct mqueue_inode_info *info;
 440	struct user_struct *user;
 
 441	struct ipc_namespace *ipc_ns;
 442	struct msg_msg *msg, *nmsg;
 443	LIST_HEAD(tmp_msg);
 444
 445	clear_inode(inode);
 446
 447	if (S_ISDIR(inode->i_mode))
 448		return;
 449
 450	ipc_ns = get_ns_from_inode(inode);
 451	info = MQUEUE_I(inode);
 452	spin_lock(&info->lock);
 453	while ((msg = msg_get(info)) != NULL)
 454		list_add_tail(&msg->m_list, &tmp_msg);
 455	kfree(info->node_cache);
 456	spin_unlock(&info->lock);
 457
 458	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
 459		list_del(&msg->m_list);
 460		free_msg(msg);
 461	}
 
 
 
 462
 463	user = info->user;
 464	if (user) {
 465		unsigned long mq_bytes, mq_treesize;
 466
 467		/* Total amount of bytes accounted for the mqueue */
 468		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 469			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 470			sizeof(struct posix_msg_tree_node);
 471
 472		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 473					  info->attr.mq_msgsize);
 474
 475		spin_lock(&mq_lock);
 476		user->mq_bytes -= mq_bytes;
 477		/*
 478		 * get_ns_from_inode() ensures that the
 479		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 480		 * to which we now hold a reference, or it is NULL.
 481		 * We can't put it here under mq_lock, though.
 482		 */
 483		if (ipc_ns)
 484			ipc_ns->mq_queues_count--;
 485		spin_unlock(&mq_lock);
 486		free_uid(user);
 487	}
 488	if (ipc_ns)
 489		put_ipc_ns(ipc_ns);
 490}
 491
 492static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
 493{
 494	struct inode *dir = dentry->d_parent->d_inode;
 495	struct inode *inode;
 496	struct mq_attr *attr = arg;
 497	int error;
 498	struct ipc_namespace *ipc_ns;
 499
 500	spin_lock(&mq_lock);
 501	ipc_ns = __get_ns_from_inode(dir);
 502	if (!ipc_ns) {
 503		error = -EACCES;
 504		goto out_unlock;
 505	}
 506
 507	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 508	    !capable(CAP_SYS_RESOURCE)) {
 509		error = -ENOSPC;
 510		goto out_unlock;
 511	}
 512	ipc_ns->mq_queues_count++;
 513	spin_unlock(&mq_lock);
 514
 515	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 516	if (IS_ERR(inode)) {
 517		error = PTR_ERR(inode);
 518		spin_lock(&mq_lock);
 519		ipc_ns->mq_queues_count--;
 520		goto out_unlock;
 521	}
 522
 523	put_ipc_ns(ipc_ns);
 524	dir->i_size += DIRENT_SIZE;
 525	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 526
 527	d_instantiate(dentry, inode);
 528	dget(dentry);
 529	return 0;
 530out_unlock:
 531	spin_unlock(&mq_lock);
 532	if (ipc_ns)
 533		put_ipc_ns(ipc_ns);
 534	return error;
 535}
 536
 537static int mqueue_create(struct inode *dir, struct dentry *dentry,
 538				umode_t mode, bool excl)
 539{
 540	return mqueue_create_attr(dentry, mode, NULL);
 541}
 542
 543static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 544{
 545	struct inode *inode = d_inode(dentry);
 546
 547	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 548	dir->i_size -= DIRENT_SIZE;
 549	drop_nlink(inode);
 550	dput(dentry);
 551	return 0;
 552}
 553
 554/*
 555*	This is routine for system read from queue file.
