Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *	fs/libfs.c
   3 *	Library for filesystems writers.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/export.h>
   8#include <linux/pagemap.h>
   9#include <linux/slab.h>
  10#include <linux/cred.h>
  11#include <linux/mount.h>
  12#include <linux/vfs.h>
  13#include <linux/quotaops.h>
  14#include <linux/mutex.h>
  15#include <linux/namei.h>
  16#include <linux/exportfs.h>
  17#include <linux/writeback.h>
  18#include <linux/buffer_head.h> /* sync_mapping_buffers */
 
 
  19
  20#include <linux/uaccess.h>
  21
  22#include "internal.h"
  23
  24int simple_getattr(const struct path *path, struct kstat *stat,
  25		   u32 request_mask, unsigned int query_flags)
  26{
  27	struct inode *inode = d_inode(path->dentry);
  28	generic_fillattr(inode, stat);
  29	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  30	return 0;
  31}
  32EXPORT_SYMBOL(simple_getattr);
  33
  34int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  35{
  36	buf->f_type = dentry->d_sb->s_magic;
  37	buf->f_bsize = PAGE_SIZE;
  38	buf->f_namelen = NAME_MAX;
  39	return 0;
  40}
  41EXPORT_SYMBOL(simple_statfs);
  42
  43/*
  44 * Retaining negative dentries for an in-memory filesystem just wastes
  45 * memory and lookup time: arrange for them to be deleted immediately.
  46 */
  47int always_delete_dentry(const struct dentry *dentry)
  48{
  49	return 1;
  50}
  51EXPORT_SYMBOL(always_delete_dentry);
  52
  53const struct dentry_operations simple_dentry_operations = {
  54	.d_delete = always_delete_dentry,
  55};
  56EXPORT_SYMBOL(simple_dentry_operations);
  57
  58/*
  59 * Lookup the data. This is trivial - if the dentry didn't already
  60 * exist, we know it is negative.  Set d_op to delete negative dentries.
  61 */
  62struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  63{
  64	if (dentry->d_name.len > NAME_MAX)
  65		return ERR_PTR(-ENAMETOOLONG);
  66	if (!dentry->d_sb->s_d_op)
  67		d_set_d_op(dentry, &simple_dentry_operations);
  68	d_add(dentry, NULL);
  69	return NULL;
  70}
  71EXPORT_SYMBOL(simple_lookup);
  72
  73int dcache_dir_open(struct inode *inode, struct file *file)
  74{
  75	file->private_data = d_alloc_cursor(file->f_path.dentry);
  76
  77	return file->private_data ? 0 : -ENOMEM;
  78}
  79EXPORT_SYMBOL(dcache_dir_open);
  80
  81int dcache_dir_close(struct inode *inode, struct file *file)
  82{
  83	dput(file->private_data);
  84	return 0;
  85}
  86EXPORT_SYMBOL(dcache_dir_close);
  87
  88/* parent is locked at least shared */
  89static struct dentry *next_positive(struct dentry *parent,
  90				    struct list_head *from,
  91				    int count)
 
 
 
 
 
 
 
  92{
  93	unsigned *seq = &parent->d_inode->i_dir_seq, n;
  94	struct dentry *res;
  95	struct list_head *p;
  96	bool skipped;
  97	int i;
  98
  99retry:
 100	i = count;
 101	skipped = false;
 102	n = smp_load_acquire(seq) & ~1;
 103	res = NULL;
 104	rcu_read_lock();
 105	for (p = from->next; p != &parent->d_subdirs; p = p->next) {
 106		struct dentry *d = list_entry(p, struct dentry, d_child);
 107		if (!simple_positive(d)) {
 108			skipped = true;
 109		} else if (!--i) {
 110			res = d;
 111			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 112		}
 113	}
 114	rcu_read_unlock();
 115	if (skipped) {
 116		smp_rmb();
 117		if (unlikely(*seq != n))
 118			goto retry;
 119	}
 120	return res;
 121}
 122
 123static void move_cursor(struct dentry *cursor, struct list_head *after)
 124{
 125	struct dentry *parent = cursor->d_parent;
 126	unsigned n, *seq = &parent->d_inode->i_dir_seq;
 127	spin_lock(&parent->d_lock);
 128	for (;;) {
 129		n = *seq;
 130		if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
 131			break;
 132		cpu_relax();
 133	}
 134	__list_del(cursor->d_child.prev, cursor->d_child.next);
 135	if (after)
 136		list_add(&cursor->d_child, after);
 137	else
 138		list_add_tail(&cursor->d_child, &parent->d_subdirs);
 139	smp_store_release(seq, n + 2);
 140	spin_unlock(&parent->d_lock);
 141}
 142
 143loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 144{
 145	struct dentry *dentry = file->f_path.dentry;
 146	switch (whence) {
 147		case 1:
 148			offset += file->f_pos;
 
 149		case 0:
 150			if (offset >= 0)
 151				break;
 
 152		default:
 153			return -EINVAL;
 154	}
 155	if (offset != file->f_pos) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156		file->f_pos = offset;
 157		if (file->f_pos >= 2) {
 158			struct dentry *cursor = file->private_data;
 159			struct dentry *to;
 160			loff_t n = file->f_pos - 2;
 161
 162			inode_lock_shared(dentry->d_inode);
 163			to = next_positive(dentry, &dentry->d_subdirs, n);
 164			move_cursor(cursor, to ? &to->d_child : NULL);
 165			inode_unlock_shared(dentry->d_inode);
 166		}
 167	}
 168	return offset;
 169}
 170EXPORT_SYMBOL(dcache_dir_lseek);
 171
 172/* Relationship between i_mode and the DT_xxx types */
 173static inline unsigned char dt_type(struct inode *inode)
 174{
 175	return (inode->i_mode >> 12) & 15;
 176}
 177
 178/*
 179 * Directory is locked and all positive dentries in it are safe, since
 180 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 181 * both impossible due to the lock on directory.
 182 */
 183
 184int dcache_readdir(struct file *file, struct dir_context *ctx)
 185{
 186	struct dentry *dentry = file->f_path.dentry;
 187	struct dentry *cursor = file->private_data;
 188	struct list_head *p = &cursor->d_child;
 189	struct dentry *next;
 190	bool moved = false;
 191
 192	if (!dir_emit_dots(file, ctx))
 193		return 0;
 194
 195	if (ctx->pos == 2)
 196		p = &dentry->d_subdirs;
 197	while ((next = next_positive(dentry, p, 1)) != NULL) {
 
 
 
 
 
 198		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 199			      d_inode(next)->i_ino, dt_type(d_inode(next))))
 200			break;
 201		moved = true;
 202		p = &next->d_child;
 203		ctx->pos++;
 
 204	}
 205	if (moved)
 206		move_cursor(cursor, p);
 
 
 
 
 
 
 207	return 0;
 208}
 209EXPORT_SYMBOL(dcache_readdir);
 210
 211ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 212{
 213	return -EISDIR;
 214}
 215EXPORT_SYMBOL(generic_read_dir);
 216
 217const struct file_operations simple_dir_operations = {
 218	.open		= dcache_dir_open,
 219	.release	= dcache_dir_close,
 220	.llseek		= dcache_dir_lseek,
 221	.read		= generic_read_dir,
 222	.iterate_shared	= dcache_readdir,
 223	.fsync		= noop_fsync,
 224};
 225EXPORT_SYMBOL(simple_dir_operations);
 226
 227const struct inode_operations simple_dir_inode_operations = {
 228	.lookup		= simple_lookup,
 229};
 230EXPORT_SYMBOL(simple_dir_inode_operations);
 231
 232static const struct super_operations simple_super_operations = {
 233	.statfs		= simple_statfs,
 234};
 235
 236/*
 237 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 238 * will never be mountable)
 239 */
 240struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
 241	const struct super_operations *ops, const struct xattr_handler **xattr,
 242	const struct dentry_operations *dops, unsigned long magic)
 243{
 244	struct super_block *s;
 245	struct dentry *dentry;
 246	struct inode *root;
 247	struct qstr d_name = QSTR_INIT(name, strlen(name));
 248
 249	s = sget_userns(fs_type, NULL, set_anon_super, SB_KERNMOUNT|SB_NOUSER,
 250			&init_user_ns, NULL);
 251	if (IS_ERR(s))
 252		return ERR_CAST(s);
 253
 254	s->s_maxbytes = MAX_LFS_FILESIZE;
 255	s->s_blocksize = PAGE_SIZE;
 256	s->s_blocksize_bits = PAGE_SHIFT;
 257	s->s_magic = magic;
 258	s->s_op = ops ? ops : &simple_super_operations;
 259	s->s_xattr = xattr;
 260	s->s_time_gran = 1;
 261	root = new_inode(s);
 262	if (!root)
 263		goto Enomem;
 
