Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v4.17
 
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file contains journal replay code. It runs when the file-system is being
  25 * mounted and requires no locking.
  26 *
  27 * The larger is the journal, the longer it takes to scan it, so the longer it
  28 * takes to mount UBIFS. This is why the journal has limited size which may be
  29 * changed depending on the system requirements. But a larger journal gives
  30 * faster I/O speed because it writes the index less frequently. So this is a
  31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
  32 * larger is the journal, the more memory its index may consume.
  33 */
  34
  35#include "ubifs.h"
  36#include <linux/list_sort.h>
 
 
  37
  38/**
  39 * struct replay_entry - replay list entry.
  40 * @lnum: logical eraseblock number of the node
  41 * @offs: node offset
  42 * @len: node length
  43 * @deletion: non-zero if this entry corresponds to a node deletion
  44 * @sqnum: node sequence number
  45 * @list: links the replay list
  46 * @key: node key
  47 * @nm: directory entry name
  48 * @old_size: truncation old size
  49 * @new_size: truncation new size
  50 *
  51 * The replay process first scans all buds and builds the replay list, then
  52 * sorts the replay list in nodes sequence number order, and then inserts all
  53 * the replay entries to the TNC.
  54 */
  55struct replay_entry {
  56	int lnum;
  57	int offs;
  58	int len;
 
  59	unsigned int deletion:1;
  60	unsigned long long sqnum;
  61	struct list_head list;
  62	union ubifs_key key;
  63	union {
  64		struct fscrypt_name nm;
  65		struct {
  66			loff_t old_size;
  67			loff_t new_size;
  68		};
  69	};
  70};
  71
  72/**
  73 * struct bud_entry - entry in the list of buds to replay.
  74 * @list: next bud in the list
  75 * @bud: bud description object
  76 * @sqnum: reference node sequence number
  77 * @free: free bytes in the bud
  78 * @dirty: dirty bytes in the bud
  79 */
  80struct bud_entry {
  81	struct list_head list;
  82	struct ubifs_bud *bud;
  83	unsigned long long sqnum;
  84	int free;
  85	int dirty;
  86};
  87
  88/**
  89 * set_bud_lprops - set free and dirty space used by a bud.
  90 * @c: UBIFS file-system description object
  91 * @b: bud entry which describes the bud
  92 *
  93 * This function makes sure the LEB properties of bud @b are set correctly
  94 * after the replay. Returns zero in case of success and a negative error code
  95 * in case of failure.
  96 */
  97static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
  98{
  99	const struct ubifs_lprops *lp;
 100	int err = 0, dirty;
 101
 102	ubifs_get_lprops(c);
 103
 104	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
 105	if (IS_ERR(lp)) {
 106		err = PTR_ERR(lp);
 107		goto out;
 108	}
 109
 110	dirty = lp->dirty;
 111	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
 112		/*
 113		 * The LEB was added to the journal with a starting offset of
 114		 * zero which means the LEB must have been empty. The LEB
 115		 * property values should be @lp->free == @c->leb_size and
 116		 * @lp->dirty == 0, but that is not the case. The reason is that
 117		 * the LEB had been garbage collected before it became the bud,
 118		 * and there was not commit inbetween. The garbage collector
 119		 * resets the free and dirty space without recording it
 120		 * anywhere except lprops, so if there was no commit then
 121		 * lprops does not have that information.
 122		 *
 123		 * We do not need to adjust free space because the scan has told
 124		 * us the exact value which is recorded in the replay entry as
 125		 * @b->free.
 126		 *
 127		 * However we do need to subtract from the dirty space the
 128		 * amount of space that the garbage collector reclaimed, which
 129		 * is the whole LEB minus the amount of space that was free.
 130		 */
 131		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 132			lp->free, lp->dirty);
 133		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 134			lp->free, lp->dirty);
 135		dirty -= c->leb_size - lp->free;
 136		/*
 137		 * If the replay order was perfect the dirty space would now be
 138		 * zero. The order is not perfect because the journal heads
 139		 * race with each other. This is not a problem but is does mean
 140		 * that the dirty space may temporarily exceed c->leb_size
 141		 * during the replay.
 142		 */
 143		if (dirty != 0)
 144			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
 145				b->bud->lnum, lp->free, lp->dirty, b->free,
 146				b->dirty);
 147	}
 148	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
 149			     lp->flags | LPROPS_TAKEN, 0);
 150	if (IS_ERR(lp)) {
 151		err = PTR_ERR(lp);
 152		goto out;
 153	}
 154
 155	/* Make sure the journal head points to the latest bud */
 156	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
 157				     b->bud->lnum, c->leb_size - b->free);
 158
 159out:
 160	ubifs_release_lprops(c);
 161	return err;
 162}
 163
 164/**
 165 * set_buds_lprops - set free and dirty space for all replayed buds.
 166 * @c: UBIFS file-system description object
 167 *
 168 * This function sets LEB properties for all replayed buds. Returns zero in
 169 * case of success and a negative error code in case of failure.
 170 */
 171static int set_buds_lprops(struct ubifs_info *c)
 172{
 173	struct bud_entry *b;
 174	int err;
 175
 176	list_for_each_entry(b, &c->replay_buds, list) {
 177		err = set_bud_lprops(c, b);
 178		if (err)
 179			return err;
 180	}
 181
 182	return 0;
 183}
 184
 185/**
 186 * trun_remove_range - apply a replay entry for a truncation to the TNC.
 187 * @c: UBIFS file-system description object
 188 * @r: replay entry of truncation
 189 */
 190static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
 191{
 192	unsigned min_blk, max_blk;
 193	union ubifs_key min_key, max_key;
 194	ino_t ino;
 195
 196	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
 197	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
 198		min_blk += 1;
 199
 200	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
 201	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
 202		max_blk -= 1;
 203
 204	ino = key_inum(c, &r->key);
 205
 206	data_key_init(c, &min_key, ino, min_blk);
 207	data_key_init(c, &max_key, ino, max_blk);
 208
 209	return ubifs_tnc_remove_range(c, &min_key, &max_key);
 210}
 211
 212/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213 * apply_replay_entry - apply a replay entry to the TNC.
 214 * @c: UBIFS file-system description object
 215 * @r: replay entry to apply
 216 *
 217 * Apply a replay entry to the TNC.
 218 */
 219static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
 220{
 221	int err;
 222
 223	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
 224		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
 225
 226	/* Set c->replay_sqnum to help deal with dangling branches. */
 227	c->replay_sqnum = r->sqnum;
 228
 229	if (is_hash_key(c, &r->key)) {
 230		if (r->deletion)
 231			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
 232		else
 233			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
 234					       r->len, &r->nm);
 235	} else {
 236		if (r->deletion)
 237			switch (key_type(c, &r->key)) {
 238			case UBIFS_INO_KEY:
 239			{
 240				ino_t inum = key_inum(c, &r->key);
 241
 
 
 
 
 
 242				err = ubifs_tnc_remove_ino(c, inum);
 243				break;
 244			}
 245			case UBIFS_TRUN_KEY:
 246				err = trun_remove_range(c, r);
 247				break;
 248			default:
 249				err = ubifs_tnc_remove(c, &r->key);
 250				break;
 251			}
 252		else
 253			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
 254					    r->len);
 255		if (err)
 256			return err;
 257
 258		if (c->need_recovery)
 259			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
 260						       r->new_size);
 261	}
 262
 263	return err;
 264}
 265
 266/**
 267 * replay_entries_cmp - compare 2 replay entries.
 268 * @priv: UBIFS file-system description object
 269 * @a: first replay entry
 270 * @b: second replay entry
 271 *
 272 * This is a comparios function for 'list_sort()' which compares 2 replay
 273 * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
 274 * greater sequence number and %-1 otherwise.
 275 */
 276static int replay_entries_cmp(void *priv, struct list_head *a,
 277			      struct list_head *b)
 278{
 