 556*	To avoid mess with doing here some sort of mq_receive we allow
 557*	to read only queue size & notification info (the only values
 558*	that are interesting from user point of view and aren't accessible
 559*	through std routines)
 560*/
 561static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 562				size_t count, loff_t *off)
 563{
 564	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 565	char buffer[FILENT_SIZE];
 566	ssize_t ret;
 567
 568	spin_lock(&info->lock);
 569	snprintf(buffer, sizeof(buffer),
 570			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 571			info->qsize,
 572			info->notify_owner ? info->notify.sigev_notify : 0,
 573			(info->notify_owner &&
 574			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 575				info->notify.sigev_signo : 0,
 576			pid_vnr(info->notify_owner));
 577	spin_unlock(&info->lock);
 578	buffer[sizeof(buffer)-1] = '\0';
 579
 580	ret = simple_read_from_buffer(u_data, count, off, buffer,
 581				strlen(buffer));
 582	if (ret <= 0)
 583		return ret;
 584
 585	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 586	return ret;
 587}
 588
 589static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 590{
 591	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 592
 593	spin_lock(&info->lock);
 594	if (task_tgid(current) == info->notify_owner)
 595		remove_notification(info);
 596
 597	spin_unlock(&info->lock);
 598	return 0;
 599}
 600
 601static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 602{
 603	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 604	__poll_t retval = 0;
 605
 606	poll_wait(filp, &info->wait_q, poll_tab);
 607
 608	spin_lock(&info->lock);
 609	if (info->attr.mq_curmsgs)
 610		retval = EPOLLIN | EPOLLRDNORM;
 611
 612	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 613		retval |= EPOLLOUT | EPOLLWRNORM;
 614	spin_unlock(&info->lock);
 615
 616	return retval;
 617}
 618
 619/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 620static void wq_add(struct mqueue_inode_info *info, int sr,
 621			struct ext_wait_queue *ewp)
 622{
 623	struct ext_wait_queue *walk;
 624
 
 
 625	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 626		if (walk->task->prio <= current->prio) {
 627			list_add_tail(&ewp->list, &walk->list);
 628			return;
 629		}
 630	}
 631	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 632}
 633
 634/*
 635 * Puts current task to sleep. Caller must hold queue lock. After return
 636 * lock isn't held.
 637 * sr: SEND or RECV
 638 */
 639static int wq_sleep(struct mqueue_inode_info *info, int sr,
 640		    ktime_t *timeout, struct ext_wait_queue *ewp)
 641	__releases(&info->lock)
 642{
 643	int retval;
 644	signed long time;
 645
 646	wq_add(info, sr, ewp);
 647
 648	for (;;) {
 649		__set_current_state(TASK_INTERRUPTIBLE);
 650
 651		spin_unlock(&info->lock);
 652		time = schedule_hrtimeout_range_clock(timeout, 0,
 653			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 654
 655		if (ewp->state == STATE_READY) {
 656			retval = 0;
 657			goto out;
 658		}
 659		spin_lock(&info->lock);
 660		if (ewp->state == STATE_READY) {
 661			retval = 0;
 662			goto out_unlock;
 663		}
 664		if (signal_pending(current)) {
 665			retval = -ERESTARTSYS;
 666			break;
 667		}
 668		if (time == 0) {
 669			retval = -ETIMEDOUT;
 670			break;
 671		}
 672	}
 673	list_del(&ewp->list);
 674out_unlock:
 675	spin_unlock(&info->lock);
 676out:
 677	return retval;
 678}
 679
 680/*
 681 * Returns waiting task that should be serviced first or NULL if none exists
 682 */
 683static struct ext_wait_queue *wq_get_first_waiter(
 684		struct mqueue_inode_info *info, int sr)
 685{
 686	struct list_head *ptr;
 687
 688	ptr = info->e_wait_q[sr].list.prev;
 689	if (ptr == &info->e_wait_q[sr].list)
 690		return NULL;
 691	return list_entry(ptr, struct ext_wait_queue, list);
 692}
 693
 694
 695static inline void set_cookie(struct sk_buff *skb, char code)
 696{
 697	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 698}
 699
 700/*
 701 * The next function is only to split too long sys_mq_timedsend
 702 */
 703static void __do_notify(struct mqueue_inode_info *info)
 704{
 705	/* notification
 706	 * invoked when there is registered process and there isn't process
 707	 * waiting synchronously for message AND state of queue changed from
 708	 * empty to not empty. Here we are sure that no one is waiting
 709	 * synchronously. */
 710	if (info->notify_owner &&
 711	    info->attr.mq_curmsgs == 1) {
 712		struct kernel_siginfo sig_i;
 713		switch (info->notify.sigev_notify) {
 714		case SIGEV_NONE:
 715			break;
 716		case SIGEV_SIGNAL:
 717			/* sends signal */
 718
 719			clear_siginfo(&sig_i);
 720			sig_i.si_signo = info->notify.sigev_signo;
 721			sig_i.si_errno = 0;
 722			sig_i.si_code = SI_MESGQ;
 723			sig_i.si_value = info->notify.sigev_value;
 724			/* map current pid/uid into info->owner's namespaces */
 725			rcu_read_lock();