 264	/*
 265	 * since this is the first inode, make it number 1. New inodes created
 266	 * after this must take care not to collide with it (by passing
 267	 * max_reserved of 1 to iunique).
 268	 */
 269	root->i_ino = 1;
 270	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 271	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 272	dentry = __d_alloc(s, &d_name);
 273	if (!dentry) {
 274		iput(root);
 275		goto Enomem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276	}
 277	d_instantiate(dentry, root);
 278	s->s_root = dentry;
 279	s->s_d_op = dops;
 280	s->s_flags |= SB_ACTIVE;
 281	return dget(s->s_root);
 282
 283Enomem:
 284	deactivate_locked_super(s);
 285	return ERR_PTR(-ENOMEM);
 286}
 287EXPORT_SYMBOL(mount_pseudo_xattr);
 288
 289int simple_open(struct inode *inode, struct file *file)
 290{
 291	if (inode->i_private)
 292		file->private_data = inode->i_private;
 293	return 0;
 294}
 295EXPORT_SYMBOL(simple_open);
 296
 297int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 298{
 299	struct inode *inode = d_inode(old_dentry);
 300
 301	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 302	inc_nlink(inode);
 303	ihold(inode);
 304	dget(dentry);
 305	d_instantiate(dentry, inode);
 306	return 0;
 307}
 308EXPORT_SYMBOL(simple_link);
 309
 310int simple_empty(struct dentry *dentry)
 311{
 312	struct dentry *child;
 313	int ret = 0;
 314
 315	spin_lock(&dentry->d_lock);
 316	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 317		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 318		if (simple_positive(child)) {
 319			spin_unlock(&child->d_lock);
 320			goto out;
 321		}
 322		spin_unlock(&child->d_lock);
 323	}
 324	ret = 1;
 325out:
 326	spin_unlock(&dentry->d_lock);
 327	return ret;
 328}
 329EXPORT_SYMBOL(simple_empty);
 330
 331int simple_unlink(struct inode *dir, struct dentry *dentry)
 332{
 333	struct inode *inode = d_inode(dentry);
 334
 335	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 336	drop_nlink(inode);
 337	dput(dentry);
 338	return 0;
 339}
 340EXPORT_SYMBOL(simple_unlink);
 341
 342int simple_rmdir(struct inode *dir, struct dentry *dentry)
 343{
 344	if (!simple_empty(dentry))
 345		return -ENOTEMPTY;
 346
 347	drop_nlink(d_inode(dentry));
 348	simple_unlink(dir, dentry);
 349	drop_nlink(dir);
 350	return 0;
 351}
 352EXPORT_SYMBOL(simple_rmdir);
 353
 354int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 355		  struct inode *new_dir, struct dentry *new_dentry,
 356		  unsigned int flags)
 357{
 358	struct inode *inode = d_inode(old_dentry);
 359	int they_are_dirs = d_is_dir(old_dentry);
 360
 361	if (flags & ~RENAME_NOREPLACE)
 362		return -EINVAL;
 363
 364	if (!simple_empty(new_dentry))
 365		return -ENOTEMPTY;
 366
 367	if (d_really_is_positive(new_dentry)) {
 368		simple_unlink(new_dir, new_dentry);
 369		if (they_are_dirs) {
 370			drop_nlink(d_inode(new_dentry));
 371			drop_nlink(old_dir);
 372		}
 373	} else if (they_are_dirs) {
 374		drop_nlink(old_dir);
 375		inc_nlink(new_dir);
 376	}
 377
 378	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 379		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 380
 381	return 0;
 382}
 383EXPORT_SYMBOL(simple_rename);
 384
 385/**
 386 * simple_setattr - setattr for simple filesystem
 387 * @dentry: dentry
 388 * @iattr: iattr structure
 389 *
 390 * Returns 0 on success, -error on failure.
 391 *
 392 * simple_setattr is a simple ->setattr implementation without a proper
 393 * implementation of size changes.
 394 *
 395 * It can either be used for in-memory filesystems or special files
 396 * on simple regular filesystems.  Anything that needs to change on-disk
 397 * or wire state on size changes needs its own setattr method.
 398 */
 399int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 400{
 401	struct inode *inode = d_inode(dentry);
 402	int error;
 403
 404	error = setattr_prepare(dentry, iattr);
 405	if (error)
 406		return error;
 407
 408	if (iattr->ia_valid & ATTR_SIZE)
 409		truncate_setsize(inode, iattr->ia_size);
 410	setattr_copy(inode, iattr);
 411	mark_inode_dirty(inode);
 412	return 0;
 413}
 414EXPORT_SYMBOL(simple_setattr);
 415
 416int simple_readpage(struct file *file, struct page *page)
 417{
 418	clear_highpage(page);
 419	flush_dcache_page(page);
 420	SetPageUptodate(page);
 421	unlock_page(page);
 422	return 0;
 423}
 424EXPORT_SYMBOL(simple_readpage);
 425
 426int simple_write_begin(struct file *file, struct address_space *mapping,
 427			loff_t pos, unsigned len, unsigned flags,
 428			struct page **pagep, void **fsdata)
 429{
 430	struct page *page;
 431	pgoff_t index;
 432
 433	index = pos >> PAGE_SHIFT;
 434
 435	page = grab_cache_page_write_begin(mapping, index, flags);
 436	if (!page)
 437		return -ENOMEM;
 438
 439	*pagep = page;
 440
 441	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 442		unsigned from = pos & (PAGE_SIZE - 1);
 443
 444		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 445	}
 446	return 0;
 447}
 448EXPORT_SYMBOL(simple_write_begin);
 449
 450/**
 451 * simple_write_end - .write_end helper for non-block-device FSes
 452 * @available: See .write_end of address_space_operations
 453 * @file: 		"
 454 * @mapping: 		"
 455 * @pos: 		"
 456 * @len: 		"
 457 * @copied: 		"
 458 * @page: 		"
 459 * @fsdata: 		"
 460 *
 461 * simple_write_end does the minimum needed for updating a page after writing is
 462 * done. It has the same API signature as the .write_end of
 463 * address_space_operations vector. So it can just be set onto .write_end for
 464 * FSes that don't need any other processing. i_mutex is assumed to be held.
 465 * Block based filesystems should use generic_write_end().
 466 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 467 * is not called, so a filesystem that actually does store data in .write_inode
 468 * should extend on what's done here with a call to mark_inode_dirty() in the
 469 * case that i_size has changed.
 470 *
 471 * Use *ONLY* with simple_readpage()
 472 */
 473int simple_write_end(struct file *file, struct address_space *mapping,
 474			loff_t pos, unsigned len, unsigned copied,
 475			struct page *page, void *fsdata)
 476{
 477	struct inode *inode = page->mapping->host;
 478	loff_t last_pos = pos + copied;
 479
 480	/* zero the stale part of the page if we did a short copy */
 481	if (!PageUptodate(page)) {
 482		if (copied < len) {
 483			unsigned from = pos & (PAGE_SIZE - 1);
 484
 485			zero_user(page, from + copied, len - copied);
 486		}
 487		SetPageUptodate(page);
 488	}
 489	/*
 490	 * No need to use i_size_read() here, the i_size
 491	 * cannot change under us because we hold the i_mutex.
 492	 */
 493	if (last_pos > inode->i_size)
 494		i_size_write(inode, last_pos);
 495
 496	set_page_dirty(page);
 497	unlock_page(page);
 498	put_page(page);
 499
 500	return copied;
 501}
 502EXPORT_SYMBOL(simple_write_end);
 503
 504/*
 505 * the inodes created here are not hashed. If you use iunique to generate
 506 * unique inode values later for this filesystem, then you must take care
 507 * to pass it an appropriate max_reserved value to avoid collisions.
 508 */
 509int simple_fill_super(struct super_block *s, unsigned long magic,
 510		      const struct tree_descr *files)
 511{
 512	struct inode *inode;
 513	struct dentry *root;
 514	struct dentry *dentry;
 515	int i;
 516
 517	s->s_blocksize = PAGE_SIZE;
 518	s->s_blocksize_bits = PAGE_SHIFT;
 519	s->s_magic = magic;
 520	s->s_op = &simple_super_operations;
 521	s->s_time_gran = 1;
 522
 523	inode = new_inode(s);
 524	if (!inode)
 525		return -ENOMEM;
 526	/*
 527	 * because the root inode is 1, the files array must not contain an
 528	 * entry at index 1
 529	 */
 530	inode->i_ino = 1;
 531	inode->i_mode = S_IFDIR | 0755;
 532	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 533	inode->i_op = &simple_dir_inode_operations;
 534	inode->i_fop = &simple_dir_operations;
 535	set_nlink(inode, 2);
 536	root = d_make_root(inode);
 537	if (!root)
 538		return -ENOMEM;
 539	for (i = 0; !files->name || files->name[0]; i++, files++) {
 540		if (!files->name)
 541			continue;
 542
 543		/* warn if it tries to conflict with the root inode */
 544		if (unlikely(i == 1))
 545			printk(KERN_WARNING "%s: %s passed in a files array"
 546				"with an index of 1!\n", __func__,
 547				s->s_type->name);
 548
 549		dentry = d_alloc_name(root, files->name);
 550		if (!dentry)
 551			goto out;
 552		inode = new_inode(s);
 553		if (!inode) {
 554			dput(dentry);
 555			goto out;
 556		}
 557		inode->i_mode = S_IFREG | files->mode;
 558		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 559		inode->i_fop = files->ops;
 560		inode->i_ino = i;
 561		d_add(dentry, inode);
 562	}
 563	s->s_root = root;
 564	return 0;
 565out:
 566	d_genocide(root);
 567	shrink_dcache_parent(root);
 568	dput(root);
 569	return -ENOMEM;
 570}
 571EXPORT_SYMBOL(simple_fill_super);
 572
 573static DEFINE_SPINLOCK(pin_fs_lock);
 574
 575int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 576{
 577	struct vfsmount *mnt = NULL;
 578	spin_lock(&pin_fs_lock);
 579	if (unlikely(!*mount)) {
 580		spin_unlock(&pin_fs_lock);
 581		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 582		if (IS_ERR(mnt))
 583			return PTR_ERR(mnt);
 584		spin_lock(&pin_fs_lock);
 585		if (!*mount)
 586			*mount = mnt;
 587	}
 588	mntget(*mount);
 589	++*count;
 590	spin_unlock(&pin_fs_lock);
 591	mntput(mnt);
 592	return 0;
 593}
 594EXPORT_SYMBOL(simple_pin_fs);
 595
 596void simple_release_fs(struct vfsmount **mount, int *count)
 597{
 598	struct vfsmount *mnt;
 599	spin_lock(&pin_fs_lock);
 600	mnt = *mount;
 601	if (!--*count)
 602		*mount = NULL;
 603	spin_unlock(&pin_fs_lock);
 604	mntput(mnt);
 605}
 606EXPORT_SYMBOL(simple_release_fs);
 607
 608/**
 609 * simple_read_from_buffer - copy data from the buffer to user space
 610 * @to: the user space buffer to read to
 611 * @count: the maximum number of bytes to read
 612 * @ppos: the current position in the buffer
 613 * @from: the buffer to read from
 614 * @available: the size of the buffer
 615 *
 616 * The simple_read_from_buffer() function reads up to @count bytes from the
 617 * buffer @from at offset @ppos into the user space address starting at @to.
 618 *
 619 * On success, the number of bytes read is returned and the offset @ppos is
 620 * advanced by this number, or negative value is returned on error.
 621 **/
 622ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 623				const void *from, size_t available)
 624{
 625	loff_t pos = *ppos;
 626	size_t ret;
 627
 628	if (pos < 0)
 629		return -EINVAL;
 630	if (pos >= available || !count)
 631		return 0;
 632	if (count > available - pos)
 633		count = available - pos;
 634	ret = copy_to_user(to, from + pos, count);