 279	struct replay_entry *ra, *rb;
 280
 281	cond_resched();
 282	if (a == b)
 283		return 0;
 284
 285	ra = list_entry(a, struct replay_entry, list);
 286	rb = list_entry(b, struct replay_entry, list);
 287	ubifs_assert(ra->sqnum != rb->sqnum);
 288	if (ra->sqnum > rb->sqnum)
 289		return 1;
 290	return -1;
 291}
 292
 293/**
 294 * apply_replay_list - apply the replay list to the TNC.
 295 * @c: UBIFS file-system description object
 296 *
 297 * Apply all entries in the replay list to the TNC. Returns zero in case of
 298 * success and a negative error code in case of failure.
 299 */
 300static int apply_replay_list(struct ubifs_info *c)
 301{
 302	struct replay_entry *r;
 303	int err;
 304
 305	list_sort(c, &c->replay_list, &replay_entries_cmp);
 306
 307	list_for_each_entry(r, &c->replay_list, list) {
 308		cond_resched();
 309
 310		err = apply_replay_entry(c, r);
 311		if (err)
 312			return err;
 313	}
 314
 315	return 0;
 316}
 317
 318/**
 319 * destroy_replay_list - destroy the replay.
 320 * @c: UBIFS file-system description object
 321 *
 322 * Destroy the replay list.
 323 */
 324static void destroy_replay_list(struct ubifs_info *c)
 325{
 326	struct replay_entry *r, *tmp;
 327
 328	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
 329		if (is_hash_key(c, &r->key))
 330			kfree(fname_name(&r->nm));
 331		list_del(&r->list);
 332		kfree(r);
 333	}
 334}
 335
 336/**
 337 * insert_node - insert a node to the replay list
 338 * @c: UBIFS file-system description object
 339 * @lnum: node logical eraseblock number
 340 * @offs: node offset
 341 * @len: node length
 342 * @key: node key
 343 * @sqnum: sequence number
 344 * @deletion: non-zero if this is a deletion
 345 * @used: number of bytes in use in a LEB
 346 * @old_size: truncation old size
 347 * @new_size: truncation new size
 348 *
 349 * This function inserts a scanned non-direntry node to the replay list. The
 350 * replay list contains @struct replay_entry elements, and we sort this list in
 351 * sequence number order before applying it. The replay list is applied at the
 352 * very end of the replay process. Since the list is sorted in sequence number
 353 * order, the older modifications are applied first. This function returns zero
 354 * in case of success and a negative error code in case of failure.
 355 */
 356static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
 357		       union ubifs_key *key, unsigned long long sqnum,
 358		       int deletion, int *used, loff_t old_size,
 359		       loff_t new_size)
 360{
 361	struct replay_entry *r;
 362
 363	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 364
 365	if (key_inum(c, key) >= c->highest_inum)
 366		c->highest_inum = key_inum(c, key);
 367
 368	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 369	if (!r)
 370		return -ENOMEM;
 371
 372	if (!deletion)
 373		*used += ALIGN(len, 8);
 374	r->lnum = lnum;
 375	r->offs = offs;
 376	r->len = len;
 
 377	r->deletion = !!deletion;
 378	r->sqnum = sqnum;
 379	key_copy(c, key, &r->key);
 380	r->old_size = old_size;
 381	r->new_size = new_size;
 382
 383	list_add_tail(&r->list, &c->replay_list);
 384	return 0;
 385}
 386
 387/**
 388 * insert_dent - insert a directory entry node into the replay list.
 389 * @c: UBIFS file-system description object
 390 * @lnum: node logical eraseblock number
 391 * @offs: node offset
 392 * @len: node length
 393 * @key: node key
 394 * @name: directory entry name
 395 * @nlen: directory entry name length
 396 * @sqnum: sequence number
 397 * @deletion: non-zero if this is a deletion
 398 * @used: number of bytes in use in a LEB
 399 *
 400 * This function inserts a scanned directory entry node or an extended
 401 * attribute entry to the replay list. Returns zero in case of success and a
 402 * negative error code in case of failure.
 403 */
 404static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
 405		       union ubifs_key *key, const char *name, int nlen,
 406		       unsigned long long sqnum, int deletion, int *used)
 
 407{
 408	struct replay_entry *r;
 409	char *nbuf;
 410
 411	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 412	if (key_inum(c, key) >= c->highest_inum)
 413		c->highest_inum = key_inum(c, key);
 414
 415	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 416	if (!r)
 417		return -ENOMEM;
 418
 419	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
 420	if (!nbuf) {
 421		kfree(r);
 422		return -ENOMEM;
 423	}
 424
 425	if (!deletion)
 426		*used += ALIGN(len, 8);
 427	r->lnum = lnum;
 428	r->offs = offs;
 429	r->len = len;
 
 430	r->deletion = !!deletion;
 431	r->sqnum = sqnum;
 432	key_copy(c, key, &r->key);
 433	fname_len(&r->nm) = nlen;
 434	memcpy(nbuf, name, nlen);
 435	nbuf[nlen] = '\0';
 436	fname_name(&r->nm) = nbuf;
 437
 438	list_add_tail(&r->list, &c->replay_list);
 439	return 0;
 440}
 441
 442/**
 443 * ubifs_validate_entry - validate directory or extended attribute entry node.
 444 * @c: UBIFS file-system description object
 445 * @dent: the node to validate
 446 *
 447 * This function validates directory or extended attribute entry node @dent.
 448 * Returns zero if the node is all right and a %-EINVAL if not.
 449 */
 450int ubifs_validate_entry(struct ubifs_info *c,
 451			 const struct ubifs_dent_node *dent)
 452{
 453	int key_type = key_type_flash(c, dent->key);
 454	int nlen = le16_to_cpu(dent->nlen);
 455
 456	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
 457	    dent->type >= UBIFS_ITYPES_CNT ||
 458	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
 459	    (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
 460	    le64_to_cpu(dent->inum) > MAX_INUM) {
 461		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
 462			  "directory entry" : "extended attribute entry");
 463		return -EINVAL;
 464	}
 465
 466	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
 467		ubifs_err(c, "bad key type %d", key_type);
 468		return -EINVAL;
 469	}
 470
 471	return 0;
 472}
 473
 474/**
 475 * is_last_bud - check if the bud is the last in the journal head.
 476 * @c: UBIFS file-system description object
 477 * @bud: bud description object
 478 *
 479 * This function checks if bud @bud is the last bud in its journal head. This
 480 * information is then used by 'replay_bud()' to decide whether the bud can
 481 * have corruptions or not. Indeed, only last buds can be corrupted by power
 482 * cuts. Returns %1 if this is the last bud, and %0 if not.
 483 */
 484static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
 485{
 486	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
 487	struct ubifs_bud *next;
 488	uint32_t data;
 489	int err;
 490
 491	if (list_is_last(&bud->list, &jh->buds_list))
 492		return 1;
 493
 494	/*
 495	 * The following is a quirk to make sure we work correctly with UBIFS
 496	 * images used with older UBIFS.
 497	 *
 498	 * Normally, the last bud will be the last in the journal head's list
 499	 * of bud. However, there is one exception if the UBIFS image belongs
 500	 * to older UBIFS. This is fairly unlikely: one would need to use old
 501	 * UBIFS, then have a power cut exactly at the right point, and then
 502	 * try to mount this image with new UBIFS.
 503	 *
 504	 * The exception is: it is possible to have 2 buds A and B, A goes
 505	 * before B, and B is the last, bud B is contains no data, and bud A is
 506	 * corrupted at the end. The reason is that in older versions when the
 507	 * journal code switched the next bud (from A to B), it first added a
 508	 * log reference node for the new bud (B), and only after this it
 509	 * synchronized the write-buffer of current bud (A). But later this was
 510	 * changed and UBIFS started to always synchronize the write-buffer of
 511	 * the bud (A) before writing the log reference for the new bud (B).
 512	 *
 513	 * But because older UBIFS always synchronized A's write-buffer before
 514	 * writing to B, we can recognize this exceptional situation but
 515	 * checking the contents of bud B - if it is empty, then A can be
 516	 * treated as the last and we can recover it.
 517	 *
 518	 * TODO: remove this piece of code in a couple of years (today it is
 519	 * 16.05.2011).
 520	 */
 521	next = list_entry(bud->list.next, struct ubifs_bud, list);
 522	if (!list_is_last(&next->list, &jh->buds_list))
 523		return 0;
 524
 525	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
 526	if (err)
 527		return 0;
 528
 529	return data == 0xFFFFFFFF;
 530}
 531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532/**
 533 * replay_bud - replay a bud logical eraseblock.
 534 * @c: UBIFS file-system description object
 535 * @b: bud entry which describes the bud
 536 *
 537 * This function replays bud @bud, recovers it if needed, and adds all nodes
 538 * from this bud to the replay list. Returns zero in case of success and a
 539 * negative error code in case of failure.
 540 */
 541static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
 542{
 543	int is_last = is_last_bud(c, b->bud);
 544	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
 
 545	struct ubifs_scan_leb *sleb;
 546	struct ubifs_scan_node *snod;
 547
 548	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
 549		lnum, b->bud->jhead, offs, is_last);
 550
 551	if (c->need_recovery && is_last)
 552		/*
 553		 * Recover only last LEBs in the journal heads, because power
 554		 * cuts may cause corruptions only in these LEBs, because only
 555		 * these LEBs could possibly be written to at the power cut
 556		 * time.
 557		 */
 558		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
 559	else
 560		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
 561	if (IS_ERR(sleb))
 562		return PTR_ERR(sleb);
 563
 
 
 
 
 
 
 
 
 
 564	/*
 565	 * The bud does not have to start from offset zero - the beginning of
 566	 * the 'lnum' LEB may contain previously committed data. One of the
 567	 * things we have to do in replay is to correctly update lprops with
 568	 * newer information about this LEB.
 569	 *
 570	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
 571	 * bytes of free space because it only contain information about
 572	 * committed data.
 573	 *
 574	 * But we know that real amount of free space is 'c->leb_size -
 575	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
 576	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
 577	 * how much of these data are dirty and update lprops with this
 578	 * information.
 579	 *
 580	 * The dirt in that LEB region is comprised of padding nodes, deletion
 581	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
 582	 * nodes in this LEB. So instead of calculating clean space, we
 583	 * calculate used space ('used' variable).
 584	 */
 585
 586	list_for_each_entry(snod, &sleb->nodes, list) {
 
 587		int deletion = 0;
 588
 589		cond_resched();
 590
 591		if (snod->sqnum >= SQNUM_WATERMARK) {
 592			ubifs_err(c, "file system's life ended");
 593			goto out_dump;
 594		}
 595
 