 726			sig_i.si_pid = task_tgid_nr_ns(current,
 727						ns_of_pid(info->notify_owner));
 728			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 729			rcu_read_unlock();
 730
 731			kill_pid_info(info->notify.sigev_signo,
 732				      &sig_i, info->notify_owner);
 733			break;
 734		case SIGEV_THREAD:
 735			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 736			netlink_sendskb(info->notify_sock, info->notify_cookie);
 737			break;
 738		}
 739		/* after notification unregisters process */
 740		put_pid(info->notify_owner);
 741		put_user_ns(info->notify_user_ns);
 742		info->notify_owner = NULL;
 743		info->notify_user_ns = NULL;
 744	}
 745	wake_up(&info->wait_q);
 746}
 747
 748static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
 749			   struct timespec64 *ts)
 750{
 751	if (get_timespec64(ts, u_abs_timeout))
 752		return -EFAULT;
 753	if (!timespec64_valid(ts))
 754		return -EINVAL;
 755	return 0;
 756}
 757
 758static void remove_notification(struct mqueue_inode_info *info)
 759{
 760	if (info->notify_owner != NULL &&
 761	    info->notify.sigev_notify == SIGEV_THREAD) {
 762		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 763		netlink_sendskb(info->notify_sock, info->notify_cookie);
 764	}
 765	put_pid(info->notify_owner);
 766	put_user_ns(info->notify_user_ns);
 767	info->notify_owner = NULL;
 768	info->notify_user_ns = NULL;
 769}
 770
 771static int prepare_open(struct dentry *dentry, int oflag, int ro,
 772			umode_t mode, struct filename *name,
 773			struct mq_attr *attr)
 774{
 775	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 776						  MAY_READ | MAY_WRITE };
 777	int acc;
 778
 779	if (d_really_is_negative(dentry)) {
 780		if (!(oflag & O_CREAT))
 781			return -ENOENT;
 782		if (ro)
 783			return ro;
 784		audit_inode_parent_hidden(name, dentry->d_parent);
 785		return vfs_mkobj(dentry, mode & ~current_umask(),
 786				  mqueue_create_attr, attr);
 787	}
 788	/* it already existed */
 789	audit_inode(name, dentry, 0);
 790	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
 791		return -EEXIST;
 792	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 793		return -EINVAL;
 794	acc = oflag2acc[oflag & O_ACCMODE];
 795	return inode_permission(d_inode(dentry), acc);
 796}
 797
 798static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
 799		      struct mq_attr *attr)
 800{
 801	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
 802	struct dentry *root = mnt->mnt_root;
 803	struct filename *name;
 804	struct path path;
 805	int fd, error;
 806	int ro;
 807
 808	audit_mq_open(oflag, mode, attr);
 809
 810	if (IS_ERR(name = getname(u_name)))
 811		return PTR_ERR(name);
 812
 813	fd = get_unused_fd_flags(O_CLOEXEC);
 814	if (fd < 0)
 815		goto out_putname;
 816
 817	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 818	inode_lock(d_inode(root));
 819	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 820	if (IS_ERR(path.dentry)) {
 821		error = PTR_ERR(path.dentry);
 822		goto out_putfd;
 823	}
 824	path.mnt = mntget(mnt);
 825	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
 826	if (!error) {
 827		struct file *file = dentry_open(&path, oflag, current_cred());
 828		if (!IS_ERR(file))
 829			fd_install(fd, file);
 830		else
 831			error = PTR_ERR(file);
 832	}
 833	path_put(&path);
 834out_putfd:
 835	if (error) {
 836		put_unused_fd(fd);
 837		fd = error;
 838	}
 839	inode_unlock(d_inode(root));
 840	if (!ro)
 841		mnt_drop_write(mnt);
 842out_putname:
 843	putname(name);
 844	return fd;
 845}
 846
 847SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 848		struct mq_attr __user *, u_attr)
 849{
 850	struct mq_attr attr;
 851	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 852		return -EFAULT;
 853
 854	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
 855}
 856
 857SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 858{
 859	int err;
 860	struct filename *name;
 861	struct dentry *dentry;
 862	struct inode *inode = NULL;
 863	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 864	struct vfsmount *mnt = ipc_ns->mq_mnt;
 865
 866	name = getname(u_name);
 867	if (IS_ERR(name))
 868		return PTR_ERR(name);
 869
 870	audit_inode_parent_hidden(name, mnt->mnt_root);
 871	err = mnt_want_write(mnt);
 872	if (err)
 873		goto out_name;
 874	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 875	dentry = lookup_one_len(name->name, mnt->mnt_root,
 876				strlen(name->name));
 877	if (IS_ERR(dentry)) {
 878		err = PTR_ERR(dentry);
 879		goto out_unlock;
 880	}
 881
 882	inode = d_inode(dentry);
 883	if (!inode) {
 884		err = -ENOENT;
 885	} else {
 886		ihold(inode);
 887		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 888	}
 889	dput(dentry);
 890
 891out_unlock:
 892	inode_unlock(d_inode(mnt->mnt_root));
 893	if (inode)
 894		iput(inode);
 895	mnt_drop_write(mnt);
 896out_name:
 897	putname(name);
 898
 899	return err;
 900}
 901
 902/* Pipelined send and receive functions.