 635	if (ret == count)
 636		return -EFAULT;
 637	count -= ret;
 638	*ppos = pos + count;
 639	return count;
 640}
 641EXPORT_SYMBOL(simple_read_from_buffer);
 642
 643/**
 644 * simple_write_to_buffer - copy data from user space to the buffer
 645 * @to: the buffer to write to
 646 * @available: the size of the buffer
 647 * @ppos: the current position in the buffer
 648 * @from: the user space buffer to read from
 649 * @count: the maximum number of bytes to read
 650 *
 651 * The simple_write_to_buffer() function reads up to @count bytes from the user
 652 * space address starting at @from into the buffer @to at offset @ppos.
 653 *
 654 * On success, the number of bytes written is returned and the offset @ppos is
 655 * advanced by this number, or negative value is returned on error.
 656 **/
 657ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 658		const void __user *from, size_t count)
 659{
 660	loff_t pos = *ppos;
 661	size_t res;
 662
 663	if (pos < 0)
 664		return -EINVAL;
 665	if (pos >= available || !count)
 666		return 0;
 667	if (count > available - pos)
 668		count = available - pos;
 669	res = copy_from_user(to + pos, from, count);
 670	if (res == count)
 671		return -EFAULT;
 672	count -= res;
 673	*ppos = pos + count;
 674	return count;
 675}
 676EXPORT_SYMBOL(simple_write_to_buffer);
 677
 678/**
 679 * memory_read_from_buffer - copy data from the buffer
 680 * @to: the kernel space buffer to read to
 681 * @count: the maximum number of bytes to read
 682 * @ppos: the current position in the buffer
 683 * @from: the buffer to read from
 684 * @available: the size of the buffer
 685 *
 686 * The memory_read_from_buffer() function reads up to @count bytes from the
 687 * buffer @from at offset @ppos into the kernel space address starting at @to.
 688 *
 689 * On success, the number of bytes read is returned and the offset @ppos is
 690 * advanced by this number, or negative value is returned on error.
 691 **/
 692ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 693				const void *from, size_t available)
 694{
 695	loff_t pos = *ppos;
 696
 697	if (pos < 0)
 698		return -EINVAL;
 699	if (pos >= available)
 700		return 0;
 701	if (count > available - pos)
 702		count = available - pos;
 703	memcpy(to, from + pos, count);
 704	*ppos = pos + count;
 705
 706	return count;
 707}
 708EXPORT_SYMBOL(memory_read_from_buffer);
 709
 710/*
 711 * Transaction based IO.
 712 * The file expects a single write which triggers the transaction, and then
 713 * possibly a read which collects the result - which is stored in a
 714 * file-local buffer.
 715 */
 716
 717void simple_transaction_set(struct file *file, size_t n)
 718{
 719	struct simple_transaction_argresp *ar = file->private_data;
 720
 721	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 722
 723	/*
 724	 * The barrier ensures that ar->size will really remain zero until
 725	 * ar->data is ready for reading.
 726	 */
 727	smp_mb();
 728	ar->size = n;
 729}
 730EXPORT_SYMBOL(simple_transaction_set);
 731
 732char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 733{
 734	struct simple_transaction_argresp *ar;
 735	static DEFINE_SPINLOCK(simple_transaction_lock);
 736
 737	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 738		return ERR_PTR(-EFBIG);
 739
 740	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 741	if (!ar)
 742		return ERR_PTR(-ENOMEM);
 743
 744	spin_lock(&simple_transaction_lock);
 745
 746	/* only one write allowed per open */
 747	if (file->private_data) {
 748		spin_unlock(&simple_transaction_lock);
 749		free_page((unsigned long)ar);
 750		return ERR_PTR(-EBUSY);
 751	}
 752
 753	file->private_data = ar;
 754
 755	spin_unlock(&simple_transaction_lock);
 756
 757	if (copy_from_user(ar->data, buf, size))
 758		return ERR_PTR(-EFAULT);
 759
 760	return ar->data;
 761}
 762EXPORT_SYMBOL(simple_transaction_get);
 763
 764ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 765{
 766	struct simple_transaction_argresp *ar = file->private_data;
 767
 768	if (!ar)
 769		return 0;
 770	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 771}
 772EXPORT_SYMBOL(simple_transaction_read);
 773
 774int simple_transaction_release(struct inode *inode, struct file *file)
 775{
 776	free_page((unsigned long)file->private_data);
 777	return 0;
 778}
 779EXPORT_SYMBOL(simple_transaction_release);
 780
 781/* Simple attribute files */
 782
 783struct simple_attr {
 784	int (*get)(void *, u64 *);
 785	int (*set)(void *, u64);
 786	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 787	char set_buf[24];
 788	void *data;
 789	const char *fmt;	/* format for read operation */
 790	struct mutex mutex;	/* protects access to these buffers */
 791};
 792
 793/* simple_attr_open is called by an actual attribute open file operation
 794 * to set the attribute specific access operations. */
 795int simple_attr_open(struct inode *inode, struct file *file,
 796		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 797		     const char *fmt)
 798{
 799	struct simple_attr *attr;
 800
 801	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 802	if (!attr)
 803		return -ENOMEM;
 804
 805	attr->get = get;
 806	attr->set = set;
 807	attr->data = inode->i_private;
 808	attr->fmt = fmt;
 809	mutex_init(&attr->mutex);
 810
 811	file->private_data = attr;
 812
 813	return nonseekable_open(inode, file);
 814}
 815EXPORT_SYMBOL_GPL(simple_attr_open);
 816
 817int simple_attr_release(struct inode *inode, struct file *file)
 818{
 819	kfree(file->private_data);
 820	return 0;
 821}
 822EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 823
 824/* read from the buffer that is filled with the get function */
 825ssize_t simple_attr_read(struct file *file, char __user *buf,
 826			 size_t len, loff_t *ppos)
 827{
 828	struct simple_attr *attr;
 829	size_t size;
 830	ssize_t ret;
 831
 832	attr = file->private_data;
 833
 834	if (!attr->get)
 835		return -EACCES;
 836
 837	ret = mutex_lock_interruptible(&attr->mutex);
 838	if (ret)
 839		return ret;
 840
 841	if (*ppos) {		/* continued read */
 842		size = strlen(attr->get_buf);
 843	} else {		/* first read */
 844		u64 val;
 845		ret = attr->get(attr->data, &val);
 846		if (ret)
 847			goto out;
 848
 849		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 850				 attr->fmt, (unsigned long long)val);
 851	}
 852
 853	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 854out:
 855	mutex_unlock(&attr->mutex);
 856	return ret;
 857}
 858EXPORT_SYMBOL_GPL(simple_attr_read);
 859
 860/* interpret the buffer as a number to call the set function with */
 861ssize_t simple_attr_write(struct file *file, const char __user *buf,
 862			  size_t len, loff_t *ppos)
 863{
 864	struct simple_attr *attr;
 865	u64 val;
 866	size_t size;
 867	ssize_t ret;
 868
 869	attr = file->private_data;
 870	if (!attr->set)
 871		return -EACCES;
 872
 873	ret = mutex_lock_interruptible(&attr->mutex);
 874	if (ret)
 875		return ret;
 876
 877	ret = -EFAULT;
 878	size = min(sizeof(attr->set_buf) - 1, len);
 879	if (copy_from_user(attr->set_buf, buf, size))
 880		goto out;
 881
 882	attr->set_buf[size] = '\0';
 883	val = simple_strtoll(attr->set_buf, NULL, 0);
 884	ret = attr->set(attr->data, val);
 885	if (ret == 0)
 886		ret = len; /* on success, claim we got the whole input */
 887out:
 888	mutex_unlock(&attr->mutex);
 889	return ret;
 890}
 891EXPORT_SYMBOL_GPL(simple_attr_write);
 892
 893/**
 894 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 895 * @sb:		filesystem to do the file handle conversion on
 896 * @fid:	file handle to convert
 897 * @fh_len:	length of the file handle in bytes
 898 * @fh_type:	type of file handle
 899 * @get_inode:	filesystem callback to retrieve inode
 900 *
 901 * This function decodes @fid as long as it has one of the well-known
 902 * Linux filehandle types and calls @get_inode on it to retrieve the
 903 * inode for the object specified in the file handle.
 904 */
 905struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 906		int fh_len, int fh_type, struct inode *(*get_inode)
 907			(struct super_block *sb, u64 ino, u32 gen))
 908{
 909	struct inode *inode = NULL;
 910
 911	if (fh_len < 2)
 912		return NULL;
 913
 914	switch (fh_type) {
 915	case FILEID_INO32_GEN:
 916	case FILEID_INO32_GEN_PARENT:
 917		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 918		break;
 919	}
 920
 921	return d_obtain_alias(inode);
 922}
 923EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 924
 925/**
 926 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 927 * @sb:		filesystem to do the file handle conversion on
 928 * @fid:	file handle to convert
 929 * @fh_len:	length of the file handle in bytes
 930 * @fh_type:	type of file handle
 931 * @get_inode:	filesystem callback to retrieve inode
 932 *
 933 * This function decodes @fid as long as it has one of the well-known
 934 * Linux filehandle types and calls @get_inode on it to retrieve the
 935 * inode for the _parent_ object specified in the file handle if it
 936 * is specified in the file handle, or NULL otherwise.
 937 */
 938struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 939		int fh_len, int fh_type, struct inode *(*get_inode)
 940			(struct super_block *sb, u64 ino, u32 gen))
 941{
 942	struct inode *inode = NULL;
 943
 944	if (fh_len <= 2)
 945		return NULL;
 946
 947	switch (fh_type) {
 948	case FILEID_INO32_GEN_PARENT:
 949		inode = get_inode(sb, fid->i32.parent_ino,
 950				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 951		break;
 952	}
 953
 954	return d_obtain_alias(inode);
 955}
 956EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 957
 958/**
 959 * __generic_file_fsync - generic fsync implementation for simple filesystems
 960 *
 961 * @file:	file to synchronize
 962 * @start:	start offset in bytes
 963 * @end:	end offset in bytes (inclusive)
 964 * @datasync:	only synchronize essential metadata if true
 965 *
 966 * This is a generic implementation of the fsync method for simple
 967 * filesystems which track all non-inode metadata in the buffers list
 968 * hanging off the address_space structure.
 969 */
 970int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 971				 int datasync)
 972{
 973	struct inode *inode = file->f_mapping->host;
 974	int err;
 975	int ret;
 976
 977	err = file_write_and_wait_range(file, start, end);
 978	if (err)
 979		return err;
 980
 981	inode_lock(inode);
 982	ret = sync_mapping_buffers(inode->i_mapping);
 983	if (!(inode->i_state & I_DIRTY_ALL))
 984		goto out;
 985	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 986		goto out;
 987
 988	err = sync_inode_metadata(inode, 1);
 989	if (ret == 0)
 990		ret = err;
 991
 992out:
 993	inode_unlock(inode);
 994	/* check and advance again to catch errors after syncing out buffers */