 
 596		if (snod->sqnum > c->max_sqnum)
 597			c->max_sqnum = snod->sqnum;
 598
 599		switch (snod->type) {
 600		case UBIFS_INO_NODE:
 601		{
 602			struct ubifs_ino_node *ino = snod->node;
 603			loff_t new_size = le64_to_cpu(ino->size);
 604
 605			if (le32_to_cpu(ino->nlink) == 0)
 606				deletion = 1;
 607			err = insert_node(c, lnum, snod->offs, snod->len,
 608					  &snod->key, snod->sqnum, deletion,
 609					  &used, 0, new_size);
 610			break;
 611		}
 612		case UBIFS_DATA_NODE:
 613		{
 614			struct ubifs_data_node *dn = snod->node;
 615			loff_t new_size = le32_to_cpu(dn->size) +
 616					  key_block(c, &snod->key) *
 617					  UBIFS_BLOCK_SIZE;
 618
 619			err = insert_node(c, lnum, snod->offs, snod->len,
 620					  &snod->key, snod->sqnum, deletion,
 621					  &used, 0, new_size);
 622			break;
 623		}
 624		case UBIFS_DENT_NODE:
 625		case UBIFS_XENT_NODE:
 626		{
 627			struct ubifs_dent_node *dent = snod->node;
 628
 629			err = ubifs_validate_entry(c, dent);
 630			if (err)
 631				goto out_dump;
 632
 633			err = insert_dent(c, lnum, snod->offs, snod->len,
 634					  &snod->key, dent->name,
 635					  le16_to_cpu(dent->nlen), snod->sqnum,
 636					  !le64_to_cpu(dent->inum), &used);
 637			break;
 638		}
 639		case UBIFS_TRUN_NODE:
 640		{
 641			struct ubifs_trun_node *trun = snod->node;
 642			loff_t old_size = le64_to_cpu(trun->old_size);
 643			loff_t new_size = le64_to_cpu(trun->new_size);
 644			union ubifs_key key;
 645
 646			/* Validate truncation node */
 647			if (old_size < 0 || old_size > c->max_inode_sz ||
 648			    new_size < 0 || new_size > c->max_inode_sz ||
 649			    old_size <= new_size) {
 650				ubifs_err(c, "bad truncation node");
 651				goto out_dump;
 652			}
 653
 654			/*
 655			 * Create a fake truncation key just to use the same
 656			 * functions which expect nodes to have keys.
 657			 */
 658			trun_key_init(c, &key, le32_to_cpu(trun->inum));
 659			err = insert_node(c, lnum, snod->offs, snod->len,
 660					  &key, snod->sqnum, 1, &used,
 661					  old_size, new_size);
 662			break;
 663		}
 
 
 664		default:
 665			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
 666				  snod->type, lnum, snod->offs);
 667			err = -EINVAL;
 668			goto out_dump;
 669		}
 670		if (err)
 671			goto out;
 
 
 
 
 672	}
 673
 674	ubifs_assert(ubifs_search_bud(c, lnum));
 675	ubifs_assert(sleb->endpt - offs >= used);
 676	ubifs_assert(sleb->endpt % c->min_io_size == 0);
 677
 678	b->dirty = sleb->endpt - offs - used;
 679	b->free = c->leb_size - sleb->endpt;
 680	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
 681		lnum, b->dirty, b->free);
 682
 683out:
 684	ubifs_scan_destroy(sleb);
 685	return err;
 686
 687out_dump:
 688	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
 689	ubifs_dump_node(c, snod->node);
 690	ubifs_scan_destroy(sleb);
 691	return -EINVAL;
 692}
 693
 694/**
 695 * replay_buds - replay all buds.
 696 * @c: UBIFS file-system description object
 697 *
 698 * This function returns zero in case of success and a negative error code in
 699 * case of failure.
 700 */
 701static int replay_buds(struct ubifs_info *c)
 702{
 703	struct bud_entry *b;
 704	int err;
 705	unsigned long long prev_sqnum = 0;
 706
 707	list_for_each_entry(b, &c->replay_buds, list) {
 708		err = replay_bud(c, b);
 709		if (err)
 710			return err;
 711
 712		ubifs_assert(b->sqnum > prev_sqnum);
 713		prev_sqnum = b->sqnum;
 714	}
 715
 716	return 0;
 717}
 718
 719/**
 720 * destroy_bud_list - destroy the list of buds to replay.
 721 * @c: UBIFS file-system description object
 722 */
 723static void destroy_bud_list(struct ubifs_info *c)
 724{
 725	struct bud_entry *b;
 726
 727	while (!list_empty(&c->replay_buds)) {
 728		b = list_entry(c->replay_buds.next, struct bud_entry, list);
 729		list_del(&b->list);
 730		kfree(b);
 731	}
 732}
 733
 734/**
 735 * add_replay_bud - add a bud to the list of buds to replay.
 736 * @c: UBIFS file-system description object
 737 * @lnum: bud logical eraseblock number to replay
 738 * @offs: bud start offset
 739 * @jhead: journal head to which this bud belongs
 740 * @sqnum: reference node sequence number
 741 *
 742 * This function returns zero in case of success and a negative error code in
 743 * case of failure.
 744 */
 745static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 746			  unsigned long long sqnum)
 747{
 748	struct ubifs_bud *bud;
 749	struct bud_entry *b;
 
 750
 751	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
 752
 753	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
 754	if (!bud)
 755		return -ENOMEM;
 756
 757	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
 758	if (!b) {
 759		kfree(bud);
 760		return -ENOMEM;
 761	}
 762
 763	bud->lnum = lnum;
 764	bud->start = offs;
 765	bud->jhead = jhead;
 
 
 
 
 
 
 
 
 766	ubifs_add_bud(c, bud);
 767
 768	b->bud = bud;
 769	b->sqnum = sqnum;
 770	list_add_tail(&b->list, &c->replay_buds);
 771
 772	return 0;
 
 
 
 
 
 773}
 774
 775/**
 776 * validate_ref - validate a reference node.
 777 * @c: UBIFS file-system description object
 778 * @ref: the reference node to validate
 779 * @ref_lnum: LEB number of the reference node
 780 * @ref_offs: reference node offset
 781 *
 782 * This function returns %1 if a bud reference already exists for the LEB. %0 is
 783 * returned if the reference node is new, otherwise %-EINVAL is returned if
 784 * validation failed.
 785 */
 786static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
 787{
 788	struct ubifs_bud *bud;
 789	int lnum = le32_to_cpu(ref->lnum);
 790	unsigned int offs = le32_to_cpu(ref->offs);
 791	unsigned int jhead = le32_to_cpu(ref->jhead);
 792
 793	/*
 794	 * ref->offs may point to the end of LEB when the journal head points
 795	 * to the end of LEB and we write reference node for it during commit.
 796	 * So this is why we require 'offs > c->leb_size'.
 797	 */
 798	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
 799	    lnum < c->main_first || offs > c->leb_size ||
 800	    offs & (c->min_io_size - 1))
 801		return -EINVAL;
 802
 803	/* Make sure we have not already looked at this bud */
 804	bud = ubifs_search_bud(c, lnum);
 805	if (bud) {
 806		if (bud->jhead == jhead && bud->start <= offs)
 807			return 1;
 808		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
 809		return -EINVAL;
 810	}
 811
 812	return 0;
 813}
 814
 815/**
 816 * replay_log_leb - replay a log logical eraseblock.
 817 * @c: UBIFS file-system description object
 818 * @lnum: log logical eraseblock to replay
 819 * @offs: offset to start replaying from
 820 * @sbuf: scan buffer
 821 *
 822 * This function replays a log LEB and returns zero in case of success, %1 if
 823 * this is the last LEB in the log, and a negative error code in case of
 824 * failure.
 825 */
 826static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 827{
 828	int err;
 829	struct ubifs_scan_leb *sleb;
 830	struct ubifs_scan_node *snod;
 831	const struct ubifs_cs_node *node;
 832
 833	dbg_mnt("replay log LEB %d:%d", lnum, offs);
 834	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
 835	if (IS_ERR(sleb)) {
 836		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
 837			return PTR_ERR(sleb);
 838		/*
 839		 * Note, the below function will recover this log LEB only if
 840		 * it is the last, because unclean reboots can possibly corrupt
 841		 * only the tail of the log.
 842		 */
 843		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
 844		if (IS_ERR(sleb))
 845			return PTR_ERR(sleb);
 846	}
 847
 848	if (sleb->nodes_cnt == 0) {
 849		err = 1;
 850		goto out;
 851	}
 852
 853	node = sleb->buf;
 854	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 855	if (c->cs_sqnum == 0) {
 856		/*
 857		 * This is the first log LEB we are looking at, make sure that
 858		 * the first node is a commit start node. Also record its
 859		 * sequence number so that UBIFS can determine where the log
 860		 * ends, because all nodes which were have higher sequence
 861		 * numbers.
 862		 */
 863		if (snod->type != UBIFS_CS_NODE) {
 864			ubifs_err(c, "first log node at LEB %d:%d is not CS node",
 865				  lnum, offs);
 866			goto out_dump;
 867		}
 868		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
 869			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
 870				  lnum, offs,
 871				  (unsigned long long)le64_to_cpu(node->cmt_no),
 872				  c->cmt_no);
 873			goto out_dump;
 874		}
 875
 876		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
 877		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
 
