Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.17
 
  1/*
  2 * Copyright (C) 2012 Google, Inc.
  3 *
  4 * This software is licensed under the terms of the GNU General Public
  5 * License version 2, as published by the Free Software Foundation, and
  6 * may be copied, distributed, and modified under those terms.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 11 * GNU General Public License for more details.
 12 *
 13 */
 14
 15#define pr_fmt(fmt) "persistent_ram: " fmt
 16
 17#include <linux/device.h>
 18#include <linux/err.h>
 19#include <linux/errno.h>
 20#include <linux/init.h>
 21#include <linux/io.h>
 22#include <linux/kernel.h>
 23#include <linux/list.h>
 24#include <linux/memblock.h>
 25#include <linux/pstore_ram.h>
 26#include <linux/rslib.h>
 27#include <linux/slab.h>
 28#include <linux/uaccess.h>
 29#include <linux/vmalloc.h>
 30#include <asm/page.h>
 31
 
 
 
 
 
 
 
 
 
 
 32struct persistent_ram_buffer {
 33	uint32_t    sig;
 34	atomic_t    start;
 35	atomic_t    size;
 36	uint8_t     data[0];
 37};
 38
 39#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
 40
 41static inline size_t buffer_size(struct persistent_ram_zone *prz)
 42{
 43	return atomic_read(&prz->buffer->size);
 44}
 45
 46static inline size_t buffer_start(struct persistent_ram_zone *prz)
 47{
 48	return atomic_read(&prz->buffer->start);
 49}
 50
 51/* increase and wrap the start pointer, returning the old value */
 52static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
 53{
 54	int old;
 55	int new;
 56	unsigned long flags = 0;
 57
 58	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 59		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 60
 61	old = atomic_read(&prz->buffer->start);
 62	new = old + a;
 63	while (unlikely(new >= prz->buffer_size))
 64		new -= prz->buffer_size;
 65	atomic_set(&prz->buffer->start, new);
 66
 67	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 68		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 69
 70	return old;
 71}
 72
 73/* increase the size counter until it hits the max size */
 74static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
 75{
 76	size_t old;
 77	size_t new;
 78	unsigned long flags = 0;
 79
 80	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 81		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 82
 83	old = atomic_read(&prz->buffer->size);
 84	if (old == prz->buffer_size)
 85		goto exit;
 86
 87	new = old + a;
 88	if (new > prz->buffer_size)
 89		new = prz->buffer_size;
 90	atomic_set(&prz->buffer->size, new);
 91
 92exit:
 93	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 94		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 95}
 96
 97static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
 98	uint8_t *data, size_t len, uint8_t *ecc)
 99{
100	int i;
101
102	/* Initialize the parity buffer */
103	memset(prz->ecc_info.par, 0,
104	       prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0]));
105	encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0);
106	for (i = 0; i < prz->ecc_info.ecc_size; i++)
107		ecc[i] = prz->ecc_info.par[i];
108}
109
110static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
111	void *data, size_t len, uint8_t *ecc)
112{
113	int i;
114
115	for (i = 0; i < prz->ecc_info.ecc_size; i++)
116		prz->ecc_info.par[i] = ecc[i];
117	return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len,
118				NULL, 0, NULL, 0, NULL);
119}
120
121static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
122	unsigned int start, unsigned int count)
123{
124	struct persistent_ram_buffer *buffer = prz->buffer;
125	uint8_t *buffer_end = buffer->data + prz->buffer_size;
126	uint8_t *block;
127	uint8_t *par;
128	int ecc_block_size = prz->ecc_info.block_size;
129	int ecc_size = prz->ecc_info.ecc_size;
130	int size = ecc_block_size;
131
132	if (!ecc_size)
133		return;
134
135	block = buffer->data + (start & ~(ecc_block_size - 1));
136	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
137
138	do {
139		if (block + ecc_block_size > buffer_end)