 995	err = file_check_and_advance_wb_err(file);
 996	if (ret == 0)
 997		ret = err;
 998	return ret;
 999}
1000EXPORT_SYMBOL(__generic_file_fsync);
1001
1002/**
1003 * generic_file_fsync - generic fsync implementation for simple filesystems
1004 *			with flush
1005 * @file:	file to synchronize
1006 * @start:	start offset in bytes
1007 * @end:	end offset in bytes (inclusive)
1008 * @datasync:	only synchronize essential metadata if true
1009 *
1010 */
1011
1012int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1013		       int datasync)
1014{
1015	struct inode *inode = file->f_mapping->host;
1016	int err;
1017
1018	err = __generic_file_fsync(file, start, end, datasync);
1019	if (err)
1020		return err;
1021	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1022}
1023EXPORT_SYMBOL(generic_file_fsync);
1024
1025/**
1026 * generic_check_addressable - Check addressability of file system
1027 * @blocksize_bits:	log of file system block size
1028 * @num_blocks:		number of blocks in file system
1029 *
1030 * Determine whether a file system with @num_blocks blocks (and a
1031 * block size of 2**@blocksize_bits) is addressable by the sector_t
1032 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1033 */
1034int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1035{
1036	u64 last_fs_block = num_blocks - 1;
1037	u64 last_fs_page =
1038		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1039
1040	if (unlikely(num_blocks == 0))
1041		return 0;
1042
1043	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1044		return -EINVAL;
1045
1046	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1047	    (last_fs_page > (pgoff_t)(~0ULL))) {
1048		return -EFBIG;
1049	}
1050	return 0;
1051}
1052EXPORT_SYMBOL(generic_check_addressable);
1053
1054/*
1055 * No-op implementation of ->fsync for in-memory filesystems.
1056 */
1057int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1058{
1059	return 0;
1060}
1061EXPORT_SYMBOL(noop_fsync);
1062
1063int noop_set_page_dirty(struct page *page)
1064{
1065	/*
1066	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1067	 * tracking in the page object, dax does all dirty tracking in
1068	 * the inode address_space in response to mkwrite faults. In the
1069	 * dax case we only need to worry about potentially dirty CPU
1070	 * caches, not dirty page cache pages to write back.
1071	 *
1072	 * This callback is defined to prevent fallback to
1073	 * __set_page_dirty_buffers() in set_page_dirty().
1074	 */
1075	return 0;
1076}
1077EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1078
1079void noop_invalidatepage(struct page *page, unsigned int offset,
1080		unsigned int length)
1081{
1082	/*
1083	 * There is no page cache to invalidate in the dax case, however
1084	 * we need this callback defined to prevent falling back to
1085	 * block_invalidatepage() in do_invalidatepage().
1086	 */
1087}
1088EXPORT_SYMBOL_GPL(noop_invalidatepage);
1089
1090ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1091{
1092	/*
1093	 * iomap based filesystems support direct I/O without need for
1094	 * this callback. However, it still needs to be set in
1095	 * inode->a_ops so that open/fcntl know that direct I/O is
1096	 * generally supported.
1097	 */
1098	return -EINVAL;
1099}
1100EXPORT_SYMBOL_GPL(noop_direct_IO);
1101
1102/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1103void kfree_link(void *p)
1104{
1105	kfree(p);
1106}
1107EXPORT_SYMBOL(kfree_link);
1108
1109/*
1110 * nop .set_page_dirty method so that people can use .page_mkwrite on
1111 * anon inodes.
1112 */
1113static int anon_set_page_dirty(struct page *page)
1114{
1115	return 0;
1116};
1117
1118/*
1119 * A single inode exists for all anon_inode files. Contrary to pipes,
1120 * anon_inode inodes have no associated per-instance data, so we need
1121 * only allocate one of them.
1122 */
1123struct inode *alloc_anon_inode(struct super_block *s)
1124{
1125	static const struct address_space_operations anon_aops = {
1126		.set_page_dirty = anon_set_page_dirty,
1127	};
1128	struct inode *inode = new_inode_pseudo(s);
1129
1130	if (!inode)
1131		return ERR_PTR(-ENOMEM);
1132
1133	inode->i_ino = get_next_ino();
1134	inode->i_mapping->a_ops = &anon_aops;
1135
1136	/*
1137	 * Mark the inode dirty from the very beginning,
1138	 * that way it will never be moved to the dirty
1139	 * list because mark_inode_dirty() will think
1140	 * that it already _is_ on the dirty list.
1141	 */
1142	inode->i_state = I_DIRTY;
1143	inode->i_mode = S_IRUSR | S_IWUSR;
1144	inode->i_uid = current_fsuid();
1145	inode->i_gid = current_fsgid();
1146	inode->i_flags |= S_PRIVATE;
1147	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1148	return inode;
1149}
1150EXPORT_SYMBOL(alloc_anon_inode);
1151
1152/**
1153 * simple_nosetlease - generic helper for prohibiting leases
1154 * @filp: file pointer
1155 * @arg: type of lease to obtain
1156 * @flp: new lease supplied for insertion
1157 * @priv: private data for lm_setup operation
1158 *
1159 * Generic helper for filesystems that do not wish to allow leases to be set.
1160 * All arguments are ignored and it just returns -EINVAL.
1161 */
1162int
1163simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1164		  void **priv)
1165{
1166	return -EINVAL;
1167}
1168EXPORT_SYMBOL(simple_nosetlease);
1169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1171			    struct delayed_call *done)
1172{
1173	return inode->i_link;
1174}
1175EXPORT_SYMBOL(simple_get_link);
1176
1177const struct inode_operations simple_symlink_inode_operations = {
1178	.get_link = simple_get_link,
1179};
1180EXPORT_SYMBOL(simple_symlink_inode_operations);
1181
1182/*
1183 * Operations for a permanently empty directory.
1184 */
1185static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1186{
1187	return ERR_PTR(-ENOENT);
1188}
1189
1190static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1191			     u32 request_mask, unsigned int query_flags)
1192{
1193	struct inode *inode = d_inode(path->dentry);
1194	generic_fillattr(inode, stat);
1195	return 0;
1196}
1197
1198static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1199{
1200	return -EPERM;
1201}
1202
1203static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1204{
1205	return -EOPNOTSUPP;
1206}
1207
1208static const struct inode_operations empty_dir_inode_operations = {
1209	.lookup		= empty_dir_lookup,
1210	.permission	= generic_permission,
1211	.setattr	= empty_dir_setattr,
1212	.getattr	= empty_dir_getattr,
1213	.listxattr	= empty_dir_listxattr,
1214};
1215
1216static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1217{
1218	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1219	return generic_file_llseek_size(file, offset, whence, 2, 2);
1220}
1221
1222static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1223{
1224	dir_emit_dots(file, ctx);
1225	return 0;
1226}
1227
1228static const struct file_operations empty_dir_operations = {
1229	.llseek		= empty_dir_llseek,
1230	.read		= generic_read_dir,
1231	.iterate_shared	= empty_dir_readdir,
1232	.fsync		= noop_fsync,
1233};
1234
1235
1236void make_empty_dir_inode(struct inode *inode)
1237{
1238	set_nlink(inode, 2);
1239	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1240	inode->i_uid = GLOBAL_ROOT_UID;
1241	inode->i_gid = GLOBAL_ROOT_GID;
1242	inode->i_rdev = 0;
1243	inode->i_size = 0;
1244	inode->i_blkbits = PAGE_SHIFT;
1245	inode->i_blocks = 0;
1246
1247	inode->i_op = &empty_dir_inode_operations;
1248	inode->i_opflags &= ~IOP_XATTR;
1249	inode->i_fop = &empty_dir_operations;
1250}
1251
1252bool is_empty_dir_inode(struct inode *inode)
1253{
1254	return (inode->i_fop == &empty_dir_operations) &&
1255		(inode->i_op == &empty_dir_inode_operations);
1256}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	fs/libfs.c
   4 *	Library for filesystems writers.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/export.h>
   9#include <linux/pagemap.h>
  10#include <linux/slab.h>
  11#include <linux/cred.h>
  12#include <linux/mount.h>
  13#include <linux/vfs.h>
  14#include <linux/quotaops.h>
  15#include <linux/mutex.h>
  16#include <linux/namei.h>
  17#include <linux/exportfs.h>
  18#include <linux/writeback.h>
  19#include <linux/buffer_head.h> /* sync_mapping_buffers */
  20#include <linux/fs_context.h>
  21#include <linux/pseudo_fs.h>
  22
  23#include <linux/uaccess.h>
  24
  25#include "internal.h"
  26
  27int simple_getattr(const struct path *path, struct kstat *stat,
  28		   u32 request_mask, unsigned int query_flags)
  29{
  30	struct inode *inode = d_inode(path->dentry);
  31	generic_fillattr(inode, stat);
  32	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  33	return 0;
  34}
  35EXPORT_SYMBOL(simple_getattr);
  36
  37int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  38{
  39	buf->f_type = dentry->d_sb->s_magic;
  40	buf->f_bsize = PAGE_SIZE;
  41	buf->f_namelen = NAME_MAX;
  42	return 0;
  43}
  44EXPORT_SYMBOL(simple_statfs);
  45
  46/*
  47 * Retaining negative dentries for an in-memory filesystem just wastes
  48 * memory and lookup time: arrange for them to be deleted immediately.
  49 */
  50int always_delete_dentry(const struct dentry *dentry)
  51{
  52	return 1;
  53}
  54EXPORT_SYMBOL(always_delete_dentry);
  55
  56const struct dentry_operations simple_dentry_operations = {
  57	.d_delete = always_delete_dentry,
  58};
  59EXPORT_SYMBOL(simple_dentry_operations);
  60
  61/*
  62 * Lookup the data. This is trivial - if the dentry didn't already
  63 * exist, we know it is negative.  Set d_op to delete negative dentries.
  64 */
  65struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  66{
  67	if (dentry->d_name.len > NAME_MAX)
  68		return ERR_PTR(-ENAMETOOLONG);
  69	if (!dentry->d_sb->s_d_op)
  70		d_set_d_op(dentry, &simple_dentry_operations);
  71	d_add(dentry, NULL);
  72	return NULL;
  73}
  74EXPORT_SYMBOL(simple_lookup);
  75
  76int dcache_dir_open(struct inode *inode, struct file *file)
  77{
  78	file->private_data = d_alloc_cursor(file->f_path.dentry);
  79
  80	return file->private_data ? 0 : -ENOMEM;
  81}
  82EXPORT_SYMBOL(dcache_dir_open);
  83
  84int dcache_dir_close(struct inode *inode, struct file *file)
  85{
  86	dput(file->private_data);
  87	return 0;
  88}
  89EXPORT_SYMBOL(dcache_dir_close);
  90
  91/* parent is locked at least shared */
  92/*
  93 * Returns an element of siblings' list.
  94 * We are looking for <count>th positive after <p>; if
  95 * found, dentry is grabbed and returned to caller.
  96 * If no such element exists, NULL is returned.
  97 */
  98static struct dentry *scan_positives(struct dentry *cursor,
  99					struct list_head *p,
 100					loff_t count,
 101					struct dentry *last)
 102{
 103	struct dentry *dentry = cursor->d_parent, *found = NULL;
 