 903 *
 904 * If a receiver finds no waiting message, then it registers itself in the
 905 * list of waiting receivers. A sender checks that list before adding the new
 906 * message into the message array. If there is a waiting receiver, then it
 907 * bypasses the message array and directly hands the message over to the
 908 * receiver. The receiver accepts the message and returns without grabbing the
 909 * queue spinlock:
 910 *
 911 * - Set pointer to message.
 912 * - Queue the receiver task for later wakeup (without the info->lock).
 913 * - Update its state to STATE_READY. Now the receiver can continue.
 914 * - Wake up the process after the lock is dropped. Should the process wake up
 915 *   before this wakeup (due to a timeout or a signal) it will either see
 916 *   STATE_READY and continue or acquire the lock to check the state again.
 917 *
 918 * The same algorithm is used for senders.
 919 */
 920
 921/* pipelined_send() - send a message directly to the task waiting in
 922 * sys_mq_timedreceive() (without inserting message into a queue).
 923 */
 924static inline void pipelined_send(struct wake_q_head *wake_q,
 925				  struct mqueue_inode_info *info,
 926				  struct msg_msg *message,
 927				  struct ext_wait_queue *receiver)
 928{
 929	receiver->msg = message;
 930	list_del(&receiver->list);
 931	wake_q_add(wake_q, receiver->task);
 932	/*
 933	 * Rely on the implicit cmpxchg barrier from wake_q_add such
 934	 * that we can ensure that updating receiver->state is the last
 935	 * write operation: As once set, the receiver can continue,
 936	 * and if we don't have the reference count from the wake_q,
 937	 * yet, at that point we can later have a use-after-free
 938	 * condition and bogus wakeup.
 939	 */
 940	receiver->state = STATE_READY;
 941}
 942
 943/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 944 * gets its message and put to the queue (we have one free place for sure). */
 945static inline void pipelined_receive(struct wake_q_head *wake_q,
 946				     struct mqueue_inode_info *info)
 947{
 948	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 949
 950	if (!sender) {
 951		/* for poll */
 952		wake_up_interruptible(&info->wait_q);
 953		return;
 954	}
 955	if (msg_insert(sender->msg, info))
 956		return;
 957
 958	list_del(&sender->list);
 959	wake_q_add(wake_q, sender->task);
 960	sender->state = STATE_READY;
 961}
 962
 963static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
 964		size_t msg_len, unsigned int msg_prio,
 965		struct timespec64 *ts)
 966{
 967	struct fd f;
 968	struct inode *inode;
 969	struct ext_wait_queue wait;
 970	struct ext_wait_queue *receiver;
 971	struct msg_msg *msg_ptr;
 972	struct mqueue_inode_info *info;
 973	ktime_t expires, *timeout = NULL;
 974	struct posix_msg_tree_node *new_leaf = NULL;
 975	int ret = 0;
 976	DEFINE_WAKE_Q(wake_q);
 977
 978	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 979		return -EINVAL;
 980
 981	if (ts) {
 982		expires = timespec64_to_ktime(*ts);
 983		timeout = &expires;
 984	}
 985
 986	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
 987
 988	f = fdget(mqdes);
 989	if (unlikely(!f.file)) {
 990		ret = -EBADF;
 991		goto out;
 992	}
 993
 994	inode = file_inode(f.file);
 995	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 996		ret = -EBADF;
 997		goto out_fput;
 998	}
 999	info = MQUEUE_I(inode);
1000	audit_file(f.file);
1001
1002	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1003		ret = -EBADF;
1004		goto out_fput;
1005	}
1006
1007	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1008		ret = -EMSGSIZE;
1009		goto out_fput;
1010	}
1011
1012	/* First try to allocate memory, before doing anything with
1013	 * existing queues. */
1014	msg_ptr = load_msg(u_msg_ptr, msg_len);
1015	if (IS_ERR(msg_ptr)) {
1016		ret = PTR_ERR(msg_ptr);
1017		goto out_fput;
1018	}
1019	msg_ptr->m_ts = msg_len;
1020	msg_ptr->m_type = msg_prio;
1021
1022	/*
1023	 * msg_insert really wants us to have a valid, spare node struct so
1024	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1025	 * fall back to that if necessary.