 
 
 
 
 
 
 
 878	}
 879
 880	if (snod->sqnum < c->cs_sqnum) {
 881		/*
 882		 * This means that we reached end of log and now
 883		 * look to the older log data, which was already
 884		 * committed but the eraseblock was not erased (UBIFS
 885		 * only un-maps it). So this basically means we have to
 886		 * exit with "end of log" code.
 887		 */
 888		err = 1;
 889		goto out;
 890	}
 891
 892	/* Make sure the first node sits at offset zero of the LEB */
 893	if (snod->offs != 0) {
 894		ubifs_err(c, "first node is not at zero offset");
 895		goto out_dump;
 896	}
 897
 898	list_for_each_entry(snod, &sleb->nodes, list) {
 899		cond_resched();
 900
 901		if (snod->sqnum >= SQNUM_WATERMARK) {
 902			ubifs_err(c, "file system's life ended");
 903			goto out_dump;
 904		}
 905
 906		if (snod->sqnum < c->cs_sqnum) {
 907			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
 908				  snod->sqnum, c->cs_sqnum);
 909			goto out_dump;
 910		}
 911
 912		if (snod->sqnum > c->max_sqnum)
 913			c->max_sqnum = snod->sqnum;
 914
 915		switch (snod->type) {
 916		case UBIFS_REF_NODE: {
 917			const struct ubifs_ref_node *ref = snod->node;
 918
 919			err = validate_ref(c, ref);
 920			if (err == 1)
 921				break; /* Already have this bud */
 922			if (err)
 923				goto out_dump;
 924
 
 
 
 
 
 925			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
 926					     le32_to_cpu(ref->offs),
 927					     le32_to_cpu(ref->jhead),
 928					     snod->sqnum);
 929			if (err)
 930				goto out;
 931
 932			break;
 933		}
 934		case UBIFS_CS_NODE:
 935			/* Make sure it sits at the beginning of LEB */
 936			if (snod->offs != 0) {
 937				ubifs_err(c, "unexpected node in log");
 938				goto out_dump;
 939			}
 940			break;
 941		default:
 942			ubifs_err(c, "unexpected node in log");
 943			goto out_dump;
 944		}
 945	}
 946
 947	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
 948		c->lhead_lnum = lnum;
 949		c->lhead_offs = sleb->endpt;
 950	}
 951
 952	err = !sleb->endpt;
 953out:
 954	ubifs_scan_destroy(sleb);
 955	return err;
 956
 957out_dump:
 958	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
 959		  lnum, offs + snod->offs);
 960	ubifs_dump_node(c, snod->node);
 961	ubifs_scan_destroy(sleb);
 962	return -EINVAL;
 963}
 964
 965/**
 966 * take_ihead - update the status of the index head in lprops to 'taken'.
 967 * @c: UBIFS file-system description object
 968 *
 969 * This function returns the amount of free space in the index head LEB or a
 970 * negative error code.
 971 */
 972static int take_ihead(struct ubifs_info *c)
 973{
 974	const struct ubifs_lprops *lp;
 975	int err, free;
 976
 977	ubifs_get_lprops(c);
 978
 979	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
 980	if (IS_ERR(lp)) {
 981		err = PTR_ERR(lp);
 982		goto out;
 983	}
 984
 985	free = lp->free;
 986
 987	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 988			     lp->flags | LPROPS_TAKEN, 0);
 989	if (IS_ERR(lp)) {
 990		err = PTR_ERR(lp);
 991		goto out;
 992	}
 993
 994	err = free;
 995out:
 996	ubifs_release_lprops(c);
 997	return err;
 998}
 999
1000/**
1001 * ubifs_replay_journal - replay journal.
1002 * @c: UBIFS file-system description object
1003 *
1004 * This function scans the journal, replays and cleans it up. It makes sure all
1005 * memory data structures related to uncommitted journal are built (dirty TNC
1006 * tree, tree of buds, modified lprops, etc).
1007 */
1008int ubifs_replay_journal(struct ubifs_info *c)
1009{
1010	int err, lnum, free;
1011
1012	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1013
1014	/* Update the status of the index head in lprops to 'taken' */
1015	free = take_ihead(c);
1016	if (free < 0)
1017		return free; /* Error code */
1018
1019	if (c->ihead_offs != c->leb_size - free) {
1020		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1021			  c->ihead_offs);
1022		return -EINVAL;
1023	}
1024
1025	dbg_mnt("start replaying the journal");
1026	c->replaying = 1;
1027	lnum = c->ltail_lnum = c->lhead_lnum;
1028
1029	do {
1030		err = replay_log_leb(c, lnum, 0, c->sbuf);
1031		if (err == 1) {
1032			if (lnum != c->lhead_lnum)
1033				/* We hit the end of the log */
1034				break;
1035
1036			/*
1037			 * The head of the log must always start with the
1038			 * "commit start" node on a properly formatted UBIFS.
1039			 * But we found no nodes at all, which means that
1040			 * someting went wrong and we cannot proceed mounting
1041			 * the file-system.
1042			 */
1043			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1044				  lnum, 0);
1045			err = -EINVAL;
1046		}
1047		if (err)
1048			goto out;
1049		lnum = ubifs_next_log_lnum(c, lnum);
1050	} while (lnum != c->ltail_lnum);
1051
1052	err = replay_buds(c);
1053	if (err)
1054		goto out;
1055
1056	err = apply_replay_list(c);
1057	if (err)
1058		goto out;
1059
1060	err = set_buds_lprops(c);
1061	if (err)
1062		goto out;
1063
1064	/*
1065	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1066	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1067	 * depend on it. This means we have to initialize it to make sure
1068	 * budgeting works properly.
1069	 */
1070	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1071	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1072
1073	ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1074	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1075		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1076		(unsigned long)c->highest_inum);
1077out:
1078	destroy_replay_list(c);
1079	destroy_bud_list(c);
1080	c->replaying = 0;
1081	return err;
1082}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file contains journal replay code. It runs when the file-system is being
  13 * mounted and requires no locking.
  14 *
  15 * The larger is the journal, the longer it takes to scan it, so the longer it
  16 * takes to mount UBIFS. This is why the journal has limited size which may be
  17 * changed depending on the system requirements. But a larger journal gives
  18 * faster I/O speed because it writes the index less frequently. So this is a
  19 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
  20 * larger is the journal, the more memory its index may consume.
  21 */
  22
  23#include "ubifs.h"
  24#include <linux/list_sort.h>
  25#include <crypto/hash.h>
  26#include <crypto/algapi.h>
  27
  28/**
  29 * struct replay_entry - replay list entry.
  30 * @lnum: logical eraseblock number of the node
  31 * @offs: node offset
  32 * @len: node length
  33 * @deletion: non-zero if this entry corresponds to a node deletion
  34 * @sqnum: node sequence number
  35 * @list: links the replay list
  36 * @key: node key
  37 * @nm: directory entry name
  38 * @old_size: truncation old size
  39 * @new_size: truncation new size
  40 *
  41 * The replay process first scans all buds and builds the replay list, then
  42 * sorts the replay list in nodes sequence number order, and then inserts all
  43 * the replay entries to the TNC.
  44 */
  45struct replay_entry {
  46	int lnum;
  47	int offs;
  48	int len;
  49	u8 hash[UBIFS_HASH_ARR_SZ];
  50	unsigned int deletion:1;
  51	unsigned long long sqnum;
  52	struct list_head list;
  53	union ubifs_key key;
  54	union {
  55		struct fscrypt_name nm;
  56		struct {
  57			loff_t old_size;
  58			loff_t new_size;
  59		};
  60	};
  61};
  62
  63/**
  64 * struct bud_entry - entry in the list of buds to replay.
  65 * @list: next bud in the list
  66 * @bud: bud description object
  67 * @sqnum: reference node sequence number
  68 * @free: free bytes in the bud
  69 * @dirty: dirty bytes in the bud
  70 */
  71struct bud_entry {
  72	struct list_head list;
  73	struct ubifs_bud *bud;
  74	unsigned long long sqnum;
  75	int free;
  76	int dirty;
  77};
  78
  79/**
  80 * set_bud_lprops - set free and dirty space used by a bud.
  81 * @c: UBIFS file-system description object
  82 * @b: bud entry which describes the bud
  83 *
  84 * This function makes sure the LEB properties of bud @b are set correctly
  85 * after the replay. Returns zero in case of success and a negative error code
  86 * in case of failure.
  87 */
  88static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
  89{
  90	const struct ubifs_lprops *lp;
  91	int err = 0, dirty;
  92
  93	ubifs_get_lprops(c);
  94
  95	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
  96	if (IS_ERR(lp)) {
  97		err = PTR_ERR(lp);
  98		goto out;
  99	}
 100
 101	dirty = lp->dirty;
 102	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
 103		/*
 104		 * The LEB was added to the journal with a starting offset of
 105		 * zero which means the LEB must have been empty. The LEB
 106		 * property values should be @lp->free == @c->leb_size and
 107		 * @lp->dirty == 0, but that is not the case. The reason is that
 108		 * the LEB had been garbage collected before it became the bud,
 109		 * and there was not commit inbetween. The garbage collector
 110		 * resets the free and dirty space without recording it
 111		 * anywhere except lprops, so if there was no commit then
 112		 * lprops does not have that information.
 113		 *
 114		 * We do not need to adjust free space because the scan has told
 115		 * us the exact value which is recorded in the replay entry as
 116		 * @b->free.
 117		 *
 118		 * However we do need to subtract from the dirty space the
 119		 * amount of space that the garbage collector reclaimed, which
 120		 * is the whole LEB minus the amount of space that was free.
 121		 */
 122		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 123			lp->free, lp->dirty);
 124		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 125			lp->free, lp->dirty);
 126		dirty -= c->leb_size - lp->free;
 127		/*
 128		 * If the replay order was perfect the dirty space would now be
 129		 * zero. The order is not perfect because the journal heads
 130		 * race with each other. This is not a problem but is does mean
 131		 * that the dirty space may temporarily exceed c->leb_size
 132		 * during the replay.
 133		 */
 134		if (dirty != 0)
 135			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
 136				b->bud->lnum, lp->free, lp->dirty, b->free,
 137				b->dirty);
 138	}
 139	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
 140			     lp->flags | LPROPS_TAKEN, 0);
 141	if (IS_ERR(lp)) {
 142		err = PTR_ERR(lp);
 143		goto out;
 144	}
 145
 146	/* Make sure the journal head points to the latest bud */
 147	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
 148				     b->bud->lnum, c->leb_size - b->free);
 149
 150out:
 151	ubifs_release_lprops(c);
 152	return err;
 153}
 154
 155/**
 156 * set_buds_lprops - set free and dirty space for all replayed buds.
 157 * @c: UBIFS file-system description object
 158 *
 159 * This function sets LEB properties for all replayed buds. Returns zero in
 160 * case of success and a negative error code in case of failure.
 161 */
 162static int set_buds_lprops(struct ubifs_info *c)
 163{
 164	struct bud_entry *b;
 165	int err;
 166
 167	list_for_each_entry(b, &c->replay_buds, list) {
 168		err = set_bud_lprops(c, b);
 169		if (err)
 170			return err;
 171	}
 172
 173	return 0;
 174}
 175
 176/**
 177 * trun_remove_range - apply a replay entry for a truncation to the TNC.
 178 * @c: UBIFS file-system description object
 179 * @r: replay entry of truncation
 180 */
 181static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
 182{
 183	unsigned min_blk, max_blk;
 184	union ubifs_key min_key, max_key;
 185	ino_t ino;
 186
 187	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
 188	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
 189		min_blk += 1;
 190
 191	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
 192	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
 193		max_blk -= 1;
 194
 195	ino = key_inum(c, &r->key);
 196
 197	data_key_init(c, &min_key, ino, min_blk);
 198	data_key_init(c, &max_key, ino, max_blk);
 199
 200	return ubifs_tnc_remove_range(c, &min_key, &max_key);
 201}
 202
 203/**
 204 * inode_still_linked - check whether inode in question will be re-linked.
 205 * @c: UBIFS file-system description object
 206 * @rino: replay entry to test
 207 *
 208 * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1.
 209 * This case needs special care, otherwise all references to the inode will
 210 * be removed upon the first replay entry of an inode with link count 0
 211 * is found.
 212 */
 213static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino)
 214{
 215	struct replay_entry *r;
 216
 217	ubifs_assert(c, rino->deletion);
 218	ubifs_assert(c, key_type(c, &rino->key) == UBIFS_INO_KEY);
 219
 220	/*
 221	 * Find the most recent entry for the inode behind @rino and check
 222	 * whether it is a deletion.
 223	 */
 224	list_for_each_entry_reverse(r, &c->replay_list, list) {
 225		ubifs_assert(c, r->sqnum >= rino->sqnum);
 226		if (key_inum(c, &r->key) == key_inum(c, &rino->key))
 227			return r->deletion == 0;
 228
 229	}
 230
 231	ubifs_assert(c, 0);
 232	return false;
 233}
 234
 235/**
 236 * apply_replay_entry - apply a replay entry to the TNC.
 237 * @c: UBIFS file-system description object
 238 * @r: replay entry to apply
 239 *
 240 * Apply a replay entry to the TNC.
 241 */
 242static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
 243{
 244	int err;
 245
 246	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
 247		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
 248
 