 
 
 
 104
 105	spin_lock(&dentry->d_lock);
 106	while ((p = p->next) != &dentry->d_subdirs) {
 
 
 
 
 
 107		struct dentry *d = list_entry(p, struct dentry, d_child);
 108		// we must at least skip cursors, to avoid livelocks
 109		if (d->d_flags & DCACHE_DENTRY_CURSOR)
 110			continue;
 111		if (simple_positive(d) && !--count) {
 112			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 113			if (simple_positive(d))
 114				found = dget_dlock(d);
 115			spin_unlock(&d->d_lock);
 116			if (likely(found))
 117				break;
 118			count = 1;
 119		}
 120		if (need_resched()) {
 121			list_move(&cursor->d_child, p);
 122			p = &cursor->d_child;
 123			spin_unlock(&dentry->d_lock);
 124			cond_resched();
 125			spin_lock(&dentry->d_lock);
 126		}
 127	}
 128	spin_unlock(&dentry->d_lock);
 129	dput(last);
 130	return found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131}
 132
 133loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 134{
 135	struct dentry *dentry = file->f_path.dentry;
 136	switch (whence) {
 137		case 1:
 138			offset += file->f_pos;
 139			/* fall through */
 140		case 0:
 141			if (offset >= 0)
 142				break;
 143			/* fall through */
 144		default:
 145			return -EINVAL;
 146	}
 147	if (offset != file->f_pos) {
 148		struct dentry *cursor = file->private_data;
 149		struct dentry *to = NULL;
 150
 151		inode_lock_shared(dentry->d_inode);
 152
 153		if (offset > 2)
 154			to = scan_positives(cursor, &dentry->d_subdirs,
 155					    offset - 2, NULL);
 156		spin_lock(&dentry->d_lock);
 157		if (to)
 158			list_move(&cursor->d_child, &to->d_child);
 159		else
 160			list_del_init(&cursor->d_child);
 161		spin_unlock(&dentry->d_lock);
 162		dput(to);
 163
 164		file->f_pos = offset;
 165
 166		inode_unlock_shared(dentry->d_inode);
 
 
 
 
 
 
 
 
 167	}
 168	return offset;
 169}
 170EXPORT_SYMBOL(dcache_dir_lseek);
 171
 172/* Relationship between i_mode and the DT_xxx types */
 173static inline unsigned char dt_type(struct inode *inode)
 174{
 175	return (inode->i_mode >> 12) & 15;
 176}
 177
 178/*
 179 * Directory is locked and all positive dentries in it are safe, since
 180 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 181 * both impossible due to the lock on directory.
 182 */
 183
 184int dcache_readdir(struct file *file, struct dir_context *ctx)
 185{
 186	struct dentry *dentry = file->f_path.dentry;
 187	struct dentry *cursor = file->private_data;
 188	struct list_head *anchor = &dentry->d_subdirs;
 189	struct dentry *next = NULL;
 190	struct list_head *p;
 191
 192	if (!dir_emit_dots(file, ctx))
 193		return 0;
 194
 195	if (ctx->pos == 2)
 196		p = anchor;
 197	else if (!list_empty(&cursor->d_child))
 198		p = &cursor->d_child;
 199	else
 200		return 0;
 201
 202	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
 203		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 204			      d_inode(next)->i_ino, dt_type(d_inode(next))))
 205			break;
 
 
 206		ctx->pos++;
 207		p = &next->d_child;
 208	}
 209	spin_lock(&dentry->d_lock);
 210	if (next)
 211		list_move_tail(&cursor->d_child, &next->d_child);
 212	else
 213		list_del_init(&cursor->d_child);
 214	spin_unlock(&dentry->d_lock);
 215	dput(next);
 216
 217	return 0;
 218}
 219EXPORT_SYMBOL(dcache_readdir);
 220
 221ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 222{
 223	return -EISDIR;
 224}
 225EXPORT_SYMBOL(generic_read_dir);
 226
 227const struct file_operations simple_dir_operations = {
 228	.open		= dcache_dir_open,
 229	.release	= dcache_dir_close,
 230	.llseek		= dcache_dir_lseek,
 231	.read		= generic_read_dir,
 232	.iterate_shared	= dcache_readdir,
 233	.fsync		= noop_fsync,
 234};
 235EXPORT_SYMBOL(simple_dir_operations);
 236
 237const struct inode_operations simple_dir_inode_operations = {
 238	.lookup		= simple_lookup,
 239};
 240EXPORT_SYMBOL(simple_dir_inode_operations);
 241
 242static const struct super_operations simple_super_operations = {
 243	.statfs		= simple_statfs,
 244};
 245
 246static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
 
 
 
 
 
 
 247{
 248	struct pseudo_fs_context *ctx = fc->fs_private;
 
 249	struct inode *root;
 
 
 
 
 
 
 250
 251	s->s_maxbytes = MAX_LFS_FILESIZE;
 252	s->s_blocksize = PAGE_SIZE;
 253	s->s_blocksize_bits = PAGE_SHIFT;
 254	s->s_magic = ctx->magic;
 255	s->s_op = ctx->ops ?: &simple_super_operations;
 256	s->s_xattr = ctx->xattr;
 257	s->s_time_gran = 1;
 258	root = new_inode(s);
 259	if (!root)
 260		return -ENOMEM;
 261
 262	/*
 263	 * since this is the first inode, make it number 1. New inodes created
 264	 * after this must take care not to collide with it (by passing
 265	 * max_reserved of 1 to iunique).
 266	 */
 267	root->i_ino = 1;
 268	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 269	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 270	s->s_root = d_make_root(root);
 271	if (!s->s_root)
 272		return -ENOMEM;
 273	s->s_d_op = ctx->dops;
 274	return 0;
 275}
 276
 277static int pseudo_fs_get_tree(struct fs_context *fc)
 278{
 279	return get_tree_nodev(fc, pseudo_fs_fill_super);
 280}
 281
 282static void pseudo_fs_free(struct fs_context *fc)
 283{
 284	kfree(fc->fs_private);
 285}
 286
 287static const struct fs_context_operations pseudo_fs_context_ops = {
 288	.free		= pseudo_fs_free,
 289	.get_tree	= pseudo_fs_get_tree,
 290};
 291
 292/*
 293 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 294 * will never be mountable)
 295 */
 296struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
 297					unsigned long magic)
 298{
 299	struct pseudo_fs_context *ctx;
 300
 301	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
 302	if (likely(ctx)) {
 303		ctx->magic = magic;
 304		fc->fs_private = ctx;
 305		fc->ops = &pseudo_fs_context_ops;
 306		fc->sb_flags |= SB_NOUSER;
 307		fc->global = true;
 308	}
 309	return ctx;
 
 
 
 
 
 
 