140			size = buffer_end - block;
141		persistent_ram_encode_rs8(prz, block, size, par);
142		block += ecc_block_size;
143		par += ecc_size;
144	} while (block < buffer->data + start + count);
145}
146
147static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
148{
149	struct persistent_ram_buffer *buffer = prz->buffer;
150
151	if (!prz->ecc_info.ecc_size)
152		return;
153
154	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
155				  prz->par_header);
156}
157
158static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
159{
160	struct persistent_ram_buffer *buffer = prz->buffer;
161	uint8_t *block;
162	uint8_t *par;
163
164	if (!prz->ecc_info.ecc_size)
165		return;
166
167	block = buffer->data;
168	par = prz->par_buffer;
169	while (block < buffer->data + buffer_size(prz)) {
170		int numerr;
171		int size = prz->ecc_info.block_size;
172		if (block + size > buffer->data + prz->buffer_size)
173			size = buffer->data + prz->buffer_size - block;
174		numerr = persistent_ram_decode_rs8(prz, block, size, par);
175		if (numerr > 0) {
176			pr_devel("error in block %p, %d\n", block, numerr);
177			prz->corrected_bytes += numerr;
178		} else if (numerr < 0) {
179			pr_devel("uncorrectable error in block %p\n", block);
180			prz->bad_blocks++;
181		}
182		block += prz->ecc_info.block_size;
183		par += prz->ecc_info.ecc_size;
184	}
185}
186
187static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
188				   struct persistent_ram_ecc_info *ecc_info)
189{
190	int numerr;
191	struct persistent_ram_buffer *buffer = prz->buffer;
192	int ecc_blocks;
193	size_t ecc_total;
194
195	if (!ecc_info || !ecc_info->ecc_size)
196		return 0;
197
198	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
199	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
200	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
201	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
202
203	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
204				  prz->ecc_info.block_size +
205				  prz->ecc_info.ecc_size);
206	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
207	if (ecc_total >= prz->buffer_size) {
208		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
209		       __func__, prz->ecc_info.ecc_size,
210		       ecc_total, prz->buffer_size);
211		return -EINVAL;
212	}
213
214	prz->buffer_size -= ecc_total;
215	prz->par_buffer = buffer->data + prz->buffer_size;
216	prz->par_header = prz->par_buffer +
217			  ecc_blocks * prz->ecc_info.ecc_size;
218
219	/*
220	 * first consecutive root is 0
221	 * primitive element to generate roots = 1
222	 */
223	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
224				  0, 1, prz->ecc_info.ecc_size);
225	if (prz->rs_decoder == NULL) {
226		pr_info("init_rs failed\n");
227		return -EINVAL;
228	}
229
230	/* allocate workspace instead of using stack VLA */
231	prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size,
232					  sizeof(*prz->ecc_info.par),
233					  GFP_KERNEL);
234	if (!prz->ecc_info.par) {
235		pr_err("cannot allocate ECC parity workspace\n");
236		return -ENOMEM;
237	}
238
239	prz->corrected_bytes = 0;
240	prz->bad_blocks = 0;
241
242	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
243					   prz->par_header);
244	if (numerr > 0) {
245		pr_info("error in header, %d\n", numerr);
246		prz->corrected_bytes += numerr;
247	} else if (numerr < 0) {
248		pr_info("uncorrectable error in header\n");
249		prz->bad_blocks++;
250	}
251
252	return 0;
253}
254
255ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
256	char *str, size_t len)
257{
258	ssize_t ret;
259
260	if (!prz->ecc_info.ecc_size)
261		return 0;
262
263	if (prz->corrected_bytes || prz->bad_blocks)
264		ret = snprintf(str, len, ""
265			"\n%d Corrected bytes, %d unrecoverable blocks\n",
266			prz->corrected_bytes, prz->bad_blocks);
267	else
268		ret = snprintf(str, len, "\nNo errors detected\n");
269
270	return ret;
271}
272
273static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
274	const void *s, unsigned int start, unsigned int count)