 
 
 249	if (is_hash_key(c, &r->key)) {
 250		if (r->deletion)
 251			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
 252		else
 253			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
 254					       r->len, r->hash, &r->nm);
 255	} else {
 256		if (r->deletion)
 257			switch (key_type(c, &r->key)) {
 258			case UBIFS_INO_KEY:
 259			{
 260				ino_t inum = key_inum(c, &r->key);
 261
 262				if (inode_still_linked(c, r)) {
 263					err = 0;
 264					break;
 265				}
 266
 267				err = ubifs_tnc_remove_ino(c, inum);
 268				break;
 269			}
 270			case UBIFS_TRUN_KEY:
 271				err = trun_remove_range(c, r);
 272				break;
 273			default:
 274				err = ubifs_tnc_remove(c, &r->key);
 275				break;
 276			}
 277		else
 278			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
 279					    r->len, r->hash);
 280		if (err)
 281			return err;
 282
 283		if (c->need_recovery)
 284			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
 285						       r->new_size);
 286	}
 287
 288	return err;
 289}
 290
 291/**
 292 * replay_entries_cmp - compare 2 replay entries.
 293 * @priv: UBIFS file-system description object
 294 * @a: first replay entry
 295 * @b: second replay entry
 296 *
 297 * This is a comparios function for 'list_sort()' which compares 2 replay
 298 * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
 299 * greater sequence number and %-1 otherwise.
 300 */
 301static int replay_entries_cmp(void *priv, struct list_head *a,
 302			      struct list_head *b)
 303{
 304	struct ubifs_info *c = priv;
 305	struct replay_entry *ra, *rb;
 306
 307	cond_resched();
 308	if (a == b)
 309		return 0;
 310
 311	ra = list_entry(a, struct replay_entry, list);
 312	rb = list_entry(b, struct replay_entry, list);
 313	ubifs_assert(c, ra->sqnum != rb->sqnum);
 314	if (ra->sqnum > rb->sqnum)
 315		return 1;
 316	return -1;
 317}
 318
 319/**
 320 * apply_replay_list - apply the replay list to the TNC.
 321 * @c: UBIFS file-system description object
 322 *
 323 * Apply all entries in the replay list to the TNC. Returns zero in case of
 324 * success and a negative error code in case of failure.
 325 */
 326static int apply_replay_list(struct ubifs_info *c)
 327{
 328	struct replay_entry *r;
 329	int err;
 330
 331	list_sort(c, &c->replay_list, &replay_entries_cmp);
 332
 333	list_for_each_entry(r, &c->replay_list, list) {
 334		cond_resched();
 335
 336		err = apply_replay_entry(c, r);
 337		if (err)
 338			return err;
 339	}
 340
 341	return 0;
 342}
 343
 344/**
 345 * destroy_replay_list - destroy the replay.
 346 * @c: UBIFS file-system description object
 347 *
 348 * Destroy the replay list.
 349 */
 350static void destroy_replay_list(struct ubifs_info *c)
 351{
 352	struct replay_entry *r, *tmp;
 353
 354	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
 355		if (is_hash_key(c, &r->key))
 356			kfree(fname_name(&r->nm));
 357		list_del(&r->list);
 358		kfree(r);
 359	}
 360}
 361
 362/**
 363 * insert_node - insert a node to the replay list
 364 * @c: UBIFS file-system description object
 365 * @lnum: node logical eraseblock number
 366 * @offs: node offset
 367 * @len: node length
 368 * @key: node key
 369 * @sqnum: sequence number
 370 * @deletion: non-zero if this is a deletion
 371 * @used: number of bytes in use in a LEB
 372 * @old_size: truncation old size
 373 * @new_size: truncation new size
 374 *
 375 * This function inserts a scanned non-direntry node to the replay list. The
 376 * replay list contains @struct replay_entry elements, and we sort this list in
 377 * sequence number order before applying it. The replay list is applied at the
 378 * very end of the replay process. Since the list is sorted in sequence number
 379 * order, the older modifications are applied first. This function returns zero
 380 * in case of success and a negative error code in case of failure.
 381 */
 382static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
 383		       const u8 *hash, union ubifs_key *key,
 384		       unsigned long long sqnum, int deletion, int *used,
 385		       loff_t old_size, loff_t new_size)
 386{
 387	struct replay_entry *r;
 388
 389	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 390
 391	if (key_inum(c, key) >= c->highest_inum)
 392		c->highest_inum = key_inum(c, key);
 393
 394	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 395	if (!r)
 396		return -ENOMEM;
 397
 398	if (!deletion)
 399		*used += ALIGN(len, 8);
 400	r->lnum = lnum;
 401	r->offs = offs;
 402	r->len = len;
 403	ubifs_copy_hash(c, hash, r->hash);
 404	r->deletion = !!deletion;
 405	r->sqnum = sqnum;
 406	key_copy(c, key, &r->key);
 407	r->old_size = old_size;
 408	r->new_size = new_size;
 409
 410	list_add_tail(&r->list, &c->replay_list);
 411	return 0;
 412}
 413
 414/**
 415 * insert_dent - insert a directory entry node into the replay list.
 416 * @c: UBIFS file-system description object
 417 * @lnum: node logical eraseblock number
 418 * @offs: node offset
 419 * @len: node length
 420 * @key: node key
 421 * @name: directory entry name
 422 * @nlen: directory entry name length
 423 * @sqnum: sequence number
 424 * @deletion: non-zero if this is a deletion
 425 * @used: number of bytes in use in a LEB
 426 *
 427 * This function inserts a scanned directory entry node or an extended
 428 * attribute entry to the replay list. Returns zero in case of success and a
 429 * negative error code in case of failure.
 430 */
 431static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
 432		       const u8 *hash, union ubifs_key *key,
 433		       const char *name, int nlen, unsigned long long sqnum,
 434		       int deletion, int *used)
 435{
 436	struct replay_entry *r;
 437	char *nbuf;
 438
 439	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 440	if (key_inum(c, key) >= c->highest_inum)
 441		c->highest_inum = key_inum(c, key);
 442
 443	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 444	if (!r)
 445		return -ENOMEM;
 446
 447	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
 448	if (!nbuf) {
 449		kfree(r);
 450		return -ENOMEM;
 451	}
 452
 453	if (!deletion)
 454		*used += ALIGN(len, 8);
 455	r->lnum = lnum;
 456	r->offs = offs;
 457	r->len = len;
 458	ubifs_copy_hash(c, hash, r->hash);
 459	r->deletion = !!deletion;
 460	r->sqnum = sqnum;
 461	key_copy(c, key, &r->key);
 462	fname_len(&r->nm) = nlen;
 463	memcpy(nbuf, name, nlen);
 464	nbuf[nlen] = '\0';
 465	fname_name(&r->nm) = nbuf;
 466
 467	list_add_tail(&r->list, &c->replay_list);
 468	return 0;
 469}
 470
 471/**
 472 * ubifs_validate_entry - validate directory or extended attribute entry node.
 473 * @c: UBIFS file-system description object
 474 * @dent: the node to validate
 475 *
 476 * This function validates directory or extended attribute entry node @dent.
 477 * Returns zero if the node is all right and a %-EINVAL if not.
 478 */
 479int ubifs_validate_entry(struct ubifs_info *c,
 480			 const struct ubifs_dent_node *dent)
 481{
 482	int key_type = key_type_flash(c, dent->key);
 483	int nlen = le16_to_cpu(dent->nlen);
 484
 485	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
 486	    dent->type >= UBIFS_ITYPES_CNT ||
 487	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
 488	    (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
 489	    le64_to_cpu(dent->inum) > MAX_INUM) {
 490		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
 491			  "directory entry" : "extended attribute entry");
 492		return -EINVAL;
 493	}
 494
 495	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
 496		ubifs_err(c, "bad key type %d", key_type);
 497		return -EINVAL;
 498	}
 499
 500	return 0;
 501}
 502
 503/**
 504 * is_last_bud - check if the bud is the last in the journal head.
 505 * @c: UBIFS file-system description object