 
 310}
 311EXPORT_SYMBOL(init_pseudo);
 312
 313int simple_open(struct inode *inode, struct file *file)
 314{
 315	if (inode->i_private)
 316		file->private_data = inode->i_private;
 317	return 0;
 318}
 319EXPORT_SYMBOL(simple_open);
 320
 321int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 322{
 323	struct inode *inode = d_inode(old_dentry);
 324
 325	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 326	inc_nlink(inode);
 327	ihold(inode);
 328	dget(dentry);
 329	d_instantiate(dentry, inode);
 330	return 0;
 331}
 332EXPORT_SYMBOL(simple_link);
 333
 334int simple_empty(struct dentry *dentry)
 335{
 336	struct dentry *child;
 337	int ret = 0;
 338
 339	spin_lock(&dentry->d_lock);
 340	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 341		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 342		if (simple_positive(child)) {
 343			spin_unlock(&child->d_lock);
 344			goto out;
 345		}
 346		spin_unlock(&child->d_lock);
 347	}
 348	ret = 1;
 349out:
 350	spin_unlock(&dentry->d_lock);
 351	return ret;
 352}
 353EXPORT_SYMBOL(simple_empty);
 354
 355int simple_unlink(struct inode *dir, struct dentry *dentry)
 356{
 357	struct inode *inode = d_inode(dentry);
 358
 359	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 360	drop_nlink(inode);
 361	dput(dentry);
 362	return 0;
 363}
 364EXPORT_SYMBOL(simple_unlink);
 365
 366int simple_rmdir(struct inode *dir, struct dentry *dentry)
 367{
 368	if (!simple_empty(dentry))
 369		return -ENOTEMPTY;
 370
 371	drop_nlink(d_inode(dentry));
 372	simple_unlink(dir, dentry);
 373	drop_nlink(dir);
 374	return 0;
 375}
 376EXPORT_SYMBOL(simple_rmdir);
 377
 378int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 379		  struct inode *new_dir, struct dentry *new_dentry,
 380		  unsigned int flags)
 381{
 382	struct inode *inode = d_inode(old_dentry);
 383	int they_are_dirs = d_is_dir(old_dentry);
 384
 385	if (flags & ~RENAME_NOREPLACE)
 386		return -EINVAL;
 387
 388	if (!simple_empty(new_dentry))
 389		return -ENOTEMPTY;
 390
 391	if (d_really_is_positive(new_dentry)) {
 392		simple_unlink(new_dir, new_dentry);
 393		if (they_are_dirs) {
 394			drop_nlink(d_inode(new_dentry));
 395			drop_nlink(old_dir);
 396		}
 397	} else if (they_are_dirs) {
 398		drop_nlink(old_dir);
 399		inc_nlink(new_dir);
 400	}
 401
 402	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 403		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 404
 405	return 0;
 406}
 407EXPORT_SYMBOL(simple_rename);
 408
 409/**
 410 * simple_setattr - setattr for simple filesystem
 411 * @dentry: dentry
 412 * @iattr: iattr structure
 413 *
 414 * Returns 0 on success, -error on failure.
 415 *
 416 * simple_setattr is a simple ->setattr implementation without a proper
 417 * implementation of size changes.
 418 *
 419 * It can either be used for in-memory filesystems or special files
 420 * on simple regular filesystems.  Anything that needs to change on-disk
 421 * or wire state on size changes needs its own setattr method.
 422 */
 423int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 424{
 425	struct inode *inode = d_inode(dentry);
 426	int error;
 427
 428	error = setattr_prepare(dentry, iattr);
 429	if (error)
 430		return error;
 431
 432	if (iattr->ia_valid & ATTR_SIZE)
 433		truncate_setsize(inode, iattr->ia_size);
 434	setattr_copy(inode, iattr);
 435	mark_inode_dirty(inode);
 436	return 0;
 437}
 438EXPORT_SYMBOL(simple_setattr);
 439
 440int simple_readpage(struct file *file, struct page *page)
 441{
 442	clear_highpage(page);
 443	flush_dcache_page(page);
 444	SetPageUptodate(page);
 445	unlock_page(page);
 446	return 0;
 447}
 448EXPORT_SYMBOL(simple_readpage);
 449
 450int simple_write_begin(struct file *file, struct address_space *mapping,
 451			loff_t pos, unsigned len, unsigned flags,
 452			struct page **pagep, void **fsdata)
 453{
 454	struct page *page;
 455	pgoff_t index;
 456
 457	index = pos >> PAGE_SHIFT;
 458
 459	page = grab_cache_page_write_begin(mapping, index, flags);
 460	if (!page)
 461		return -ENOMEM;
 462
 463	*pagep = page;
 464
 465	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 466		unsigned from = pos & (PAGE_SIZE - 1);
 467
 468		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 469	}
 470	return 0;
 471}
 472EXPORT_SYMBOL(simple_write_begin);
 473
 474/**
 475 * simple_write_end - .write_end helper for non-block-device FSes
 476 * @file: See .write_end of address_space_operations
 