275{
276	struct persistent_ram_buffer *buffer = prz->buffer;
277	memcpy_toio(buffer->data + start, s, count);
278	persistent_ram_update_ecc(prz, start, count);
279}
280
281static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
282	const void __user *s, unsigned int start, unsigned int count)
283{
284	struct persistent_ram_buffer *buffer = prz->buffer;
285	int ret = unlikely(__copy_from_user(buffer->data + start, s, count)) ?
286		-EFAULT : 0;
287	persistent_ram_update_ecc(prz, start, count);
288	return ret;
289}
290
291void persistent_ram_save_old(struct persistent_ram_zone *prz)
292{
293	struct persistent_ram_buffer *buffer = prz->buffer;
294	size_t size = buffer_size(prz);
295	size_t start = buffer_start(prz);
296
297	if (!size)
298		return;
299
300	if (!prz->old_log) {
301		persistent_ram_ecc_old(prz);
302		prz->old_log = kmalloc(size, GFP_KERNEL);
303	}
304	if (!prz->old_log) {
305		pr_err("failed to allocate buffer\n");
306		return;
307	}
308
309	prz->old_log_size = size;
310	memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
311	memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
312}
313
314int notrace persistent_ram_write(struct persistent_ram_zone *prz,
315	const void *s, unsigned int count)
316{
317	int rem;
318	int c = count;
319	size_t start;
320
321	if (unlikely(c > prz->buffer_size)) {
322		s += c - prz->buffer_size;
323		c = prz->buffer_size;
324	}
325
326	buffer_size_add(prz, c);
327
328	start = buffer_start_add(prz, c);
329
330	rem = prz->buffer_size - start;
331	if (unlikely(rem < c)) {
332		persistent_ram_update(prz, s, start, rem);
333		s += rem;
334		c -= rem;
335		start = 0;
336	}
337	persistent_ram_update(prz, s, start, c);
338
339	persistent_ram_update_header_ecc(prz);
340
341	return count;
342}
343
344int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
345	const void __user *s, unsigned int count)
346{
347	int rem, ret = 0, c = count;
348	size_t start;
349
350	if (unlikely(!access_ok(VERIFY_READ, s, count)))
351		return -EFAULT;
352	if (unlikely(c > prz->buffer_size)) {
353		s += c - prz->buffer_size;
354		c = prz->buffer_size;
355	}
356
357	buffer_size_add(prz, c);
358
359	start = buffer_start_add(prz, c);
360
361	rem = prz->buffer_size - start;
362	if (unlikely(rem < c)) {
363		ret = persistent_ram_update_user(prz, s, start, rem);
364		s += rem;
365		c -= rem;
366		start = 0;
367	}
368	if (likely(!ret))
369		ret = persistent_ram_update_user(prz, s, start, c);
370
371	persistent_ram_update_header_ecc(prz);
372
373	return unlikely(ret) ? ret : count;
374}
375
376size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
377{
378	return prz->old_log_size;
379}
380
381void *persistent_ram_old(struct persistent_ram_zone *prz)
382{
383	return prz->old_log;
384}
385
386void persistent_ram_free_old(struct persistent_ram_zone *prz)
387{
388	kfree(prz->old_log);
389	prz->old_log = NULL;
390	prz->old_log_size = 0;
391}
392
393void persistent_ram_zap(struct persistent_ram_zone *prz)
394{
395	atomic_set(&prz->buffer->start, 0);
396	atomic_set(&prz->buffer->size, 0);
397	persistent_ram_update_header_ecc(prz);
398}
399
400static void *persistent_ram_vmap(phys_addr_t start, size_t size,
401		unsigned int memtype)
402{
403	struct page **pages;
404	phys_addr_t page_start;
405	unsigned int page_count;
406	pgprot_t prot;
407	unsigned int i;
408	void *vaddr;
409
410	page_start = start - offset_in_page(start);
411	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
412
413	if (memtype)
414		prot = pgprot_noncached(PAGE_KERNEL);
415	else
416		prot = pgprot_writecombine(PAGE_KERNEL);
417
418	pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
419	if (!pages) {
420		pr_err("%s: Failed to allocate array for %u pages\n",
421		       __func__, page_count);
422		return NULL;
423	}
424
425	for (i = 0; i < page_count; i++) {
426		phys_addr_t addr = page_start + i * PAGE_SIZE;
427		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
428	}
429	vaddr = vmap(pages, page_count, VM_MAP, prot);
430	kfree(pages);
431
432	return vaddr;
 