 506 * @bud: bud description object
 507 *
 508 * This function checks if bud @bud is the last bud in its journal head. This
 509 * information is then used by 'replay_bud()' to decide whether the bud can
 510 * have corruptions or not. Indeed, only last buds can be corrupted by power
 511 * cuts. Returns %1 if this is the last bud, and %0 if not.
 512 */
 513static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
 514{
 515	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
 516	struct ubifs_bud *next;
 517	uint32_t data;
 518	int err;
 519
 520	if (list_is_last(&bud->list, &jh->buds_list))
 521		return 1;
 522
 523	/*
 524	 * The following is a quirk to make sure we work correctly with UBIFS
 525	 * images used with older UBIFS.
 526	 *
 527	 * Normally, the last bud will be the last in the journal head's list
 528	 * of bud. However, there is one exception if the UBIFS image belongs
 529	 * to older UBIFS. This is fairly unlikely: one would need to use old
 530	 * UBIFS, then have a power cut exactly at the right point, and then
 531	 * try to mount this image with new UBIFS.
 532	 *
 533	 * The exception is: it is possible to have 2 buds A and B, A goes
 534	 * before B, and B is the last, bud B is contains no data, and bud A is
 535	 * corrupted at the end. The reason is that in older versions when the
 536	 * journal code switched the next bud (from A to B), it first added a
 537	 * log reference node for the new bud (B), and only after this it
 538	 * synchronized the write-buffer of current bud (A). But later this was
 539	 * changed and UBIFS started to always synchronize the write-buffer of
 540	 * the bud (A) before writing the log reference for the new bud (B).
 541	 *
 542	 * But because older UBIFS always synchronized A's write-buffer before
 543	 * writing to B, we can recognize this exceptional situation but
 544	 * checking the contents of bud B - if it is empty, then A can be
 545	 * treated as the last and we can recover it.
 546	 *
 547	 * TODO: remove this piece of code in a couple of years (today it is
 548	 * 16.05.2011).
 549	 */
 550	next = list_entry(bud->list.next, struct ubifs_bud, list);
 551	if (!list_is_last(&next->list, &jh->buds_list))
 552		return 0;
 553
 554	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
 555	if (err)
 556		return 0;
 557
 558	return data == 0xFFFFFFFF;
 559}
 560
 561/* authenticate_sleb_hash and authenticate_sleb_hmac are split out for stack usage */
 562static int authenticate_sleb_hash(struct ubifs_info *c, struct shash_desc *log_hash, u8 *hash)
 563{
 564	SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
 565
 566	hash_desc->tfm = c->hash_tfm;
 567
 568	ubifs_shash_copy_state(c, log_hash, hash_desc);
 569	return crypto_shash_final(hash_desc, hash);
 570}
 571
 572static int authenticate_sleb_hmac(struct ubifs_info *c, u8 *hash, u8 *hmac)
 573{
 574	SHASH_DESC_ON_STACK(hmac_desc, c->hmac_tfm);
 575
 576	hmac_desc->tfm = c->hmac_tfm;
 577
 578	return crypto_shash_digest(hmac_desc, hash, c->hash_len, hmac);
 579}
 580
 581/**
 582 * authenticate_sleb - authenticate one scan LEB
 583 * @c: UBIFS file-system description object
 584 * @sleb: the scan LEB to authenticate
 585 * @log_hash:
 586 * @is_last: if true, this is is the last LEB
 587 *
 588 * This function iterates over the buds of a single LEB authenticating all buds
 589 * with the authentication nodes on this LEB. Authentication nodes are written
 590 * after some buds and contain a HMAC covering the authentication node itself
 591 * and the buds between the last authentication node and the current
 592 * authentication node. It can happen that the last buds cannot be authenticated
 593 * because a powercut happened when some nodes were written but not the
 594 * corresponding authentication node. This function returns the number of nodes
 595 * that could be authenticated or a negative error code.
 596 */
 597static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 598			     struct shash_desc *log_hash, int is_last)
 599{
 600	int n_not_auth = 0;
 601	struct ubifs_scan_node *snod;
 602	int n_nodes = 0;
 603	int err;
 604	u8 *hash, *hmac;
 605
 606	if (!ubifs_authenticated(c))
 607		return sleb->nodes_cnt;
 608
 609	hash = kmalloc(crypto_shash_descsize(c->hash_tfm), GFP_NOFS);
 610	hmac = kmalloc(c->hmac_desc_len, GFP_NOFS);
 611	if (!hash || !hmac) {
 612		err = -ENOMEM;
 613		goto out;
 614	}
 615
 616	list_for_each_entry(snod, &sleb->nodes, list) {
 617
 618		n_nodes++;
 619
 620		if (snod->type == UBIFS_AUTH_NODE) {
 621			struct ubifs_auth_node *auth = snod->node;
 622
 623			err = authenticate_sleb_hash(c, log_hash, hash);
 624			if (err)
 625				goto out;
 626
 627			err = authenticate_sleb_hmac(c, hash, hmac);
 628			if (err)
 629				goto out;
 630
 631			err = ubifs_check_hmac(c, auth->hmac, hmac);
 632			if (err) {
 633				err = -EPERM;
 634				goto out;
 635			}
 636			n_not_auth = 0;
 637		} else {
 638			err = crypto_shash_update(log_hash, snod->node,
 639						  snod->len);
 640			if (err)
 641				goto out;
 642			n_not_auth++;
 643		}
 644	}
 645
 646	/*
 647	 * A powercut can happen when some nodes were written, but not yet
 648	 * the corresponding authentication node. This may only happen on
 649	 * the last bud though.
 650	 */
 651	if (n_not_auth) {
 652		if (is_last) {
 653			dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them",
 654				n_not_auth, sleb->lnum);
 655			err = 0;
 656		} else {
 657			dbg_mnt("%d unauthenticated nodes found on non-last LEB %d",
 658				n_not_auth, sleb->lnum);
 659			err = -EPERM;
 660		}
 661	} else {
 662		err = 0;
 663	}
 664out:
 665	kfree(hash);
 666	kfree(hmac);
 667
 668	return err ? err : n_nodes - n_not_auth;
 669}
 670
 671/**
 672 * replay_bud - replay a bud logical eraseblock.
 673 * @c: UBIFS file-system description object
 674 * @b: bud entry which describes the bud
 675 *
 676 * This function replays bud @bud, recovers it if needed, and adds all nodes
 677 * from this bud to the replay list. Returns zero in case of success and a
 678 * negative error code in case of failure.
 679 */
 680static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
 681{
 682	int is_last = is_last_bud(c, b->bud);
 683	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
 684	int n_nodes, n = 0;
 685	struct ubifs_scan_leb *sleb;
 686	struct ubifs_scan_node *snod;
 687
 688	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
 689		lnum, b->bud->jhead, offs, is_last);
 690
 691	if (c->need_recovery && is_last)
 692		/*
 693		 * Recover only last LEBs in the journal heads, because power
 694		 * cuts may cause corruptions only in these LEBs, because only
 695		 * these LEBs could possibly be written to at the power cut
 696		 * time.
 697		 */
 698		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
 699	else
 700		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
 701	if (IS_ERR(sleb))
 702		return PTR_ERR(sleb);
 703
 704	n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last);
 705	if (n_nodes < 0) {
 706		err = n_nodes;
 707		goto out;
 708	}
 709
 710	ubifs_shash_copy_state(c, b->bud->log_hash,
 711			       c->jheads[b->bud->jhead].log_hash);
 712
 713	/*
 714	 * The bud does not have to start from offset zero - the beginning of
 715	 * the 'lnum' LEB may contain previously committed data. One of the
 716	 * things we have to do in replay is to correctly update lprops with
 717	 * newer information about this LEB.
 718	 *
 719	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
 720	 * bytes of free space because it only contain information about
 721	 * committed data.
 722	 *
 723	 * But we know that real amount of free space is 'c->leb_size -
 724	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