 477 * @mapping: 		"
 478 * @pos: 		"
 479 * @len: 		"
 480 * @copied: 		"
 481 * @page: 		"
 482 * @fsdata: 		"
 483 *
 484 * simple_write_end does the minimum needed for updating a page after writing is
 485 * done. It has the same API signature as the .write_end of
 486 * address_space_operations vector. So it can just be set onto .write_end for
 487 * FSes that don't need any other processing. i_mutex is assumed to be held.
 488 * Block based filesystems should use generic_write_end().
 489 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 490 * is not called, so a filesystem that actually does store data in .write_inode
 491 * should extend on what's done here with a call to mark_inode_dirty() in the
 492 * case that i_size has changed.
 493 *
 494 * Use *ONLY* with simple_readpage()
 495 */
 496int simple_write_end(struct file *file, struct address_space *mapping,
 497			loff_t pos, unsigned len, unsigned copied,
 498			struct page *page, void *fsdata)
 499{
 500	struct inode *inode = page->mapping->host;
 501	loff_t last_pos = pos + copied;
 502
 503	/* zero the stale part of the page if we did a short copy */
 504	if (!PageUptodate(page)) {
 505		if (copied < len) {
 506			unsigned from = pos & (PAGE_SIZE - 1);
 507
 508			zero_user(page, from + copied, len - copied);
 509		}
 510		SetPageUptodate(page);
 511	}
 512	/*
 513	 * No need to use i_size_read() here, the i_size
 514	 * cannot change under us because we hold the i_mutex.
 515	 */
 516	if (last_pos > inode->i_size)
 517		i_size_write(inode, last_pos);
 518
 519	set_page_dirty(page);
 520	unlock_page(page);
 521	put_page(page);
 522
 523	return copied;
 524}
 525EXPORT_SYMBOL(simple_write_end);
 526
 527/*
 528 * the inodes created here are not hashed. If you use iunique to generate
 529 * unique inode values later for this filesystem, then you must take care
 530 * to pass it an appropriate max_reserved value to avoid collisions.
 531 */
 532int simple_fill_super(struct super_block *s, unsigned long magic,
 533		      const struct tree_descr *files)
 534{
 535	struct inode *inode;
 536	struct dentry *root;
 537	struct dentry *dentry;
 538	int i;
 539
 540	s->s_blocksize = PAGE_SIZE;
 541	s->s_blocksize_bits = PAGE_SHIFT;
 542	s->s_magic = magic;
 543	s->s_op = &simple_super_operations;
 544	s->s_time_gran = 1;
 545
 546	inode = new_inode(s);
 547	if (!inode)
 548		return -ENOMEM;
 549	/*
 550	 * because the root inode is 1, the files array must not contain an
 551	 * entry at index 1
 552	 */
 553	inode->i_ino = 1;
 554	inode->i_mode = S_IFDIR | 0755;
 555	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 556	inode->i_op = &simple_dir_inode_operations;
 557	inode->i_fop = &simple_dir_operations;
 558	set_nlink(inode, 2);
 559	root = d_make_root(inode);
 560	if (!root)
 561		return -ENOMEM;
 562	for (i = 0; !files->name || files->name[0]; i++, files++) {
 563		if (!files->name)
 564			continue;
 565
 566		/* warn if it tries to conflict with the root inode */
 567		if (unlikely(i == 1))
 568			printk(KERN_WARNING "%s: %s passed in a files array"
 569				"with an index of 1!\n", __func__,
 570				s->s_type->name);
 571
 572		dentry = d_alloc_name(root, files->name);
 573		if (!dentry)
 574			goto out;
 575		inode = new_inode(s);
 576		if (!inode) {
 577			dput(dentry);
 578			goto out;
 579		}
 580		inode->i_mode = S_IFREG | files->mode;
 581		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 582		inode->i_fop = files->ops;
 583		inode->i_ino = i;
 584		d_add(dentry, inode);
 585	}
 586	s->s_root = root;
 587	return 0;
 588out:
 589	d_genocide(root);
 590	shrink_dcache_parent(root);
 591	dput(root);
 592	return -ENOMEM;
 593}
 594EXPORT_SYMBOL(simple_fill_super);
 595
 596static DEFINE_SPINLOCK(pin_fs_lock);
 597
 598int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 599{
 600	struct vfsmount *mnt = NULL;
 601	spin_lock(&pin_fs_lock);
 602	if (unlikely(!*mount)) {
 603		spin_unlock(&pin_fs_lock);
 604		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 605		if (IS_ERR(mnt))
 606			return PTR_ERR(mnt);
 607		spin_lock(&pin_fs_lock);
 608		if (!*mount)
 609			*mount = mnt;
 610	}
 611	mntget(*mount);
 612	++*count;
 613	spin_unlock(&pin_fs_lock);
 614	mntput(mnt);
 615	return 0;
 616}
 617EXPORT_SYMBOL(simple_pin_fs);
 618
 619void simple_release_fs(struct vfsmount **mount, int *count)
 620{
 621	struct vfsmount *mnt;
 622	spin_lock(&pin_fs_lock);
 623	mnt = *mount;
 624	if (!--*count)
 625		*mount = NULL;
 626	spin_unlock(&pin_fs_lock);
 627	mntput(mnt);
 628}
 629EXPORT_SYMBOL(simple_release_fs);
 630
 631/**
 632 * simple_read_from_buffer - copy data from the buffer to user space
 633 * @to: the user space buffer to read to
 634 * @count: the maximum number of bytes to read
 635 * @ppos: the current position in the buffer
 636 * @from: the buffer to read from
 637 * @available: the size of the buffer
 638 *
 639 * The simple_read_from_buffer() function reads up to @count bytes from the
 640 * buffer @from at offset @ppos into the user space address starting at @to.
 641 *
 642 * On success, the number of bytes read is returned and the offset @ppos is
 643 * advanced by this number, or negative value is returned on error.
 644 **/
 645ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 646				const void *from, size_t available)
 647{
 648	loff_t pos = *ppos;
 649	size_t ret;
 650
 651	if (pos < 0)
 652		return -EINVAL;
 653	if (pos >= available || !count)
 654		return 0;
 655	if (count > available - pos)
 656		count = available - pos;
 657	ret = copy_to_user(to, from + pos, count);
 658	if (ret == count)
 659		return -EFAULT;
 660	count -= ret;
 661	*ppos = pos + count;
 662	return count;
 663}
 664EXPORT_SYMBOL(simple_read_from_buffer);
 665
 666/**
 667 * simple_write_to_buffer - copy data from user space to the buffer
 668 * @to: the buffer to write to
 669 * @available: the size of the buffer
 670 * @ppos: the current position in the buffer
 671 * @from: the user space buffer to read from
 672 * @count: the maximum number of bytes to read
 673 *
 674 * The simple_write_to_buffer() function reads up to @count bytes from the user
 675 * space address starting at @from into the buffer @to at offset @ppos.
 676 *
 677 * On success, the number of bytes written is returned and the offset @ppos is
 678 * advanced by this number, or negative value is returned on error.
 679 **/
 680ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 681		const void __user *from, size_t count)
 682{
 683	loff_t pos = *ppos;
 684	size_t res;
 685
 686	if (pos < 0)
 687		return -EINVAL;
 688	if (pos >= available || !count)
 689		return 0;
 690	if (count > available - pos)
 691		count = available - pos;
 692	res = copy_from_user(to + pos, from, count);
 693	if (res == count)
 694		return -EFAULT;
 695	count -= res;
 696	*ppos = pos + count;
 697	return count;
 698}
 699EXPORT_SYMBOL(simple_write_to_buffer);
 700
 701/**
 702 * memory_read_from_buffer - copy data from the buffer
 703 * @to: the kernel space buffer to read to
 704 * @count: the maximum number of bytes to read
 705 * @ppos: the current position in the buffer
 706 * @from: the buffer to read from
 707 * @available: the size of the buffer
 708 *
 709 * The memory_read_from_buffer() function reads up to @count bytes from the
 710 * buffer @from at offset @ppos into the kernel space address starting at @to.
 711 *
 712 * On success, the number of bytes read is returned and the offset @ppos is
 713 * advanced by this number, or negative value is returned on error.
 714 **/
 715ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 716				const void *from, size_t available)
 717{
 718	loff_t pos = *ppos;
 719
 720	if (pos < 0)
 721		return -EINVAL;
 722	if (pos >= available)
 723		return 0;
 724	if (count > available - pos)
 725		count = available - pos;
 726	memcpy(to, from + pos, count);
 727	*ppos = pos + count;
 728
 729	return count;
 730}
 731EXPORT_SYMBOL(memory_read_from_buffer);
 732
 733/*
 734 * Transaction based IO.
 735 * The file expects a single write which triggers the transaction, and then
 736 * possibly a read which collects the result - which is stored in a
 737 * file-local buffer.
 738 */
 739
 740void simple_transaction_set(struct file *file, size_t n)
 741{
 742	struct simple_transaction_argresp *ar = file->private_data;
 743
 744	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 745
 746	/*
 747	 * The barrier ensures that ar->size will really remain zero until
 748	 * ar->data is ready for reading.
 749	 */
 750	smp_mb();
 751	ar->size = n;
 752}
 753EXPORT_SYMBOL(simple_transaction_set);
 754
 755char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 756{
 757	struct simple_transaction_argresp *ar;
 758	static DEFINE_SPINLOCK(simple_transaction_lock);
 759
 760	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 761		return ERR_PTR(-EFBIG);
 762
 763	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 764	if (!ar)
 765		return ERR_PTR(-ENOMEM);
 766
 767	spin_lock(&simple_transaction_lock);
 768
 769	/* only one write allowed per open */
 770	if (file->private_data) {
 771		spin_unlock(&simple_transaction_lock);
 772		free_page((unsigned long)ar);
 773		return ERR_PTR(-EBUSY);
 774	}
 775
 776	file->private_data = ar;
 777
 778	spin_unlock(&simple_transaction_lock);
 779
 780	if (copy_from_user(ar->data, buf, size))
 781		return ERR_PTR(-EFAULT);
 782
 783	return ar->data;
 784}
 785EXPORT_SYMBOL(simple_transaction_get);
 786
 787ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 788{
 789	struct simple_transaction_argresp *ar = file->private_data;
 790
 791	if (!ar)
 792		return 0;
 793	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 794}
 795EXPORT_SYMBOL(simple_transaction_read);
 796
 797int simple_transaction_release(struct inode *inode, struct file *file)
 798{
 799	free_page((unsigned long)file->private_data);
 800	return 0;
 801}
 802EXPORT_SYMBOL(simple_transaction_release);
 803
 804/* Simple attribute files */
 805
 806struct simple_attr {
 807	int (*get)(void *, u64 *);
 808	int (*set)(void *, u64);
 809	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 810	char set_buf[24];
 811	void *data;
 812	const char *fmt;	/* format for read operation */
 813	struct mutex mutex;	/* protects access to these buffers */
 814};
 815
 816/* simple_attr_open is called by an actual attribute open file operation
 817 * to set the attribute specific access operations. */
 818int simple_attr_open(struct inode *inode, struct file *file,
 819		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 820		     const char *fmt)
 821{
 822	struct simple_attr *attr;
 823
 824	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 825	if (!attr)
 826		return -ENOMEM;
 827
 828	attr->get = get;
 829	attr->set = set;
 830	attr->data = inode->i_private;
 831	attr->fmt = fmt;
 832	mutex_init(&attr->mutex);
 833
 834	file->private_data = attr;
 835
 836	return nonseekable_open(inode, file);
 837}
 838EXPORT_SYMBOL_GPL(simple_attr_open);
 839
 840int simple_attr_release(struct inode *inode, struct file *file)
 841{
 842	kfree(file->private_data);
 843	return 0;
 844}
 845EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 846
 847/* read from the buffer that is filled with the get function */
 848ssize_t simple_attr_read(struct file *file, char __user *buf,
 849			 size_t len, loff_t *ppos)
 850{
 851	struct simple_attr *attr;
 852	size_t size;
 853	ssize_t ret;
 854
 855	attr = file->private_data;
 856
 857	if (!attr->get)
 858		return -EACCES;
 859
 860	ret = mutex_lock_interruptible(&attr->mutex);
 861	if (ret)
 862		return ret;
 863
 864	if (*ppos) {		/* continued read */
 865		size = strlen(attr->get_buf);
 866	} else {		/* first read */
 867		u64 val;
 868		ret = attr->get(attr->data, &val);
 869		if (ret)
 870			goto out;
 871
 872		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 873				 attr->fmt, (unsigned long long)val);
 874	}
 875
 876	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 877out:
 878	mutex_unlock(&attr->mutex);
 879	return ret;
 880}
 881EXPORT_SYMBOL_GPL(simple_attr_read);
 882
 883/* interpret the buffer as a number to call the set function with */
 884ssize_t simple_attr_write(struct file *file, const char __user *buf,
 885			  size_t len, loff_t *ppos)
 886{
 887	struct simple_attr *attr;
 888	u64 val;
 889	size_t size;