 
 
 
 
433}
434
435static void *persistent_ram_iomap(phys_addr_t start, size_t size,
436		unsigned int memtype)
437{
438	void *va;
439
440	if (!request_mem_region(start, size, "persistent_ram")) {
441		pr_err("request mem region (0x%llx@0x%llx) failed\n",
 
442			(unsigned long long)size, (unsigned long long)start);
443		return NULL;
444	}
445
446	if (memtype)
447		va = ioremap(start, size);
448	else
449		va = ioremap_wc(start, size);
450
 
 
 
 
 
451	return va;
452}
453
454static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
455		struct persistent_ram_zone *prz, int memtype)
456{
457	prz->paddr = start;
458	prz->size = size;
459
460	if (pfn_valid(start >> PAGE_SHIFT))
461		prz->vaddr = persistent_ram_vmap(start, size, memtype);
462	else
463		prz->vaddr = persistent_ram_iomap(start, size, memtype);
 
464
465	if (!prz->vaddr) {
466		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
467			(unsigned long long)size, (unsigned long long)start);
468		return -ENOMEM;
469	}
470
471	prz->buffer = prz->vaddr + offset_in_page(start);
472	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
473
474	return 0;
475}
476
477static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
478				    struct persistent_ram_ecc_info *ecc_info)
479{
480	int ret;
 
481
482	ret = persistent_ram_init_ecc(prz, ecc_info);
483	if (ret)
 
484		return ret;
 
485
486	sig ^= PERSISTENT_RAM_SIG;
487
488	if (prz->buffer->sig == sig) {
 
 
 
 
 
489		if (buffer_size(prz) > prz->buffer_size ||
490		    buffer_start(prz) > buffer_size(prz))
491			pr_info("found existing invalid buffer, size %zu, start %zu\n",
492				buffer_size(prz), buffer_start(prz));
493		else {
 
494			pr_debug("found existing buffer, size %zu, start %zu\n",
495				 buffer_size(prz), buffer_start(prz));
496			persistent_ram_save_old(prz);
497			return 0;
498		}
499	} else {
500		pr_debug("no valid data in buffer (sig = 0x%08x)\n",
501			 prz->buffer->sig);
 
 
502	}
503
504	/* Rewind missing or invalid memory area. */
505	prz->buffer->sig = sig;
506	persistent_ram_zap(prz);
507
508	return 0;
509}
510
511void persistent_ram_free(struct persistent_ram_zone *prz)
512{
513	if (!prz)
514		return;
515
516	if (prz->vaddr) {
517		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
518			vunmap(prz->vaddr);
 
519		} else {
520			iounmap(prz->vaddr);
521			release_mem_region(prz->paddr, prz->size);
522		}
523		prz->vaddr = NULL;
524	}
525	if (prz->rs_decoder) {
526		free_rs(prz->rs_decoder);
527		prz->rs_decoder = NULL;
528	}
529	kfree(prz->ecc_info.par);
530	prz->ecc_info.par = NULL;
531
532	persistent_ram_free_old(prz);
 
533	kfree(prz);
534}
535
536struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
537			u32 sig, struct persistent_ram_ecc_info *ecc_info,
538			unsigned int memtype, u32 flags)
539{
540	struct persistent_ram_zone *prz;
541	int ret = -ENOMEM;
542
543	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
544	if (!prz) {
545		pr_err("failed to allocate persistent ram zone\n");
546		goto err;
547	}
548
549	/* Initialize general buffer state. */
550	raw_spin_lock_init(&prz->buffer_lock);
551	prz->flags = flags;
 
552
553	ret = persistent_ram_buffer_map(start, size, prz, memtype);
554	if (ret)
555		goto err;
556
557	ret = persistent_ram_post_init(prz, sig, ecc_info);
558	if (ret)
559		goto err;
 
 
 
 
 