 725	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
 726	 * how much of these data are dirty and update lprops with this
 727	 * information.
 728	 *
 729	 * The dirt in that LEB region is comprised of padding nodes, deletion
 730	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
 731	 * nodes in this LEB. So instead of calculating clean space, we
 732	 * calculate used space ('used' variable).
 733	 */
 734
 735	list_for_each_entry(snod, &sleb->nodes, list) {
 736		u8 hash[UBIFS_HASH_ARR_SZ];
 737		int deletion = 0;
 738
 739		cond_resched();
 740
 741		if (snod->sqnum >= SQNUM_WATERMARK) {
 742			ubifs_err(c, "file system's life ended");
 743			goto out_dump;
 744		}
 745
 746		ubifs_node_calc_hash(c, snod->node, hash);
 747
 748		if (snod->sqnum > c->max_sqnum)
 749			c->max_sqnum = snod->sqnum;
 750
 751		switch (snod->type) {
 752		case UBIFS_INO_NODE:
 753		{
 754			struct ubifs_ino_node *ino = snod->node;
 755			loff_t new_size = le64_to_cpu(ino->size);
 756
 757			if (le32_to_cpu(ino->nlink) == 0)
 758				deletion = 1;
 759			err = insert_node(c, lnum, snod->offs, snod->len, hash,
 760					  &snod->key, snod->sqnum, deletion,
 761					  &used, 0, new_size);
 762			break;
 763		}
 764		case UBIFS_DATA_NODE:
 765		{
 766			struct ubifs_data_node *dn = snod->node;
 767			loff_t new_size = le32_to_cpu(dn->size) +
 768					  key_block(c, &snod->key) *
 769					  UBIFS_BLOCK_SIZE;
 770
 771			err = insert_node(c, lnum, snod->offs, snod->len, hash,
 772					  &snod->key, snod->sqnum, deletion,
 773					  &used, 0, new_size);
 774			break;
 775		}
 776		case UBIFS_DENT_NODE:
 777		case UBIFS_XENT_NODE:
 778		{
 779			struct ubifs_dent_node *dent = snod->node;
 780
 781			err = ubifs_validate_entry(c, dent);
 782			if (err)
 783				goto out_dump;
 784
 785			err = insert_dent(c, lnum, snod->offs, snod->len, hash,
 786					  &snod->key, dent->name,
 787					  le16_to_cpu(dent->nlen), snod->sqnum,
 788					  !le64_to_cpu(dent->inum), &used);
 789			break;
 790		}
 791		case UBIFS_TRUN_NODE:
 792		{
 793			struct ubifs_trun_node *trun = snod->node;
 794			loff_t old_size = le64_to_cpu(trun->old_size);
 795			loff_t new_size = le64_to_cpu(trun->new_size);
 796			union ubifs_key key;
 797
 798			/* Validate truncation node */
 799			if (old_size < 0 || old_size > c->max_inode_sz ||
 800			    new_size < 0 || new_size > c->max_inode_sz ||
 801			    old_size <= new_size) {
 802				ubifs_err(c, "bad truncation node");
 803				goto out_dump;
 804			}
 805
 806			/*
 807			 * Create a fake truncation key just to use the same
 808			 * functions which expect nodes to have keys.
 809			 */
 810			trun_key_init(c, &key, le32_to_cpu(trun->inum));
 811			err = insert_node(c, lnum, snod->offs, snod->len, hash,
 812					  &key, snod->sqnum, 1, &used,
 813					  old_size, new_size);
 814			break;
 815		}
 816		case UBIFS_AUTH_NODE:
 817			break;
 818		default:
 819			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
 820				  snod->type, lnum, snod->offs);
 821			err = -EINVAL;
 822			goto out_dump;
 823		}
 824		if (err)
 825			goto out;
 826
 827		n++;
 828		if (n == n_nodes)
 829			break;
 830	}
 831
 832	ubifs_assert(c, ubifs_search_bud(c, lnum));
 833	ubifs_assert(c, sleb->endpt - offs >= used);
 834	ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
 835
 836	b->dirty = sleb->endpt - offs - used;
 837	b->free = c->leb_size - sleb->endpt;
 838	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
 839		lnum, b->dirty, b->free);
 840
 841out:
 842	ubifs_scan_destroy(sleb);
 843	return err;
 844
 845out_dump:
 846	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
 847	ubifs_dump_node(c, snod->node);
 848	ubifs_scan_destroy(sleb);
 849	return -EINVAL;
 850}
 851
 852/**
 853 * replay_buds - replay all buds.
 854 * @c: UBIFS file-system description object
 855 *
 856 * This function returns zero in case of success and a negative error code in
 857 * case of failure.
 858 */
 859static int replay_buds(struct ubifs_info *c)
 860{
 861	struct bud_entry *b;
 862	int err;
 863	unsigned long long prev_sqnum = 0;
 864
 865	list_for_each_entry(b, &c->replay_buds, list) {
 866		err = replay_bud(c, b);
 867		if (err)
 868			return err;
 869
 870		ubifs_assert(c, b->sqnum > prev_sqnum);
 871		prev_sqnum = b->sqnum;
 872	}
 873
 874	return 0;
 875}
 876
 877/**
 878 * destroy_bud_list - destroy the list of buds to replay.
 879 * @c: UBIFS file-system description object
 880 */
 881static void destroy_bud_list(struct ubifs_info *c)
 882{
 883	struct bud_entry *b;
 884
 885	while (!list_empty(&c->replay_buds)) {
 886		b = list_entry(c->replay_buds.next, struct bud_entry, list);
 887		list_del(&b->list);
 888		kfree(b);
 889	}
 890}
 891
 892/**
 893 * add_replay_bud - add a bud to the list of buds to replay.
 894 * @c: UBIFS file-system description object
 895 * @lnum: bud logical eraseblock number to replay
 896 * @offs: bud start offset
 897 * @jhead: journal head to which this bud belongs
 898 * @sqnum: reference node sequence number
 899 *
 900 * This function returns zero in case of success and a negative error code in
 901 * case of failure.
 902 */
 903static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 904			  unsigned long long sqnum)
 905{
 906	struct ubifs_bud *bud;
 907	struct bud_entry *b;
 908	int err;
 909
 910	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
 911
 912	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
 913	if (!bud)
 914		return -ENOMEM;
 915
 916	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
 917	if (!b) {
 918		err = -ENOMEM;
 919		goto out;
 920	}
 921
 922	bud->lnum = lnum;
 923	bud->start = offs;
 924	bud->jhead = jhead;
 925	bud->log_hash = ubifs_hash_get_desc(c);
 926	if (IS_ERR(bud->log_hash)) {
 927		err = PTR_ERR(bud->log_hash);
 928		goto out;
 929	}
 930
 931	ubifs_shash_copy_state(c, c->log_hash, bud->log_hash);
 932
 933	ubifs_add_bud(c, bud);
 934
 935	b->bud = bud;
 936	b->sqnum = sqnum;
 937	list_add_tail(&b->list, &c->replay_buds);
 938
 939	return 0;
 940out:
 941	kfree(bud);
 942	kfree(b);
 943
 944	return err;
 945}
 946
 947/**
 948 * validate_ref - validate a reference node.
 949 * @c: UBIFS file-system description object
 950 * @ref: the reference node to validate
 951 * @ref_lnum: LEB number of the reference node
 952 * @ref_offs: reference node offset
 953 *
 954 * This function returns %1 if a bud reference already exists for the LEB. %0 is
 955 * returned if the reference node is new, otherwise %-EINVAL is returned if
 956 * validation failed.
 957 */
 958static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
 959{
 960	struct ubifs_bud *bud;
 961	int lnum = le32_to_cpu(ref->lnum);
 962	unsigned int offs = le32_to_cpu(ref->offs);
 963	unsigned int jhead = le32_to_cpu(ref->jhead);
 964
 965	/*
 966	 * ref->offs may point to the end of LEB when the journal head points
 967	 * to the end of LEB and we write reference node for it during commit.
 968	 * So this is why we require 'offs > c->leb_size'.
 969	 */
 970	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
 971	    lnum < c->main_first || offs > c->leb_size ||
 972	    offs & (c->min_io_size - 1))
 973		return -EINVAL;
 974
 975	/* Make sure we have not already looked at this bud */
 976	bud = ubifs_search_bud(c, lnum);
 977	if (bud) {
 978		if (bud->jhead == jhead && bud->start <= offs)
 979			return 1;
 980		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
 981		return -EINVAL;
 982	}
 983
 984	return 0;
 985}
 986
 987/**
 988 * replay_log_leb - replay a log logical eraseblock.
 989 * @c: UBIFS file-system description object
 990 * @lnum: log logical eraseblock to replay
 991 * @offs: offset to start replaying from
 992 * @sbuf: scan buffer
 993 *
 994 * This function replays a log LEB and returns zero in case of success, %1 if