 890	ssize_t ret;
 891
 892	attr = file->private_data;
 893	if (!attr->set)
 894		return -EACCES;
 895
 896	ret = mutex_lock_interruptible(&attr->mutex);
 897	if (ret)
 898		return ret;
 899
 900	ret = -EFAULT;
 901	size = min(sizeof(attr->set_buf) - 1, len);
 902	if (copy_from_user(attr->set_buf, buf, size))
 903		goto out;
 904
 905	attr->set_buf[size] = '\0';
 906	val = simple_strtoll(attr->set_buf, NULL, 0);
 907	ret = attr->set(attr->data, val);
 908	if (ret == 0)
 909		ret = len; /* on success, claim we got the whole input */
 910out:
 911	mutex_unlock(&attr->mutex);
 912	return ret;
 913}
 914EXPORT_SYMBOL_GPL(simple_attr_write);
 915
 916/**
 917 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 918 * @sb:		filesystem to do the file handle conversion on
 919 * @fid:	file handle to convert
 920 * @fh_len:	length of the file handle in bytes
 921 * @fh_type:	type of file handle
 922 * @get_inode:	filesystem callback to retrieve inode
 923 *
 924 * This function decodes @fid as long as it has one of the well-known
 925 * Linux filehandle types and calls @get_inode on it to retrieve the
 926 * inode for the object specified in the file handle.
 927 */
 928struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 929		int fh_len, int fh_type, struct inode *(*get_inode)
 930			(struct super_block *sb, u64 ino, u32 gen))
 931{
 932	struct inode *inode = NULL;
 933
 934	if (fh_len < 2)
 935		return NULL;
 936
 937	switch (fh_type) {
 938	case FILEID_INO32_GEN:
 939	case FILEID_INO32_GEN_PARENT:
 940		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 941		break;
 942	}
 943
 944	return d_obtain_alias(inode);
 945}
 946EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 947
 948/**
 949 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 950 * @sb:		filesystem to do the file handle conversion on
 951 * @fid:	file handle to convert
 952 * @fh_len:	length of the file handle in bytes
 953 * @fh_type:	type of file handle
 954 * @get_inode:	filesystem callback to retrieve inode
 955 *
 956 * This function decodes @fid as long as it has one of the well-known
 957 * Linux filehandle types and calls @get_inode on it to retrieve the
 958 * inode for the _parent_ object specified in the file handle if it
 959 * is specified in the file handle, or NULL otherwise.
 960 */
 961struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 962		int fh_len, int fh_type, struct inode *(*get_inode)
 963			(struct super_block *sb, u64 ino, u32 gen))
 964{
 965	struct inode *inode = NULL;
 966
 967	if (fh_len <= 2)
 968		return NULL;
 969
 970	switch (fh_type) {
 971	case FILEID_INO32_GEN_PARENT:
 972		inode = get_inode(sb, fid->i32.parent_ino,
 973				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 974		break;
 975	}
 976
 977	return d_obtain_alias(inode);
 978}
 979EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 980
 981/**
 982 * __generic_file_fsync - generic fsync implementation for simple filesystems
 983 *
 984 * @file:	file to synchronize
 985 * @start:	start offset in bytes
 986 * @end:	end offset in bytes (inclusive)
 987 * @datasync:	only synchronize essential metadata if true
 988 *
 989 * This is a generic implementation of the fsync method for simple
 990 * filesystems which track all non-inode metadata in the buffers list
 991 * hanging off the address_space structure.
 992 */
 993int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 994				 int datasync)
 995{
 996	struct inode *inode = file->f_mapping->host;
 997	int err;
 998	int ret;
 999
1000	err = file_write_and_wait_range(file, start, end);
1001	if (err)
1002		return err;
1003
1004	inode_lock(inode);
1005	ret = sync_mapping_buffers(inode->i_mapping);
1006	if (!(inode->i_state & I_DIRTY_ALL))
1007		goto out;
1008	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1009		goto out;
1010
1011	err = sync_inode_metadata(inode, 1);
1012	if (ret == 0)
1013		ret = err;
1014
1015out:
1016	inode_unlock(inode);
1017	/* check and advance again to catch errors after syncing out buffers */
1018	err = file_check_and_advance_wb_err(file);
1019	if (ret == 0)
1020		ret = err;
1021	return ret;
1022}
1023EXPORT_SYMBOL(__generic_file_fsync);
1024
1025/**
1026 * generic_file_fsync - generic fsync implementation for simple filesystems
1027 *			with flush
1028 * @file:	file to synchronize
1029 * @start:	start offset in bytes
1030 * @end:	end offset in bytes (inclusive)
1031 * @datasync:	only synchronize essential metadata if true
1032 *
1033 */
1034
1035int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1036		       int datasync)
1037{
1038	struct inode *inode = file->f_mapping->host;
1039	int err;
1040
1041	err = __generic_file_fsync(file, start, end, datasync);
1042	if (err)
1043		return err;
1044	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1045}
1046EXPORT_SYMBOL(generic_file_fsync);
1047
1048/**
1049 * generic_check_addressable - Check addressability of file system
1050 * @blocksize_bits:	log of file system block size
1051 * @num_blocks:		number of blocks in file system
1052 *
1053 * Determine whether a file system with @num_blocks blocks (and a
1054 * block size of 2**@blocksize_bits) is addressable by the sector_t
1055 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1056 */
1057int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1058{
1059	u64 last_fs_block = num_blocks - 1;
1060	u64 last_fs_page =
1061		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1062
1063	if (unlikely(num_blocks == 0))
1064		return 0;
1065
1066	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1067		return -EINVAL;
1068
1069	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1070	    (last_fs_page > (pgoff_t)(~0ULL))) {
1071		return -EFBIG;
1072	}
1073	return 0;
1074}
1075EXPORT_SYMBOL(generic_check_addressable);
1076
1077/*
1078 * No-op implementation of ->fsync for in-memory filesystems.
1079 */
1080int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1081{
1082	return 0;
1083}
1084EXPORT_SYMBOL(noop_fsync);
1085
1086int noop_set_page_dirty(struct page *page)
1087{
1088	/*
1089	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1090	 * tracking in the page object, dax does all dirty tracking in
1091	 * the inode address_space in response to mkwrite faults. In the
1092	 * dax case we only need to worry about potentially dirty CPU
1093	 * caches, not dirty page cache pages to write back.
1094	 *
1095	 * This callback is defined to prevent fallback to
1096	 * __set_page_dirty_buffers() in set_page_dirty().
1097	 */
1098	return 0;
1099}
1100EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1101
1102void noop_invalidatepage(struct page *page, unsigned int offset,
1103		unsigned int length)
1104{
1105	/*
1106	 * There is no page cache to invalidate in the dax case, however
1107	 * we need this callback defined to prevent falling back to
1108	 * block_invalidatepage() in do_invalidatepage().
1109	 */
1110}
1111EXPORT_SYMBOL_GPL(noop_invalidatepage);
1112
1113ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1114{
1115	/*
1116	 * iomap based filesystems support direct I/O without need for
1117	 * this callback. However, it still needs to be set in
1118	 * inode->a_ops so that open/fcntl know that direct I/O is
1119	 * generally supported.
1120	 */
1121	return -EINVAL;
1122}
1123EXPORT_SYMBOL_GPL(noop_direct_IO);
1124
1125/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1126void kfree_link(void *p)
1127{
1128	kfree(p);
1129}
1130EXPORT_SYMBOL(kfree_link);
1131
1132/*
1133 * nop .set_page_dirty method so that people can use .page_mkwrite on
1134 * anon inodes.
1135 */
1136static int anon_set_page_dirty(struct page *page)
1137{
1138	return 0;
1139};
1140
1141/*
1142 * A single inode exists for all anon_inode files. Contrary to pipes,
1143 * anon_inode inodes have no associated per-instance data, so we need
1144 * only allocate one of them.
1145 */
1146struct inode *alloc_anon_inode(struct super_block *s)
1147{
1148	static const struct address_space_operations anon_aops = {
1149		.set_page_dirty = anon_set_page_dirty,
1150	};
1151	struct inode *inode = new_inode_pseudo(s);
1152
1153	if (!inode)
1154		return ERR_PTR(-ENOMEM);
1155
1156	inode->i_ino = get_next_ino();
1157	inode->i_mapping->a_ops = &anon_aops;
1158
1159	/*
1160	 * Mark the inode dirty from the very beginning,
1161	 * that way it will never be moved to the dirty
1162	 * list because mark_inode_dirty() will think
1163	 * that it already _is_ on the dirty list.
1164	 */
1165	inode->i_state = I_DIRTY;
1166	inode->i_mode = S_IRUSR | S_IWUSR;
1167	inode->i_uid = current_fsuid();
1168	inode->i_gid = current_fsgid();
1169	inode->i_flags |= S_PRIVATE;
1170	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1171	return inode;
1172}
1173EXPORT_SYMBOL(alloc_anon_inode);
1174
1175/**
1176 * simple_nosetlease - generic helper for prohibiting leases
1177 * @filp: file pointer
1178 * @arg: type of lease to obtain
1179 * @flp: new lease supplied for insertion
1180 * @priv: private data for lm_setup operation
1181 *
1182 * Generic helper for filesystems that do not wish to allow leases to be set.
1183 * All arguments are ignored and it just returns -EINVAL.
1184 */
1185int
1186simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1187		  void **priv)
1188{
1189	return -EINVAL;
1190}
1191EXPORT_SYMBOL(simple_nosetlease);
1192
1193/**
1194 * simple_get_link - generic helper to get the target of "fast" symlinks
1195 * @dentry: not used here
1196 * @inode: the symlink inode
1197 * @done: not used here
1198 *
1199 * Generic helper for filesystems to use for symlink inodes where a pointer to
1200 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1201 * since as an optimization the path lookup code uses any non-NULL ->i_link
1202 * directly, without calling ->get_link().  But ->get_link() still must be set,
1203 * to mark the inode_operations as being for a symlink.
1204 *
1205 * Return: the symlink target
1206 */
1207const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1208			    struct delayed_call *done)
1209{
1210	return inode->i_link;
1211}
1212EXPORT_SYMBOL(simple_get_link);
1213
1214const struct inode_operations simple_symlink_inode_operations = {
1215	.get_link = simple_get_link,
1216};
1217EXPORT_SYMBOL(simple_symlink_inode_operations);
1218
1219/*
1220 * Operations for a permanently empty directory.
1221 */
1222static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1223{
1224	return ERR_PTR(-ENOENT);
1225}
1226
1227static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1228			     u32 request_mask, unsigned int query_flags)
1229{
1230	struct inode *inode = d_inode(path->dentry);
1231	generic_fillattr(inode, stat);
1232	return 0;
1233}
1234
1235static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1236{
1237	return -EPERM;
1238}
1239
1240static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1241{
1242	return -EOPNOTSUPP;
1243}
1244
1245static const struct inode_operations empty_dir_inode_operations = {
1246	.lookup		= empty_dir_lookup,
1247	.permission	= generic_permission,
1248	.setattr	= empty_dir_setattr,
1249	.getattr	= empty_dir_getattr,
1250	.listxattr	= empty_dir_listxattr,
1251};
1252
1253static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1254{
1255	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1256	return generic_file_llseek_size(file, offset, whence, 2, 2);
1257}
1258
1259static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1260{
1261	dir_emit_dots(file, ctx);
1262	return 0;
1263}
1264
1265static const struct file_operations empty_dir_operations = {
1266	.llseek		= empty_dir_llseek,
1267	.read		= generic_read_dir,
1268	.iterate_shared	= empty_dir_readdir,
1269	.fsync		= noop_fsync,
1270};
1271
1272
1273void make_empty_dir_inode(struct inode *inode)
1274{
1275	set_nlink(inode, 2);
1276	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1277	inode->i_uid = GLOBAL_ROOT_UID;
1278	inode->i_gid = GLOBAL_ROOT_GID;
1279	inode->i_rdev = 0;
1280	inode->i_size = 0;
1281	inode->i_blkbits = PAGE_SHIFT;
1282	inode->i_blocks = 0;
1283
1284	inode->i_op = &empty_dir_inode_operations;
1285	inode->i_opflags &= ~IOP_XATTR;
1286	inode->i_fop = &empty_dir_operations;
1287}
1288
1289bool is_empty_dir_inode(struct inode *inode)
1290{
1291	return (inode->i_fop == &empty_dir_operations) &&
1292		(inode->i_op == &empty_dir_inode_operations);
1293}