 
560
561	return prz;
562err:
563	persistent_ram_free(prz);
564	return ERR_PTR(ret);
565}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012 Google, Inc.
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7
  8#include <linux/device.h>
  9#include <linux/err.h>
 10#include <linux/errno.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/kernel.h>
 14#include <linux/list.h>
 15#include <linux/memblock.h>
 16#include <linux/pstore_ram.h>
 17#include <linux/rslib.h>
 18#include <linux/slab.h>
 19#include <linux/uaccess.h>
 20#include <linux/vmalloc.h>
 21#include <asm/page.h>
 22
 23/**
 24 * struct persistent_ram_buffer - persistent circular RAM buffer
 25 *
 26 * @sig:
 27 *	signature to indicate header (PERSISTENT_RAM_SIG xor PRZ-type value)
 28 * @start:
 29 *	offset into @data where the beginning of the stored bytes begin
 30 * @size:
 31 *	number of valid bytes stored in @data
 32 */
 33struct persistent_ram_buffer {
 34	uint32_t    sig;
 35	atomic_t    start;
 36	atomic_t    size;
 37	uint8_t     data[0];
 38};
 39
 40#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
 41
 42static inline size_t buffer_size(struct persistent_ram_zone *prz)
 43{
 44	return atomic_read(&prz->buffer->size);
 45}
 46
 47static inline size_t buffer_start(struct persistent_ram_zone *prz)
 48{
 49	return atomic_read(&prz->buffer->start);
 50}
 51
 52/* increase and wrap the start pointer, returning the old value */
 53static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
 54{
 55	int old;
 56	int new;
 57	unsigned long flags = 0;
 58
 59	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 60		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 61
 62	old = atomic_read(&prz->buffer->start);
 63	new = old + a;
 64	while (unlikely(new >= prz->buffer_size))
 65		new -= prz->buffer_size;
 66	atomic_set(&prz->buffer->start, new);
 67
 68	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 69		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 70
 71	return old;
 72}
 73
 74/* increase the size counter until it hits the max size */
 75static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
 76{
 77	size_t old;
 78	size_t new;
 79	unsigned long flags = 0;
 80
 81	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 82		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 83
 84	old = atomic_read(&prz->buffer->size);
 85	if (old == prz->buffer_size)
 86		goto exit;
 87
 88	new = old + a;
 89	if (new > prz->buffer_size)
 90		new = prz->buffer_size;
 91	atomic_set(&prz->buffer->size, new);
 92
 93exit:
 94	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 95		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 96}
 97
 98static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
 99	uint8_t *data, size_t len, uint8_t *ecc)
100{
101	int i;
102
103	/* Initialize the parity buffer */
104	memset(prz->ecc_info.par, 0,
105	       prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0]));
106	encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0);
107	for (i = 0; i < prz->ecc_info.ecc_size; i++)
108		ecc[i] = prz->ecc_info.par[i];
109}
110
111static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
112	void *data, size_t len, uint8_t *ecc)
113{
114	int i;
115
116	for (i = 0; i < prz->ecc_info.ecc_size; i++)
117		prz->ecc_info.par[i] = ecc[i];
118	return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len,
119				NULL, 0, NULL, 0, NULL);
120}
121
122static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
123	unsigned int start, unsigned int count)
124{
125	struct persistent_ram_buffer *buffer = prz->buffer;
126	uint8_t *buffer_end = buffer->data + prz->buffer_size;
127	uint8_t *block;
128	uint8_t *par;
129	int ecc_block_size = prz->ecc_info.block_size;
130	int ecc_size = prz->ecc_info.ecc_size;
131	int size = ecc_block_size;
132
133	if (!ecc_size)
134		return;
135
136	block = buffer->data + (start & ~(ecc_block_size - 1));
137	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
138
139	do {
140		if (block + ecc_block_size > buffer_end)
141			size = buffer_end - block;
142		persistent_ram_encode_rs8(prz, block, size, par);
143		block += ecc_block_size;
144		par += ecc_size;
145	} while (block < buffer->data + start + count);
146}
147
148static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
149{
150	struct persistent_ram_buffer *buffer = prz->buffer;
151
152	if (!prz->ecc_info.ecc_size)
153		return;
154
155	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
156				  prz->par_header);
157}
158
159static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
160{
161	struct persistent_ram_buffer *buffer = prz->buffer;
162	uint8_t *block;
163	uint8_t *par;
164
165	if (!prz->ecc_info.ecc_size)
166		return;
167
168	block = buffer->data;
169	par = prz->par_buffer;
170	while (block < buffer->data + buffer_size(prz)) {
171		int numerr;