 995 * this is the last LEB in the log, and a negative error code in case of
 996 * failure.
 997 */
 998static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 999{
1000	int err;
1001	struct ubifs_scan_leb *sleb;
1002	struct ubifs_scan_node *snod;
1003	const struct ubifs_cs_node *node;
1004
1005	dbg_mnt("replay log LEB %d:%d", lnum, offs);
1006	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
1007	if (IS_ERR(sleb)) {
1008		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
1009			return PTR_ERR(sleb);
1010		/*
1011		 * Note, the below function will recover this log LEB only if
1012		 * it is the last, because unclean reboots can possibly corrupt
1013		 * only the tail of the log.
1014		 */
1015		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
1016		if (IS_ERR(sleb))
1017			return PTR_ERR(sleb);
1018	}
1019
1020	if (sleb->nodes_cnt == 0) {
1021		err = 1;
1022		goto out;
1023	}
1024
1025	node = sleb->buf;
1026	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
1027	if (c->cs_sqnum == 0) {
1028		/*
1029		 * This is the first log LEB we are looking at, make sure that
1030		 * the first node is a commit start node. Also record its
1031		 * sequence number so that UBIFS can determine where the log
1032		 * ends, because all nodes which were have higher sequence
1033		 * numbers.
1034		 */
1035		if (snod->type != UBIFS_CS_NODE) {
1036			ubifs_err(c, "first log node at LEB %d:%d is not CS node",
1037				  lnum, offs);
1038			goto out_dump;
1039		}
1040		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
1041			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
1042				  lnum, offs,
1043				  (unsigned long long)le64_to_cpu(node->cmt_no),
1044				  c->cmt_no);
1045			goto out_dump;
1046		}
1047
1048		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
1049		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
1050
1051		err = ubifs_shash_init(c, c->log_hash);
1052		if (err)
1053			goto out;
1054
1055		err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ);
1056		if (err < 0)
1057			goto out;
1058	}
1059
1060	if (snod->sqnum < c->cs_sqnum) {
1061		/*
1062		 * This means that we reached end of log and now
1063		 * look to the older log data, which was already
1064		 * committed but the eraseblock was not erased (UBIFS
1065		 * only un-maps it). So this basically means we have to
1066		 * exit with "end of log" code.
1067		 */
1068		err = 1;
1069		goto out;
1070	}
1071
1072	/* Make sure the first node sits at offset zero of the LEB */
1073	if (snod->offs != 0) {
1074		ubifs_err(c, "first node is not at zero offset");
1075		goto out_dump;
1076	}
1077
1078	list_for_each_entry(snod, &sleb->nodes, list) {
1079		cond_resched();
1080
1081		if (snod->sqnum >= SQNUM_WATERMARK) {
1082			ubifs_err(c, "file system's life ended");
1083			goto out_dump;
1084		}
1085
1086		if (snod->sqnum < c->cs_sqnum) {
1087			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
1088				  snod->sqnum, c->cs_sqnum);
1089			goto out_dump;
1090		}
1091
1092		if (snod->sqnum > c->max_sqnum)
1093			c->max_sqnum = snod->sqnum;
1094
1095		switch (snod->type) {
1096		case UBIFS_REF_NODE: {
1097			const struct ubifs_ref_node *ref = snod->node;
1098
1099			err = validate_ref(c, ref);
1100			if (err == 1)
1101				break; /* Already have this bud */
1102			if (err)
1103				goto out_dump;
1104
1105			err = ubifs_shash_update(c, c->log_hash, ref,
1106						 UBIFS_REF_NODE_SZ);
1107			if (err)
1108				goto out;
1109
1110			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
1111					     le32_to_cpu(ref->offs),
1112					     le32_to_cpu(ref->jhead),
1113					     snod->sqnum);
1114			if (err)
1115				goto out;
1116
1117			break;
1118		}
1119		case UBIFS_CS_NODE:
1120			/* Make sure it sits at the beginning of LEB */
1121			if (snod->offs != 0) {
1122				ubifs_err(c, "unexpected node in log");
1123				goto out_dump;
1124			}
1125			break;
1126		default:
1127			ubifs_err(c, "unexpected node in log");
1128			goto out_dump;
1129		}
1130	}
1131
1132	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1133		c->lhead_lnum = lnum;
1134		c->lhead_offs = sleb->endpt;
1135	}
1136
1137	err = !sleb->endpt;
1138out:
1139	ubifs_scan_destroy(sleb);
1140	return err;
1141
1142out_dump:
1143	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1144		  lnum, offs + snod->offs);
1145	ubifs_dump_node(c, snod->node);
1146	ubifs_scan_destroy(sleb);
1147	return -EINVAL;
1148}
1149
1150/**
1151 * take_ihead - update the status of the index head in lprops to 'taken'.
1152 * @c: UBIFS file-system description object
1153 *
1154 * This function returns the amount of free space in the index head LEB or a
1155 * negative error code.
1156 */
1157static int take_ihead(struct ubifs_info *c)
1158{
1159	const struct ubifs_lprops *lp;
1160	int err, free;
1161
1162	ubifs_get_lprops(c);
1163
1164	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1165	if (IS_ERR(lp)) {
1166		err = PTR_ERR(lp);
1167		goto out;
1168	}
1169
1170	free = lp->free;
1171
1172	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1173			     lp->flags | LPROPS_TAKEN, 0);
1174	if (IS_ERR(lp)) {
1175		err = PTR_ERR(lp);
1176		goto out;
1177	}
1178
1179	err = free;
1180out:
1181	ubifs_release_lprops(c);
1182	return err;
1183}
1184
1185/**
1186 * ubifs_replay_journal - replay journal.
1187 * @c: UBIFS file-system description object
1188 *
1189 * This function scans the journal, replays and cleans it up. It makes sure all
1190 * memory data structures related to uncommitted journal are built (dirty TNC
1191 * tree, tree of buds, modified lprops, etc).
1192 */
1193int ubifs_replay_journal(struct ubifs_info *c)
1194{
1195	int err, lnum, free;
1196
1197	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1198
1199	/* Update the status of the index head in lprops to 'taken' */
1200	free = take_ihead(c);
1201	if (free < 0)
1202		return free; /* Error code */
1203
1204	if (c->ihead_offs != c->leb_size - free) {
1205		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1206			  c->ihead_offs);
1207		return -EINVAL;
1208	}
1209
1210	dbg_mnt("start replaying the journal");
1211	c->replaying = 1;
1212	lnum = c->ltail_lnum = c->lhead_lnum;
1213
1214	do {
1215		err = replay_log_leb(c, lnum, 0, c->sbuf);
1216		if (err == 1) {
1217			if (lnum != c->lhead_lnum)
1218				/* We hit the end of the log */
1219				break;
1220
1221			/*
1222			 * The head of the log must always start with the
1223			 * "commit start" node on a properly formatted UBIFS.
1224			 * But we found no nodes at all, which means that
1225			 * something went wrong and we cannot proceed mounting
1226			 * the file-system.
1227			 */
1228			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1229				  lnum, 0);
1230			err = -EINVAL;
1231		}
1232		if (err)
1233			goto out;
1234		lnum = ubifs_next_log_lnum(c, lnum);
1235	} while (lnum != c->ltail_lnum);
1236
1237	err = replay_buds(c);
1238	if (err)
1239		goto out;
1240
1241	err = apply_replay_list(c);
1242	if (err)
1243		goto out;
1244
1245	err = set_buds_lprops(c);
1246	if (err)
1247		goto out;
1248
1249	/*
1250	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1251	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1252	 * depend on it. This means we have to initialize it to make sure
1253	 * budgeting works properly.
1254	 */
1255	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1256	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1257
1258	ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1259	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1260		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1261		(unsigned long)c->highest_inum);
1262out:
1263	destroy_replay_list(c);
1264	destroy_bud_list(c);
1265	c->replaying = 0;
1266	return err;
1267}