1026	 */
1027	if (!info->node_cache)
1028		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1029
1030	spin_lock(&info->lock);
1031
1032	if (!info->node_cache && new_leaf) {
1033		/* Save our speculative allocation into the cache */
1034		INIT_LIST_HEAD(&new_leaf->msg_list);
1035		info->node_cache = new_leaf;
1036		new_leaf = NULL;
1037	} else {
1038		kfree(new_leaf);
1039	}
1040
1041	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1042		if (f.file->f_flags & O_NONBLOCK) {
1043			ret = -EAGAIN;
1044		} else {
1045			wait.task = current;
1046			wait.msg = (void *) msg_ptr;
1047			wait.state = STATE_NONE;
1048			ret = wq_sleep(info, SEND, timeout, &wait);
1049			/*
1050			 * wq_sleep must be called with info->lock held, and
1051			 * returns with the lock released
1052			 */
1053			goto out_free;
1054		}
1055	} else {
1056		receiver = wq_get_first_waiter(info, RECV);
1057		if (receiver) {
1058			pipelined_send(&wake_q, info, msg_ptr, receiver);
1059		} else {
1060			/* adds message to the queue */
1061			ret = msg_insert(msg_ptr, info);
1062			if (ret)
1063				goto out_unlock;
1064			__do_notify(info);
1065		}
1066		inode->i_atime = inode->i_mtime = inode->i_ctime =
1067				current_time(inode);
1068	}
1069out_unlock:
1070	spin_unlock(&info->lock);
1071	wake_up_q(&wake_q);
1072out_free:
1073	if (ret)
1074		free_msg(msg_ptr);
1075out_fput:
1076	fdput(f);
1077out:
1078	return ret;
1079}
1080
1081static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1082		size_t msg_len, unsigned int __user *u_msg_prio,
1083		struct timespec64 *ts)
1084{
1085	ssize_t ret;
1086	struct msg_msg *msg_ptr;
1087	struct fd f;
1088	struct inode *inode;
1089	struct mqueue_inode_info *info;
1090	struct ext_wait_queue wait;
1091	ktime_t expires, *timeout = NULL;
1092	struct posix_msg_tree_node *new_leaf = NULL;
1093
1094	if (ts) {
1095		expires = timespec64_to_ktime(*ts);
1096		timeout = &expires;
1097	}
1098
1099	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1100
1101	f = fdget(mqdes);
1102	if (unlikely(!f.file)) {
1103		ret = -EBADF;
1104		goto out;
1105	}
1106
1107	inode = file_inode(f.file);
1108	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1109		ret = -EBADF;
1110		goto out_fput;
1111	}
1112	info = MQUEUE_I(inode);
1113	audit_file(f.file);
1114
1115	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1116		ret = -EBADF;
1117		goto out_fput;
1118	}
1119
1120	/* checks if buffer is big enough */
1121	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1122		ret = -EMSGSIZE;
1123		goto out_fput;
1124	}
1125
1126	/*
1127	 * msg_insert really wants us to have a valid, spare node struct so
1128	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1129	 * fall back to that if necessary.
1130	 */
1131	if (!info->node_cache)
1132		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1133
1134	spin_lock(&info->lock);
1135
1136	if (!info->node_cache && new_leaf) {
1137		/* Save our speculative allocation into the cache */
1138		INIT_LIST_HEAD(&new_leaf->msg_list);
1139		info->node_cache = new_leaf;
1140	} else {
1141		kfree(new_leaf);
1142	}
1143
1144	if (info->attr.mq_curmsgs == 0) {
1145		if (f.file->f_flags & O_NONBLOCK) {
1146			spin_unlock(&info->lock);
1147			ret = -EAGAIN;
1148		} else {
1149			wait.task = current;
1150			wait.state = STATE_NONE;
1151			ret = wq_sleep(info, RECV, timeout, &wait);
1152			msg_ptr = wait.msg;
1153		}
1154	} else {
1155		DEFINE_WAKE_Q(wake_q);
1156
1157		msg_ptr = msg_get(info);
1158
1159		inode->i_atime = inode->i_mtime = inode->i_ctime =
1160				current_time(inode);
1161
1162		/* There is now free space in queue. */
1163		pipelined_receive(&wake_q, info);
1164		spin_unlock(&info->lock);
1165		wake_up_q(&wake_q);
1166		ret = 0;
1167	}
1168	if (ret == 0) {
1169		ret = msg_ptr->m_ts;
1170
1171		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1172			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1173			ret = -EFAULT;
1174		}
1175		free_msg(msg_ptr);
1176	}
1177out_fput:
1178	fdput(f);
1179out:
1180	return ret;
1181}
1182
1183SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1184		size_t, msg_len, unsigned int, msg_prio,
1185		const struct __kernel_timespec __user *, u_abs_timeout)
1186{
1187	struct timespec64 ts, *p = NULL;
1188	if (u_abs_timeout) {
1189		int res = prepare_timeout(u_abs_timeout, &ts);
1190		if (res)
1191			return res;
1192		p = &ts;
1193	}
1194	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1195}
1196
1197SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1198		size_t, msg_len, unsigned int __user *, u_msg_prio,
1199		const struct __kernel_timespec __user *, u_abs_timeout)
1200{
1201	struct timespec64 ts, *p = NULL;
1202	if (u_abs_timeout) {
1203		int res = prepare_timeout(u_abs_timeout, &ts);
1204		if (res)
1205			return res;
1206		p = &ts;
1207	}
1208	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1209}
1210
1211/*
1212 * Notes: the case when user wants us to deregister (with NULL as pointer)
1213 * and he isn't currently owner of notification, will be silently discarded.