172		int size = prz->ecc_info.block_size;
173		if (block + size > buffer->data + prz->buffer_size)
174			size = buffer->data + prz->buffer_size - block;
175		numerr = persistent_ram_decode_rs8(prz, block, size, par);
176		if (numerr > 0) {
177			pr_devel("error in block %p, %d\n", block, numerr);
178			prz->corrected_bytes += numerr;
179		} else if (numerr < 0) {
180			pr_devel("uncorrectable error in block %p\n", block);
181			prz->bad_blocks++;
182		}
183		block += prz->ecc_info.block_size;
184		par += prz->ecc_info.ecc_size;
185	}
186}
187
188static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
189				   struct persistent_ram_ecc_info *ecc_info)
190{
191	int numerr;
192	struct persistent_ram_buffer *buffer = prz->buffer;
193	int ecc_blocks;
194	size_t ecc_total;
195
196	if (!ecc_info || !ecc_info->ecc_size)
197		return 0;
198
199	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
200	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
201	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
202	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
203
204	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
205				  prz->ecc_info.block_size +
206				  prz->ecc_info.ecc_size);
207	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
208	if (ecc_total >= prz->buffer_size) {
209		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
210		       __func__, prz->ecc_info.ecc_size,
211		       ecc_total, prz->buffer_size);
212		return -EINVAL;
213	}
214
215	prz->buffer_size -= ecc_total;
216	prz->par_buffer = buffer->data + prz->buffer_size;
217	prz->par_header = prz->par_buffer +
218			  ecc_blocks * prz->ecc_info.ecc_size;
219
220	/*
221	 * first consecutive root is 0
222	 * primitive element to generate roots = 1
223	 */
224	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
225				  0, 1, prz->ecc_info.ecc_size);
226	if (prz->rs_decoder == NULL) {
227		pr_info("init_rs failed\n");
228		return -EINVAL;
229	}
230
231	/* allocate workspace instead of using stack VLA */
232	prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size,
233					  sizeof(*prz->ecc_info.par),
234					  GFP_KERNEL);
235	if (!prz->ecc_info.par) {
236		pr_err("cannot allocate ECC parity workspace\n");
237		return -ENOMEM;
238	}
239
240	prz->corrected_bytes = 0;
241	prz->bad_blocks = 0;
242
243	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
244					   prz->par_header);
245	if (numerr > 0) {
246		pr_info("error in header, %d\n", numerr);
247		prz->corrected_bytes += numerr;
248	} else if (numerr < 0) {
249		pr_info("uncorrectable error in header\n");
250		prz->bad_blocks++;
251	}
252
253	return 0;
254}
255
256ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
257	char *str, size_t len)
258{
259	ssize_t ret;
260
261	if (!prz->ecc_info.ecc_size)
262		return 0;
263
264	if (prz->corrected_bytes || prz->bad_blocks)
265		ret = snprintf(str, len, ""
266			"\n%d Corrected bytes, %d unrecoverable blocks\n",
267			prz->corrected_bytes, prz->bad_blocks);
268	else
269		ret = snprintf(str, len, "\nNo errors detected\n");
270
271	return ret;
272}
273
274static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
275	const void *s, unsigned int start, unsigned int count)
276{
277	struct persistent_ram_buffer *buffer = prz->buffer;
278	memcpy_toio(buffer->data + start, s, count);
279	persistent_ram_update_ecc(prz, start, count);
280}
281
282static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
283	const void __user *s, unsigned int start, unsigned int count)
284{
285	struct persistent_ram_buffer *buffer = prz->buffer;
286	int ret = unlikely(__copy_from_user(buffer->data + start, s, count)) ?
287		-EFAULT : 0;
288	persistent_ram_update_ecc(prz, start, count);
289	return ret;
290}
291
292void persistent_ram_save_old(struct persistent_ram_zone *prz)
293{
294	struct persistent_ram_buffer *buffer = prz->buffer;
295	size_t size = buffer_size(prz);
296	size_t start = buffer_start(prz);
297
298	if (!size)
299		return;
300
301	if (!prz->old_log) {
302		persistent_ram_ecc_old(prz);
303		prz->old_log = kmalloc(size, GFP_KERNEL);
304	}
305	if (!prz->old_log) {
306		pr_err("failed to allocate buffer\n");
307		return;
308	}
309
310	prz->old_log_size = size;
311	memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
312	memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
313}
314
315int notrace persistent_ram_write(struct persistent_ram_zone *prz,
316	const void *s, unsigned int count)
317{
318	int rem;
319	int c = count;
320	size_t start;
321
322	if (unlikely(c > prz->buffer_size)) {
323		s += c - prz->buffer_size;
324		c = prz->buffer_size;
325	}
326
327	buffer_size_add(prz, c);
328
329	start = buffer_start_add(prz, c);
330
331	rem = prz->buffer_size - start;
332	if (unlikely(rem < c)) {
333		persistent_ram_update(prz, s, start, rem);
334		s += rem;
335		c -= rem;
336		start = 0;
337	}
338	persistent_ram_update(prz, s, start, c);
339
340	persistent_ram_update_header_ecc(prz);
341
342	return count;
343}
344
345int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
346	const void __user *s, unsigned int count)
347{
348	int rem, ret = 0, c = count;
349	size_t start;
350
351	if (unlikely(!access_ok(s, count)))
352		return -EFAULT;
353	if (unlikely(c > prz->buffer_size)) {
354		s += c - prz->buffer_size;
355		c = prz->buffer_size;
356	}
357
358	buffer_size_add(prz, c);
359
360	start = buffer_start_add(prz, c);
361
362	rem = prz->buffer_size - start;
363	if (unlikely(rem < c)) {
364		ret = persistent_ram_update_user(prz, s, start, rem);
365		s += rem;
366		c -= rem;
367		start = 0;
368	}
369	if (likely(!ret))
370		ret = persistent_ram_update_user(prz, s, start, c);
371
372	persistent_ram_update_header_ecc(prz);
373
374	return unlikely(ret) ? ret : count;
375}
376
377size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
378{
379	return prz->old_log_size;
380}
381
382void *persistent_ram_old(struct persistent_ram_zone *prz)
383{
384	return prz->old_log;
385}
386
387void persistent_ram_free_old(struct persistent_ram_zone *prz)
388{
389	kfree(prz->old_log);
390	prz->old_log = NULL;
391	prz->old_log_size = 0;
392}
393
394void persistent_ram_zap(struct persistent_ram_zone *prz)
395{
396	atomic_set(&prz->buffer->start, 0);
397	atomic_set(&prz->buffer->size, 0);
398	persistent_ram_update_header_ecc(prz);
399}
400
401static void *persistent_ram_vmap(phys_addr_t start, size_t size,
402		unsigned int memtype)
403{
404	struct page **pages;
405	phys_addr_t page_start;
406	unsigned int page_count;
407	pgprot_t prot;
408	unsigned int i;
409	void *vaddr;
410
411	page_start = start - offset_in_page(start);
412	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
413
414	if (memtype)
415		prot = pgprot_noncached(PAGE_KERNEL);
416	else
417		prot = pgprot_writecombine(PAGE_KERNEL);
418
419	pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
420	if (!pages) {
421		pr_err("%s: Failed to allocate array for %u pages\n",
422		       __func__, page_count);
423		return NULL;
424	}
425
426	for (i = 0; i < page_count; i++) {
427		phys_addr_t addr = page_start + i * PAGE_SIZE;
428		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
429	}
430	vaddr = vmap(pages, page_count, VM_MAP, prot);
431	kfree(pages);
432
433	/*
434	 * Since vmap() uses page granularity, we must add the offset
435	 * into the page here, to get the byte granularity address
436	 * into the mapping to represent the actual "start" location.
437	 */
438	return vaddr + offset_in_page(start);
439}
440
441static void *persistent_ram_iomap(phys_addr_t start, size_t size,
442		unsigned int memtype, char *label)
443{
444	void *va;
445
446	if (!request_mem_region(start, size, label ?: "ramoops")) {
447		pr_err("request mem region (%s 0x%llx@0x%llx) failed\n",
448			label ?: "ramoops",
449			(unsigned long long)size, (unsigned long long)start);
450		return NULL;
451	}
452
453	if (memtype)
454		va = ioremap(start, size);
455	else
456		va = ioremap_wc(start, size);
457
458	/*
459	 * Since request_mem_region() and ioremap() are byte-granularity
460	 * there is no need handle anything special like we do when the
461	 * vmap() case in persistent_ram_vmap() above.
462	 */
463	return va;
464}
465
466static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
467		struct persistent_ram_zone *prz, int memtype)
468{
469	prz->paddr = start;
470	prz->size = size;
471
472	if (pfn_valid(start >> PAGE_SHIFT))
473		prz->vaddr = persistent_ram_vmap(start, size, memtype);
474	else
475		prz->vaddr = persistent_ram_iomap(start, size, memtype,
476						  prz->label);
477
478	if (!prz->vaddr) {
479		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
480			(unsigned long long)size, (unsigned long long)start);
481		return -ENOMEM;
482	}
483
484	prz->buffer = prz->vaddr;
485	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
486
487	return 0;
488}
489
490static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
491				    struct persistent_ram_ecc_info *ecc_info)
492{
493	int ret;
494	bool zap = !!(prz->flags & PRZ_FLAG_ZAP_OLD);
495
496	ret = persistent_ram_init_ecc(prz, ecc_info);
497	if (ret) {
498		pr_warn("ECC failed %s\n", prz->label);
499		return ret;
500	}
501
502	sig ^= PERSISTENT_RAM_SIG;
503
504	if (prz->buffer->sig == sig) {
505		if (buffer_size(prz) == 0) {
506			pr_debug("found existing empty buffer\n");
507			return 0;
508		}
509
510		if (buffer_size(prz) > prz->buffer_size ||
511		    buffer_start(prz) > buffer_size(prz)) {
512			pr_info("found existing invalid buffer, size %zu, start %zu\n",
513				buffer_size(prz), buffer_start(prz));
514			zap = true;
515		} else {
516			pr_debug("found existing buffer, size %zu, start %zu\n",
517				 buffer_size(prz), buffer_start(prz));
518			persistent_ram_save_old(prz);
 