1214 * It isn't explicitly defined in the POSIX.
1215 */
1216static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1217{
1218	int ret;
1219	struct fd f;
1220	struct sock *sock;
1221	struct inode *inode;
1222	struct mqueue_inode_info *info;
1223	struct sk_buff *nc;
1224
1225	audit_mq_notify(mqdes, notification);
1226
1227	nc = NULL;
1228	sock = NULL;
1229	if (notification != NULL) {
1230		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1231			     notification->sigev_notify != SIGEV_SIGNAL &&
1232			     notification->sigev_notify != SIGEV_THREAD))
1233			return -EINVAL;
1234		if (notification->sigev_notify == SIGEV_SIGNAL &&
1235			!valid_signal(notification->sigev_signo)) {
1236			return -EINVAL;
1237		}
1238		if (notification->sigev_notify == SIGEV_THREAD) {
1239			long timeo;
1240
1241			/* create the notify skb */
1242			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1243			if (!nc)
1244				return -ENOMEM;
1245
 
1246			if (copy_from_user(nc->data,
1247					notification->sigev_value.sival_ptr,
1248					NOTIFY_COOKIE_LEN)) {
1249				ret = -EFAULT;
1250				goto free_skb;
1251			}
1252
1253			/* TODO: add a header? */
1254			skb_put(nc, NOTIFY_COOKIE_LEN);
1255			/* and attach it to the socket */
1256retry:
1257			f = fdget(notification->sigev_signo);
1258			if (!f.file) {
1259				ret = -EBADF;
1260				goto out;
1261			}
1262			sock = netlink_getsockbyfilp(f.file);
1263			fdput(f);
1264			if (IS_ERR(sock)) {
1265				ret = PTR_ERR(sock);
1266				goto free_skb;
 
1267			}
1268
1269			timeo = MAX_SCHEDULE_TIMEOUT;
1270			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1271			if (ret == 1) {
1272				sock = NULL;
1273				goto retry;
1274			}
1275			if (ret)
1276				return ret;
 
 
 
1277		}
1278	}
1279
1280	f = fdget(mqdes);
1281	if (!f.file) {
1282		ret = -EBADF;
1283		goto out;
1284	}
1285
1286	inode = file_inode(f.file);
1287	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1288		ret = -EBADF;
1289		goto out_fput;
1290	}
1291	info = MQUEUE_I(inode);
1292
1293	ret = 0;
1294	spin_lock(&info->lock);
1295	if (notification == NULL) {
1296		if (info->notify_owner == task_tgid(current)) {
1297			remove_notification(info);
1298			inode->i_atime = inode->i_ctime = current_time(inode);
1299		}
1300	} else if (info->notify_owner != NULL) {
1301		ret = -EBUSY;
1302	} else {
1303		switch (notification->sigev_notify) {
1304		case SIGEV_NONE:
1305			info->notify.sigev_notify = SIGEV_NONE;
1306			break;
1307		case SIGEV_THREAD:
1308			info->notify_sock = sock;
1309			info->notify_cookie = nc;
1310			sock = NULL;
1311			nc = NULL;
1312			info->notify.sigev_notify = SIGEV_THREAD;
1313			break;
1314		case SIGEV_SIGNAL:
1315			info->notify.sigev_signo = notification->sigev_signo;
1316			info->notify.sigev_value = notification->sigev_value;
1317			info->notify.sigev_notify = SIGEV_SIGNAL;
1318			break;
1319		}
1320
1321		info->notify_owner = get_pid(task_tgid(current));
1322		info->notify_user_ns = get_user_ns(current_user_ns());
1323		inode->i_atime = inode->i_ctime = current_time(inode);
1324	}
1325	spin_unlock(&info->lock);
1326out_fput:
1327	fdput(f);
1328out:
1329	if (sock)
1330		netlink_detachskb(sock, nc);
1331	else
1332free_skb:
1333		dev_kfree_skb(nc);
1334
1335	return ret;
1336}
1337
1338SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1339		const struct sigevent __user *, u_notification)
1340{
1341	struct sigevent n, *p = NULL;
1342	if (u_notification) {
1343		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1344			return -EFAULT;
1345		p = &n;
1346	}
1347	return do_mq_notify(mqdes, p);
1348}
1349
1350static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1351{
1352	struct fd f;
1353	struct inode *inode;
1354	struct mqueue_inode_info *info;
1355
1356	if (new && (new->mq_flags & (~O_NONBLOCK)))
1357		return -EINVAL;
1358
1359	f = fdget(mqdes);
1360	if (!f.file)
1361		return -EBADF;
1362