519		}
520	} else {
521		pr_debug("no valid data in buffer (sig = 0x%08x)\n",
522			 prz->buffer->sig);
523		prz->buffer->sig = sig;
524		zap = true;
525	}
526
527	/* Reset missing, invalid, or single-use memory area. */
528	if (zap)
529		persistent_ram_zap(prz);
530
531	return 0;
532}
533
534void persistent_ram_free(struct persistent_ram_zone *prz)
535{
536	if (!prz)
537		return;
538
539	if (prz->vaddr) {
540		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
541			/* We must vunmap() at page-granularity. */
542			vunmap(prz->vaddr - offset_in_page(prz->paddr));
543		} else {
544			iounmap(prz->vaddr);
545			release_mem_region(prz->paddr, prz->size);
546		}
547		prz->vaddr = NULL;
548	}
549	if (prz->rs_decoder) {
550		free_rs(prz->rs_decoder);
551		prz->rs_decoder = NULL;
552	}
553	kfree(prz->ecc_info.par);
554	prz->ecc_info.par = NULL;
555
556	persistent_ram_free_old(prz);
557	kfree(prz->label);
558	kfree(prz);
559}
560
561struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
562			u32 sig, struct persistent_ram_ecc_info *ecc_info,
563			unsigned int memtype, u32 flags, char *label)
564{
565	struct persistent_ram_zone *prz;
566	int ret = -ENOMEM;
567
568	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
569	if (!prz) {
570		pr_err("failed to allocate persistent ram zone\n");
571		goto err;
572	}
573
574	/* Initialize general buffer state. */
575	raw_spin_lock_init(&prz->buffer_lock);
576	prz->flags = flags;
577	prz->label = label;
578
579	ret = persistent_ram_buffer_map(start, size, prz, memtype);
580	if (ret)
581		goto err;
582
583	ret = persistent_ram_post_init(prz, sig, ecc_info);
584	if (ret)
585		goto err;
586
587	pr_debug("attached %s 0x%zx@0x%llx: %zu header, %zu data, %zu ecc (%d/%d)\n",
588		prz->label, prz->size, (unsigned long long)prz->paddr,
589		sizeof(*prz->buffer), prz->buffer_size,
590		prz->size - sizeof(*prz->buffer) - prz->buffer_size,
591		prz->ecc_info.ecc_size, prz->ecc_info.block_size);
592
593	return prz;
594err:
595	persistent_ram_free(prz);
596	return ERR_PTR(ret);
597}