1363	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1364		fdput(f);
1365		return -EBADF;
1366	}
1367
1368	inode = file_inode(f.file);
1369	info = MQUEUE_I(inode);
1370
1371	spin_lock(&info->lock);
1372
1373	if (old) {
1374		*old = info->attr;
1375		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1376	}
1377	if (new) {
1378		audit_mq_getsetattr(mqdes, new);
1379		spin_lock(&f.file->f_lock);
1380		if (new->mq_flags & O_NONBLOCK)
1381			f.file->f_flags |= O_NONBLOCK;
1382		else
1383			f.file->f_flags &= ~O_NONBLOCK;
1384		spin_unlock(&f.file->f_lock);
1385
1386		inode->i_atime = inode->i_ctime = current_time(inode);
1387	}
1388
1389	spin_unlock(&info->lock);
1390	fdput(f);
1391	return 0;
1392}
1393
1394SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1395		const struct mq_attr __user *, u_mqstat,
1396		struct mq_attr __user *, u_omqstat)
1397{
1398	int ret;
1399	struct mq_attr mqstat, omqstat;
1400	struct mq_attr *new = NULL, *old = NULL;
1401
1402	if (u_mqstat) {
1403		new = &mqstat;
1404		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1405			return -EFAULT;
1406	}
1407	if (u_omqstat)
1408		old = &omqstat;
1409
1410	ret = do_mq_getsetattr(mqdes, new, old);
1411	if (ret || !old)
1412		return ret;
1413
1414	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1415		return -EFAULT;
1416	return 0;
1417}
1418
1419#ifdef CONFIG_COMPAT
1420
1421struct compat_mq_attr {
1422	compat_long_t mq_flags;      /* message queue flags		     */
1423	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1424	compat_long_t mq_msgsize;    /* maximum message size		     */
1425	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1426	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1427};
1428
1429static inline int get_compat_mq_attr(struct mq_attr *attr,
1430			const struct compat_mq_attr __user *uattr)
1431{
1432	struct compat_mq_attr v;
1433
1434	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1435		return -EFAULT;
1436
1437	memset(attr, 0, sizeof(*attr));
1438	attr->mq_flags = v.mq_flags;
1439	attr->mq_maxmsg = v.mq_maxmsg;
1440	attr->mq_msgsize = v.mq_msgsize;
1441	attr->mq_curmsgs = v.mq_curmsgs;
1442	return 0;
1443}
1444
1445static inline int put_compat_mq_attr(const struct mq_attr *attr,
1446			struct compat_mq_attr __user *uattr)
1447{
1448	struct compat_mq_attr v;
1449
1450	memset(&v, 0, sizeof(v));
1451	v.mq_flags = attr->mq_flags;
1452	v.mq_maxmsg = attr->mq_maxmsg;
1453	v.mq_msgsize = attr->mq_msgsize;
1454	v.mq_curmsgs = attr->mq_curmsgs;
1455	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1456		return -EFAULT;
1457	return 0;
1458}
1459
1460COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1461		       int, oflag, compat_mode_t, mode,
1462		       struct compat_mq_attr __user *, u_attr)
1463{
1464	struct mq_attr attr, *p = NULL;
1465	if (u_attr && oflag & O_CREAT) {
1466		p = &attr;
1467		if (get_compat_mq_attr(&attr, u_attr))
1468			return -EFAULT;
1469	}
1470	return do_mq_open(u_name, oflag, mode, p);
1471}
1472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1474		       const struct compat_sigevent __user *, u_notification)
1475{
1476	struct sigevent n, *p = NULL;
1477	if (u_notification) {
1478		if (get_compat_sigevent(&n, u_notification))
1479			return -EFAULT;
1480		if (n.sigev_notify == SIGEV_THREAD)
1481			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1482		p = &n;
1483	}
1484	return do_mq_notify(mqdes, p);
1485}
1486
1487COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1488		       const struct compat_mq_attr __user *, u_mqstat,
1489		       struct compat_mq_attr __user *, u_omqstat)
1490{
1491	int ret;
1492	struct mq_attr mqstat, omqstat;
1493	struct mq_attr *new = NULL, *old = NULL;
1494
1495	if (u_mqstat) {
1496		new = &mqstat;
1497		if (get_compat_mq_attr(new, u_mqstat))
1498			return -EFAULT;
1499	}
1500	if (u_omqstat)
1501		old = &omqstat;
1502
1503	ret = do_mq_getsetattr(mqdes, new, old);
1504	if (ret || !old)
1505		return ret;
1506
1507	if (put_compat_mq_attr(old, u_omqstat))
1508		return -EFAULT;
1509	return 0;
1510}
1511#endif
1512
1513#ifdef CONFIG_COMPAT_32BIT_TIME
1514static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1515				   struct timespec64 *ts)
1516{
1517	if (get_old_timespec32(ts, p))
1518		return -EFAULT;
1519	if (!timespec64_valid(ts))
1520		return -EINVAL;
1521	return 0;
1522}
1523
1524SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1525		const char __user *, u_msg_ptr,
1526		unsigned int, msg_len, unsigned int, msg_prio,
1527		const struct old_timespec32 __user *, u_abs_timeout)
1528{
1529	struct timespec64 ts, *p = NULL;
1530	if (u_abs_timeout) {
1531		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1532		if (res)
1533			return res;
1534		p = &ts;
1535	}
1536	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1537}
1538
1539SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1540		char __user *, u_msg_ptr,
1541		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1542		const struct old_timespec32 __user *, u_abs_timeout)
1543{
1544	struct timespec64 ts, *p = NULL;
1545	if (u_abs_timeout) {
1546		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1547		if (res)
1548			return res;
1549		p = &ts;
1550	}
1551	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1552}
1553#endif
1554
1555static const struct inode_operations mqueue_dir_inode_operations = {
1556	.lookup = simple_lookup,
1557	.create = mqueue_create,
1558	.unlink = mqueue_unlink,
1559};
1560
1561static const struct file_operations mqueue_file_operations = {
1562	.flush = mqueue_flush_file,
1563	.poll = mqueue_poll_file,
1564	.read = mqueue_read_file,
1565	.llseek = default_llseek,
1566};
1567
1568static const struct super_operations mqueue_super_ops = {
1569	.alloc_inode = mqueue_alloc_inode,
1570	.free_inode = mqueue_free_inode,
1571	.evict_inode = mqueue_evict_inode,
1572	.statfs = simple_statfs,
1573};
1574
1575static const struct fs_context_operations mqueue_fs_context_ops = {
1576	.free		= mqueue_fs_context_free,
1577	.get_tree	= mqueue_get_tree,
1578};
1579
1580static struct file_system_type mqueue_fs_type = {
1581	.name			= "mqueue",
1582	.init_fs_context	= mqueue_init_fs_context,
1583	.kill_sb		= kill_litter_super,
1584	.fs_flags		= FS_USERNS_MOUNT,
1585};
1586
1587int mq_init_ns(struct ipc_namespace *ns)
1588{
1589	struct vfsmount *m;
1590
1591	ns->mq_queues_count  = 0;
1592	ns->mq_queues_max    = DFLT_QUEUESMAX;
1593	ns->mq_msg_max       = DFLT_MSGMAX;
1594	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1595	ns->mq_msg_default   = DFLT_MSG;
1596	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1597
1598	m = mq_create_mount(ns);
1599	if (IS_ERR(m))
1600		return PTR_ERR(m);
1601	ns->mq_mnt = m;
 
 
1602	return 0;
1603}
1604
1605void mq_clear_sbinfo(struct ipc_namespace *ns)
1606{
1607	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1608}
1609
1610void mq_put_mnt(struct ipc_namespace *ns)
1611{
1612	kern_unmount(ns->mq_mnt);
1613}
1614
1615static int __init init_mqueue_fs(void)
1616{
1617	int error;
1618
1619	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1620				sizeof(struct mqueue_inode_info), 0,
1621				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1622	if (mqueue_inode_cachep == NULL)
1623		return -ENOMEM;
1624
1625	/* ignore failures - they are not fatal */
1626	mq_sysctl_table = mq_register_sysctl_table();
1627
1628	error = register_filesystem(&mqueue_fs_type);
1629	if (error)
1630		goto out_sysctl;
1631
1632	spin_lock_init(&mq_lock);
1633
1634	error = mq_init_ns(&init_ipc_ns);
1635	if (error)
1636		goto out_filesystem;
1637
1638	return 0;
1639
1640out_filesystem:
1641	unregister_filesystem(&mqueue_fs_type);
1642out_sysctl:
1643	if (mq_sysctl_table)
1644		unregister_sysctl_table(mq_sysctl_table);
1645	kmem_cache_destroy(mqueue_inode_cachep);
1646	return error;
1647}
1648
1649device_initcall(init_mqueue_fs);